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Abstract

Green’s functions are used to prove a collection of existence and uniqueness theorems
for third order nonlinear boundary value problems. Several examples of Green’s
functions for both second and third order boundary value problems are given. Various
applications of the existence theorems are presented in detail.
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1 Introduction and Preliminaries

1.1 Introduction

The solutions of third order boundary value problems are the subject of this work. In
particular, the focus will be on applications of the corresponding Green’s functions
and the resulting qualitative properties of the solutions. After introducing the basic
definitions, the first step is to guarantee that solutions to the equations in question ex-
ist and are unique. Thus, a series of uniqueness and existence theorems for third order
differential equations with homogeneous boundary conditions are established. Next,
an extensive collection of Green’s functions is derived, many of which are used later
on to illustrate various applications. Finally, several specific existence and uniqueness
theorems are proved by applying the previous results.

1.2 Preliminary Definitions and Theorems

This section will introduce the basic definitions, theorems, and constructions that will
be used throughout.

Definition 1.1. A Banach space, (X, ‖ · ‖), is a complete normed linear space.

Let B = C[a, b] with the supremum norm, denoted by ‖ · ‖∞. Then B is a Banach
space. It will be beneficial, however, to use a variation of this norm on some subspace
of B. An example of such a space that will be used frequently is given by the following.

Theorem 1.1. Let w ∈ C[a, b] be a fixed function such that w(a) = w(b) = 0 and
w(x) > 0 for a < x < b. Let

B∗ = {u ∈ B : |u(x)| ≤ Cw(x) for some C > 0}.

For u ∈ B∗, define

‖u‖∗ = sup
a<x<b

|u(x)|
w(x)

.

Then ‖ · ‖∗ is a norm on B∗ and (B∗, ‖ · ‖∗) is a Banach space.

Proof. It is easy to see that B∗ is a subspace of B. By the definition of B∗, u(a) =
u(b) = 0 for any u ∈ B∗. Moreover, if ‖u‖∗ = 0, then

|u(x)|
w(x)

≤ sup
a<x<b

|u(x)|
w(x)

= 0 ⇒ u(x) = 0.

The triangle inequality and the fact that scalars can be factored out of ‖ · ‖∗ follow
easily from the definition. Thus, ‖ · ‖∗ is a norm on B∗. Now, it must be shown
that B∗ is complete. Let {un}∞n=1 be a Cauchy sequence in (B∗, ‖ · ‖∗). Let M =
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supa≤x≤b w(x). Let ε > 0 be given. There exists an N ∈ N such that for any n, m
≥ N , ‖un − um‖∗ < ε

M
. If n, m ≥ N , then for a < x < b we have 1 ≤ M

w(x)
, so that

|un(x)− um(x)| ≤ sup
a<x<b

M |un(x)− um(x)|
w(x)

= M‖un − um‖∗ < ε.

Thus, |un(x)− um(x)| < ε ∀ x ∈ [a, b] ⇒ ‖un − um‖∞ < ε ∀ n, m ≥ N . Since ε > 0 is
arbitrary, {un} is a Cauchy sequence in B, showing that a Cauchy sequence in B∗ is
also Cauchy in B. B is complete, implying that there exists a u ∈ C[a, b] such that
un → u in ‖ · ‖∞. It remains to show that u is in B∗ and that un → u in (B∗, ‖ · ‖∗).

Choose an x ∈ (a, b). Since un → u in ‖ · ‖∞, there exists an N ∈ N such that
n ≥ N ⇒ ‖un − u‖∞ < w(x). For any n ≥ N ,

|un(x)− u(x)| ≤ sup
a≤x≤b

|un(x)− u(x)| = ‖un − u‖∞ < w(x)

which, along with the reverse triangle inequality, implies

|u(x)|
w(x)

<
|un(x)|
w(x)

+ 1 ≤ sup
a<x<b

|un(x)|
w(x)

+ 1 = ‖un‖∗ + 1.

So, |u(x)|
w(x)

< ‖un‖∗ + 1. Since Cauchy sequences are bounded there exists a constant

K > 0 such that |u(x)|
w(x)

< K + 1. This holds for all x ∈ (a, b), which gives

sup
a<x<b

|u(x)|
w(x)

≤ K + 1 ⇒ ‖u‖∗ ≤ K + 1 < ∞⇒ u ∈ B∗.

Finally, for ε > 0, there exists an N ∈ N such that for n,m ≥ N and for all x ∈ (a, b),

|un(x)− um(x)|
w(x)

≤ ‖un − um‖∗ < ε.

Let m →∞ in the previous in equality. Then for n ≥ N and ∀ x, it follows that

|un(x)− u(x)|
w(x)

≤ ε.

Thus, ‖un − u‖∗ ≤ ε for n ≥ N , showing that un → u in (B∗, ‖ · ‖∗).

Theorem 1.1 can be generalized for a non-identically zero function w ∈ C[a, b]
such that w(x) ≥ 0 on [a, b]. Let Bw = B∗ in Theorem 1.1. A norm on Bw can be

defined by ‖u‖∗ = supx∈Sw

|u(x)|
w(x)

where Sw = {x : w(x) 6= 0}. The preceding proof

applies without change to show that Bw is complete under ‖ · ‖∗. Typically in the
following applications, however, w(x) > 0 on a < x < b.

Contraction Mapping Theorem Let T : B → B be a continuous map from the
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Banach space, B, into itself such that for all u, v ∈ B,

‖T (u)− T (v)‖ ≤ θ‖u− v‖

for some fixed θ ∈ (0, 1). Then T has a unique fixed point u0; i.e. T (u0) = u0 and
T (u) = u if and only if u = u0.

The Contraction Mapping Theorem is an important tool in proving existence and
uniqueness of solutions to ordinary differential equations, as will be seen later.

The following is some basic material from the theory of ordinary differential equa-
tions and boundary value problems. The definitions and the proofs of Theorems
1.2 and 1.3 are given in Walter ([Wa], Ch. 6). For notational purposes, arbitrary
differential operators will be denoted by D.

Definition 1.2. The linear second order boundary value problem with separated bound-
ary conditions is defined as

(Du)(x) := (p(x)u′(x))′ + q(x)u(x) = g(x), x ∈ [a, b] (1.1)

with linearly independent boundary conditions

R1u := α1u(a) + α2p(a)u′(a) = η1

R2u := β1u(b) + β2p(b)u′(b) = η2, (1.2)

assuming that p ∈ C1[a, b] and q, g ∈ C0[a, b] are real-valued functions, that p(x) > 0
in [a, b], and that αi, βi, ηi, i = 1, 2, are real constants satisfying α2

1 + α2
2 > 0 and

β2
1 + β2

2 > 0. The corresponding homogeneous boundary value problem is given by

Du = 0 on [a, b] (1.3)

α1u(a) + α2p(a)u′(a) = 0

β1u(b) + β2p(b)u′(b) = 0. (1.4)

Theorem 1.2. Let u1(x), u2(x) be a fundamental system of solutions to the homo-
geneous differential equation Du = 0. The inhomogeneous boundary value problem,
(1.1), with boundary conditions, (1.2), is uniquely solvable if and only if the homoge-
neous problem, (1.3), (1.4), has only the zero solution u ≡ 0. The latter is true if and

only if the determinant of

[
R1u1 R1u2

R2u1 R2u2

]
is nonzero. Moreover, the determinant

condition does not depend on the choice of fundamental system.

Consequently, it is sufficient to solve (1.1) with the homogeneous boundary con-
ditions, (1.4), instead of (1.1), (1.2). To illustrate this, suppose a function, w(x) in
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C2[a, b] can be found that satisfies (1.2). If v satisfies Dv = g(x) − Dw and (1.4),
then u = v + w satisfies Du = Dv + Dw = g(x) and (1.2). Finding such a function,
w, is typically not difficult. For example, if α2 = β2 = 0, then a linear w(x) which
satisfies α1u(a) = eta1, β1u(b) = eta2 will work. Thus, the homogeneous boundary
conditions, (1.4), will be used in most discussions.

Definition 1.3. Let Du(x) := u′′(x) = f(x, u(x), u′(x)), for x ∈ [a, b], be a nonhomo-
geneous second-order ODE. A fundamental solution to this equation is any func-
tion, u, satisfying the corresponding homogeneous problem, Du = 0. The Green’s
function corresponding to the nonhomogeneous problem is a function G(x, s), for
a ≤ x, s ≤ b, such that G(x, s) is a fundamental solution of Du = 0 for x 6= s and
R1G = R2G = 0 for each s ∈ (a, b).

Green’s function is given explicitly by

G(x, s) =
1

c

{
u1(s)u2(x) in a ≤ s ≤ x ≤ b

u1(x)u2(s) in a ≤ x ≤ s ≤ b
(1.5)

where u1 satisfies the first boundary condition, u2 satisfies the second boundary con-
dition, and c 6= 0 is determined by the Wronskian

c =

[
u1 u2

pu′1 pu′2

]
on the interval (a, b), which is constant.

Theorem 1.3. Assume p ∈ C1[a, b] and q, g ∈ C0[a, b] are real valued functions,
p(x) > 0 in [a, b] and α2

1 + α2
2 > 0, β2

1 + β2
2 > 0. If the homogeneous boundary value

problem
Du = 0 on [a, b], R1u = R2u = 0, (1.6)

has only the trivial solution (i.e. if the determinant given in Theorem 1.2 is nonzero)
then the Green’s function for this boundary value problem exists and is unique. It is
explicitly given by (1.5) and is symmetric,

G(x, s) = G(s, x).

The unique solution of the ”semihomogeneous” boundary value problem

Lu = g(x) on [a, b], R1u = R2u = 0 (1.7)

is given by

u(x) =

∫ b

a

G(x, s)g(s)ds. (1.8)

The uniqueness follows from Theorem 1.2.

The focus of this work will be on third order ordinary differential equations, y′′′ =
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f(x, y(x), y′(x), y′′(x)), satisfying a Lipschitz condition of the form

|f(x, u(x), u′(x), u′′(x))− f(x, v(x), v′(x), v′′(x))| ≤
L|u(x)− v(x)|+ K|u′(x)− v′(x)|+ M |u′′(x)− v′′(x)|, (1.9)

where K, L, and M are fixed positive constants. At a later point, these constants
will be replaced by functions p(x), q(x), and r(x), giving a more general Lipschitz
condition.

Theorems 1.2 and 1.3 have extensions for differential systems of arbitrary order.
In particular, if D is a linear differential operator of order n, then the nonhomoge-
neous problem Du = g with n linearly independent linear boundary conditions has
a unique solution if and only if the corresponding homogeneous problem has only
the zero solution. In this case, the solution of the nonhomogeneous problem has the
representation (1.8), although the Green’s function is in general not symmetric.
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2 Existence and Uniqueness

The following two theorems will form the foundation for what is to come. The remain-
der of this work will consist of applications of the following existence and uniqueness
theorems. The proofs are generalizations of the corresponding second order theorems,
which are proved in Bailey, ([Ba], Ch. 3).

Consider the third order differential equation

u′′′(x) = f(x, u(x), u′(x), u′′(x)) (2.1)

with linearly independent boundary conditions

R1u := α1u(a) + β1u
′(a) + γ1u

′′(a) = 0

R2u := α2u(a) + β2u
′(a) + γ2u

′′(a) = 0 (2.2)

R3u := α3u(b) + β3u
′(b) + γ3u

′′(b) = 0.

A test for linear independence is given by Coddington ([Co]) to be

rank

 α1 β1 γ1 0 0 0
α2 β2 γ2 0 0 0
0 0 0 α3 β3 γ3

 = 3.

The boundary condition space, denoted by S, consists of all u in C3[a, b] that satisfy
the boundary conditions. Various norms similar to that given in Theorem 1.3 will
be assigned throughout to make S a subspace of a Banach space. Note that for
u′′′(x) = g(x), the Green’s function exists for many cases of (2.2) by an analogue of
Theorem 1.3 for third order boundary value problems. However, examples of functions
satisfying (2.2) can be constructed for which a nontrivial solution of u′′′(x) = 0 exists.
One such example is

u(x) = 1 + x + x2

with boundary conditions

u(0)− u′(0) = 0, 2u′(0)− u′′(0) = 0, u(1)− u′(1) = 0.

The following theorem is proved for third order equations, though the conclusion
holds for second order equations as well.

Theorem 2.1. Suppose f : R2 → R is continuous and satisfies

|f(x, u2(x))− f(x, u1(x))| ≤ p(x)|u2(x)− u1(x)|

for some nonnegative continuous function p. Suppose the Green’s function G for
the boundary value problem u′′′(x) = g(x) and (2.2) exists. Define the operator,
T : C[a, b] → S ⊂ C[a, b], by
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(Tu)(x) =

∫ b

a

G(x, s)f(s, u(s))ds.

Suppose w is a fixed nontrivial element of C[a, b] with w(x) ≥ 0. Suppose also T :
Bw → Bw where the Banach space Bw is described in the remarks following Theorem
1.1.

a) If the Green’s function, G is of constant sign, and

sup
x∈Sw

[ z(x)

w(x)

]
< 1,

where z is defined by z(x) =
∫ b

a
|G(x, s)|p(s)w(s)ds and Sw = {x ∈ [a, b] :

w(x) 6= 0}, then (2.1), (2.2) has a unique solution. Further z satisfies z′′′(x) =
sign(G)p(x)w(x) with boundary conditions (2.2).

b) If G is possibly not of constant sign and

sup
x∈Sw

[ 1

w(x)

∫ b

a

|G(x, s)|p(s)w(s)ds
]

< 1,

then (2.1), (2.2) has a unique solution.

Proof. (a) Consider the case where G is negative (the proof for positive G is similar).
Let ‖ · ‖∗ denote the norm that was defined in Theorem 1.1, but with the maximum
taken over Sw. Then

|(Tu)(x)− (Tv)(x)| =
∣∣∣∫ b

a

G(x, s)[f(s, u(s))− f(s, v(s))]ds
∣∣∣

≤
∫ b

a

|G(x, s)||u(s)− v(s)|p(s)ds

≤
∫ b

a

‖u− v‖∗|G(x, s)|p(s)w(s)ds

= ‖u− v‖∗z(x).

From the definition of z(x) and the fact that G is a Green’s function, it follows that
z′′′(x) = −p(x)w(x) with boundary conditions (2.2). Now for x ∈ Sw

|(Tu)(x)− (Tv)(x)|
w(x)

≤ z(x)‖u− v‖∗

w(x)
.

This implies

‖Tu− Tv‖∗ ≤ ‖u− v‖∗ max
x∈Sw

z(x)

w(x)

7



where maxx∈Sw

z(x)
w(x)

< 1 by hypothesis, proving that T is a contraction on Bw which

yields a unique fixed point that is the solution of (2.1)- (2.2). This proves part a.

(b) If G is possibly not of one sign, then for x ∈ Sw,

|(Tu)(x)− (Tv)(x)|
w(x)

≤ ‖u− v‖∗ 1

w(x)

∫ b

a

|G(x, s)|p(s)w(s)ds.

Thus,

‖Tu− Tv‖∗ ≤ ‖u− v‖∗ max
x∈Sw

1

w(x)

∫ b

a

|G(x, s)|p(s)w(s)ds.

The maximum is less than 1 by hypothesis, so T is a contraction, which yields a
unique fixed point that is a solution of (2.1)-(2.2).

Two cases of Theorem 2.1 are needed because if G is of constant sign, the function
z(x) is much easier to compute by solving the differential equation

z′′′(x) = sign(G)p(x)w(x)

.
One of the obstacles that can arise in applying Theorem (2.1) is confirming the

hypothesis that T maps Bw into Bw. In many cases, w(x) = 1, in which case Bw =
C[a, b] and T : Bw → Bw clearly holds. For w(x) > 0 on [a, b], the resulting norm
is equivalent to the norm for w(x) = 1, so T : Bw → Bw holds in that case, as well.
In general, though, for w having zeros in [a, b], the properties of the corresponding
Green’s functions must be used to establish that this hypothesis holds.

It will be beneficial, particularly for the examples and applications that will be
presented later, to state the analog of Theorem 2.1 for second order equations and
was found in Bailey [(Ba)].

Theorem 2.1* Suppose f : R2 → R is continuous and satisfies

|f(x, u2(x))− f(x, u1(x))| ≤ p(x)|u2(x)− u1(x)|

for some nonnegative continuous function p. Suppose the Green’s function G for
the boundary value problem u′′(x) = g(x) and (1.4) exists. Define the operator, T :
C[a, b] → C[a, b], by

(Tu)(x) =

∫ b

a

G(x, s)f(s, u(s))ds.

Suppose w is a fixed nontrivial element of C[a, b] with w(x) ≥ 0. Suppose also T :
Bw → Bw where the Banach space Bw is described in the remarks following Theorem
1.1.

8



a) If the Green’s function, G is of constant sign, and

sup
x∈Sw

[ z(x)

w(x)

]
< 1,

where z is defined by z(x) =
∫ b

a
|G(x, s)|p(s)w(s)ds and Sw = {x ∈ [a, b] :

w(x) 6= 0}, then Du = g(x), with boundary conditions (1.4), has a unique
solution.

b) If G is possibly not of constant sign and

sup
x∈Sw

[ 1

w(x)

∫ b

a

|G(x, s)|p(s)w(s)ds
]

< 1,

then Du = g(x) with (1.4) has a unique solution. Further, z satisfies

z′′(x) = sign(G)p(x)w(x)

with boundary conditions (1.4).

In Chapter 4, examples will be given showing how the function w may be chosen and
how the existence of solutions depends on this choice.

Theorem 2.2. Let f : [a, b] × R3 → R satisfy (1.9). Suppose G(x, s), a ≤ x, s ≤ b,
the Green’s function for the boundary value problem u′′′(x) = g(x) and (2.2), exists.
Suppose further that there exist constants M1, M2, M3, such that

∫ b

a

|G(x, s)|ds ≤ M1,

∫ b

a

|Gx(x, s)|ds ≤ M2,

∫ b

a

|Gxx(x, s)|ds ≤ M3.

Assume also that LM1 + KM2 + MM3 < 1. Then there exists a unique solution to
the boundary value problem

y′′′(x) = f(x, y(x), y′(x), y′′(x)), x ∈ [a, b],

with boundary conditions (2.2).

Proof. Let ‖u‖ = maxa≤x≤b[L|u(x)| + K|u′(x)| + M |u′′(x)|] be the norm on C2[a, b]
so that C2[a, b] is a Banach space. Define the operator T : C2[a, b] → C3[a, b] by

y = Ty =

∫ b

a

G(x, s)f(s, y(s), y′(s), y′′(s))ds.

9



To see that T does, indeed, map into C3[a, b], note first that that the differentiability
of G allows differentiation under the integral sign. Hence,

(Tu)′(x) =

∫ b

a

Gx(x, s)f(s, u(s), u′(s), u′′(s))ds,

(Tu)′′(x) =

∫ b

a

Gxx(x, s)f(s, u(s), u′(s), u′′(s))ds

and,

(Tu)′′′(x) =

∫ b

a

Gxxx(x, s)f(s, u(s), u′(s), u′′(s))ds.

Now it must be shown that T is a contraction map.

|(Tu)(x)− (Tv)(x)| ≤
∫ b

a

|G(x, s)|
∣∣f(s, u(s), u′(s), u′′(s))− f(s, v(s), v′(s), v′′(s))

∣∣ds

≤
∫ b

a

|G(x, s)|
(
L|u(s)− v(s)|+ K|u′(s)− v′(s)|+ M |u′′(s)− v′′(s)|

)
ds

≤ ‖u− v‖
∫ b

a

|G(x, s)|ds

≤ ‖u− v‖M1.

Similarly,

|(Tu)′(x)− (Tv)′(x)| ≤ ‖u− v‖
∫ b

a

|Gx(x, s)|ds ≤ ‖u− v‖M2

and

|(Tu)′′(x)− (Tv)′′(x)| ≤ ‖u− v‖
∫ b

a

|Gxx(x, s)|ds ≤ ‖u− v‖M3.

Since x is arbitrary in the previous inequalities, it follows that

‖Tu− Tv‖ ≤ ‖u− v‖(LM1 + KM2 + MM3).

By hypothesis, LM1 +KM2 +MM3 is less than 1. Therefore, T is a contraction from
the complete space, C2[a, b], into C3[a, b] ∈ C2[a, b]. Consequently, it has unique fixed
point, u, which is the desired solution.

Now that existence and uniqueness of solutions has been established, the next
step is to derive the corresponding Green’s functions.
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3 Green’s Functions and First Eigenvalues

This section will begin with a series of examples showing the derivation of Green’s
functions for second and third order boundary value problems. This will facilitate
the transition into the last part of the chapter, where the relationship between these
Green’s functions and the eigenvalues of the corresponding differential equations is
illustrated through more examples. Also in this section, the general interval, [a, b],
will be replaced by [0, a] for a > 0.

Example 3.1. Beginning with a simple example, the computation of Green’s function
for u′′ = g(x) with antiperiodic boundary conditions u(0) = −u(a) and u′(0) = −u′(a)
follows. The general solution of u′′(x) = g(x) is

u(x) = d1 + d2x +

∫ x

0

(x− s)g(s)ds.

Then u(0) = −u(a) implies

d1 = −a

2
d2 −

1

2

∫ a

0

(a− s)g(s)ds

and u′(0) = −u′(a) implies

d2 = −1

2

∫ a

0

g(s)ds.

It follows that

u(x) =

∫ a

0

g(s)
[2s− a− 2x

4

]
ds +

∫ x

0

(x− s)g(s)ds

and

u(x) =

∫ x

0

(2s− a− 2x

4

)
g(s)ds +

∫ a

x

(2s− a− 2x

4

)
g(s)ds +

∫ x

0

(x− s)g(s)ds

Thus, Green’s function is

G(x, s) =

{
2x−a−2s

4
, 0 ≤ s ≤ x ≤ a

2s−a−2x
4

, 0 ≤ x ≤ s ≤ a.
(3.1)

The next two examples follow in exactly the same manner as Example 3.1

Example 3.2. Green’s function for Du = u′′ = g(x) with boundary conditions
u(0) = u(a) = 0 is given by

G(x, s) =

{
s
a
(x− a), 0 ≤ s ≤ x ≤ a

x
a
(s− a), 0 ≤ x ≤ s ≤ a.

(3.2)

11



Example 3.3. Green’s function for Du = u′′ = g(x) with boundary conditions
u(0) = 0 and u′(a) = 0 is

G(x, s) =

{
−s, 0 ≤ s ≤ x ≤ a

−x, 0 ≤ x ≤ s ≤ a.
(3.3)

Next is an example arising in steady-state one dimensional heat flow.

Example 3.4. Consider the equation

Du = u′′ = g(x)

with boundary conditions

u(0) = u′(0), u(a) = −u′(a).

Following the same computations as before yields

u(x) = d1 + d2x +

∫ x

0

(x− s)g(s)ds

u(0) = d1, u′(0) = d2 ⇒ d1 = d2

u(a) = d1 + ad2 +

∫ a

0

(a− s)g(s)ds

u(a) = −u′(a) ⇒ d1 + ad2 +

∫ a

0

(a− s)g(s)ds = −d2 −
∫ a

0

g(s)ds

d1 = d2 =
−1

2 + a

∫ a

0

(a− s + 1)g(s)ds

u(x) =
−(1 + x)

2 + a

∫ a

0

(a− s + 1)g(s)ds +

∫ x

0

(x− s)g(s)ds.

Thus, Green’s function is

G(x, s) =

{
−1+x

2+a
(a− s + 1) + (x− s), 0 ≤ s ≤ x ≤ a

−1+x
2+a

(a− s + 1), 0 ≤ x ≤ s ≤ a.
(3.4)

For 0 < s < x, some algebra shows

−1 + x

2 + a
(a− s + 1) + (x− s) = −1 + s

2 + a
(a− x + 1)

from which we see that G is indeed symmetric.

Now the previous methods will be applied to a third order example.

12



Example 3.5. Consider the equation

Du = u′′′ = g(x)

with boundary conditions

u(0) = u′(0) = u(a) = 0.

Integrating first to find u gives
u′′′(x) = g(x)

u′′(x) = d2 +

∫ x

0

g(s)ds

u′(x) = d1 + d2x +

∫ x

0

(x− s)g(s)ds

u(x) = d0 + d1x +
1

2
d2x

2 +

∫ x

0

(x− s)2

2
g(s)ds

u(0) = u′(0) = 0 ⇒ d0 = d1 = 0

u(a) = 0 ⇒ d2 = − 1

2a2

∫ a

0

(a− s)2g(s)ds

u(x) =

∫ x

0

[−x2(a− s)2

2a2
+

(x− s)2

2

]
g(s)ds +

∫ a

x

[−x2(a− s)2

2a2

]
g(s)ds.

The corresponding Green’s function is

G(x, s) =

{
−x2(a−s)2

2a2 + (x−s)2

2
, 0 ≤ s ≤ x ≤ a

−x2(a−s)2

2a2 , 0 ≤ x ≤ s ≤ a.
(3.5)

This next example will be used at a later point to illustrate one of the uniqueness
theorems.

Example 3.6. Consider the third order ordinary differential equation Du(x) =
u′′′(x) = g(x) with boundary conditions u(0) = u′(0) = u′′(a) = 0. Integrate to
get

u′′(x) = d2 +

∫ x

0

g(s)ds

u′(x) = d1 + d2x +

∫ x

0

(x− s)g(s)ds

u(x) = d0 + d1x +
1

2
d2x

2 +
1

2

∫ x

0

(x− s)2g(s)ds.

By the boundary conditions, u(0) = d0 = 0 and u′(0) = d1 = 0. Further calculations

13



give d2 = −
∫ a

0
g(s)ds. Hence, some algebra shows that

u(x) = −
∫ x

0

s

2
(s− x)g(s)ds− x2

2

∫ a

x

g(s)ds.

Green’s function is

G(x, s) =

{
s
2
(s− 2x), 0 ≤ s ≤ x ≤ a

−x2

2
0 ≤ x ≤ s ≤ a.

(3.6)

Similar calculations yield the following.

Example 3.7. Green’s function for Du = u′′′(x) = g(x) with boundary conditions
u(0) = u′(0) = u′(a) = 0 is

G(x, s) =

{
s
2

(
x2

a
− 2x + s

)
, 0 ≤ s ≤ x ≤ a

−x2

2a
(a− s), 0 ≤ x ≤ s ≤ a

(3.7)

and will also be used at a later point.

The next example is a second order equation defined by an operator that differs
slightly from those used in the previous problems.

Example 3.8. As before, the goal is to find Green’s function for Du = (r(x)u′(x))′ =
g(x) with boundary conditions u(0) = u′(a) = 0 and where r(x) > 0. Integrating the
corresponding homogeneous equation generates the following.

(r(x)u′(x))′ = 0 ⇒ r(x)u′(x) = c0

u′(x) =
c0

r(x)
⇒ u(x) = c0

∫ x

0

1

r(s)
ds + c1.

Now define

u1(x) =

∫ x

0

1

r(s)
ds, u2(x) = 1.

The Wronskian of u1 and u2 is c = − 1
r(x)

(ru′1u2−ru′2u1 is constant). By the variation

of parameters formula, it can be shown that the terms involving r(x) in the expression
for u will cancel. Using methods similar to those used previously,

u(x) = d1u1 + d2u2 +

∫ x

0

[∫ x

0

ds

r(s)
−

∫ ξ

0

ds

r(s)

]
g(ξ)dξ

u′(x) =
d1

r(x)
+ g(x)

[∫ x

0

ds

r(s)
−

∫ x

0

ds

r(s)

]
+

∫ x

0

g(ξ)

v(x)
dξ

u′(a) =
d1

r(a)
+

∫ a

0

g(ξ)

r(a)
dξ = 0

14



d1 = −
∫ a

0

g(ξ)dξ

u(x) = −
∫ a

0

g(ξ)dξ

∫ x

0

ds

r(s)
+

∫ x

0

[∫ x

0

ds

r(s)
−

∫ ξ

0

ds

r(s)

]
g(ξ)dξ.

Simplifying this expression yields

u(x) = −
∫ x

0

g(ξ)dξ

∫ ξ

0

ds

r(s)
−

∫ a

x

g(ξ)dξ

∫ x

0

ds

r(s)
.

Finally, Green’s function is

G(x, s) =

{
−

∫ ξ

0
ds

r(s)
, 0 ≤ x ≤ s ≤ a

−
∫ x

0
ds

r(s)
, 0 ≤ s ≤ x ≤ a.

(3.8)

Example 3.9. The final Green’s function provided is for (r(x)u′(x)) = g(x) for
r(x) > 0 and boundary conditions u(0) = u(a) = 0. The calculations reveal Green’s
function to be

G(x, s) =

{
−

∫ ξ

0
ds

r(s)

∫ a

x
ds

r(s)
, 0 ≤ s ≤ x ≤ a

−
∫ x

0
ds

r(s)

∫ a

ξ
ds

r(s)
, 0 ≤ x ≤ s ≤ a.

(3.9)

The last part of this chapter will focus on the eigenvalues and eigenfunctions
associated with the Green’s functions that were just given. Recall the problem from
Example 3.2, Du = u′′ = f(x, u(x)) with boundary conditions u(0) = u(a) = 0,
where f satisfies the conditions of Theorem 2.1∗. An eigenvalue of the operator, D,
is a constant λ such that Du = −λp(x)u(x) for some nontrivial u satisfying the given
boundary conditions. Consider the special case where f(x, u(x), u′(x)) = Lu(x). The
corresponding eigenvalue problem is u′′(x) = −λLu(x). The general solution for
λ > 0 is

u(x) = c1 sin(
√

λLx) + c2 cos(
√

λLx).

The boundary conditions reveal that

u(0) = 0 ⇒ c2 = 0 ⇒ u(a) = c1 sin(
√

λLa) = 0 ⇒
√

λLa = nπ.

For the smallest positive eigenvalue, let n = 1 so that λ0 = π2

La2 with corresponding
eigenfunction sin πx

a
. In Theorem 2.1∗, with f(x, u(x)) = Lu and w(x) = sin πx

a
, the

function z is given by z(x) = 1
λ0

w(x). Note that when λ0 = 1, L = π2

a2 , leading to the
conclusion that there is not a unique solution of u′′ = −Lu with boundary conditions
u(0) = u(a) = 0 since u(x) = c sin πx

a
is a solution for all values of c. If λ0 > 1, then

Theorem 2.1∗ applies and the resulting bound on L is L < π2

a2 . Note that as the size of
the interval increases (i.e. as a gets bigger) L must correspondingly decrease. Thus,
for larger intervals the class of solutions becomes more restricted.

Example 3.10. A slight variation of Example 3.3 yields the problem Du = u′′ =

15



−λLu with boundary conditions u(0) = u′(a) = 0. The first positive eigenvalue is
λ0 = π2

4a2L
with eigenfunction sin πx

2a
. If λ0 > 1, then L < π2

4a2 .

The next two examples require some basic numerical computation.

Example 3.11. Consider finding the first positive eigenvalue for Du = u′′ with
boundary conditions u(0) = u′(0) and u(1) = −u′(1). This is the heat flow equation
with a = 1. Note that the corresponding Green’s function, given by (3.4), is constant
in sign. Now,

u′′(x) = −λLy

u(x) = c1 sin(
√

λLx) + c2 cos(
√

λLx)

u(0) = u′(0) ⇒ c2 =
√

λLc1.

The condition u(1) = −u′(1) along with the previous result implies

c1 sin(
√

λL) + 2
√

λLc1 cos(
√

λL)− λLc1 sin(
√

λL) = 0

⇒ sin(
√

λL) + 2
√

λL cos(
√

λL)− λL sin(
√

λL) = 0

⇒ tan
√

λL =
2
√

λL

λL− 1
.

Numerical calculations give

λ0 ≈
1.3072

L
> 1 ⇒ L < 1.708.

Example 3.12. Finally, consider Du = u′′′ = g(x) with boundary conditions u(0) =
u′(0) and u(1) = 0, which yields the eigenvalue problem u′′′ = −λLu. To find the
first positive eigenvalue, λ0, note that finding solutions of the form u(x) = erx gives
the characteristic equation r3 + Lλ = 0 and with θ = Lλ,

r = θ
1
3 exp (iπ + 2πki), k = 0, 1, 2.

The general solution is

u(x) = c1 exp(−θ
1
3 x) + c2 exp

(
θ

1
3

(1

2
+ i

√
3

2

)
x
)

+ c3 exp
(
θ

1
3

(1

2
− i

√
3

2

)
x
)
.

Let α = θ
1
3

2
to simplify the notation. Applying the boundary conditions to u yields

the system of equations

c1 + c2 = 0

c1e
−2α + c2e

α cos(
√

3α) + c3e
α sin(

√
3α) = 0

−2αc1 + αc2 +
√

3αc3 = 0.
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Basic linear algebra reduces this system to the single equation

eαc1

(
e−3α − cos(

√
3α) +

√
3 sin(

√
3α)

)
= 0.

Finally, numerical computations show that the first positive root of this equation is

α =
θ1/3

2
=

Lλ0

1
3

2
≈ 2.1166 =⇒ λ0 ≈

4.23323

L
=⇒ L < 75.859 for λ0 > 1.
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4 Applications to Boundary Value Problems

In this section, various aspects of the preceding material will be applied to boundary
value problems, with the specific goal of illustrating the theorems in Section 2. In
particular, with respect to finding the first positive eigenvalue, better bounds on the
Lipschitz constant L will be obtained.

4.1 Applications of Theorem 2.1 and Theorem 2.1*

As an application of Theorem 2.1∗(a), using the equation Du = u′′ = f(x, u(x)),
where f satisfies |f(x, u1(x)− f(x, u2(x))| ≤ L|u1(x)−u2(x)| on [0, a] with boundary
conditions u(0) = u(a) = 0, choose a polynomial of degree 2, w, satisfying the
boundary conditions. Denote w by

w(x) = a0 + a1x + a2x
2.

Applying the boundary conditions to find a0, a1, a2 yields

w(x) = ax− x2.

Solving next for z, where z satisfies z′′ = −Lw, z(0) = z(a) = 0, yields z′′(x) =
L(−ax + x2) to get

z(x) = c0 + c1x−
1

6
Lax3 +

1

12
Lx4.

Applying the boundary conditions produces,

z(x) =
1

12
La3x− 1

6
Lax3 +

1

12
Lx4.

Basic calculus shows that max0<x<a
z(x)
w(x)

= 5La2

48
. Moreover, the Green’s function for

this problem was computed in Example 3.2, and is easily seen to be of constant sign.
Now it must be shown that T maps Bw into Bw. Using equation (3.2) and letting
w(x) = x(a− x) it follows that

Tu =

∫ a

0

G(x, s)f(s, u(s))ds

=

∫ x

0

s

a
(x− a)f(s, u(s))ds +

∫ a

x

x

a
(s− a)f(s, u(s))ds.

18



Then, since G is negative,

|Tu(x)| ≤ a− x

a

∫ x

0

s|f(s, u(s))|ds +
x

a

∫ a

x

(a− s)|f(s, u(s))|ds

|Tu(x)|
w(x)

≤ 1

ax

∫ x

0

s|f(s, u(s))|ds +
1

a− x

∫ a

x

|(a− s)f(s, u(s))|ds

≤ x

ax

∫ x

0

|f(s, u(s))|ds +
a− x

a(a− x)

∫ a

x

|f(s, u(s))|ds

≤ 1

a

∫ a

0

|f(s, u(s)|ds = C(u).

Thus, the hypotheses of Theorem 2.1∗(a) are satisfied if L < 48
5a2 ≈ 9.6

a2 . Comparison
of this bound on L to the optimal bound obtained using the first positive eigenvalue,
L < π2

a2 ≈ 9.87
a2 shows that the approximation method of Theorem 2.1(a) gives a bound

almost as good as the best possible bound on L .
The previous example showed that choosing w to be a polynomial yields a good

but not optimal bound on L. The more w differs from the eigenfunction, the worse the
bound on L becomes. Consider the following example on the ODE from the previous
problem with the same boundary conditions where w is taken to be the constant 1.
Then z′′(x) = −L. After integrating and applying the boundary conditions,

z(x) =
−1

2
Lx2 +

Lx

2
.

Computing the max0<x<a
z(x)
w(x)

reveals the bound on L to be L < 8
a2 .

To discuss the optimality of Theorems 2.1 and 2.1∗, consider, for ease of compu-
tation, the second order case. Suppose λ0 is the first positive eigenvalue of w′′(x) =
−λp(x)w(x) with boundary conditions

R1w := α1w(0) + β1w
′(0) = 0,

R2w := α2w(a) + β2w
′(a) = 0,

and suppose also that the Green’s function is negative. Let the eigenfunction corre-
sponding to λ0 be denoted by w0. By definition of the Green’s function,

w(x) =

∫ b

a

−λ0G(x, s)p(s)w0(s)ds = λ0z(x)

implying
z(x)

w0(x)
=

1

λ0

.

Therefore, if λ0 > 1, then T is a contraction. An explicit calculation for p(x) = L
with the boundary conditions w0(0) = w0(a) = 0 yields w0(x) = sin

√
Lλx. Then
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w0(a) = 0 implies that √
Lλa = π

Lλ0 =
π2

a2

and

λ0 =
π2

a2L
.

Now, λ0 > 1 if and only if π2

a2 > L. This example shows the dependence of the
Lipschitz constant, L on the length of the interval.

For the problem Du = u′′ = f(x, u) with boundary conditions u(0) = −u′(0)
and u(1) = −u′(1), choose, as in the previous case, a polynomial, w, satisfying the
boundary conditions. Again, denote w by

w(x) = a0 + a1x + a2x
2.

In order to satisfy the boundary conditions, choose a0 = 1, and use the boundary
conditions to compute a1 = 1, and a2 = −1. This gives

w(x) = 1 + x− x2.

Note that w(x) > 0 on [0, 1], so that Bw ≈ B = C[0, 1] and T maps Bw into Bw.
Integrating z′′(x) = −Lw(x) twice yields

z(x) = −1

2
Lx2 − 1

6
Lx3 +

1

12
Lx4 + c0x + c1.

Applying the boundary conditions to z(x) to solve for c0 and c1 produces

z(x) = L
(
−1

2
x2 − 1

6
x3 +

1

12
x4 +

7

12
x +

7

12

)
.

Next, computing max0<x<1
z(x)
w(x)

numerically shows that it is necessary for L to satisfy

L < 1.7029 in order to apply Theorem 2.1(a). The Green’s function for this problem
was also computed previously in Example 3.4, and is constant in sign. Hence, Theo-
rem 2.1(a) does apply as long as the bound on L holds. Again, comparing this bound
on L to the bound found in Example 3.11, L < 1.708, shows that the approximation
method yields a bound very close to the optimal.

Next, a third order example is given. Consider Lu = u′′′ = f(x, u) and boundary
conditions u(0) = u′(0) = 0 and u(1) = 0. Choose w(x) to be a polynomial that
satisfies the boundary conditions,

w(x) = a0 + a1x + a2x
2 + a3x

3.

To satisfy the boundary conditions, let a0 = a1 = 0, a2 = 1, and a3 = −1. Now,
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w(x) = x2 − x3 and

z′′′(x) := −Lw(x) ⇒ z′′′(x) = L(x3 − x2).

Integrating yields

z(x) = −L
x5

60
+ L

x6

120
+ c2

x2

2
+ c1x + c0.

Applying the boundary conditions to z(x) implies

c0 = c1 = 0, c2 =
L

60

so that

z(x) = L
(
−x5

60
+

x6

120
+

x2

120

)
.

Finding max0<x<1
z(x)
w(x)

by calculus shows that L < 60. It is necessary to show that T

maps Bw into Bw in order to apply Theorem 2.1(a). The Green’s function calculated
in (3.5) is negative and simplifies for a = 1 to

G(x, s) =

{
s2(x2−1)

2
, 0 ≤ s ≤ x ≤ 1

−x2(1−s)2

2
, 0 ≤ x ≤ s ≤ 1.

Thus,

(Tu) =

∫ 1

0

G(x, s)f(s, u(s))ds

=

∫ x

0

[−s2(1− x2)

2

]
f(s, u(s))ds +

∫ 1

x

−x2(1− s)2

2
f(s, u(s))ds,

|Tu(x)| ≤
∫ x

0

s2(1− x2)

2
|f(s, u(s))|ds +

∫ 1

x

x2(1− s)2

2
|f(s, u(s))|ds,

|Tu(x)|
w(x)

≤ 1

2x2(1− x)

∫ x

0

s2(1− x2)|f(s, u(s))|ds

+
x2

2x2(1− x)

∫ 1

x

(1− s)2|f(s, u(s))|ds

≤ x2(1− x2)

2x2(1− x)

∫ x

0

|f(s, u(s))|ds +
(1− x)2

2(1− x)

∫ 1

x

|f(s, u(s))|ds

=
1 + x

2

∫ 1

0

|f(s, u(s))|ds +
1− x

2

∫ 1

x

|f(s, u(s))|ds

≤
∫ x

0

|f(s, u(s)|ds +
1

2

∫ 1

x

|f(s, u(s))|ds

≤
∫ 1

0

|f(s, u(s))|ds ≤ C(u).
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Now the hypotheses of Theorem 2.1 are satisfied. Comparing the bound L < 60 to
the optimal bound, L < 75.859, obtained in Example 3.12 shows that the function
w as a polynomial is not a good estimate of the eigenfunction. If w is chosen to be
more similar to the eigenfunction, a better bound on L could be achieved.

Coming back to the ODE Du = u′′ = f(x, u) with boundary conditions u(0) =
u(a) = 0, a different approach is given as an application of Theorem 2.1∗. Note the
fact that T maps Bw into Bw was established in the first example in this section.
Since the boundary conditions are the same as in the first example, the proof given
that T maps Bw into Bw also applies here. In the previous examples, the function
p(x) that appears in the Lipschitz condition in Theorem 2.1∗(a) was taken to be a
constant, L. Now that restriction is lifted. Solve z′′(x) = −p(x)w(x) with the same
boundary conditions as above but with p(x) = Lx. Using the same function found
above for w, let w(x) = ax− x2. Then,

z′′(x) = Lx(−ax + x2)

z′(x) = −1

3
ax3L +

1

4
x4L + c1

z(x) = L
(−1

12
ax4 +

1

20
x5

)
+ c1x + c0.

Applying the boundary conditions produces c0 = 0 and c1 = 1
30

a4L. Then

z(x) = L
(
− 1

12
ax4 +

1

20
x5 +

1

30
a4x

)
.

To get a bound on L, compute max0<x<a
z(x)
w(x)

. This is

max
0<x<a

L
[
− 1

12
ax4 + 1

20
x5 + + 1

30
a4x

]
−ax + x2

= max
0<x<a

L
60

(
5ax3 − 3x4 − 2a4

)
(x− a)

= max
0<x<a

L

60

(
−9x2 + 4ax + 2a2

)
.

Employing methods from calculus, the maximum is 3.3La3

60
which must be less than 1

to apply Theorem 2.1(a). Thus the required bound on L is L < 18.8
a3 .

A similar application to the same ODE above using p(x) = L
x

is given next. Note
that p(x) is singular in this example. This time,

z′′(x) =
L

x
(−ax + x2) = (a− x)L

z′(x) = −axL +
1

2
x2 + c1

z(x) = −1

2
ax2L +

1

6
x3L + c1x + c0.
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Applying the boundary conditions gives c0 = 0 and c1 = 1
3
a2L. So then

z(x) = L
(1

6
x3 − 1

2
ax2 +

1

3
a2x

)
.

Finding the bound on L yields

max
0<x<a

L
[−1

6
x3 + 1

2
ax2 − 1

3
a2x

x(x− a)

]
=

La

3
.

Thus L < 3
a

is the desired bound.

4.2 Applications of Theorem 2.2

The following is an application of Theorem 2.2.

Theorem 4.1. Let f : [0, a]× R3 → R be continuous and satisfy

|f(t, y, y′, y′′)− f(t, x, x′, x′′)| ≤ K|y − x|+ L|y′ − x′|+ M |y′′ − x′′|

with K, L, and M > 0. Assume also that

2a3

11
K +

5a2

9
L + Ma < 1.

Then there exists a unique solution to the ordinary boundary value problem

y′′′(t) = f(t, y(t), y′(t), y′′(t))

y(0) = y′(0) = y′′(a) = 0.

Proof. Let S be as in Theorem 2.2. Define operator T by

y = Ty =

∫ b

a

G(x, s)f(s, y(s), y′(s), y′′(s))ds.

Now Theorem 2.2 will be used to show that T is a contraction map. As in the hy-
potheses of that theorem, the constants M1, M2, and M3 will be computed as bounds
on the integrals of the corresponding Green’s function and its partial derivatives.
The Green’s function for Du = u′′′ with the given boundary conditions was found in
Chapter 3, Example 3.6 and is

G(x, s) =

{
s
2
(s− 2x), 0 ≤ s ≤ x ≤ a

−x2

2
, 0 ≤ x ≤ s ≤ a.

(4.1)

Notice that the Green’s function is negative. To calculate M1, consider
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∫ a

0

G(x, s)ds =

∫ x

0

s

2
(x− s)ds−

∫ a

x

x2

2
ds

= − 1

12
x3 − 1

2
(x2a− x3)∫ a

0

|G(x, s)|ds =

∫ a

0

−G(x, s)ds

=
1

12
x3 +

1

2
(x2a− x3).

The upper bound is calculated via methods from calculus yielding a maximum at
x = 4a

13
. Thus

∫ a

0
|G(x, s)|ds ≤ 2

11
a3 implying M1 = 2

11
a3. Next, to calculate M2,

∫ a

0

|Gx(x, s)|ds ≤
∫ x

0

s

2
ds +

∫ a

x

xds

= ax− 3x2

4

which yields a maximum at x = 2a
3
. Then∫ a

0

|Gx(x, s)|ds ≤ 5a2

9

so that M2 = 5a2

9
. Lastly, to calculate M3, note that Gxx vanishes for 0 ≤ s ≤ x ≤ a

and is equal to −1 otherwise. Thus,∫ a

0

|Gxx(x, s)|ds ≤
∫ a

x

ds = a− x ⇒ M3 = a.

Following the proof of Theorem 2.2, the norm can now be calculated.

‖Tu− Tv‖ = max
a≤x≤b

[
K

∣∣Tu− Tv
∣∣ + L

∣∣∣ d

dx
Tu− d

dx
Tv

∣∣∣ + M
∣∣∣ d2

dx2
Tu− d2

dx2
Tv

∣∣∣].

Applying the Lipschitz condition given in the hypothesis,

|Tu− Tv| ≤ ‖u− v‖2a3

11
.

Similarly, ∣∣∣dTu

dx
− dTv

dx

∣∣∣ ≤ ‖u− v‖5a2

9
,

and ∣∣∣d2Tu

dx2
− d2Tv

dx2

∣∣∣ ≤ ‖u− v‖a.
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Now, ‖Tu − Tv‖ ≤ ‖u − v‖
[

2a3

11
K + 5a2

9
L + aM

]
. By hypothesis, the coefficient

of ‖u − v‖ on the right hand side is less than 1.Therefore, T is a contraction from
the complete space, S, into itself. Consequently, it has unique fixed point, u, which
is the desired solution.

Theorem 4.2. Let f : [0, a]× R3 → R be continuous and satisfy

|f(t, y, y′, y′′)− f(t, x, x′, x′′)| ≤ K|y − x|+ L|y′ − x′|+ M |y′′ − x′′|

with K, L, and M > 0. Assume also that

2Ka3

81
+

5La2

6
+

4Ma

3
< 1.

Then there exists a unique solution to the ordinary boundary value problem

y′′′(t) = f(t, y(t), y′(t), y′′(t))

y(0) = y′(0) = y(a) = 0.

Proof Let S be as in Theorem 2.2. Define operator T as in the previous theorem.
The Green’s function for Lu = u′′′ with the given boundary conditions is calculated
in Example 3.5 and is

G(x, s) =

{
−x2(a−s)2

2a2 + (x−s)2

2
, 0 ≤ s ≤ x ≤ a

−x2(a−s)2

2a2 , 0 ≤ x ≤ s ≤ a.

Integrating G produces∫ a

0

G(x, s)ds =

∫ x

0

[−x2(a− s)2

2a2
+

(x− s)2

2

]
ds +

∫ a

x

−x2(a− s)2

2a2
ds

=
x2(x− a)

6

so that ∫ a

0

|G|ds =

∫ a

0

−Gds =
x2(x− a)

6
≤ 2a3

81

hence M1 = 2a3

81
.

To calculate M2, differentiating G with respect to x yields

Gx(x, s) =

{
−x(a−s)2

a2 + (x− s), 0 ≤ s ≤ x ≤ a

−x(a−s)2

a2 , 0 ≤ x ≤ s ≤ a.
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So

∫ a

0

|Gx|ds ≤
∫ x

0

x(a− s)

a2
ds +

∫ x

0

(x− s)ds +

∫ a

x

x

a2
(a− s)2ds

=
xa3

3a3
+

x2

2

=
x

6
(2a + 3x)

≤ 5a2

6

and M2 = 5a2

6
. The calculation for Gxx leads to M3. Now,

Gxx(x, s) =

{
− (a−s)2

a2 + 1, 0 ≤ s ≤ x ≤ a

− (a−s)2

a2 , 0 ≤ x ≤ s ≤ a.

The above calculation gives

∫ a

0

|Gxx|ds ≤
∫ x

0

−(a− s)2

a2
ds +

∫ x

0

ds +

∫ a

x

(a− s)2

a2
ds

=

∫ a

0

(a− s)2

a2
+

∫ x

0

ds

=
a

3
+ x

≤ 4a

3

so that M3 = 4a
3
. The rest of the proof follows the proof of Theorem 4.1. Recall the

norm

‖Tu− Tv‖ = max
a≤x≤b

[
K

∣∣Tu− Tv
∣∣ + L

∣∣∣ d

dx
Tu− d

dx
Tv

∣∣∣ + M
∣∣∣ d2

dx2
Tu− d2

dx2
Tv

∣∣∣].

Applying the Lipschitz condition given in the hypothesis gives the following three
inequalities. First,

|Tu− Tv| ≤ |u− v‖2a3

81
,

∣∣∣dTu

dx
− dTv

dx

∣∣∣ ≤ ‖u− v‖5a2

6
,

and lastly ∣∣∣d2Tu

dx2
− d2Tv

dx2

∣∣∣ ≤ 4a

3
.
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Thus, these three inequalities imply

‖Tu− Tv‖ ≤ ‖u− v‖
[2Ka3

3
+

5La2

6
+

4Ma

3

]
leading to the desired inequality

2Ka3

3
+

5La2

6
+

4Ma

3
< 1.

�

Theorem 4.3. Let f : [0, a]× R3 → R be continuous and satisfy

|f(t, y, y′, y′′)− f(t, x, x′, x′′)| ≤ K|y − x|+ L|y′ − x′|+ M |y′′ − x′′|

with K, L, and M > 0. Assume also that

Ka3

12
+

La2

8
+

Ma

2
< 1.

Then there exists a unique solution to the ordinary boundary value problem

y′′′(t) = f(t, y(t), y′(t), y′′(t))

y(0) = y′(0) = y′(a) = 0.

Proof Let S be as in Theorem 2.2. Define operator T as in the previous theorem.
The Green’s function for Lu = u′′′ with the given boundary conditions is shown in
Example 3.7 and is

G(x, s) =

{
s
2

(
x2

a
− 2x + s

)
, 0 ≤ s ≤ x ≤ a

−x2

2a
(a− s), 0 ≤ x ≤ s ≤ a.

Integrating G produces∫ a

0

G(x, s)ds =

∫ x

0

(sx2

2a
− xs +

s2

2

)
ds−

∫ a

x

(x2

2a
(a− s)

)
ds

=
x3

6
− ax2

4

so that ∫ a

0

|G|ds =

∫ a

0

−Gds =
−x4

6
+

ax2

4
,

hence M1 = a3

12
.
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To calculate M2, differentiating G with respect to x yields

Gx(x, s) =

{
sx
a
− s

−x + xs
a
, 0 ≤ x ≤ s ≤ a.

Since Gx ≤ 0,

∫ a

0

|Gx|ds =

∫ x

0

−
(sx

a
− s

)
ds +

∫ a

x

−
(
−x +

xs

a
ds

=
−x2

2
+

xa

2

≤ a2

8
.

Next,

Gxx(x, s) =

{
s
a
, 0 ≤ s ≤ x ≤ a

−1 + s
a
, 0 ≤ x ≤ s ≤ a.

This gives

∫ a

0

|Gxx|ds =

∫ x

0

s

a
ds +

∫ a

x

(
1− s

a

)
ds

=
x2

a
+

a

2
− x

≤ a

2
.

The rest of the proof follows the proof of Theorem 4.1. Recall the norm

‖Tu− Tv‖ = max
a≤x≤b

[
K

∣∣Tu− Tv
∣∣ + L

∣∣∣ d

dx
Tu− d

dx
Tv

∣∣∣ + M
∣∣∣ d2

dx2
Tu− d2

dx2
Tv

∣∣∣].

Applying the Lipschitz condition given in the hypothesis gives the following three
inequalities. First,

|Tu− Tv| ≤ |u− v‖a3

12
,

∣∣∣dTu

dx
− dTv

dx

∣∣∣ ≤ ‖u− v‖a2

8
,

and lastly ∣∣∣d2Tu

dx2
− d2Tv

dx2

∣∣∣ ≤ a

2
.
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Thus,

‖Tu− Tv‖ ≤ ‖u− v‖
[Ka3

4
+

La2

8
+

Ma

2

]
leading to the desired inequality

Ka3

4
+

La2

8
+

Ma

2
< 1.

�

4.3 A Final Existence Theorem

One last existence/uniqueness theorem is given making use of the Green’s function.
First, some preliminaries are introduced. Define the norm on S to be

‖u‖ = max

[
max
a<t<b

|u(t)|
w(t)

, max
a<t<b

|u′(t)|
v(t)

, max
a<t<b

|u′′(t)|
z(t)

]
,

where w, v, and z are fixed functions in S, possibly vanishing at the endpoints. A
modified Lipschitz condition is given by

|f(t, y(t), y′(t), y′′(t))−f(t, x(t), x′(t), x′′(t))| ≤ p(t)|y−x|+q(t)|y′−x′|+r(t)|y′′−x′′|,

where p, q, and r are nonnegative functions. Using the same operator, T , from the
previous theorem with G from Example 3.6, note that

|Ty(t)− Tx(t)|
w(t)

≤ 1

w(t)

∫ b

a

∣∣G(t, s)
∣∣|f(s, y(s), y′(s), y′′(s))− f(s, x(s), x′(s), x′′(s))|ds

≤ 1

w(t)

∫ b

a

∣∣G(t, s)
∣∣[p(s)w(s)

|y(s)− x(s)|
w(s)

+ q(s)v(s)
|y′(s)− x′(s)|

v(s)

+r(s)z(s)
|y′′(s)− x′′(s)|

z(s)

]
ds.

The following three inequalities are needed,

|Ty(t)− Tx(t)|
w(t)

≤ ‖y − x‖
w(t)

∫ b

a

|G(t, s)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds,

| d
dt

(Ty(t)− Tx(t))|
v(t)

≤ ‖y − x‖
v(t)

∫ b

a

|Gt(t, s)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds, (4.2)

and

| d2

dt2
(Ty(t)− Tx(t))|

z(t)
≤ ‖y − x‖

z(t)

∫ b

a

|Gtt(t, s)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds.
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The goal is to find w, v, and z for which the following hold,

1

w(t)

∫ b

a

|G(t, s)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds ≤ α < 1

1

v(t)

∫ b

a

|Gt(t, s)|[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds ≤ α < 1 (4.3)

1

z(t)

∫ b

a

|Gtt|(t, s)[p(s)w(s) + q(s)v(s) + r(s)z(s)]ds ≤ α < 1.

Theorem 4.4. Suppose f(t, y(t), y′(t), y′′(t)) is continuous on [0, a]×R3 and satisfies
the above modified Lipschitz condition. If the equation

u′′′(t) + r(t)u′′(t) + q(t)u′(t) + p(t)u(t) = 0

has a solution satisfying u(0) = 0, u′(0) = 0 on [0, a], and u′′(t) > 0 on [0, a], then

y′′′(t) = f(t, y(t), y′(t), y′′(t))

with boundary conditions y(0) = y′(0) = 0 and y′′(a) = 0 has exactly one solution.

Proof. Consider the comparison problem

w′′′ +
1

α
[r(t)w′′(t) + q(t)w′(t) + p(t)w(t)] = 0

with
w(0) = 0, w′(0) = 0, w′′(0) = u′′(0).

It will be shown that it is possible to find w, v = w′, and z = w′′ so that (4.3) holds
for some α < 1.

Let m = min0≤t≤a u′′(t). By continuity of solutions with respect to parameters,
given ε > 0 there exists α < 1 so that on [0, a],

|u(t)− w(t)| < ε, |u′(t)− w′(t)| < ε, |u′′(t)− w′′(t)| < ε.

Take ε < m
2
. Therefore,

w′′(t) > u′′(t)− ε > m− m

2
=

m

2
> 0

for t ∈ [0, a]. By the Mean Value Theorem, for any t ∈ (0, a]

w′(t)− w′(0)

t− 0
= w′′(t∗) > 0
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for some t∗ between 0 and t implying that w′(t) > 0. A similar argument concludes
that w(t) > 0 on (0, a]. Hence,

w′(t), w(t) > 0 on (0, a], w′′(t) > 0 on [0, a].

The Green’s function for u′′′(x) = g(x) with boundary conditions u(0) = u′(0) =
u′′(a) = 0 is given by (3.6). Note that G, Gx, and Gxx are negative (or zero) and
since w′′′(x) = − 1

α
[rw′′′ + qw′ + pw], it follows that h defined by

h(x) :=

∫ a

0

|G(x, s)|
[
p(s)w(s) + q(s)w′(s) + r(s)w′′(s)

]
ds

satisfies the following.

h(x) = α

∫ a

0

G(x, s)w′′′(s)ds

= α
(s

2
(s− 2x)w′′(s)

∣∣∣x
0
−

∫ x

0

(s− x)w′′(s)ds− x2

2
w′′(s)

∣∣∣a
x

)
= α

(∫ x

0

w′(s)ds− x2

2
w′′(a)

)
= α

(
w(x)− x2

2
w′′(a)

)
≤ αw(x).

Thus, h(x)
w(x)

≤ α. It follows from the expression for h that

h′(x) = α[w′(x)− xw”(a)] ≤ αw′(x) and h′′(x) ≤ α[w”(x)− w”(a)] ≤ αw′′(x).

Therefore, (4.3) holds implying that T is a contraction mapping.

4.4 Computations

To illustrate the conclusion of example 3.12 consider the problem u′′′(x) = −62|u| =
f(x, u(x)) with non-homogeneous boundary conditions u(0) = 2, u′(0) = 0, u(1) =
−1. Recall from Example 3.12 that the approximation optimal bound on the Lipschitz
constant, L, is 75.859. In this case, the Lipschitz constant is chosen to be L = 62.
Since Theorem 2.1 requires homogeneous boundary conditions, it cannot be applied
directly to this example. Define w to be a polynomial satisfying the same boundary
conditions, w(x) = 2−3x2. By letting z(x) = u(x)−w(x), z satisfies the homogeneous
boundary conditions as stated in 3.12. Moreover,

z′′′(x) = u′′′(x)− w′′′(x) = u′′′(x) = −62|z(x) + w(x)| := −62f(x, z),
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so z satisfies the same ODE as u with the same Lipschitz constant. Also note that

|f(x, z2)− f(x, z1)| = |z2 + 2− 3x2 − z1 − 2 + 3x2| = |z2 − z1|.

Thus, Theorem 2.1 can be applied directly to the ODE z′′′ = −62f(x, z) with the
homogeneous boundary conditions. As long as L < 75.859, Theorem 2.1 and Example
3.12 give a unique solution z, satisfying the homogeneous boundary conditions, which
in turn, gives a unique solution to the non-homogeneous problem, u. An illustration
of this unique solution is given in Figure 1. An iterative process was used to determine
the initial value for u′′ that corresponds to the boundary conditions u(0) = 2, u′(0) =
0, u(1) = −1. That value was found to be approximately u′′(0) = 113.108. The graph
was then obtained using the standard initial value problem package in MATLAB.

Next, consider the non-homogeneous boundary value problem

u′′′ +
1

2
sin u′ +

1

2
|u| = 4

with boundary conditions u(0) = u′(0) = u(1) = 0. This is an illustration of Theorem
4.2 with a = 1 and

f(x, u(x), u′(x)) = 4− 1

2
sin u′ − 1

2
|u|.

It is necessary to choose K, L, and M so that f satisfies the Lipschitz condition given
in the theorem and

2K

3
+

5L

6
+

4M

3
< 1.

Since f does not depend on u′′, M can be chosen to be 0. Choosing K = L = 1
2

satisfies the inequality, leaving only the Lipschitz condition to be verified. Note that∣∣f(x, u2(x), u′2(x))− f(x, u1(x), u′1(x))
∣∣

=
∣∣4− 1

2
sin u′2(x)− 1

2
|u2(x)| − 4 +

1

2
sin u′1(x) +

1

2
|u1(x)|

∣∣
=

∣∣1
2

sin u′2(x)− 1

2
sin u′1(x) +

1

2
|u2(x)| − 1

2
|u1(x)|

∣∣
≤ 1

2
| sin u′2(x)− sin u′1(x)|+ 1

2
|u2(x)− u1(x)|

≤ 1

2
|u′2(x)− u′1(x)|+ 1

2
|u2 − u1|.

Thus, Theorem 4.2 can be applied directly to this problem, yielding a unique solution.
A graph of this solution is given in Figure 2. It was obtained using the same methods
employed in the previous example using an iterative process to determine the initial
value for u′′ that corresponds to the boundary conditions u(0) = u′(0) = u(1) = 0.
That value was found to be approximately u′′(0) = −1.3615.

Finally, for an illustration of Theorem 4.3 with a = 1, consider the problem
u′′′(x)+Lu′(x)+K cos(u(x)) = 0 with boundary conditions u(0) = u′(0) = u′(1) = 0.
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The Lipschitz condition holds as follows for any K and L greater than zero.

|f(x, u2(x), u′2(x))− f(x, u1(x), u′1(x))| =
| − Lu′2(x)−K cos(u2(x)) + Lu′1(x) + K cos(u1(x))|
≤ L|u′1(x)− u′2(x)|+ K| cos(u1(x))− cos(u2(x))|
≤ L|u′1(x)− u′2(x)|+ K|u1(x)− u2(x)|.

By choosing K = 2 and L = 3, the inequality in Theorem 4.3 holds. Thus, the
hypotheses of Theorem 4.3 hold and a unique solution exists. The graph of this
solution is given in Figure 3.

Figure 1: Solution to u′′′(x) = −62|u(x)| with u(0) = 2, u′(0) = 0, u(1) = −1

Figure 2: Solution to u′′′ + 1
2
sin u′ + 1

2
|u| = 4 with u(0) = u′(0) = u(1) = 0
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Figure 3: Solution to u′′′(x)+Lu′(x)+K cos(u(x)) = 0 with u(0) = u′(0) = u′(1) = 0

5 Conclusion

It has been demonstrated that Green’s functions have a wide range of applications
with regard to boundary value problems. In particular, existence and uniqueness of
solutions of a large class of third order boundary value problems has been established.
In fact, given any third order ODE with homogeneous boundary conditions, as long
as the corresponding Green’s function exists and f satisfies an appropriate Lipschitz
condition, Theorem 2.1 guarantees the existence of a unique solution under very mild
conditions. Similarly, Theorem 2.2 also guarantees such a solution under equally mild
conditions. These theorems are contrasted with classical ODE existence theorems
in that they circumvent the use of classical convergence analysis by assuming the
existence of the Green’s function. Banach techniques are still used, but the existence
of the Green’s function is the primary tool in showing existence and uniqueness. This
requires, of course, that the Green’s function exists for a particular problem, but the
examples in Chapter 3 show that this is usually not a severe restriction.

However, as mild as the restrictions seem to be, one should pay particular detail to
the range of values of the Lipschitz constant(s). As Examples 3.10 - 3.12 demonstrate,
there are bounds on the Lipschitz constant L that are necessary in order to apply
Theorem 2.1. Specifically, as the interval increases in length, the necessary bounds on
L become more restrictive, thus lessening the applicability of the existence theorem.
Another restriction on the Lipschitz constants arises in Theorem 2.2. The Lipschitz
constants corresponding to f must also satisfy an inequality involving bounds on
integrals of G and its derivatives, which, if G is badly behaved, may be a severe
restriction. The examples of Chapter 4 illustrate these ideas. For example, Theorems
4.1 - 4.3 are specific cases in which Theorem 2.2 is applicable.

As a final application of Green’s functions, Theorem 4.4 guarantees a unique
solution for a specific third order boundary value problem. This example replaces the
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standard Lipschitz constants with nonnegative functions, providing a more general
Lipschitz condition. However, the existence of a solution under this generality requires
more restrictive hypotheses. Thus, the applicability of this theorem is not as broad
as that of those in Chapter 2. Nevertheless, this theorem is indicative of how Green’s
functions can be used in a variety of ways to prove existence and uniqueness of
solutions to ODE’s. The theorems for third order existence/uniqueness are new and
parallel known theorems for second order boundary value problems.
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