
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2009

Accelerated CTIS Using the Cell Processor Accelerated CTIS Using the Cell Processor

Thaddeus James Thompson
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Thompson, Thaddeus James, "Accelerated CTIS Using the Cell Processor. " Master's Thesis, University of
Tennessee, 2009.
https://trace.tennessee.edu/utk_gradthes/564

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_gradthes%2F564&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Thaddeus James Thompson entitled "Accelerated

CTIS Using the Cell Processor." I have examined the final electronic copy of this thesis for form

and content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Computer Science.

Michael Vose, Major Professor

We have read this thesis and recommend its acceptance:

James Plank, Michael Berry

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Thaddeus James Thompson entitled “Accelerated

CTIS Using the Cell Processor.” I have examined the final electronic copy of this thesis for form

and content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science with a major in Computer Science.

 Michael Vose, Major Professor

We have read this thesis

and recommend its acceptance:

James Plank

Michael Berry

 Accepted for the Council:

 Carolyn R. Hodges

 Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Accelerated CTIS Using the Cell Processor

A Thesis Presented for the
Master of Science Degree

The University of Tennessee, Knoxville

Thaddeus James Thompson
December, 2009

Dedication

To my wife Robyn, and my mom.

ii

Abstract

The Computed Tomography Imaging Spectrometer (CTIS) is a device capable of simultane-
ously acquiring imagery from multiple bands of the electromagnetic spectrum. Due to the
method of data collection from this system, a processing intensive reconstruction phase is
required to resolve the image output. This paper evaluates a parallelized implementation
of the Vose-Horton CTIS reconstruction algorithm using the Cell processor. In addition to
demonstrating the feasibility of a mixed precision implementation, it is shown that use of the
parallel processing capabilities of the Cell may provide a significant reduction in reconstruc-
tion time.

iii

Contents

1 Introduction 1

2 Computed Tomography Imaging Spectrometry 3
2.1 CTIS Image Reconstruction . 3
2.2 The Vose-Horton Algorithm . 5

2.2.1 Strategy . 5
2.2.2 Solution . 7

3 The Cell Processor 10
3.1 Design . 10

3.1.1 The PowerPC Processing Element . 10
3.1.2 The Synergistic Processing Elements 11
3.1.3 The Element Interconnect Bus . 11

3.2 Programming . 12

4 Implementation 13
4.1 Metrics . 13

4.1.1 Accuracy . 13
4.1.2 Speed . 14

4.2 Baseline Implementation . 14
4.2.1 Prototyping . 14
4.2.2 Simplification . 15
4.2.3 Implementation in C . 15

5 Acceleration with the Cell Processor 18
5.1 Approach . 18

5.1.1 Parameters . 18
5.2 Acceleration of the BLASX Library . 19

5.2.1 Simple PPE Baseline . 19
5.2.2 Deployment to the SPEs . 19
5.2.3 Huge Pages . 19
5.2.4 Vectorization and Unrolling . 20
5.2.5 Double Buffering . 20
5.2.6 Bandwidth Optimization . 20
5.2.7 Summary . 21

iv

6 Results 23
6.1 Setup . 23
6.2 Reconstruction . 24

6.2.1 Double Precision . 24
6.2.2 Mixed Precision . 25
6.2.3 BLASX Accelerated . 26
6.2.4 FFT Accelerated . 26
6.2.5 BLASX+FFT . 27
6.2.6 BLASX+FFT Split . 27

6.3 Summary . 28

7 Conclusions and Future Work 31
7.1 Future Work . 31

7.1.1 Reducing Fourier transforms . 31
7.1.2 Handling the Cell Library Problem . 31
7.1.3 Tuning the Implementation . 32

7.2 Conclusion . 32

Appendices 36

A Tables 38

B Cell Processor on the PlayStation 3 45
B.1 The Hardware . 45

B.1.1 CPU . 45
B.1.2 Memory . 45
B.1.3 Network . 45
B.1.4 Storage . 46
B.1.5 I/O . 46

B.2 Installing Linux on the PlayStation 3 . 46
B.2.1 Partitioning the Hard Drive . 46
B.2.2 Setting up a Bootloader . 46

B.3 Installing Linux . 47
B.4 Pruning the System . 47
B.5 Updating the Linux Kernel . 48
B.6 Configuring Huge Pages . 49
B.7 Installing the IBM SDK . 49

C The VH Solver 50
C.1 Setup . 50
C.2 Implementation . 52

D Building the CTIS Solver 57

E SPU Task Optimization 58

v

List of Tables

4.1 BLASX Functions . 16

6.1 VH Solver Parameters . 23
6.2 Reconstruction: Double Precision . 25
6.3 Reconstruction: Mixed Precision . 26
6.4 Reconstruction: BLASX Accelerated . 27
6.5 Reconstruction: FFT Accelerated . 27
6.6 Reconstruction: BLASX+FFT . 28
6.7 Reconstruction: BLASX+FFT Split . 28

A.1 BLASX Performance: PPE Simple . 38
A.2 BLASX Performance: SPU Simple . 39
A.3 BLASX Performance: SPU, HTLB . 40
A.4 BLASX Performance: SPU, HTLB, Vectorized 41
A.5 BLASX Performance: SPU, HTLB, Vectorized, Double Buffer 42
A.6 BLASX Performance: SPU, HTLB, Vectorized, Double Buffer, Bandwidth . . 43
A.7 BLASX Performance Evaluation . 44

vi

List of Figures

1.1 A data cube of three spectral wavelengths . 2

2.1 Grating dispersing an image onto a focal plane. 4

3.1 The Cell Broadband Architecture . 11

5.1 Acceleration of average BLASX routine execution time 22

6.1 Conjugate Gradient Convergence . 26
6.2 CTIS Reconstruction Performance - 4 passes 29
6.3 Sample image reconstruction with BLASX+FFT Split 30

vii

Abbreviations

ART Algebraic Reconstruction Technique

CBEA Cell Broadband Engine Architecture

CTIS Computed Tomography Imaging Spectrometer

DMA Direct Memory Access

EIB Element Interconnect Bus

FFT Fast Fourier Transform

FLOPS Floating Point Operations per Second

GPU Graphics Processing Unit

MART Multiplicative Algebraic Reconstruction Technique

MERT Mixed Expectation Reconstruction Technique

MFC Memory Flow Controller

PPE Power Processing Element

PS3 PlayStation R© 3

SIMD Single Instruction Multiple Data

SPE Synergistic Processing Element

SPU Synergistic Processing Unit

TLB Translation Lookaside Buffer

viii

Chapter 1

Introduction

The use of images taken at various light wavelengths, termed multispectral or hyperspectral
imagery, has found numerous applications within the last few years. Because each wave-
length of light may react differently with various materials, analyzing images at multiple
spectral wavelengths can allow for better feature extraction. This capability has application
in everything from identification of astronomical phenomena [1] to target classification in
smart missiles [2] to biological analysis at the cellular level [3]. While several methods exist
to collect multispectral imagery, Computed Tomography Imaging Spectrometry (CTIS) has
recently gained traction as a viable technique. The advantage of CTIS is that unlike most
earlier methods, multiple spectral images may be acquired simultaneously. The trade off for
this capability is that collected data can require significant computational effort to recon-
struct into the output images. Figure 1.1 illustrates an object imaged with three spectral
layers.

Because of the advantages CTIS offers for collecting multispectral imagery, a focus of
recent research has been on optimizing the speed of reconstruction algorithms and their
implementations. In 2006 Vose and Horton proposed a reconstruction technique exploiting
the spatial shift invariance of the CTIS system and providing a substantial decrease in re-
construction time [4]. Hagen et. al. explore a related approach in their 2007 paper [5],
while Sethaphong s parallelized implementations of CTIS reconstruction algorithms in his
2008 master’s thesis. The publication date of the Vose-Horton solution was too late for
Sethaphong to implement it for his thesis, but he comments that it needed to be rewrit-
ten for a multiprocessor system in order evaluate its suitability for achieving near real time
performance [6]. That implementation will be the focus of this work.

Currently there exist a variety of options for implementing high speed data intensive
computations. Symmetric multi-core processors are becoming common on the desktop and
clusters of computers are easily assembled on even a modest budget. Additionally, spe-
cial purpose hardware such as graphics processing units, digital signal processors, and field
programmable gate arrays are seeing wider use as dedicated application accelerators. One
promising architecture designed for application acceleration is the Cell Broadband Engine
Architecture. The Cell processor provides a heterogeneous computing platform with a sin-
gle general purpose processor driving multiple high speed vector processors across a fast
interconnection bus. This architecture makes the Cell well suited to demanding scientific
computations [7]. These features led to the selection of the Cell processor as the target
platform for our implementation of the Vose Horton solver.

1

Figure 1.1: A data cube of three spectral wavelengths

2

Chapter 2

Computed Tomography Imaging
Spectrometry

An imaging spectrometer acquires data from multiple bands of the electromagnetic spectrum
which can be presented as a three dimensional data cube. Each voxel within the cube can
be interpreted as an intensity value at (x,y, λ) where x and y are the two dimensional
coordinates of the image and λ is the wavelength. Thus, each ”slice” of the cube represents
a 2-D spectral image of the target object. In traditional imaging spectrometers this was
accomplished through a variety of techniques such as taking multiple images of an object
through different filters with distinct wavelength transmission properties. By employing a
scanning mechanism, the three dimensional data cube can be created with one layer imaged
per sweep. This works well for imaging static objects, however it is unusable for dynamic
scenes where the target object may move between scans.

The computed tomography imaging spectrometer (CTIS) was presented as an alternative
to scanning spectrometers [8], [9]. The CTIS employs a diffraction grating which disperses the
incident light and creates multiple projections of the target object on a focal plane. Because
the multiple projections include both spectral and spatial information, the three dimensional
spectral cube can be reconstructed using computed tomography techniques. The advantage
of this method is that because the entire spectral data cube is projected, only one exposure is
needed for data acquisition. This capability, also referred to as flash spectrometry, reduces the
acquisition time compared to scanning spectrometers and allows the CTIS to image dynamic
scenes. More recently, improvements in the diffraction grating, increased computing power,
and larger focal plane array elements have significantly increased the capabilities of CTIS
systems [10], [11]. Figure 2.1(a) shows a conceptualized object projected through a grating
disperser onto a focal plane. Figure 2.1(b) demonstrates the distribution of white light on
the focal plane. The center image contains the full spectrum while the surrounding images
show the dispersed spectrum.

2.1 CTIS Image Reconstruction

While CTISs gain an edge over scanning spectrometers in data acquisition time, a price is
paid in the computation time needed for data reconstruction. The CTIS process is modeled
as a linear system which admits the use of standard linear algebra techniques in its analysis.
In the literature it is common to let the 2D image from the focal plane be represented by the

3

(a) Object, Dispersion Grating, and FPA (b) Spectral Dispersion
Source: Hagen et. al. [5]

Figure 2.1: Grating dispersing an image onto a focal plane.

vector g and the 3D spectral cube be represented by the vector f. The matrix H represents
the transfer function of the CTIS system and relates the two data vectors to each other as

g = Hf

Each column of H corresponds to the response of the CTIS system to single wavelength band
at a given position, that is, a single voxel in the data cube. H is usually acquired during
calibration of the system [10]. Since the output of the system is g and the data of interest is
f , the key question to be answered is: how do we efficiently recover f?

When H is relatively small, the inverse or Moore-Penrose inverse of H can often be used
to solve for g directly. However, for large format CTIS systems the transfer matrix may have
a row and column count in the tens or hundreds of thousands making the computation of the
inverse infeasible with modern methods.

In 1970, Gordon et. al. presented methods for the reconstruction of 3D objects from
electron micrographs and X-ray images they termed the Algebraic Reconstruction Techniques
(ART) [12]. In their original work they present the additive and multiplicative reconstruction
techniques and note that the multiplicative method gives a higher entropy solution than that
of the additive algorithm. Since then, the Multiplicative Algebraic Reconstruction Technique
(MART) has become a common tool in the field of computed tomography for 3D image
reconstruction [8], [3], [13]. The essential formulation of MART is

fk+1 = fk
HT g

HTHfk

where fk is the kth estimate of the object cube vector.
In order to deal with both the photon noise and system noise present in implemented CTIS

systems, Garcia and Dereniak published the Mixed Expectation Reconstruction Technique
(MERT) [14]. In their extended version of the reconstruction approach, they consider the
problem

g = Hf + n1 + n2

4

where n1 is photon noise and n2 is system noise. Their iterative reconstruction technique is
fundamentally similar to MART while incrementally compensating for system noise in the
recovered image.

2.2 The Vose-Horton Algorithm

In 2006 Vose and Horton proposed a heuristic image reconstruction technique which offers a
substantial benefit in reduced computation time for systems in which the transfer matrix has a
special form [4]. The paper includes an explicit solution to the noise removal formulation given
in [14] along with an iterative algorithm for image recovery. The primary focus of this paper is
on the implementation and acceleration of the heuristic recovery algorithm (hereafter referred
to as the VH solver). The noise removal technique is a fairly straightforward manipulation
of the output g, ancillary to the reconstruction algorithm, and not discussed further here. In
order to effectively present the accelerated implementation of the reconstruction algorithm,
a review of the mathematical model is useful. Accordingly, these next two sections draw
heavily from [4].

2.2.1 Strategy

The VH solver obtains an approximation to the problem

~x = H ~f

where H is the n×m transfer matrix of the CTIS process, x is the length n output vector of
the system after noise removal, and f is the length m vector representing the object image.
As noted before, as the size of the system and matrix increases, recovering the image quickly
becomes computationally difficult.

The strategy used by the algorithm to deal with this limitation is based on two assump-
tions

1. H can be partitioned into w blocks

H = (H0| . . . |Hw−1)

where each Hk is partitioned into the same number of rectangular circulant blocks

Hk = (Tk,0| . . . |Tk,α−1)

2. Each Hk is a shift-invariant system with respect to Tk,0. Specifically, from the Vose-
Horton paper:

Assume each Tk,l n× a (thus H has m = aαw columns) and

Tk,l = RlgTk,0

where g ≥ a, n ≥ αg and Rg is the n× n circulant matrix

(Rg)i,j = [g = i− j mod n]

Here the notation [expression] denotes 1 if expression is true, and 0 otherwise.

5

Through the use of a masking matrix, Hk may be embedded into a circulant matrix Ck.
The VH paper defines the g × a matrix Q

Q =

(
Ia
0

)
where Ik is the k × k identity matrix. The n× aα masking matrix E is then defined as

E =

(
Ia ⊗Q

0

)
(2.1)

where ⊗ is the Kronecker product. By assumption 2 above, the operation Hk ~w is equivalent
to CkE~w for any aα × 1 vector ~w [4]. Since the effect of the multiplication E~w is only to
expand ~w to an n×1 vector, it is trivially implemented as a mapping function. For example,
the implementation presented in this paper uses a bit vector to define the expansion (see
appendix C for more details). This leaves us with the multiplication of a vector by the
circulant matrix Ck.

Recall that a circulant matrix, C, is an n× n matrix of the form

C =

c0 c1 · · · cn−1
cn−1 c0 · · · cn−2

...
...

. . .
...

c1 c2 · · · c0

Because each column of C is a cyclic permutation of the first, the entirety of information
contained in the matrix is represented in the first column. This is nice because matrix-vector
multiplication of the form

~x = C~v

can be solved as a cyclic convolution of vectors [15]

~x = ~c ∗ ~v

where ~c is the first column of C. This is handy because application of the circular convolution
theorem [16] allows us calculate the result by component-wise multiplication in Fourier space

~x = F−1(F(~c)F(~v))

where F and F−1 are the discrete Fourier transform and its inverse

F(~x)i =
n−1∑
j=0

xje
−−2π

√
−1

n
ij

F−1(~x)i =
1

n

n−1∑
j=0

xje
−2π
√
−1

n
ij

This of course is especially nice since we have fast techniques for computing the Fourier
transform [17]. By working with circulant matrices the VH algorithm is able to implement
its solution with loglinear time FFTs and vector multiplications rather than with the more
complex, quadratic time matrix-vector multiplications.

6

2.2.2 Solution

As the reconstruction problem x = Hf is an overdetermined system of linear equations, the
VH solver uses linear least squares to approach the solution. Using the circulant matrices
defined in section 2.2.1, the partitioned matrix H is defined as

H = (C0| · · · |Cw−1)

where
~x = Hf = H (Iw ⊗ E) ~f

The normal equation

~y = (Iw ⊗ E) ~f

~h = HTx = HTH~y (2.2)

with the constraint
~y = (Iw ⊗ E)

(
Iw ⊗ ET

)
~y (2.3)

is presented as an alternative to x = Hf since

~f =
(
Iw ⊗ ET

)
~y

The two issues with this approach are

1. Solving (2.2) is problematic since HTH may be ill-conditioned (singular).

2. A solution y satisfying (2.2) might not satisfy (2.3).

The first issue is addressed by working with the regularized problem

~h =
(
µI +HTH

)
y (2.4)

The introduction of the µI term forces the resultant matrix to be non-singular. The VH pa-
per then derives the inverse matrix through application of the Sherman-Morrison-Woodbury
formula [18]

(A+ UV)−1 = A−1 −
[
A−1U

(
1 + V A−1U

)−1
V A−1

]
The Sherman-Morrison formula is commonly used when the inverse of a matrix A is known,
and one wants to make some change to A without losing its inverse. The Woodbury formula
given above is the extension of the Sherman-Morrison formula to handle multiple correction
terms. In general, the expectation is that U and V are much smaller than A and therefore the
inverse

(
1 + V A−1U

)−1
is easier to compute. Since the inverse of µI is trivial, the approach

taken is to adjust it with HT and H. By letting A = µI, U = HT , and V = H, application
of the Sherman-Morrison-Woodbury formula gives the solution

~y =

(
µ−1I − µ−2HT

(
I + µ−1

∑
CkC

T
k

)−1
H
)
~h

The VH paper notes that this is a nice result since, as hoped, the matrix

I + µ−1
∑

CkC
T
k

7

is circulant and therefore trivially invertible. Thus an approximate solution to (2.2) is achiev-
able which resolves the first issue.

The second issue, namely that the solution y must satisfy both (2.2) and (2.3) is handled
as follows. Define the nw × n matrix P as

P = µ−1HT
(
I + µ−1

∑
CkC

T
k

)−1/2
(2.5)

Define the nw × nw matrix M as

M =
(
µI +HTH

)−1
= µ−1I − PP T (2.6)

and note that
MHTH = µPP T (2.7)

Next, let

Z = diag ((Iw ⊗ E) 1m)

Z ′ = I − Z

where 1m is the m × 1 vector all of whose entries are 1. Using these definitions, define the
constrained series

~y0 = ZM~h ~yi+1 = ~yi + ZMHTH~vi
~v0 = Z ′M~h ~vi+1 = Z ′MHTH~vi

From 2.7 and these recursive equations it follows that

~y∞ = lim
i→∞

~yi

= Z

(
I + µPP T

{
I − µ

(
Z ′P

) (
Z ′P

)T}−1
Z ′
)
M~h

Application of the Woodbury formula to the inverse in the this expression gives

~y∞ = Z
(
I + µPP TZ ′

{
I + P

(
µ−1I − P TZ ′P

)−1
P TZ ′

})
M~h (2.8)

Solving for ~y∞ using the above equation adds the constraints necessary to ensure that the
solution meets the requirements of (2.3). Applying the strategy for implementing circulant
matrix/vector multiplication laid out in section 2.2.1, the most straight forward approach
to (2.8) is to start with ~h and multiply from right to left. The one expression not easily

computed has the form
(
µ−1I − P TZ ′P

)−1
u This problem is dealt with through the use of

a conjugate gradient method to approximately solve for ~v in the equation

~u =
(
µ−1I − P TZ ′P

)
~v

This conjugate gradient method is terminated at the first local minimum of error, or at some
predefined number of iterations.

8

Using the machinery developed in (2.8), the we can proceed to heuristically solve for ~f in
~x = H ~f through iterative refinement (of which several are possible, see [4] for an alternative
method). The first approximation of ~f , ~f0 is

~f0 =
(
Iw ⊗ ET

)
~y∞

Subsequent iterations solve for ~y∞ with respect to the problem

x−Hηi~fi = H ~f

where

~r = H~fi

ηi = (~rT~r)−1(~rTx)

The residual is then used to update the estimate

~fi+1 = ~fi +
(
Iw ⊗ ET

)
~y∞

Implementing an accelerated version of this algorithm for recovering f is now our primary
goal.

9

Chapter 3

The Cell Processor

As mentioned, one of the challenges facing the application of CTIS to large imaging prob-
lems is the computationally intense reconstruction process. Using modern desktop comput-
ers, CTIS image reconstruction algorithms can run for minutes or hours. While this may
be perfectly acceptable for non time-critical applications, when near real time response is
needed it becomes desirable to reduce this period to seconds or milliseconds. While algo-
rithmic improvements will undoubtedly have the highest impact on reconstruction time, the
implementation of these algorithms on modern hardware can also give a significant potential
benefit. Due to its powerful architecture, the Cell processor provides a promising tool to the
acceleration of this process.

The focus of this paper is the implementation and acceleration of the Vose-Horton al-
gorithm on the Cell processor. This chapter presents a short review of the Cell Broadband
Engine Architecture (CBEA).

3.1 Design

The architecture for the Cell processor is the result of a collaboration between Sony, Toshiba,
and IBM beginning in 2001 aimed at creating an embedded platform for delivering rich
multimedia applications. In order to meet the cost and power budget while delivering high
computational throughput the team designing the Cell decided to use a heterogeneous mul-
tiprocessor chip with a coherent memory bus [19], [20]. Figure 3.1 illustrates the high level
relationship between the various components.

3.1.1 The PowerPC Processing Element

The main processor in the Cell architecture it the PowerPC Processing Element (PPE) which
is based on IBM’s 64-bit PowerPC architecture. This architectural inheritance allows the exe-
cution of code built for the PowerPC without modification. It is equipped with a conventional
two level cache and an AltiVec SIMD execution unit. The primary purpose of the PPE is to
run an operating system and handle the control and logistics of application execution on the
Cell.

10

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

SPE

Local
Store

SPU

MFC

PPE

PPU

L2Cache

M
ain M

em
ory

Element Interconnect Bus

Figure 3.1: The Cell Broadband Architecture

3.1.2 The Synergistic Processing Elements

While the PPE is a fairly standard processor, the real workhorses of the Cell processor are
a set of computational units called synergistic processing elements (SPE). The two primary
components of an SPE are the synergistic processing unit (SPU) and the memory flow con-
troller (MFC). The SPU is a 128-bit RISC processor with a SIMD based instruction set
and a unified memory area called the local store. The MFC handles DMA transfers of data
and instructions between main memory and the local store of an SPE. Due to the lack of a
cache and a simplified execution pipeline, the timing of instruction executing on an SPE is
deterministic and allows for very good software scheduling.

The first generation SPEs are geared specifically toward accelerating single precision float-
ing point operations with a fully pipelined implementation being able to schedule one floating
point vector operation per cycle. Double precision operations on the other hand are partially
pipelined with a 13 clock cycle latency. The result is that double precision operations on the
SPEs are significantly slower than single precision operations.

While the SPEs provide a very attractive platform for accelerated floating point compu-
tations it is important to note that they deviate slightly from the IEEE 754 standard. The
most notable difference is that in single precision the SPE only supports the round towards
zero rounding mode. The impact of this is that single precision computations on the SPE
tend to gain error faster than equivalent operations on a fully IEEE 754 compliant platform.

3.1.3 The Element Interconnect Bus

One of the biggest challenges of parallel processing is that of keeping multiple processors
“fed” with instruction and data from memory. The element interconnect bus (EIB) was
implemented to help meet this challenge and forms the backbone of the Cell and connects the

11

PPE, SPEs, main memory controller, and other I/O interfaces. The EIB currently consists
of four 16-byte wide data rings each of which transfers 128 bytes at a time with an internal
maximum bandwidth of 96 bytes per processor clock cycle [21].

3.2 Programming

The end product of the innovative hardware design of the Cell processor is a powerful process-
ing platform. This lead to its deployment in the Roadrunner supercomputer which topped
the list of fastest supercomputers in the world at the time of this writing in 2009. The next
challenge was to create an application development framework for the Cell. While there are
various options available, the most common general approach is to use the IBM Cell SDK [22].

The IBM Cell SDK implements the application execution environment for the Cell on top
of the Linux operating system. Kernel modules expose an interface to the SPEs through the
SPE filesystem which allow them to be utilized from userspace [23]. Additionally, an API for
SPE task management and communication is provided through the libspe library. Because
the SPEs have a different instruction set architecture from the PPE, they also require a
separate cross compiler which is supplied in the SDK.

One attractive platform for evaluating the Cell processor is Sony’s PlayStation R© 3, which
contains a Cell processor at its core. Information about setting up a PlayStation R© 3 as a
development system are included in appendix B.

12

Chapter 4

Implementation

This chapter describes the implementation of the CTIS solver as well as defining the metrics
used to measure the speed and accuracy of the solution. The output of the CTIS reconstruc-
tion algorithm, f̂ , should approximate the value of the vector f in the equation

x = Hf

Since f has been synthetically generated in order to test the algorithm, it can be directly
compared with f̂ .

4.1 Metrics

Before describing the implementation and acceleration of the algorithm, it is necessary to
define the metrics used to measure the speed and accuracy of the solution.

4.1.1 Accuracy

For the development of various parts of the CTIS solver solution, most of the operations under
study are vector functions. Accordingly, the accuracy metrics defined here are used for the
comparison of two vectors, x which is the known solution, and x̂ which is the approximation
under test. Both vectors are of length N.

The per element error of the estimate can be represented as either and absolute or relative
quantity. The absolute error is defined as the difference between the values

| xi − x̂i |

Alternatively, the per element relative error gives the deviation of the approximation from
the exact value scaled by the exact value

| xi − x̂i |
| xi |

When taken in context of a vector, the average of either the absolute or relative error (denoted
as r) is simply the mean

1

N

N−1∑
i=0

r

13

The maximum of either the absolute or relative error is defined as the uniform norm, also
known as the supremum norm, also known as the infinity norm, also known as the Chebyshev
norm

‖r‖∞

4.1.2 Speed

Time

When elapsed time is given, it is calculated by recording the output of the Time Base register
on the PPE [24] before and after a computation. For computations accelerated on the Cell,
the time to allocate the workloads to the SPEs is included in this measurement.

FLOPS

Since elapsed time may be too convenient a metric to use for performance, FLoating point
Operations Per Second (FLOPS) are also stated for certain measurements. Within the con-
text of this paper, a floating point operation is defined as one logical or arithmetic operation
between two real numbers, regardless of the precision. Efforts have been made to distinguish
between single and double precision operations where possible. Operations on complex num-
bers are calculated in terms of the number of real operations required to obtain the complex
result. Some examples are

Operation Data Type FLOP(s)

x+y float 1
x*a+y double 2
a+b double complex 2
a*b float complex 6

4.2 Baseline Implementation

Development of the Vose-Horton solver was handled in four phases:

1. Prototyping

2. Simplification

3. Implementation in C

4. Acceleration

4.2.1 Prototyping

The initial prototyping of the solution was handled in MatlabTM, by directly translating
equation (2.8)

~y∞ = Z
(
I + µPP TZ ′

{
I + P

(
µ−1I − P TZ ′P

)−1
P TZ ′

})
M~h

14

into code

yLim = Z∗(eye(n∗w)+mu∗P∗P’∗Zprime∗(eye(n∗w) + P ∗
(((muˆ−1)∗eye(n)−P’∗Zprime∗P)ˆ−1)∗P’∗Zprime))∗M∗sH’∗x;

At this stage, all operations were implemented on full matrices. To rework the imple-
mentation as intended, the vector-matrix multiplications were then replaced by vector mul-
tiplications in the Fourier domain. Recall that this is possible due to the constraint that
the operand matrices are circulant and are therefore diagonalized by the discrete Fourier
transform.

4.2.2 Simplification

During the next stage, functions were consolidated with a deliberate effort to batch compu-
tations and avoid switches to the Fourier domain as much as possible.

4.2.3 Implementation in C

After the simplified algorithm was debugged and verified, it was ported to C and implemented
to run on the PowerPC unit of the Cell processor. The elements required to implement the
algorithm were the FFT and a variety of vector operations. Several options were explored,
and it was decided to use the existing CELL optimized FFTW library and to construct a
library of vector operations. While IBM has made a port of the BLAS available, only a few
of the required functions had been optimized to use the SPEs [25].

FFTW

The Fastest Fourier Transform in the West (FFTW) library is widely regarded to be one of
the fastest portable FFT implementations available [17]. Similar to the technique used in the
ATLAS software package [26], the FFTW library experimentally evaluates the performance
of various algorithms and parameters in order to determine the fastest FFT configuration for
a given problem set and machine architecture. The IBM Austin Research Laboratory has
contributed code to the project allowing it to use the SPEs to accelerate the FFT operations.
While recent research has demonstrated improved performance FFT codes for certain problem
sizes [27] [28], at the time of this writing the FFTW library was still one of the only codes
known to the author to support large transforms (ie. N > 220).

BLASX

In order to implement the needed vector operations, the somewhat whimsically named BLAS-
eXtended library was written from scratch. Similar naming conventions were adapted from
the real BLAS library in order help code readability. Table 4.1 contains the functions defined
by the BLASX library.

For the purpose of interpreting the results of accelerating the BLASX operations, it is
useful to note that the precision specified in the function listing refers to the transfer precision
of the data. Various factors have a bearing on the computational precision of an operation,
including the processor architecture and the implementation of the function. Of particular
note is that the zmultcM and zsxpyM functions have different input and output precisions.

15

http://fftw.org/
http://cell.icm.edu.pl/index.php/FFTW_on_Cell

Table 4.1: BLASX Functions

Function Precision Operations Formula

scopy Single 1 ~z = ~x
sscale Single 1 ~z = α~x
saxpy Single 2 ~z = α~x+ ~y
ssxpy Single 2 ~z = α~x− ~y
sdot Single 2 z = ~x · ~y
ccopy Single Complex 1 ~z = ~x
cscale Single Complex 6 ~z = α~x
caxpy Single Complex 8 ~z = α~x+ ~y
csxpy Single Complex 8 ~z = α~x− ~y
cmult Single Complex 6 ~z = ~x~yT

cmultc Single Complex 6 ~z = ~̄x~yT

zmultcM Mixed 6 ~z = ~̄x~yT

zsxpyM Mixed 8 ~z = α~x− ~y
dcopy Double 1 ~z = ~x
dscale Double 1 ~z = α~x
daxpy Double 2 ~z = α~x+ ~y
dsxpy Double 2 ~z = α~x− ~y
ddot Double 2 z = ~x · ~y
zcopy Double Complex 1 ~z = ~x
zscale Double Complex 6 ~z = α~x
zaxpy Double Complex 8 ~z = α~x+ ~y
zsxpy Double Complex 8 ~z = α~x− ~y
zmult Double Complex 6 ~z = ~x~yT

zmultc Double Complex 6 ~z = ~̄x~yT

Mixed Precision

Mixed precision refers to a technique where part of a computation is performed in double
precision, and other parts are handled in single precision [29]. Because the SPEs of the Cell
processor are able to perform single precision operations much faster, there is a motivation to
use it whenever possible. Additionally, data loaded or stored in single precision required half
the amount of memory bandwidth compared with double precision. Both of these factors
led to the investigation of a mixed precision implementation of the VH solver to enhance
performance.

When determining the feasibility of performing a computation with reduced precision, it
is necessary to identify the “numerically sensitive” regions of the algorithm where the system
is most susceptible to error. Upon analysis, the VH solver contains two numerically sensitive
regions: the dot product operation and M~h.

It’s fairly intuitive to see that the dot product, x̂T ŷ, may quickly grow large with respect
to the L2-norm of x̂ and ŷ. Partly due to the non-standard rounding mode in the SPEs, a

16

single precision calculation of this value quickly loses accuracy. To help alleviate this, the
input vectors and output value for this operation in the BLASX library are single precision
while the multiplication and accumulation are performed in double precision. To handle
problems with larger parameters, more sophisticated accumulation strategies exist which
offer better numeric stability. The interested reader is referred to [30], [31], [32], and [33] for
more information.

In addition to the dot product operation, the subtraction operation in M~h is also numer-
ically sensitive. Recall from equation 2.6 that

M = µ−1I − PP T

When multiplied the products (µ−1I)h and (PP T)h have similar values in the first few
significant digits. While a characterization of this sensitivity was not undertaken, handling
the operation M~h in extended precision leads to much better convergence.

For more details with regards to the implementation, a pseudocode presentation of the
VH solver may be found in appendix C.

17

Chapter 5

Acceleration with the Cell
Processor

Up to this point our efforts have focused on minimizing the vector operations and floating
point requirements needed to implement the VH solver. We now turn our attention to the
use of the Cell processor to accelerate the algorithm. This section lays out the approach and
details the incremental refinement of the Cell implementation.

5.1 Approach

As already described, the implementation of the VH solver requires only a handful of vector
operations and Fourier transforms. As the FFTW library already offers an accelerated Fourier
transform implementation for the Cell processor, the remaining task is to implement the
vector operations contained in the BLASX library. In order to gauge the effects of various
acceleration techniques, an approach of incremental improvement and benchmarking was
adopted. The first iteration of the BLASX library is as a naive implementation on the PPE
and serves as the starting baseline. At each iteration, the performance of the library is
evaluated using metrics defined in section 4.1. The computation speed is compared to that
of the previous iteration to derive an acceleration statistic

Acceleration =
GFLOPSi

GFLOPSi−1
− 1

where i is the current iteration.

5.1.1 Parameters

Since we are primarily interested in operations involving fairly large vectors, N = 221 elements
was used as the problem size for all benchmarks in this section. The contents of the test
vectors were generated from the drand48 standard C library call multiplied by 256, resulting
in a uniform distribution of values in the interval [0, 256]. Each benchmark was executed 10
times with the average time and error values reported. Code was generated with the GNU
GCC compiler version 4.1.1, and optimization level “-O3” was used for all benchmarks. The
hardware used was a Sony PlayStation R© 3 with a maximum of six SPEs allocated for use.
See appendix B for a more detailed hardware description.

18

5.2 Acceleration of the BLASX Library

5.2.1 Simple PPE Baseline

The baseline version of the BLASX library is a naive standard C implementation running
on the PPE. It should be noted that while the SIMD Altivec instruction set is available for
the PPE, this version of the library does not take advantage of it. The timing benchmark is
given in table A.1. Note that all tables referenced in this chapter appear in appendix A.

5.2.2 Deployment to the SPEs

The next phase in accelerating the BLASX library consisted of moving the computations
from the PPE to the SPEs. Distributing work to the processing elements implements the
following strategy:

1. The load is broken into 16kB work blocks.

2. Work blocks are distributed evenly to all available SPEs.

3. While the SPEs are running, the PPE processes any remaining elements which could
not fill a work block.

4. The PPE waits for the SPEs to complete and then returns from the function.

The performance benchmark comparing the PPE and SPE accelerated implementations is
given in table A.2. The increased performance is solely due to parallel processing of the
vectors by the SPEs; the actual computation kernel for each function was ported unchanged.
The error measurements recorded present the absolute error between the PPE and SPU
floating point implementations. These error values remain unchanged in later optimization
phases and thus are only presented here.

5.2.3 Huge Pages

Because of the fairly large amount of data being pushed back and forth between main memory,
virtual address translation overhead can quickly add up. To help alleviate this bottleneck,
most modern CPUs implement a Translation Lookaside Buffer or TLB which is able to cache
page table entries and speed up address translation.

The size of memory pages being used by an application can have a fairly dramatic impact
on its performance based on its working set size [34]. The base page size on the PowerPC
platform is 4k, which implies that transferring just one double precision vector from our
test set of 221 elements will require 4096 memory pages to be hit. The size of the TLB is
implementation dependent, but is usually kept fairly small in order to be fast, and is almost
certainly smaller than 4096. The Linux kernel provides a mechanism for utilizing larger pages
which helps to reduce the number of TLB misses when using a large working set of memory.
In this section the BLASX library has been configured to take advantage of 16MB huge pages.

As can be observed from table A.3, the use of huge pages provides a fairly modest per-
formance increase in this case.

19

5.2.4 Vectorization and Unrolling

After reducing memory latency somewhat, we now turn our attention to accelerating the
arithmetic operations on the SPEs through vectorization and loop unrolling. Because the
SPE only supports quadword loads and stores, scalar code can have a high degree of latency.
For a typical scalar operation, a quadword must be loaded, the element shifted into place,
operated on, shifted back, and then stored. To take advantage of the vector capabilities of the
SPE, a set of C-language extensions have been made available which map directly to SIMD
instructions. Using these intrinsics with quadword vectors allows for a much more efficient
data handling scheme.

Another useful technique implemented during this stage was loop unrolling. Using the
large register file on the SPEs with unrolled loops helps to reduce dependencies and increase
the utilization of the dual issue pipeline. A more detailed treatment of these techniques is
provided in Appendix E. The acceleration due to vectorization and loop unrolling on the
SPEs is given in table A.4.

5.2.5 Double Buffering

A challenge for multi processor systems in general, and the Cell in particular, is to keep
the computational units fed with a stream of data from memory. The CBEA architecture
was specifically designed to be a streaming computation processor with the high bandwidth
Element Interconnect Bus providing low latency pipe for data transfer. Because the SPEs lack
a cache however, to retrieve a block of data from memory they must initiate a DMA transfer
and then wait for it to complete. For compute bound programs operating on streaming data
such as some of our BLASX functions, this introduces a latency every time the SPU idles
waiting for a data transfer to complete. A buffering scheme overlapping DMA transfers with
processing allows for a greater throughput on the SPE. In this optimization phase, a double
buffering scheme is implemented, the results of which are presented in table A.5.

As expected, the most compute intensive operations receive the largest benefit of double
buffering, while routines already at full bandwidth usage gain nothing. Another aspect worth
notice in this benchmark is that, perhaps counter intuitively, the double precision addition and
subtraction routines show a slight decrease in average performance. A possible explanation
for this decrease is that, double buffering has increased memory contention between the SPEs.
While double buffering could be selectively disabled for these particular problems, another
approach is investigated to alleviate this contention is presented in the next section.

5.2.6 Bandwidth Optimization

Conventional wisdom for maximizing memory throughput with the Cell processor is to use as
many SPEs with as many asynchronous DMA requests queued as possible. In some situations
this can causes an overall throughput reduction when the SPEs are able to overwork the
memory subsystem. In workloads such as the functions in the BLASX library which are I/O
bound, reducing the number of SPEs assigned to a task can actually result in a speed increase
by reducing memory access contention. This phenomenon is examined more closely in [35].

In this section, the number of SPEs assigned to a particular workload has been experimen-
tally tuned to the fewest required to maintain previous performance numbers. The results of
this characterization are given in table A.6.

20

In most of the functions where two input vectors are transferred, reducing the number of
SPEs results in an overall throughput increase. In the one exception, zsxpyM, the function
is CPU bound and reducing the worker SPEs reduces its throughput. This also sheds light
on the apparent speed decrease observed in the daxpy and dsxpy functions when double
buffering increased memory bandwidth pressure.

An interesting aspect of this benchmark is that after optimization, the sdot operation is
still slightly slower than ddot. This appears somewhat counterintuitive as ddot is transferring
double precision vectors while sdot is only transferring single precision vectors, though both
are performing double precision arithmetic. However, we can deduce that they are both
CPU bound as reducing the number of SPEs results in a speed decrease. The additional time
used by sdot is required for the process of shuffling the incoming single precision vectors into
double precision registers for computation.

5.2.7 Summary

A summary of the effect of the various acceleration techniques presented in this chapter is
displayed in figure 5.1.

A fair question to ask at this point is: How does the performance of our library compare
to the theoretical maximum? Despite the very fast floating point computation speed of
the SPUs, our speed benchmarks in this chapter show only a fraction of the theoretical
peak performance of the Cell processor. In research conducted at the Innovative Computing
Laboratory at the University of Tennessee, Buttari et. al. estimate that 24 operations must
be performed on each single precision value in order to hide the communications cost of
moving it from main memory [36]. Because each of these BLASX functions perform only a
few operations, they are almost all entirely memory bound.

Because the BLASX functions are memory bound, we shall take as our theoretical best
performance the time it takes to move the problem data from memory to the SPEs and back.
Referring to appendix B, we find that the peak memory bandwidth on the PlayStation R© 3
is 25.6 GB/sec. Taking into account the total number of bytes transferred to and from main
memory for each problem, we can estimate how long a round trip would take if there were
no CPU processing overhead. These results are compiled in table A.7.

Most of the BLASX function average about 80% peak bandwidth usage. Because they use
mixed precision operands, the utilization comparison for the zmultcM and zsxpyM functions
is slightly optimistic. One anomaly in this analysis which is difficult to explain is that the
ddot function which shows a 93% utilization. Other functions in the library such as dcopy
and dscale transfer the same amount of data, with the difference that they read and write a
vector while ddot performs two reads.

21

48.90

10.29
7.82

2.94 2.63 2.51

1

10

100

PPU SPE HTLB Vectorized Double Buffer Bandwidth

M
ill
is
e
co
n
d
s

Figure 5.1: Acceleration of average BLASX routine execution time

22

Chapter 6

Results

As described in appendix C, the VH solver is implemented in terms of Fourier transforms
and vector operations. With Cell parallelized versions of these functions in place, we now
evaluate the performance of the accelerated implementation.

6.1 Setup

The parameters used for the solver in this section are given in table 6.1.

Table 6.1: VH Solver Parameters

n 524288

w 3

α 225

a 243

g 250

µ 0.1

CG ITERATIONS 15

CG EPSILON 0.01

VH ITERATIONS 4

VH EPSILON 0.1

The problem size considered here is somewhat smaller than that presented in [4] due
to limited memory space available on the PS3. In keeping with the precedent set in the
Vose-Horton paper, a single image was used as the target output in order to demonstrate the
qualitative aspects of the reconstruction. The image (shown in figure 6.3) was broken into
three “wavelength layers”: red, green, and blue. Each element in a layer is a single integer
value between 0 and 255 resulting in a composite image color depth of 24 bits. To simulate
the operation of a CTIS system the image was multiplied by an H matrix with the resulting
vector used as the input to the VH solver. The error estimates were computed by comparing
the reconstructed image at each iteration with the original image.

Quantifying the performance of the solver is complicated by the fact that several factors
affect the accuracy of the result at any given stage. Because the VH solver is an iterative

23

heuristic, the time to converge at a target accuracy is also impacted by these factors. Among
them are:

• Problem dimensions.

• Range of values in the transfer matrix and input vector.

• Sparseness of the transfer matrix.

• Number of iterations the embedded conjugate gradient may execute.

• Computation precision employed.

As an example, bounding the number of iterations the embedded conjugate gradient may
execute allows the trade off of speed versus accuracy for the computed result.

6.2 Reconstruction

The results of several implementation variants of the VH solver are presented here for com-
parison. Each variant is run through 4 iterations of the solver. At each iteration the following
information is collected:

VH Iters - Iteration of the solver.

CG Iters - Number of iterations the embedded conjugate gradient routine executed.

AbsAvg - Average absolute error per pixel.

AbsMax - Maximum absolute error per pixel.

RelAvg - Average relative error per pixel.

RelMax - Maximum relative error per pixel.

Sec - Seconds in wall time the iteration ran.

The error estimates are generated by comparing the current reconstruction to the original
data set.

6.2.1 Double Precision

The double precision implementation of the VH solver serves as an reference baseline. The
algorithm is run entirely in double precision on the PPE with unaccelerated FFTW and
BLASX libraries. Figure 6.2 shows the execution time for four iterations.

24

Table 6.2: Reconstruction: Double Precision

VH Iters CG Iters AbsAvg AbsMax RelAvg RelMax Sec

1 14 9.56e-01 7.09e+00 1.22e-01 6.23e+00 9.98
2 7 4.59e-01 1.92e+00 2.89e-02 1.22e+00 6.07
3 1 4.57e-01 1.89e+00 2.75e-02 1.17e+00 2.72
4 1 4.56e-01 1.86e+00 2.65e-02 1.11e+00 2.72

Total 21.48

6.2.2 Mixed Precision

This variant of the solver implements the mixed precision strategy described in section 4.2.3.
Again, all computation is handled on the PPE with unaccelerated libraries. Results are
shown in table 6.3.

In this instance it appears that a reduction in the computational precision of the solver
results in an increased convergence rate for the algorithm. As this is somewhat counterin-
tuitive, it should be reiterated that the problem parameters, test data, and algorithm are
identical to that of the double precision solver. The only parameter difference is that the
region marked “Extended Precision” in the heuristic kernel (described in section C.2) is im-
plemented in double precision while all other computation is carried out in single precision.
The number of conjugate gradient iterations executed is different due to the constraint that
the conjugate gradient routine exit at the first local minimum of residual error.

Efforts to localize the difference between the double precision implementation (which we
shall refer to as D for the remainder of this section) and the mixed precision implementation,
M, met with little success. Because the conjugate gradient method ran with a different
characteristic between D and M, it seemed a logical first place to look. Tracing execution
through the first iteration of the solver shows the input vectors to the conjugate gradient
to be very close in both D and M (the element-wise maximum difference was 0.73). Figure
6.1 shows the difference of the residual error for each iteration of the conjugate gradient
algorithm. M ’s single precision conjugate gradient stops with a lower residual error than D ’s.
However, as noted in the 1954 paper introducing the conjugate gradient [37] the residual is not
expected to be monotonically decreasing, so this difference in behavior may only be related
to the difference in input. Also, when the single precision implementation of the conjugate
gradient was plugged into D, it converged identically to the double precision version with the
exception of slight additional rounding error. This leads to the conclusion that the difference
in behavior of the conjugate gradient between D and M is an artifact of the difference of
their input vector, however slight it may be.

Outside of the conjugate gradient, the next most likely candidate for introducing a mea-
surable perturbation of the estimate vector in our implementation is the Fourier transform.
However the double precision implementation should provide better approximations as seen
in our later implementation where the FFT operation is moved to the lower precision SPEs
and the accuracy is degraded. The reason for why M converges to a better approximation
than D in fewer iterations with this parameter set remains undetermined. This behavior is
not always consistent as experiments run with other parameters show that in some cases M

25

Table 6.3: Reconstruction: Mixed Precision

VH Iters CG Iters AbsAvg AbsMax RelAvg RelMax Sec

1 15 4.31e-01 3.43e+00 5.98e-02 3.43e+00 6.80
2 15 1.44e-01 3.98e-01 3.00e-03 1.02e-01 6.79
3 1 1.44e-01 3.91e-01 2.88e-03 9.33e-02 1.82
4 1 1.44e-01 3.90e-01 2.78e-03 8.70e-02 1.82

Total 17.22

10000.00

100000.00

1000000.00

10000000.00

100000000.00

1000000000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
e

si
d

u
al

 E
rr

o
r

Conjugate Gradient Iteration

Double

Mixed

Figure 6.1: Conjugate Gradient Convergence

converges more slowly than D.

6.2.3 BLASX Accelerated

The BLASX variant implements the mixed precision solver with the accelerated BLASX
library; FFT operations are still performed on the PPE. All 6 SPEs of the Cell processor on
the PS3 were made available for use by the BLASX library. Results are given in table 6.4.

As expected, the computational output is very close to that of the unaccelerated mixed
precision variant. The computational imprecision introduced by the Cell’s SPE floating point
implementation is minor and can best be seen in comparing the maximum relative errors of
the two variants.

6.2.4 FFT Accelerated

This variant implements the mixed precision solver with the Cell accelerated FFTW library;
the BLASX library implementation is run on the PPE. All 6 SPEs of the Cell processor on
the PS3 were made available for use by the FFTW library. Figure 6.5 shows the benchmark
results.

26

Table 6.4: Reconstruction: BLASX Accelerated

VH Iters CG Iters AbsAvg AbsMax RelAvg RelMax Sec

1 15 4.31e-01 3.43e+00 5.98e-02 3.43e+00 5.20
2 15 1.44e-01 4.01e-01 3.01e-03 1.05e-01 5.19
3 1 1.44e-01 3.93e-01 2.88e-03 9.71e-02 1.33
4 1 1.44e-01 3.90e-01 2.78e-03 9.00e-02 1.33

Total 13.04

Table 6.5: Reconstruction: FFT Accelerated

VH Iters CG Iters AbsAvg AbsMax RelAvg RelMax Sec

1 14 7.42e-01 5.75e+00 9.36e-02 4.74e+00 3.34
2 7 3.67e-01 1.94e+00 2.78e-02 1.17e+00 2.07
3 1 3.64e-01 1.89e+00 2.64e-02 1.14e+00 0.98
4 1 3.62e-01 1.84e+00 2.54e-02 1.10e+00 0.98

Total 7.38

While the FFT accelerated variant shows the best performance, the decrease in accuracy
is noticeable. According to the implementors, the primary source of this decrease is the
rounding mode of the SPEs which always round towards zero. The L2 norm of the relative
roundoff error using this mode is approximately 4 to 8 times larger than then when using a
round to even scheme [38].

6.2.5 BLASX+FFT

The next obvious step in accelerating the VH solver is to use the accelerated versions of both
the BLASX and FFTW libraries. Table 6.6 records the effect of using the accelerated FFTW
and BLASX libraries with both libraries given access to all 6 SPEs as above.

As might be anticipated, the performance is abysmal. Both libraries make use of all 6
allocated SPEs requiring the operating system to perform context switching between them.
Because preemptive context switching on the SPEs is expensive, most of the time used in this
variant is spend switching the libraries out. See section 7.1.2 for a more detailed discussion
of this issue.

6.2.6 BLASX+FFT Split

The last variant we present is similar to the previous in that both the BLASX and FFTW
libraries use their accelerated implementations. However, instead of being allocated all 6
SPEs the FFTW library is assigned 4 while the BLASX library is given 2. By splitting the
number of SPEs allocated to the libraries context switching is eliminated and they no longer
compete for resource. The results are given in table 6.7.

27

Table 6.6: Reconstruction: BLASX+FFT

VH Iters CG Iters AbsAvg AbsMax RelAvg RelMax Sec

1 14 7.42e-01 5.75e+00 9.36e-02 4.74e+00 15.64
2 7 3.67e-01 1.94e+00 2.78e-02 1.17e+00 10.07
3 1 3.64e-01 1.89e+00 2.64e-02 1.14e+00 5.27
4 1 3.62e-01 1.84e+00 2.54e-02 1.10e+00 5.27

Total 36.25

Table 6.7: Reconstruction: BLASX+FFT Split

VH Iters CG Iters AbsAvg AbsMax RelAvg RelMax Sec

1 14 7.42e-01 5.75e+00 9.36e-02 4.74e+00 1.93
2 7 3.67e-01 1.94e+00 2.78e-02 1.17e+00 1.17
3 1 3.64e-01 1.89e+00 2.64e-02 1.14e+00 0.52
4 1 3.62e-01 1.84e+00 2.54e-02 1.10e+00 0.52

Total 4.14

As expected, the accuracy measurements track those of the FFTW accelerated implemen-
tation leading to the conclusion that the convergence behavior is in this case is bounded by
the accuracy of that library. This variant represents the fastest implementation of the VH
solver that we have constructed.

6.3 Summary

Figure 6.2 displays the comparative speeds for 4 iterations of each variant of the VH solver
that we benchmarked. Figure 6.3 shows the original image with the estimated reconstruction
after passes 1 and 4 of the BLASX+FFTW Split variant.

28

21.48

17.22

13.04

7.38

36.25

4.14

0

5

10

15

20

25

30

35

40

Double Mixed BLASX FFT BLASX+FFT BLASX+FFT
Split

Se
co
n
d
s

Figure 6.2: CTIS Reconstruction Performance - 4 passes

29

(a) Original Image

(b) Reconstruction after 1 pass (c) Reconstruction after 4 passes

Figure 6.3: Sample image reconstruction with BLASX+FFT Split

30

Chapter 7

Conclusions and Future Work

7.1 Future Work

Though this paper demonstrates a 5 fold speed increase by parallelizing the VH solver,
several optimization paths lay open for future research and development to increase the
algorithm’s performance even further. Reducing the number of Fourier transforms required
in the computation, integrating the Cell libraries, and tuning the implementation to the
problem characteristics could all have a positive performance impact.

7.1.1 Reducing Fourier transforms

Perhaps both the strength and weakness of the Vose-Horton solver to the CTIS reconstruction
problem is its heavy use of the Fourier transform. It is a strength in that using an FFT makes
very expensive vector/matrix multiplications much cheaper. The disadvantage is that the VH
solver makes frequent use of them in the reconstruction. The nature of the Fourier transform
requires the entire vector to be processed. Thus, every invocation of an FFT creates a data
dependency on prior operations resulting in a computational pipeline stall every time it is
invoked, limiting parallelism. Further, large vectors cause the memory subsystem to quickly
becomes the primary bottleneck, since each FFT operation requires a round trip to main
memory.

Finding a way to consolidate the time spent in Fourier space (or vice-a-versa) will certainly
result in a more efficient algorithm. Because this would greatly benefit the solver implemen-
tation regardless of the platform on which it was run, it is perhaps the most attractive for
future optimization.

7.1.2 Handling the Cell Library Problem

While the CBE architecture delivers significant performance advantages as an embedded
platform, the lack of a widespread standard library interface makes it difficult to use as an
application platform. As shown in section 6.2.5, two or more standalone libraries written
to utilize the SPEs directly will interact poorly with each other. A major reason for this is
that preemptively switching context on the SPE is an expensive operation requiring more
than 258 KB of storage space per SPE [21]. With such a high preemptive multitasking
overhead it becomes critical for libraries to implement a cooperative multitasking interface in
order to utilize shared resources efficiently. Two potential candidates for this framework are

31

IBM’s Accelerated Library Framework (ALF) [39] and Sony’s Multicore Application Runtime
System MARS. While these efforts provide a point in the right direction, at the time of this
writing neither one has gained widespread community adoption, and not even IBM’s libraries
implement their ALF interface.

The approach taken to resolve the issue in this paper was to split the resources (SPEs)
between the libraries. However, better resource utilization could be achieved by porting the
libraries to one of the afore mentioned frameworks or integrating them manually.

7.1.3 Tuning the Implementation

The implementation presented in this paper was tuned to display the performance of the
algorithm processing a moderate sized problem on the Cell processor in a PlayStation R© 3.
While we have demonstrated a modest performance increase on this platform, an implemen-
tation may achieve better performance when tuned to the characteristics of the CTIS system
for which it is intended. Problems with smaller sized vectors or better range bounds on the
reconstruction matrix may achieve acceptable results by reducing the precision requirements
on the FFT or mixed precision region used in this thesis. Also, as previously mentioned
there are currently FFT codes available for the Cell with faster performance with smaller
vector sizes [27] [28]. Problems characterized by larger vectors will require greater amounts
of memory, and special handling for roundoff error.

7.2 Conclusion

In summary, this paper presents a parallelized implementation of the Vose-Horton CTIS
reconstruction technique on the Cell processor which shows an approximate five fold per-
formance increase over a serial implementation. Additionally, the analysis demonstrates the
feasibility and performance benefit of implementing the solver with mixed precision arith-
metic. Finally, the results have shown the algorithm to be essentially memory bound and
possible avenues of research to improve performance further have been presented.

32

ftp://ftp.infradead.org/pub/Sony-PS3/mars/

Bibliography

33

Bibliography

[1] J. F. Scholl, E. K. Hege, M. Hart, D. OConnell, , and E. L. Dereniak, “Flash hyperspec-
tral imaging of non-stellar astronomical objects,” in Mathematics of Data/Image Pattern
Recognition, Compression, and Encryption with Applications XI (M. S. Schmalz, G. X.
Ritter, J. Barrera, and J. T. Astola, eds.), 2008.

[2] B. Karaçali and W. Snyder, “Automatic target detection using multispectral imaging,”
in Applied Imagery Pattern Recognition Workshop, pp. 55– 59, 2002.

[3] B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging
spectrometer for fluorescence microscopy,” Optics Express, vol. 9, pp. 444–453, 2001.

[4] M. Vose and M. Horton, “A heuristic technique for ctis image-reconstruction,” Applied
Optics, vol. 46, no. 26, pp. 6498–6503, 2007.

[5] N. Hagen, E. L. Dereniak, and D. T. Sass, “Fourier methods of improving reconstruction
speed for ctis imaging spectrometers,” vol. 6661 of Imaging Spectrometry XII, Proceed-
ings of SPIE, 2007.

[6] L. Sethaphong, “Large format ctis in real time: Parallelized algorithms and precondi-
tioning initializers,” Master’s thesis, Vanderbilt University, 2008.

[7] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and K. Yelick, “Scientific com-
puting kernels on the cell processor,” International Journal of Parallel Programming,
vol. 35, pp. 263–298, June 2007.

[8] T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image informa-
tion,” Optics Letters, vol. 16, pp. 1277–1279, 1991.

[9] T. Okamoto, A. Takahashi, and I. Yamaguchi, “Simultaneous acquisition of spectral and
spatial intensity distribution,” Applied Spectroscopy, vol. 47, pp. 1198–1202, 1993.

[10] M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experi-
mental calibration and reconstruction results,” Applied Optics, vol. 34, pp. 4817–4826,
1995.

[11] M. R. Descour, C. E. Volin, E. L. Dereniak, T. M. Gleeson, M. F. Hopkins, D. W. Wilson,
, and P. D. Maker, “Demonstration of a computed-tomography imaging spectrometer
using a computer-generated hologram disperser,” Applied Optics, vol. 36, pp. 3694–3698,
1997.

34

[12] R. Gordon, R. Bender, and G. Herman, “Algebraic reconstruction techniques (art) for
three-dimensional electron microscopy and x-ray photography,” Journal of Theoretical
Biology, vol. 29, pp. 471–481, 1970.

[13] D. Mishra, J. P. Longtin, R. P. Singh, and V. Prasad, “Performance evaluation of iter-
ative tomography algorithms for incomplete projection data,” Applied Optics, vol. 43,
no. 7, pp. 1522–1532, 2004.

[14] J. P. Garcia and E. L. Dereniak, “Mixed-expectation image-reconstruction technique,”
Applied Optics, vol. 38, pp. 3745–3748, 1999.

[15] G. H. Golub and C. F. V. Loan, Matrix Computation. Johns Hopkins Studies in Math-
ematical Sciences, 3rd. ed., 1996.

[16] E. O. Brigham, The Fast Fourier Transform. Prentice-Hall, Inc., 1974.

[17] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proceedings
of the IEEE, vol. 93, no. 2, pp. 216–231, 2005. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.

[18] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes:
The Art of Scientific Computing. Cambridge University Press, 3rd. ed., 2007.

[19] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki, “A
novel simd architecture for the cell heterogeneous chip-multiprocessor,” 2005.

[20] M. Gschwind, “The cell broadband engine: Exploiting multiple levels of parallelism in
a chip multiprocessor,” tech. rep., IBM Research Division Thomas J. Watson Research
Center, 2006.

[21] International Business Machines Corporation and Sony Computer Entertainment In-
corporated and Toshiba Corporation, Cell Broadband Engine Programming Handbook,
1.1 ed., April 2007.

[22] I. B. M. Corporation, “Cell broadband engine resource center.”
http://www.ibm.com/developerworks/power/cell/.

[23] A. Arevalo, R. M. Matinata, M. Pandian, E. Peri, K. Ruby, F. Thomas, and C. Almond,
Programming the Cell Broadband Engine Architecture: Examples and Best Practices.
IBM Corp., 2008.

[24] IBM, PowerPC Virtual Environment Architecture Book II, 2.02 ed., January 2005.

[25] IBM, Basic Linear Algebra Subprograms Library Programmers Guide and API Reference,
3.1 ed., 2008.

[26] R. C. Whaley and A. Petitet, “Minimizing development and maintenance costs in
supporting persistently optimized BLAS,” Software: Practice and Experience, vol. 35,
pp. 101–121, February 2005. http://www.cs.utsa.edu/ whaley/papers/spercw04.ps.

35

[27] D. Bader and V. Agarwal, “Fftc: Fastest fourier transform for the ibm cell broadband
engine,” vol. 4873, pp. 172–184, LNCS, 2007.

[28] S. Chellappa, F. Franchetti, and M. Püschel, “Computer generation of fast Fourier trans-
forms for the cell broadband engine,” in International Conference on Supercomputing
(ICS), 2009.

[29] J. Kurzak and J. Dongarra, “Implementation of the mixed-precision high performance
linpack benchmark on the cell processor,” Technical Report UT-CS-06-580, University
of Tennessee Knoxville, Department of Computer Science, Sept. 2006.

[30] I. J. Anderson, “A distillation algorithm for floating-point summation,” SIAM J. Sci.
Comput, vol. 20, pp. 1797–1806, 1999.

[31] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, vol. 2.
Addison-Wesley Longman Publishing Co., Inc., 3rd ed., 1997.

[32] X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y.
Kang, A. Kapur, M. C. Martin, B. J. Thompson, T. Tung, and D. J. Yoo, “Design,
implementation and testing of extended and mixed precision blas,” ACM Transactions
on Mathematical Software, vol. 28, no. 2, pp. 152–205, 2002.

[33] N. Yamanaka, T. Ogita, S. Rump, and S. Oishi, “A parallel algorithm for accurate dot
product,” Parallel Computing, vol. 34, no. 6-8, pp. 392 – 410, 2008.

[34] J. Navarro, Transparent operating system support for superpages. PhD thesis, Rice Uni-
versity, April 2004.

[35] T. Saidani, L. Lacassagne, S. Bouaziz, and T. M. Khan, Parallel and Distributed Process-
ing and Applications, ch. Parallelization Strategies for the Points of Interests Algorithm
on the Cell Processor, pp. 104–112. Springer Berlin / Heidelberg, 2007.

[36] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra, and G. Boslica, “A rough guide to
scientific computing on the playstation 3,” Technical Report UT-CS-07-595, University
of Tennessee Knoxville, Innovative Computing Laboratory, May 2007.

[37] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for solving linear sys-
tems,” Journal of Research of the National Bureau of Standards, vol. 49, no. 6, pp. 409–
436, 1952.

[38] M. Frigo and S. Johnson, FFTW 3.2.2 Manual. Massachusetts Institute of Technology,
July 2009.

[39] International Business Machines Corporation, Accelerated Library Framework Program-
mers Guide and API Reference, 2008.

36

Appendices

37

Appendix A

Tables

Table A.1: BLASX Performance: PPE Simple

Function msec GFLOPS

scopy 16.12 0.13
sscale 19.16 0.11
saxpy 28.59 0.15
ssxpy 28.13 0.15
sdot 23.30 0.18
ccopy 26.59 0.08
cscale 32.22 0.39
caxpy 55.21 0.30
csxpy 55.19 0.30
cmult 48.36 0.26
cmultc 60.26 0.21
zmultcM 57.16 0.22
zsxpyM 97.86 0.17
dcopy 23.44 0.09
dscale 27.56 0.08
daxpy 45.64 0.09
dsxpy 44.98 0.09
ddot 39.74 0.11
zcopy 44.19 0.05
zscale 46.75 0.27
zaxpy 89.38 0.19
zsxpy 89.37 0.19
zmult 83.94 0.15
zmultc 90.47 0.14

Total 1173.61 4.10

38

Table A.2: BLASX Performance: SPU Simple

Function msec GFLOPS Average Error Max Error Acceleration

scopy 2.72 0.77 0.00E+00 0.00E+00 492%
sscale 3.40 0.62 5.16E-04 1.95E-03 464%
saxpy 4.54 0.92 1.24E-03 3.91E-03 513%
ssxpy 4.52 0.93 5.86E-05 2.44E-04 520%
sdot 4.74 0.89 0.00E+00 0.00E+00 394%
ccopy 5.70 0.37 0.00E+00 0.00E+00 363%
cscale 8.17 1.54 3.75E-03 1.10E-02 295%
caxpy 14.47 1.16 2.57E-03 8.73E-03 287%
csxpy 14.42 1.16 2.69E-03 9.77E-03 287%
cmult 10.38 1.21 2.82E-03 1.10E-02 365%
cmultc 10.41 1.21 2.76E-03 1.10E-02 476%
zmultcM 16.88 0.75 0.00E+00 0.00E+00 241%
zsxpyM 16.00 1.05 0.00E+00 0.00E+00 518%
dcopy 4.22 0.50 0.00E+00 0.00E+00 456%
dscale 5.43 0.39 0.00E+00 0.00E+00 388%
daxpy 7.31 0.57 0.00E+00 0.00E+00 533%
dsxpy 7.32 0.57 0.00E+00 0.00E+00 533%
ddot 3.42 1.23 2.26E-10 4.73E-04 1018%
zcopy 8.54 0.25 0.00E+00 0.00E+00 400%
zscale 13.69 0.92 0.00E+00 0.00E+00 241%
zaxpy 22.89 0.73 0.00E+00 0.00E+00 284%
zsxpy 22.88 0.73 0.00E+00 0.00E+00 284%
zmult 17.44 0.72 0.00E+00 0.00E+00 380%
zmultc 17.46 0.72 0.00E+00 0.00E+00 414%

Total 246.95 19.91

39

Table A.3: BLASX Performance: SPU, HTLB

Function msec GFLOPS Acceleration

scopy 2.11 0.99 29%
sscale 2.76 0.76 23%
saxpy 3.20 1.31 42%
ssxpy 3.17 1.32 42%
sdot 4.43 0.95 7%
ccopy 4.22 0.50 35%
cscale 6.84 1.84 19%
caxpy 12.06 1.39 20%
csxpy 12.11 1.38 19%
cmult 7.96 1.58 31%
cmultc 7.89 1.59 31%
zmultcM 13.71 0.92 23%
zsxpyM 11.84 1.42 35%
dcopy 2.45 0.86 72%
dscale 3.89 0.54 38%
daxpy 4.96 0.85 49%
dsxpy 4.96 0.85 49%
ddot 2.66 1.58 28%
zcopy 4.86 0.43 72%
zscale 10.42 1.21 32%
zaxpy 18.23 0.92 26%
zsxpy 18.19 0.92 26%
zmult 12.34 1.02 42%
zmultc 12.47 1.01 40%

Total 187.73 26.14

40

Table A.4: BLASX Performance: SPU, HTLB, Vectorized

Function msec GFLOPS Acceleration

scopy 0.78 2.67 170%
sscale 0.78 2.68 253%
saxpy 1.27 3.30 152%
ssxpy 1.27 3.31 151%
sdot 1.63 2.57 171%
ccopy 1.55 1.35 170%
cscale 1.55 8.14 342%
caxpy 2.53 6.62 376%
csxpy 2.53 6.62 380%
cmult 2.53 4.97 215%
cmultc 2.53 4.97 213%
zmultcM 5.48 2.30 150%
zsxpyM 6.11 2.74 93%
dcopy 1.55 1.36 58%
dscale 1.55 1.35 150%
daxpy 2.53 1.66 95%
dsxpy 2.53 1.66 95%
ddot 1.36 3.07 94%
zcopy 3.07 0.68 58%
zscale 3.37 3.74 209%
zaxpy 6.27 2.68 191%
zsxpy 6.20 2.71 195%
zmult 5.77 2.18 114%
zmultc 5.78 2.18 116%

Total 70.52 75.51

41

Table A.5: BLASX Performance: SPU, HTLB, Vectorized, Double Buffer

Function msec GFLOPS Acceleration

scopy 0.78 2.69 1%
sscale 0.78 2.69 0%
saxpy 1.27 3.30 0%
ssxpy 1.27 3.30 0%
sdot 1.40 3.00 17%
ccopy 1.55 1.36 1%
cscale 1.55 8.14 0%
caxpy 2.53 6.64 0%
csxpy 2.54 6.62 0%
cmult 2.54 4.95 0%
cmultc 2.54 4.96 0%
zmultcM 4.16 3.02 31%
zsxpyM 4.24 3.96 45%
dcopy 1.54 1.36 0%
dscale 1.55 1.35 0%
daxpy 2.54 1.65 -1%
dsxpy 2.54 1.65 -1%
ddot 1.35 3.11 1%
zcopy 3.06 0.68 0%
zscale 3.08 4.09 9%
zaxpy 5.06 3.32 24%
zsxpy 5.07 3.31 22%
zmult 5.06 2.48 14%
zmultc 5.08 2.48 14%

Total 63.08 80.11

42

Table A.6: BLASX Performance: SPU, HTLB, Vectorized, Double Buffer, Bandwidth

Function SPEs msec GFLOPS Acceleration

scopy 2 0.78 2.69 0%
sscale 3 0.78 2.69 0%
saxpy 3 1.15 3.65 11%
ssxpy 3 1.15 3.66 11%
sdot 6 1.41 2.97 -1%
ccopy 2 1.54 1.36 0%
cscale 3 1.54 8.18 0%
caxpy 2 2.29 7.33 10%
csxpy 2 2.29 7.31 10%
cmult 2 2.29 5.50 11%
cmultc 2 2.28 5.51 11%
zmultcM 5 4.14 3.04 1%
zsxpyM 6 4.23 3.96 0%
dcopy 3 1.54 1.36 0%
dscale 3 1.54 1.36 1%
daxpy 3 2.26 1.86 13%
dsxpy 3 2.27 1.85 12%
ddot 6 1.35 3.11 0%
zcopy 3 3.06 0.68 0%
zscale 6 3.08 4.09 0%
zaxpy 4 4.89 3.43 3%
zsxpy 4 4.89 3.43 4%
zmult 3 4.70 2.67 8%
zmultc 3 4.70 2.68 8%

Total 60.16 84.37

43

Table A.7: BLASX Performance Evaluation

Function Type size Count Peak Time BLASX Time Utilization

scopy 4 2 0.62 0.78 80%
sscale 4 2 0.62 0.78 80%
saxpy 4 3 0.94 1.15 82%
ssxpy 4 3 0.94 1.15 82%
sdot 4 2 0.62 1.41 44%
ccopy 8 2 1.25 1.54 81%
cscale 8 2 1.25 1.54 81%
caxpy 8 3 1.87 2.29 82%
csxpy 8 3 1.87 2.29 82%
cmult 8 3 1.87 2.29 82%
cmultc 8 3 1.87 2.28 82%
zmultcM 16 3 3.75 4.14 91%
zsxpyM 16 3 3.75 4.23 89%
dcopy 8 2 1.25 1.54 81%
dscale 8 2 1.25 1.54 81%
daxpy 8 3 1.87 2.26 83%
dsxpy 8 3 1.87 2.27 83%
ddot 8 2 1.25 1.35 93%
zcopy 16 2 2.50 3.07 81%
zscale 16 2 2.50 3.08 81%
zaxpy 16 3 3.75 4.89 77%
zsxpy 16 3 3.75 4.89 77%
zmult 16 3 3.75 4.70 80%
zmultc 16 3 3.75 4.70 80%

44

Appendix B

Cell Processor on the PlayStation 3

One of the great features of Sony’s PlayStation R© 3 (PS3) entertainment system is that it
contains a Cell processor at it’s core. Combined with Sony’s explicit support for running
other operating systems on it, the price of a typical PS3 makes this platform attractive as an
inexpensive alternative to other Cell based hardware.

B.1 The Hardware

While very powerful as an entertainment console, one has to be mindful of the limitations of
the PS3 when deciding whether or not to invest in it as a tool for developing or running Cell
applications.

B.1.1 CPU

The processor is a 3.2 GHz power processor core with 512KB L2 cache and seven active
Synergistic Processing Elements. In order to increase production yield, Sony has elected to
activate only seven of the eight SPEs. Additionally, when running Linux or any OS other
than Sony’s, one SPE is used to run a hypervisor which limits access to the GPU and other
protected parts of the PS3 (presumably to make it more difficult to ’hack’ the system). This
reduces the number of SPEs available for general use to six.

B.1.2 Memory

The system memory consists of 256 MB of Rambus Extreme Data Rate (XDR) RAM with
a peak maximum bandwidth of 25.6 GB/s. When running Linux, the maximum available
system memory is around 220 MB, presumably due to memory reserved for use by the above
mentioned hypervisor.

B.1.3 Network

The network interfaces consist of an 802.11 b/g wireless NIC, a 10/100/1000 Ethernet port,
and a Bluetooth 2.0 transceiver.

45

B.1.4 Storage

The PS3 comes installed with a standard 5400 RPM, 2.5 inch SATA hard drive, the capacity
of which depends on the model. If more storage or disk performance is needed, it is simple
to upgrade the PS3 with an off the shelf laptop hard drive. Step-by-step instructions and
photos of this procedure can be found at multiple sites online.

B.1.5 I/O

The I/O ports available depend on the model, but as of this writing (2009), all models come
with at least 2 USB 2.0 ports. Some models additionally have memory card readers, but this
capability has been removed in later series PS3s.

B.2 Installing Linux on the PlayStation 3

While the Sony’s firmware for the PS3 has nice gaming and media features, to get real work
done you will need to install Linux. There are many distributions which support the PS3,
but since Fedora is the one supported by IBM’s Cell SDK, we will focus our efforts there.
Before getting started, we will need to gather some required tools:

• A mouse and keyboard with USB interfaces.

• A USB storage device such as a thumb drive or hard drive.

• A DVD with the version of Fedora that you would like to load (note that the PowerPC
version is required).

It is also recommended that you update the PS3 Sony OS to the latest version, and
perform a full backup of any game and media files on the system before you begin.

B.2.1 Partitioning the Hard Drive

The first step in getting Linux onto a PS3 is to create a partition on the hard drive to hold
the OS. From the Sony OS go to: Settings → System Settings → Format Hard Drive. From
there you can choose how to allocate the storage space, with the options being either 10 GB
for the Sony OS, and the remainder for Linux, or vice-a-versa. If the primary purpose of the
machine is Linux development, then it is probably wise to give it the bulk of the hard drive
storage.

B.2.2 Setting up a Bootloader

After partitioning the hard drive, the next step in the installation process is to install a
bootloader capable of brining up a Linux installation. As of this writing, the two primary
options are KBoot and Petitboot.

KBoot was the first bootloader to support the PS3, and has a console based interface.
It is more sophisticated than some other bootloaders in that is loads a small Linux kernel
and provides a basic running system. It then uses the kexec call to execute the full kernel

46

http://www.gamespot.com/features/6176090
http://fedoraproject.org/en/get-fedora-ppc
http://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-kboot
http://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-petitboot

and boot the system. At the time of this writing, KBoot has been deprecated in favor of
Petitboot.

Petitboot is a graphical bootloader designed specifically for the PS3, and is built on top
of Kboot and the twin windowing system. It provides a graphical interface to select which
system to load. While Petitboot is more graphically appealing and works well for most
configurations, if you run into problems with a customized kernel it does not provide many
recovery options.

After downloading the bootloader of your choice, you’ll need to put it on your PS3. Simple
rename the bootloader to other.bld, put it into a folder named ps3 on a USB drive, put it
into the system and select “Load Other OS” from the system menu. Sony has also graciously
provided step-by-step instructions on their website.

B.3 Installing Linux

This part is actually fairly straightforward now that Fedora is well supported on the PS3.
Put the Fedora DVD which you burned earlier into the drive. If using Petiteboot, you will
be given the choice of which kernel to load. Use the 64-bit kernel as the PS3 won’t run
the 32-bit version. After answering the standard installation questions, you will be on on
your way. Note that the default configuration of the hard drive is to use the Logical Volume
Manager which can be a bit inconvenient when rebuilding the kernel. I recommend laying
out the system with a standard boot, root, and swap partition.

B.4 Pruning the System

Like many Linux distributions, Fedora is configured out of the box with a fairly general setup.
As the PS3 has relatively little memory space for extra applications, I recommend stripping
down the system as much as possible after installation. To automate this I run the following
script post install:

#!/bin/sh

#

To ensure that nothing is getting swapped out

behind my back, turn off swap entirely.

#

sed -i ’s/.*swap.*/#&/’ /etc/fstab

#

There’s no need for SELINUX to be deployed on this

research system.

#

sed -i ’s/^SELINUX=.*/SELINUX=disabled/’ /etc/selinux/config

#

Turn off all but the essential startup daemons and services.

#

KEEP_STARTUP="network udev-post messagebus sshd"

47

http://www.playstation.com/ps3-openplatform

STARTUP_PROGS=‘chkconfig --list | awk ’{print $1}’‘

Turn everything off

for P in $STARTUP_PROGS; do

chkconfig --level 0123456 $P off

done

Reenable just the scripts we want to run on startup

for P in $KEEP_STARTUP; do

chkconfig $P on

done

#

Turn off all the extra ttys running on the console

(I only need one for debugging)

#

mkdir -p /etc/event.d_disabled

for i in 2 3 4 5 6; do

mv /etc/event.d/tty${i} /etc/event.d_disabled

done

B.5 Updating the Linux Kernel

While the Fedora kernel provides a running system out of the box, a custom built kernel can
reduce the operating system’s memory footprint by compiling in only the drivers and systems
needed for the PS3. At the time of this writing, the primary maintainer for the kernel patches
for the PS3 is Geoff Levand. His kernel tree is accessible to be downloaded with git:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/geoff/ps3-linux.git ps3-linux

Once the kernel sources are downloaded, the kernel can be configured and made:

make mrproper ps3_defconfig menuconfig

At this point, any desired configuration changes can be made to the kernel. If you are not
making changes to the kernel, then it is fairly safe to disable the kernel hacking and debugging
options. Also, if you allowed the installer to setup the root drive on a logical volume when
installing Linux, then be sure to enable LVM support in the kernel as well. It can be found
in Generic Driver Options → Multiple devices driver support → Device mapper support.

After all configuration changes have been made and you are ready to build the kernel,
run the following to build and install it:

make all modules_install install

After running the install, look in the /boot directory for the new kernel and initrd file.
In order to configure Petitboot to load the new kernel, edit the /etc/yaboot.conf file, by
copying the default configuration and replacing the kernel and initrd file names with the new
ones. After saving /etc/yaboot.conf, reboot and select the new kernel from the bootloader
menu.

48

mailto:geoffrey.levand@am.sony.com

B.6 Configuring Huge Pages

After installing a Linux kernel capable of supporting huge pages, the next task is to reserve
them so they can be used by applications. Once reserved in the kernel, these pages are
accessible from user space through a filesystem interface. This can be accomplished with the
following commands:

mkdir -p /huge

echo 20 > /proc/sys/vm/nr_hugepages

mount -t hugetlbfs nodev /huge

chown root:root /huge

chmod 777 /huge

For further information, there is a great article detailing the usage of huge pages as well
as a script to allocate them automatically on startup at cellperformance.com.

B.7 Installing the IBM SDK

The CELL platform SDK for Linux may be downloaded from the IBM website. There are a
variety of packages and options, but for use on the PS3 the Fedora packages are most likely
what you want. These can be downloaded to a directory on your PS3 along with the installer
rpm and installed with the following commands:

rpm -ivh ./cell-install-3.1.0-0.0.noarch.rpm

/opt/cell/cellsdk --iso /root/sdk/ install

More information regarding installation of the SDK may be found online.

49

http://www.cellperformance.com/articles/2007/01/howto_huge_tlb_pages_on_ps3_li.html
http://www.ibm.com/developerworks/power/cell
http://publib.boulder.ibm.com/infocenter/systems/scope/syssw/index.jsp?topic=/eicce/eicceInstallingTheSDK.html

Appendix C

The VH Solver

This appendix describes the high level implementation of the Vose-Horton CTIS reconstruc-
tion algorithm described in section 2.2. While the actual implementation on the CELL
processor is written in C, the solver is presented here in pseudocode to facilitate reading.
The C code running on the PPE of the Cell follows this presentation fairly closely, with the
acceleration being handled in the vector operations. In the following pseudocode, all oper-
ations involving vectors should be interpreted as component wise. The standard arithmetic
operations have their usual function. Additional functions are the dot product denoted (·),
the Fourier transform F() the inverse Fourier transform F−1(), and the complex conjugate
denoted by an overline.

C.1 Setup

Vose Horton Solver Parameters
x: output vector of the CTIS process
H: transfer matrix
n: number of rows in H
w: number of partitions of H
α: number of circulant blocks in each partition of H
a: number of columns in each circulant block
g: shift invariance constraint from assumption 2
µ: regularization constant
VH ITERATIONS: iteration bound for VH heuristic
VH EPSILON: error bound for the VH heuristic
CG ITERATIONS: iteration bound for embedded conjugate gradient
CG EPSILON: error bound for the embedded conjugate gradient

The VH solver is characterized by a number of input parameters, many of which are
defined by the CTIS problem. The regularization constant µ introduced in equation 2.4 was
selected to be 0.01 in the original Vose Horton paper. In practice, a larger value such as
0.1 may be desirable when handling large problems as it introduces less rounding error. The
parameters VH ITERATIONS and VH EPSILON control the stopping conditions of the algo-
rithm at a certain number of iterations or when the residual error is below a certain threshold.

50

Likewise, the CG ITERATIONS and CG EPSILON parameters control the embedded conjugate
gradient allowing it to be terminated early.

Multiplication of the H matrix is prominently featured throughout the reconstruction
process, but due to the shortcuts taken by the VH algorithm these multiplications may be
performed with vector operations in Fourier space. Accordingly, only the Fourier transform
of it’s special column vectors are needed which is advantageous since H may be both large
and sparse. These precomputed vectors are stored in the set F. Another somewhat time
consuming operation is the summation and square root operations from equation 2.5. Since
this is a frequently used term in the solver, it is also precomputed offline and stored in the
vector set E. Finally, equation 2.8 required multiplication by the diagonalized matrices Z
and Z ′, the effect of which expands or contracts the multiplied vector. This is implemented
as a lookup table, Z, which is precomputed and used directly to expand and contract vectors
as needed. The C implementation uses a bitmask to conserve space.

Preprocessing of H

// Precompute F ;
for i = 0 to w do

Fi = F(Hiαa) ;
end

// Precompute E ;

d =
((∑w

i=0 FiFi

)
(n/µ) + n

)1/2
;

for i = 0 to w do

Ei = d ∗ Fi ;
end

// Create Z ;
i = 0 ;
for j = 0 to α do

for k = 0 to a do
Zi = 1 ;
i = i+ 1 ;

end
for k = 0 to g − a do

Zi = 0 ;
i = i+ 1 ;

end

end
for k = 0 to n− (α ∗ g) do

Zi = 0 ;
i = i+ 1 ;

end

51

C.2 Implementation

The main loop of the solver uses the heuristic kernel to compute an estimate of the vector f,
calculates the residual from the estimate, and then iterates until either the residual is below
a certain threshold or the required number of iterations is reached.

Algorithm 3: VHSolver

f estimate = 0 ;
vh itr = 0 ;
residual = x ;
while vh eps > VH EPSILON and vh itr < VH ITERATIONS do

f estimate = HeuristicKernel(residual, f estimate) ;
residual = ComputeResidual(f estimate) ;
vh eps =

√
(residual · residual) ;

vh itr = vh itr + 1 ;

return f estimate;

A majority of the computations of the VH algorithm uses four global ”‘scratch”’ vectors,
v0 through v3. While more workspace vectors could be used, this was the smallest number
we were able to get away with. Reusing this workspace as much as possible keeps down the
utilization of valuable RAM when dealing with larger problem sizes. The heuristic kernel
implements the solution to equation 2.8.

52

Procedure HeuristicKernel(residual, fEst)

input: residual
v0 = F(residual) ;
v3 = 0 ;

// Begin Extended Precision Region ;
// HTx ;
for i = 0 to w do

v2 = Fi ∗ v0 ;
v1i = Ei ∗ v2 ;
v3 = v3 + v1i ;
v1i = 1

µ ∗ v2 ;

// PP T ;
for i = 0 to w do

v2 = Ei ∗ v3 ;
v2 = v1− v2 ;
// End Extended Precision Region ;
v0i = F−1(v2) ;

v1 = 0 ;
for i = 0 to w do

v2 = Zmask(v0i, Z) ;
v2 = F(v2) ;
v2 = Ei ∗ v2 ;
v1 = v1 + v2 ;

v1 = F−1(v1) ;

v2 = ConjugateGradient(v1) ;

v2 = F(v2) ;
for i = 0 to w do

v3 = Ei * v2;
v3 = F−1(v3) ;
v1i = v3 + v0;

v2 = 0;
for i = 0 to w do

v3 = Zmask(v1, Z) ;
v3 = F(v3) ;
v3 = Ei ∗ v3 ;
v2 = v2 + v3 ;

for i = 0 to w do
v3 = Ei ∗ v2 ;
v3 = F−1(v3) ;
v0i = v0i + µ ∗ v3 ;

f estimate = ZReduce(v2, v0, Z) ;
return f estimate;

53

Procedure Zmask(vIn, mask)

i = 0 ;
for j = 0 to w do

for k = 0 to n do
if maskj is 1 then

vOutk+(j∗n) = vIni ;
i = i+ 1 ;

else
vOutk+(j∗n) = 0

return vOut;

Procedure ZReduce
i = 0 ;
for j = 0 to w do

for k = 0 to n do
if Zj is 1 then

f estimatei = f estimatei + v0(j∗n)+k ;
v2(j∗n)+k = f estimatei ;
i = i+ 1 ;

else
v2(j∗n)+k = 0 ;

54

Procedure ConjugateGradient

input: v1
cg x = 0 ;
cg r = v1;
cg p = v1;
cg eps = (cg r · cg r) ;

while cg eps > CG EPSILON and cg itr < CG ITERATIONS do
last eps = cg eps;
cg v = 0 ;
v2 = F(cg p) ;
for i = 0 to w do

v3 = Ei ∗ v2 ;
v3 = F−1(v3) ;
v3 = Zmask(v3, Z) ;
v3 = F(v3) ;
v3 = Ei ∗ v3 ;
cg v = cg v + v3 ;

cg v = F−1(cg v) ;
cg v = 1

µ ∗ cg p− cg v ;

ca = cg eps
(cg p·cg v) ;

cg r = −ca ∗ cg v + cg r ;
dotR = (cg r · cg r) ;

// Stop at the first local minimum of error ;
if last eps < dotR then

break;

cg x = cg x + ca ∗ cg p ;
ca = dotR;

cg p = cg r + ca
cg eps ∗ cg p ;

cg eps = ca;
cg itr = cg itr + 1 ;

return cg x

55

Procedure ComputeResidual

v1 = 0 ;
for i = 0 to w do

v3 = F(v2i) ;
v3 = Fi ∗ v3 ;
v3 = F−1(v3) ;
v1 = v1 + v3;

ls = (v1·x)
(v1·v1) ;

i = 0 ;
for j = 0 to w do

for k = 0 to n do
if Zj is 1 then

v1j∗n+k = f estimatei ∗ ls ;
i = i+ 1 ;

else
v1(j∗n)+k = 0 ;

v0 = 0 ;
for i = 0 to w do

v3 = F(v1i) ;
v3 = Fi ∗ v3 ;
v3 = F−1(v3) ;
v0 = v0 + v3;

v0 = x− v0 ;
return v0;

56

Appendix D

Building the CTIS Solver

The CELL implementation of the Vose-Horton CTIS solver may be obtained from
http://www.cs.utk.edu/t̃thompso.
The library depends on the CELL SDK version 3.1 and the FFTW library. See section

B.7 for instructions on installing the SDK. Additionally, there are a few prerequisite packages
which can be installed with yum:

yum -y install glibc-devel.ppc64 wget.ppc make.ppc

After untarring the CTIS archive, the first item of business is to start the build of the
FFTW library. The full CTIS solution requires the long-double, double, and single precision
libraries to be built. The setup fftw.sh script in the package will automatically download
and configure the library. The blasx benchmarks directory contains driver and test code to
benchmark the accelerated operations in the BLASX library. They can be run as follows:

cd blasx_benchmarks

make

./blasx_bench -i 3 all 2097152

This command will run 3 iterations of all functions with an input length of 2097152 elements.
The CTIS solver can also be run:

cd ctis

make

./run_full_test.sh data/conf_test.txt

The run full test.sh script executes a full test sequence of the CTIS solver:

1. gen test data is run to create a test vector f and matrix H.

2. pre matrix pre-processes the matrix to create the eta and Fck vectors.

3. multHF multiplies the test matrix by the test vector using the pre-processed vectors.

4. ctis double runs the double precision solver and outputs f est.

5. ctis mixed runs the mixed precision solver and outputs f est.

The conf test.txt file is the test configuration used for the CTIS solver benchmark pre-
sented in the paper. Note however that the paper used a different H matrix and input image.

57

http://www.cs.utk.edu/~tthompso
http://fftw.org

Appendix E

SPU Task Optimization

While writing performance sensitive code to run on the Cell processors SPEs can be challeng-
ing, a nice feature of the platform is that instruction timing is deterministic. Since the SPU
has no cache and a very simple pipeline, instruction timing can be analyzed statically with a
fairly high degree of accuracy. The Cell Software Development Kit includes the spu timing

utility to help with this task. As of release 3.1 of the SDK, the timing utility is not installed
by default, but is available as an RPM in the CellSDK-Extras-Fedora 3.1.0.0.0.iso file.
After installing the tool, it can be found at /opt/cell/sdk/usr/bin/spu timing. The
spu timing tool analyzes text assembly files and creates timing diagrams for them which can
read to understand how an SPU will pipeline and execute a block of code. When using the
SDK’s build environment, the timing tool can be invoked automatically by putting the com-
mand SPU TIMING=1 in the makefile. Alternately, a timing profile can quickly be generated
by specifying the tool in the environment with your make command, such as this:

SPU_TIMING=1 make foo.s

Where foo is the name of a code module (i.e. foo.c) in the application. The SPU static
timing tool instruments an SPU assembly file with scheduling, timing, and instruction issue
estimates assuming a linear execution of the program. The output of this tool, not including
the optional running cycle count, is as follows:

Column 1 — The first column indicates the pipeline, either 0 or 1, corresponding to even
or odd pipeline, respectively, in which the instruction is issued.

Column 2 — The second column indicates dual-issue status. A ”D” in this column signifies
successful dual-issue of the pair of instructions. A ”d” in this column signifies dual-issue
is possible, but would not occur due to operand dependencies (for example, operands
being in flight). No text in this column indicates that dual-issue rules are not satisfied.

Column 3 — always blank.

Column 4 through 53 — The next 50 columns indicate clock cycles, ”0123456789” re-
peated 5 times. A digit is displayed for every clock cycle the instruction executes.
Therefore, a n-cycle instruction will display n digits. Operand dependency stalls are
flagged by a dash (”-”) for every cycle the instruction is expected to stall.

Column 54 and beyond — The original assembly input code.

58

As an example for analysis, consider the function VectorSubtract, which, as it’s name
implies, subtracts two vectors. This first code snippet is from a naive implementation in C:

void VectorSubtract(vector float ∗x, vector float ∗y, vector float ∗z, int N)
{

int i;
for(i=0; i < N; i++)

z[i] = x[i] − y[i];
}

Running the SPU timing tool gives the following output:

VectorSubtract:

000093 0d 34 cgti $2,$6,0

000098 1d 01 -----89 shlqbyi $8,$3,0

000099 0D 9 nop $127

000099 1D 012 9 biz $2,$lr

000100 0D 01 il $7,0

000100 1D 012345678901234 hbra .L17,.L14

.L14:

000101 0d 12 ai $6,$6,-1

000102 1d -234567 lqx $2,$7,$4

000103 1 345678 lqx $3,$7,$5

000104 0 4 nop $127

000105 0 5 nop $127

000109 0 ---901234 fs $2,$2,$3

000115 1 -----567890 stqx $2,$7,$8

000116 0 67 ai $7,$7,16

.L17:

000117 1 7890 brnz $6,.L14

000118 1 8901 bi $lr

Inspecting the body of the loop (between .L14 and .L17) reveals a rather inefficient pro-
cess. No instructions can be dual issued and there are long stalls on lines 109 and 115.
Because this tight loop forms the core of our computation, these stalls greatly impede overall
CPU throughput.

Next, let us examine the same function after vectorization and unrolling the loop:

void VectorSubtract(vector float ∗x, vector float ∗y, vector float ∗z, int N)
{

int i;
register vector float x0,x1,x2,x3,x4,x5,x6,x7;
register vector float y0,y1,y2,y3,y4,y5,y6,y7;

for(i=0; i < N; i += 8){
x0 = x[i+0];
x1 = x[i+1];
x2 = x[i+2];
x3 = x[i+3];
x4 = x[i+4];
x5 = x[i+5];
x6 = x[i+6];
x7 = x[i+7];

59

y0 = y[i+0];
y1 = y[i+1];
y2 = y[i+2];
y3 = y[i+3];
y4 = y[i+4];
y5 = y[i+5];
y6 = y[i+6];
y7 = y[i+7];

z[i+0] = spu sub(x0,y0);
z[i+1] = spu sub(x1,y1);
z[i+2] = spu sub(x2,y2);
z[i+3] = spu sub(x3,y3);
z[i+4] = spu sub(x4,y4);
z[i+5] = spu sub(x5,y5);
z[i+6] = spu sub(x6,y6);
z[i+7] = spu sub(x7,y7);

}
}

The SPU timing output is now:

VectorSubtract:

000093 0D 34 cgti $2,$6,0

000093 1D 3456 shlqbyi $24,$6,0

000098 0D ----89 ori $23,$3,0

000098 1D 01 89 shlqbyi $22,$4,0

000099 0D 0 9 ori $21,$5,0

000099 1D 012 9 biz $2,$lr

000100 0D 01 il $20,0

000100 1D 012345678901234 hbra .L17,.L14

000101 0D 12 il $19,0

000101 1D 1 lnop

.L14:

000103 0D -34 a $2,$22,$19

000103 1D 345678 lqx $8,$19,$21

000104 0D 45 a $3,$21,$19

000104 1D 456789 lqx $10,$19,$22

000105 0D 56 ai $20,$20,8

000105 1D 567890 lqd $5,112($2)

000106 0D 67 a $4,$19,$23

000106 1D 678901 lqd $13,112($3)

000107 0D 78 cgt $18,$24,$20

000107 1D 789012 lqd $6,16($2)

000108 1 890123 lqd $11,32($2)

000109 1 901234 lqd $12,48($2)

000110 0D 012345 fs $10,$10,$8

000110 1D 012345 lqd $7,64($2)

000111 1 123456 lqd $8,80($2)

000112 1 234567 lqd $9,96($2)

000113 0D 345678 fs $5,$5,$13

60

000113 1D 3 lnop

000114 1 456789 lqd $2,16($3)

000115 1 567890 lqd $13,32($3)

000116 1 678901 lqd $14,48($3)

000117 1 789012 lqd $15,64($3)

000118 1 890123 lqd $16,80($3)

000119 1 901234 lqd $17,96($3)

000120 0D 012345 fs $6,$6,$2

000120 1D 012345 stqx $10,$19,$23

000121 0D 123456 fs $11,$11,$13

000121 1D 123456 stqd $5,112($4)

000122 0 234567 fs $12,$12,$14

000123 0 345678 fs $7,$7,$15

000124 0 456789 fs $8,$8,$16

000125 0 567890 fs $9,$9,$17

000126 0D 67 ai $19,$19,128

000126 1D 678901 stqd $6,16($4)

000127 1 789012 stqd $11,32($4)

000128 1 890123 stqd $12,48($4)

000129 1 901234 stqd $7,64($4)

000130 1 012345 stqd $8,80($4)

000131 1 123456 stqd $9,96($4)

.L17:

000132 1 2345 brnz $18,.L14

000133 1 3456 bi $lr

This version has a noticeably longer loop section even though it performs the same amount
of work. However, with this version there is only one stall cycle at the top of the loop and
many of the instructions are dual issued. When timed with the spu decrementer the original
implementation executes in 8280 clock cycles while this optimized implementation runs in
slightly over 2000 cycles.

61

Vita

Thad Thompson grew up in San Angelo Texas. He went to Angelo Christian School and
graduated in 1997. Subsequently, he attended Angelo State University and received his BS
in Computer Science in 2001. After moving to Tennessee he worked as an IT and software
engineer while attending the University of Tennessee part time, receiving an MS in Computer
Science in 2009. He currently lives in Knoxville with his wife Robyn, and can be contacted
at thad.thompson@gmail.com.

62

	Accelerated CTIS Using the Cell Processor
	Recommended Citation

	Introduction
	Computed Tomography Imaging Spectrometry
	CTIS Image Reconstruction
	The Vose-Horton Algorithm
	Strategy
	Solution

	The Cell Processor
	Design
	The PowerPC Processing Element
	The Synergistic Processing Elements
	The Element Interconnect Bus

	Programming

	Implementation
	Metrics
	Accuracy
	Speed

	Baseline Implementation
	Prototyping
	Simplification
	Implementation in C

	Acceleration with the Cell Processor
	Approach
	Parameters

	Acceleration of the BLASX Library
	Simple PPE Baseline
	Deployment to the SPEs
	Huge Pages
	Vectorization and Unrolling
	Double Buffering
	Bandwidth Optimization
	Summary

	Results
	Setup
	Reconstruction
	Double Precision
	Mixed Precision
	BLASX Accelerated
	FFT Accelerated
	BLASX+FFT
	BLASX+FFT Split

	Summary

	Conclusions and Future Work
	Future Work
	Reducing Fourier transforms
	Handling the Cell Library Problem
	Tuning the Implementation

	Conclusion

	Appendices
	Tables
	Cell Processor on the PlayStation 3
	The Hardware
	CPU
	Memory
	Network
	Storage
	I/O

	Installing Linux on the PlayStation 3
	Partitioning the Hard Drive
	Setting up a Bootloader

	Installing Linux
	Pruning the System
	Updating the Linux Kernel
	Configuring Huge Pages
	Installing the IBM SDK

	The VH Solver
	Setup
	Implementation

	Building the CTIS Solver
	SPU Task Optimization

