
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2016

Extending Capability and Implementing a Web Interface for the Extending Capability and Implementing a Web Interface for the

XALT Software Monitoring Tool XALT Software Monitoring Tool

Kapil Agrawal
University of Tennessee, Knoxville, kagrawa1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Agrawal, Kapil, "Extending Capability and Implementing a Web Interface for the XALT Software Monitoring
Tool. " Master's Thesis, University of Tennessee, 2016.
https://trace.tennessee.edu/utk_gradthes/4019

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4019&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Kapil Agrawal entitled "Extending Capability and

Implementing a Web Interface for the XALT Software Monitoring Tool." I have examined the final

electronic copy of this thesis for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Master of Science, with a major in Computer

Engineering.

Gregory Peterson, Major Professor

We have read this thesis and recommend its acceptance:

Audris Mockus, Michael Jantz

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Extending Capability and

Implementing a Web Interface for

the XALT Software Monitoring

Tool

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Kapil Agrawal

August 2016

c© by Kapil Agrawal, 2016

All Rights Reserved.

ii

dedicated to my parents Shri. Gopal Das Agrawal and Smt. Geeta Agrawal

iii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Gregory

Peterson for providing the great opportunity to work at the Joint Institute for

Computational Sciences, and for continuous support for my Master study and related

research work.

I appreciate Dr. Mark Fahey and Dr. Reuben Budiardja for their patience,

motivation, and immense knowledge. Their guidance helped me in all the time of

research and writing of this thesis.

I would like to thank Prof. Audris Mockus and Asst. Prof. Michael Jantz for

being on my graduate committee.

Last but not the least, I would like to thank my friends Mohit, Eduardo, and my

family for their support.

iv

Abstract

As high performance computing centers evolve in terms of hardware, software, and

user-base, the act of monitoring and managing such systems requires specialized

tools. The tool discussed in this thesis is XALT, which is a collaborative effort

between the National Institute for Computational Sciences and Texas Advanced

Computing Center. XALT is designed to track link-time and job level information

for applications that are compiled and executed on any Linux cluster, workstation, or

high-end supercomputer. The key objectives of this work are to extend the existing

functionality of XALT and implement a real-time web portal to easily visualize the

tracked data. A prototype is developed to track function calls resolved by external

libraries which helps software management. The web portal generates reports and

metrics which would improve efficiency and effectiveness for an extensive community

of stakeholders including users, support organizations, and development teams. In

addition, we discuss use cases of interest to center support staff and researchers on

identifying users based on given counters and generating provenance reports. This

work details the opportunity and challenges to further push XALT towards becoming

a complete package.

v

Table of Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Outline . 3

2 Background and Related Work 4

2.1 Background . 4

2.1.1 XALT Overview . 4

2.2 Related Work . 7

2.2.1 XALT Predecessors (ALTD and Lariat) 7

2.2.2 Profiling and tracing tools . 9

2.2.3 Signature matching tools . 10

2.2.4 Performance management tools 10

2.2.5 Process accounting and resource managing tools 11

3 Methodology and Implementation 13

3.1 Function Tracking . 13

3.1.1 Database Changes . 13

3.1.2 Create LibMap . 15

3.1.3 Modify Linker (ld) Wrapper 16

3.2 XALT Web Portal . 17

4 Results and Use Cases 21

vi

4.1 Results and discussions . 21

4.1.1 XALT Dashboard tab . 21

4.1.2 XALT Usage Tab . 28

4.2 Use Cases . 37

5 Conclusions and Future Work 45

Bibliography 47

Appendix 53

Vita 55

vii

List of Tables

2.1 Usage of Compilers (Number of Instances) 9

2.2 Library Usage Ranked by Number of Instances and Number of Users 9

viii

List of Figures

1.1 The Oak Ridge Leadership Computing Facility (OLCF) is home to

Titan, the world’s most powerful supercomputer for open science with

a theoretical peak performance exceeding 20 petaflops. Image courtesy

Oak Ridge National Laboratory. 2

2.1 XALT linker and code launcher wrappers that intercept tracking

information at compile time and run time, respectively. 5

2.2 ELF section header with fields necessary to accurately track executable

in the jobs table back to the correct machine, the user who built it,

and the machine on which it was built. 6

2.3 XALT transmission methods. 6

2.4 ALTD database tables. 8

3.1 XALT Database Layout: Tables join link function and xalt function

are new tables added to the existing database to enable function tracking. 14

3.2 Directories: List of modules to be included/excluded to create LibMap

defined in dirs.xml . 15

3.3 LibMap: A map of libraries used as a cross-reference for function tracking. 16

3.4 XALT web portal: It has two main compnent: XALT database lookup,

and an interactive web-based charts/tables for viewing and analyzing

data. 18

ix

3.5 XALT Dashboard: Shows overview of the Center by showing different

charts that can be generated for a given system and daterange. 19

4.1 Active Users: The plot shows all distinct users over the year 2015, with

blue bars indicating the number of distinct users running jobs and red

bars indicating number of users who have built their code on Darter.

The yellow line indicates an average of the two sets to understand the

trends. 22

4.2 Jobs Submitted: The plot shows total number of jobs submitted during

the year 2015, with a sharp increase in the numbers during May-2015

on Darter. 23

4.3 Top ten executables: The horizontal axis specify total number of jobs

submitted (in log scale) for that executable, while the vertical axis

indicates the core-hours. The ratio of these two represents average core-

hours per submission. The size of the bubble represents the number of

unique users that run that particular executable. 24

4.4 Top Ten Users: The plot shows top ten users using NICS resources

(Darter for year 2015). Blue bars indicate total CPU hours, red bars

indicate number of jobs users has submitted during the given time

frame and orange bars indicate number of instance user has comipled

the code on the given resource. 25

4.5 Compiler Trends Over Time: The plot shows a time trend of all the

compilers on Darter for year 2015 based on number of times each link

program calls the linker. 27

4.6 Compiler Trends Over Time: The two outliers (gfortran and g++)

compiler are removed by de-selecting respective legend shown on the

right side of the plot. 28

4.7 Various Listing on Usage Tab. 29

4.8 XALT Module Usage. 30

x

4.9 Further Details: List of versions for the given module, list of users

using the particular module-version, list of executables build by the

given users using given module-versions. 31

4.10 VASP Module Usage: As shown above only one executable is been

built in year 2015. 32

4.11 Job Run Details for UUID ’28e92cbc-d1cb-4534-849f-2e606b241b07’. . 33

4.12 Link Program Usage on Darter for period Jun-Aug’ 2015 35

4.13 Link Program Usage on Darter for period Jan-Mar’ 2015 36

4.14 User Software Provenance: Complete work history of user ’rbuidiard’

for year 2015 on Darter. 38

4.15 Module usage for ’sprng’ module for 2014, 2015, and 2016 41

4.16 Identify User: Based on given object path, or executable name. . . . 42

4.17 Identify users who have built executable ’cp2k’ for year 2015 on Darter. 43

xi

Chapter 1

Introduction

High-performance computing (HPC) is the use of supercomputers and parallel

processing techniques for solving complex computational problems. HPC technology

focuses on developing parallel processing algorithms and systems by incorporating

both administration and parallel computational techniques [1]. The most common

users of HPC systems are scientific researchers, engineers, and academic institutions.

Some government agencies, particularly the military, also rely on HPC for complex

applications.

High-performance computing systems often use custom-made components in

addition to commodity components. On these systems a collection of program

libraries and software packages are maintained to support HPC users with their

research activities. Over time, these software packages, each with multiple versions,

with each version potentially built with different compilers, grows and it becomes a

mountainous task for the support staff to maintain/support these packages.

Building, maintaining, and supporting a large software stack on these HPC

systems is a demanding task. Historically, many separate and diverse monitoring

tools have been used within supercomputing centers to address the diverse needs of

end-users, system administrator, and center directors, a few of them are discussed in

section 2.2.

1

Figure 1.1: The Oak Ridge Leadership Computing Facility (OLCF) is home to
Titan, the world’s most powerful supercomputer for open science with a theoretical
peak performance exceeding 20 petaflops. Image courtesy Oak Ridge National
Laboratory.

The tool here in discussion is XALT [2] which is designed to track linkage

and execution information for applications that are compiled and executed on any

Linux cluster, workstation, or high-end supercomputer. XALT monitors and tracks

individual code executions, which would in turn help get the attention of support

staff and/or deliver alerts to users regarding the basic causes of problems preventing

their jobs from running, and collect metrics that improve training, documentation,

and outreach programs.

The work presented in this thesis focuses on leveraging our understanding of an

individual user’s software needs and help different stakeholders conduct business in a

more efficient, effective, and systematic way. We aim at challenges and opportunities

of developing a prototype to track function call resolved by external libraries along

with implementing the XALT web portal.

2

1.1 Motivation

HPC systems are rapidly evolving and are complex in nature. The cost associated

with operating and maintaining these systems is high, and there is an urgent need to

utilize these systems as effectively as possible. It is essential to measure and monitor

the software usage and forecast needs (if possible) of the packages and libraries used

on HPC systems. The motivation of this works comes from the idea of implementing

a web-interface to easily mine data collected by XALT to get a better understanding

of various metrics, reports, and use cases. Furthermore, these reports and metrics can

be used to highlight the products researchers need and do not need, and alert users

and support staff to the root causes of software configuration issues as soon as the

problem occurs. It is also beneficial for centers to have access to a web portal, which

could give direct access to real-time data. This in turn enables not only support

staff but users (often without a compute science background) to look into their work

history along with a host of detailed information without going through the pain of

writing scripts manually.

1.2 Thesis Outline

Chapter 2 presents background research in why we selected XALT, and other related

work done in this area, including XALT’s predecessors and various other tools.

Chapter 3 presents the design, methodology, and implementation of the function

tracking functionality and web portal. Next, we present various reports and metrics

generated using XALT data, and discuss use cases which were part of this study in

Chapter 4. Finally, Chapter 5 discusses conclusions and future work.

3

Chapter 2

Background and Related Work

2.1 Background

XALT is designed to track linkage and execution information. It collects accurate and

continuous data on every job and store that in a database; all the data collection is

transparent to the users. XALT not only tracks static, shared, and dynamic libraries

but also detects function calls that need to be resolved by external libraries. In this

section we briefly discuss XALT predecessors ALTD [3] and Lariat [4] and other open

source and commercial resource usage monitoring tools.There are a few approaches

that are related, however they were designed for other purposes and as such are not

good solutions as discussed in 2.2.

2.1.1 XALT Overview

XALT is a lightweight solution with essentially no overhead at compilation time and

runtime [5]. It was designed to work seamlessly on any cluster, workstation, or high-

end computer. XALT intercepts both the GNU linker (ld) at link time and the

code launcher (e.g. aprun, mpirun, srun, or ibrun) at runtime as shown in Figure

2.1. XALT not only tracks static, shared, and dynamically linked libraries but also

function calls that need to be resolved by external libraries. The wrapper for the linker

4

(ld) intercepts the user link line and parses the command line, storing the results in

the JSON [6] file. At the same time an ELF section header (Figure 2.2) is inserted

into the user’s code. The job specific environment variables from the batch system

and dynamic libraries loaded during the runtime are detected by the job launcher

wrapper and stored in another JSON file.

Figure 2.1: XALT linker and code launcher wrappers that intercept tracking
information at compile time and run time, respectively.

5

Figure 2.2: ELF section header with fields necessary to accurately track executable
in the jobs table back to the correct machine, the user who built it, and the machine
on which it was built.

Figure 2.3: XALT transmission methods.

6

These JSON files are then stored in a database by running a script or by one of

the built-in transmission methods deployed by the given site. XALT can transmit

data in one of the three ways to a database (Figure 2.3): (1) write to an intermediate

JSON file and parse later, (2) store directly in the database, or (3) write to SYSLOG

and parse later. The idea behind having three different transmission methods is to

let each site choose for themselves what works best for their environment based on

their preferred file system, and database accesses patterns, and security policies.

2.2 Related Work

2.2.1 XALT Predecessors (ALTD and Lariat)

Automatic Library Tracking Database

ALTD is able to track both static and shared libraries; however, it does not track

function calls which the latest version of XALT does [5]. ALTD intercepts the job

launcher as a secondary measure to track usage by counting how many times an

executable is run and then how many times the libraries (at linktime) are used [3].

However, libraries that are loaded and unloaded at runtime, such as dynamically

linked libraries, are not tracked [7]. In addition, only a limited set of counters are

captured, as show in Figure 2.4.

Lariat

Lariat [4] collects a set of details about each job that includes executable names for

parallel jobs, their working directories, size, creation date, and SHA1 hash [8], and

environment modules that they may employ [9]. However, Lariat is incapable of

tracking static and shared libraries. XALT is a single infrastructure that provides the

best of both successful predecessors. XALT incorporates all of their capabilities and

adds more.

7

Figure 2.4: ALTD database tables.

Reports generated by ALTD

XALT supports all existing reports generated by its predecessors ALTD and Lariat.

Table 2.1 shows the number of compilations performed with the various compilers

available on the different systems, and Table 2.2 shows library usage on Kraken. The

8

data corresponds to a one-year period (Jan-Dec’ 2011) and was part of data collection

performed at NICS in 2012 [10]. The reports were generated from the scripts written

manually which again requires a great deal of understanding of how the database is

structured and how to run these scripts. In addition, the scripts and the knowledge of

extracting these reports may be lost if no care has been taken in assuring a centralized

repository. This might add up to an overhead to the centers that are using these tools.

Table 2.1: Usage of Compilers (Number of Instances)

Compiler Kraken Jaguar Rosa

GNU 26689 70854 9407
PGI 51154 132345 6116
Intel 6321 55182 1729
CCE 69 343 1415

Pathscale 14 1486 389

Table 2.2: Library Usage Ranked by Number of Instances and Number of Users

Library Instances Users Library-version Instances Users

Libsci 42271 291 libsci/10.5.02 29787 220
atlas 35954 8 fftw/3.2.2.1 15987 128
fftw 24494 235 xt-libsci/10.4.5 12167 169
acml 3537 59 fftw/2.1.5 3710 64
petsc 2460 20 acml/4.4.0/ 3088 39
sprng 1745 13 sprng/2.0b/ 1739 12
arpack 1721 11 petsc/3.1.05 1571 13

tspl 1517 14 arpack/2008 1543 1
gsl 1451 48 tpsl/1.0.0/ 1517 1

fftpack 1317 35 gsl/1.14 1063 39

2.2.2 Profiling and tracing tools

Profiling and tracing tools such as IPM (Integrated Performance Monitoring) [11]

provides a performance profile on batch jobs while maintaining low overhead by using

9

a unique hashing approach that allows a fixed memory footprint and minimal CPU

usage. XALT’s aim is to track all libraries used at the link time and at execution time

rather than track all the code executed. Likewise, tools such as TAU [12], Vampir

[13],CrayPat [14] perform analysis for only one user and provide all the function

calls in the application. These tools can be used to provide system-level information

as a byproduct, nevertheless they are heavy-weight and introduce compile time and

runtime overheads, which is highly undesirable [2].

2.2.3 Signature matching tools

Efforts [15] had been made to extract information (such as compilers and libraries

used) using the open-source anti-virus package ClamAV [16]. These tools use a

signature matching approach to automatically uncover the program build information.

The implementation comprises of two tools: a signature generator and a signature

scanner. The signature generator takes ELF files and automatically outputs ClamAV-

formatted signature files. The signature scanner takes as input the signature files and

the executable binaries and outputs all possible matches. However, this approach

has a few drawbacks: (1) this approach takes a noticeable amount of time to extract

signatures (e.g., 28 seconds to scan through a library of 210 MB size [15]); and (2)

one has to be vigilant to make sure that all the signatures are up-to-date [2].

2.2.4 Performance management tools

Performance management tools such as TOPAS [17] (T3E Observative Performance

Analysis System) monitor usage and performance of every parallel job executed on a

CRAY T3E. The measurement consists of executing special code immediately before

and after the execution of the actual program. The technique TOPAS employs is

by modifying the UNICOS/mk compiler wrapper scripts to automatically link the

TOPAS measurement module to every user application whenever it is recompiled.

However, the way TOPAS calculates MFlop rates (Million Floating point operations

10

per second) are based on total wall clock execution time of the applications, i.e., it

covers also input, output, initialization, wrap-up, and checkpointing phases of the

program and not just inner loops or kernels. It is basically not an ideal way to

calculate MFlop rates [17]. Tools such as RUR (Resource Utilization Reporting)

developed by Cray collects statistics on how system are used by collecting data about

the usage of a particular resource [18]. Cray provides plugins to support several sets

of collected data. These plugins support multiple methods to output collected data.

However, these tools are specific to Cray systems.

Other projects such as PAPI (Performance Application Programming Interface)

provides a portable interface to the hardware performance counters available on all

modern CPUs and other components like GPUs, network, and I/O systems. PAPI [19]

produces performance data that originates from within the processing cores. It also

pays more attention to the power consumption of the system. However, these counters

are specific to the underlying architecture and require greater attention on how to

use/build newly added components to existing frameworks to explore its usefulness.

2.2.5 Process accounting and resource managing tools

Resource managing tools such as TORQUE (Terascale Open-source Resource and

Queue manager) [20] provides control over batch jobs and distributed computing

resources. It is based on the original open source PBS (Portable Batch System)

project which helps manages jobs that users submit to various queues on a computer

system. This method of gathering information is known as process accounting. The

information gathered usually is how many times the software has been used or CPU

hours [2].

On the other hand, one can parse the output generated by environment commands

supported by Linux such as lastcomm and retrieve summaries on software usage [21].

Tools developed for accurately identifying masqueraders such as NVision-PA [22]

11

produces text and graphic statistical summaries describing input process accounting

logs.

Other open-source system such as SUPReMM which stands for Integrated HPC

Systems Usage and Performance of Resources Monitoring and Modeling [23]

provides resource management capabilities to users and managers of HPC systems.

SUPReMM was created by integrating data collected by the TACC Stats [9] with

XDMoD [24] (XSEDE Metrics on Demand). Unlike conventional profilers, TACC

Stats continuously collects and analyzes resources usage data for every job run on

a system transparent to the user. This data can be used to automatically generate

analyses and reports such as average cycles per instruction (CPI), average and peak

memory usage, average and peak memory bandwidth usage. XDMoD [25] is an open

source project which utilizes information obtained from the XSEDE central database,

and further support the analyses and reporting of HPC job data from multiple sources,

such as resource manager log files, and campus Lightweight Directory Access Protocol

(LDAP) services. However, library usage, functions called, or applications called

inside a program or script can not be traced by these tools. XALT provides in-depth

details overcoming all these limitations.

12

Chapter 3

Methodology and Implementation

In this chapter we describe the approach we took to develop a prototype for tracking

function calls. We then discuss requirements, design, and implementation of the

XALT web portal.

3.1 Function Tracking

Some additional functionality that was proposed as part of the earlier releases of

XALT was the need to track function calls resolved by the external libraries for the

executable build. In this section we discuss components of the existing XALT [v0.5.4]

package and what we changed to track function calls.

3.1.1 Database Changes

Two new tables are introduced to the existing set of tables in XALT’s database named

join link function and xalt function see Figure 3.1. To avoid data redundancy,

we made use of the join link function table, as the same function can be linked

to different executables. The xalt function is our core table that stores function

names along with corresponding func id which can again be traced back to the

corresponding executable using link id from the join link function table.

13

join_link_function

join_id INT(11)

func_id INT(11)

link_id INT(11)

Indexes

join_link_object

join_id INT(11)

obj_id INT(11)

link_id INT(11)

Indexes

join_run_env

join_id INT(11)

env_id INT(11)

run_id INT(11)

env_value BLOB

Indexes

join_run_object

join_id INT(11)

obj_id INT(11)

run_id INT(11)

Indexes

xalt_env_name

env_id INT(11)

env_name VARCHAR(64)

Indexes

xalt_function

func_id INT(11)

function_name VARCHAR(255)

Indexes

xalt_link

link_id INT(11)

uuid CHAR(36)

hash_id CHAR(40)

date DATETIME

link_program VARCHAR(10)

build_user VARCHAR(64)

build_syshost VARCHAR(64)

build_epoch DOUBLE

exit_code TINYINT(4)

exec_path VARCHAR(1024)

Indexes

xalt_object

obj_id INT(11)

object_path VARCHAR(1024)

syshost VARCHAR(64)

hash_id CHAR(40)

module_name VARCHAR(64)

timestamp TIMESTAMP

lib_type CHAR(2)

Indexes

xalt_run

run_id INT(11)

job_id CHAR(64)

run_uuid CHAR(36)

date DATETIME

syshost VARCHAR(64)

uuid CHAR(36)

hash_id CHAR(40)

account VARCHAR(20)

exec_type CHAR(7)

start_time DOUBLE

end_time DOUBLE

run_time DOUBLE

num_cores INT(11)

job_num_cores INT(11)

num_nodes INT(11)

num_threads TINYINT(4)

queue VARCHAR(32)

exit_code TINYINT(4)

user VARCHAR(32)

exec_path VARCHAR(1024)

module_name VARCHAR(64)

cwd VARCHAR(1024)

Indexes

Figure 3.1: XALT Database Layout: Tables join link function and
xalt function are new tables added to the existing database to enable function
tracking.

14

Changes have been made to the python script createDB.py that creates existing

tables for XALT to support the new tables.

3.1.2 Create LibMap

As stated earlier we are interested in function calls resolved by the external libraries

for the executable build; user-defined functions and auxiliary functions in the external

libraries have no appeal to this work.

Figure 3.2: Directories: List of modules to be included/excluded to create LibMap
defined in dirs.xml

To ensure that we track function calls of the libraries that are of interest we create

a libMap of all the libraries listed. To achieve this we make use of the python script

xalt create libmap.py. This script iterates through the file called dirs.xml (see

Figure 3.2), which gives list of directories to traverse while creating the libMap JSON

15

file (see Figure 3.3). The dirs.xml files and libMap need to be created/updated per

machine every time a new module or package is installed. This can be done as a

part of software installation process, or run as a cron job every week. As part of

improving the code base and removing dependencies we can integrate libMap with

existing reverseMap [26] functionality of XALT.

Figure 3.3: LibMap: A map of libraries used as a cross-reference for function
tracking.

3.1.3 Modify Linker (ld) Wrapper

The linker (ld) wrapper which intercepts the user link line, has four main functions

[2] as shown in Figure 2.1.

1. Generate assembly code

16

2. Generate link text

3. Generate function list (new)

4. Generate link data

5. Upload JSON file to XALT database

We modify the existing process flow to get all function calls by adding a new step

Generate function list. We strip the link line from all the libraries by calling the

python script xalt strip libs.py which strips out libraries from a link line given a

reference list of libraries in the libmap file produced in 3.1.2.

Once we have the list of functions we then pass this list along with the link data

generated in step 4 to one of the transmission methods (see Figure 2.3). Depending

upon the transmission method selected by the given center, the data generated would

either be uploaded to JSON file, SYSLOG, or directly to the database.

3.2 XALT Web Portal

The principle requirement of web portal is to deliver library usage and job tracking

data in a real-time fashion that eliminates the painstaking manual reporting employed

by the centers. We do this using the XALT tool. The XALT web portal has been

developed as a customizable and extensible tool to support the analysis and reporting

of the data collected by XALT at a given high-performance computing center.

As shown in Figure 3.4, the web portal architecture is made up of two main

components: the data is looked up from XALT database using a traditional MySQL,

PHP software stack, and the user-facing portion of the web portal is developed using

the free HTML5 Gentella template [27], including Google Charts [28] and Bootstrap

3 [29]. Bootstrap 3 is one of the most popular HTML, CSS, and JS frameworks for

developing responsive mobile first projects on the web, whereas Google charts is a

17

Figure 3.4: XALT web portal: It has two main compnent: XALT database lookup,
and an interactive web-based charts/tables for viewing and analyzing data.

powerful, simple to use, and interactive client-side charting tool that allows users to

view and interact with multiple data series directly from the browser.

Figure 3.5 shows a screen capture of a typical display page of the XALT web

portal at NICS. The user interface for the web portal features a two panel navigation

format. The left-panel provides users the ability to traverse through various tabs on

the portal, and the right-panel shows various charts and reports customized to user

needs.

When the web portal is launched, the user initially sees the Dashboard page,

which contains a collection of charts and data presenting an overview of HPC center

18

Figure 3.5: XALT Dashboard: Shows overview of the Center by showing different
charts that can be generated for a given system and daterange.

operations. Users can select system host (syshost) and give a specific date range.

Once users submits the request, five different charts are presented to the user; (1)

Active Users; (2) Jobs Submitted; (3) Top Ten Users; (4) Top Ten Executables; and

(5) Compiler trends over time.

The Usage tab lets users produce interactive table-charts. By selecting syshost

and a date range users gets the top echelon table on Module usage and Link Program

Usage. One can traverse through a list of table charts which in turns provides in-

depth information such as; which users have linked to what all module versions?; how

many times did user compiled the same executable?; whether there was a job run

using a particular executable?; what libraries are linked to the given executable?; or

19

how was the run environment set?. More detailed analysis of this information and

what use does it bring to the stakeholders is presented in section 4.

The User Provenance tab lets support staff/users get run and compile time details

for a given user. Researchers can use the information mined by XALT’s data to dive

into one’s work history. One starts with a list of executables corresponding to the

job submission by the given user for the given syshost over a period of time. One

can start navigating through the given list just by clicking on the executable. The

list expands giving further details such as run date, link program, build user, build

date, list of libraries linked to a unique executable, list of all job runs for a given

executable, list of run environment variables with corresponding values, and finally

list of libraries linked at the run time (if any). The later part of the details pertaining

to run time information can be useful in tracking down undesirable behavior that

may occur where the user comes across a scenario when run time loaded libraries are

different from compile time. This may be a possibility when there is a change in run

time environment variables which again can be traced and matched to compiles for

specific days.

The Identify User tab gives access to support staff/users to identify users based

on a given object path (whole or part of it) or by a given executable name. This

information can be useful when the support staff wants to get a list of users using a

deprecated library and/or wants to track how an executable was built.

20

Chapter 4

Results and Use Cases

The plots generated from the web portal demonstrates the extensible capability of

the framework which can used to generate more reports as and when required with

minimal effort. The most recent version of XALT web portal is currently available

on Github at [30]. Here, one can find generic source bundle suitable for all operating

systems. Extensive instructions detailing prerequisites and code maintenance is well

documented using Doxygen [31] which will be helpful for future work as and when

needed.

4.1 Results and discussions

4.1.1 XALT Dashboard tab

The XALT web portal provides a rich set of features accessible through an intuitive

graphical interface. To optimize the UI responsiveness, the dashboard automatically

presents data granularity to the user based on the time period being analyzed, with

data aggregated by day, week, and month. All the results discussed below are part of

the data collected by XALT at NICS. User can select any date range and any syshost

for the given center for generating reports and metrics, however for our discussion we

have selected the data for the year 2015 on Darter [32].

21

The dashboard tab presents a collection of charts and data presenting an overview

of HPC center operations. Once the user submits the request, five different charts

are presented to the user.

Active Users

Figure 4.1: Active Users: The plot shows all distinct users over the year 2015, with
blue bars indicating the number of distinct users running jobs and red bars indicating
number of users who have built their code on Darter. The yellow line indicates an
average of the two sets to understand the trends.

Figure 4.1 shows distinct active users based on users running jobs and users

compiling their code on Darter for the year 2015. The data is aggregated by the

date range. In this case the portal automatically aggregates data on a monthly basis.

The plot provides an easier way to see a trend of increasing distinct user base both in

22

terms of users compiling their code and the ones who are running jobs on Darter. We

can see an upward increase of user base from 54.5 in January’ 15 to almost double

100.5 by the end of the year 2015.

Jobs Submitted

Figure 4.2: Jobs Submitted: The plot shows total number of jobs submitted during
the year 2015, with a sharp increase in the numbers during May-2015 on Darter.

Figure 4.2 shows number of jobs submitted aggregated on monthly basis, May-

2015 with 22.3% stands out to be the month with highest number of jobs submitted.

However, there is no correlation between active users and number of jobs submitted

as there is hardly any significant change in the number of active users using NICS

resources during the same time period, i.e., from an average of 56.5 in April-2015 to

61.5 in May-2015.

23

It is difficult to draw any conclusion from the aggregated data as one tends to

lose information on a granular level. A more holistic approach is needed to view the

trend in its totality. However, one can always look up detailed information provided

on other tabs of the web portal. In addition, one can find similar plots which are

generated by an open source project called XDMoD [33].

Top Ten Executables and Top Ten Users

Figure 4.3: Top ten executables: The horizontal axis specify total number of jobs
submitted (in log scale) for that executable, while the vertical axis indicates the core-
hours. The ratio of these two represents average core-hours per submission. The
size of the bubble represents the number of unique users that run that particular
executable.

In Figure 4.3 we present data for executables run on Darter for year 2015. This

kind of information helps a given center to report resource utilization by showing

24

what and how executables occupy the system resources. The plot shows the number

of jobs, total core-hours in log scale, and number of unique users along with average

core-hours (ratio of core-hours and number of jobs) for that executable. XALT records

each build as an unique record. For generating below plot we have combined known

executables residing in different file system paths into a common name.

Figure 4.4: Top Ten Users: The plot shows top ten users using NICS resources
(Darter for year 2015). Blue bars indicate total CPU hours, red bars indicate number
of jobs users has submitted during the given time frame and orange bars indicate
number of instance user has comipled the code on the given resource.

For example, the executable NWChem, software for electronic structure calcula-

tions and molecular dynamics simulations, can be built by different users, therefore

having different directories. For this particular plot we have combined all NWChem

executables into NWCHEM*. Four major applications (NAMD [34], VASP [35],

LAMMPS [36], NWCHEM [37]) utilized a major chunk of resources on Darter. These

25

application fall under Material Science and Chemistry, given center can take proper

measures on scheduling maintenance activity which can hamper normal functioning

of the researchers using these applications.

Figure 4.4 shows the top ten users utilizing resources at NICS for year 2015. An

interesting observation can be made by looking at the given plot is that: It is not

necessary for a user to build a code in order to run it. Users ’gumbart’, ’yfqi’ had

never compiled a code on Darter, however they are the ones who are using resources

extensively, showing up on the top ten list. A center can identify researchers and task

them to set up a community support group for other researchers who are new to HPC

environment and are working on similar applications. In addition, this community

support group can come up with seminar series to increase HPC awareness among

respective stakeholders. This alone can take some load off from a center’s support

staff.

Compiler Trends Over Time

Figure 4.5 shows a trend of all the ’link programs’ on Darter for year 2015. The

horizontal axis specify time range and vertical axis indicates number of times each

link program calls the linker. The plot generated is an interactive plot, one can

select/de-select a link program by clicking on legend shown on the right side of the

plot, and generate the trend of the link program which interests him. This feature can

be useful for reporting different compiler collections like GNU (g++, gcc, gfortran),

compilers by Intel (ifort, icc, icpc) and the Cray family of compilers (ftn driver,

driver.cc, driver.CC).

As the plot suggests most of the link programs are mainly compilers which have

followed a usual trend throughout the year. However, we observe an unusual trend

for GNU compilers ’gfortran’ for the month of July-2015 with #instances 19,823

and ’g++’ for the month of Feb-2015 with #instance 11,642. As keeping these two

compilers in the plot overshadows to what is happening with others we would for time

being remove these two from our trend analysis.

26

Figure 4.5: Compiler Trends Over Time: The plot shows a time trend of all the
compilers on Darter for year 2015 based on number of times each link program calls
the linker.

27

Figure 4.6: Compiler Trends Over Time: The two outliers (gfortran and g++)
compiler are removed by de-selecting respective legend shown on the right side of the
plot.

The support staff can gauge what is the cause of an unexpected hike in the number

of instances for these two compilers by using the web portal’s usage tab. One can

dive deep into the wealth of information pulled from the XALT database. This

discussion is continued in section 4.1.2 to show how support staff can benefit from

readily available information.

4.1.2 XALT Usage Tab

The usage tab lets users produce plots showing modules usage and link program usage

on the given syshost, date time range and number of records user wants to retrieve.

This tab lets user explore stacks of information that is tracked by XALT, one can

28

(a) Module Usage.

(b) Link Program Usage

Figure 4.7: Various Listing on Usage Tab.

simply click on these interactive table chart for a given record to go to next detail

listing.

Figure 4.7a and Figure 4.7b shows a pictorial representation of information that

XALT tracks by traversing top down in the pyramid structure.

29

Module Usage

A module is defined as a group of most popular libraries which are provided by

a center and/or vendor having an associated modulefile which is categorized using

XALT’s ReverseMap [5] functionality. In above plots, we have combined multiple

versions of the same library to a single entry. The plot 4.8 focuses on, the number of

time object was linked, and the number of unique users associated with those linkings.

Figure 4.8a and 4.8b shows top ten modules usage on Darter for year 2015.

(a) Top Ten Module Usage: Blue bar shows
number of time object was linked and red bar
indicates number of unique users both in log scale.

(b) Top Ten Module Table Chart:
Sorted in descending order of #in-
stances linked.

Figure 4.8: XALT Module Usage.

Moreover, Figure 4.8b shows same information in tabular format which is more

functional as user can sort any given column just by clicking on the column header.

By default, the table chart is sorted in descending order of number of times objects

was linked. Observe that the gcc module is used thrice as much as the second most

used module (cray-intel-knc). We can narrow down our lookup to address what might

be the cause of this irregularity.

Figure 4.9 shows further details pertaining to the gcc module. Version 4.9.2 stands

out to be the one contributing to the sudden hike, where in user ’sylee78’ had linked

an executable ’a.out’ 19,182 times within the span of three days i.e., 21-July-2015

(Oldest link date) to 25-July-2015 (Latest link date). A center’s support staff would

30

have this information handy and can make informed decisions when they decide to

update/deprecate the given module (per se). They can get in touch with the users

asking for a feedback on what sort of support is further needed to make their work

easy.

Figure 4.9: Further Details: List of versions for the given module, list of users using
the particular module-version, list of executables build by the given users using given
module-versions.

31

Figure 4.10: VASP Module Usage: As shown above only one executable is been
built in year 2015.

Another interesting observation about module usage that came into light is: It is

not always recommended to deprecate the modules which are least used i.e., there

is hardly any build using VASP modules. For example, as shown in section 4.1.1

Figure 4.3 VASP [35] (a molecular dynamics package) is listed as one of the top ten

executable on Darter for year 2015 utilizing around 4.5M total CPU hours with 30,305

number of jobs submitted, it is however one of the least (to be precise second last in

the list of 51 modules) used module package on Darter for the year 2015 as shown in

Figure 4.10.

32

Figure 4.11: Job Run Details for UUID ’28e92cbc-d1cb-4534-849f-2e606b241b07’.

33

XALT tracks link time information by providing each build a unique universal

ID (UUID), it seems only user ’lucio’ had build vasp executable once on darter on

05-Feb-2015, also ’Job Run’ = True indicates that jobs were submitted using this

executable (having UUID = ’28e92cbc-d1cb-4534-849f-2e606b241b07’). The portal

allows users to click and select any record shown in that table and obtain additional

information such as Objects Linked (at compile time and run time), Job Run Details,

Function Calls, and Run Environment Details as shown in Figure 4.11.

One can sort the order of the displayed results just by clicking on the column

header. For example: Job Run Details table is sorted in descending order of Run Time

(sec). As one can see executable that user ’lucio’ built with UUID ’28e92cbc-d1cb-

4534-849f-2e606b241b07’ is been used (790 jobs submitted) by number of different

users (almost 7 unique users) to conduct their research. This again would help

support staff and other users to get in touch with the build user in case the executable

fails for some unknown reason. Apart, from this users running the jobs using this

executable can find other users and discuss ways to perform experiments in more

informed manner which can help developing a support community/group for their

research work.

Link Program Usage

Link Program usage follows the same hierarchy of displaying information in table

structure format as that of module usage as shown in Figure 4.7b

Talking about irregularity in section 4.1.1 as shown in Figure 4.5. The compiler

trend for ’g++’ has seen an unusual hike for the first quarter of 2015 with 11,642

#instances and for ’gfortran’ in the third quarter of 2015 with exceptionally high

19,823 #instances.

Figure 4.12 shows link program usage on Darter for a specific date time range, i.e.,

June-2015 to August-2015. As shown in the figure it turns out that user ’sylee78’ built

’a.out’ 19,175 times within the span of 3 days i.e., 21-July-2015 (Oldest Linkdate)

and 25-July-2015 (Latest LinkDate), which seems to be the cause of the hike.

34

Figure 4.12: Link Program Usage on Darter for period Jun-Aug’ 2015

35

We got a chance to get back to the user asking what was he trying to achieve as

’a.out’ does not give any specific pointers. This user responded that he was trying to

analyze the trajectories in the simulations for the replica-exchange umbrella sampling

(REUS [38]). Similarly for compiler ’g++’ Figure 4.13 the usage reports shows that

’g++’ (GNU C++ compiler) was used almost five times more than the second most

used compiler ’gcc’ (GNU C compiler) for the same duration i.e., Jan-2015 to March-

2015. A similar case can be seen here with user ’hirsh’ running a simulation.

Figure 4.13: Link Program Usage on Darter for period Jan-Mar’ 2015

As the time line suggests, the work was done almost a year back and it is difficult

for users to recall what they were trying to achieve. While analyzing the compiler

trends support staff can dive into the readily available information by accessing the

XALT web portal and further decide about the outliers in more confident manner

whether to ignore the trend or take necessary action on it.

However, monitoring usage can be done monthly, quarterly, semi-annually, or

yearly. Doing so would restrict the probability of users not having enough information

about their work. Also, support staff can communicate with the users asking for

feedback to better understand user’s needs which further leads to better training,

effective documentation, and more desirable outreach programs.

36

4.2 Use Cases

This section presents few cases that can faced by support staff/researchers working

on supercomputers.

User Software Provenance

Taking care of ones computational research work history without any personal efforts

is the most desirable byproduct which interests scientific researchers. The volume

of data XALT tracks for users using HPC machines is one of the most remarkable

characteristics and building principle of the tool. Computers now a days process a

huge amount of data, and some of the most intense and productive tasks involve

simulations. Simulations considers multiple variables and use artificial intelligence to

analyze them and examine outcomes, eventually becoming an integral part of scientific

research.

By user software provenance or knowing the earliest known history of their work.

We can provide researchers a window to look into their own work promptly. One starts

by giving a ’userid’, syshost and the date time range to portal’s user provenance tab.

For our discussion we would give user as ’rbudiard’, syshost as ’Darter’ and date time

range for year 2015.

As shown in Figure 4.14 user would be able to see information that has been

tracked automatically by XALT. Overall 7 different tables will be presented to the

user which are:

1. List of Executable(s): Lists all executables that user had run on the given

system within given date range. It also shows #count i.e., number of times

executable was run. Here executable having same name are grouped together.

For example executable ’sssimp’ has been run twice on Darter. On selecting the

given executable, a new table showing details of each unique executable would

be presented.

37

Figure 4.14: User Software Provenance: Complete work history of user ’rbuidiard’
for year 2015 on Darter.

38

2. Executable Details : Multiple job runs using same executable can be traced

back and shown in this table. User can look up for individual job run details in

addition to link time details like who is the build user, when was it build and

what compiler was used along with universal unique ID (UUID). Once the user

determines which job run they want to inspect, they can just click on the given

record (say record with Job Id = 666809) as shown in Figure 4.14 and three

more tables will be presented to the user.

3. Object Linked (Compile Time): This table displays all the objects what were

linked to the executable at the link time. This information is static, and would

hardly change over time unless user recompiles their code.

4. Function Called : This table displays all the functions calls resolved by external

libraries for executable build. However, as this is a new functionality which was

introduced in later version of XALT [v0.7.1]. Therefore, for earlier builds we

have no record of function calls, which means the table would not be shown if

in case the build is old.

5. Job Run Details : Lists additional information of the job run for given user-uuid

combination.

6. Run Environment Details : Here we have all the counters which represents the

state of the run environment at the time when the executable was run. How

this information can help user is discussed further below.

7. Objects Linked (Run Time): XALT tracks objects which are dynamically linked

at the run time. This table displays all the objects that are linked dynamically

at run time (if in case any).

Typically on a given high performance computing machine, there are different

nodes to which a user has access, e.g., compute nodes, login nodes, or service nodes.

The way these nodes are set up is entirely at the discretion of the center. One has

39

to be careful when using shared object libraries, as there is a good chance that login

nodes do not run the same operating system as the compute nodes, and thus many

shared libraries which are available on login nodes are not available on the compute

nodes. This means that the executable may appear to compile correctly on a login

node, but will fail to start on a compute node because it is unable to locate the shared

libraries [39].

Sometimes users might even need to copy all necessary libraries from their project

scratch area and then update the LD LIBRARY PATH environment variable to include

this directory. XALT tracks all important counters for each individual job run and

build. Having access to the complete picture on how the executable was built and how

the run environment was setup could help users and support staff to detect errors.

Using the web portal’s software provenance tab, users can have most accurate and

detailed information available in real time.

Identify User

The identify user tab on web portal gives access to support staff and users to identify

users based on a given object path (whole or part of it) or by a given executable name.

This tab can be used for different purpose like auditing packages/licenses, identify

users using deprecated libraries, optimizing HPC system operations by asking users

to recompile their executable with the updated version of software package, find who

built the executable by performing a lookup with executable name.

Lets consider a hypothesis, a center decides to remove the support for a module

’sprng’ [40] (A scalable parallel random number generator library) based on the usage

over the past three years. This time frame is selected as XALT went live in Sep-2014

at NICS, in future centers would be able to excavate more information depending on

what year XALT was installed. Figure 4.15 shows the module usage for last quarter

of year 2014 4.15a, for complete year 2015 4.15b, and first quarter of year 2016 4.15c.

As shown in the figure module ’sprng’ is hardly used over the period of year 2014-2015

and absolutely no use in first quarter of year 2016. However, as discussed in section

40

(a) Module Usage: For last quarter of
year 2014.

(b) Module Usage: For year 2015.

(c) Module Usage: For first quarter of
year 2016.

Figure 4.15: Module usage for ’sprng’ module for 2014, 2015, and 2016

41

4.1.2, it may not be the best recommended practice to migrate a software to either a

newer version or to different, compatible software (deprecating the existing software)

based only on software usage. A center’s support staff can make informed decisions

by identifying target users who have used that particular module (in this case ’sprng’)

rather than contacting all users.

Centers can even optimize HPC system operations by asking users to recompile

their existing codes with an upgraded version of a software package by identifying

users still using old versions on this tab. This information is usually stated in ’whats

new’ section of the software update. On the identify user tab one can get all the

information as provided in other tabs of the portal.

Figure 4.16: Identify User: Based on given object path, or executable name.

A pictorial representation is shown in Figure 4.16 of all sort of listing one can

access on XALT’s identify user tab.

42

Figure 4.17: Identify users who have built executable ’cp2k’ for year 2015 on Darter.

43

Another hypothesis revolves around the fact that not all researchers who work on

high performance computing machines comes from a computer science background.

This makes things more difficult, as a researcher might be using an executable built

by some other user to carry out their research work. With time researchers may equip

themselves with knowledge of running the executable and performing small changes

to the existing code; however, there are times when a researcher wishes they could

trace the actual build user and discuss why an executable has failed and/or some new

changes they might want to incorporate into the existing build.

The identify tab on the portal provides this functionality based on the given

executable name. It provides a list of all users for a given syshost and date time

range. Researchers/users can make use of the interactive charts and trace the actual

build user. This can help resolve unforeseen errors with guided supervision. For

example, as shown in Figure 4.17, we wanted to track all users who have build an

executable named ’cp2k’ for the year 2015 on Darter. It seems there are 8 distinct

users who have build an executable ’cp2k’ with associative earliest link date and latest

link date. Apart from researchers getting in touch with build user whose executable

they are using, they can get in touch with different users working on the same type

of application and further have better understanding of their work.

44

Chapter 5

Conclusions and Future Work

We have demonstrated, through several reports and case studies, the utility of web

portal for providing metrics regarding the resource utilization from the data collected

by XALT. This portal can be used by centers to readily audit the given system weekly,

monthly, quarterly, or annually. We anticipate that the full value of web portal will

be realized when it is fully operational and used by center support staff and end-

users. Furthermore, center support staff will be able to use the portal to conduct

analyses to set and adjust policies that maximize system usability. In addition, users

can proactively troubleshoot their HPC environment to optimize their work. We

have tried to remove dependencies to write manual scripts to mine XALT’s data and

hence, provide a complete package which is easy to operate, is interactive, and has

an extensible framework. Importantly, the instantaneous access to metrics will aid

resource providers in making infrastructure decisions which translates into lowering

associated costs.

There are a few things which we would like to carry forward as part of our future

work for this web portal. We would like the portal to support user roles so that the

HPC center director can determine the appropriate data access level for end users,

support personnel, and administrators. We can also extend the capability of this

framework by making it portable to users, that is, to allow users to download the

45

reports and metrics generated by the portal. This would give a degree of freedom to

use the data for further analyses or present it in a custom manner.

Although functionality continues to be added to the web portal, the features

summarized in this work can prove useful and provide a better foundation for future

development. Ultimately we would like to make this portal a standard part of the

infrastructure tool.

46

Bibliography

47

[1] High-Performance Computing (HPC). [Online]. https://www.techopedia.com/

definition/4595/high-performance-computing-hpc/. 1

[2] K. Agrawal, M. Fahey, R. McLay, and D. James. User environment tracking and

problem detection with XALT. In Proceedings of 1st Workshop on HPC Tools for

User Support (HUST14) Workshop held in Conjunction with the International

Conference for High Performance Computing, Networking, Storage and Analysis

(SC14), HUST14, New Orleans, LA, November 2014. 2, 10, 11, 16

[3] M. Fahey, N. Jones, and B. Hadri. The Automatic Library Tracking Database.

In Proceedings of the 2010 Cray User Group, CUG10, Edinburgh, May 2010. 4,

7

[4] Lariat. [Online]. https://github.com/TACC/Lariat/. 4, 7

[5] Reuben Budiardja, Mark Fahey, Robert McLay, Prasad Maddumage Don, Bilel

Hadri, and Doug James. Community use of xalt in its first year in production. In

Proceedings of the Second International Workshop on HPC User Support Tools,

page 4. ACM, 2015. 4, 7, 30

[6] JSON. http://www.json.org//. 5

[7] Mark Fahey, Nick Jones, Bilel Hadri, and Blake Hitchcock. The automatic library

tracking database. In Conference: Cray User Group, 2010. 7

[8] http://linux.about.com/library/cmd/blcmdl1_sha1sum.htm/. 7

[9] Todd Evans, William L Barth, James C Browne, Robert L DeLeon, Thomas R

Furlani, Steven M Gallo, Matthew D Jones, and Abani K Patra. Comprehensive

resource use monitoring for hpc systems with tacc stats. In Proceedings of the

First International Workshop on HPC User Support Tools, pages 13–21. IEEE

Press, 2014. 7, 12

48

https://www.techopedia.com/definition/4595/high-performance-computing-hpc/
https://www.techopedia.com/definition/4595/high-performance-computing-hpc/
https://github.com/TACC/Lariat/
http://www.json.org//
http://linux.about.com/library/cmd/blcmdl1_sha1sum.htm/

[10] Bilel Hadri, M Fahey, Tim Robinson, and William Renaud. Software usage on

cray systems across three centers (nics, ornl and cscs). In Proceedings of the Cray

User Group Conference (CUG 2012), 2012. 9

[11] Julian Borrill, Jonathan Carter, Leonid Oliker, David Skinner, and Rupak

Biswas. Integrated performance monitoring of a cosmology application on

leading hec platforms. In Parallel Processing, 2005. ICPP 2005. International

Conference on, pages 119–128. IEEE, 2005. 9

[12] Sameer S Shende and Allen D Malony. The tau parallel performance system.

International Journal of High Performance Computing Applications, 20(2):287–

311, 2006. 10

[13] Wolfgang Nagel. Vampir - Performance Optimization. https://www.vampir.

eu/. 10

[14] Cray. Using Cray Performance Analysis Tools. http://docs.cray.com/books/

S-2376-41/S-2376-41.pdf. 10

[15] Charng-Da Lu. Automatically mining program build information via signature

matching. In Proceedings of the 11th ACM SIGPLAN-SIGSOFT Workshop on

Program Analysis for Software Tools and Engineering, pages 25–32. ACM, 2013.

10

[16] T. Kojm. http://www.clamav.net/. 10

[17] Bernd Mohr. Automatic performance statistics collection on the cray t3e. 1999.

10, 11

[18] Andrew Barry. Resource utilization reporting. In Proc. Cray Users Group

Technical Conference (CUG), 2013. 11

[19] Heike McCraw, Joseph Ralph, Anthony Danalis, and Jack Dongarra. Power

monitoring with papi for extreme scale architectures and dataflow-based

49

https://www.vampir.eu/
https://www.vampir.eu/
http://docs.cray.com/books/S-2376-41/S-2376-41.pdf
http://docs.cray.com/books/S-2376-41/S-2376-41.pdf
http://www.clamav.net/

programming models. In Cluster Computing (CLUSTER), 2014 IEEE

International Conference on, pages 385–391. IEEE, 2014. 11

[20] Garrick Staples. Torque resource manager. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, page 8. ACM, 2006. 11

[21] A Tam. Enabling process accounting on linux howto, version 1.1, 2001. 11

[22] Charis Ermopoulos and William Yurcik. Nvision-pa: A tool for visual analysis

of command behavior based on process accounting logs (with a case study in hpc

cluster security). arXiv preprint cs/0606089, 2006. 11

[23] James C Browne, Robert L DeLeon, Charng-Da Lu, Matthew D Jones,

Steven M Gallo, Amin Ghadersohi, Abani K Patra, William L Barth, John

Hammond, Thomas R Furlani, et al. Enabling comprehensive data-driven system

management for large computational facilities. In High Performance Computing,

Networking, Storage and Analysis (SC), 2013 International Conference for, pages

1–11. IEEE, 2013. 12

[24] James C Browne, Robert L DeLeon, Abani K Patra, William L Barth, John

Hammond, Matthew D Jones, Thomas R Furlani, Barry I Schneider, Steven M

Gallo, Amin Ghadersohi, et al. Comprehensive, open-source resource usage

measurement and analysis for hpc systems. Concurrency and Computation:

Practice and Experience, 26(13):2191–2209, 2014. 12

[25] Jeffrey T Palmer, Steven M Gallo, Thomas R Furlani, Matthew D Jones,

Robert L DeLeon, Joseph P White, Nikolay Simakov, Abani K Patra, Jeanette

Sperhac, Thomas Yearke, et al. Open xdmod: A tool for the comprehensive

management of high-performance computing resources. Computing in Science &

Engineering, 17(4):52–62, 2015. 12

[26] XALTUsersManual-0.5. https://github.com/Fahey-McLay/xalt/blob/

master/doc/XALTUsersManual-0.5.pdf/, . 16

50

https://github.com/Fahey-McLay/xalt/blob/master/doc/XALTUsersManual-0.5.pdf/
https://github.com/Fahey-McLay/xalt/blob/master/doc/XALTUsersManual-0.5.pdf/

[27] Gentella. https://themewagon.com/themes/

free-bootstrap-3-admin-dashboard-template/. 17

[28] Google Charts. https://developers.google.com/chart/. 17

[29] Bootstrap. http://bootstrapdocs.com/v3.0.3/docs/getting-started/. 17

[30] XALT Web-portal, Web interface to generate reports from the data collected

by XALT [A software monitoring tool]. https://github.com/kpl-grwl/

xalt-portal/, . 21

[31] Doxygen, Generate documentation from source code. http://www.stack.nl/

~dimitri/doxygen/. 21

[32] Computing Resources at NICS. https://www.nics.tennessee.edu/

computing-resources/darter/. 21

[33] Thomas R Furlani, Matthew D Jones, Steven M Gallo, Andrew E Bruno, Charng-

Da Lu, Amin Ghadersohi, Ryan J Gentner, Abani Patra, Robert L DeLeon,

Gregor Laszewski, et al. Performance metrics and auditing framework using

application kernels for high-performance computer systems. Concurrency and

Computation: Practice and Experience, 25(7):918–931, 2013. 24

[34] NAMD Molecular Dynamics Simulator. http://www.ks.uiuc.edu/Research/

namd/. 25

[35] Vienna Ab initio Simulation Package. http://www.vasp.at/. 25, 32

[36] LAMMPS Molecular Dynamics Simulator. http://lammps.sandia.gov/. 25

[37] NWCHEM High-Performance Computational Chemistry Software. http://www.

nwchem-sw.org/index.php/Main_Page/. 25

[38] REUS, One-dimensional replica-exchange umbrella sampling. http://www.ks.

uiuc.edu/Training/Tutorials/science/umbrella/REUS-1D.pdf/. 36

51

https://themewagon.com/themes/free-bootstrap-3-admin-dashboard-template/
https://themewagon.com/themes/free-bootstrap-3-admin-dashboard-template/
https://developers.google.com/chart/
http://bootstrapdocs.com/v3.0.3/docs/getting-started/
https://github.com/kpl-grwl/xalt-portal/
https://github.com/kpl-grwl/xalt-portal/
http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/
https://www.nics.tennessee.edu/computing-resources/darter/
https://www.nics.tennessee.edu/computing-resources/darter/
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/
http://www.vasp.at/
http://lammps.sandia.gov/
http://www.nwchem-sw.org/index.php/Main_Page/
http://www.nwchem-sw.org/index.php/Main_Page/
http://www.ks.uiuc.edu/Training/Tutorials/science/umbrella/REUS-1D.pdf/
http://www.ks.uiuc.edu/Training/Tutorials/science/umbrella/REUS-1D.pdf/

[39] Compiling and Node Types on Titan. https://www.olcf.ornl.gov/kb_

articles/compiling-and-node-types/?print=true/. 40

[40] The Scalable Parallel Random Number Generators Library. http://www.sprng.

org/. 40

52

https://www.olcf.ornl.gov/kb_articles/compiling-and-node-types/?print=true/
https://www.olcf.ornl.gov/kb_articles/compiling-and-node-types/?print=true/
http://www.sprng.org/
http://www.sprng.org/

Appendix

53

Function Tracking Changes

Function tracking changes can be found at https://github.com/kpl-grwl/ftrack2015

XALT web-portal

Web portal source can be found at https://github.com/kpl-grwl/xalt-portal

54

Vita

Kapil Agrawal spent his childhood in Indore, a city located in the central part of

India. He graduated from St. Paul Higher Secondary School at Indore, in 2003 and

thereafter, enrolled in the Electronics and Communication Engineering undergraduate

program at I.I.S.T. Indore. He received his undergraduate degree in 2007. He then

moved to Mumbai, and worked for five years as a software developer. In Aug 2013,

he started his Masters degree at the University of Tennessee, Knoxville. During his

Masters he worked as an Graduate Assistant in the Joint Institute for Computational

Sciences at UTK. In his spare time, he enjoys playing COD, cricket, and reading all

things related to fighter jets and Indian Military.

55

	Extending Capability and Implementing a Web Interface for the XALT Software Monitoring Tool
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Background
	2.1.1 XALT Overview

	2.2 Related Work
	2.2.1 XALT Predecessors (ALTD and Lariat)
	2.2.2 Profiling and tracing tools
	2.2.3 Signature matching tools
	2.2.4 Performance management tools
	2.2.5 Process accounting and resource managing tools

	3 Methodology and Implementation
	3.1 Function Tracking
	3.1.1 Database Changes
	3.1.2 Create LibMap
	3.1.3 Modify Linker (ld) Wrapper

	3.2 XALT Web Portal

	4 Results and Use Cases
	4.1 Results and discussions
	4.1.1 XALT Dashboard tab
	4.1.2 XALT Usage Tab

	4.2 Use Cases

	5 Conclusions and Future Work
	Bibliography
	Appendix
	Vita

