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Abstract

Green’s functions are used to prove a collection of existence and uniqueness theorems
for third order nonlinear boundary value problems. Several examples of Green’s
functions for both second and third order boundary value problems are given. Various
applications of the existence theorems are presented in detail.
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1 Introduction and Preliminaries

1.1 Introduction

The solutions of third order boundary value problems are the subject of this work. In
particular, the focus will be on applications of the corresponding Green’s functions
and the resulting qualitative properties of the solutions. After introducing the basic
definitions, the first step is to guarantee that solutions to the equations in question ex-
ist and are unique. Thus, a series of uniqueness and existence theorems for third order
differential equations with homogeneous boundary conditions are established. Next,
an extensive collection of Green’s functions is derived, many of which are used later
on to illustrate various applications. Finally, several specific existence and uniqueness
theorems are proved by applying the previous results.

1.2 Preliminary Definitions and Theorems

This section will introduce the basic definitions, theorems, and constructions that will
be used throughout.

Definition 1.1. A Banach space, (X, || -||), is a complete normed linear space.

Let B = Cla, b] with the supremum norm, denoted by || - ||oo. Then B is a Banach
space. It will be beneficial, however, to use a variation of this norm on some subspace
of B. An example of such a space that will be used frequently is given by the following.

Theorem 1.1. Let w € Cla,b] be a fized function such that w(a) = w(b) = 0 and
w(z) >0 fora <z <b. Let

B* ={u € B :|u(z)| < Cw(zx) for someC > 0}.

For uw € B*, define

. u(x
fulf = sup 142
a<z<b w(l’)
Then || - ||* is a norm on B* and (B*,|| - ||*) is a Banach space.

Proof. Tt is easy to see that B* is a subspace of B. By the definition of B*, u(a) =
u(b) = 0 for any u € B*. Moreover, if ||ul|* = 0, then

< sup =0=u(x)=0
w(x) T aca<h W(T)
The triangle inequality and the fact that scalars can be factored out of || - ||* follow
easily from the definition. Thus, || - ||* is a norm on B*. Now, it must be shown

that B* is complete. Let {u,}2>, be a Cauchy sequence in (B*,|| - ||*). Let M =
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SUP,<,<p wW(z). Let € > 0 be given. There exists an N € N such that for any n, m
> N, ||t — um||* < 57. If n, m > N, then for a <z < b we have 1 < %, so that

() — ()] < sup MnlE) ()
a<z<b UJ(I>

Thus, |u,(z) — um(x)| <€ YV € [a,b] = ||un — Un|lec <€ Vn,m> N. Since ¢ >0 is
arbitrary, {u,} is a Cauchy sequence in B, showing that a Cauchy sequence in B* is
also Cauchy in B. B is complete, implying that there exists a u € C|a, b] such that
Up — win || - ||oo. It remains to show that w is in B* and that u, — w in (B*,|| - [|*).
Choose an x € (a,b). Since u,, — u in || - ||, there exists an N € N such that

n >N = |[u, — ul|oe <w(z). For any n > N,

= M||up — un||* <e.

() = (@) < s0p. (@) = u(w)| = [0, = o < w(a)

which, along with the reverse triangle inequality, implies

w(z) = w(z) +1§as<1£b w(z)

+ 1= [Ju,||" + 1.

So, % < |lun|I* + 1. Since Cauchy sequences are bounded there exists a constant

K > 0 such that 2 < K 4 1. This holds for all z € (a,b), which gives

|u
w(x)

|u(@)|

sup —— < K+1=|u' <K+1<oco=ucB".
a<z<b W(T)

Finally, for € > 0, there exists an N € N such that for n,m > N and for all = € (a, b),

|un(2) = tm(2)]
w(z)

< Ny — up||* < e.
Let m — oo in the previous in equality. Then for n > N and V z, it follows that

|un(z) — u(z)]
w(z)

Thus, ||u, — ul|* < € for n > N, showing that u,, — w in (B* | - ||*). O

< e.

Theorem can be generalized for a non-identically zero function w € Cla, b
such that w(z) > 0 on [a,b]. Let B, = B* in Theorem A norm on B, can be
‘Z(é))' where S, = {z : w(z) # 0}. The preceding proof
applies without change to show that B, is complete under || - ||*. Typically in the
following applications, however, w(xz) > 0 on a < x < b.

defined by |[jul|* = sup,eg,

Contraction Mapping Theorem LetT : B — B be a continuous map from the



Banach space, B, into itself such that for all u,v € B,
1T (u) = T(v)|| < 0flu— v

for some fized 0 € (0,1). Then T has a unique fized point ug; i.e. T(ug) = ug and
T(u) = u if and only if u = ug.

The Contraction Mapping Theorem is an important tool in proving existence and
uniqueness of solutions to ordinary differential equations, as will be seen later.

The following is some basic material from the theory of ordinary differential equa-
tions and boundary value problems. The definitions and the proofs of Theorems
and are given in Walter ([Wa], Ch. 6). For notational purposes, arbitrary
differential operators will be denoted by D.

Definition 1.2. The linear second order boundary value problem with separated bound-
ary conditions is defined as

(Du)(z) == (p(x)v'(x)) + q(z)u(z) = g(z), = € [a, ] (1.1)

with linearly independent boundary conditions

Riu = oqu(a) + asp(a)u’(a) = m
Rou = [u(b) + Bap(b)u'(b) = na, (1.2)

assuming that p € Clla,b] and q,g € C°a,b] are real-valued functions, that p(x) > 0
in [a,b], and that oy, B, m;, i = 1,2, are real constants satisfying a2 + a2 > 0 and
(% + 33 > 0. The corresponding homogeneous boundary value problem is given by

Du =0 on [a,b] (1.3)
aru(a) + agp(a)u’(a) = 0
Bru(b) + Bap(b)u'(b) = 0. (1.4)

Theorem 1.2. Let ui(x), us(x) be a fundamental system of solutions to the homo-
geneous differential equation Du = 0. The inhomogeneous boundary value problem,
, with boundary conditions, , is uniquely solvable if and only if the homoge-
neous problem, , , has only the zero solution u = 0. The latter is true if and
R1u1 R1u2
R2u1 R2u2
condition does not depend on the choice of fundamental system.

only if the determinant of } 1s monzero. Moreover, the determinant

Consequently, it is sufficient to solve (1.1) with the homogeneous boundary con-

ditions, (1.4)), instead of (1.1)), (L.2)). To illustrate this, suppose a function, w(z) in
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C?[a,b] can be found that satisfies (L.2). If v satisfies Dv = g(z) — Dw and (L.4),
then u = v + w satisfies Du = Dv + Dw = g(z) and (1.2). Finding such a function,
w, is typically not difficult. For example, if oy = (B3 = 0, then a linear w(z) which
satisfies aju(a) = etay, fru(b) = etay will work. Thus, the homogeneous boundary
conditions, , will be used in most discussions.

Definition 1.3. Let Du(z) := u"(x) = f(x,u(x), v/ (x)), for x € [a,b], be a nonhomo-
geneous second-order ODE. A fundamental solution to this equation is any func-
tion, u, satisfying the corresponding homogeneous problem, Du = 0. The Green’s
function corresponding to the nonhomogeneous problem is a function G(x,s), for
a <z, <b, such that G(x,s) is a fundamental solution of Du = 0 for x # s and
RG = RyG =0 for each s € (a,b).

Green’s function is given explicitly by

Glo.s) = %{ul(s)uQ(:c) na<s<z<b (1.5)

ur(z)ug(s) ma<z<s<b

where u; satisfies the first boundary condition, us satisfies the second boundary con-
dition, and ¢ # 0 is determined by the Wronskian

o Uy Uz
puy  pus

on the interval (a,b), which is constant.

Theorem 1.3. Assume p € C'a,b] and q,g € C°a,b] are real valued functions,
p(x) >0 in [a,b] and af + a3 > 0, 37 + 55 > 0. If the homogeneous boundary value
problem

Du =0 on [a,b], Rju= Rou=0, (1.6)

has only the trivial solution (i.e. if the determinant given in Theorem is nonzero)
then the Green’s function for this boundary value problem exists and is unique. It is
explicitly given by (1.5)) and is symmetric,

G(z,s) = G(s,x).
The unique solution of the ”"semihomogeneous” boundary value problem
Lu = g(z) on la,b], Riu= Rou=0 (1.7)
s given by
u(z) = /b G(z,s)g(s)ds. (1.8)
The uniqueness follows from Theorem[1.3.

The focus of this work will be on third order ordinary differential equations, y” =



f(z,y(z), v (x),y"(x)), satisfying a Lipschitz condition of the form

|f (,u(z), o' (z),u" (z)) = f(z, v(z),v'(z), v"(2))] <
Llu(z) = v(z)| + Klu'(z) = '(z)| + M|u"(z) = v"(2)], (1.9)

where K, L, and M are fixed positive constants. At a later point, these constants
will be replaced by functions p(x),q(x), and r(x), giving a more general Lipschitz
condition.

Theorems and have extensions for differential systems of arbitrary order.
In particular, if D is a linear differential operator of order n, then the nonhomoge-
neous problem Du = g with n linearly independent linear boundary conditions has
a unique solution if and only if the corresponding homogeneous problem has only
the zero solution. In this case, the solution of the nonhomogeneous problem has the
representation , although the Green’s function is in general not symmetric.



2 Existence and Uniqueness

The following two theorems will form the foundation for what is to come. The remain-
der of this work will consist of applications of the following existence and uniqueness
theorems. The proofs are generalizations of the corresponding second order theorems,
which are proved in Bailey, ([Bal, Ch. 3).

Consider the third order differential equation

u"(x) = f(a, ue), v (@), o' (x)) (2.1)

with linearly independent boundary conditions

Riu = aqu(a) + fiu'(a) + yu’(a) =0
Rou = asu(a) + Bou'(a) + you"(a) =0 (2.2)
Rsu = azu(b) + Bsu'(b) +vsu"(b) =0

A test for linear independence is given by Coddington ([Col) to be

a B 0 0 0
rank (0%)] ﬁg Y2 0 0 0 = 3.

0000435373

The boundary condition space, denoted by S, consists of all u in C®[a, b] that satisfy
the boundary conditions. Various norms similar to that given in Theorem will
be assigned throughout to make S a subspace of a Banach space. Note that for
u"(x) = g(z), the Green’s function exists for many cases of by an analogue of
Theorem [I.3]for third order boundary value problems. However, examples of functions
satisfying can be constructed for which a nontrivial solution of «”'(x) = 0 exists.
One such example is
u(z) =14z +2°

with boundary conditions
u(0) —u/(0) =0, 2u/(0) —u"(0) =0, u(l) —u/(1) =0.

The following theorem is proved for third order equations, though the conclusion
holds for second order equations as well.

Theorem 2.1. Suppose f : R? — R is continuous and satisfies

|f (2, ua(2)) = (2, ur(2))] < po)|uz(e) — ua (2)]

for some monnegative continuous function p. Suppose the Green’s function G for
the boundary value problem v (x) = g(x) and (2.2)) exists. Define the operator,
T:Cla,b) — S C Cla,b], by



(Tu)(a:):/ G(z,s)f(s,u(s))ds.

Suppose w is a fized nontrivial element of Cla,b] with w(x) > 0. Suppose also T :
B, — B,, where the Banach space B, is described in the remarks following Theorem

1

a) If the Green’s function, G is of constant sign, and

sup [ 2(2)

<1,
ZESw w(l’)i|

where z is defined by z(x) = f:|G(:c, s)|lp(s)w(s)ds and S, = {x € [a,b]
w(x) # 0}, then (2.1), (2.2) has a unique solution. Further z satisfies 2" (x) =
sign(G)p(x)w(x) with boundary conditions ([2.2)).

b) If G is possibly not of constant sign and

sup [L /ab |G(x,s)|p(5)w(s)ds] <1,

€Sy w(x)

then (2.1), (2.2) has a unique solution.

Proof. (a) Consider the case where G is negative (the proof for positive G is similar).
Let || - ||* denote the norm that was defined in Theorem [1.1} but with the maximum
taken over S,,. Then

(Tu)(z) = (Tv)(x)] =

b
/ G, 5)f (s, u(s)) — £(s,0(s))ds
< / G 8)]u(s) — o(s)p(s)ds
< / = ol]*|G . 8)|p(s)w(s)ds

= u—wvl"z(2).

From the definition of z(z) and the fact that G is a Green’s function, it follows that
2" (x) = —p(z)w(z) with boundary conditions (2.2)). Now for = € S,

|(Tw)(2) — (Tv) ()| _ 2(2)[lu—ol"

w(z) - w(x)

This implies

ITu = Tol|* < flu — vf* max 22
veSy w(x)




where max,cg, % < 1 by hypothesis, proving that 7" is a contraction on B,, which

yields a unique fixed point that is the solution of (2.1)- (2.2)). This proves part a.

(b) If G is possibly not of one sign, then for z € S,

|(Tw)(z) = (Tv) ()]

w(z)

b
< a5 [ Gl

Thus,

1
ITu — To||* < ||lu— v|* max
xESw ’lU(ZE)

b
/ G e 8)\p(s)w(s)ds.

The maximum is less than 1 by hypothesis, so T" is a contraction, which yields a
unique fixed point that is a solution of (2.1)-(2.2)). O

Two cases of Theorem are needed because if GG is of constant sign, the function
z(x) is much easier to compute by solving the differential equation

(@) = sign(G)p(a)u(z)

One of the obstacles that can arise in applying Theorem is confirming the
hypothesis that 7' maps B,, into B,,. In many cases, w(x) = 1, in which case B, =
Cla,b] and T : B,, — B, clearly holds. For w(z) > 0 on [a,b], the resulting norm
is equivalent to the norm for w(z) =1, so T : B, — B, holds in that case, as well.
In general, though, for w having zeros in [a, b], the properties of the corresponding
Green’s functions must be used to establish that this hypothesis holds.

It will be beneficial, particularly for the examples and applications that will be
presented later, to state the analog of Theorem for second order equations and
was found in Bailey [(Ba)].

Theorem 2.1* Suppose f : R? — R is continuous and satisfies

| (@, ua(2)) = [, ur(2))] < po)|uz(w) — ui (2)]

for some nonnegative continuous function p. Suppose the Green’s function G for
the boundary value problem u”(x) = g(x) and (1.4) exists. Define the operator, T :
Cla,b] — Cla,b], by

b
(Tu)(:z:):/ G(z,s)f(s,u(s))ds.

Suppose w is a fized nontrivial element of Cla,b] with w(z) > 0. Suppose also T :
B, — B,, where the Banach space B,, is described in the remarks following Theorem

1



a) If the Green’s function, G is of constant sign, and

z o] <

where z is defined by z(x) = f;|G(9§,s)|p(s)w(s)ds and S, = {z € [a,0]
w(z) # 0}, then Du = g(z), with boundary conditions (1.4), has a unique
solution.

b) If G is possibly not of constant sign and

sup [ﬁ /ab |G(x,s)]p(s)w(s)ds] <1,

CﬂGSw

then Du = g(x) with (1.4)) has a unique solution. Further, z satisfies

() = sign(G)p(r)w()

with boundary conditions ([1.4)).

In Chapter 4, examples will be given showing how the function w may be chosen and
how the existence of solutions depends on this choice.

Theorem 2.2. Let f : [a,b] x R® — R satisfy (1.9). Suppose G(x,s), a < x,s < b,
the Green’s function for the boundary value problem u"(x) = g(x) and (2.2), exists.
Suppose further that there exist constants My, My, M3, such that

b b b
/ |G (z, s)|ds < My, / |G (z,s)|ds < Ms, / |Grx(, 8)|ds < Ms.

Assume also that LMy + KMy + MM;s < 1. Then there exists a unique solution to
the boundary value problem

y"(x) = f(z,y(x),y (), y"(x)),  z€la],
with boundary conditions .

Proof. Let ||u|]| = max,<,<p[L|u(z)| + K|u'(x)| + M|u"(z)|] be the norm on C?[a, b
so that C?[a, b] is a Banach space. Define the operator T : C?[a,b] — C3[a, b] by

y=Ty= [ Glas)f(sy(5).0/5).o/ (5))ds.



To see that T does, indeed, map into C?[a, b], note first that that the differentiability
of GG allows differentiation under the integral sign. Hence,

b
(Tu)’(:v):/ Go(z,8)f(s,u(s),u'(s),u"(s))ds,

()" () = [ Gualiros) (s, u(s).0/ (). 0"(5))ds
and, .
(Tu)”’(a:):/ Grae(,8) (s, u(s),u'(s),u"(s))ds.

Now it must be shown that 7" is a contraction map.

b
(Tu)(z) - (To)(@)] < / G )| £ (5, u(s), ' (s), " (5)) — F(s,0(s), ' (5),0"(s)| ds
b
< [ 16 (Lhuls) — v(s) + KJu'(s) = /()] + MJu (5) — o (5)]) s
b
< Ju—ol / Gz, 3)|ds
< lu—v|| M.

Similarly,

b
[(Tw)'(z) = (T)'(x)] < Jlu - vll/ |Ge(, 8)|ds < [lu — o] M,

and

(Tw)"(x) — (To)'(z)] < |lu— o] / G (2, )|ds < [l — ]| My,

Since x is arbitrary in the previous inequalities, it follows that

| Tu —Tv|| < ||u—v|(LM; + KMy + MMs3).

By hypothesis, LM, + K My + M Ms is less than 1. Therefore, T is a contraction from
the complete space, C?[a, b], into C3[a, b] € C?[a, b]. Consequently, it has unique fixed
point, u, which is the desired solution. O

Now that existence and uniqueness of solutions has been established, the next
step is to derive the corresponding Green’s functions.

10



3 Green’s Functions and First Eigenvalues

This section will begin with a series of examples showing the derivation of Green’s
functions for second and third order boundary value problems. This will facilitate
the transition into the last part of the chapter, where the relationship between these
Green’s functions and the eigenvalues of the corresponding differential equations is
illustrated through more examples. Also in this section, the general interval, [a,b],
will be replaced by [0, a] for a > 0.

Example 3.1. Beginning with a simple example, the computation of Green’s function
for u” = g(x) with antiperiodic boundary conditions u(0) = —u(a) and «'(0) = —u/(a)
follows. The general solution of u”(x) = g(x) is

w(x) = di + dox + /Ox(a: — 8)g(s)ds.

Then u(0) = —u(a) implies

and v/(0) = —u/(a) implies

It follows that

u(z) = /Oag(s) [W] ds + /Ox(x —5)g(s)ds

u(z) = /Ow(W)g(s)ds + /xa <W>g(s)d8 + /Ox(x — 8)g(s)ds

Thus, Green’s function is

2x—a—2s
L 0<s<z<
G(:B7S) - 2 _4_2 =o=r=d (31)
===t 0<r<s<a
The next two examples follow in exactly the same manner as Example
Example 3.2. Green’s function for Du = u” = g(x) with boundary conditions
u(0) = u(a) = 0 is given by
2(x — 0<s<z<
G(z,s) = w—a) Ossszsa (3.2)
Z(s—a), 0<r<s<a.

11



Example 3.3. Green’s function for Du = u” = g(x) with boundary conditions

u(0) =0 and u/(a) =0 is

—s, 0<s<zxr<aqa
G = ’ - = 3.3
(z,5) {—x, 0<r<s<a. (3:3)

Next is an example arising in steady-state one dimensional heat flow.

Example 3.4. Consider the equation

with boundary conditions
u(0) = 4'(0), u(a) = —u'(a).
Following the same computations as before yields

uw(x) = dy + dox + /Ox(x —5)g(s)ds

U,(O) = d17 U,(()) = dg = dl = dg
u(a) = di + ady + /OQ(a —s)g(s)ds

uw(a) = —u'(a) = dy + ady + /Oa(a —8)g(s)ds = —dy — /Oag(s)ds

-1
244

/Oa(a —s+1)g(s)ds + /Oz(x — s)g(s)ds.

dy = dy

/Oa(a s+ 1)g(s)ds

—(1+ )
2+a

u(r) =

Thus, Green’s function is

e, 1 — 0 <z<
Gl s) = ﬁg(a s+1)+(r—s), 0<s<z<a (3.4)
—52(a—s+1), 0<zr<s<a.
For 0 < s < z, some algebra shows
1 1
—212(a—3+1)+(x—5):—212(a—x+1)

from which we see that G is indeed symmetric.

Now the previous methods will be applied to a third order example.

12



Example 3.5. Consider the equation
Du=u"" = g(z)

with boundary conditions

Integrating first to find u gives
u”(x) = g(x)

u"(x) = dy + /Oxg(s)ds
u'(x) = dy + do + /Ox(x — 5)g(s)ds

1 T _ 2
u(z) =do + diz + §d2$2 + / (e8] 5 ) g(s)ds
0

u(a) =0=dy = _ L a(a — 5)%g(s)ds

2
2a J,

() = /Om [_gc?(a —5)? N (x — 3)2}9(8)615 N /xa [M]g(s)d&

2a? 2

The corresponding Green’s function is

(3.5)

—x2(a—s)?
2a2 ’ —

7mz(a;s)2 + (xfs)z’ 0<s<z<a
G(z,s) = 2a 2 -

This next example will be used at a later point to illustrate one of the uniqueness
theorems.

Example 3.6. Consider the third order ordinary differential equation Du(z) =
u"(x) = g(z) with boundary conditions u(0) = u/(0) = u”(a) = 0. Integrate to
get

x

u" () = dy +/O g(s)ds

u'(x) = dy + dox + /:(I — 5)g(s)ds

1 1 [
u(x) =dy + dyz + §d2x2 +3 / (z — 5)%g(s)ds.
0

By the boundary conditions, u(0) = dy = 0 and ©/(0) = d; = 0. Further calculations

13



give dy = — foa g(s)ds. Hence, some algebra shows that

s x? [°
u(r) =— [ S(s—x)g(s)ds — — [ g(s)ds
0 2 2 x
Green’s function is
$(s —2 I<s<z<
Ola,s) = | 2157 20) O<sswsa (3.6)
-5 <zr<s<a

Similar calculations yield the following.

Example 3.7. Green’s function for Du = v (x) = g(x) with boundary conditions
u(0) = u'(0) = u'(a) =0 is

G(z,s) = (3.7)

2

= (a — s), 0<z<s<aq

{%(%—23:—1—3), 0<s<z<a
2a

and will also be used at a later point.

The next example is a second order equation defined by an operator that differs
slightly from those used in the previous problems.

/

Example 3.8. As before, the goal is to find Green’s function for Du = (r(x)u/(z))" =
g(x) with boundary conditions u(0) = u'(a) = 0 and where r(z) > 0. Integrating the
corresponding homogeneous equation generates the following.

(r(z)u'(z))" = 0= r(z)u'(z) = ¢

Co S|
u'(z) = — = u(x) = co/ ——ds + c1.
r(z) o 7(s)
Now define 1
ui(x) = / ——ds, ug(x)=1.
o 7(s)
The Wronskian of u; and us is ¢ = —le) (rujus —rujuy is constant). By the variation

of parameters formula, it can be shown that the terms involving r(x) in the expression
for u will cancel. Using methods similar to those used previously,

u(x):d1u1+d2u2+/0x[/ox%—/:Tc(l—z)]g(f)df

u’(m):r?—;)-l—g(x)[/om%—/j%}—1—/0:6%6%

o el
u<a>_r(a)+/0 r(a)dg 0

14



u<:c>=—/jg(&)df/j%+/j[/j%—/j%}g<s>ds.

Simplifying this expression yields

ooy =~ [(oterie [ - [aterae [0

Finally, Green’s function is

13 _ds

0<zr<s<a

G(z,s) = Ox T&S) -~ (3.8)
f = 0<s<z<a.

r(s)’
Example 3.9. The final Green’s function provided is for (r(z)u'(x)) = g(z) for
r(x) > 0 and boundary conditions u(0) = u(a) = 0. The calculations reveal Green’s

function to be g
ds @ ds
, 0<s<z<a
G(z,s) = { 0 7(s) fx () (3.9)

mds a ds_
0 7 Je 7y VSTSSSa

The last part of this chapter will focus on the eigenvalues and eigenfunctions
associated with the Green’s functions that were just given. Recall the problem from
Example 3.2, Du = v” = f(z,u(z)) with boundary conditions u(0) = u(a) = 0,
where f satisfies the conditions of Theorem [2.If. An eigenvalue of the operator, D,
is a constant A such that Du = —Ap(z)u(z) for some nontrivial u satisfying the given
boundary conditions. Consider the special case where f(x,u(z),u'(z)) = Lu(z). The
corresponding eigenvalue problem is u”(x) = —ALu(x). The general solution for

A>0is
u(z) = ey sin(VALz) + ¢ cos(VALz).

The boundary conditions reveal that
u(0) =0=co =0= u(a) = c;sin(VALa) =0 = Vv ALa = nr.

oy . 2 . .
For the smallest posmve eigenvalue, let n =1 so that \g = 75 with correspondmg
eigenfunction sin Z2. In Theorem , with f(x,u(x)) = Lu and w(z) = sin 2%, the

function z is given by z(x) = /\—Ow(x) Note that when A\g =1, L = Z—j, leading to the
conclusion that there is not a unique solution of v” = — Lu with boundary conditions
u(0) = u(a) = 0 since u(x) = csin Z* is a solution for all Values of c. If A9 > 1, then
Theorem ﬂ* applies and the resultlng bound on L is L < %;. Note that as the size of
the interval increases (i.e. as a gets bigger) L must correspondmgly decrease. Thus,

for larger intervals the class of solutions becomes more restricted.

Example 3.10. A slight variation of Example yields the problem Du = u” =

15



—\Lu with boundary conditions u(0) = u/(a) = 0. The first positive eigenvalue is
Ao = J—EL with eigenfunction sin Z%. If Ay > 1, then L < %,

The next two examples require some basic numerical computation.

Example 3.11. Consider finding the first positive eigenvalue for Du = u” with
boundary conditions u(0) = /(0) and u(1) = —«/(1). This is the heat flow equation
with a = 1. Note that the corresponding Green’s function, given by , is constant
in sign. Now,

u'(xr) = —ALy

w(z) = ¢1 sin(VALz) 4 ¢5 cos(VALz)
w(0) = u/'(0) = ¢ = VALey.
The condition u(1) = —u/(1) along with the previous result implies
¢ sin(VAL) + 2V ALey cos(VAL) — ALey sin(vVAL) = 0
= sin(VAL) + 2VAL cos(VAL) — ALsin(vVAL) = 0

2/ AL
= tan VAL = L1

Numerical calculations give

13072

Ao & >1= L <1.708.

Example 3.12. Finally, consider Du = v = g(x) with boundary conditions u(0) =
u'(0) and u(1) = 0, which yields the eigenvalue problem «” = —ALu. To find the
first positive eigenvalue, Ao, note that finding solutions of the form wu(z) = €’ gives
the characteristic equation 73 4+ LA = 0 and with 6 = L,

r =03 exp (ir + 2rki), k=0,1,2.

The general solution is

1 1,1 1

1
Let a = ‘973 to simplify the notation. Applying the boundary conditions to u yields
the system of equations

c1+c = 0
cre” 2 4 cpe® cos(V3a) + cze sin(vV3a)
—2aey + acy + \/§acg = 0.

I
o

16



Basic linear algebra reduces this system to the single equation

e“c1 (€7 — cos(V3a) + v3sin(v3a)) = 0.

Finally, numerical computations show that the first positive root of this equation is

o)
_on_

4.23323
~ 2.1166 = \g ~ 33

o} = L < 75.859 for Ay > 1.

17



4 Applications to Boundary Value Problems

In this section, various aspects of the preceding material will be applied to boundary
value problems, with the specific goal of illustrating the theorems in Section 2. In
particular, with respect to finding the first positive eigenvalue, better bounds on the
Lipschitz constant L will be obtained.

4.1 Applications of Theorem 2.1 and Theorem 2.1%*

As an application of Theorem 2.1*(a), using the equation Du = u" = f(z,u(z)),
where f satisfies | f(x,ui(z) — f(x,uz(z))| < Llui(z) — ug(z)| on [0, a] with boundary
conditions u(0) = u(a) = 0, choose a polynomial of degree 2, w, satisfying the
boundary conditions. Denote w by

w(z) = ag + a1z + a?
Applying the boundary conditions to find ag, a1, as yields
w(z) = ax — 2°.

Solving next for z, where z satisfies 2" = —Lw, 2(0) = z(a) = 0, yields 2"(z) =
L(—az + 2?) to get

1 1
z2(x) =co+ 1z — ELaxS + ELx4.

Applying the boundary conditions produces,

1 1 1
z(z) = ELCLBl' — éLax?’ + EL$4.

. 2 .
Basic calculus shows that maxg.,<q % = 5% . Moreover, the Green’s function for

this problem was computed in Example [3.2] and is easily seen to be of constant sign.
Now it must be shown that T maps B, into B,,. Using equation (3.2)) and letting
w(z) = z(a — x) it follows that

Tu = /Oa G(z,s)f(s,u(s))ds

S

~ [ S asatis+ [ 2 —astsutsis

a

18



Then, since G is negative,

WWMS“;x42v@u@wu+?/@—@u@w®ws

|Tu(:c)] i S|J(S,u(s S+ —— a—S S,uls S

o) S £ (s, u(s)lds + - /| ) (s, u(s)ld
< — /|fsu \ds+ /\fsu )|ds

| /\

;Auwwwﬁzcw.

Thus, the hypotheses of Theorem 2.1%(a) are satisfied if L < 5‘% ~ %—3. Comparison
of this bound on L to the optimal bound obtained using the first positive eigenvalue,
L < ;r_; ~ % shows that the approximation method of Theorem (a) gives a bound
almost as good as the best possible bound on L .

The previous example showed that choosing w to be a polynomial yields a good
but not optimal bound on L. The more w differs from the eigenfunction, the worse the
bound on L becomes. Consider the following example on the ODE from the previous
problem with the same boundary conditions where w is taken to be the constant 1.
Then 2”(x) = —L. After integrating and applying the boundary conditions,

—1 Lx
z(x) = TLZB + = 5

Computing the maxg,«q Z)( 2) reveals the bound on L to be L < &

To discuss the optimality of Theorems [2.1f and 2.1, consider, for ease of compu-
tation, the second order case. Suppose \g is the first positive eigenvalue of w”(x) =
—Ap(x)w(z) with boundary conditions

Riw := aqw(0) + f1w'(0) = 0,
Row := apw(a) + Pow’(a) = 0,

and suppose also that the Green’s function is negative. Let the eigenfunction corre-
sponding to Ay be denoted by wy. By definition of the Green’s function,

w(x) = / —XoG(z, s)p(s)wy(s)ds = Noz(x)

implying
z(x) 1

wo(fE) N )\0.

Therefore, if A\g > 1, then T' is a contraction. An explicit calculation for p(x) = L
with the boundary conditions wy(0) = wp(a) = 0 yields wo(z) = sin vV LAz. Then
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wp(a) = 0 implies that

L)y = )
and )
s
AO — ﬁ
Now, Ao > 1 if and only if Z—i > L. This example shows the dependence of the
Lipschitz constant, L on the length of the interval.
For the problem Du = v” = f(z,u) with boundary conditions u(0) = —u/(0)
and u(1) = —u/(1), choose, as in the previous case, a polynomial, w, satisfying the

boundary conditions. Again, denote w by
w(x) = ag + a1z + aa?

In order to satisfy the boundary conditions, choose ay = 1, and use the boundary
conditions to compute a; = 1, and a; = —1. This gives

w(z)=1+z— 2"

Note that w(x) > 0 on [0,1], so that B, = B = C[0,1] and T maps B, into B,.
Integrating 2”(z) = —Lw(x) twice yields
1 1

1
z(x) = —§L$2 — ELJU?’ + ELZLA + cox + 1.

Applying the boundary conditions to z(x) to solve for ¢y and ¢; produces

1 1 1 7 7
:L(——Q——?’ Loa b _>
z(z) 5% g% + 3% + 12x+ B

Next, computing maxg<,<1 % numerically shows that it is necessary for L to satisfy
L < 1.7029 in order to apply Theorem [2.1(a). The Green’s function for this problem
was also computed previously in Example |3.4] and is constant in sign. Hence, Theo-
rem [2.1a) does apply as long as the bound on L holds. Again, comparing this bound
on L to the bound found in Example [3.11] L < 1.708, shows that the approximation
method yields a bound very close to the optimal.

Next, a third order example is given. Consider Lu = v"” = f(x,u) and boundary
conditions u(0) = «/(0) = 0 and u(1) = 0. Choose w(x) to be a polynomial that
satisfies the boundary conditions,

w(x) = ag + ayx + ayr® + asr’.

To satisfy the boundary conditions, let ag = a; = 0, as = 1, and a3 = —1. Now,
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w(r) = 2% — 2 and

2"(z) = —Lw(z) = 2" () = L(2* — 27).

Integrating yields

5 G 22
S SN S .
z(x) 60+ 120—1—02 5 + 1z + ¢

Applying the boundary conditions to z(x) implies

L
fry — 0 = —
Co=0C1 ; G2 60
so that . . )
x x x
)
(@) 60 " 120 120
Finding maxo<,<1 5 by calculus shows that L < 60. It is necessary to show that T’

maps B, into B, in order to apply Theorem [2.1] - . The Green’s function calculated
in (3.5 is negative and simplifies for a = 1 to

L@l g<s<z<i1
G(:B,s):{ 2 0 =SSt

2712
U 0<a<s< L

Thus,
(Tu) = /OG(x,s)f(s,u(s))ds
- /j{%_“}ﬂs,u(s))dw/x #f(s,u(s))ds,
) < [ SO pssutolas + [ s uts)as,

Tulw)] - ;)/ox32(1—$2)|f(87U(8))!d8

22%2(1 — x

=
S

iL'2

+m / (1 - 9)%|f (s, u(s))|ds

/]fsu )|ds
- 139“” / If(s,u(S))ldSJr% / (s, u(s))lds

< /Ox | f(s,u(s)|ds + %/ | f(s,u(s))|ds

< / (s, u(s))|ds < Clu).
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Now the hypotheses of Theorem are satisfied. Comparing the bound L < 60 to
the optimal bound, L < 75.859, obtained in Example shows that the function
w as a polynomial is not a good estimate of the eigenfunction. If w is chosen to be
more similar to the eigenfunction, a better bound on L could be achieved.

Coming back to the ODE Du = u” = f(x,u) with boundary conditions u(0) =
u(a) = 0, a different approach is given as an application of Theorem 2.1*. Note the
fact that T" maps B, into B, was established in the first example in this section.
Since the boundary conditions are the same as in the first example, the proof given
that T" maps B, into B, also applies here. In the previous examples, the function
p(z) that appears in the Lipschitz condition in Theorem 2.1*(a) was taken to be a
constant, L. Now that restriction is lifted. Solve 2”(z) = —p(z)w(x) with the same
boundary conditions as above but with p(z) = Lz. Using the same function found
above for w, let w(z) = ax — . Then,

(x) = La(—ax+ 2?)
1 1
Z(x) = —gax?’L + ZI4L + ¢

—1 1
z(x) = L(EQI4 + %I‘K)) + 1 + ¢o.

Applying the boundary conditions produces ¢y = 0 and ¢; = %a‘LL. Then

1 1 1
:L<—— 4, 5 14 )
z(x) 507 + 55 + ik

To get a bound on L, compute maxg«,<q % This is

L[—%aac4 + %:)(J5 + —i—%a‘lx} %(5@9&3 — 3zt — 2a4)
max = max

0<z<a —axr + .1'2 O0<z<a (.’L‘ — a)

L 2 2
= 012133& 50 (—9:B + 4dax + 2a )

Employing methods from calculus, the maximum is % which must be less than 1

to apply Theorem [2.1{(a). Thus the required bound on L is L < %.
A similar application to the same ODE above using p(z) = % is given next. Note
that p(z) is singular in this example. This time,

L
z) = =(—ar+2*) =(a—1x)L
T
1
Z(r) = —axLl+ §x2 +c
L L 3
2(z) = —5ae L+ 6% L+ ¢z + co.
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Applying the boundary conditions gives ¢y = 0 and ¢; = %aQL. So then

1 1 1
z(x) = L<6x3 - §ax2 + §a2 )

Finding the bound on L yields

max L
0<zx<a

_ 1,34 1,2 1.2
[ gL + jaz 30 x]:La
3

z(r — a)

Thus L < g is the desired bound.

4.2 Applications of Theorem 2.2
The following is an application of Theorem [2.2]

Theorem 4.1. Let f:[0,a] x R® — R be continuous and satisfy
‘f(t>ya yla y//) - f(tawa xla zll)‘ S K’y - .Z" + L’y/ - ml‘ + M‘y” - .I'”’
with K, L, and M > 0. Assume also that

2a3 5a?
— K+ —L+Ma<1.
11 + 9 + Ma

Then there exists a unique solution to the ordinary boundary value problem

y"(t) = f(tyt),y (1), y" (1))
y(0) =4'(0) = ¢"(a) = 0.

Proof. Let S be as in Theorem [2.2] Define operator T by

y=Ty = [ o) f(s.y(5).0/5).o/ (5))ds.

Now Theorem will be used to show that 7" is a contraction map. As in the hy-
potheses of that theorem, the constants M7, Ms, and M5 will be computed as bounds
on the integrals of the corresponding Green’s function and its partial derivatives.
The Green’s function for Du = u" with the given boundary conditions was found in
Chapter 3, Example [3.6| and is

$(s—2 <s<zx<
G(x,s):{2(82 z); O—S—j—z (A1)

Notice that the Green’s function is negative. To calculate M, consider

23



/G(m,s)ds = / x—sds—/ x—ds
0 0 2

L 3

= % - 5(91; a—a°
/ |G(z,s)|ds = / —G(x,s)ds
0 0
1 1
= E:c + 2(x2a—a:3).
The upper bound is Calculated Via methods from Calculus yielding a maximum at
x =12 Thus [ |G(x,s)lds < Za® implying M; = Za®. Next, to calculate Mo,
/ |Ge(z,s)|ds < / 2 ds —|—/ xds
0 0 2 T
322
= ar— —
4

which yields a maximum at x = %“ Then

a 2
/ |G, (x, s)|ds < 51
0 9

so that My = %. Lastly, to calculate M3, note that G, vanishes for 0 < s <z <a
and is equal to —1 otherwise. Thus,

/]Gm(m,s)\dsg/ ds=a—x = M3 =a.
0 T

Following the proof of Theorem the norm can now be calculated.

d2
7w = To|| = max | K|Tu—T0| +L‘d T — —TU‘ +M‘@Tu— @Tv’

Applying the Lipschitz condition given in the hypothesis,

2

[Tu—To| < Jlu—vl| 77 a
Similarly,

dlv dTv 5a>

T ar| Sl
and

PTu  d*Tv

d?  dx? ‘— Il = vlla



Now, ||[Tu — Tv|| < ||u — v [%K + %L + aM]. By hypothesis, the coefficient
of |[u — v|| on the right hand side is less than 1.Therefore, T" is a contraction from
the complete space, S, into itself. Consequently, it has unique fixed point, u, which
is the desired solution.

]

Theorem 4.2. Let f:[0,a] x R® — R be continuous and satisfy

|ty ") — f(t 2,2 2")| < Kly — 2| + LIy’ — 2’| + M|y" — 2|

with K, L, and M > 0. Assume also that
2K a? n 5La* N 4dMa <1
81 6 3 '

Then there exists a unique solution to the ordinary boundary value problem

y"(t) = f(t,y(t),y'(t),y"(t))
y(0) = '(0) = y(a) = 0.

Proof Let S be as in Theorem [2.2] Define operator T as in the previous theorem.
The Green’s function for Lu = «” with the given boundary conditions is calculated
in Example |3.5| and is

_$2(a_25)2 + (z—s)? 0<s<ux
G(x,s) = 2a 2 0 ; ; )

z2(a—s)?
T 22

Integrating G produces

/OQG(x,s)ds = /Ox[—:ﬁ(a—sf + <$_S)2]ds+/:Mds

2a2 2 2a2
2z —a)
N 6
so that . . ) .
/ |G|ds:/ _Gdszwgﬁ
; ; 6 81

hence M; = 28%3.
To calculate Ms, differentiating G with respect to x yields

. x(a—s)2

a2 9 =

_<)2
Colo.s) = {_z(aa—25)_ +(r—s5), 0<s<wz<a
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So

/|Gx|ds < /mds—l—/(x—s)dsjt/ xz(a—s)2ds
0 0 0 z @

a?
xa®  x?

3a3 - 2
x
= 6(2@ + 3x)

5a?

6

IN

and M, = %. The calculation for G, leads to M3. Now,

Goz(x,8) = {_(ai)z

a? 9 — —= —=

The above calculation gives

/|Gm|ds < /
0 0

a
3

T a _ 2
d+/ds+/(a 28>ds
0 T a
/ds

0

<
- 3
so that M3 = 43“. The rest of the proof follows the proof of Theorem . Recall the

norm

d2
+ M\W S

dx?

K|Tu—Tv| + L‘ Tu— L1
dz

|Tu — Tv|| = max
a<z<b

Applying the Lipschitz condition given in the hypothesis gives the following three

inequalities. First,
3

2
Tu —To| < Ju—v]| o,
81

dTu  dTv 5a?
T | Sl
and lastly
d*Tu  d?Tv 4a
dz? dz?2 1= 3
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Thus, these three inequalities imply

2Ka®* 5La*> 4AM
17w = Toll < lu—ofl [Z55 + 25 + 257

leading to the desired inequality

2Ka? N 5La? N AMa 1
3 6 3 .

Theorem 4.3. Let f:[0,a] x R® — R be continuous and satisfy

‘f(t>ya y/a y”) - .f(tha xla x//)‘ S K’y - .’17’ + L’y/ - :E,‘ + M‘y” - x//’
with K, L, and M > 0. Assume also that
Ka3 N La? N Ma
12 8 2
Then there exists a unique solution to the ordinary boundary value problem

< 1.

y"(t) = f(tyt),y (1), y" (1))
y(0) = y'(0) = ¢(a) = 0.

Proof Let S be as in Theorem [2.2] Define operator T as in the previous theorem.
The Green’s function for Lu = u” with the given boundary conditions is shown in
Example and is

Integrating G produces

@ T sa? 52 @2
/OG(a:,s)ds /0<%—xs—|—§>ds—/m <%(a—s)>ds
_ @ _a?
6 4

so that

3
hence M; = 5.
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To calculate Ms, differentiating G with respect to = yields

Since G, <0,
/|Ga}|d$ = /—(ﬁ—s)ds%—/ —(—:B+Eds
0 0 a x a
-2 za
2 2
a2
< —.
- 8
Next,
s 0 <zx<
Gualros) = 4%, 2020
—14+2 0<zr<s<
This gives

/Oa|Gm|ds - /Odes—i—/:(l—g)ds

IN

The rest of the proof follows the proof of Theorem [4.1I] Recall the norm

d2
M‘ ~ Y7
+ de da? v

x | K[Tu—To| + L‘ Tu— L1

Tu—Tv|| =
| Tu — Tvl|| = max o

Applying the Lipschitz condition given in the hypothesis gives the following three
inequalities. First,
3
a
|Tu —Tv| <|u—v|—,
12

2

dT'v dTwv a
< u vl

dx dx

and lastly

d*Tu  d*Tv ’ a

da? dz? | — 2
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Thus,
Ka? N La? N Ma
4 8 2

[Tu—To|| < lu—v
leading to the desired inequality

Ka®* La*> Ma

< 1.
4+8+2

4.3 A Final Existence Theorem

One last existence/uniqueness theorem is given making use of the Green’s function.
First, some preliminaries are introduced. Define the norm on S to be

ol — e e 1O O] o)
a<t<b w(t) "a<t<b v(t) "a<t<b z(t)

where w, v, and z are fixed functions in S, possibly vanishing at the endpoints. A
modified Lipschitz condition is given by

(8 y(0), ' (1), 5" (8) = f (2 (t), (1), " (1))] < p()]y — 2| +q(O)ly' — 2| +r()]y" — 2",

where p, ¢, and r are nonnegative functions. Using the same operator, T, from the
previous theorem with G from Example [3.6] note that

e s L/ Gt 35505151, 17(9) = 5 (s), (5, a”(5) s
/ |G(t,9)] |p(s)w(s )\y( 21)@ o(s)l +61(8)1)(5)%3;/(5>|

+7’(8)z(8)|y ( )Z(S;:%S)'}ds.

The following three inequalities are needed,

IN

Ty(t) — T(t)
w(t)

y—z| [°
Lt [ ptoyuts) + ats)ots) + r(s)=(5)ds,

| 4(Ty(t) — Ta(t)) Hy— [
v(t) / Gi(t, 5)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds, (4.2)

and

| (Ty(t) — Ta(t)) Hy— ||
2(t) / |Gu(t, 5)l[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds.
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The goal is to find w, v, and z for which the following hold,
b
ot [ 16 N0e) + o)) (6 < a <
b
%/ |Gy (¢, 9)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds < a<1 (4.3)

1

i
o [ G b6y + ahe(s) +7(0)60ds < @<

Theorem 4.4. Suppose f(t,y(t),y'(t),y"(t)) is continuous on [0,a] x R® and satisfies
the above modified Lipschitz condition. If the equation

u"(t) + r(0)u"(t) + q(0)u'(t) + p(t)u(t) =0
has a solution satisfying u(0) =0, u/(0) =0 on [0,a], and u”(t) > 0 on [0, a], then

y (1) = f(ty(@),y (1), y" (1))

with boundary conditions y(0) = y'(0) = 0 and y"(a) = 0 has ezxactly one solution.

Proof. Consider the comparison problem

W+ (0 (1) + gt (1) + pltw(t)] = 0

with

w(0) =0, w'(0) =0, w’(0)=u"(0).
It will be shown that it is possible to find w, v = w’, and z = w” so that (4.3) holds
for some a < 1.

Let m = ming<;<, u”(t). By continuity of solutions with respect to parameters,
given € > 0 there exists aw < 1 so that on [0, al,

u(t) —wt)| < e, |W(t) —w'(t)] <e |u"(t)— ") <e

Take e < 7. Therefore,

M@>wﬁyf>m—%:%>o

for t € [0,a]. By the Mean Value Theorem, for any ¢ € (0, a

w'(t) — w'(0)

Mgk
r— =w'(t") >0
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for some t* between 0 and ¢ implying that w'(f) > 0. A similar argument concludes
that w(t) > 0 on (0, a]. Hence,

w'(t), w(t) > 0on (0,a], w'(t) >0 on [0,a].

The Green’s function for u”(x) = g(z) with boundary conditions u(0) = '(0) =
u”(a) = 0 is given by (3.6). Note that G, G,, and G,, are negative (or zero) and
since w” (z) = —%[rw"” + qu' + pw], it follows that h defined by

h(z) = /0 "G (e, )| [p(s)w(s) + a(s)u! (s) + r(s)u”(s)] ds

satisfies the following.

h(z) = a/oa G(z,s)w" (s)ds

= a(g(s —2z)w"(s) Z — /Ox(s —x)w"(s)ds — %210"(3)

)

Thus, Z((i)) < a. It follows from the expression for h that
B (z) = afw'(z) — 2w’ (a)] < aw'(z) and B (z) < afw” (z) —w”(a)] < aw”(x).

Therefore, (4.3)) holds implying that 7" is a contraction mapping. O

4.4 Computations

To illustrate the conclusion of example consider the problem u"(x) = —62|u| =
f(z,u(z)) with non-homogeneous boundary conditions u(0) = 2, «v/(0) = 0, u(l) =
—1. Recall from Example [3.12|that the approximation optimal bound on the Lipschitz
constant, L, is 75.859. In this case, the Lipschitz constant is chosen to be L = 62.
Since Theorem [2.1| requires homogeneous boundary conditions, it cannot be applied
directly to this example. Define w to be a polynomial satisfying the same boundary
conditions, w(z) = 2—3z%. By letting z(z) = u(z) —w(z), z satisfies the homogeneous
boundary conditions as stated in [3.12] Moreover,

Z(z) =u"(z) — w"(x) = u"(x) = —62|2(z) + w(x)| ;== —62f(x, 2),
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so z satisfies the same ODE as u with the same Lipschitz constant. Also note that
[f(@,22) = fw,21)] = |22 +2 = 32" — 21 = 2+ 32| = |20 — 1]

Thus, Theorem can be applied directly to the ODE 2" = —62f(x, z) with the
homogeneous boundary conditions. Aslong as L < 75.859, Theorem [2.1]and Example
3.12| give a unique solution z, satisfying the homogeneous boundary conditions, which
in turn, gives a unique solution to the non-homogeneous problem, u. An illustration
of this unique solution is given in Figure 1. An iterative process was used to determine
the initial value for w” that corresponds to the boundary conditions u(0) = 2, u'(0) =
0, u(1) = —1. That value was found to be approximately u”(0) = 113.108. The graph
was then obtained using the standard initial value problem package in MATLAB.
Next, consider the non-homogeneous boundary value problem

1 1
" o !/ - :4
u —1—251nu +2|u|

with boundary conditions «(0) = «/(0) = u(1) = 0. This is an illustration of Theorem

42 with @ = 1 and 1 .
flz,u(z),u(x)) =4 — 3 sinu’ — §|u|

It is necessary to choose K, L, and M so that f satisfies the Lipschitz condition given

in the theorem and
2K bHL 4M

— 4+ —+ — <1
3 * 6 * 3
Since f does not depend on u”, M can be chosen to be 0. Choosing K = L = %

satisfies the inequality, leaving only the Lipschitz condition to be verified. Note that

[ (@, uz(2), uy(@) = f(2,w(z), vy (2))]
= |4 - %sinué(x) — %|u2(:c)| —4+ %sinu’l(:c) + llul(az)]‘

1 1 1
= |§sinu’2(x) — §Sinu'1(x) + §|uQ( )| — —|u1 )|

1 1
< §| sin uy(z) — sinw (x)] + §|uQ(x) —uy ()|

1 1
< Slub(e) = ui(a)] + 5l — .

Thus, Theorem 4.2 can be applied directly to this problem, yielding a unique solution.
A graph of this solution is given in Figure 2. It was obtained using the same methods
employed in the previous example using an iterative process to determine the initial
value for u” that corresponds to the boundary conditions u(0) = «/(0) = u(1) = 0.
That value was found to be approximately u”(0) = —1.3615.
Finally, for an illustration of Theorem with @ = 1, consider the problem
u”(x)+ L' (x) + K cos(u(x)) = 0 with boundary conditions u(0) = «/(0) = «/(1) = 0.
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The Lipschitz condition holds as follows for any K and L greater than zero.

|f (2, ua(@), up(x)) — f (2, ur (@), uy ()]
| — Luy(z) — K cos(ug(x)) + Luy(x) + K cos(uy(z))]
< L{uj(x) — uy(z)| + K| cos(ui(z)) — cos(uz(z))|
< Lfuy(z) — ug(2)| + Klui(2) — uz(z)].

By choosing K = 2 and L = 3, the inequality in Theorem holds. Thus, the
hypotheses of Theorem hold and a unique solution exists. The graph of this
solution is given in Figure 3.

Figure 1: Solution to u"”(z) = —62|u(x)| with «(0) =2, «/(0) =0, u(1) = —1

0.0z

-0.12
0

D.I’l D.IQ DI3 D.Ill D.IS U.IE U.I?' D.IE D.IQ 1
Figure 2: Solution to u” + % sinu’ + 1|u| = 4 with u(0) = «/(0) = u(1) =0
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Figure 3: Solution to v (z) + Lu'(x) + K cos(u(z)) = 0 with u(0) = «/(0) = v/(1) =0

5 Conclusion

It has been demonstrated that Green’s functions have a wide range of applications
with regard to boundary value problems. In particular, existence and uniqueness of
solutions of a large class of third order boundary value problems has been established.
In fact, given any third order ODE with homogeneous boundary conditions, as long
as the corresponding Green’s function exists and f satisfies an appropriate Lipschitz
condition, Theorem guarantees the existence of a unique solution under very mild
conditions. Similarly, Theorem also guarantees such a solution under equally mild
conditions. These theorems are contrasted with classical ODE existence theorems
in that they circumvent the use of classical convergence analysis by assuming the
existence of the Green’s function. Banach techniques are still used, but the existence
of the Green’s function is the primary tool in showing existence and uniqueness. This
requires, of course, that the Green’s function exists for a particular problem, but the
examples in Chapter 3 show that this is usually not a severe restriction.

However, as mild as the restrictions seem to be, one should pay particular detail to
the range of values of the Lipschitz constant(s). As Examples[3.10]- demonstrate,
there are bounds on the Lipschitz constant L that are necessary in order to apply
Theorem [2.1] Specifically, as the interval increases in length, the necessary bounds on
L become more restrictive, thus lessening the applicability of the existence theorem.
Another restriction on the Lipschitz constants arises in Theorem [2.2] The Lipschitz
constants corresponding to f must also satisfy an inequality involving bounds on
integrals of G and its derivatives, which, if G is badly behaved, may be a severe
restriction. The examples of Chapter 4 illustrate these ideas. For example, Theorems
- [A:3] are specific cases in which Theorem [2.2]is applicable.

As a final application of Green’s functions, Theorem guarantees a unique
solution for a specific third order boundary value problem. This example replaces the
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standard Lipschitz constants with nonnegative functions, providing a more general
Lipschitz condition. However, the existence of a solution under this generality requires
more restrictive hypotheses. Thus, the applicability of this theorem is not as broad
as that of those in Chapter 2. Nevertheless, this theorem is indicative of how Green’s
functions can be used in a variety of ways to prove existence and uniqueness of
solutions to ODE’s. The theorems for third order existence/uniqueness are new and
parallel known theorems for second order boundary value problems.
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