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ABSTRACT 

 

The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) 

suite within the SCALE code system makes use of eigenvalue sensitivity coefficients to enable 

several capabilities, such as quantifying the data-induced uncertainty in calculated eigenvalues 

and assessing the similarity between different critical systems. The TSUNAMI-3D code is one 

tool within the TSUNAMI suite used to calculate eigenvalue sensitivity coefficients in three-

dimensional models. The SCALE 6.1 code system includes only the multigroup (MG) mode for 

three-dimensional sensitivity analyses; however, the upcoming release of SCALE 6.2 will 

feature the first implementation of continuous-energy (CE) sensitivity methods in SCALE. For 

MG calculations, TSUNAMI-3D provides resonance self-shielding of cross-section data, 

calculation of the implicit effects of resonance self-shielding calculations, calculation of forward 

and adjoint Monte Carlo neutron transport solutions, and calculation of sensitivity coefficients. 

In CE-TSUNAMI, the sensitivity coefficients are computed in a single forward Monte Carlo 

neutron transport calculation. The two different approaches for calculating eigenvalue sensitivity 

coefficients in CE-TSUNAMI are the Iterated Fission Probability (IFP) and the Contributon-

Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance 

CHaracterization (CLUTCH) methods. Unlike IFP, CLUTCH has a significantly lower memory 

footprint, is faster, and has been implemented with parallel capability; however, CLUTCH 

requires additional input parameters, which require additional user expertise. 

 

This work summarizes the results of TSUNAMI-3D calculations using both MG and CE 

CLUTCH methods for various systems in the International Handbook of Evaluated Criticality 

Safety Benchmark Experiments (IHECSBE) using the SCALE code package developed at Oak 

Ridge National Laboratory.  The critical benchmark experiments will cover both the KENO V.a 

and KENO-VI codes using the ENDF/B-VII.0 data for the different evaluations. The broad range 

of types of systems will expand the experience base with the CE-TSUNAMI CLUTCH method 

by identifying best practices for using the code, and provide generic user guidance for utilizing 

this new capability. Additionally, the study aims to demonstrate the accuracy and usefulness of 

the CE-TSUNAMI CLUTCH method, especially for systems for which MG methods perform 

poorly.  
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PREFACE 

 

Initially, my graduate research started on a Department of Energy (DOE) Nuclear Criticality 

Safety Program (NCSP) project that focused on performing sensitivity calculations for 

documented International Criticality Safety Benchmark Evaluation Project (ICSBEP) evaluations 

using the Verified, Archived Library of Inputs and Data (VALID) procedure at Oak Ridge 

National Laboratory.   

 

The goal of the NCSP project was to identify an appropriate set of documented ICSBEP 

evaluations and to provide TSUNAMI-generated sensitivity data files and verified SCALE input 

files for distribution with the ICSBEP handbook, aiming to provide sensitivity profiles for 

benchmark evaluations that are already published in the ICSBEP handbook. Traditionally, the 

TSUNAMI-generated sensitivity data files were obtained by using the multigroup (MG) library, 

since SCALE 6.1 does not have continuous-energy (CE) TSUNAMI capabilities. 

 

After a few months of performing the above research, I had difficulty obtaining accurate MG 

TSUNAMI sensitivities in SCALE 6.1 for a specific case. An ORNL staff member suggested 

that I attempt running the sensitivity calculations with the new SCALE 6.2 CE TSUNAMI since 

the MG TSUNAMI sensitivity calculations were unsuccessful for the specific evaluation. This 

led to the decision to expand my CE TSUNAMI experience and perform the following study in 

order to share the information gained regarding CE TSUNAMI.  
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SECTION 1 

INTRODUCTION 

 

Sensitivity and uncertainty analysis allows industry to associate an importance with each 

material, nuclide, reaction and energy by simulating real-world criticality scenarios. Cross-

section sensitivity and uncertainty data can be used to guide criticality safety validation efforts 

and, while cross-section uncertainty data is tabulated for each data library, sensitivity data must 

be generated for each system. The sensitivity calculations can be computationally expensive and 

cumbersome, therefore development efforts are underway to identify and implement easier or 

more efficient methods for these calculations.  

The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation 

(TSUNAMI) suite within the SCALE code system [1] makes use of eigenvalue sensitivity 

coefficients to enable several capabilities, such as quantifying the data-induced uncertainty in 

calculated eigenvalues and assessing the similarity between different critical systems [2]. The 

TSUNAMI-3D code is one tool within the TSUNAMI suite used to calculate eigenvalue 

sensitivity coefficients in three-dimensional models. The coefficients represent the sensitivity of 

keff to each constituent cross-section data component used in the calculation.  The sensitivity data 

are coupled with cross-section uncertainty data to produce an uncertainty in keff due to 

uncertainties in the underlying nuclear data. SCALE 6.2 will include two modes for three-

dimensional cross-section sensitivity analyses: multigroup (MG) and continuous-energy (CE).   

The SCALE 6.1 code system includes only the MG mode for three-dimensional 

sensitivity analyses; however, the upcoming release of SCALE 6.2 will feature the first 

implementation of CE sensitivity methods in SCALE [3]. For MG calculations, TSUNAMI-3D 

provides resonance self-shielding of cross-section data, calculation of the implicit effects of 

resonance self-shielding calculations, calculation of forward and adjoint Monte Carlo neutron 

transport solutions, and calculation of sensitivity coefficients. In CE-TSUNAMI, the sensitivity 

coefficients are computed in a single forward Monte Carlo neutron transport calculation. The two 

different approaches for calculating eigenvalue sensitivity coefficients in CE TSUNAMI are the 

Iterated Fission Probability (IFP) and the Contributon-Linked eigenvalue sensitivity/Uncertainty 

estimation via Tracklength importance CHaracterization (CLUTCH) methods. 
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Unlike IFP, CLUTCH has a significantly lower memory footprint, is faster, and has been 

implemented with parallel capability; however, CLUTCH requires additional input parameters, 

which require additional user expertise. These methods allow analysis of some types of systems 

that cannot be analyzed accurately in previous versions of SCALE due to limitations within the 

traditional, MG methods in the TSUNAMI suite.  Some work demonstrating the efficacy of the 

CE TSUNAMI methods has been published [4,5], but only a limited number of systems have 

been examined with these techniques to date. This work summarizes the results of TSUNAMI-

3D calculations using both the traditional MG approach in SCALE 6.1 and the CE CLUTCH 

method in SCALE 6.2.  The TSUNAMI-3D models used to analyze the accuracy of the CE 

CLUTCH method are based on critical experiments documented in the International Handbook 

of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) [6].  

The systems examined in this study include combinations of fast, thermal, and mixed 

spectrums with metal, compound, and solution material forms. The primary fissile species 

include low-enriched uranium, intermediate-enriched uranium, high-enriched uranium, 

plutonium, and mixed uranium and plutonium. None of the populations of experiments 

considered here is sufficiently large for safety-related validation, but the cases selected provide 

an indication of general code performance for these systems. This broad range of systems 

expands the experience base with the CE CLUTCH method, identifies best practices for using 

the code, and provides generic user guidance for utilizing this new capability. Additionally, the 

study aims to demonstrate the accuracy and usefulness of the CE CLUTCH method, especially 

for systems for which MG methods perform poorly. 
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SECTION 2 

CODE DESCRIPTION 

 

The SCALE code system contains two Monte Carlo transport codes used primarily for 

nuclear criticality safety analyses: KENO V.a and KENO-VI, both of which solve the k-effective 

(keff) eigenvalue problem in three-dimensions using the Monte Carlo method. KENO V.a and 

KENO-VI can perform calculations using either multigroup (MG) or continuous-energy (CE) 

physics. KENO V.a allows a fairly simple description of complicated systems and is capable of 

using repeating Cartesian array structures and holes to facilitate system descriptions; however, 

each geometry object must be oriented along a coordinate axis, and objects are not allowed to 

intersect. KENO-VI has similar capabilities to KENO V.a but incorporates the SCALE 

Generalized Geometry Package (SGGP) and is therefore able to represent systems of 

significantly increased geometric complexity. A predefined set of geometry objects can be 

specified to define regions of space, or generalized quadratic surfaces can be supplied for regions 

that are not well described by any of the predefined shapes. KENO-VI also supports rotation and 

therefore allows bodies to be oriented in directions that are not parallel to the major coordinate 

axes. KENO-VI continues to support holes and arrays, including rectangular, triangular 

(hexagonal), and dodecahedral arrays. Intersecting geometry definitions can be supplied for 

exact modeling of features such as pipe junctions. 

Currently, two computational sequences are available with TSUNAMI-3D to calculate 

sensitivities: TSUNAMI-3D-K5 and TSUNAMI-3D-K6. TSUNAMI-3D uses the same material 

and cell data input as all other SCALE sequences. In SCALE 6.2, TSUNAMI-3D calculates 

eigenvalue sensitivity coefficients using either MG or CE Monte Carlo simulations, but the 

theoretical approaches for each calculation mode differ significantly. 

 

Multigroup TSUNAMI-3D Techniques 

 

For MG calculations, TSUNAMI-3D provides automated, problem-dependent 

cross sections using the same methods and input as the Criticality Safety Analysis Sequences 

(CSAS). In place of the BONAMI code used by CSAS, TSUNAMI-3D utilizes the sensitivity 

version called BONAMIST. This enhanced code computes the resonance self-shielded 
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cross sections and their sensitivities to the input data, the so-called “implicit sensitivities.”  

Additionally, several routines from the Material Information Processor Library (MIPLIB) of 

SCALE are replaced with corresponding sensitivity versions from the Sensitivity Library 

(SENLIB).   

After the cross sections are processed, the TSUNAMI-3D-K5 sequence performs two 

KENO V.a criticality calculations in MG mode, one forward and one adjoint; the MG-

TSUNAMI-3D-K6 sequence performs two KENO-VI calculations. If a mesh is added to the MG 

TSUNAMI-3D input file, the forward and adjoint fluxes are accumulated over the same mesh, 

and then the fluxes are multiplied together prior to summing over a region (e.g. all fuel pins). 

Without a specified mesh, the forward and adjoint fluxes are accumulated over the same region. 

Finally, the sequences call the Sensitivity Analysis Module for SCALE (SAMS) to calculate the 

sensitivity coefficients and, if requested, the uncertainty in the calculated value of keff due to 

uncertainties in the basic nuclear data. SAMS prints energy-integrated sensitivity coefficients 

and their statistical uncertainties to the SCALE output file and generates a sensitivity data file 

(SDF) containing the energy-dependent sensitivity coefficients. Additional details of the MG 

sensitivity methods used in TSUNAMI-3D are provided in Reference 1. 

 

Continuous-Energy TSUNAMI-3D Techniques 

 

Currently, the two different approaches for calculating eigenvalue sensitivity coefficients 

in CE TSUNAMI are the Iterated Fission Probability (IFP) and the Contributon-Linked 

eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization 

(CLUTCH) methods. Both methods calculate sensitivity coefficients within a single forward 

Monte Carlo calculation and without the use of a flux mesh. Instead of directly calculating the 

adjoint flux, the two CE TSUNAMI-3D methods estimate the importance of events in a 

particle’s lifetime by tracking and storing additional information regarding that particle history, 

which are used to weight reaction rate tallies and calculate eigenvalue sensitivity coefficients [7]. 

Even though both methods calculate sensitivities based on importance estimates, the IFP and 

CLUTCH methods differ in the efficiency, memory requirements, and implementation of the 

importance calculations. 
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IFP. The IFP method is activated in TSUNAMI-3D by setting the CET parameter to 2. The IFP 

method determines the importance of events by examining the population of neutrons in the 

system that are descendants of the neutron that initiated these events. The generations between 

an event and the assessment of importance are referred to as “latent generations.” The number of 

latent generations to use is controlled with the CFP parameter. If neutrons disperse quickly 

through the system, then CFP can be small, such as 2 - 5; however, if they disperse through the 

system slowly, then CFP should be large, such as 10. For the IFP method, the memory footprint 

requirements and runtime scale directly with the number of latent generations and the number of 

particles per generation; therefore, CFP should be minimized when possible.  For systems 

requiring a large number of latent generations, the memory requirement can be reduced 

somewhat by reducing the number of particles per generation, but this may reduce accuracy.  A 

large number of latent generations will also increase the uncertainty of the sensitivity calculation, 

as fewer particle histories will persist through the required number of generations. IFP 

calculations, while potentially cumbersome, are generally viewed as highly accurate reference 

solutions. 

 

CLUTCH. The CLUTCH method is activated in TSUNAMI-3D by setting the CET parameter to 

1. Compared to IFP, the CLUTCH method has a significantly lower memory footprint, is faster, 

and works in parallel; however, CLUTCH requires more input and more experience by the user. 

CLUTCH requires an F*(r) function, which is defined as the average importance of a fission 

neutron generated at location r. The F*(r) mesh is set in the “read gridgeometry” block, and the 

grid ID to use is specified with the CGD parameter. The F*(r) function is calculated with the IFP 

method in the inactive generations; the CFP parameter controls the number of latent generations. 

Generally, a fine mesh of 1-3 cm resolution is sufficient to obtain accurate sensitivities [4]. 

Unlike MG sensitivity calculations, the F*(r) mesh only needs to cover the fissionable regions of 

the model. Since the F*(r) function is calculated during the inactive generations, the user may 

need to simulate additional inactive histories to allow for sufficient F*(r) convergence. An 

accurate determination of the F*(r) function is essential to the generation of accurate sensitivity 

coefficients; within the CLUTCH method the term “inactive” is somewhat of a misnomer. 

Since the F*(r) function is defined as the average importance of a fission neutron 

generated for each mesh cell, calculating the F*(r) function is computationally easier than 
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calculating full eigenvalue sensitivity coefficients, because the importance is only calculated in 

fissile regions, rather than the entire detailed geometry. Therefore, the difference in runtime or 

memory requirements between 2 and 20 latent generations for CLUTCH F*(r) calculations is 

minimal. On the other hand, similar to the IFP method, using a larger CFP will increase the 

variance of the F*(r) tallies, as fewer particle histories will persist through the required number 

of generations.  

The CLUTCH method can also perform calculations with the F*(r) function set 

uniformly to unity by setting CFP = -1; however, calculations with a uniform F*(r) function 

usually produce inaccurate sensitivity coefficients unless the importance of fission neutrons is 

fairly constant across the entire system.  This option is mainly useful for determining the 

sufficiency of the F*(r) function calculated using a specific set of parameters, which also be 

determine by setting FST=yes.  

 

Overview of Important CE TSUNAM-3D Parameters. The CE TSUNAMI-3D sequence not 

only contains parameters that are new to the traditional MG TSUNAMI-3D user, but also 

provides a different meaning to the conventional definitions of other parameters, such as the 

number of skipped generations. In order to initiate the CE TSUNAMI-3D eigenvalue sensitivity 

calculations, at a minimum, the three parameters described in Table 1 are required. The CET 

parameter simply defines which method the CE TSUNAMI-3D sequence should use. For the 

purposes of this CE TSUNAMI-3D CLUTCH study, CET is set to “1” for all input files. The 

CGD parameter identifies the grid or the F*(r) mesh for continuous energy CLUTCH sensitivity 

calculations. The CGD parameter is not required for the CE TSUNAMI-3D IFP method. The last 

required parameter is the CFP, which states the number of latent generations used by the IFP 

method for either calculating sensitivity coefficients (CET=2) or for calculating F*(r) during the 

inactive generations (CET=1).  

 

Table 1. Required Parameters for CE TSUNAMI-3D CLUTCH 

Parameter Description 
Default value for 

TSUNAMI-3D 

CET 

CE TSUNAMI-3D mode (0 = No sensitivity calculations, 1 = CLUTCH sensitivity 

calculation, 2 = IFP sensitivity calculation) 1 

CGD Grid ID for the F*(r) mesh for continuous energy CLUTCH sensitivity calculations NONE 

CFP 

Number of latent generations used by the IFP method for either calculating sensitivity 

coefficients (CET=2) or for calculating F*(r) during the inactive generations (CET=1) 

-1 if CET=1, 5 if 

CET=2 
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 Table 2 details a compiled list of recommended parameters for CE TSUNAMI-3D 

CLUTCH eigenvalue sensitivity calculations. The entries in the F*(r) grid can be printed to a 

3dmap file by setting the parameter FST equal to “yes”, which can be viewed using the SCALE 

Meshview tool. As always, the parameter GEN denotes the number of generations to be run, 

NPG represents the number of neutrons per generation, and NSK is the number of skipped 

generations. Note that the number of latent generations (CFP) and the number of generations 

skipped for fission source convergence (NSK) control different things; however, both are 

important in the continuous-energy sensitivity calculations. Since the F*(r) values are calculated 

during the skipped generations, users must now be aware of the importance of NSK. Another 

useful parameter for CE TSUNAMI-3D analysis is TBA, which sets the time allotted per 

generation. The default value for TSUNAMI-3D is ten minutes per generation; however, if the 

calculations are processed in serial, rather than parallel, the CE TSUNAMI-3D job can exceed 

the default value, which causes the job to abort. It is therefore recommended to set TBA to a large 

number, especially for serial users. Since it is not recommended to use the default values for the 

parameters, approaches for determining proper values for each parameter are analyzed in the 

results section.  

  

Table 2. Recommended Parameters for CE TSUNAMI-3D CLUTCH 

Parameter Description [1] 
Default value for 

TSUNAMI-3D [1] 

FST 
Create a .3dmap file that contains the F*(r) mesh used by a CE TSUNAMI-3D 

CLUTCH sensitivity calculation NO 

GEN Number of generations to be run 550 

NPG Number of neutrons per generation 1000 

NSK Number of generations (1 through nskip) to be omitted when collecting results 50 

TBA Time allotted for each generation (in minutes) 10 
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SECTION 3 

SENSITIVITY DATA COMPARISON PROCESS 

 

ANSI/ANS-8.1-2014 [8], Nuclear Criticality Safety in Operations with Fissionable 

Material Outside Reactors, and ANSI/ANS-8.24-2007:R2012 [9], Validation of Neutron 

Transport Methods for Nuclear Criticality Safety Calculations, require validation of a computer 

code and the associated data through the calculation of benchmark evaluations that are based on 

physical experiments. A SCALE [1] procedure has been established to generate a verified, 

archived library of inputs and data (VALID) [10,11]. The models in the VALID library are based 

on critical experiments documented in the IHECSBE [6]. Currently, the VALID library contains 

over 400 individual benchmark experiment configurations covering nine different IHECSBE 

categories of experiments. A number of the analyzed MG TSUNAMI-3D models will be 

obtained from VALID. However, since SCALE 6.2 has not been released, VALID does not 

contain any CE TSUNAMI-3D models.  

Before an experiment from the IHECSBE can be added to VALID, the TSUNAMI-3D 

sensitivity coefficients are verified using reference sensitivities, which are referred to as direct 

perturbation (DP) sensitivities. In order to maintain confidence that the sensitivities from the 

MG/CE TSUNAMI-3D output files are accurate, DP sensitivities must be calculated and 

compared to the TSUNAMI-3D sensitivities. The comparison against DPs is essential to provide 

a check that the TSUNAMI methods, MG or CE, are providing reliable estimates of the 

sensitivities for key nuclides in a system. The DP sensitivity calculations involve recalculating 

keff while varying the density of a nuclide, element, mixture or region. The density variation 

should target a 0.5% change in keff (0.005 Δkeff); therefore, the change in the density is equal to 

0.005 divided by the sensitivity from TSUNAMI-3D (Δρ=0.005/S). The keff results and density 

perturbations are used to manually calculate energy-integrated total sensitivity via the following 

equation: SDP = (Δk/k)/(Δρ/ρ). Ideally, the user should perturb nuclides with high sensitivity 

coefficients (i.e. main fissile or moderating species) since those will be the most important values 

of interest. In practice, direct perturbation calculations focus on sensitivities greater than ~0.02 

(Δk/k)/(Δσ/σ). 
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The process for obtaining the direct perturbation reference sensitivities is as follows:  

1. Run the model using the CSAS sequence to obtain the keff estimate before calculating 

sensitivities. 

2. Create the TSUNAMI-3D input file and run the sequence.  

3. From the TSUNAMI-3D output file, obtain sensitivities greater than ~0.02 along with 

the corresponding sensitivity standard deviation. Traditionally, it is best to find the 

table titled “Total Sensitivity Coefficients by Nuclide,” which contains the nuclide 

type, mixture identification, atom density, sensitivity, sensitivity standard deviation 

and percent standard deviation. However, if needed, other tables are provided in the 

output file, such as: 

 “Energy, Region and Mixture Integrated Sensitivity Coefficients for this 

Problem”,  

 “Energy and Region Integrated Sensitivity Coefficients for this Problem”, and 

 “Total Sensitivity Coefficients by Mixture”. 

4. Calculate the perturbed densities: ρ
1
 = ρ

nominal
* (1-

0.005

S
TSUNAMI-3D

) and 

ρ
2
 = ρ

nominal
* (1+

0.005

S
TSUNAMI-3D

)  for each nuclide with a sensitivity greater than ~0.02.  

5. Edit the initial input file with a perturbed density and re-run the CSAS sequence for 

each perturbed density.  

6. Calculate the DP sensitivity coefficient for each nuclide.  

7. Compare the DP sensitivity to the TSUNAMI-3D sensitivity for each perturbed 

nuclide.  

8. If the TSUNAMI-3D sensitivity does not agree with the DP sensitivity, within set 

criteria, then repeat steps 3 and 5-6 with an edited TSUNAMI-3D input file until the 

TSUNAMI-3D sensitivities agree with the DP.  

For example, CE TSUNAMI-3D calculated a hydrogen sensitivity of 0.36347 ± 0.00334 

in a plutonium-uranium nitrate solution, where the hydrogen atom density is 0.066092 

atoms/cm
3
. Therefore, for the DP calculations, the percent change in density is as follows:  

∆ρ = 
0.005

STSUNAMI-3D

=
0.005

0.36347
= 0.014 
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Thus, ρ
1
 = ρ

nominal
*(1-0.014) = 0.066092 * 0.986 = 0.065167 

ρ
2
 = ρ

nominal
*(1+0.014) = 0.066092 * 1.014 = 0.067017  

The direct perturbation sensitivity is as follows:  

SDP=
(k2-k1)/knominal

(ρ
2
-ρ

1
)/ρ

nominal

=
(0.999251-0.989070)/0.994243

(0.067017-0.065167)/0.066092
=0.36571 

 Therefore, in this scenario, the CE TSUNAMI-3D is 0.36347 ± 0.00334 and the direct 

perturbation sensitivity is 0.36571 ± 0.0035, which results in the three following comparison 

types:  

1. Sensitivity percent difference =
(S

TSUNAMI-3D
-SDP)

SDP
=

(0.36347-0.36571)

0.36571
= -0.61% 

2. Sensitivity difference in standard deviation 

= |
(S

TSUNAMI-3D
-SDP)

√σ
TSUNAMI-3D

2+σDP
2
| = |

(0.36347-0.36571)

√0.003342+0.00352
| = 0.46 

3. Sensitivity difference = STSUNAMI-3D - SDP = 0.36347-0.36571 = -0.0022 

 

For this study, a sensitivity percent difference, sensitivity difference in standard 

deviation, and sensitivity difference greater than 5%, 2 standard deviations, and 0.01, 

respectively, will be the cut-off criteria for step 8 in the direct perturbation comparison process.  

When comparing the TSUNAMI-3D sensitivities to the reference direct perturbation 

sensitivities, the TSUNAMI-3D sensitivity may not be accurate on the first attempt. In this case, 

for MG TSUNAMI-3D, the user can change certain parameters, such as: 

 adjusting the MG TSUNAMI-3D mesh,  

 adding multiple regions in the solution with the same thickness (with both the same 

material numbers and with varying material numbers), 

 adding multiple regions in the solution with the same volume (again, with both the same 

material numbers and with varying material numbers),  

 changing the order of the flux moments collected (via parameters PNM and PN) ,  

 adding more direct perturbation points to obtain more accurate reference sensitivities. 

The parameters to adjust when optimizing the CE TSUNAMI-3D results will be discussed in the 

results section.  
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Another important parameter when comparing MG TSUNAMI-3D and CE TSUNAMI-

3D is the performance of each sequence. The Figure of Merit (FoM) is designed to measure the 

performance of a calculation by combining the uncertainty in the quantity of interest and the 

runtime used to reach that uncertainty, incorporating the theoretical inverse-square relationship 

between uncertainty and run time so that the value is nearly constant over a range of run-times. 

Since the FoM is used for comparing codes, the FoM will not be discussed if accurate 

sensitivities were not obtained for either MG or CE TSUNAMI-3D. The generally accepted 

definition of the FoM for Monte Carlo tallies is shown in Equation 1. Even though the FoM is 

analyzed for more than one nuclide, the lowest FoM for a system typically controls the overall 

calculation runtime. 

 FoM=
1

(Apparent Uncertainty)
2 * CPU Runtime

 …………………Equation 1 

 After calculating the MG TSUNAMI-3D, MG DP, CE TSUNAMI-3D, and CE DP 

sensitivities and comparing the corresponding TSUNAMI-3D results to the DP calculations, the 

study will then compare the accuracy of CE TSUNAMI-3D to the accuracy of the traditional MG 

TSUNAMI-3D, along with figures of merit for each case.   
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SECTION 4  

DESCRIPTION OF EVALUATIONS FOR SENSITIVITY ANALYSIS 

 

 This section provides details on the ICSBEP evaluations that were chosen for continuous-

energy sensitivity analysis. The PU, HEU, IEU, LEU and MIX fuel benchmark models are found 

in Volumes I, II, III, IV and VI of the IHECSBE, respectively [6]. All models were developed 

based on information contained in Section 3 of the respective IHECSBE evaluation. Most 

evaluations in the IHECSBE contain multiple cases with relatively minor differences, such as 

variations in the fissile solution composition, tank reflector type or critical solution height; 

however, only one case per evaluation is chosen for the CE TSUNAMI-3D study. 

Table 3 shows the range of system types analyzed for the CE TSUNAMI-3D study. Even 

though the study attempts to provide the reader with diverse system types, the population of 

experiments is not sufficiently large for safety-related validation, but the cases selected provide 

an indication of general code performance for these systems. Ideally, the single case analyzed 

will provide CE TSUNAMI-3D user-guidance towards implementation for other similar system 

categories. The models for the high-enriched uranium fast spectrum, high-enriched uranium 

thermal spectrum, intermediate-enriched uranium, low-enriched uranium, and plutonium cases 

used in the CE TSUNAMI-3D study were obtained from VALID. The IHECSBE The high-

enriched uranium mixed spectrum, and mixed uranium and plutonium cases used were built as a 

portion of the research discussed in the preface.  

 

Table 3. Types of Systems Analyzed in CE TSUNAMI-3D CLUTCH 

Fissile Material Form Spectrum IHECSBE Evaluation  

Mixed uranium and plutonium 
Solution Thermal MIX-SOL-THERM-002-001, -004-001, -005-001 

Miscellaneous  Thermal MIX-MISC-THERM-001-001 

Plutonium Solution Thermal PU-SOL-THERM-011-012 

High-enriched uranium 

Solution  Thermal HEU-SOL-THERM-001-001 

Metal  Mixed  HEU-MET-MIXED-017-001 

Metal  Fast  HEU-MET-FAST-018-001, -093-001 

Intermediate-enriched uranium Metal Fast IEU-MET-FAST-007-001 

Low-enriched uranium Compound Thermal LEU-COMP-THERM-042-007 
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MIX-SOL-THERM-002 Model Description  

 

The MIX-SOL-THERM-002 (referred to hereafter as “MST-002”) evaluation includes 

three critical experiments with mixed plutonium and uranium nitrate solutions at a plutonium 

fraction (mass ratio of Pu to total Pu+U) of 0.2 and 0.5 in a large cylindrical tank with water 

reflection around and below the tank. The KENO V.a MST-002 model consists of a cylindrical 

reaction vessel with a 68.68 cm inner diameter surrounded by a cuboid of water. The height of 

the reaction vessel, including the top and bottom plates, is 108.506 cm. Since the evaluation 

concluded that room return was negligible, the model used for MST-002 did not include the 

concrete room floor, ceiling, or walls. 

The three cases within the MST-002 

evaluation are modeled using KENO V.a due to the 

geometric simplicity of these critical experiments. 

The MST-002 benchmark evaluation is reported in 

Volume VI of the IHECSBE [6] and is based on 

measurements in the critical assembly room at Pacific 

Northwest National Laboratory (PNNL), which has an 

area of 10.67 square meters and a ceiling height of 6.4 

meters. The vertical plan view of the MST-002 model 

geometry is shown in Figure 1. The TSUNAMI-3D 

calculations with the MG and CE methods will only 

include MST-002-001, which has a critical height of 

76.8 cm. 

 

MIX-SOL-THERM-004 Model Description  

 

Performed in the critical assembly room at Pacific Northwest National Laboratory 

(PNNL) in the 1970’s, the MIX-SOL-THERM-004 (MST-004) evaluation contains nine critical 

experiments with mixed plutonium and uranium nitrate solutions at a plutonium fraction of 0.4 in 

a small cylindrical geometry with three different reflectors. The KENO-VI MST-004 model 

Figure 1. Vertical Plan View for the 

Model Geometry of MST-002 [6] 
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consists of a cylindrical reaction vessel with a 

constant inner diameter of 35.39 cm. The height 

of the reaction vessel, including the top and 

bottom plates, is 108.506 cm. 

The benchmark model for the bare and 

concrete-reflected experiments includes the 

auxiliary empty large cylinder (with an inner 

diameter of 68.68 cm), water reflector tank floor 

and walls, and the concrete room floor, ceiling, 

and walls. The benchmark model used for the 

water-reflected experiments did not include the 

auxiliary empty large cylinder, water reflector 

tank floor and walls, or the concrete room floor, 

ceiling, and walls. 

The experiments differ due to varying solution 

compositions and critical solution heights. The MST-004 cases consist of three bare experiments, 

three water-reflected experiments, and three concrete-reflected experiments. The elevation view 

for part of the MST-004 model is shown in Figure 2. Figure 3 and Figure 4 show an elevation 

view and a plan view, respectively, for the bare cases. The TSUNAMI-3D calculations with the 

MG and CE methods will only include MST-004-001, which is an unreflected system with a 

critical height of 44.46 cm. 

 

Figure 2. Elevation View for Part of the Model 

Geometry of MST-004 [6] 

Figure 3. Benchmark Model Elevation View of MST-004-001 [6] 
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MIX-SOL-THERM-005 Model Description  

 

Performed in the critical assembly 

room at Pacific Northwest National 

Laboratory (PNNL) in the 1970’s, the MIX-

SOL-THERM-005 (MST-005) evaluation 

includes seven critical experiments with 

mixed plutonium and uranium nitrate 

solutions at a plutonium fraction of 0.4 in slab 

geometry.  The KENO V.a MST-005 model 

for the slab tank reaction vessel consists of a 

stainless steel cuboid with square sides 

107.332 cm in height and width. An egg-crate 

style support grid reinforces the square faces 

of the slab tank.   

The experiments differ due to varying 

solution compositions for some of the 
Figure 5. Elevation View for Part of the 

Model Geometry of MST-005 [6] 

Figure 4. Benchmark Model Plan View of MST-004-001 [6] 
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experiments, critical solution heights, and active fuel widths. Changes to the slab tank width 

inherently alter the width of the reflector since the reflector tank width is constant. Three of the 

seven experiments are bare, while the other four cases are water reflected. The water-reflected 

cases are modeled with only the cuboidal representation of the slab tank, the reinforcing egg-

crate support, and the reflector tank faces. In addition, the bare cases include a containment 

hood, floor, ceiling, and walls. The elevation view for part of the model of MST-005 is shown in 

Figure 5. The TSUNAMI-3D calculations with the MG and CE methods will only include MST-

005-001, which has a slab fuel width of 19.81 cm and a height of 54.70 cm.  

 

MIX-MISC-THERM-001 Model Description  

 

 Pacific Northwest National Laboratory 

(PNNL) in 1987 and 1988, the MIX-MISC-

THERM-001 (MMT-001) evaluation includes 

eleven critical experiments with a mixed oxide 

fuel-pin lattice in plutonium-uranium nitrate 

solution with a plutonium fraction of 0.22 in a 

boiler tube-type assembly.  The KENO V.a 

MMT-001 model for the boiler tube-type tank 

consists of an array of mixed oxide fuel pins 

with a 1.4 cm square pitch w ith a water 

reflector. The MMT-001 experiments were 

designed to determine the critical height of the 

plutonium-uranium nitrate solution for the 

lattice assembly to be just critical and to 

determine the effectiveness of gadolinium, 

which was added to the solution for cases -006 

through -010, as a neutron poison [6]. 

Each of the 996 fuel pins contain 

various different axial layers of materials, such 

as Inconel 600 reflectors, uranium dioxide 
Figure 6. Schematic of the Boiler Tube-Type 

Tank used for MMT-001 [6] 
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reflectors, the fuel pellet stack, a homogenized Type 302 stainless steel spring, and a Type 316 

stainless steel plenum. The experiments differ due to varying plutonium-uranium nitrate solution 

compositions and critical solution heights. The fuel pins were removed for the final case. The 

schematic of the boiler tube-type tank used for MMT-001 is shown in Figure 6. The lattice 

arrangement and a single fuel pin are shown in Figure 7 and Figure 8, respectively. The 

TSUNAMI-3D calculations with MG and CE methods will only include MMT-001-001, which 

has a critical fissile-solution height of 18.41 cm.  

 

 
 

 Figure 8. Model of Fuel Rod in Guide 

Tube for MMT-001 [6] 

Figure 7. Benchmark Model Elevation 

View of MMT-001 [6] 
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PU-SOL-THERM-011 Model Description 

 

Performed in the P-11 area of the Hanford Reservation in the early 1950's, the PU-SOL-

THERM-011 (PST-011) evaluation contains twelve critical experiments with bare 16 and 18 

inch (40.64 and 45.72 cm) diameter spheres of plutonium nitrate solutions. The KENO V.a PST-

011 model consists of a 0.13 cm thick Type 347 stainless steel sphere filled to the critical height 

with plutonium solution. In addition, for the cases with an 18-inch sphere, the stainless steel shell 

is covered with 0.051 cm thick cadmium. Since the evaluation concluded that room return was 

negligible, the model used for PST-011 did not include the room floor, ceiling, or walls. The P -

11 series of experiments were designed to determine the effect of geometry, concentration, 

foreign atoms, plutonium isotopic content, neutron reflection, and temperature on the critical 

mass of light-water moderated and reflected homogeneous plutonium solutions [6].  The series of 

PST experiments intended to use a number of spherical, cylindrical, and hemispherical 

containers; however, experiments for the hemispherical containers were never performed – 

“probably because of an accidental excursion, followed by a fire during cleanup that permanently 

shut down the facility. [6]”   

The experiments differ due to varying solution compositions and sphere dimensions. The 

PST-011 evaluation consists of five bare 16-inch diameter sphere experiments and seven 18-inch 

diameter sphere experiments that are covered by a thin layer of cadmium. The benchmark model 

geometry for PST-011 is shown in Figure 9. The following TSUNAMI-3D calculations with MG 

and CE methods will only include PST-011-012, which contains the thin layer of cadmium.  
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Figure 9. Benchmark Model for PST-011 [6] 

 

HEU-SOL-THERM-001 Model Description 

 

In the mid-1970's at the Rocky Flats Plant, the HEU-SOL-THERM-001 (HST-001) 

evaluation was performed, which contains ten critical experiments with minimally reflected 

cylinders of highly enriched solutions of uranyl nitrate. The KENO V.a HST-001 model consists 

of a 0.32 cm thick Type 347 stainless steel cylinder filled to the critical height with uranyl nitrate 

solution. Each critical experiment configuration had a height to diameter ratio less than 1.2. 

The ten experiments differ due to varying solution compositions, critical solution heights, 

tank inside diameters, and tank inside heights. The elevation view for part of the model geometry 

of HST-001 is shown in Figure 10. The TSUNAMI-3D calculations with MG and CE methods 

will only include HST-001-001, which has a critical solution height of 31.20 cm with an inside 

diameter of 27.92 cm.  
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Figure 10. Experimental Configuration of HST-001 [6] 

 

HEU-MET-MIXED-017 Model Description 

 

The HEU-MET-MIXED-017 (HMM-017) benchmark evaluation is based on 

measurements taken at the All-Russian Scientific Research Institute of Technical Physics 

(VNIITF) using the criticality test facility FKBN-2 (Vertical Lift Machine) in 2009. The HMM-

017 evaluation includes one critical experiment (HMM-017-001) with a heterogeneous cylinder 

of HEU, polyethylene, and tungsten reflected by polyethylene.  

The configuration for the model geometry of HMM-017 is shown in Figure 11. The core 

is divided by a horizontal gap into two nearly equal parts: a movable bottom part and a stationary 

top part. The KENO V.a HMM-017 model for the assembly core contains alternating disks of 

highly enriched uranium, polyethylene, and tungsten. The measured diameter for the HEU, CH2, 

and W disks is 19.990 cm. 
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HEU-MET-FAST-018 Model Description 

 

The HEU-MET-FAST-018 (HMF-018) benchmark evaluation is based on measurements 

taken by All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) at its 

criticality test facility (CTF) in 1962 (later re-evaluated between 1992 and 1994). The KENO V.a 

HMF-018 model contains a bare spherical assembly of 
235

U(90%), which incorporates 10 

hemispherical layers. The evaluation contains two critical experiments: a detailed model with the 

core composed of 10 adjacent spherical layers and a simplified model with the core 

homogenized. The TSUNAMI-3D calculations with the MG and CE methods will only include 

HMF-018-001, which is the detailed model of HMF-018. 

Figure 11. Configuration of the Model Geometry of HMM-017-001 [6] 
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The sectional view for the assembly for the benchmark model of HMF-018 is shown in 

Figure 12, where the numbered sections are identified as follows:  

1. lower core unit 

2. upper core unit 

3. steel diaphragm 

4. upper support 

5. attachment 

6. lower support 

7. neutron source  
 

 
 

 

 

 

HEU-MET-FAST-093 Model Description 

 

The HEU-MET-FAST-093 (HMF-093) benchmark evaluation is based on measurements 

taken by VNIITF at the criticality test facility FKBN-2 in 2013. HMF-093 consists of a single 

case (HMF-093-001) that was performed to obtain neutron data validation in the fast energy 

range. The KENO V.a HMF-093-001 model consists of an unreflected cylindrical core 

consisting of alternating disks of high-enriched uranium (95.98 wt.% 
235

U) and molybdenum 

(Mo). Similar to HMM-017, the core is divided by a horizontal gap into two nearly equal parts: a 

movable bottom part and a stationary top part. The benchmark model configuration of HMF-

093-001 is shown in Figure 13. 

Figure 12. Sectional View of the Assembly for HMF-018 [6] 
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IEU-MET-FAST-007 Model Description 

 

The IEU-MET-FAST-007 (IMF-007) criticality experiment, also known as the Big Ten 

experiment, was performed at the Los Alamos Critical Experiment Facility (LACEF). The 

KENO V.a IMF-007 model consists of a large, mixed-uranium-metal cylindrical core with 10% 

average 
235

U enrichment, surrounded by a thick 
238

U reflector. The evaluation contains two 

critical experiments: the detailed model and the improved simplified model. The primary 

objective for Big Ten was to measure effective cross sections in a neutron spectrum that was 

appreciably softer than those in the earlier, smaller Los Alamos metal assemblies [6]. Detailed 

Figure 13. Benchmark Model Configuration for HMF-093 [6] 
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information regarding the dimensions of the Big Ten criticality experiment is provided in the 

IHECSBE.   

The reflector segments of the IMF-007 Big Ten assembly and IMF-007 KENO3D image 

is shown in Figure 14 and Figure 15, respectively. The axial schematic view of the detailed 

benchmark model is show in Figure 16, where zones prefaced with a C, P, and R correspond to 

the core, plate, and reflector components, respectively. The TSUNAMI-3D calculations with the 

MG and CE methods will only include IMF-007-001, which is the detailed model of IMF-007. 

 

              

  

 

 

  

Figure 14. Assembly of the Big Ten 

Reflector Segments for IMF-007 [6] 
Figure 15. KENO3D Image of IMF-

007  
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Figure 16. Axial-View Schematic of Detailed Benchmark Model of IMF-007 [6] 

 

LEU-COMP-THERM-042 Model Description 

  

Performed at the Critical Mass Laboratory at the Pacific Northwest National Laboratories 

(PNNL) in late 1979 or early 1980, the LEU-COMP-THERM-042 (LCT-042) evaluation 

includes seven critical experiments with three water-moderated rectangular clusters of U(2.35)O2 

fuel rods (1.684 cm square-pitch) separated by different absorber plate types [6]. The seven 

absorber-plate types were stainless steel, borated stainless steel, Boral, Boraflex, cadmium, 
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copper, and copper with 1% cadmium. All LCT-042 models are built using the KENO V.a 

Monte Carlo transport code. LCT-042 has already been added to VALID with the MG 

TSUNAMI-3D sequence. For the purposes of CE TSUNAMI-3D analysis, this study will use the 

LCT-042-007 case, which was obtained from VALID. A KENO3D rendering of the TSUNAMI-

3D LCT-042-007 model is shown in Figure 17. The benchmark model plan and elevation views 

for LCT-042 are shown in Figure 18 and Figure 19, respectively.  

  

 

 

 

 
Figure 19. Benchmark Model Elevation View of LCT-042 [6] 

Figure 18. Benchmark Model Plan 

View of LCT-042 [6]  

 

Figure 17. KENO3D Image of the 

Plan View of LCT-042 
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SECTION 5  

RESULTS FOR MG TSUNAMI-3D AND CE TSUNAMI-3D 

 

All calculations were performed using SCALE and were executed on a Linux workstation 

at Oak Ridge National Laboratory.  In general, all CE TSUNAMI-3D CLUTCH simulations 

were distributed across 31 slave cores, plus the single master core, for a total of 32 cores per CE 

TSUNAMI-3D CLUTCH job in the beta version of SCALE 6.2. Alternatively, the MG 

TSUNAMI-3D input files were run using serial processing in SCALE 6.1. The MG TSUNAMI-

3D and CE TSUNAMI-3D calculations were performed using the ENDF/B-VII.0 SCALE 6.1 

multigroup library (V7-238) and the ENDF/B-VII.0 SCALE 6.2b4 continuous energy library 

(CE_V7), respectively.   

The expected keff value for each benchmark model configuration is provided in the 

IHECSBE evaluation for each corresponding experiment [6]. The C/E ratios can be calculated 

from the expected values and the calculated KENO values. Estimated uncertainties are supplied 

for the expected values and calculated keff from the IHECSBE and KENO output, respectively. 

The relative uncertainty in the C/E ratio is calculated as the square root of the sum of the squares 

of the relative calculation and evaluation uncertainties. The absolute uncertainty in the C/E ratio 

is thus simply the relative uncertainty multiplied by the C/E ratio. The uncertainty in the 

expected keff value is on the order of 20 to 80 times as large as the Monte Carlo simulation 

statistical uncertainty and is therefore the primary driver in the C/E uncertainty. The results for 

each case and category of experiments are generated and reported for each nuclear data library 

(V7-238 in SCALE 6.1 and CE_V7 in SCALE 6.2b4), allowing for a comparison of the 

multigroup and continuous-energy TSUNAMI-3D performance of the SCALE codes based on 

the same benchmark models. 

Sensitivities within the criteria summarized in Section 3 may result from the initial 

candidate model, from some number of revisions, or such good agreement may never be 

achieved. Since this study is simply using MG TSUNAMI-3D as a comparison tool, rather than 

teaching the user about MG TSUNAMI-3D techniques, the following multigroup results will 

only show sensitivities for the most efficient MG TSUNAMI-3D job. However, the CE 

TSUNAMI-3D results may have multiple variations of results shown in order to depict the 



 

 28 

usefulness and impact of different parameters. It should also be noted that multiple continuous-

energy variations were run in addition to those shown below.  

 

MIX-SOL-THERM-002-001 Results 

 

 Table 4 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations.  

 

Table 4. MST-002-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries  

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(MIX-SOL-THERM-002-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff  

MG 1.000 0.0024 1.00232 0.0001 1.00232 0.0024 0.00232 0.0024 

CE 1.000 0.0024 1.00170 0.0001 1.00170 0.0024 0.00170 0.0024 

  

 

 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

4,974 active generations with 10,000 neutrons per generation for the forward calculation and 300 

skipped generations and 9,900 active generations with 10,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 1.5 GB of memory with a runtime of 70 

minutes. Table 5 provides the results for the MG TSUNAMI-3D sensitivities and DP 

calculations using the V7-238 library.  The MG results are within 0.96% for all examined 

sensitivities. The largest magnitude of difference is 0.0023, which occurred for the Pu-239 in the 

solution. 

 

Table 5. MG TSUNAMI-3D Results for MST-002-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in %

S Diff in 

Std Dev
S

H Solution -0.1845 1.20E-2 6.52% -0.1836 0.0026 1.39% 0.52% 0.08 -0.0010 

O Solution 0.0334 6.34E-4 1.90% 0.0337 0.0005 1.38% -0.96% 0.41 -0.0003 

Pu-239 Solution 0.4310 1.92E-4 0.04% 0.4287 0.0058 1.35% 0.54% 0.40 0.0023 

Pu-240 Solution -0.0254 1.01E-5 0.04% -0.0256 0.0004 1.39% -0.78% 0.56 0.0002 

 

  

 Ultimately, it was determined that accurate CE TSUNAMI-3D results could be obtained 

by simulating 1,000 skipped generations and 4,000 active generations with 200,000 neutrons per 
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generation. After the proper GEN, NPG, and NSK parameters were determined, multiple input 

files were created with varying number of latent generations (CFP) and varying mesh interval 

sizes in the fissile material. A mesh size of 1 cm in the x-, y-, and z-direction was determined to 

provide the most efficient sensitivities for MST-002-001. Table 6 provides the results for the CE 

TSUNAMI-3D results and DP calculations using the CE_V7 for CFP=2, 5, and 10. From Table 

6, the percent difference between the CE TSUNAMI-3D results and the DP sensitivities is above 

the desired limit when CFP=2. As expected, the accuracy improves from a percent difference of 

8.82% to a percent difference of 4.30% when CFP is increased to 5 and then improves again 

from CFP=5 to CFP=10. A similar trend is seen for the difference of sensitivities in standard 

deviations and the direct difference in sensitivities. In the MST-002-001 study, for CFP=10, the 

CE results are within 1.72% for all examined sensitivities. The largest magnitude of difference is 

0.0032, which occurred for the hydrogen in the solution. The CE TSUNAMI-3D calculation 

requires 1.7-1.9 GB of memory with a runtime of 5 days while running in parallel on a total of 

32 cores, for a total of 160 CPU-days. Since increasing CFP does not increase the runtime or the 

memory footprint, the MST-002-001 CE TSUNAMI-3D model with the following parameters is 

considered accurate: 

 GEN=5,000  CET=1 (CLUTCH) 

 NPG=200,000  CFP=10 

 NSK=1,000  TBA=30 

 Mesh size in x-, y-, and z-dir. ≈ 1 cm 

Figure 20 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D.  The U-235 in the MST-002-001 solution does not appear as an important 

sensitivity (STSUNAMI-3D U-235≈0.0019), because the concentration is low, unlike the Pu-239, which 

has a higher concentration, and thus, a higher sensitivity. Typically, in the mixed fuel systems, 

hydrogen has a positive sensitivity; however, as shown in Figure 20, the sensitivity for hydrogen 

in MST-002-001 has an overall negative sensitivity since the negative sensitivity on the 

absorption reaction outweighs the positive sensitivity on the scattering reaction. The MG and CE 

TSUNAMI-3D and direct perturbation results presented in Figure 20 are considered acceptably 

consistent; however, the CE TSUNAMI-3D results show a slight improvement in the sensitivity 

uncertainty for the hydrogen in the solution. Even though the MG TSUNAMI-3D results in 
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Table 5 appear to be more accurate for hydrogen than CE TSUNAMI-3D results in Table 6, the 

numbers are somewhat deceiving due to the uncertainty in the multigroup sensitivity for 

hydrogen. The MG results for oxygen seem slightly more accurate than the CE sensitivities; 

however, CE TSUNAMI-3D appears to achieve better accuracy for Pu-239 and Pu-240. Since 

both MG and CE TSUNAMI-3D have low sensitivity uncertainty and good agreement with the 

direct perturbation sensitivities, both methods are considered adequate for calculating MST-002-

001 sensitivities. 

Figure 21 shows the figure of merit for each important nuclide for the MG and CE 

TSUNAMI-3D methods for MST-002-001. Since the FoM incorporates the CPU runtime of each 

code as well as the edit uncertainties, the MG TSUNAMI-3D method exceeds the CE FoM for 

all nuclides by approximately two orders of magnitude. However, even though the FoM is 

analyzed for multiple nuclides, the lowest FoM (or the largest nuclide sensitivity uncertainty) for 

a single system will control the overall calculation runtime. Therefore, the most important FoM 

for MST-002-001 is the hydrogen in the solution. The MG TSUNAMI-3D FoM is approximately 

280 times larger than the FoM for CE TSUNAMI-3D for this limiting nuclide. 

 

 Table 6. CE TSUNAMI-3D CLUTCH Results for MST-002-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

CFP=2 

H Solution -0.1920 3.38E-3 1.76% -0.1865 0.0037 1.98% 2.91% 1.08 -0.0054 

O Solution 0.0309 2.40E-4 0.78% 0.0340 0.0005 1.49% 9.10% 5.51 -0.0031 

Pu-239 Solution -0.0152 1.71E-5 0.11% 0.4320 0.0068 1.57% 0.41% 0.26 0.0001 

Pu-240 Solution 0.4317 2.94E-5 0.01% -0.0255 0.0004 1.70% 0.09% 0.06 -0.0004 

CFP=5 

H Solution -0.1883 3.48E-3 1.85% -0.1865 0.0037 1.98% 0.92% 0.34 -0.0017 

O Solution 0.0324 2.47E-4 0.76% 0.0340 0.0005 1.49% 4.55% 2.74 -0.0015 

Pu-239 Solution -0.0152 1.76E-5 0.12% 0.4320 0.0068 1.57% 0.45% 0.29 0.0001 

Pu-240 Solution 0.4311 3.11E-5 0.01% -0.0255 0.0004 1.70% 0.23% 0.15 -0.0010 

CFP=10 

H Solution -0.1833 3.43E-3 1.87% -0.1865 0.0037 1.98% 1.72% 0.64 0.0032 

O Solution 0.0334 2.45E-4 0.73% 0.0340 0.0005 1.49% 1.59% 0.96 -0.0005 

Pu-239 Solution 0.4309 3.09E-5 0.01% 0.4320 0.0068 1.57% 0.27% 0.17 -0.0012 

Pu-240 Solution -0.0256 3.28E-6 0.01% -0.0255 0.0004 1.70% 0.32% 0.19 -0.0001 
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Figure 20. TSUNAMI-3D and Direct Perturbation Sensitivity Comparisons for Representative 

MST-002-001 Nuclides in the Solution 

 

 

 

Figure 21. Figures of Merit for MG and CE TSUNAMI-3D for MST-002-001 

 

MIX-SOL-THERM-004-001 Results 

 

The MST-004-001 case was selected for this study because the MG TSUNAMI-3D 

results encountered difficulty in obtaining desirable uncertainties in the hydrogen sensitivity for 

the solution. Additionally, MST-004-001 is one of the two cases studied that is built in KENO-

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

H O Pu-239 Pu-240

N
u

cl
id

e 
S

en
si

ti
v
it

y
 C

o
ef

fi
ci

en
t 

MG T3D

MG DP

CE T3D

CE DP

0.0

0.1

1.0

10.0

100.0

1000.0

10000.0

100000.0

MG CE

F
ig

u
re

 o
f 

M
er

it
 (

m
in

-1
) 

H

O

Pu-239

Pu-240



 

 32 

VI, rather than KENO V.a, which provides additional diversity and confidence in the CE 

TSUNAMI-3D results. Table 7 shows keff results for the CSAS6 calculations using the V7-238 

and CE_V7 libraries, which are used as knominal in the direct perturbation calculations.  

 

Table 7. MST-004-001 CSAS6 keff Results Using the V7-238 and the CE_V7 Libraries  

Case Benchmark 
CSAS6 Result Calculated/Experimental 

Δkeff 

(MIX-SOL-THERM-004-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff  

MG 1.000 0.0033 0.99681 0.0001 0.99681 0.0033 0.00319 0.0033 

CE 1.000 0.0033 0.99606 0.0001 0.99606 0.0033 0.00394 0.0033 

 

  

 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

773 active generations with 250,000 neutrons per generation for the forward calculation and 100 

skipped generations and 2,479 active generations with 200,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 10 GB of memory with a runtime of 11.6 days 

while running in serial. The long runtime is a result of the decreased sigma cut-off, which was 

implemented as an attempt to decrease the uncertainty in the hydrogen sensitivity. Table 8 

provides the results for the MG TSUNAMI-3D sensitivities and DP calculations using the V7-

238 library. After running multiple variations of the MST-004-001 model, the lowest uncertainty 

achieved in hydrogen and oxygen sensitivities was 24.71% and 7.76%, respectively.  

 

Table 8. MG TSUNAMI-3D Results for MST-004-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

H Solution 0.4446 1.10E-1 24.71% 0.4506 0.0041 0.91% -1.33% 0.05 -0.0060 

O Solution 0.1016 7.88E-3 7.76% 0.0987 0.0008 0.83% 2.93% 0.37 0.0029 

Pu-239 Solution 0.1927 5.88E-3 3.05% 0.1926 0.0019 0.98% 0.06% 0.02 0.0001 

Pu-240 Solution -0.0469 2.66E-4 0.57% -0.0473 0.0005 0.98% -0.97% 0.86 0.0005 

   

 

 Due to the similarities in fuel types, MST-004-001 CE TSUNAMI-3D behavior is 

expected to be comparable to MST-002-001. Therefore, the initial analysis of MST-004-001 CE 

TSUNAMI-3D is simulated with the same parameters used for MST-002-001 CE TSUNAMI-

3D. After scaling back on the parameters in attempts to improve efficiency for MST-004-001, it 

was determined that accurate CE TSUNAMI-3D sensitivities could be obtained by simulating 
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only 100,000 neutrons per generation with five latent generations (CFP=5), rather than ten. 

Additionally, the mesh in the x-, y-, and z-direction was set to an interval size of 2 cm, 2 cm, and 

3 cm without loss of sensitivity accuracy. Table 9 provides the results for the final CE 

TSUNAMI-3D case and DP calculations using the CE_V7. From Table 9, the CE TSUNAMI-

3D agreement with the DPs is acceptable for each nuclide. In addition, the largest sensitivity 

uncertainty for a nuclide is 2.10%, which is a significant improvement compared to MG 

TSUNAMI-3D, which has a maximum uncertainty of 24.71%. In the MST-004-001 study, the 

CE results are within 1.12% for all examined sensitivities. The largest magnitude of difference is 

0.005, which occurred for the hydrogen in the solution. The CE TSUNAMI-3D calculation 

requires approximately 2.7 GB of memory with a runtime of 7 days while running in serial. The 

total wall time could be significantly reduced if the simulation was processed in parallel. 

Typically, for serial processes, MG TSUNAMI-3D requires less runtime than the CE 

TSUNAMI-3D method. However, due to the struggles encountered for MG TSUNAMI-3D in 

hydrogen sensitivity uncertainty, CE TSUNAMI-3D actually completed with a shorter runtime in 

serial for MST-004-001. The parameters used for MST-004-001 are the following:  

 GEN=5,000  CET=1 (CLUTCH) 

 NPG=100,000  CFP=5 

 NSK=1,000  TBA=30 

 Mesh size in x- and y-dir. ≈ 2 cm  Mesh size in z-dir. ≈ 3 cm 

 

Table 9. CE TSUNAMI-3D CLUTCH Results for MST-004-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

H Solution 0.4485 9.41E-3 2.10% 0.4435 0.0043 0.97% 1.12% 0.48 0.0050 

O Solution 0.1023 1.06E-3 1.03% 0.1012 0.0009 0.92% 1.07% 0.77 0.0011 

Pu-239 Solution 0.1936 7.35E-4 0.38% 0.1944 0.0019 0.96% -0.45% 0.43 -0.0009 

Pu-240 Solution -0.0472 1.80E-4 0.38% -0.0477 0.0005 0.96% -0.95% 0.92 0.0005 

 

 

Figure 22 presents comparisons of TSUNAMI-3D-K6 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D.  Similar to MST-002-001, the U-235 in the MST-004-001 solution is not an 

important sensitivity (STSUNAMI-3D U-235≈0.0011), because the concentration is low, unlike the Pu-



 

 34 

239, which has a higher concentration. Unlike MST-002-001, the hydrogen in MST-004-001 has 

an overall positive sensitivity, which is a result of the positive sensitivity on the scattering 

reaction outweighing the negative sensitivity on the absorption reaction. Only the CE 

TSUNAMI-3D and direct perturbation results presented in Figure 22 are considered acceptably 

consistent for calculating MST-004-001 sensitivities. 

 

 

 

Figure 22. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative MST-

004-001 Nuclides in the Solution 

 

MIX-SOL-THERM-005-001 Results 

 

Similar to MST-004-001, the MST-005-001 case was also selected for this study, because 

the MG TSUNAMI-3D results encountered difficulty in obtaining desirable uncertainties for the 

hydrogen sensitivity in the solution. Table 10 provides keff results for the CSAS5 calculations 

using the V7-238 and CE_V7 libraries for MST-005-001, which are used as knominal in the direct 

perturbation calculations. 
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Table 10. MST-005-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(MIX-SOL-THERM-005-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.000 0.0037 0.99414 0.0001 0.99414 0.0037 0.00586 0.0037 

CE 1.000 0.0037 0.99338 0.0001 0.99338 0.0037 0.00662 0.0037 

  

 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

525 active generations with 200,000 neutrons per generation for the forward calculation and 100 

skipped generations and 601 active generations with 600,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 8.1 GB of memory with a runtime of 2.6 days. 

Table 11 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations using 

the V7-238 library. After running multiple variations of the MST-005-001 model, the lowest 

uncertainty achieved in hydrogen and oxygen sensitivities was 21.76% and 7.52%, respectively.   

 

Table 11. MG TSUNAMI-3D CLUTCH Results for MST-005-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

H Solution 0.4054 8.82E-2 21.76% 0.4097 0.0041 1.01% -1.04% 0.05 -0.0043 

O Solution 0.0841 6.32E-3 7.52% 0.0871 0.0011 1.31% -3.48% 0.47 -0.0030 

Pu-239 Solution 0.2038 4.67E-3 2.29% 0.1978 0.0021 1.04% 3.00% 1.16 0.0059 

Pu-240 Solution -0.0464 2.03E-4 0.44% -0.0465 0.0006 1.34% -0.20% 0.14 0.0001 

  

 

 Again, due to the similarities in the mixed uranium and plutonium nitrate solutions, the 

MST-005-001 CE TSUNAMI-3D is expected to exhibit behavior comparable to MST-002-001 

and MST-004-001. Therefore, the initial analysis of MST-005-001 CE TSUNAMI-3D is 

simulated with the final parameters used for MST-004-001 CE TSUNAMI-3D. Then, the 

number of neutrons per generation was adjusted to determine if the runtime could be reduced 

without losing accuracy in the sensitivity coefficients. Table 12 provides the results for two 

different CE TSUNAMI-3D cases with the only difference being the number of neutrons per 

generation. Ideally, the user may expect improved accuracy and precision in the F*(r) function if 

the number of neutrons per generation is increased from 10,000 to 100,000. However, as shown 

in Table 12, the large increase in particles actually produces an insignificant difference between 

the sensitivity results with NPG=10,000 and NPG=100,000. Both CE TSUNAMI-3D models 
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have the same memory footprint, at approximately 2.1 GB; however, the runtime increases 

significantly from 4.3 days in serial to 4.2 days in parallel on 32 cores when the number of 

neutrons per generation increases by a factor of ten. Since the difference between the two cases 

is statistically insignificant, the case with 10,000 neutrons per generation is considered the most 

efficient due to the short runtime. The mesh in the x-, y-, and z-direction was refined to an 

interval size of 1 cm, 1 cm, and 2.75 cm. From Table 12, the CE TSUNAMI-3D agreement with 

the DPs is acceptable for each nuclide except hydrogen in the solution.  In addition, the largest 

sensitivity uncertainty for a nuclide is 2.09%, which is a significant improvement compared to 

MG TSUNAMI-3D, which has a maximum uncertainty of 21.76%. In the MST-005-001 study, 

the CE results are within 5.02% for all examined sensitivities. The largest magnitude of 

difference is 0.0196 (almost twice the limit), which occurred for the hydrogen in the solution. 

The options for achieving an improved CE TSUNAMI-3D hydrogen sensitivity have not yet 

been exhausted; however, the best results thus far show good agreement with direct perturbations 

for all other examined nuclides. The following parameters are used for MST-005-001:  

 GEN=5,000  CET=1 (CLUTCH) 

 NPG=10,000  CFP=5 

 NSK=1,000  TBA=30 

 Mesh size in x- and y-dir. ≈ 1 cm  Mesh size in z-dir. ≈ 2.75 cm 

 

Table 12. CE TSUNAMI-3D Results for MST-005-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

NPG=10,000 

H Solution 0.4095 8.55E-3 2.09% 0.3900 0.0059 1.51% 5.02% 1.89 0.0196 

O Solution 0.0834 9.14E-4 1.10% 0.0842 0.0012 1.40% -0.95% 0.54 -0.0008 

Pu-239 Solution 0.2015 1.19E-4 0.06% 0.1975 0.0028 1.43% 2.03% 1.42 0.0040 

Pu-240 Solution -0.0468 3.39E-5 0.07% -0.0474 0.0007 1.40% -1.14% 0.82 0.0005 

NPG=100,000 

H Solution 0.4059 2.70E-3 0.67% 0.3900 0.0059 1.51% 4.09% 2.47 0.0159 

O Solution 0.0831 2.92E-4 0.35% 0.0842 0.0012 1.40% -1.27% 0.89 -0.0011 

Pu-239 Solution 0.2012 3.68E-5 0.02% 0.1975 0.0028 1.43% 1.89% 1.32 0.0037 

Pu-240 Solution -0.0468 1.08E-5 0.02% -0.0474 0.0007 1.40% -1.14% 0.81 0.0005 
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Figure 23 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D and the corresponding direct perturbation sensitivities.  Similar to MST-002-001 

and MST-004-001, the U-235 in the MST-004-001 solution is not an important sensitivity 

(STSUNAMI-3D U-235≈0.0012), because the concentration is low. Currently, none of the TSUNAMI-

3D and direct perturbation results presented in Figure 23 are considered acceptably consistent for 

calculating MST-005-001 sensitivities. However, the CE TSUNAMI-3D CLUTCH results 

provide significant improvement in the uncertainty of the hydrogen sensitivity.  

 

 

Figure 23. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative MST-

005-001 Nuclides in the Solution 
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MIX-MISC-THERM-001-001 Results 

 

 Table 13 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for MMT-001-001.  

 

Table 13. MMT-001-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(MIX-MISC-THERM-001-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.000 0.0044 0.99424 0.0001 0.99424 0.0044 0.00576 0.0044 

CE 1.000 0.0044 0.99372 0.0001 0.99372 0.0044 0.00628 0.0044 

 

  

 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

788 active generations with 100,000 neutrons per generation for the forward calculation and 50 

skipped generations and 6,641 active generations with 300,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 33 GB of memory with a serial runtime of 5.2 

days. Table 14 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations 

using the V7-238 library. The options for achieving an improved MG TSUNAMI-3D Pu-239 

sensitivity have not yet been exhausted; however, the best results thus far show good agreement 

with direct perturbations for all examined nuclides, except Pu-239. 

 

Table 14. MG TSUNAMI-3D Results for MMT-001-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

H Solution 0.3635 3.34E-3 0.92% 0.3657 0.0035 0.95% -0.62% 0.47 -0.0023 

O Solution 0.0514 2.87E-4 0.56% 0.0520 0.0005 0.97% -1.20% 1.07 -0.0006 

Pu-239 Fuel 0.1270 8.70E-4 0.68% 0.1151 0.0013 1.09% 10.39% 7.82 0.0120 

Pu-240 Fuel -0.0459 4.26E-5 0.09% -0.0449 0.0005 1.00% 2.18% 2.16 -0.0010 

 

 

Table 15 provides the results for three revisions of the CE TSUNAMI-3D model for 

MMT-001-001. For each MMT-001-001 set of sensitivities shown in Table 15, five latent 

generations are simulated with 4,000 active generations and 100,000 particles per generation. By 

maintaining constant parameters for CFP, GEN, and NPG, the user can vary other parameters, 
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such as NSK and the mesh size, which will help provide a general idea for their importance in the 

MMT-001-001 CE TSUNAMI-3D model.  

The first two cases represent results with a constant mesh and a differing number of 

skipped generations (NSK=1,000 and NSK=2,000). Logically, if the F*(r) function is calculated 

during the skipped generations, the user may expect an improvement in the F*(r) function, which 

would ideally lead to more accurate and precise sensitivities. Counterintuitively, the 

improvement does not occur for MMT-001-001 when increasing the number of skipped 

generations from 1000 to 2000. Previously, in the MST-005-001 results section, a similar affect 

was shown with the increase in particles per generations, which, for F*(r) function, is equivalent 

to increasing the number of skipped histories. In MST-005-001, the increase resulted in 

statistically equivalent sensitivities; therefore, the simulation with a fewer number of particles 

was chosen as more efficient.  

The first and third cases represent results with a constant number of skipped particles and 

a differing mesh interval size in the z-direction. Ideally, if the mesh is refined to a smaller 

interval size, the user may expect improved sensitivity results; however, this assumption is not 

always accurate. Creating a smaller mesh will require a significant increase in the number of 

particles simulated in order to obtain low F*(r) value uncertainties. Sometimes the trade-off is 

not worth the increase in runtime. To maintain consistency in this scenario, the number of 

particles will not be increased with the smaller mesh in the z-direction. As reflected in Table 15, 

the smaller mesh size only slightly improved sensitivity results. Alternatively, if the mesh 

interval size is changed to ~10-12 cm, then the sensitivity results would be greatly affected. After 

considering the runtime and memory differences, the first case shown in Table 15 was selected 

as the most efficient case for MMT-001-001.  

The “best case” MMT-001-001 CE TSUNAMI-3D model has a memory footprint of 

approximately 333 MB with a runtime of 1.87 days in parallel on 32 cores (60 CPU-days). The 

mesh interval size that provides accurate sensitivities was determined to be 1.4 cm, 1.4 cm, and 5 

cm in the x-, y-, and z-direction. From Table 15, the CE TSUNAMI-3D agreement with the DPs 

is acceptable for each nuclide. In addition, the percent difference between the CE TSUNAMI-3D 

sensitivity and the DP sensitivity for Pu-239 in the fuel is reduced to 2.19%, which is a 

significant improvement compared to MG TSUNAMI-3D, which has a percent difference of 
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10.39%. The largest magnitude of difference is 0.0077, which occurred for the hydrogen in the 

solution. The optimal parameters for MMT-001-001 are determined to be the following:   

 GEN=5,000  CET=1 (CLUTCH) 

 NPG=100,000  CFP=5 

 NSK=1,000  TBA=30 

 Mesh size in x- and y-dir. ≈ 1.4 cm  Mesh size in z-dir. ≈ 5 cm 

Figure 24 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D. Currently, until further investigation is performed on the MG TSUNAMI-3D 

model, only the CE TSUNAMI-3D and direct perturbation results presented in Figure 24 are 

considered acceptably consistent for calculating MMT-001-001 sensitivities. 

 

Table 15. CE TSUNAMI-3D CLUTCH Results for MMT-001-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

z-direction mesh size=5 cm, NSK=1000 

H Solution 0.3582 1.87E-3 0.52% 0.3659 0.0034 0.93% -2.10% 1.98 -0.0077 

O Solution 0.0505 2.30E-4 0.46% 0.0524 0.0005 0.90% -3.68% 3.67 -0.0019 

Pu-239 Fuel 0.1178 4.29E-5 0.04% 0.1153 0.0011 0.99% 2.19% 2.21 0.0025 

Pu-240 Fuel -0.0442 1.50E-5 0.03% -0.0444 0.0004 0.94% -0.32% 0.34 0.0001 

z-direction mesh size=5 cm, NSK=2000 

H Solution 0.3543 1.87E-3 0.53% 0.3659 0.0034 0.93% -3.18% 3.00 -0.0117 

O Solution 0.0502 2.28E-4 0.45% 0.0524 0.0005 0.90% -4.25% 4.25 -0.0022 

Pu-239 Fuel 0.1179 4.21E-5 0.04% 0.1153 0.0011 0.99% 2.22% 2.24 0.0026 

Pu-240 Fuel -0.0442 1.52E-5 0.03% -0.0444 0.0004 0.94% -0.30% 0.32 0.0001 

z-direction mesh size=2 cm, NSK=1000 

H Solution 0.3621 1.87E-3 0.52% 0.3659 0.0034 0.93% -1.06% 0.99 -0.0039 

O Solution 0.0513 2.32E-4 0.45% 0.0524 0.0005 0.90% -2.18% 2.17 -0.0011 

Pu-239 Fuel 0.1173 4.29E-5 0.04% 0.1153 0.0011 0.99% 1.74% 1.76 0.0020 

Pu-240 Fuel -0.0443 1.51E-5 0.03% -0.0444 0.0004 0.94% -0.21% 0.22 0.0001 
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Figure 24. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative 

MMT-001-001 Nuclides 

 

 

PU-SOL-THERM-011-012 Results 

 

Table 16 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for PST-011-012.  

 

Table 16. PST-011-012 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(PU-SOL-THERM-011-012) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.000 0.0052 1.00032 0.0001 1.00032 0.0052 0.00032 0.0052 

CE 1.000 0.0052 0.99874 0.0001 0.99874 0.0052 0.00126 0.0052 

   

 

 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

8844 active generations with 10,000 neutrons per generation for the forward calculation and 300 

skipped generations and 2,650 active generations with 100,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 1 GB of memory with a serial runtime of 16.5 

hours. Table 17 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations 

using the V7-238 library. The MG results are within 2.16% for all examined sensitivities. The 

largest magnitude of difference is 0.0059, which occurred for the Pu-239 in the solution. 
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Table 17. MG TSUNAMI-3D Results for PST-011-012 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

H Solution 0.2862 2.63E-3 0.92% 0.2828 0.0038 1.36% 1.18% 0.71 0.0033 

N Solution -0.0194 1.62E-5 0.08% -0.0192 0.0002 1.28% 1.30% 1.01 -0.0003 

O Solution 0.0955 1.68E-4 0.18% 0.0967 0.0013 1.31% 1.21% 0.92 -0.0012 

Pu-239 Solution 0.2799 9.13E-5 0.03% 0.2740 0.0037 1.33% 2.16% 1.62 0.0059 

Pu-240 Solution -0.0206 6.53E-6 0.03% -0.0210 0.0003 1.28% 1.58% 1.23 0.0003 

 

 

Table 39 in Appendix A provides the results for ten different CE TSUNAMI-3D cases 

with a single changing parameter between each case. For each PST-011-012 case shown in Table 

39, five latent generations are simulated with 1,000 skipped generations and 10,000 particles per 

generation. The ten different active generations (GEN-NSK) are as follows: 100, 250, 500, 1000, 

1500, 4000, 6500, 9000, 14000, and 19000. The difficulty in obtaining accurate PST-011-012 

sensitivities with CE TSUNAMI-3D was initially a result of the large uncertainty of the 

hydrogen sensitivity in the solution. Until this point, the majority of large uncertainties in 

sensitivities have appeared in the MG TSUNAMI-3D results. Ideally, whether using MG or CE 

TSUNAMI-3D, the user expects a decrease in the uncertainty of the sensitivity as the total 

number of particles simulated increases. Unfortunately, since MG TSUNAMI-3D can only be 

executed in serial, achieving the desired uncertainty can require a significant (and potentially 

unrealistic) increase in runtime. However, for CE TSUNAMI-3D CLUTCH, the parallel 

capabilities allow the simulation of a large number of generations without an unrealistic wall 

time. From Table 39, the uncertainty in the Pu-239 sensitivity begins at 21.50% for 100 active 

generations, and then improves to 1.81% after 19,000 active generations. However, sufficient 

uncertainty of 2.62% is achieved at 9,000 active generations, which will be considered the 

optimal case for PST-011-012.  

The most efficient PST-011-012 CE TSUNAMI-3D model, which is also shown in Table 

18, has a memory footprint of approximately 1.2 GB with a runtime of 2 days in serial CE 

TSUNAMI-3D. The mesh interval size that provides accurate sensitivities was determined to be 

1 cm in the x-, y-, and z-direction. From Table 18, the CE TSUNAMI-3D agreement with the 

DPs is acceptable for each nuclide. The largest magnitude of difference is 0.0029, which 

occurred for Pu-239 in the solution. The PST-011-012 CE TSUNAMI-3D model with the 

following parameters is considered accurate:  
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 GEN=10,000  CET=1 (CLUTCH) 

 NPG=10,000  CFP=5 

 NSK=1,000  TBA=30 

 Mesh size in x-, y-, and z-dir. ≈ 1 cm   

 

Table 18. CE TSUNAMI-3D CLUTCH Results for PST-011-012 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S 

H Solution 0.2841 7.45E-3 2.62% 0.2870 0.0034 1.19% 0.99% 0.35 -0.0028 

N Solution -0.0194 9.37E-5 0.48% -0.0197 0.0003 1.32% 1.64% 1.17 0.0003 

O Solution 0.0945 6.69E-4 0.71% 0.0949 0.0012 1.25% 0.42% 0.29 -0.0004 

Pu-239 Solution 0.2800 5.20E-5 0.02% 0.2771 0.0034 1.24% 1.06% 0.85 0.0029 

Pu-240 Solution -0.0208 1.01E-5 0.05% -0.0209 0.0003 1.26% 0.53% 0.42 0.0001 

 

 

Figure 25 depicts the convergence of the eigenvalue sensitivity coefficient for hydrogen 

in the solution with CE TSUNAMI-3D-K5 as a function of total active particles. The hydrogen 

sensitivities in Figure 25 fluctuate between 0.2559 and 0.3097. However, since all data points are 

within one-sigma of each other, the convergence of the hydrogen sensitivity as a function of 

active particles is acceptable. Figure 26 represents the corresponding uncertainties as a function 

of runtime (in serial processing) on a log-log scale. When analyzing uncertainty convergence as 

a function of runtime, the users expect a theoretical straight line for a well-behaved problem. The 

PST-011-012 results demonstrate an almost perfectly linear behavior with an R
2
 values greater 

than 0.98. Both figures provide an indication of the proper number of total active particles for 

convergence along with the suitable runtime required in order to obtain a low uncertainty for the 

hydrogen in PST-011-012.  
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Figure 25. CE TSUNAMI-3D Hydrogen Sensitivity as a Function of Total Active Particles PST-

011-012 

 

 

 

Figure 26. CE TSUNAMI-3D Hydrogen Sensitivity Uncertainty as a Function of Runtime in 

Serial for PST-011-012 

 

 

Figure 27 depicts an XY-planar slice of the F*(r) function using the SCALE Meshview 

visualization tool. As expected, the F*(r) values are highest (greater importance) near the center 

of the spherical model (Figure 27 (a)). Additionally, the F*(r) values decrease towards the edge 
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of the sphere. Figure 27 (b) depicts low uncertainties in the center of the sphere, with large 

uncertainties near the periphery of the sphere. This is expected due to the large number of 

interactions in the center of the sphere, which reduces the uncertainty of the F*(r) function. 

Figure 28 represents the plot of F*(r) values and uncertainties along the x-direction for PST-011-

012. The plot of F*(r) values in Figure 28, which correlate to the values in Figure 27, displays 

the highest F*(r) values at the center of the sphere and decreasing values near the edge of the 

sphere. When analyzing the plot of F*(r) values in Figure 28, the user should not focus too 

heavily on obtaining lower uncertainty values as long as the resulting TSUNAMI-3D 

sensitivities agree with the direct perturbation sensitivities. It is important to note that the 

“_FStar_3dmap” file is created immediately after the number of skipped generations is complete. 

Therefore, for time conservation purposes, the user should view the F*(r) values and the 

uncertainties associated with the F*(r) values as soon as the number of skipped generations has 

ended. If the uncertainties in the F*(r) values appear too large in areas of the model with high 

expected importance, then the user should terminate the calculation and increase the number of 

particles or adjust the mesh size in order to obtain lower uncertainty in the F*(r) values. 

Figure 29 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D and the corresponding direct perturbation sensitivities. The MG and CE 

TSUNAMI-3D results presented in Figure 29 are considered acceptably consistent; however, the 

CE TSUNAMI-3D results show a slight improvement in the sensitivity comparisons for the 

hydrogen, Pu-239 and Pu-240 in the solution. Since both MG and CE TSUNAMI-3D have low 

sensitivity uncertainty and good agreement with the direct perturbation sensitivities, both 

methods are considered adequate for calculating PST-011-012 sensitivities. 
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(a) F*(r) Values            (b) F*(r) Uncertainties 

Figure 27. Meshview Plot of F*(r) with NPG=200,000 for PST-011-012 

 

 

 

Figure 28. Plot of F*(r) Values in the x-direction for PST-011-012 

 

 

 

Figure 29. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative PST-

011-012 Nuclides in the Solution  
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Figure 30 represents the figure of merit for the important nuclides for the MG and CE 

TSUNAMI-3D methods for PST-011-012. For serial processing, the MG TSUNAMI-3D method 

exceeds the CE FoM for all nuclides. For the PST-011-012 case, the most important nuclide 

when calculating the FoM is the hydrogen in the solution.  

 

 
Figure 30. Figures of Merit for MG and CE TSUNAMI-3D for PST-011-012 

 

 

HEU-SOL-THERM-001-001 Results 

 

Table 19 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for HST-001-001. 

 

Table 19. HST-001-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(HEU-SOL-THERM-001-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.0004 0.0060 0.99870 0.0001 0.99830 0.0060 0.00210 0.0060 

CE 1.0004 0.0060 0.99799 0.0001 0.99759 0.0060 0.00281 0.0060 

 

 

 The MG TSUNAMI-3D results were obtained by simulating 20 skipped generations and 

9,980 active generations with 10,000 neutrons per generation for the forward calculation and 150 

skipped generations and 4,625 active generations with 20,000 neutrons per generation for the 
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adjoint calculation. The MG TSUNAMI-3D requires 186 MB of memory with a runtime of 3.4 

hours. Table 20 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations 

using the V7-238 library.  The MG results are within 3.68% for all examined sensitivities. The 

largest magnitude of difference is 0.0042, which occurred for the U-235 in the solution. Even 

though the largest difference in standard deviations is 3.53, which is greater than two standard 

deviations, MG TSUNAMI-3D are still considered consistent with the direct perturbations.  

 

Table 20. MG TSUNAMI-3D Results for HST-001-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

U-235 Solution 0.1173 2.38E-4 0.20% 0.1131 0.0012 1.02% 3.68% 3.53 0.0042 

O Solution 0.1292 2.16E-4 0.17% 0.1310 0.0013 0.96% 1.34% 1.37 -0.0018 

H Solution 0.6433 2.36E-3 0.37% 0.6457 0.0062 0.95% 0.36% 0.35 -0.0023 

Fe Tank 0.0142 1.28E-5 0.09% 0.0139 0.0001 0.92% 1.83% 2.01 -0.0003 

 

 

Table 21 provides the results for three different HST-001-001 CE TSUNAMI-3D cases 

with a single changing parameter between each case. For each HST-001-001 set of sensitivities 

shown in Table 21, five latent generations are simulated with 3,001 total generations and 10,000 

particles per generation. Initially, the HST-001-001 study showed difficulties in obtaining a low 

uncertainty for the hydrogen sensitivity and issues with obtaining proper DP agreement in the 

iron. Ultimately, it was determined that simulating more particles decreased the uncertainty in 

the hydrogen sensitivity and creating a smaller mesh interval size improved the iron DP 

agreement. Alternatively, exclusively creating a smaller mesh did not reduce the hydrogen 

sensitivity uncertainty and solely simulating more particles did not improve the iron DP 

agreement. 

The three HST-001-001 cases analyzed in Table 21 represent results with a differing 

number of skipped generations (NSK=20, NSK=100, and NSK=1000). The increase in NSK, 

which required a longer runtime, did not improve the accuracy of the sensitivities. Therefore, the 

case with NSK=20 is considered the optimal case for HST-001-001. The preferred HST-001-001 

CE TSUNAMI-3D model has a memory footprint of approximately 1.1 GB with a runtime of 

13.4 minutes in parallel on 64 cores. The most efficient mesh interval size was determined to be 

2.8 cm, 2.8 cm, and 4 cm in the x-, y-, and z-direction. From Table 21, the CE TSUNAMI-3D 
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agreement with the DPs is acceptable for each nuclide. In addition, the largest disagreement 

between TSUNAMI and the DPs occurred in the oxygen in the solution, with a percent 

difference of 2.95%, a standard deviation difference of 1.87 and a difference of -0.0039. Since 

none of these values exceed the desired limit, the HST-001-001 CE TSUNAMI-3D model with 

the following parameters is considered accurate: 

 GEN=3,001  CET=1 (CLUTCH) 

 NPG=10,000  CFP=5 

 NSK=20  TBA=30 

 Mesh size in x- and y-dir. ≈ 2.8 cm  Mesh size in z-dir. ≈ 4 cm 

Figure 31 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D. The MG and CE TSUNAMI-3D results presented in Figure 31 are considered 

acceptably consistent; however, the CE TSUNAMI-3D results show a slight improvement in the 

sensitivity comparisons for the hydrogen, and U-235 in the solution. Since both MG and CE 

TSUNAMI-3D have low sensitivity uncertainty and good agreement with the direct perturbation 

sensitivities, both methods are considered adequate for calculating HST-001-001 sensitivities.  

Figure 32 shows the figure of merit for each important nuclide for the MG and CE 

TSUNAMI-3D methods for HST-001-001. When calculating the FoM with the CPU runtime, the 

MG TSUNAMI-3D method exceeds the CE FoM for all nuclides. Unlike previous cases, neither 

method had difficulty obtaining a low sensitivity uncertainty in the hydrogen; however, the 

calculated hydrogen sensitivity uncertainty is still the largest compared to the other important 

nuclides. Therefore, hydrogen in the solution is the limiting nuclide when analyzing the figure of 

merit for HST-001-001. 
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Table 21. CE TSUNAMI-3D CLUTCH Results for HST-001-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

 NSK=20 

U-235 Solution 0.1146 1.27E-4 0.11% 0.1127 0.0016 1.43% 1.64% 1.15 0.0019 

O Solution 0.1277 9.90E-4 0.78% 0.1315 0.0018 1.38% 2.95% 1.87 -0.0039 

H Solution 0.6414 7.93E-3 1.24% 0.6432 0.0089 1.38% 0.28% 0.15 -0.0018 

Fe Tank 0.0146 5.30E-5 0.36% 0.0142 0.0002 1.50% 2.34% 1.51 0.0003 

 NSK=100 

U-235 Solution 0.1141 1.22E-4 0.11% 0.1127 0.0016 1.43% 1.22% 0.85 0.0014 

O Solution 0.1280 1.00E-3 0.78% 0.1315 0.0018 1.38% 2.68% 1.70 -0.0035 

H Solution 0.6438 7.79E-3 1.21% 0.6432 0.0089 1.38% 0.10% 0.05 0.0006 

Fe Tank 0.0149 5.20E-5 0.35% 0.0142 0.0002 1.50% 4.95% 3.20 0.0007 

NSK=1000 

U-235 Solution 0.1142 1.66E-4 0.15% 0.1127 0.0016 1.43% 1.30% 0.90 0.0015 

O Solution 0.1284 1.21E-3 0.94% 0.1315 0.0018 1.38% 2.40% 1.45 -0.0032 

H Solution 0.6500 9.41E-3 1.45% 0.6432 0.0089 1.38% 1.06% 0.53 0.0068 

Fe Tank 0.0148 6.16E-5 0.42% 0.0142 0.0002 1.50% 4.23% 2.71 0.0006 

 
 

 

 

Figure 31. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative HST-

001-001 Nuclides in the Solution 
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Figure 32. Figures of Merit for MG and CE TSUNAMI-3D for HST-001-001 

 

HEU-MET-MIXED-017-001 Results 

 

Table 22 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for HMM-017-001. 

Ideally, the difference in keff between the benchmark and CSAS results is larger than the user 

would prefer; however, for the purposes of this study, the values in Table 22 are acceptable.  

 

Table 22. HMM-017-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(HEU-MET-MIXED-017-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.000 0.0008 0.99115 0.00007 0.99115 0.0008 0.00885 0.0008 

CE 1.000 0.0008 0.98913 0.00008 0.98913 0.0008 0.01087 0.0008 

 

 The MG TSUNAMI-3D results were obtained by simulating 50 skipped generations and 

738 active generations with 100,000 neutrons per generation for the forward calculation and 150 

skipped generations and 10,050 active generations with 200,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 20 GB of memory with a runtime of 6.4 days. 

Table 23 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations using 

the V7-238 library.  The MG results are within 5.00% for all examined sensitivities. The largest 

magnitude of difference is 0.0023, which occurred for U-235 in one of the fuel disks. The 
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absolute differences are artificially low as a result of subtracting two low sensitivity coefficients. 

Even though the largest difference in standard deviations is 4.61, which is greater than two 

standard deviations, MG TSUNAMI-3D are still considered consistent with the direct 

perturbations due to the consistency of the other difference comparisons. Additionally, when 

calculating the U-235 sensitivity for the entire model, rather than the individual fuel disks, the 

sensitivity is also in good agreement with the direct perturbation sensitivity.  

 

Table 23. MG TSUNAMI-3D Results for HMM-017-001 

Nuclide In Material TSUNAMI Results Direct Perturbation 

Results 

Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

C Side Reflector 0.0354 2.38E-4 0.67% 0.0366 0.0003 0.95% 3.41% 2.97 -0.0012 

U-235 Fuel Disk #1 0.0131 7.17E-5 0.55% 0.0132 0.0001 0.98% 0.21% 0.19 0.0000 

U-235 Fuel Disk #2 0.0262 1.11E-4 0.42% 0.0254 0.0003 1.01% 3.18% 2.88 0.0008 

U-235 Fuel Disk #3 0.0380 1.50E-4 0.39% 0.0378 0.0004 0.99% 0.50% 0.47 0.0002 

U-235 Fuel Disk #4 0.0480 1.68E-4 0.35% 0.0457 0.0005 1.02% 5.00% 4.61 0.0023 

U-235 Fuel Disk #5 0.0477 1.66E-4 0.35% 0.0471 0.0005 1.00% 1.45% 1.37 0.0007 

U-235 Fuel Disk #6 0.0447 1.67E-4 0.37% 0.0436 0.0004 1.01% 2.70% 2.50 0.0012 

U-235 Fuel Disk #7 0.0373 1.52E-4 0.41% 0.0362 0.0004 1.02% 3.14% 2.85 0.0011 

U-235 Fuel Disk #8 0.0256 1.08E-4 0.42% 0.0246 0.0003 1.02% 3.83% 3.45 0.0009 

U-235 Fuel Disk #9 0.0126 7.04E-5 0.56% 0.0124 0.0001 1.00% 1.76% 1.53 0.0002 

 

 

Table 24 provides the results for three different CE TSUNAMI-3D cases with two 

differing parameters. For each set of sensitivities shown in Table 24, five latent generations are 

simulated with 3,000 active generations. The first set of sensitivities shown in Table 24 represent 

the results with NSK=100 and NPG=10,000; however, in attempts to improve the DP 

agreements, the number of skipped generations (NSK) was increased to 500. For the same 

number of particles per generation, the increase in NSK improved the accuracy from a maximum 

difference in standard deviations of 3.09 to a maximum difference in standard deviations of 1.90. 

The four remaining sets of sensitivities in Table 24 are simulated with a constant number of 

skipped generations (NSK=100) and a varying number of particles per generation (NPG=10,000, 

25,000, 50,000, and 100,000). Based on the insignificant changes in the DP agreement for the 

simulation of increasing particles per generation, the model with the shortest runtime 

(NPG=10,000) is chosen for the most efficient HMM-017-001 case. 

The preferred HMM-017-001 CE TSUNAMI-3D model has a memory footprint of 

approximately 1.7 GB with a runtime of 1.6 hours in parallel on 32 cores. The mesh interval size 

that provides accurate sensitivities was determined to be 1 cm, 1 cm, and 1.33 cm in the x-, y-, 
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and z-direction. From Table 24, the CE TSUNAMI-3D agreement with the DPs is acceptable for 

each nuclide. In addition, the maximum percent difference between the TSUNAMI-3D 

sensitivity and the DP sensitivity for U-235 in the fuel is reduced from 5.00% in MG 

TSUNAMI-3D to 2.56% in CE TSUNAMI-3D. The largest magnitude of difference is 0.0006, 

which occurred for U-235 in the fuel. Similar to the MG results, the absolute differences are 

artificially low as a result of subtracting two low sensitivity coefficients. However, the CE 

agreement is still slightly improved compared to the MG agreement. The more efficient 

parameters for HMM-017-001 are determined to be the following: 

 GEN=3,500  CET=1 (CLUTCH) 

 NPG=10,000  CFP=5 

 NSK=500  TBA=30 

 Mesh size in x- and y-dir. ≈ 1 cm  Mesh size in z-dir. ≈ 1.33 cm 

Figure 33 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater. The x-axis in Figure 33 

represents the U-235 fuel disks, starting from #1 at the bottom of the configuration to #10 at the 

top of it. As expected, the shape of the sensitivities matches well with the probable distribution 

of fission neutrons as a function of energy. The MG and CE TSUNAMI-3D and direct 

perturbation results presented in Figure 33 are considered acceptably consistent.  

 

Table 24. CE TSUNAMI-3D CLUTCH Results for HMM-017-001 

Nuclide In Material TSUNAMI Results Direct Perturbation 

Results 
Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

NSK=100, NPG=10,000 

C Side Reflector 0.0364 3.11E-4 0.85% 0.0363 0.0004 1.21% 0.33% 0.22 0.0001 

U-235 Fuel Disk #1 0.0127 7.29E-5 0.57% 0.0129 0.0001 1.11% 1.45% 1.16 -0.0002 

U-235 Fuel Disk #2 0.0246 1.15E-4 0.47% 0.0251 0.0003 1.26% 2.01% 1.50 -0.0005 

U-235 Fuel Disk #3 0.0384 1.55E-4 0.40% 0.0376 0.0005 1.29% 2.25% 1.66 0.0008 

U-235 Fuel Disk #4 0.0453 1.75E-4 0.39% 0.0448 0.0006 1.30% 1.10% 0.81 0.0005 

U-235 Fuel Disk #5 0.0459 1.76E-4 0.38% 0.0461 0.0006 1.39% 0.55% 0.38 -0.0003 

U-235 Fuel Disk #6 0.0444 1.77E-4 0.40% 0.0449 0.0005 1.20% 1.00% 0.80 -0.0005 

U-235 Fuel Disk #7 0.0371 1.56E-4 0.42% 0.0365 0.0005 1.36% 1.61% 1.13 0.0006 

U-235 Fuel Disk #8 0.0249 1.17E-4 0.47% 0.0246 0.0003 1.26% 1.57% 1.17 0.0004 

U-235 Fuel Disk #9 0.0120 7.59E-5 0.63% 0.0125 0.0001 1.15% 4.02% 3.09 -0.0005 

NSK=500, NPG=10,000 

C Side Reflector 0.0361 3.01E-4 0.83% 0.0363 0.0004 1.21% 0.40% 0.27 -0.0001 

U-235 Fuel Disk #1 0.0126 7.48E-5 0.59% 0.0129 0.0001 1.11% 1.96% 1.56 -0.0003 

U-235 Fuel Disk #2 0.0250 1.18E-4 0.47% 0.0251 0.0003 1.26% 0.29% 0.22 -0.0001 
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Table 24. Continued. 
Nuclide In Material TSUNAMI Results Direct Perturbation 

Results 
Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

U-235 Fuel Disk #3 0.0382 1.54E-4 0.40% 0.0376 0.0005 1.29% 1.54% 1.14 0.0006 

U-235 Fuel Disk #4 0.0453 1.73E-4 0.38% 0.0448 0.0006 1.30% 1.16% 0.86 0.0005 

U-235 Fuel Disk #5 0.0458 1.73E-4 0.38% 0.0461 0.0006 1.39% 0.76% 0.53 -0.0004 

U-235 Fuel Disk #6 0.0445 1.69E-4 0.38% 0.0449 0.0005 1.20% 0.77% 0.61 -0.0003 

U-235 Fuel Disk #7 0.0369 1.51E-4 0.41% 0.0365 0.0005 1.36% 1.04% 0.73 0.0004 

U-235 Fuel Disk #8 0.0252 1.17E-4 0.46% 0.0246 0.0003 1.26% 2.56% 1.90 0.0006 

U-235 Fuel Disk #9 0.0124 7.24E-5 0.59% 0.0125 0.0001 1.15% 1.36% 1.05 -0.0002 

NSK=500, NPG=25,000 

C Side Reflector 0.0370 1.96E-4 0.53% 0.0363 0.0004 1.21% 1.95% 1.47 0.0007 

U-235 Fuel Disk #1 0.0125 4.67E-5 0.37% 0.0129 0.0001 1.11% 2.99% 2.55 -0.0004 

U-235 Fuel Disk #2 0.0255 7.55E-5 0.30% 0.0251 0.0003 1.26% 1.58% 1.22 0.0004 

U-235 Fuel Disk #3 0.0380 9.61E-5 0.25% 0.0376 0.0005 1.29% 1.05% 0.80 0.0004

U-235 Fuel Disk #4 0.0458 1.11E-4 0.24% 0.0448 0.0006 1.30% 2.28% 1.72 0.0010

U-235 Fuel Disk #5 0.0457 1.12E-4 0.24% 0.0461 0.0006 1.39% 1.02% 0.72 -0.0005 

U-235 Fuel Disk #6 0.0445 1.09E-4 0.24% 0.0449 0.0005 1.20% 0.92% 0.75 -0.0004 

U-235 Fuel Disk #7 0.0368 9.55E-5 0.26% 0.0365 0.0005 1.36% 0.78% 0.56 0.0003 

U-235 Fuel Disk #8 0.0248 7.48E-5 0.30% 0.0246 0.0003 1.26% 1.15% 0.89 0.0003 

U-235 Fuel Disk #9 0.0123 4.59E-5 0.37% 0.0125 0.0001 1.15% 2.00% 1.66 -0.0003 

NSK=500, NPG=50,000 

C Side Reflector 0.0364 1.36E-4 0.37% 0.0363 0.0004 1.21% 0.45% 0.35 0.0002 

U-235 Fuel Disk #1 0.0125 3.33E-5 0.27% 0.0129 0.0001 1.11% 2.83% 2.48 -0.0004 

U-235 Fuel Disk #2 0.0253 5.37E-5 0.21% 0.0251 0.0003 1.26% 1.04% 0.81 0.0003 

U-235 Fuel Disk #3 0.0379 6.83E-5 0.18% 0.0376 0.0005 1.29% 0.91% 0.70 0.0003 

U-235 Fuel Disk #4 0.0458 7.67E-5 0.17% 0.0448 0.0006 1.30% 2.43% 1.85 0.0011 

U-235 Fuel Disk #5 0.0456 7.76E-5 0.17% 0.0461 0.0006 1.39% 1.21% 0.86 -0.0006 

U-235 Fuel Disk #6 0.0443 7.67E-5 0.17% 0.0449 0.0005 1.20% 1.29% 1.06 -0.0006 

U-235 Fuel Disk #7 0.0368 6.69E-5 0.18% 0.0365 0.0005 1.36% 0.93% 0.68 0.0003 

U-235 Fuel Disk #8 0.0249 5.20E-5 0.21% 0.0246 0.0003 1.26% 1.30% 1.01 0.0003 

U-235 Fuel Disk #9 0.0122 3.25E-5 0.27% 0.0125 0.0001 1.15% 2.32% 1.97 -0.0003 

NSK=500, NPG=100,000 

C Side Reflector 0.0364 9.73E-5 0.27% 0.0363 0.0004 1.21% 0.37% 0.30 0.0001 

U-235 Fuel Disk #2 0.0254 3.72E-5 0.15% 0.0251 0.0003 1.26% 1.30% 1.03 0.0003 

U-235 Fuel Disk #3 0.0379 4.85E-5 0.13% 0.0376 0.0005 1.29% 0.90% 0.70 0.0003 

U-235 Fuel Disk #4 0.0457 5.59E-5 0.12% 0.0448 0.0006 1.30% 2.02% 1.55 0.0009 

U-235 Fuel Disk #5 0.0458 5.48E-5 0.12% 0.0461 0.0006 1.39% 0.66% 0.47 -0.0003 

U-235 Fuel Disk #6 0.0443 5.41E-5 0.12% 0.0449 0.0005 1.20% 1.27% 1.06 -0.0006 

U-235 Fuel Disk #7 0.0369 4.81E-5 0.13% 0.0365 0.0005 1.36% 1.09% 0.80 0.0004 

U-235 Fuel Disk #8 0.0249 3.72E-5 0.15% 0.0246 0.0003 1.26% 1.43% 1.12 0.0004 

U-235 Fuel Disk #9 0.0123 2.24E-5 0.18% 0.0125 0.0001 1.15% 1.71% 1.46 -0.0002 

 

Figure 34 shows the figure of merit for each individual important nuclide for the MG and 

CE TSUNAMI-3D methods for HMM-017-001. The CE TSUNAMI-3D FoM method exceeds 

the MG FoM for all important nuclides. As mentioned previously, multigroup methods typically 

have a larger FoM than continuous-energy methods; however, in this scenario, the multigroup 

processing required a longer runtime due to the large number of simulated generations/particles 
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(10,050 active generations with 200,000 neutrons per generation) for the adjoint calculation in 

the multigroup method. Overall, both methods obtained less than one percent uncertainty in the 

sensitivity for each important nuclide. For HMM-017-001, the most important nuclide when 

considering efficiency is the carbon in the side reflector. 

 

 

 

Figure 33. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative 

HMM-017-001 Nuclides 

 

 

Figure 34. Figures of Merit for MG and CE TSUNAMI-3D for HMM-017-001 
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HEU-MET-FAST-018-001 Results 

 

Table 25 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for HMF-018-001. 

 

Table 25. HMF-018-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(HEU-MET-FAST-018-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.000 0.0014 1.00125 0.0001 1.00125 0.0014 0.00125 0.0014 

CE 1.000 0.0014 1.00033 0.0001 1.00033 0.0014 0.00032 0.0014 

 

  

 The MG TSUNAMI-3D results were obtained by simulating 20 skipped generations and 

6,810 active generations with 10,000 neutrons per generation for the forward calculation and 150 

skipped generations and 23,582 active generations with 150,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 139 MB of memory with a runtime of 24.97 

hours. Table 26 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations 

using the V7-238 library. The largest disagreement between MG TSUNAMI-3D and the DPs 

occurred in the U-235 in the outermost fuel later, with a percent difference of 9.82%, a standard 

deviation difference of 6.41 and a difference of 0.0085. 

 

 Table 26. MG TSUNAMI-3D Results for HMF-018-001 
Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff in 

% 

S Diff in 

Std Dev 
S

U-235 Fuel Layer #2 0.0657 9.19E-5 0.14% 0.0651 0.0009 1.41% 0.83% 0.59 0.0005 

U-235 Fuel Layer #3 0.0681 9.78E-5 0.14% 0.0671 0.0010 1.43% 1.38% 0.96 0.0009 

U-235 Fuel Layer #4 0.0662 9.53E-5 0.14% 0.0675 0.0009 1.37% 1.87% 1.36 -0.0013 

U-235 Fuel Layer #5 0.0839 9.44E-5 0.11% 0.0818 0.0012 1.42% 2.57% 1.80 0.0021 

U-235 Fuel Layer #6 0.0893 9.19E-5 0.10% 0.0889 0.0012 1.41% 0.45% 0.32 0.0004 

U-235 Fuel Layer #7 0.1087 9.82E-5 0.09% 0.1070 0.0015 1.42% 1.55% 1.09 0.0017 

U-235 Fuel Layer #8 0.1158 8.86E-5 0.08% 0.1123 0.0016 1.45% 3.11% 2.14 0.0035 

U-235 Fuel Layer #9 0.1087 7.29E-5 0.07% 0.1040 0.0015 1.46% 4.45% 3.04 0.0046 

U-235 Fuel Layer #10 0.0952 5.31E-5 0.06% 0.0867 0.0013 1.53% 9.82% 6.41 0.0085 
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Table 27 provides the results for two different CE TSUNAMI-3D cases. The first set of 

sensitivities shown in Table 27 represent the HMF-018-001 with conservative parameters, which 

were used simply to obtain correct sensitivity without the consideration of efficiency (CFP=5, 

GEN=2,000, NPG=200,000, and NSK=500), which resulted in a runtime of 7 days with serial 

processing. The second set of sensitivities in Table 27 was obtained by scaling back significantly 

on GEN and NPG to reduce the total runtime. Based on the insignificant changes in the DP 

agreement, the model with the shortest runtime (CFP=5, GEN=1,000, NPG=50,000, and 

NSK=500) is chosen for the more efficient HMF-018-001 set of parameters. 

The preferred HMF-018-001 CE TSUNAMI-3D model has a memory footprint of 

approximately 2.1 GB with a runtime of 14 hours in serial, which is a rare instance of a larger 

memory requirement than MG TSUNAMI-3D. The mesh interval size that provides accurate 

sensitivities was determined to be 1 cm, 1 cm, and 2 cm in the x-, y-, and z-direction. From Table 

27, the CE TSUNAMI-3D agreement with the DPs is acceptable for each nuclide. In addition, 

the percent difference between the CE TSUNAMI-3D sensitivity and the DP sensitivity for U-

235 in the fuel is reduced to 2.80%. The largest magnitude of difference is 0.0019, which 

occurred for U-235 in the outermost layer of fuel. The optimal parameters for HMF-018-001 are 

determined to be the following: 

 GEN=1,000  CET=1 (CLUTCH) 

 NPG=50,000  CFP=5 

 NSK=500  TBA=30 

 Mesh size in x- and y-dir. ≈ 1 cm  Mesh size in z-dir. ≈ 2 cm 

Figure 35 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D and the corresponding direct perturbation sensitivities. The MG and CE 

TSUNAMI-3D results presented in Figure 35 are considered acceptably consistent; however, the 

CE TSUNAMI-3D results show a slight improvement in the sensitivity comparisons for U-235 

in the fuel disks. Since both MG and CE TSUNAMI-3D have low sensitivity uncertainty and 

good agreement with the direct perturbation sensitivities, both methods are considered adequate 

for calculating HMF-018-001 sensitivities. 
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Table 27. CE TSUNAMI-3D CLUTCH Results for HMF-018-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

CFP=5, GEN=2000, NPG=200000, NSK=500 

U-235 Fuel Layer #2 0.0650 3.93E-5 0.06% 0.0650 0.0009 1.40% 0.09% 0.06 -0.0001 

U-235 Fuel Layer #3 0.0677 3.79E-5 0.06% 0.0681 0.0010 1.39% 0.69% 0.50 -0.0005 

U-235 Fuel Layer #4 0.0658 3.56E-5 0.05% 0.0674 0.0009 1.38% 2.45% 1.78 -0.0017 

U-235 Fuel Layer #5 0.0833 3.81E-5 0.05% 0.0837 0.0012 1.39% 0.42% 0.30 -0.0003 

U-235 Fuel Layer #6 0.0883 3.87E-5 0.04% 0.0878 0.0012 1.40% 0.54% 0.38 0.0005 

U-235 Fuel Layer #7 0.1071 3.72E-5 0.03% 0.1056 0.0015 1.41% 1.38% 0.98 0.0015 

U-235 Fuel Layer #8 0.1134 3.61E-5 0.03% 0.1131 0.0016 1.41% 0.25% 0.18 0.0003 

U-235 Fuel Layer #9 0.1045 2.92E-5 0.03% 0.1047 0.0015 1.39% 0.21% 0.15 -0.0002 

U-235 Fuel Layer #10 0.0874 2.12E-5 0.02% 0.0855 0.0012 1.44% 2.18% 1.51 0.0019 

CFP=5, GEN=1000, NPG=50000, NSK=500 

U-235 Fuel Layer #2 0.0649 1.28E-4 0.20% 0.0650 0.0009 1.40% 0.21% 0.15 -0.0001 

U-235 Fuel Layer #3 0.0679 1.40E-4 0.21% 0.0681 0.0010 1.39% 0.31% 0.22 -0.0002 

U-235 Fuel Layer #4 0.0655 1.28E-4 0.20% 0.0674 0.0009 1.38% 2.80% 2.01 -0.0019 

U-235 Fuel Layer #5 0.0833 1.39E-4 0.17% 0.0837 0.0012 1.39% 0.42% 0.30 -0.0004 

U-235 Fuel Layer #6 0.0882 1.27E-4 0.14% 0.0878 0.0012 1.40% 0.50% 0.35 0.0004 

U-235 Fuel Layer #7 0.1072 1.28E-4 0.12% 0.1056 0.0015 1.41% 1.47% 1.04 0.0016 

U-235 Fuel Layer #8 0.1138 1.24E-4 0.11% 0.1131 0.0016 1.41% 0.60% 0.42 0.0007 

U-235 Fuel Layer #9 0.1044 1.05E-4 0.10% 0.1047 0.0015 1.39% 0.26% 0.19 -0.0003 

U-235 Fuel Layer #10 0.0874 7.50E-5 0.09% 0.0855 0.0012 1.44% 2.27% 1.57 0.0019 

 

 

 

 

Figure 35. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative HMF-

018-001 Nuclides 
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Figure 36 shows the figure of merit for the important nuclides for the MG and CE 

TSUNAMI-3D methods for HMF-018-001. The FoM values for U-235 in the nine examined fuel 

layers are essentially equivalent for the MG and CE TSUNAMI-3D methods. Overall, both 

methods obtained less than 0.50% uncertainty in the sensitivity for each important nuclide. For 

HMF-018-001, the most important nuclide when considering efficiency is U-235 in fuel layers 2 

through 4 of the model. 

 

 

 

Figure 36. Figures of Merit for MG and CE TSUNAMI-3D for HMF-018-001 

 

 

HEU-MET-FAST-093-001 Results 

 

Table 28 provides keff results for the CSAS6 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for HMF-093-001. The 

difference in keff between the benchmark and CSAS results is slightly larger than the user would 

prefer; however, for the purposes of this study, the values in Table 28 are considered acceptable. 

 

Table 28. HMF-093-001 CSAS6 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS6 Result Calculated/Experimental 

Δkeff 

(HEU-MET-FAST-093-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 0.9978 0.0012 1.00373 0.0001 1.00595 0.0012 0.00815 0.0012 

CE 0.9978 0.0012 1.00337 0.0001 1.00558 0.0012 0.00778 0.0012 

  

 

1.0

10.0

100.0

1000.0

10000.0

MG CE

F
ig

u
re

 o
f 

M
er

it
 (

m
in

-1
) 

U-235 #2

U-235 #3

U-235 #4

U-235 #5

U-235 #6

U-235 #7

U-235 #8

U-235 #9

U-235 #10



 

 60 

 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

3,158 active generations with 20,000 neutrons per generation for the forward calculation and 300 

skipped generations and 34,332 active generations with 120,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 3.1 GB of memory with a runtime of 2.3 days. 

Table 29 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations using 

the V7-238 library. The MG results are within 3.24% for all examined sensitivities. The largest 

magnitude of difference is 0.0122, which occurred for the U-235 in the HEU fuel. 

 

Table 29. MG TSUNAMI-3D Results for HMF-093-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

Mo Reflector 0.1268 1.30E-4 0.10% 0.1257 0.0017 1.31% 0.80% 0.61 0.0010 

U-234 HEU Fuel 0.0067 5.20E-6 0.08% 0.0068 0.0001 1.31% 1.56% 1.19 -0.0001 

U-235 HEU Fuel 0.7195 4.86E-4 0.07% 0.7317 0.0090 1.22% 1.66% 1.36 -0.0122 

U-238 HEU Fuel 0.0069 1.25E-5 0.18% 0.0071 0.0001 1.32% 3.24% 2.44 -0.0002 

 

 

Table 30 provides the results for two different CE TSUNAMI-3D cases. The first set of 

sensitivities shown in Table 30 represent the HMF-093-001 with conservative parameters, which 

were used simply to obtain correct sensitivity without the consideration of efficiency (CFP=5, 

GEN=5,000, NPG=100,000, and NSK=1000). The second set of sensitivities in Table 30 was 

obtained by scaling back significantly on GEN, NPG, and NSK to reduce the total runtime. Based 

on the insignificant changes in the DP agreement, the model with the shortest runtime (CFP=5, 

GEN=4,100, NPG=20,000, and NSK=100) is chosen for the more efficient HMF-093-001 set of 

parameters. 

The preferred HMF-093-001 CE TSUNAMI-3D model has a memory footprint of 

approximately 1.7 GB with a runtime of 18.9 hours in serial. The mesh interval size was 

determined to be approximately 0.5 cm in the x-, y-, and z-direction. From Table 30, the CE 

TSUNAMI-3D agreement with the DPs is acceptable for each nuclide. The optimal parameters 

for HMF-093-001 are determined to be the following: 

 GEN=4,100  CET=1 (CLUTCH) 

 NPG=20,000  CFP=5 

 NSK=100  TBA=30 
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 Mesh size in x-, y-, and z-dir. ≈ 0.5 cm 

 

Table 30. CE TSUNAMI-3D CLUTCH Results for HMF-093-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff in 

Std Dev 
S

CFP=5, GEN=5000, NPG=100000, NSK=1000 

Mo Reflector 0.1265 7.77E-5 0.06% 0.1301 0.0016 1.27% 2.73% 2.15 -0.0035 

U-234 HEU Fuel 0.0067 1.04E-5 0.16% 0.0066 0.0001 1.34% 1.38% 1.02 0.0001 

U-235 HEU Fuel 0.7188 7.83E-5 0.01% 0.7265 0.0096 1.32% 1.07% 0.82 -0.0078 

U-238 HEU Fuel 0.0068 1.56E-5 0.23% 0.0069 0.0001 1.38% 0.21% 0.15 0.0000 

CFP=5, GEN=4100, NPG=20000, NSK=100 

Mo Reflector 0.1264 1.85E-4 0.15% 0.1301 0.0016 1.27% 2.82% 2.22 -0.0037 

U-234 HEU Fuel 0.0067 2.47E-5 0.37% 0.0066 0.0001 1.34% 1.00% 0.72 0.0001 

U-235 HEU Fuel 0.7186 3.37E-4 0.05% 0.7265 0.0096 1.32% 1.10% 0.83 -0.0080 

U-238 HEU Fuel 0.0069 3.71E-5 0.53% 0.0069 0.0001 1.38% 1.09% 0.74 0.0001 

 

 

Figure 37 presents comparisons of TSUNAMI-3D-K6 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D. The MG and CE TSUNAMI-3D results presented in Figure 37 are considered 

acceptably consistent; however, the CE TSUNAMI-3D results show a slight improvement in the 

sensitivity comparisons for all uranium nuclides. Since both MG and CE TSUNAMI-3D have 

low sensitivity uncertainties and good agreement with the direct perturbation sensitivities, both 

methods are considered adequate for calculating HMF-093-001 sensitivities.  

 

 

 

Figure 37. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative HMF-

093-001 Nuclides 
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Figure 38 shows the figure of merit for each important nuclide for the MG and CE 

TSUNAMI-3D methods for HMF-093-001. The CE TSUNAMI-3D method exceeds the MG 

figures of merit for the U-235 in the fuel. The MG TSUNAMI-3D method provides a larger FoM 

for U-234 and U-238 in the fuel. The molybdenum figure of merit is approximately equal for 

both sensitivity methods. Overall, both methods obtained less than one percent sensitivity 

uncertainty for each important nuclide. For the HMF-093-001 model, the most important nuclide 

when considering the FoM is U-238 in fuel. 

 

 

 

Figure 38. Figures of Merit for MG and CE TSUNAMI-3D for HMF-093-001 

 

 

IEU-MET-FAST-007-001 Results 

 

Table 31 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for IMF-007-001. 

 

Table 31. IMF-007-001 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 
CSAS5 Result Calculated/Experimental 

Δkeff 

(IEU-MET-FAST-007-001) Model Values (CSAS - Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.0046 0.0002 1.01041 0.0001 1.00578 0.0002 0.00118 0.0002 

CE 1.0046 0.0002 1.00401 0.0000 0.99942 0.0002 0.00518 0.0002 
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 The MG TSUNAMI-3D results were obtained by simulating 100 skipped generations and 

4,623 active generations with 10,000 neutrons per generation for the forward calculation and 300 

skipped generations and 13,904 active generations with 300,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 26 GB of memory with a runtime of 15.2 days. 

Table 32 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations using 

the V7-238 library. The MG results are within 3.95% for all examined sensitivities. The largest 

magnitude of difference is 0.0034, which occurred for the U-235 in the middle plate. 

 

Table 32. MG TSUNAMI-3D Results for IMF-007-001 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff 

in %

S Diff 

in Std 

Dev
S

U-235 u(93) metal/middle 0.2960 1.78E-4 0.06% 0.2926 0.0029 0.98% 1.17% 1.20 0.0034 

U-235 u(10) metal/central 0.1310 5.68E-5 0.04% 0.1300 0.0013 0.98% 0.75% 0.76 0.0010 

U-238 u(10) metal/central -0.0518 3.75E-4 0.72% -0.0509 0.0005 0.99% 1.73% 1.40 -0.0009 

U-238 u(nat) metal/middle -0.0401 5.46E-4 1.36% -0.0386 0.0004 1.01% 3.95% 2.28 -0.0015 

  

 

Table 33 provides the results for the CE TSUNAMI-3D results and DP calculations using 

the CE_V7 for CFP=2, 5, and 10 with 1,000 skipped generations. From Table 33, the percent 

difference between the CE TSUNAMI-3D results and the DP sensitivities is above the desired 

limit for all variations of CFP. However, as expected, the accuracy increases from a percent 

difference of 22.47% to a percent difference of 7.99% when CFP is increased to 5 and then 

increases marginally from CFP=5 to CFP=10. A similar trend is seen for the difference of 

sensitivities in standard deviations and the direct difference in sensitivities.  
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Table 33. CE TSUNAMI-3D CLUTCH Results for IMF-007-001 with GEN=5000, 

NPG=200000, and NSK=1000 

Nuclide In Material TSUNAMI Results 
Direct Perturbation 

Results 
Results Comparison 

    S S %S S S %S 
S Diff 

in %

S Diff 

in Std 

Dev
S

CFP=2 

U-235 u(93) metal/middle 0.3022 3.60E-5 0.01% 0.2942 0.0020 0.67% 2.75% 4.11 0.0081 

U-235 u(10) metal/central 0.1244 2.84E-5 0.02% 0.1306 0.0008 0.65% 4.81% 7.40 -0.0063 

U-238 u(10) metal/central -0.0502 1.57E-4 0.31% -0.0523 0.0003 0.63% 3.98% 5.69 0.0021 

U-238 u(nat) metal/middle -0.0470 2.31E-4 0.49% -0.0384 0.0003 0.75% 22.47% 23.43 -0.0086 

CFP=5 

U-235 u(93) metal/middle 0.2978 3.63E-5 0.01% 0.2942 0.0020 0.67% 1.22% 1.83 0.0036 

U-235 u(10) metal/central 0.1295 2.97E-5 0.02% 0.1306 0.0008 0.65% 0.83% 1.28 -0.0011 

U-238 u(10) metal/central -0.0514 1.66E-4 0.32% -0.0523 0.0003 0.63% 1.57% 2.22 0.0008 

U-238 u(nat) metal/middle -0.0414 2.29E-4 0.55% -0.0384 0.0003 0.75% 7.99% 8.35 -0.0031 

CFP=10 

U-235 u(93) metal/middle 0.2966 3.63E-5 0.01% 0.2942 0.0020 0.67% 0.81% 1.22 0.0024 

U-235 u(10) metal/central 0.1307 3.00E-5 0.02% 0.1306 0.0008 0.65% 0.08% 0.13 0.0001 

U-238 u(10) metal/central -0.0517 1.68E-4 0.32% -0.0523 0.0003 0.63% 1.04% 1.47 0.0005 

U-238 u(nat) metal/middle -0.0411 2.29E-4 0.56% -0.0384 0.0003 0.75% 7.24% 7.58 -0.0028 

 

 

Since the direct perturbation agreement is not within the desired limits, the study was 

performed again with an increase to 2,000 for the number of skipped generations. Table 34 

provides the results for the CE TSUNAMI-3D results and DP calculations for CFP=2, 5, and 10 

with 2,000 skipped generations. From Table 34, the percent difference between the CE 

TSUNAMI-3D results and the DP sensitivities is now within acceptable limits when 10 latent 

generations are simulated. Again, the accuracy increases from a percent difference of 21.62% to 

3.94% when CFP is increased to 10. A similar trend is seen for the difference of sensitivities in 

standard deviations and the direct difference in sensitivities. For IMF-007-001, the case with 

2,000 skipped generations and 10 latent generations was determined to provide acceptable 

sensitivities. The increase in CFP was required in order to obtain proper agreement with the DP 

for U-238 in natural uranium for a middle plate in the model, which is likely the result of the 

atypical material in the central region of the model. The largest magnitude of difference is 

0.0024, which occurred for 
235

U(93%) in the middle plate. The CE TSUNAMI-3D calculation 

requires 2.4 GB of memory with a runtime of 4.7 days while running in parallel on a total of 32 

cores (150.4 CPU-days). The parameters for IMF-007-001 which result in acceptable 

sensitivities are determined to be the following: 
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 GEN=6,000  CET=1 (CLUTCH) 

 NPG=200,000  CFP=10 

 NSK=2,000  TBA=30 

 Mesh size in x-, y-, and z-dir. ≈ 1 cm 

Figure 39 shows an XZ-plane of the F*(r) relative uncertainty for CFP=2, 5, and 10 with 

NSK=2,000. As expected, the F*(r) relative uncertainties increase towards the edge of the 

cylindrical assembly. As mentioned in PST-011-012, this expected due to the large number of 

interactions in the center of the assembly, which reduces the F*(r) uncertainty. Additionally, 

since a large number of particles are simulated, the overall uncertainty decreases as CFP 

increases. The number of neutrons born in the reflector that do not survive to fission is less after 

larger numbers of latent generations are simulated. Figure 39 (a) (CFP=2) represents multiple 

high uncertainty estimates around the reflector, which represents the neutrons that survived the 

two latent generations and contribute to the F*(r) function. In the CFP=10 case shown in Figure 

39 (c), the neutrons did not survive the ten latent generations; thus, fewer neutrons contribute to 

the F*(r) function and have no uncertainty.  

 

Table 34. CE TSUNAMI-3D CLUTCH Results for IMF-007-001 with GEN=6000, 

NPG=200000, and NSK=2000 

Nuclide In Material TSUNAMI Results 
Direct Perturbation 

Results 
Results Comparison 

    S S %S S S %S 
S Diff 

in %

S Diff in 

Std Dev
S

CFP=2 

U-235 u(93) metal/middle 0.3023 3.58E-5 0.01% 0.2942 0.0020 0.67% 2.77% 4.15 0.0082 

U-235 u(10) metal/central 0.1244 2.78E-5 0.02% 0.1306 0.0008 0.65% 4.75% 7.30 -0.0062 

U-238 u(10) metal/central -0.0500 1.55E-4 0.05% -0.0523 0.0003 0.63% 4.27% 6.11 0.0022 

U-238 u(nat) metal/middle -0.0467 2.34E-4 0.31% -0.0384 0.0003 0.75% 21.62% 22.42 -0.0083 

CFP=5 

U-235 u(93) metal/middle 0.2978 3.60E-5 0.01% 0.2942 0.0020 0.67% 1.24% 1.85 0.0036 

U-235 u(10) metal/central 0.1298 2.91E-5 0.02% 0.1306 0.0008 0.65% 0.67% 1.02 -0.0009 

U-238 u(10) metal/central -0.0513 1.64E-4 0.32% -0.0523 0.0003 0.63% 1.83% 2.60 0.0010 

U-238 u(nat) metal/middle -0.0407 2.33E-4 0.57% -0.0384 0.0003 0.75% 6.00% 6.23 -0.0023 

CFP=10 

U-235 u(93) metal/middle 0.2965 3.61E-5 0.01% 0.2942 0.0020 0.67% 0.80% 1.20 0.0024 

U-235 u(10) metal/central 0.1311 2.94E-5 0.02% 0.1306 0.0008 0.65% 0.36% 0.55 0.0005 

U-238 u(10) metal/central -0.0516 1.66E-4 0.32% -0.0523 0.0003 0.63% 1.25% 1.76 0.0007 

U-238 u(nat) metal/middle -0.0399 2.32E-4 0.58% -0.0384 0.0003 0.75% 3.94% 4.10 -0.0015 

 

 



 

 66 

As shown in Figure 40, an XY-planar slice of the F*(r) function depicts high F*(r) values 

near the center of the assembly for the case with acceptable results (CFP=10). Additionally, the 

F*(r) values decrease as the F*(r) function moves outward to the natural and depleted uranium 

reflector. This is expected since U-235 in the 10 wt% uranium is more important than the natural 

and depleted uranium reflector. 

 

 

(a) CFP=2       (b) CFP=5    (c) CFP=10 

Figure 39. Front View Meshview Image of F*(r) Relative Uncertainty for IMF-007-001  

 

 

Figure 40. Meshview Plot of F*(r) Values for the Optimal Case  
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Figure 41 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D. The MG and CE TSUNAMI-3D results presented in Figure 41 are considered 

acceptably consistent; however, the CE TSUNAMI-3D results show a slight improvement in the 

sensitivity comparisons for all important uranium nuclides. Since both MG and CE TSUNAMI-

3D have low uncertainties associated with the sensitivities and good agreement with the direct 

perturbation sensitivities, both methods are considered adequate for calculating IMF-007-001 

sensitivities. 

 

 

 

Figure 41. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative IMF-

007-001 Nuclides 

 

 

Figure 42 represents the figure of merit for each important nuclide for the MG and CE 

TSUNAMI-3D methods for IMF-007-001. The CE TSUNAMI-3D method exceeds the MG 

figure of merit for U-235 in the 93-wt% middle plate section. The MG TSUNAMI-3D method 

provides a larger FoM for U-235 in the natural uranium region, and U-235 and U-238 in the 10-

wt% central plate region. Overall, IMF-007-001 the U-235 in the natural uranium is the limiting 

nuclide for the efficiency of the either sensitivity code. 
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Figure 42. Figures of Merit for MG and CE TSUNAMI-3D for IMF-007-001 

 

 

LEU-COMP-THERM-042-007 Results 

 

Table 35 provides keff results for the CSAS5 calculations using the V7-238 and CE_V7 

libraries, which are used as knominal in the direct perturbation calculations for LCT-042-007. 

 

Table 35. LCT-042-007 CSAS5 keff Results Using the V7-238 and the CE_V7 Libraries 

Case Benchmark 

CSAS5 Result Calculated/Experimental 

Δkeff 

(LEU-COMP-THERM-

042-007) 
Model Values 

(CSAS - 

Benchmark) 

  keff  keff  C/E  Δkeff 

MG 1.000 0.0018 0.99634 0.0001 0.99634 0.0018 0.00366 0.0018 

CE 1.000 0.0018 0.99792 0.0001 0.99792 0.0018 0.00208 0.0018 

  

 

 The MG TSUNAMI-3D results were obtained by simulating 10 skipped generations and 

832 active generations with 100,013 neutrons per generation for the forward calculation and 30 

skipped generations and 2,398 active generations with 100,000 neutrons per generation for the 

adjoint calculation. The MG TSUNAMI-3D used 26 GB of memory with a runtime of 2.12 days. 

Table 36 provides the results for the MG TSUNAMI-3D sensitivities and DP calculations using 

the V7-238 library. The MG results are within 4.98% for all examined sensitivities. The largest 

magnitude of difference is 0.0030, which occurred for the U-238 in the fuel. The largest different 

in sensitivities in standard deviations is 2.81, which occurred for iron in the steel reflector. The 
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DP comparisons for MG TSUNAMI-3D are considered adequate for calculating sensitivities for 

LCT-042-007.  

 

Table 36. MG TSUNAMI-3D Results for LCT-042-007 

Nuclide In Material TSUNAMI Results Direct Perturbation 

Results 
Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff 

in Std 

Dev 

S

U-235 fuel 0.2424 1.37E-4 0.06% 0.2431 0.0023 0.93% -0.31% 0.33 -0.0007 

U-238 fuel -0.1375 1.25E-4 0.09% -0.1345 0.0014 1.00% 2.24% 2.22 -0.0030 

O water moderator 0.0212 1.11E-4 0.52% 0.0213 0.0002 0.95% -0.55% 0.51 -0.0001 

Fe steel reflector 0.0228 9.19E-5 0.40% 0.0233 0.0002 0.81% -2.53% 2.81 -0.0006 

H 
water reflector 

(around fuel) 
0.2321 1.44E-3 0.62% 0.2328 0.0023 0.99% -0.31% 0.27 -0.0007 

H water reflector -0.0324 1.49E-3 4.59% -0.0341 0.0003 0.93% -4.98% 1.12 0.0017 

 

 

Table 40 in Appendix B provides the results for seven different CE TSUNAMI-3D cases 

with a single changing parameter between each case. For each LCT-042-007 case shown in 

Table 40, five latent generations are simulated with 500 skipped generations with 4,500 active 

generations. The seven different variations of neutrons per generation are as follows: 1,000, 

10,000, 25,000, 50,000, 100,000, 150,000, and 200,000. The difficulty in obtaining LCT-042-

007 sensitivities began with a large uncertainty in the hydrogen in the water reflector for CE 

TSUNAMI-3D. From Table 40, the uncertainty in the hydrogen sensitivity begins at 25.78% for 

1,000 particles per generation, and then improves to 1.57% after 200,000 particles per generation 

are simulated. However, sufficient uncertainty of 3.19% is achieved at 50,000, which will be 

considered the most efficient case for LCT-042-007. 

The most efficient LCT-042-007 CE TSUNAMI-3D model, which is also shown in Table 

37, has a memory footprint of approximately 3.1 GB with a runtime of 14.1 hours while running 

in parallel on a total of 32 cores (18.8 CPU-days). The mesh interval size that provides accurate 

sensitivities was determined to be 1 cm, 1 cm, and 2 cm in the x-, y-, and z-direction. From Table 

37, the CE TSUNAMI-3D agreement with the DPs is well within the acceptable limits for each 

nuclide. The largest magnitude of difference is 0.0063, which occurred for the hydrogen in the 

section of water reflector around the fuel region. The optimal parameters for LCT-042-007 are 

determined to be the following: 
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 GEN=5,000  CET=1 (CLUTCH) 

 NPG=50,000  CFP=5 

 NSK=500  TBA=30 

 Mesh size in x- and y-dir. ≈ 1 cm  Mesh size in z-dir. ≈ 2 cm 

 

Table 37. CE TSUNAMI-3D CLUTCH Optimal Results for LCT-042-007 with NPG=50,000 

Nuclide In Material TSUNAMI Results Direct Perturbation 

Results 
Results Comparison 

    S S %S S S %S 
S Diff 

in % 

S Diff 

in Std 

Dev 

S

U-235 fuel 0.2422 5.35E-5 0.02% 0.2448 0.0022 0.92% -1.07% 1.16 -0.0026 

U-238 fuel -0.1363 2.57E-4 0.19% -0.1354 0.0013 0.95% 0.68% 0.70 -0.0009 

O water moderator 0.0208 2.66E-4 1.27% 0.0211 0.0002 0.96% -1.26% 0.80 -0.0003 

Fe steel reflector 0.0213 3.59E-4 1.68% 0.0220 0.0002 0.82% -3.02% 1.65 -0.0007 

H 
water reflector 

(around fuel) 
0.2300 2.49E-3 1.08% 0.2363 0.0022 0.93% -2.67% 1.90 -0.0063 

H water reflector -0.0348 1.11E-3 3.19% -0.0340 0.0003 0.96% 2.33% 0.68 -0.0008 

 

 

Figure 43 depicts the top view of the F*(r) values for LCT-042-007 using the SCALE 

Meshview visualization tool. As expected, the F*(r) values are highest near the center of the each 

array. Additionally, the F*(r) values decrease towards the edge of the each array. Figure 44 

shows a low uncertainty in the center of the each array, with a large uncertainty as the function 

moves in the outward direction. Figure 45 represents the plot of F*(r) values along the x-

direction for LCT-042-007. The plot of F*(r) values in Figure 45 displays the highest F*(r) 

values at the center of the each array and decreasing values along the edge of the arrays. Similar 

to PST-011-012, the user should not spend a considerable amount of time obtaining lower 

uncertainty values as long as the resulting TSUNAMI-3D sensitivities agree with the direct 

perturbation sensitivities.  

 

 

Figure 43. Meshview Plot of F*(r) Values for Optimal Parameters for LCT-042-007 
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Figure 44. Meshview Plot of F*(r) Relative Uncertainties for NPG=50,000 

 

 

Figure 45. Plot of F*(r) Values in the x-direction for NPG=50,000 for LCT-042-007 

 

 

Figure 46 presents comparisons of TSUNAMI-3D-K5 and direct perturbation results for 

nuclide sensitivities having an absolute magnitude of ~0.02 or greater for both MG and CE 

TSUNAMI-3D for LCT-042-007. The MG and CE TSUNAMI-3D results presented in Figure 46 

are considered acceptably consistent with indistinguishable DP agreements. Since both MG and 

CE TSUNAMI-3D have low sensitivity uncertainty and good agreement with the direct 

perturbation sensitivities, both methods are considered adequate for calculating sensitivities for 

LCT-042-007.   

Figure 47 represents the convergence of the eigenvalue sensitivity coefficient for 

hydrogen in the solution with CE TSUNAMI-3D-K5 as a function of total active particles. The 
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figure provides an indication of the proper number of total active particles for convergence 

required in order to obtain a low uncertainty for the hydrogen in LCT-042-007.  

Figure 48 shows the figure of merit for each individual important nuclide for the MG and 

CE TSUNAMI-3D methods for LCT-042-007. The MG TSUNAMI-3D method exceeds the CE 

FoM for all important nuclides except U-235. The U-235 figure of merit is approximately equal 

for both sensitivity methods. Similar to previous systems, the most important FoM for LCT-042-

007 is for hydrogen in water reflector region (excluding water reflector region around the fuel). 

A detailed table of the figures of merit is shown in Table 41 in Appendix C.  

 

 

Figure 46. TSUNAMI and Direct Perturbation Sensitivity Comparisons for Representative LCT-

042-007 Nuclides 
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Figure 47. CE TSUNAMI-3D Sensitivity for Hydrogen for LCT-042-007 as a Function of Total 

Active Particles 

 

 

 

Figure 48. Figure of Merit for MG and CE TSUNAMI-3D for LCT-042-007
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SECTION 6  

CONCLUSIONS 

 

 The multigroup TSUNAMI-3D and continuous-energy TSUNAMI-3D CLUTCH 

calculations were used to analyze a wide variety of system types. The models were built based 

on evaluations from the International Handbook of Evaluated Criticality Safety Benchmark 

Experiments. Each evaluation examined resulted in good agreement with the direct perturbation 

for MG TSUNAMI-3D except MST-004-001 and MST-005-001. Ultimately, all experiments 

modeled in CE TUNAMI-3D CLUTCH resulted in accurate sensitivities when compared to the 

reference sensitivities. Table 38 provides a general overview of parameters used for each type of 

analyzed system from the IHECSBE. In addition to the parameters shown below, all models also 

contain CET=1, FST=yes, TBA=30 (or any sufficiently large positive integer), and CGD=1 (or 

any positive integer). To avoid repetitiveness, these parameters are not added to the parameters 

shown in Table 38.  

 

Table 38. CE TSUNAMI-3D CLUTCH Summary of Case-Specific Parameters 

System Type CE TSUNAMI-3D CLUTCH Parameters System Type CE TSUNAMI-3D CLUTCH Parameters 

MST 

GEN=5,000 

HMM 

GEN=3,500 

NPG=10,000-200,000 NPG=10,000 

NSK=1,000 NSK=500 

CFP=5 or 10 CFP=5 

Mesh size in X,Y=1-2 cm Mesh size in X,Y=1 cm 

Mesh size in Z=1-3 cm Mesh size in Z=1.33 cm 

MMT 

GEN=5,000 

HMF 

GEN=1,000-4,100 

NPG=100,000 NPG=20,000-50,000 

NSK=1,000 NSK=100-500 

CFP=5 CFP=5 

Mesh size in X,Y=1.4 cm Mesh size in X,Y=0.5-1 cm 

Mesh size in Z=5 cm Mesh size in Z=0.5-2 cm 

PST 

GEN=10,000 

IMF 

GEN=6,000 

NPG=10,000 NPG=200,000 

NSK=1,000 NSK=2,000 

CFP=5 CFP=10 

Mesh size in X,Y=1 cm Mesh size in X,Y=1 cm 

Mesh size in Z=1 cm Mesh size in Z=1 cm 

HST 

GEN=3,001 

LCT 

GEN=5,000 

NPG=10,000 NPG=50,000 

NSK=20 NSK=500 

CFP=5 CFP=5 

Mesh size in X,Y=2.8 cm Mesh size in X,Y=1 cm 

Mesh size in Z=4 cm Mesh size in Z=2 cm 
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The main factors for determining which sensitivity method should be used include 

computing availability, type of system modeled, and runtime considerations. Overall, for serial 

processing, MG TSUNAMI-3D typically requires a shorter runtime than CE TSUNAMI-3D; 

however, MG TSUNAMI-3D is also known to require large memory usage. If the user has 

access to significant computational resources, then processing CE TSUNAMI-3D in parallel 

reduces the wall time substantially. Across the systems analyzed, the continuous-energy 

sensitivity calculations appear to provide better accuracy for U-235 and Pu-239 when compared 

to the multigroup results. For cases with high hydrogen sensitivity in thermal systems, the 

multigroup method performed better than the continuous-energy method. However, difficulties 

are occasionally encountered in the uncertainty of the hydrogen sensitivity for the MG method, 

as shown in MST-004-001 and MST-005-001. When facing difficulties with hydrogen sensitivity 

uncertainty in MG, the CE TSUNAMI-3D CLUTCH method is capable of obtaining accurate 

sensitivities with a low uncertainty. Therefore, CE TSUNAMI-3D provides an additional option 

for obtaining sensitivities where MG appears to perform poorly.  
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SECTION 7  

FUTURE WORK 

 

Future work includes a continuation of reviewing CE TSUNAMI-3D models, with an 

expansion on fast spectrum systems and other system types from the IHECSBE. Once SCALE 

6.2 is released, a thorough review of unsuccessful MG TSUNAMI-3D evaluations should be 

reevaluated with the new SCALE 6.2 continuous-energy (CE) TSUNAMI CLUTCH for the 

potential addition to VALID. Since a significant amount of nuclear criticality safety experiments 

are performed with thermal systems, it would be beneficial to research potential improvements in 

the hydrogen sensitivity results for CE TSUNAMI-3D CLUTCH. 
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Appendix A 

Table 39. CE TSUNAMI-3D Extended Results for PST-011-012 with NPG=10000 and NSK=1000 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff in 

% 

S Diff in 

Std Dev 
S 

GEN=1,100 

H Solution 0.3097 6.66E-2 21.50% 0.2870 0.0034 1.19% 7.93% 0.34 0.0228 

N Solution -0.0194 8.63E-4 4.45% -0.0197 0.0003 1.32% 1.59% 0.35 0.0003 

O Solution 0.1013 5.80E-3 5.73% 0.0949 0.0012 1.25% 6.73% 1.08 0.0064 

Pu-239 Solution 0.2797 5.13E-4 0.18% 0.2771 0.0034 1.24% 0.97% 0.77 0.0027 

Pu-240 Solution -0.0205 1.05E-4 0.51% -0.0209 0.0003 1.26% 1.64% 1.21 0.0003 

GEN=1,250 

H Solution 0.2745 4.21E-2 15.33% 0.2870 0.0034 1.19% 4.35% 0.30 -0.0125 

N Solution -0.0199 5.17E-4 2.60% -0.0197 0.0003 1.32% 0.93% 0.32 -0.0002 

O Solution 0.0934 3.88E-3 4.15% 0.0949 0.0012 1.25% 1.57% 0.37 -0.0015 

Pu-239 Solution 0.2798 2.99E-4 0.11% 0.2771 0.0034 1.24% 0.99% 0.79 0.0027 

Pu-240 Solution -0.0207 6.20E-5 0.30% -0.0209 0.0003 1.26% 0.85% 0.65 0.0002 

GEN=1,500 

H Solution 0.2559 3.09E-2 12.06% 0.2870 0.0034 1.19% 10.82% 1.00 -0.0311 

N Solution -0.0193 3.87E-4 2.00% -0.0197 0.0003 1.32% 1.86% 0.78 0.0004 

O Solution 0.0926 2.79E-3 3.02% 0.0949 0.0012 1.25% 2.48% 0.78 -0.0024 

Pu-239 Solution 0.2798 2.17E-4 0.08% 0.2771 0.0034 1.24% 1.00% 0.81 0.0028 

Pu-240 Solution -0.0208 4.34E-5 0.21% -0.0209 0.0003 1.26% 0.63% 0.50 0.0001 

GEN=2,000 

H Solution 0.2841 2.21E-2 7.77% 0.2870 0.0034 1.19% 0.98% 0.13 -0.0028 

N Solution -0.0192 2.76E-4 1.44% -0.0197 0.0003 1.32% 2.38% 1.24 0.0005 

O Solution 0.0959 2.00E-3 2.09% 0.0949 0.0012 1.25% 1.01% 0.41 0.0010 

Pu-239 Solution 0.2800 1.53E-4 0.05% 0.2771 0.0034 1.24% 1.04% 0.84 0.0029 

Pu-240 Solution -0.0208 2.99E-5 0.14% -0.0209 0.0003 1.26% 0.55% 0.43 0.0001 

GEN=2,500 

H Solution 0.2778 1.80E-2 6.48% 0.2870 0.0034 1.19% 3.19% 0.50 -0.0092 

N Solution -0.0194 2.29E-4 1.18% -0.0197 0.0003 1.32% 1.33% 0.76 0.0003 

O Solution 0.0942 1.63E-3 1.73% 0.0949 0.0012 1.25% 0.74% 0.35 -0.0007 

Pu-239 Solution 0.2799 1.26E-4 0.05% 0.2771 0.0034 1.24% 1.03% 0.83 0.0029 

Pu-240 Solution -0.0208 2.45E-5 0.12% -0.0209 0.0003 1.26% 0.56% 0.44 0.0001 
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Table 39. Continued. 
Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff in 

% 

S Diff in 

Std Dev 
S 

GEN=5,000 

H Solution 0.2740 1.11E-2 4.05% 0.2870 0.0034 1.19% 4.51% 1.11 -0.0129 

N Solution -0.0195 1.40E-4 0.72% -0.0197 0.0003 1.32% 1.13% 0.76 0.0002 

O Solution 0.0937 1.00E-3 1.07% 0.0949 0.0012 1.25% 1.36% 0.83 -0.0013 

Pu-239 Solution 0.2800 7.74E-5 0.03% 0.2771 0.0034 1.24% 1.04% 0.84 0.0029 

Pu-240 Solution -0.0208 1.50E-5 0.07% -0.0209 0.0003 1.26% 0.50% 0.40 0.0001 

GEN=7,500 

H Solution 0.2765 8.73E-3 3.16% 0.2870 0.0034 1.19% 3.66% 1.12 -0.0105 

N Solution -0.0194 1.10E-4 0.57% -0.0197 0.0003 1.32% 1.64% 1.14 0.0003 

O Solution 0.0942 7.86E-4 0.83% 0.0949 0.0012 1.25% 0.81% 0.54 -0.0008 

Pu-239 Solution 0.2800 6.11E-5 0.02% 0.2771 0.0034 1.24% 1.05% 0.85 0.0029 

Pu-240 Solution -0.0208 1.18E-5 0.06% -0.0209 0.0003 1.26% 0.50% 0.40 0.0001 

GEN=10,000 

H Solution 0.2841 7.45E-3 2.62% 0.2870 0.0034 1.19% 0.99% 0.35 -0.0028 

N Solution -0.0194 9.37E-5 0.48% -0.0197 0.0003 1.32% 1.64% 1.17 0.0003 

O Solution 0.0945 6.69E-4 0.71% 0.0949 0.0012 1.25% 0.42% 0.29 -0.0004 

Pu-239 Solution 0.2800 5.20E-5 0.02% 0.2771 0.0034 1.24% 1.06% 0.85 0.0029 

Pu-240 Solution -0.0208 1.01E-5 0.05% -0.0209 0.0003 1.26% 0.53% 0.42 0.0001 

GEN=15,000 

H Solution 0.2874 5.95E-3 2.07% 0.2870 0.0034 1.19% 0.14% 0.06 0.0004 

N Solution -0.0194 7.48E-5 0.39% -0.0197 0.0003 1.32% 1.58% 1.15 0.0003 

O Solution 0.0951 5.35E-4 0.56% 0.0949 0.0012 1.25% 0.20% 0.15 0.0002 

Pu-239 Solution 0.2800 4.14E-5 0.01% 0.2771 0.0034 1.24% 1.06% 0.85 0.0029 

Pu-240 Solution -0.0208 8.11E-6 0.04% -0.0209 0.0003 1.26% 0.49% 0.39 0.0001 

GEN=20,000 

H Solution 0.2823 5.10E-3 1.81% 0.2870 0.0034 1.19% 1.62% 0.76 -0.0046 

N Solution -0.0194 6.39E-5 0.33% -0.0197 0.0003 1.32% 1.48% 1.09 0.0003 

O Solution 0.0946 4.59E-4 0.48% 0.0949 0.0012 1.25% 0.37% 0.28 -0.0004 

Pu-239 Solution 0.2800 3.56E-5 0.01% 0.2771 0.0034 1.24% 1.05% 0.84 0.0029 

Pu-240 Solution -0.0208 6.94E-6 0.03% -0.0209 0.0003 1.26% 0.47% 0.37 0.0001 
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Appendix B 

Table 40. CE TSUNAMI-3D Extended Results for LCT-042-007 with GEN=5000 and NSK=500 

Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff in 

% 

S Diff in 

Std Dev 
S

NPG=1,000 

U-235 fuel 0.2464 5.73E-4 0.23% 0.2448 0.0022 0.92% 0.67% 0.71 0.0016 

U-238 fuel -0.1355 2.17E-3 1.60% -0.1354 0.0013 0.95% 0.09% 0.05 -0.0001 

O water moderator 0.0193 2.17E-3 11.23% 0.0211 0.0002 0.96% -8.40% 0.81 -0.0018 

Fe steel reflector 0.0252 3.55E-3 14.07% 0.0220 0.0002 0.82% 14.60% 0.90 0.0032 

H water reflector (around fuel) 0.2340 2.16E-2 9.21% 0.2363 0.0022 0.93% -1.00% 0.11 -0.0024 

H water reflector -0.0462 1.19E-2 25.78% -0.0340 0.0003 0.96% 35.99% 1.03 -0.0122 

NPG=10,000 

U-235 fuel 0.2430 1.32E-4 0.05% 0.2448 0.0022 0.92% -0.73% 0.80 -0.0018 

U-238 fuel -0.1376 6.10E-4 0.44% -0.1354 0.0013 0.95% 1.63% 1.55 -0.0022 

O water moderator 0.0201 6.25E-4 3.12% 0.0211 0.0002 0.96% -5.00% 1.61 -0.0011 

Fe steel reflector 0.0225 8.61E-4 3.83% 0.0220 0.0002 0.82% 2.11% 0.53 0.0005 

H water reflector (around fuel) 0.2247 5.94E-3 2.64% 0.2363 0.0022 0.93% -4.91% 1.83 -0.0116 

H water reflector -0.0313 2.75E-3 8.78% -0.0340 0.0003 0.96% -7.80% 0.96 0.0027 

NPG=25,000 

U-235 fuel 0.2424 7.76E-5 0.03% 0.2448 0.0022 0.92% -0.99% 1.08 -0.0024 

U-238 fuel -0.1367 3.67E-4 0.27% -0.1354 0.0013 0.95% 0.96% 0.97 -0.0013 

O water moderator 0.0203 3.01E-4 1.48% 0.0211 0.0002 0.96% -3.67% 2.13 -0.0008 

Fe steel reflector 0.0212 5.18E-4 2.44% 0.0220 0.0002 0.82% -3.62% 1.45 -0.0008 

H water reflector (around fuel) 0.2289 3.54E-3 1.55% 0.2363 0.0022 0.93% -3.13% 1.78 -0.0074 

H water reflector -0.0330 1.57E-3 4.76% -0.0340 0.0003 0.96% -2.84% 0.60 0.0010 

NPG=50,000 

U-235 fuel 0.2422 5.35E-5 0.02% 0.2448 0.0022 0.92% -1.07% 1.16 -0.0026 

U-238 fuel -0.1363 2.57E-4 0.19% -0.1354 0.0013 0.95% 0.68% 0.70 -0.0009 

O water moderator 0.0208 2.66E-4 1.27% 0.0211 0.0002 0.96% -1.26% 0.80 -0.0003 

Fe steel reflector 0.0213 3.59E-4 1.68% 0.0220 0.0002 0.82% -3.02% 1.65 -0.0007 

H water reflector (around fuel) 0.2300 2.49E-3 1.08% 0.2363 0.0022 0.93% -2.67% 1.90 -0.0063 

H water reflector -0.0348 1.11E-3 3.19% -0.0340 0.0003 0.96% 2.33% 0.68 -0.0008 
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Table 40. Continued.  
Nuclide In Material TSUNAMI Results Direct Perturbation Results Results Comparison 

    S S %S S S %S 
S Diff in 

% 

S Diff in 

Std Dev 
S

NPG=100,000 

U-235 fuel 0.2422 3.76E-5 0.02% 0.2448 0.0022 0.92% -1.08% 1.18 -0.0026 

U-238 fuel -0.1363 1.83E-4 0.13% -0.1354 0.0013 0.95% 0.68% 0.71 -0.0009 

O water moderator 0.0205 1.85E-4 0.90% 0.0211 0.0002 0.96% -2.85% 2.20 -0.0006 

Fe steel reflector 0.0206 2.54E-4 1.24% 0.0220 0.0002 0.82% -6.53% 4.61 -0.0014 

H water reflector (around fuel) 0.2276 1.75E-3 0.77% 0.2363 0.0022 0.93% -3.70% 3.11 -0.0087 

H water reflector -0.0323 7.60E-4 2.35% -0.0340 0.0003 0.96% -5.01% 2.06 0.0017 

NPG=150,000 

U-235 fuel 0.2421 3.08E-5 0.01% 0.2448 0.0022 0.92% -1.12% 1.22 -0.0027 

U-238 fuel -0.1364 1.51E-4 0.11% -0.1354 0.0013 0.95% 0.72% 0.76 -0.0010 

O water moderator 0.0207 1.53E-4 0.74% 0.0211 0.0002 0.96% -2.10% 1.75 -0.0004 

Fe steel reflector 0.0213 2.09E-4 0.98% 0.0220 0.0002 0.82% -3.35% 2.67 -0.0007 

H water reflector (around fuel) 0.2297 1.43E-3 0.62% 0.2363 0.0022 0.93% -2.82% 2.54 -0.0067 

H water reflector -0.0339 6.14E-4 1.81% -0.0340 0.0003 0.96% -0.27% 0.13 0.0001 

NPG=200,000 

U-235 fuel 0.2421 2.63E-5 0.01% 0.2448 0.0022 0.92% -1.12% 1.22 -0.0027 

U-238 fuel -0.1364 1.31E-4 0.10% -0.1354 0.0013 0.95% 0.74% 0.77 -0.0010 

O water moderator 0.0207 1.32E-4 0.64% 0.0211 0.0002 0.96% -2.15% 1.88 -0.0005 

Fe steel reflector 0.0211 1.80E-4 0.85% 0.0220 0.0002 0.82% -4.22% 3.64 -0.0009 

H water reflector (around fuel) 0.2289 1.26E-3 0.55% 0.2363 0.0022 0.93% -3.14% 2.93 -0.0074 

H water reflector -0.0346 5.45E-4 1.57% -0.0340 0.0003 0.96% 1.82% 0.98 -0.0006 
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Appendix C 

Table 41. TSUNAMI-3D Summary of Results for MG and CE CLUTCH for LCT-042-007  

 

MG CE CLUTCH on 32 Cores 

Runtime (hrs) 50.78 104.32 164.16 354.88 450.24 760.00 1082.88 1479.68 

DP Agreement? Yes No No No Yes Yes Yes Yes 

NPG  100,013 1,000 10,000 25,000 50,000 100,000 150,000 200,000 

NSK 10 500 

Memory (GB) 25.7 3.1 

U-235 Sensitivity 0.2424 0.246 0.243 0.242 0.242 0.242 0.242 0.242 

Uncertainty in U-235 Sensitivity 0.06% 0.23% 0.05% 0.03% 0.02% 0.02% 0.01% 0.01% 

U-235 FoM (/min) 911.703 30.201 406.108 521.825 925.432 548.246 1539.106 1126.370 

U-238 Sensitivity -0.1375 -0.1355 -0.1376 -0.1367 -0.1363 -0.1363 -0.1364 -0.1364 

Uncertainty in U-238 Sensitivity 0.09% 1.60% 0.44% 0.27% 0.19% 0.13% 0.11% 0.10% 

U-238 FoM (/min) 405.201 0.624 5.244 6.442 10.254 12.976 12.720 11.264 

O Sensitivity 0.0212 0.0193 0.0201 0.0203 0.0208 0.0205 0.0207 0.0207 

Uncertainty in O Sensitivity 0.52% 11.23% 3.12% 1.48% 1.27% 0.90% 0.74% 0.64% 

O FoM (/min) 12.138 0.013 0.104 0.214 0.230 0.271 0.281 0.275 

Fe Sensitivity 0.0228 0.0252 0.0225 0.0212 0.0213 0.0206 0.0213 0.0211 

Uncertainty in Fe Sensitivity 0.40% 14.07% 3.83% 2.44% 1.68% 1.24% 0.98% 0.85% 

Fe FoM (/min) 20.513 0.008 0.069 0.079 0.131 0.143 0.160 0.156 

H (mod-around fuel) Sensitivity 0.2321 0.234 0.2247 0.2289 0.23 0.2276 0.2297 0.2289 

Uncertainty in H (mod-around fuel) Sensitivity 0.62% 9.21% 2.64% 1.55% 1.08% 0.77% 0.62% 0.55% 

H (mod-around fuel) FoM (/min) 8.538 0.019 0.146 0.195 0.317 0.370 0.400 0.372 

H (mod-elsewhere) Sensitivity -0.0324 -0.0462 -0.0313 -0.033 -0.0348 -0.0323 -0.0339 -0.0346 

Uncertainty in (mod-elsewhere) Sensitivity 4.59% 25.78% 8.78% 4.76% 3.19% 2.35% 1.81% 1.57% 

H (mod-elsewhere) FoM (/min) 0.156 0.002 0.013 0.021 0.036 0.040 0.047 0.046 
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