
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

6-1961

Quantum Kinetic Equations for Plasmas and
Radiation; Part II. Cyclotron Instabilities in a
Bounded Plasma
Philip B. Burt
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Burt, Philip B., "Quantum Kinetic Equations for Plasmas and Radiation; Part II. Cyclotron Instabilities in a Bounded Plasma. "
Master's Thesis, University of Tennessee, 1961.
https://trace.tennessee.edu/utk_gradthes/2961

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a thesis written by Philip B. Burt entitled "Quantum Kinetic Equations for
Plasmas and Radiation; Part II. Cyclotron Instabilities in a Bounded Plasma." I have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Physics.

E.G. Harris, Major Professor

We have read this thesis and recommend its acceptance:

W.E. Deeds, O.R. Harrold, J.O. Thomson, & R.D. Present

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



1i 

May 29, 1961 

To the Graduate Council: 

I am submitting herewith a thesis written by Philip B. Burt entitled 
Part I • . · "QuantUm Kinetic Equations for Plasmas and Radiation) Part :rr • 
.Cyclotron Instabilities in a Bounded Plasma."  r reconnnend that it be 
accepted in partial fulfillment of the requirements for the degree of 
Doctor of Philosophy, with a major in Physics. 

We have read this thesis and 
recommend its acceptance: 

o.ft.;� 

Major Professor 

Accepted for the Council 



PART r; QUANTUM KINETIC EQUATIONS FOR PLASMAS AND RADIATION 

PART II; CYCLOTRON INSTABILITIES IN A BOUNDED PLASMA 

A Thesia 

Presented to 

the Graduate Council of 

The University of Tennessee 

In Partial FulfillJnent 

of the Requirremeilte ·for the Degree 

Doctor of Philosophy 

by . ,£c' 
Philip B1�1'-'Burt 

JuJ}e 1961 



iii 

ACKNOWLEDGEMENTS 

The author wishes to express his appreciation to Professor 

E. G. Harris for his friendship and guidance throughout the course of 

this investigation. 

In addition, he must acknowledge the patience and forebearance of 

his wife 1 Harriet, through several years of graduate study and also for 

typing this manuscript. 

To Professor Alvin H. Nielsen and the Physics Department of the 

University of Tennessee go expressions of gratitude for encouragement 

and financial support through a teaching assistantship. In addition, 

the author must thank the National Science Foundation for a fellowship 

during the last year of study. 

For several useful discussions of the problem considered in Part 

II, the author wishes to thank Drs. A. Simon and T. K. Fowler of the Oak 

Ridge National Laboratories, where this problem was begun. 

Finally, to the members of his family, who have provided much 

support, both moral and material, go the sincere expressions of gratitude 

of the author. 

525253 



TABLE OF CONTENTS 

PART I. QUANTUM KINETIC EQUATIONS FOR PLASMAS AND RADIATION 

CHAPrER 

I. INTRODUCTION AND REVIEW OF THE LITERATURE • •  • • • • • • • • 

Basis for the Investigation • • • • • • • • • • • • • • • • 

II. THE DENSITY MATRIX • • • • • • • • • • • • • . . . . . . . . 

Particle Density Matrices • • • • • • • • • • • • • • 

Reduced Density Matrices • • • • • • • • • • • • • • 

The Density Matrix for Radiation Fields • • • • • • • 

• • • 

. . . 

• • • 

Quantum Mechanical Distribution Functions • 

ni. THE SELF-CONSISTENT FIELD APPROXIMATION • • • 

IV • DEVEIDPMENT OF THE QUANTUM KINETIC EQUATIONS 

• • • • • • • • 

• • • • • • • • 

• • • • • • • 0 

The Hierarchy of Kinetic Equations • • • • • • • • • • • • 

The Quantum Vlasov Equations • • • • • • • • • • • • • • • 

Average Potentials and the Classical Limit • • • • • • • • 

V • DISPERSION RELATIONS FOR A QUANTUM PLASMA • • • • • • • • • • 

Dispersion Relations for Longitudinal Waves • • • • • • • • 

vr. 

Transverse Oscillations of a Quantized Plasma • 

SUMMARY • • •  • • • • • • • • • • • • • • • • • • 

• • • • • • 

• • • • • • 

PART Ir. CYCWTRON INSTABILITIES IN A BOUNDED PLASMA 

r. INTRODUCTION • • • • • • • • • • • • • • • • • • • • • • • • 

Review of the Theory 

II. SOLUTION OF THE PROBLEM 

The Vlasov Equations 

• • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • 

PAGE 

1 

3 

, 

, 

9 

12 

15 

19 

25 

25 

33 

41 

1�9 

49 

57 

66 

70 

70 

75 

75 



CHAPI'ER 

The Dispersion Relation • • o • • o • • • • • • • • • • • • 

III. CONCLUSIONS • o • • • o • • • • • • • • • • • • • • • • • o 

BIBLIOGRAPHY I 

BIBLIOGRAPHY II 

0 • • • • • • • • • • • • • • • • • 

• • • • • • . . . . . . . . .. . . . . . . 

• • • • • 

• • • • • 

v 

PAGE 

80 

105 

109 

111 



LIST OF FIDURES 

FIGURE PAGE 

1. 

2 .  

3.  

4 . 

'· 
6. 

a. 

The Initial Plasma Configuration 

�(r) for Several Values of k • •  

• • • • 

• • • • 

• • • 

. . . 

• • • . . • • • • 

• • • • • • • • • 

74 

91 

Location of the Roots (3 n • • • • • • 

r(w) Versus u). • • • • • • • • • • • 

g(u)) Versus u) • • • • • . . . • • • 

x/o) pe Versus N 0 • • • • • • • • • • 

Charge States in the Plasma • • • • • 

• • 

• • 

• • 

• • 

• • • 

. • • 

• • • 

• • • 

• • • • • 

• • • 

• . • 

. • • 

• • • 

• • • • 

. • . . 

• • • • 

• • • • 

• • • • • • • 

• 93 

• 94 

• 96 

• 102 

• 103 

Electric Fields in the Plasma • • • • • • • • • • • • • • • • • 104 



PART I 

QUANTUM KINETIC EQUATIONS FOR PLASMAS AND RADIATION 



CHAPTER I 

INTRODUCTION AND REVIEW OF '1HE LITERATURE 

- . 
One method of examining many-body problems is to utilize a statis� 

tical approach, replacing the system in question by a collection of rep

resentative ensembles. This method has led to some successes in determin-

ing the properties of plasmas in which quantum mechanical effects are . . -
significant, but, as yet, no complete, consistent exposition of the 

theory, based on the quantum analogue of the Liouville equation for the 

system, has been g�ven. This investigation is concerned primarily with 

such an exposition. The entire non-relativistic Hamiltonian is retained, 

in order that transverse electromagnetic interactions may be studied. 

In Chapter:.II the density matrix formalism is reviewed briefly 

and shown to be most useful in investigating the problem of quantum 

plasmas . The formalism is extended to include the degrees of freedonl 

of the radiation field, in order that botb fields and particles may be 

treated statistically. Inclusion of the trans!erse interactions is 

effected by replacing the electromagnetic fields by an infinite set of 

rad�ation oscillators and then defining a density matrix for this sys

tem. Finally, an• alternate approach--that of 9-uantum mechanical dis

tribution functions--is discussed and the disadvantages of such a 

formulation indicated. 

A preliminary proolem is considered in Chapter II!. �re, the 

potential energy of a particle is assumed to be derivable in a self

consistent manner. That is, the electrostatic potential is calculated 

from Poisson's equation with the sources derived from the particle 



distributions. Transverse electromagnetic interactions are ignored. The 

dispersion relation obtained from the N-particle equations is found to be 

the same as that from the one-particle equations. Thus, particle corre

lations are not included. 

In Chapter IV a hierarchy of equations for the "internal11 or 

reduced density matrices for particles and oscillators is obtained by 

taking partial traces of the Liouville equation for the entire system. 

One integrates the equation over the coordinates of all but a small num-

ber of particles and oscillators . Due to interactions, the equation for 

the m-particie, t-oscillator densit� m�trix
.
contains �he density matrices 

for m + 1 particles and t -t- 1 oscillators , etc. However, these interaction • 

terms follow in a completely consistent manner, so that ?ne no longer 

needs to insert ad hoc forms for exchange integrals , etc.  Then, a per-

turbation theory is developed which enables one to close the chain of 

equations . The limi�s of vali�ty of this treatment appropriate for a 

plasma are discussed. Finally, the quantum anal?gues of the classical 

Vlasov and F·okker-Planck equations are exhibited. 

In Chapter V the theory is used to calculate dis�;�ersion relations 

for the frequencies of small disturbances in the plasma. The effects of 

particle correlation are demonstrated for the case of longitudinal 

Coulomb interactions and are found to be due to exchange. In addition, 

the dispersion relation for transverse interactions is also derived and 

some rather unusual features of this relation are compared with the 

classical case. 

The investigation is summarized in Chapter VI and suggestions for 



further studies are given. 

I. BASIS FOR THE INVFSTIGATION 

3 

The procedure for obtaining "kinetic" equations for internal dis

tribution functions of a system was first developed by Bogoliubov* {1) in 

his study of.the properties of un�ionized gaseso Bogoliubov also indi• 

cated some o� the problems which would be encountered � a similar devel

opment for systems interacting through long-range Coulomb forces.  Born 

and Qreen (3) ,  KirkWood and collaborators {13, 25) and Yvon {37)  also 

studied classical and q�antum systems, using te?hniques similar to those 

developed by Bogolilibov. H�ever, they
_ 
too were primariJ.r interested in 

un-ionized gases and liquids. Recently, Rosenbluth and Rostoker {26) - . . . 
derived kinetic equations for a classical plasma, asswning._ only Coulomb 

interactions . Simori and Harris (30) extended the theory to include 

transverse electromagnetic interactions . 

Most of the invest igations of quantum p�asmas have employed tech

niques differing somewhat from those used here . Several texts have been 

devoted to the methods appropriate for various many-body problems, but 

some of them most often employed in plasma studies will be indicated 

here. Perhaps the best known treatment i�_due to Bohm and Pines {2) o  

Here, "collective " variables replace the usual coordinates of the system, 

facilitating the solution of problems in which the individual particle 

nature is not as important as the gross features of the system. In par-

*References are listed alphabetically and numerically in the 
bibliography 
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ticular, Bohm and Pines obtained a dispersion relation for the fre• 

quencies of collective oscillations of a quantum plasma. This same rela

tion has been obtained by several other authors (8� 1�, 29� 39) in 

different ways and will also be derived in this investigation. Of 

especial interest is the work of Klimontovich and Selin (7),  in which 

kinetic equations for the quantum plasma were obtained and applied to 

several problems� including the small-amplitude Coulomb disturbances. 

Ehrenreich and Cohen (8) have also studied this problem, obtaining the 

quantum dispe·rsion relation by means of the one-particle Liouville equa

tion and the self-consistent field approximation for the Coulomb poten

tial. Finally, von Roos {36), formulating the problem in terms of a 

quantum mechanical distribution function similar to that used first by 

Wigner (37-), obtained the dispersion relation mentioned above and showed 

how exchange affects the relation. 

None ot the above treatments have included a development of kinetic 

equations for particles and the electromagnetic field, although Osborn 

and Klevans (2L) initiated an investigation of this problem at about the 

same time that the present study was begun. However, the direction of 

these authors' work seems to be somewhat different from this disserta

tion. 



CHAPTER II 

THE DENSITY MATRIX 

In order to develop a system of kinetic equations for a quantum 

mechanical plasma , it is necessary to introduce a distribution function 

containing the statistical information pertinent to the system under con

sideration . In this chapter, it is shown that the density matrix of 

Dirac (6) and von Neumann (3S) can be employed, and the generalization of 

the resulting formalism to radiation fields is given. In the final sec-

tion, an alternative formalism is discussed briefly and compared with 

the one utilized in this work. 

I. PARTICLE DENSITY MATRICES 

In ordinary non-relativistic quantum mechanics the state of a 

system is described by a wave function f , a function of the particle 

coordinates and time, which obeys the Schrodinger equation 

H'f- �* !.1 - ..,. )I � v 1: 
where H is the Hamiltonian operator for the system. With this wave 

(1) 

function or probability amplitude one calculates expectation values of 

operators for the system. 

Instead of using the wave function of the system, an equivalent 

formalism can be developed using the density matrix. The density matrix 

is usually defined as 

R (X.jX ') ':, 1/>l�) 1/'t{y.'). (2) 

If we consider 'J> to be a column vector in Hilbert space, then �t , the 

Hermetian conjugate of lP , will be a row vector and the direct product, 



6 
repre,ented by Eq. (2) will be an infinite matrix. 

It is a simple matter to obtain an equation for the time dependence 

of R, , itt fact . ' . " 

R -=- lf,1ft + 1./'lf'l- � -i H\f'l/1.,. + � �tp+ nt-
= -� [H) R]J 

(3) 
since H is Hermetian. It is also easy to see that the expectation value 

ot an operator A(x) is given by 

(A) -= flffcx) a(xff(K)c/x = /d(/(.1tltl) rcx-t ')!f(Xji)(h) 
::. VttJ.c e. (a 1?.). 

In the above, the xx' "matrix element" of the operator is written 

a cx.�x � .:: a tx.J J(x - K' ') • <5> 

Thus the ana•logy to a matrix formalism is preserved. This particular 

notation is not essential to the development of the theory, but is less 

cumbersome than others commonly used (e .g . ,. Lowdin (16), McWeeny (17)). 
In general, the wave function � carries indices or quantum num

bers which label the operators of which <p is an e igenfunction. The 

density matrix for a state k is denoted by 

-. Rkk(x;t.'):. lf'<lx.)lf:txV <6> 

'lhe diagonal"' element of this matrix,R kk(x,x), gives the probability that 

a system in the state k (k may be a composite quantum number) is located 

at the point x. In addition to these one may define transition matrices 

Rk'-tx;t.')=-lf" 4i t;_'t� <1> 

The diagonal elements of these matrices are not physical observables. 

HOwever, if A is an operator which causes a transition in a system, then 

(t I A/k) = jW�x) t1.. 1/t(xJJ(::. f,_l(lr'tt . (8 ) 



This is simply the matrix element or transition element of the operator 

A. From this element we can calculate the transition probability. 

7 

The density matrix formulation of quantum theory has found ma� 

applications, in particular in the study of atomic and molecular systems. 

Recently, Lowdin (16) has developed a generalized Hartree�ock approxima

tion using the density matrix, and has applied it to many-electron and 

many-atom systems. Lowdin' s work has the advantage of being more amenable 

to numerical treatment than previous theories. u. Fano (9), in an 

excellent review article, has discussed the non-statistical applications 

of the density matrix, with particular emphasis on nuclear physics and 

scattering theor.y. 

The original development of the density matrix theory was intended 

to introduce a formalism analogeous to classical statistical mechanics. 

It is this particular approach which will be emphasized below. In pre

senting the ensemble theor.y, the treatment given by Lowdin will be fol

lowed. Since the theory can be found in any standard text in statistical 

mechanics (e.g., (.3.3), (.3u)), only the main features will be presented 

here. 

We assume that the system under consideration is, by reason at 
complexity in a physical sense, incapable of exact treatment using the 

Schrodinger equation. In other words, the values of a complete set of 

constants of motion or eigenvalues necessary t� specify the state of 

the systems are not available. One then can consider representative 

systems, each of which has the same number of particles (canonical en

semble) and obeys the same Schrodinger equation, for which we can specify 

exactlY the state by giving the eigenvalues. Then the expectation value 
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of an operator for the system is given by 

(9) 
The Pk are the 11weights11 or probabilities of finding the system in the 

state described by the wave function ft< o Note that '/'.._ is not necessarily 

a stationary state, although for most purposes it will be. The only 

requirement placed on the 'f"< is that they must be orthogonal to prevent 

mixing. The Pk are time independent quantities determined by the initial. 

conditions. They are sometimes referred to as Boltzmann factors. 

In Eq. (9), two distinct averages have been taken, the first being 

the usual·quantum mechanical average or expectation value of the opera-

tor.A, while the second is a statistical average over all possible states 

available for the ensemble. It is apparent from the above that a con

venient definition of the density matrix of the ensemble is 

R = L� PI( lfK �/ .. Lk fi. R""i 
and the average value of the operator A can be written as before 

(A) :: frt RA 

(10) 

(11) .. 
Since the Pk are time-independent quantities, it is apparent that 

th� new density matrix will also obey a Schrodinger equation, or rather 

its equivalent, Eq. (4). Thus, this treatment differs from a time 

dependent perturbation theory, where one writes 

� :. � ?"\ a,., f*) 1"" .� (12) 

and the tPn are stationary wave functions. In fact, in some situations 

exactly such a procedure may be followed, giving for the density matrix 

(see MCWeeny (17 ) )  

R =21<. fi<.�)l.t! O.J,(.t)O.:t:t-) Vi W}. (13) 
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Now, where one writes Eq. (h) for the ensemble density matrix, 

one is actually imparting a different kind of information than pre

viously. This is, in fact now a statement of conservation of probability 

in two senses, the quantum mechanical and the statistical. In the latter 

sense, it is analogous to the Liouville equation of classical statistical 

mechanics, a continuity equation in the 6N-dimensional phase space of 

the classical system. The importance of this two-fold statistical nature 

bas been emphasized by Tolman (34). 

With the density matrix for an ensemble defined, it is possible 

to develop a quantum statistical mechanics quite similar to classical 

statistical mechanics. In particular, the concept of the micro-canonical, 

canonical, and grand ensembles (see, e.g., ter HBar (33)) are all re� 

tained, and many other features of classical statistical mechanics can 

be adopted. 

Ir. REDUCED DENSITY MATRICES 

Since the complete density matrix for a system of N particles is 

a function of the coordinates of all these particles, it is seldom con-

venient to work with this quantity, disregarding completely the fact 

that the mathematical problem of calculating it is practically insur

mountable. For this reason Husimi (12) introduced the 1 1reduced11 density 

matrices. These are "correlation" functions for m(� ,N) particles of the 

N-particle system. They are defined by* 

�This definition differs from the standard one in the introduction 
of the factor vm. For the purposes of this investigation it is more con
�at.., and only changes the normalization. Henceforth, this new normal
ization will also be used for R, the full density matrix for N particles. 



R.tm) "'1 �JJ(f)f-(X,,'-. .. , x7t-t� t,'f.>.' .•• J.:.) :: V j � r ltm�>� .. ,IJJ/; 

10 

(14) 
where V is the volume of the system. Thus, the original elements of R (m ) 

multiplied by Vd-�looodxm1 gives the probability that particle 1 can be 

found in the volume dx1 centered at x1, particle 2 in dx2 centered at x21 

etc., with the reM!inder of the N� particles unspecified.  The generali

zation of Eq. (14) to ensembles is obvious, and the elements have similar 

interpretations . 

Lowdin (16) and McWeeny (17) have discussed the reduced density 

matrices quite completely, but some of the more important considerations -
will be included hereo Since the most interesting and useful applica-

tions occur for identical particles,  the discussion will be restricted to 

a system of N identical fermions • According to the Pauli exclusion prin

ciple, the wave function ot this system must be completely antisymmetric 

under interchange ot aey- two particles .  Thus, tor the two-particle 

reduced density matrix 

R{�}(x,xJ. j x,'t/) = -/f1�)( 1., '4 � ";.' x,) = /f-1 ( t�i, �i.J. '1,'1 <l5> 
and tor the diagonal elements, 

R(?.r.x, XJ.: x.,XJ.) = KQ.) r�x,; iJ.,,J (16) 
and finally, 

(17)  

The last is the result of the anti-symmetry ot the wave function. The 

important point to note here is that the diagonal elements, used to cal

culate expectation values, are symmetric. This is simply an expression 

ot the tact that the particles are indistinguishable. 

Now, suppose that the Hamiltonian ot the system contains a two-



11 
particle operator, e.g., 

/t (;V = /, V (x<�t,;). 7:;j (18) 
Then, the expectation value of this operator is 

(f!�) -=l:JJ f uc.(A�JJ) l/Jf/Jte/x =- ;�z.fivcY,�tJJA1i�;t:Yi��· j I 
�� cJ {�) 

= #(A/-1) f lf lx, 4) K1:t,I.J.. i.XJ) = #(H-1) M_f��)7/tKI.JiJ.) • � V '> j I J ���,... 
Hence, in order t o  calculate the expectation values of two-boqy operators 

one need know only R(!). While the previous discussion has been re

stricted to fermions, it is clear that similar considerations apply to 

bosons. The situations for mixed systems is only slightly more complia 

cated and need not be considered. 

Another interesting relation is obtained from the definition of 

the reduced density matrix. 

f("") = V m_/ 1f 'f t;/tm+t ... )XII' = V -fo...,.,fr mf'f''/i"Jx.,.z .. ,/IJI 
V -11 J r;fm·n) "'J, ,· )(20) = ;aXm+t n (;1.,14 . . . xM+!JA, -'!.. .. ,JMI IWI+; ... 

= v-J y;,_r'M+I)R(-.,..+,� . 
where Tr(m+l) denotes the partial trace, i.e., integration over the 

coordinates of particle (m �1). Thus, if the interactions among par

ticles are confined to m-body forces, then it is only necessary to 

calculate R(m) to be able to determine all expectation values. One can 

-::.hen use the recurrence relation given by Eq. (20) for calculations of 

expectation values of j (� m)-body forces. 

For many physical systems (possible exceptions being nuclei and 

molecules) interactions are only of the two-body type. For this reason, 

as well as mathematical complexity, most of the applications of the re-

duced density matrices have been confined to orders one and two. Husimi 
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and Nishiyama (13, 21)  have given detailed discussions of the algebraic 

properties of the reduced density matrices for the canonical ensemble. 

In particular, recurrence relations for R*m)in terms of R��l, R*m-l), 

etc., have been found.* These relations are much more useful than Eq. 

(20) since it is clear that R(m) is, at best, obtained by solving an 

m-body problem. Thus, for m') 2, Eq. (20) is of academic interest only 

except in very special circumstances. 

III. THE DENSITY MATRIX FOR RADIATION FIELDS 

As is well known, Bohr originally demonstrated that if the uncer• 

tainty principle is to be universally valid, electromagnetic fields 

interacting with quantized systems must also be quantized. Quantization 

of the electromagnetic field essentially consists of requiring certain 

field components to obey commutation relations, i.e., the fields are no 

longer "c" numbers, but operators. In this section the density matr:Ut 

theory will be extended to include the radiation fields. 

Originally, fields were quantized by defining generalized 

"coordinate" fields and their conjugate "manentum" fields and tmn re-

quiring the two classes to satisfy commutation relations similar to those 

obeyed by particle coordinates and moments. Although this procedure is 

not necessary, it has the advantage of simplicity and clarity. For this 

reason the canonical formalism given by Heitler (10) will be given here. 

In order to define a Hamiltonian for the radiation field, one ex

pands the vector potential in a series of orthogonal functions 

*The subscript refers to the number of particles in the system. 



A :4 r)\A: ��A:. 
The A� satisfy the equation 

(V;J..- w::) � = o) 
't I I J.W>. * wl. h eg;. t-;.> = �)\ e .. 

Further, for most purposes, one employs solenoidal gauge, i.e.� 

13 
(21) 

(22) 
(23 )  

(24) 
The generalized coordinates and momenta of the field are defined 

respectively as 

&.>- :: go;.. tf' t- (25) 

1? ( ) (26) rA : -�W). Z). -�A+ • 
Then, with these definitions, the Hamiltonian becomes 

H = L;,. HA = -t2r. f fi �t-G.).-4-h·i = �4 �),�ti-z" · <21> 
Quantization is attained by applying the commutation relations 

[ B.J a)\] -= li. Q). - &� P" = �, J c2a > 

[ PJA� Pv]-:. [ tl;..1 GM} = o. (29) 
The Q}.. and P)\ are now time-independent operatorse 1be evolution of the 

system is determined by a Schrodinger equation 

H ,,1 = ! �tP (30) 'f ' T-t:: 1/J is the state vector of the system� depending on the generalized co-

ordinates and time. The stationary state solutions for H)\ are 

and, in general, any state vector can be written 

¥ .:. Zo.,�� "aA Ca, � ... ,a.;. 1/J, 1/1� , ., "1/J;.. • 

(31) 

(32 ) 
Thus, by employing the amplitudes as generalized coordinates and 

moments, one can quantize the radiation field by imposing commutation 

relations in the usual manner. Furthermore, from Eqo (27) , it is apparent 



that the Hamiltonian is a sum of Hamiltonians of harmonic oscillators . 

Thus, the radiation field can be replaced by a system of oscillators, 

each with a different natural frequency W>._ • Now, instead of discussing 

the photons of the electromagnetic field, one may alternatively consider 

the interactions of the radiation oscillators. This is, in fact, a con

sistent formulation of the original ideas of Planck. In the problems to 

be investigated subsequently this viewpoint will offer many advantages.  

The simplicity resulting from the oscillator 11picture11 is illus

trated in Eq. (32h which is significantly different from the correspond-

ing expression for identical particles. Since oscillators of different 

natural frequencies are distinguishable , no symmetrization of the state 

vector is necessary. Each oscillator represents a separate degree ot 

freedom for the fields: consequently, the state vector for a given con• 

figuration is simply the product of state vectors for each oscillator if 

there are no interactions. However, since photons are bosons1 the state 

vector of a system of these particles must explicitly include their 

statistical correlation even in the absence of interactions . 

Since the foregoing formalism so closely resembles the particle 

theory, an obvious definition of the density matrix is 

(33)  

That R will satisfy an equation of motion like Eq. (4) needs no  demonstra-

tion. The expectation values of operators follow in a simple manner. As 

an example, consider the expectation value of the number operator ·,;:, ·� 

ri (..q�Q.)\ ) , using Eq. (32) in the number representation, 

T11 QttJ;.. R = L. , , <Yl,nl.···ltt!z)./n.'fl/ ... )(n,'n"' ... fRln.n� .. � 
o u -n, n, .. :n, n, ... 



=. �, (N/�'}.'6/A!') z�,..<tV''/#'") cN.,c11:, (II'''/#) 
:: L;nt�' c:cu, (II /9/Z,./N? -=- ( 1/J /1111-/ If)· 
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(34) 

In order to define reduced density matrices for the oscillators, 

some comment is necessar.y about the state vector in the quantum theory 

of radiation. General�, the emphasis is on the operators in this 

theory, and the state vector is only a formal concept. For this reason, 

one finds that most authors are not explicit in defining the variables 

upon which the state vector depends (e.g., see Beitler (10) ). In the 

ensuing calculations the variables will, in most instances,  be indicated 

by (Ql, Q2, ••• ,Q) . In the amplitude or coordinate representation, the 

eigenfunctions of H).. are Hermite polynomials and are , in fact , explicit 

functions of the QA , However, one should not infer that the representa-, 
tion is being used unless noted. With this exception in mind, the 

reduced density matrices can be defined as 

/){j;J . I ') _ r D , I ' ) (35) n <G., ... ta.�J Q, ... flt -J tltJ;t�' ... /a� tt�Q, ... o.�:.Jl;�;+, .. ·) tJ, ... o�Jo,t-�-� ... .  
This definition differs formally from the corresponding particle reduced 

density matrix only in the absence of the factor vt . 

IV. QUANTUM MECHANICAL DISTRIBUTION FUNCTIONS 

Before preceding with the development of the kinetic equations for 

a plasma, it will be useful to consi�er an alternate approach to quantum 

statistical problems introduced by E . Wigner (37) o 

Instead of employing the density matrix in calculations, Wigner 

suggested the use of a quantum mechanical "distribution function" which, 

being a function of both coordinates and momentum, would be more similar 



to the classical distribution function than the density matrix. 

� 
and Pi is the Fourier wave vector 

� � � A p.- = p.:� er .,. f.t) e� +- p •• : ., �t . 

1.6 
His 

(36) 

(37) 

(.38) 
This "probability" distribution function is easily seen to have the pro-

perties 

fJ :ra .... fAJJf,···PIIJJf,dp�··· Jfo = l?fcx, ... t��JI y (39) 
and 

!Jftx, .. ,xN: p, ... �)J/; ... /�� / fr,, ···;>.v)�-r C4o) 
where �(Pl•••PN) is the momentum space representation of f • Eqs. (39) 
and (40) are simp� the probabilities of finding particles l ••• N at 
� � � � 
xi•••xN and particles l ••• N at p1 ••• pN respectively. 

Wigner showed that the expectation values of a certain class of 

operators could be calculated by direct integration of f with the· opera

tor over coordinates and moments. Later, Irving and Zwanzig (14) indi

cated that the expectation values of all operators can be calculated 

with f,  provided that one obtains the quantum mechanical operators from 

their classical counterparts by the prescription given by Weyl (14). 

is: 

The equation of change satisfied by the distribution function f 

�f : - � 
;r.t L k,:l (41) 
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(cont . )  

ber of particles in the system and the Hamiltonian is assumed to  consist 

of kinetic energies and scalar potential only. In the sum over A1, the 

Ai are subject to the restriction 

2..>.� = odd integer 
• 

(42) 
It is apparent that as h-+ 01 this equation reduces to the classi•

cal Liouville equation. Also, one should observe that quantum mechanical 

corrections to the Liouville equation are second order in �. This rather 

interesting point has also arisen in some recent work by von Roos (36) on 

quantum corrections to plasma dispersion relations. 

The Wigner distribution function has had many applications . 

Wigner employed it to calculate lowest order quantum corrections to the 

classical Boltzmann function (37). It has also been applied extensively 

by Kirkwood and collaborators (lh, 25) in deriving transport equations 

for low density gases and to formulate a hydrodynamics of quantum fluids . 

A. w. Saenz (27) also derived a transport equation for a dilute, non

degenerate, spinless gas using this function. Recently, von Roos (36), 

by defining the quantum distribution function as 

f = 'f'�-txJ e ,�.·E.i/ /'7fcx)e-Jtt..·x .l.t.) (43) 
obtained an apparently less complicated quantum transport equation and 

with this calculated the lowest order quantum correction to the plasma 

dispersion relation. 

Wigner's intention in introducing the distribution funot�on;·aside 



lB 
from considerations of mathematical simplicity, was that quantum statis

tics might embody more of the concepts of classical statistics than pre

viously. In particular, the very useful phase space of coordinates and 

momenta could be adopted. Thus, large portions of the classical formal

ism could be maintained without change, even though the fun!amental pos

tulates of the theory must, of course, differ. In addition, the transi

tion from quantum to classical treatments is simplified. HOwever, there 

are several annoying features which one encounters, aside from the com

plexity of Eq. (21). As was mentioned earlier, the calculation of 

operator averages is not straightforward. Of more importance, due to 

the uncertainty principle, a function giving a simultaneous distribution 

of position and momentum is obviously unobservable, and inferences from 

relation between such quantities must be made with great caution. 

Finally, there is the embarassing feature that none of the "probability" 

functions are positive definiteo However, it cannot be denied that the 

striking similarities in appearance of the quantum distribution functions 

and their classical counterparts are extremely useful for parallel devel

opments of the statistical theories. Certainly one useful feature of all 

these distribution functions, irrespective of their apparent differences, 

is that in the classical limit they all reduce to the classical distribu

tion function. Of course, the density matrix also has this property, but 

the correspondence is not so clear. 



CHAPTER III 

THE SElF-CONSISTENT FIELD APPROXIMATION 

In this chapter the dispersion relation for a quantum plasma is 

calculated using the N-particle self-consistent field (SCF) approximation. 

It  is shown that the statistics enter the dispersion relation in the same 

manner as obtained previously by other authors in one-particle tr�atments. 

From Chapter II, one knows that the density matrix R for the N

particle system satisfies the Liouville equation 

l t %f: :: {H) li.]. (1) 
Now, in the SCF approximation, the Hamiltonian is simply 

H � .L� -f.;� P" l- + Z, 1�.· I u4 J = !h -r � _ {2 ) 

where qi is the char�e on the ith particle. 

Here, no transverse electromagnetic terms have been included. The 

potential ¢ is calculated from the equation 

v�-; = - '�" Z·t/ 0. r If irx-�·J). 
Now, we consider a system of ·electrons slightly disturb�d from 

equilibrium in the presence of a "smeared" positive background. The 

density matrix can then be written 

{3) 

R = 1 () + / J <4> 

where jo is the der;'-sity
. 
matrix for the canonical ensemble and }J:;_ is a 

small perturbation. Eq. (2) then becomes 

v � � -= e Z,. Ttt. ( � ict-t�.·;) (5 ) 
since the uniform positive background cancels the zero-order negative 

charge density. Then, Eqo (1) becomes 

it� = [ H.Jf} r {i!;r'} {6) 
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since / 0 commutes with H0• 

Now, since f 0 is diagonal in the energy representation, one can 

take matrix elements or Eq. (6) with free particle eigenfunctions 

(7) 

(8 ) 

Pk is the permutation operator for N objects and o( m is a spin function. 

The sum is taken over all N! permutations. It is a simple matter to cal

culate the matrix elements (see, e.g., Condon and Shortl�y (') ) . One has 

,· t (.'I� I ( > = ( EE- E()< l/ r4 () .,.( f �e() -f,(E�))(t/ v /(_� (9) 
where 

(10) 
and 

(11) 
� 

The restricted sum in Eq. (10) indicates that the ki must be chosen from 
� _.. ...1> 

the set 'l = (k1, k2•• .kN) . 

and 

FUrthermore, one can write 

� ... ) - ... 3 ..... ·�-t 1c/l .. ,t =- 2f tftf,t)e 

�) d- - /9,t: V =- L ,·'-I e ydf,.t) e. � . 
Now, consider a matrix element of v. 

(12) 

(13) 
It is easy to see (') that 

if the sets c and { differ by more than one quantum number 

(F/VIf> = o. (14) 
Thus, 



( i I VI ( ) : ( 1/l.- e ¢� / < / 
.. =-i·.�� ·J·�·, kJ Jss' (h" I �I h� � ', ., : b 

and 
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(l5a) 

(l5b) 

(15c) 
.... .1. �ij is the Kronecker delta. Also, �n and kn' are the two differing k 

vectors in the sets � and {. Thus, (kn l� l� ') is a single-particle 

matrix element. The sign depends on whether an even ( t ) or odd (-) num-
.l ... 

ber or permutations is necessary to put kn and kn' in the same position 

in the sets � and { • But 

< h,fpf.l�> = � fe . .:rt,. -�.:)·� frt�Ji1f�+... 
(16) 

: rptf, .c) dirt- ;11.; fJ 
hence, Eq. (6) becomes 

,· t <�I �I ( > = ( E l-Et;:)<� If I () 
+ [ fo(E-<)- {, (££[/ ¢rj,:t) Jr.,��� �1 Jss' [k',f --l/1.) f · 

(17) 
In addition, 

L/ < f /G (n-A4)/() � ± nYl 6t.jJAJ' fs.s' <1, I ${�-111\!1; > 
(lB) 

&nee 

(19) 



= L.. (+)e-.:f.ii ..... 1 ·I '-t {'•i.-- (.E�k,-,;sf'tf� �t..t'rt;s) )1Jiti.).S v () .I 
... 
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{cont.) 

where now E ' is the set � with ki omitted. The sign is determined as 

before. However, changing the order of the differing indices also introa 

duces a sign change {�), so that one may perform the sum over i {a l ••• N), 

giving , ... . 
- - .f o·'l. .jo ...... �(l,.ith.-n,.Jt) =J, #� <ku f�S/ffh,rg-: [;s).) l";t s v � � 

and now we have re-named the differing indices k1 and k1'• Thus Eq. 

{20) 

(5) 

can now be written, using Eqs. (12) and (20), 
• 'IITPt r < r l' J I J ... ... I ) (x��J:J: 1jz.v'l .. ,���J I)C.;S/ft lt,'l� i /S . (21) 

Now, since the Hamiltonian is independent of spin, the initial arbitrary 

spin orientation will be preserved. Furthermore, the spinless density 

matrix is given by (16) 
< f I f I { > -: � < t; s, .. r� If I (; s, ... � > J s,J.,_ .. , (22) 

so, one has finally 

�(/11;) ;. L/{f� .. ) I <l,J-z'lffl,1-f)i_'), (23) 0 �� � t . 
Now, if one assumes that JS(q,t) and r (t) are proportional to 

e-iu>t, Eq. {17) becomes 

[-iw i- Ef,t,'-f{',k,J <t; '&.,�s/rlr;t,',;s') =-

'-1 ffl'/t,1. [ _[ I&' j) - /"I I ... ')I 7 lT t£.. .... I[; I' - ... .. 
(24) 

f"'"Y TolL-f.�"' To cEc ft., 'J J:l/ �..�.(,. s.s 'J/,,'-��� �ta,�J. 
Dividing both sides by the term in w and letting 

l'= {'/ 
� ,; 

I .... .a. 

/l, ':. 6, ""t.� 
s .::: s' 

and summing both sides, one obtains 

(25a) 

(25b) 

{25c) 



L <t�lc,;rlrl r: i,�ot;s) = 
£�f/JJ 

[ ... \] L_ l/!TIIt1�(lrfi.,tj)- {D (Et;lt,)J � ( '(/1./(J/(.);l"� j). 
l�koS f ... Y Ep;�k,+f- ft�"i., -�t..J tt.,l 

Now, one can use Eq. (22) and cancel the sums over 

(E�k1Jl/ f' ,"kl.,. q> since there are only dummy indices to consider. 

This gives 

I = L tfffNe'- [f.(Er:i:,•i) -{.( £l;k)) r� i:us �,_v £ , ... . _ c , .. � • 

t�lclJ '-{A., -1\W 

But Eq. (22) holds for f 0 also. Furthermore, 

.fJJ k"). '\.� J.l)f,_ l. --1.."1. '\. El! ( .,.. .. -£,. t : � - lr.c' f_t (lut-1}l..- 2. .6 ·'' -- h., -c;.l I j "'-I "-I "'>/ .Mil 2WI r c >I .hi' �'"I -

.. 
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(26) 

(27). 

(28) 

Finally, since the denominator depends on� on k1'1 one can per-

form the sum over all ki (i :> 1). From Chapter rr, thi� gives the 

reduced density matrix for one particle (partial traces are independent 

of the representation) in k space. But this is simply CJn) 
Cl) (k) > 1o rtitJ:: � (�t, .. lr"'tf'·l�c., ... �� .., .. [>1 - E�e - E� 

J 
-! (29) 

- e x..r r I ,1 
where Ef is the Fermi energy. .Thus, the final dispersion relation 

becomes 

/= '-lffNe, ""�-Z h o;(EA�i) -j,/I)(Ct:) 
f 2.. V' lt. ;!; .. :�£ r tt�-a1.,_- 4. ') - t w-

where the subscript on k has been dropped. 

(30) 

This is preciselY the dispersion relation obtained by Bohm and 

Pines (2) and others (8, 1.5, 36, 40) by several different methods. Gen

erally, one takes the volume to be infinite, keeping N/V finite. Then, 



� 
the sum over k can be replaced by an integral, giving 

1 =- LJn:�""LJd.� l lo (/rcit."i) -lo('rE�r.;l 
'D };.J(A,.,.J)>:.l 1-- t IV 
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(31) 

Unfortunately, this expression can be integrated in closed form 

only at zero temperature (15) . Furthermore, the integral in series gives 

a doubly-infinite series of transcendental functions, the arguments of 

which contain4/ • Needless to say, these functions cannot be inverted 

to give �(k). However, there is one point to which attention should be 

called: in this treatment, the statistics of the particles enters only 

through f0
l(Ek), which is the same as f0(Ek) for the one-particle system 

(33}. Thus, nothing new is obtained in the N-particle SCF treatmento 

In order to include exchange effects it is necessary to go to a more 

exact treatment and include explicitly the interactions which will lead 

to correlation effects. This requires a more complete development at 
kinetic equations for single-particle reduced density matrices and will 

be considered in the next chapters. 



CHAPTER IV 

DEVELOPMENT OF THE QUANTUM KINETIC EQUATIONS 

In this chapter, new equations for a system of charged particles 

will be developed in order that a more detailed study than the self

consistent field approximation can be made. In the first section, the 

Liouville equation for a system of particles and radiation oscillators is 

reduced to a less complex set of equations for the reduced density 

matrices of the system by integrating over groups of particle and oscila 

lator coordinates. In the second section, the two simp�est sets of 

kinetic equations--the analogues of the classical Vlasov and Fokker

�lanck equations--are displayed and some of their interesting properties 

compared with the classical theory of Simon and Harris (JO)o 

I.  THE HIERARCHY OF KINETIC EQUATIONS 

As was indicated earlier, the procedure employed to obtain dynami

cal equations for the particle distributions is the followingJ the N

particle,oo -oscillator Liouville equations will be in�egrated over the 

coordinates of all but a few particles and oscillators . This will yield 

equations for the internal or reduced density matrices. 

Physically, the plasma state consists of an equal number of posi• 

tive:cy- and negative, charged particles in unbound' states. Although 

there may be-other types of forces besides those electromagnetic in origin 

which are important in some plasm�, f'or our purposes we shall consider·. 

only electromagnetic fields. Furthermore, as an additional simplifica

tion, this development will apply to a system consisting of N electrons 
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and a "smeared" background of positive charge. In addition, for the pres-

ent, external electromagnetic fields will be omitted, since they can be 

added at any time with no difficulties. For the system considered, the 

Hamiltonian is (10) 

(1) 

Here, the A)'.. are the functions discussed in Chapter II, 
,.. 
'"'J�.- (/A., a 11 2) is the polarization vector in the r-th direction and u i 

is the spin operator for the ith particle. Now, as was ment;oned pre

viously, it will be convenient to use a "coordinate space" representation 

of the above operators. Ror simplicity i aU variables :wtll ;be treated, . 

as if they were continuous. The coordinate "matrix elements" of the 

above operator are then, taking the kinetic energy of the ith particle as 

an example, 

\J ..l� ( '1!, t � ... '/., j "' ' ... tJ I G. I . .. Q..,-; 1),' ••• Q:.) 
N � 

- v -a... rr &exit. -XIf.1) ff j(Qr,- Q-i) - J /f.: I l: I 

where now 

(2)  
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(3) 
and the Q)l.. are the "coordinates" of the oscillators discussed in Chapter 

II and include the polarization coordinates. This is simply an:extension 

of the Weyl representation (14) to include spin and oscillator coordi-

nates. Also, one has similar expressions for the other operators with 

the delta functions multiplying the usual operators on the right. Phys

ically, these are all "local" operators for any given particle. (The 

Coulomb potential depends on the coordinates of !!2 particles, but is 

"local" in each of these coordinates. ) 
Now it is possible to consider the Liouville equation as a matrix 

equationJ thus, e.g., 

� � "l. R) (X I I I I '/.# � I..· I I I t.J I Q I I I. Q.,o j' G., I I • I r;.;) = 

j(,'� .. J�'' tiG.,"� .. Jo..;'/ V/ ... t t, ... tJ.J x/�, t/ 1 &., ... Q•j Q./ ... f!l:,) 
x Rrx,: ... x)'j t/ . .. t/ 1 �,':., Q); Q,' ... {,):.; J 
: jtl{)'' Vj ..._ lct1 ... �/') !( fx, ,, tj'J x1 �·, X; 1 Ill, I , ; t;/, I) 
.=. R/'1... R(x., .. , IJ , , ; /, ' .. ,J/,11 I �I,,:�,' .. ,)� 

(4) 

with similar expressions for the other terms in the Hamiltonian. While 

this notation is somewhat cumbersome� it is nonetheless simpler than 

other forms used. 

Before performing the calculations, a further word about notation 

is necessar.y. In order to reduce the complexity of the arguments of the 

various functions, we shall write: 

tcmJ: (t.,Jt� ... i""'}.. 
QcXJ � ( Q, .. , �) 

(5) 

(6) 



and 

Xc m] � ( { wa H.J . .. ill)_,� 
� ri:'J -= (&>-.HI • .• QJP) 

The same notation will be used for differentials , i.e.  
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(7) 

(B) 

d ir?;J =- t:JtW'I+I .. . Jt�) 
d&u.'J = JQ�41J•" "�""'. 

(9) 
(10) 

Then, for example, the reduced density matrix for m particles and � 
oscillators will be� 

D I� D hoi!-" I , .I 
" n'l • l ;<, . .. t,.. j x, ' ... t..; I Ql,, d�A�.j Q ,' • ., � .... ') = t\ ( 'trNill icJttJ I fJ.cu.J, �11 

(11) 

:. vrjd ti� df1rP:J f(t[llt)} ic� j ic�./Xr� I Q(II-]J &r�L �.I ttc;-i. . 
With these preliminary remarks, let us consider the form ot the 

Hamiltonian in Eq. (1). This can be written 

H ;; alsO-+- a2t0 t- fP:l -t-Hltlt- Hl:2 (12) 
where HltO is a sum of one-particle operatora, . :a2 t0 is a sum of two• 

particle operators, HOtl is a sum of one-oscillator operators, Hltl con

tains one-particle, one-oscillator operators only and Hlt2 is a sum of 

· · one-particle, two oscillator operators. In the integration over all but 

m particles and 'C oscillators, some of the terms in the Hamiltonian will 

vanish. For the sake of brevity, we will consider examples of the various 

operators as classified in Eq. (12). 
First, let us examine terms of the type found in HltO, i .e ., single

particle operators . One such term will be 
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(cont o )  

The integrations on � t; do not affect the operator, so  they have been 

performed and the arguments suppressed. Now, suppose that j is in the 
-

set [ m] , One can perform the integrations over all x" [� and x [mJ 
except for the jth coordinate and also over all x11 [MJ to get 

(14) 

The result follows since in each term, the operator acts on the right 

coordinate of the density matrix. Another way of seeing the same result 

is to interchange double-primed and unprimed variables of particle j in 

the second term. This is possible sima they are integration variables .  

HOwever, if j had been in the set[� the right coordinate or the jth 

particle would have been primed, and there would be only one integral 

over xj' to consider. Then the operator would have been operating on 

different variables in R, i.e., the right in the first term and the left 

in the second. Then, one would obtain 

(15) 
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Now, let us consider a typical term appearing in a2 sO. If both 

particles are in the set [ m] 1 considerations similar to those of the 

previous example hold, and the commutator vanishes . If onlY one particle 

is in the set [ -;] 1 one has 

� 0 . 
I 

{16) . · m+/.'l dl{j R (i . � : 1  .J ........ �. I . I 
J 

. 
-;;,+I '.f�'t.J I �4 "V -::-;. - .:...L v /ILJ -'rJl Itt· -llj 

Finally 1 if neither particle is in the set [ m] 1 one has 

{17 )  

Next, we consider a typical term in Hl:l. One such term is 

q ;-..a)\ G)\ p.. . v j . If A is in the set r7J and j is in the set r--rRJ ' 

one will again get no contribution. However, if j is not in [ m] 1 one 

has 

where 

and 

{lB ) 

{lBa) 

(lBb) 
-

That this term does not vanish can be seen by examining the arguments of 
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the operators in Eq . (18) .  Although q �  acts on the same coordinates in 
.... each term, i .e . ,  the right coordinate, v j acts on different ones . Hence 

the term must be retained. Finally, if neither A nor j is included in 

the integration, one has 

(19) 

The integrals of terms in Hlt2 are similar to those in Hltl except 

one will also have integrals over Rm + 1: t+ l and aJUt t+-2 in addition to 

the types considered above. 

Finally, the terms in �=l .will be similar to those in Hl:O. If 

A is in r�J , the term vanishesJ otherwise i� must be retained. 

With this final consideration, it is now possible to write the 

kinetic equation for the m•partiole, -z.. ·oscillator reduced density matrix. 

This equation is (multiplying each term by vm) 

(20) 



(21) 

In Eq. (21) ,  the last term follows since the particles are identical. 

As a reminder, each term on the right side of Eq. (20) has argu-
menta of the form 

J-1 f "m ' 'ttl/ � A 1 ) I � ] (If Q" L R ().) I rz)C A .A rzi lllo/ • i 'V.J' = 
(22) 
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/Jo;.[(f�=;·A�4-g,.4-AJ) ·+ "']( llb.J) Q;c.J Q�tJJ Q" /xcMJ.� 'l.!w.J) . (cont. )  

Since every term on the right side of Eq . (20) contains higher 

correlation functions, it actually represents an infinite set of coupled 

equations for the reduced density matrices of the system. The solution 

to this set would eventuallY necessitate solving the full Liouville 
• .  

equation, so  that at  this point there is not apparent advantage to  the 

development . However, thus far the entire treatment has been exact. It 

will be seen in the following section that an expansion of the reduced 

density matrices is possible, which will enable one to close this set of 

equations . This , in turn, will make it possible (in principle) to cal-

culate all reduced density matrices in terms of the several lowest 

orders . 

II. THE QUANTUM VUSOV EQUATION 

In this section, the simplest of the kinetic equations will be 

given and it will be shown that by assuming a special form for the 

reduced derisity matrices the infinite chain of kinetic equations repre

seated by Eq. (20) can be closed. 

The equation for the single-particle reduced density matrix can 

be obta ined from Eq. (20) by setting m = 1 and � = o. Then, one ' has 
� 

f �� � d+ f R ' �� ;t� v�) - �: � /J�"{ � �:9r1�;A f3;tA1j . ;;) 
&J. . 

t � � ""  L ft/rJA /t)p { t ����P)/ ( z)(i;. r3/AJ) .ftfAf t-�IA/� (23) 
.;t 111 G )l..,p-:.1 6 · 0 ' -f.  f£ / tl� f l '; ' � .  P )1. (r�At. �p.+t1J)j .,. 
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(cont. )  

Similarly, the single-oscillator equation can be obtained from Eq. 

(20) by setting m = 0 and -r = 1. This is 

k 'J-Ro .·, \.[ R o:' .,.. J M t ;;,  rp1:1 - A ' , , .... 7 
T � lP) r � wf " ze 3P -,;'- ;'t!X L II (f), �fAf +3/ 'tl ' i  PJ 

f �� }_ /lx JQ"[R't�,!, f;.A,. <-ft·A�)·{r,A, •trAtJl 
'MG V )..�1 

- jf/l_t fix r R'J'�,  p t (g,Ar ;-3;;;g -::. 0 .  
>"1 c..V 

(24) 

Now, if one assumes that R2:o, Rl:l and Rlt2 can be written as products 

of single-particle· and single-oscillator reduced density matrices, i.e .,  
D 1 ! 0  PR J: o  11 0 
t\ u,.1) = u) R c•),) (2.5 )  

then Eqs. (23) and (24) are sufficient to  describe the system, since 

(26) 

(27) 

higher order reduced density matrices can also be written as products of 

the single-particle and single-oscillator reduced density matrices . In 

Eq . (2.5) , the operator P symmetrizes the product of single-particle func

tions . These are the quantum analogues or the Vlasov equations for a 

plasma and radiation (30) . 

The assumption· or Eqs. (2.5) -(27) is essentially equivalent to an 

expansion or the density matrix in terms or interaction parameters char

acteristic or the system as has been done in the classical case by 

Rosenbluth and Rostolsr (26) and Simon and Harris (30} . _H9re1 only the 

zero-order terms have been kept. Thus, Eqs . (2.5)- (27) are "zero inter-

action" form of the reduced density matrices . 
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While a detailed examination of the perturbation treatment for a 

quantum plasma will not be given, some of the qualitative results should 

be diecussed. Before doing this, it is necessary to examine the various 

operators in the Hamiltonian to determine whether they contain parameters 

characteristic or the system. 
.... 

First, the normalization of the A;.. is such that (Heitler (10) , 

p. 39, Eq. 6) r� � � ;A"' · A�o J3x. -= 'fnc � 
(28 ) 

so a factor (4 lfC2fV)t must multiply each A" used in this treatment. 

Also, the commutation relation for q>- and q A* ie (10) 

f,-. 1,.� - .,.�� = ..:t ) (29) o· o1CcJ>. V 
so q ')'- and q)\. * must be multiplied by a factor ( 2-� . v)l. Actually, 

since it will not affect the results of the problem, we will include a 

factor 1/V in the single-oscillator density matrix to account for the 

preseace 

and 

of 1/V in Eq. (29) .  This, 

f}f ;zt - b"",.� = I 
4 -f, jtiQA R?��-()_.) = I, 

in effect, means that we assume that 

(30a) 

(30b) 

since the sum over wavelengths is proportional to the volume or the sys-

tem. 

Although we will not re-write Eq. (20) with the parameters shown 
z m:.:a..� .1. explicitly, one should consider that a factor ( �A v )� multipliee 

� 
each term in A J. • The general procedure for the perturbation theory is: 

then to assume that such quantities as e ,  1/V, 1/N, :1 1m, etc. ,  are small, 

or more correctly, approach zero in euch a way that certain ratios, e .g., 

e/m, Ne/V, etc., remain constant. Thus, some physical characteristics 
of the system are not affected by the perturbation theory. For example, 
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requiring that e/m remain constant means that cyclotron radiation, the 

frequency or which is proportional to e/m, . will be described correctly 

by the perturbed equations . After determining which parameters should 

be varied, one can then examine the Hamiltonian to determine the 11order11 

of each term. Thus, a term proportional to e2/m would be first o�der. 

Finally, the density matrix is expanded in a series of the form 
� {( -rn l t. -::. 2 /()..'Yn : r(!;J. 

�= � 
(31) 

where /3 is a small quantity characteristic of the plasma. (In the 

treatment of Rosenbluth and Rostober (26) , � was taken to be the recip

rocal or the number or particles in a Debye sphere . Thus, when the num-

ber or particles in the Debye sphere is large, the system exhibits plasma 

characteristics . )  The physical parameters such as e ,  m, etc. ,  are 

regarded as being proportional to S • The next step is to equate powers 

or � in the kinetic equations, so that one obtains eq�ations coupling 
c ms c R :s to �-1• etc . Finally, one assumes that the reduced density 

matrices can be written as products of single-particle and single

oscillator density matrices and various correlation functions to a given 

degree or accuracy. 

{(,m!r: = p 2. 
� '7.) 

For example, to first order one would have 
� [-t.] 1 1 0  7r D / l O  IT /) 0  ! I  ,f, (.( ·,·J '' . .  1\ t h) r "  ( A) 

" lt t �,J ) -: 1 
{32) 

where again P is a symmetrization operator. Then, one finds that only a 

small number or equations are needed to obtain the functions necessary 

to describe the system. 
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The procedure outlined above has been applied many times to various 

physical systems . Hgwever, in the case or. a plasma and radiation fields, 

there are several difficulties inherent in such a procedure . This is true 

both for the classical and the quantum cases . The primar,y difficulty is 

due to the fact that the method described above is based on a one-parameter 

expansion of the density matrix. However, when there are both longitudinal 

and transverse interactions such a treatment is not strictly correct . The 

reason for this is easy to see . The detemination or the parameter fb is 

not arbitrar,y, but depends on the type of system considered. In fact, one 

chocees certaia "fundamental units" appropriate to the system, e .g.,  the 

Debye length, ·the plasma frequency, and some third quantity. When the 

equations are written in terms of the fundamental units, certain physi

cal� meaningful contributions appear, e .g . ,  the reciprocal of the number 

or particles in the Debye sphere . However, when radiation fields are 

present, there are several sets or reasonable fundamental units , e .g . ,  

the plasma frequency or the time required for ·a light wave to cross the 

De bye sphere . One is not justified in making an arbitrar,y choice betweea 

these two. Thus, strictly speaking, the one-parameter expansion is incon

sistent . In fact, in the course of this dissertation, such an expansion 

was made, taking ;t 1 e ,  m, 1/N andl/V as the quantities varied. The 

result of this treatment g�ve
.
Eqs . (23 }  and (24) as the zero-orde� equa

tions , but for systems known to exhibit plasma-like or collective 

behavior, the
.
parameter � became greater than unity. 

Although they will not be employed in this study, it is o£ same 

interest to write down the "first order" equations corresponding to those 
� 

in the treatment of Simon and Harris (30) , and referred to by those · 



authors as the 11Fokker-Planck11 equatioll8 . &re , one assumes that Eq. 

(.32)  gives the proper form of the density matrix and writes the cor-

relation functions in the following form. 

.38 

2 , 0 f{ , , o  p i,' D D 11o 0 1to 
} � '(IJ .2) ::: R, Cl) II o (� f /f. o UJ Il l (..>.) t 1 fi.,J.. > .J (.3.3 ) 

t:t 0 D I I O  /) 0,'1 0 n o  f) O U  
n ,  o.) :. n1 (IJ , , , t>.) r 11 o uJ '' ' o.) +- q t iJ).),� 

p O f t.. n t> ! l D Oll o:t D : l  
/\ 1 ( Jt,p)  : If 0 \ )  /f 1 ( fJ) f /(, (A) /(, fp).J 

(.34) 

where q (l,2 )  and q(l ,A) are correlation functions which vanish in the 

limit of no interactions . One finds that four equations are suffici�nt 

to describe the plasma . These are obtained by setting m = 11 � = O; 

m • o, Z = 1; m • 1, Z: = 1; and m = o, Z:. = 2 .  Since we will not use 

them here ,  the derivation will not be given. The equations are 

(.36) 
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(38 ) 

= 0 . J 
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(39) 

=. D . 

Although it appears that there are more variables than equations, 

R�:O aDd Rgsl are found from Eqs . (23) and (24} .  In addition, using Eq. 

(32) ,  one can find expressions for Rit2, Ri'3, Rit2 and Ri:l. It seems 

unnecessary to give them here. 

There are several differences between the zero- and first-order 

equations and their classical counterparts . The most important of these 

is a result of the fact that R� :O must be properly symmetrized. a fact, 

one has (17 )  
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(40) 

where the sign is chosen for fermions . This means, for example, that the 

Coulomb integral has a term of the form 
1 11 f) f! O  D N O . , , , t..J p l.fi<a o . D II o  je/t1. tit, 1\o ( �, li) f:' ( t�,�� � dU,''-� � j':!X'- n 0 l !Jt ... ) 'f\p fta-1.1,') • 

//7, _J)).J � /if,- t�l 
Thus, this term cannot be written in the form 

ftl�l.. R 2 l�,� ';tz.�t) � ,.. 1 � (frx,J)lt�,J,') 
/.JJ, -I\ l. 

(41) 

(42) 

where ¢ is a multiplication operator. This exchange correlation meaRS 

that, even in the zero-order approximations, the quantum equations retaiR 

a particle aspect, whereas in the classical treaty these equations cor

respond to a ''fluid" limit (26, 30} . This rather important effect will 

be discussed in more detail in the next chapter. An additional difference 

due �o exchange is that partial reduction of Eqs . (36 )- (39) 1 possible in 

the classical case (30) , is no longer possible here. 

In tlle next chapter, applications of the 11Vlasov11 equatiou, Eqs. 

(23) and (24) , to the calculation of dispersion relations will be con• 

sidered. However, before considering the applications, it is useful to 

examine the coupled Vlasov equations for particles and oscillators in a 

slightly different manner. This will be done in the following section. 

!IT. AVERAGE POTENTIALS AND THE CLASSICAL LIMIT 

In this section it will be shown that the oscillator equation� Eq. 

(24) 1 can be eliminated and instead, Maxwell 1 s equations for "average" 

fields can be substituted if one neglects spin terms . 

We begin by noting that in the particle equation, Eq. (23) , one 

has for the A • v term, 



= /Jt:' / R ��� t. ''J A..,. u:� · ; drt. '!...t'J  - A.., · V J'u -x"; f{'; ;'" 'J 
� 

[ 
R I ! OJ f.� . f v � 

where 
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,4,.,. = 2/JQ,.. /tJ�' t?l��- GJ/ Jft/ A: '"l A.)tt tP. '- QA) = (h3) 
),. 

2,_ Til(/.} [ R•:;,) (I' A,. f1.1 A: Jj .  
Similar considerations hold for the term in A2 o In fact, it becomes 

FinallY, using Eq. (39) , one can write the scalar potential term as 

(45) 
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(cont. ) 
with 

1c�){ p t! o 1 ) 
/ l'l. /\ Col) - ) 14 -��. I  (46) 

where now we must remember that ¢ex is an integral operator. In fact, 

one has 

Thus, one can write the particle equation in the following form, 

since - � "V · Adq- =  o .  

(47 )  

(49) 

Now, let us take the classical limit of the above operators . We 

know that 

_t'i;, � {A, B) =- {A, Bj, (Sol 

where the expression in curly brackets is the Poisson bracket. Then, 

taking the limit of Eq. (48 ) , one has 

R/'. o lt, J,') -::. (51) 
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- _. 

where q and p are the canonical coordinates and momenta and f is the clas-

sical distribution function. Now, let 

fl ' = �� (p - �AGV)z. + ¢� ($2) 

The exchange term will not contribute in the classical limit since par-

ticles are distinguishable . One has t. A [ R 11,'H] : ft r[,n nj 

_. 
where v is the velocity, 

� ... 

(53) 

.. P - ! A  v- :  .... . (53a)  
')'t1 

This is the result obtained by Harris (lla) in the classical 

treatment. 

The oscillator equation, Eq .  (24) , can now be written 

t �Ro '' -a[RD!I J � �  T (f)[Rno nt> �l • All .. )· � 7 7 T.t + � w). J flt)t. - �� / fl.  {I) II tA)J fa.J.AA .. 3Jo ... ,.. '7 llj 

11e " 
r - v 1'1C 

Now, we can re-write Eq.  (54) in terms of the canonical variables, Q >.. 1 

P >-.. , and for convenience , change to a representation in which the fields 

are real (10) ; then we get 



where 
-

1.;- -

Again, we take the classical limit . One has 

� -!- [R 01 1 H).] = {f ). fJ ;.( .(-")0 I k I J J 
--

which again agrees with Harris ' result (lla } . 

The next step is to define the average electric and magnetic 

fields . We take 

and 
-

H c-v- -

L5 

(56} 

(57 ) 

(58 ) 

(59) 

It is simple to show that three of Maxwell' s equations are satis-
� -

fied. First, we take the divergence of t , giving, 
� ..... ..... � \7 I Cc.r- = - { v .  At.>-v- - V "'"  � 

o - 17'� fRth� ,���J .1 el!"l. 
v j I /h -Ila/ 

4�� Tri:J1 Rn-) /tq, .�,llj . 
(60) 



... 
Then, taking the divergence of H, one has 

.- � � ..lo 'J I ttc.- ::. "' ' ( (7 .1(. Av) ::' 0 • 
.> 

Taking the curl of E av' one has 
..lo -"  -t -
v .IC. t.._ ':. - v I.  l d�- = - 1 8 /lo-, ""Jr:- c:.. 7,: .:0. 

The final equation, giving the curl of H, is . . . ... -

46 

(61) 

(62 ) 

somewhat more involved. 

One must calculate Aav and Aav from the oscillator equations . Thus, one 

has (using the Q ;.. instead of q >.,.  and q/\ * for simplicity) 

...:.. ... 
v X It ':: v 1(. ( v J( A�) :. - v, AL\r 

=- ? lc� -a. A: T'�-f.AJ (�,., R ���) 
2- � 1.,4� T r).) ( � D 0!1) 

:;. c. � A I If. I' IC fA.) 

�RHo  
But l't: is given by Eq. (48 ) .  Taking a typical term, one has 

(63 ) 

(64) 

(65) 

jrh_.,_l'a9[ R '�() {p"'- �A�)�(Ih/1�) -:: 
1 '7, -lld � 

lid 
J� ��j "4�J11/ [rr fAwtt"�'lf,.'-vRt�;(J /.11,-Jt./ 

(66) 

since in each case , the operator acts on the right coordinate . The other 

terms vanish for similar reasons . 

Next, consider the form of 



The second tem gives 

Ttt(iJ/QA [ 1),.1 R; 1{Trt'1)R':d;,. .,rJJ] = rlljh(JrKnh..;)R��£ QA, tJJj 
: 0 .  
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(69) 

Then, one has from Eq. (67) 

tZ TIL (A)k (fA �lf,.�) : - i' z AA Th,()JPA[l !?, f_(PAl.tiiJ,.�fi.')j- i[fSJ).,R':Jft'tt·t] 

:. +2- I . .  '\. 1- ().) D 0 ;  ' 11 
'). IN/I tt /( ( �o) �A 

Thus, we obtain finally 

(70) 

..... � � .... (J) I I  0 ,.. ) � 1< !+Dv :: t �� t- ia�.>- AA Tn ( R :A A • ti- .J (71} 

which can be simplified somewhat since A � can be written (10) 

A,.. 2� �� � t" . ..; r liJGc'')t .  <12> 

Then, one has (10) 

s- A_.. _ r fi)[Rn u  A... .. ... ? LJt. !\ (11. ) I tt,  ln1) �o (rt1) '/r(rt1)f {7)} 
- 7 U){RI(d -'!' .... � A (J, ) A �) - f IL (111) ,l.n ('t 1) �,_ A It, A ('f. --
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(cont . )  

� 
where J is the unit dyad. Thus, the average fields obey Maxwell' s equa-

tions, just as in the classical treatment (lla) . This result will be 

employed in the next chapter to calculate the dispersion relation for 

transverse waves . 



CHAP!'ER V 

DISPERSION RELATIONS FOR A QUANTUM PLASMA 

In this chapter, applications of the zero-order equations to a 

quantum plasma are considered. By means of a perturbation treatment, 

dispersion relations for an electron plasma in which the equilibrium 

state is the canonical ensemble are derived. The similarities between 

these relations and their classical counterparts are discussed .  

I .  DISPERSION RELATION FOR LONGITUDINAL WAVES 

. 
In this section, the zero-order equation derived in the previous 

chapter will be employed to calculate a dispersion relation for the fre

quencies of small amplitude oscillation� in an electron plasma when the 

transverse modes are of no significance . 

�e starting point for this calculation is Eq . (23) of Chapter 

IV, with the transverse interactions omitted. One has 

Here , in the potential energy we have written 1/J< /ri-;2/ )  in place 

of 1/ lr1-r2 f since it will prove necessary to introduce a "screened11 . . 
potential function later. Now, it is useful to re-write Eq .  (1) in the 

momentum representation. This is 
t 'dRI: O , [ I!D l. ) 

._. - (lr.ul, '} f /? - �  P. (k 1 '} 
f �� ) ;l.Jn I 1.1 It 1 {2 ) 
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(cont . )  

Now, consider the form of <jJ (Icb k:2; k1" ,  "ic2n ) . S ince � ( /r1-r2/ ) 

is a function only of / r1-r2} , one can define two new variables 
...... /( -:.. 11 ,  r;;,_ (3 ) 

-/{ = 

� ) 

and find the matrix elements in terms of these . Then, one has for 

(4) 

and the factor 4 n comes from the integration over angles 1n1 r space .and 

the factor 1/8 has been included in P . 

Now, one assumes that the density matrix for the system can be 

written 

(6) 
where F is diagonar in kinetic energies (or momenta) and f is a st118ll 

perturbation of the equilibrium density matrix F, due to the presence of 

the Coulomb forces .  We also assume that the terms or the form f 2 can 

be neglected. This is a linearization or first-order perturbation theor,y 
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. similar to that of Chapter III . With these assumptions , Eq. (2) becomes 

"$ ti' (k , 4, ' )  +- [ f � -:-� v/j ( (, 7,_, ') 
t d C  

+ � 1""·""; 'J4,1 R"'if.;;; a "J 'fd i. �� ;, 'l.J 

- y;a,Z.; ;, "4,J r��; 'i:'). 'i.j = () . 

(7 ) 

Now, one assumes that initially, the spins are randomly oriented, 

and that inis orientation is not changed by the perturbation. Then, since 

there are no spin terms in Eq . (1) , one can sum over spins. The spinless 

correlation function for two electrons, assuming random spin orientation, 

is (17 , J6a)  

Taking the form of RS:O assumed in Eq. (6) ,  Eq·. (8 ) becomes 
/?� ! o  = rcZ, i, ') F(i.\i., ') - .f. t:r�, i/)F(i.,i, ')  

.,.. Fri,Ji,') 1r� � ') t rofi:A:'J rti).,i1 ') 

(8 ) 

(9) 

Now, the next step is to . consider the commutator of the potential energy 

with each of these terms; that is, the last term in Eq. (7) . Taking each 

term in Eq.  ( 9) in order and using Eq .  (5) one has 

r�l� 1L II J II J-(t j ''J "" ""  "J 11.-/ ... , - " .. , ""' j t:l�t l. t:r'll dlt, ,. "''� .,, I"(Jc, �� / rrlr,, � '" ; J,, It, } (10) 
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_ jJk, 11., "IC 7p( t. � t � t,"i;) f(i t, l.) F d. '; i. ') 

jtJit�Jih''rJ�,'tfrk.,J ,f( r,''-�t:'; f(lt�ic ia -ic:') �(�,�4."; t'i)- 'f(�,:l.),"'') Fri,,�FttJI(�i:Jrtt,.t'f 

= P�l. f F(J,J rr,) 1ji{��Jt��1: Z.J - l/lfitle: �  t,'lJFri,')ltt)} = 

--

4Tr fl�t).{Fr(,JFf�) $((,'-A1) [t N:'-i,l) -

![ ri,'-0) Jrt,'-fJrri,Jrrl.Jj 
(cont . )  

1/lf �r�' -V lfrrl'-�:IJ ( prt,J -rrt;}jrci.J/1.. 

Now, because the delta function is in the above equation, it will con-... ... 
tribute only for k1' = k1• However, for all potentials such that (0) 

is finite, this diagonal"' term will vanish. Now, the matrix element 

� (klkl' ) of the Coulomb potential is 

.Pc. ctc., t..,'J = 
'-I TT'  

I t'-t..,l � . .. ... 
(11) 

This clearly diverges for k1 • k1' •  This is the reason that we 

have preferred to leave the potential unspecified so that a screened 

potential can be employed. Henceforth, we shall assume that the potential 

is screened so that �� (0) remains finite . This will enable one to omit 

the term in Eq .  (10) . Similar considerations apply for the second term 

of Eq. (9) . 

In order to avoid an undue amount of algebra, let us consider the 

form of two typical terms in Eq . (9) , the third and the last. Then the 



other terms can be written in analogy with these. The third term, taking 

each part of the commutator separately, gives 

and 

I� -=-/r!Jvllt.:'J�t,'' FC(�l,'')fck;.,t ''/ 7f(4,'�l�'� {,� 1'-) = 

4ff jt11t �t�tt:'dt/" fti,Jit�r: -/,'� JfLii: -�  ': 4� ,.z:t) cJlL; -4''1-l� -Z:') = 

Llff /JllJ�tFrlr:)ftlt:,l:')p(�/A�'-t -4: �z�� it�:'-(, tZ,.-4:'):. 
'-1 lr F(t,) 'f(/t',-4,'/) jtl�j'(�� 1L r(,�t;)J 

I a - = - , .  jJktdlttJit,'' 'l(l,�r:;Z'�(�Ftt,):i�is�:)RZ, '!.t,; 
-:= -Jdlt.J.Jitt 1/J( tJ�. Ji' f:')Fft:J pet�{�) 

= - Cfff p���:' !ltv �,:'-£·�I;·4-£1)ttt: -t, -�-z:�-z; ,r�:;rc��i.J 

= - •Ill" !f Ok:- Z,I) F(k,') /td .. , �,: f�: '.(,)de.__, 

(12) 

(13 )  

_. -
where k211 and � have been interchanged in Eq. {13) since they are inte-

gration variables. Adding F.qs . (12) and (13) one gets 

I3t .,. I3_ ::. 4 1T  p(f h: -tO { F(t,) - f(t,1Jfc$._, t 1-4/-4.),/1� CJ.4l 

Now, for the last · term in Eq. (9) , again considering each part of the 

commutator separately, one has 

It. .. = -l./1�2 llt.:'J�'joc�t:'JFt'tJ"' '� Y'tlr:';�t:'� �:'iJ 
:. ·-{j .J� Jit/'tJ{/'f&,ilL'')Ff�)ft��-�i��·YJ(/;�4:''� t'.JJ (l$) 

= -�TTjtJt.tlh.l ''ft�.l� 1 Fr":J iff/It: ��z" �-J:1� ;r':'-J.?J 
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(cont.) 

a nd similarly, the second term is 

I,- = J.j d!t'-e!lr/'dtt/'W a .. ; ":"i.''J rf�, ': t; rri.:, i:) 

= J. r (It,) P�-u:/4," tf/T jofc, �A,/)(f�'� i"-rlr: �t:J . (16) 

Hence, adding Eqs. (15 )  and (16 ) 1  one gets 

Without considering each term in detail, one can now write for the other 

expressions: 

ILf = o (18 ) 
Is = - 2n-F (�t�J j��r) f (lr..� / iLf�t: �-4:)f(!l;-4.:!) 

(19) 
+ �JT rc�.,�; P�� ;:r£) �(/ £ -£/) . 

Now, evaluating the kinetic energy commutator and using Eqs o (10) ,  (14) , 
(17 )- (19 )  in Eq .  (7) , one has 

� � - ;..;r�t: � �/)tr4,�i:J = 

IJ!f�.,_( Fit.,') - ;:r�t�J 'f(/k/-lJ)jdk-1 r{��J {. +4?-£) 
(20)  

�� rc{,J./Jj rr£Jf :fO{-i,'l}- 7/f!l. -�:;y 
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(cont. ) 

O ne now assumes that foG eiw t , whence Eq .  ( 20) becomes 

f< k,}, ') = 1.1 f:e >-( ;;!j�.,'�(.Jt.)/1 f(4,')-fi4:!JF/k?-i,l)j�-((i.;.: ,[,!{,) 

'"i f(<4�'J)A ... trtJ.Jj'.£r;( -t:!) -T(J(. -U) 

+-t[r-r�e�J -Fr(,ffi� ... YtZ-ZI)ptJ:.f4�'-{J . 

(21) 

Unfortunately, the solution of this integral equation cannot be 

effected. However, if one assumes that the contribution of exchange to 

the allowed frequencies is small, Eq. (21) can be simplified somewhat. 

let 

? -=. f'o (wp) -rj1(w,).J 
where a) 1 is the correction due to exchange to the usual frequency. 

(22) 

(23)  

Then, 

if W1LlWo and f 1-'L fo' one can obtain two equations for thes
.
e quan .. 

tities . These are 

[ Wo �� (A,'�It,j}c(,/-;;) (24) 

= "tr!J.!f!: { !d{) -Frt/J j(/4: -{; p_jJ 4.,_ ('{4 �:M:'-4",). 
and 

(25 ) 



- LJnlle}· r; .. - \ ?  ?Cr�, .. I )  (_i ... ... ... , t) - ;;v L l ftl,j) - F(l.., )j .I(/t, -�,,IJO�� (�.>.1 /r..,}. t-l, -k, 
-�-�� (/r,1 t, ,�  jdtr� F(ic:Jj :/(/{,_ -f.//)- Y(/ �: -i;J} 

-i(FC(,J -Ft4-'jjl£. f(/(,.-1.:/)t, ri.,, Z) fl�tJ . .  

Ii: one writes 
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(cont . )  

_.:.. -
h / = � I -1-t (26) 

� 
and integrates Eq. (2h) over k11 one obtains 

jf(t...XffJtlltJi _ 'f!!!!'. ,_ !lrv /;:r(f{)- Ft��J , c21 J  L I t: Y  '..! _;, .t r. .. j, � / L ] w() -d-.. £ (A., t� -h. tJ 
This is the same relation as found previously in the self-consistent 

field treatment (Eq . (31) 1 Chapter IIr) . Now, using Eq .  (26) and inte-.. 
grating Eq .  (25) over kl, taking into account Eq . (27 ) , one has an equa-

tion for tJ 11 i .e. 1  
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This is the same equation found recently by von Roos and Zmuidzinas (36a) . 

It can be solved at zero temperature for 1 q/.!L / kF/• Since the solution 

has already been given by the aforementioned authors, there is little 

point in repeating the calculations . 

II .  TRANSVERSE OSCILLATIONS OF A QUANTIZED PLASMA 

In this section an equation which, in the absence of exchange terms, 

leads to the dispersion relation for transverse waves will be derived. 

The problem is formulated in terms of the average fields discussed in the 

previous chapter. Now, however, one assumes that the time dependence of 

the fields is arbitrary and Maxwell ' s  equations may be substituted for 

the oscillator equation. We employ a perturbation treatment similar to 

that of the last section, letting 

R 1,. 0 =  F +,r; (29) 

where F is the equilibrium density matrix of the previous section. We 

also assume that the sources of the fields are due to the departure from 

equilibrium, i .e . ,  one inserts J in the traces . Thus, there must be a 

positive background of change to cancel the contribution from F.  Finally, 

it will be convenient to change gauges so that 

� , Xd-tr t- f. c?J;r- � o j 

i.e . ,  the Lorentz condition holds . 

With these assumptions, the basic equations for the particles 

(neglecting spin) is, from Eq.  (48 )  of Chapter rv, 

(30) 

(31) 
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( cont . )  

� 
since A is no longer solenoidal. (We drop the subscript av for conven-

ience . )  Also, ·A�- is second order, hence negligible . For the fields, 

one has 

(32) 

(33) 

(34) 

and � 

9�1+ = 9 )((�t.t) =- "itP ..4)- P,4 :.. -.{}).._-{ .ft.P; t- 1/�J:.foit�_;,;J# (35 ) 

Now, as usua l, one can use the Lorentz condition in Eqs . (33 ) and (34) , 

J'l..¢ adding and subtracting -b- ot"- in Eq .  (34} to give 

(36) 

and for Eq. (35) one has 

(37) 

Now, one can Fourier transform Eqs . (36) and (37) in space and time and 

evaluate the traces , recalling that 

if. = /;. ( p - %AJ. 
One obtains 

and 
1� 2- ��)J.r£ld) =-

(38 ) 

(39) 

(40) 
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(The traces are evaluated as in Chapter III, but now we have assumed con

tinuous variables . )  

Next, we shall write Eq .  (31) in the momentum representation. 

Since the procedure is quite similar to that in the preceding section, 

only one typical term will be derived. Consider, for example, 

(F !·fp )rt�t +1) = Jt:��r, ''tl� "'Ftlt:4�'J Aflt�"l �t(l1i�'-1Jl � "'4 :J I (41) 

But, one has � "',11 

j 
lc 1 .. 4 .. , /j'otli'-�Jl(l.. '�'�)=- P 'il,-z_,�t/) e .( .  ·-1 - ��/lel"'l�' 

(42 )  

.... 
where an integration by parts was performed. Also, F is diagonal in k, 
so Eq . (b1) becomes 

_. ..I. -

J d�t "dlr. "' ;:(tJ r(r-I'� �tr� �'i"') · t h  "'J(�t'- '-'1 

= rrt)Jt{1') . tt1• 
(43 )  

The other terms may be obtained in a similar manner. Finally, Eq. (31) 

becomes , dividing each side by A-, 

! � (� ,[ ,.f) tJ!= + �A(k,f-rf)tl{F) 
-�, 'i I A(k., t+-g)�F -1- A-'<_� 

where 

(44) 

(45 ) 
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(46) 

and 

(47 ) 

with ¢ex given by the last two terms of Eq . (2i) . Now, we note from Eqs. 
.. .... • .> ..a. ... (39) and (40) that A(k, q �q)  and ¢(k, q +- q) can only be functions of 

• 
the difference of their arguments, i .e . ,  of q.  

Let us now drop the exchange potential for a moment. Then, divid� 

ing each side of Eq. 0J4) by the term in W, one has 

with 

� 
We can multiply Eq .  (48 )  by (4 17"N�, ) and integrate over k; , 

using Eq.  (39) , to get 

(o'- �:)¢cv = w�'"� 11 tffcl" t'#:4-:/�FJt1t,__ 

- w� f·�lf)/�f)dt...., 

(48a ) 

(49} 

where· · · . :- WJU. ,_ = 'I HAI .e y n, y' .  (5o) 
� � 

Similarly, multiplying Eq . (48 )  by ( 'I  fflle 1i: k� ) and integrating over k- , m""GV 
one has , from Eq. (40) , 

rb"J.._ (w"v-u.Ju.:�.:)7,4 :. tv�"l.,j{ 4tdlc. L �  c:..1- :.!'  J'lo1 c. "a.  J) 
(51) 
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(cont.) 

Now, Eqs . (50) and (51) can be written 

(52) 

w±th 

(53) 

Thus, one has a set or homogeneous equations . The condition that there 

be a solution is that the determinant or the coefficients vanish. This 

will lead to the dispersion relation. 

Now, let us examine the Cij explicitly. Without a� loss in gen

erality, one can take q to lie along the z direction. Then, some or the 

cij will vanish because or the parity or the integrands . (The function 

F(k) , as discussed previously, is a function only or k2. )  Explicitly, 

the cij are 

c tt)A = 

(f , 2 ,  3 corresponds to x, y, z . )  

and 

(54) 

(55) 

(56) 



Now, let us examine the function D. One has 

D - � �  - _j_ - 4.J��((.,.�l·- �ty - h- .tkJ1  -.:t. 1. 
-;:;:, o1 HI � I 
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(57 ) 

(58 ) 

Thus, D is only a function of k3 • Taking the first integral in o14, one 

has 

(59) 

But, since F is an even function of k1 and D does not depend on k1, one 

has for the k1 integration an odd integrand integrated between symmetric 

limits .  Thus, the integral vanishes . Similar considerations apply to the 

other expressions in 014 and, in fact, we get 

C� v =- D , .;0- � y ) 

Thus the determinant of the coefficients is of the form 

c, , () 0 0 
0 c.). l.. 0 0 o, 
0 0 Ca 3 C6 y 
0 0 C 'f.3 ( "1 '1  

(60) 

(61} 

(62 } 
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for which 

or 
ell = 

o, 

�2 .  0 

(63) 

(64) 

are solutions for transverse waves . Although it appears that the dis

persion relation is still coupledJ one can use �he Lorentz condition to 

eliminate ¢ (or A3) ,  i .e . ,  

o.A3 � - 'i ?J ·  (65) 

Thus, the dispersion relation for transverse waves (neglecting exchange), 

using Eqs. (55) and (63) , is 

is 

I =  ��'l..r . /  ;:/� r l  J � (66) ,;;;c ... ['i'L_ (w"::;"':JJ�l·or/n..,er� . 
This expression can be integrated at zero temperature . The result 

with 

k- :  .:t vm /  
A- - tu +- Jt��,., 
!::> /A.) - t 3 "X-h1 

and kF is the Fermi momentum (33) . 

(67b) 

(67c) 

(67d) 

It hardly seems necessary to state 
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that one cannot solve this expression for � .  

Finally, one can examine this expression in the classical limit . 

To do so, one should note that 

i':S:o jd31t.F -+ jdJI' /rp) (68) 
where f is the Maxwell-Boltzmann distribution function (33) . Also, one 

has 

it. k =- p >  
,d(�,F) :::: t:. lt, f(tlt, t- k�) - i: (4.,) F(�J) 

11:"' 

_ � ( �=" r p) + t a ,  d�) _ 12 F 1- 1:: � 

since q is an arbitrary wave vector. '!bus, Eq .  (66) becomes 

where 

- _j_ !) '  �-A yn-, = 

(69) 

(70) 

(71) 

(72 )  
This is  the result obtained in the classical treatment (lla) .  Now, all 

the previous considerations depend on the fact that one can neglect 

exchange terms . A glance at Eq. (21) indicates that one cannot obtain 

dispersion equations when exchange terms are included .  Moreover, the 

simple perturbation procedure employed in the first section is no longer 

useful, since the resulting equations are still coupled. 
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�owever, one expects exchange effects to be relatively small in 

most cases and the dispersion relations should be quite accurate. While 

it is inaccurate to say that the exchange effects "couple " transverse 

and longitudinal dispersion relations, since these cannot be obtained 

when exchange is included, it is not unreasonable physically. The ex

change terms arise from particle-particle (longitudinal) interactions, 

but give rise to "currents" which couple the longitudinal and transverse 

modes.  



cHAPrER vr 

SUMMARY 

rn the preceding chapters, the problem: of formulating a quantum 

kinetic theory of plasmas has been examined in detail. It was shown first 

in Chapter III that the N-particle self -consistent field solutions give 

no new results and offer no advantages over the single-particle self

consistent field approach. In Chapter IV, the derivation of kinetic 

equations for reduced particle-oscillator density matrices was given. 

The hierarchy of :mup'la:l kinetic equations was decoupled by an expansion 

of the density matrices . Zero- and first-order equations were displayed, 

and it was shown that by taking several of the lowest order kinetic equa

tions,  the density matrices needed to specify the system could, in prin

ciple, be found. In Chapter V, the zero-order equations were applied to 

the calculation of dispersion relations for collective oscillators of the 

plasma . It was found that, in contrast to the corresponding classical 

case, separate dispersion relations for longitudinal and transverse waves 

were not obtained. This result is due to the presence of particle ex

change terms in the electrostatic potential. A calculation assuming dis

tinguishable particles indicates that the coupling no longer exists . 

In view of the fact that the equations obtained in this treatment 

reduce to the proper form in the classical limit, one can hope that, at 

least for the zero-order or "Vlasov" equations, other collective prop

erties: ·of quantum systems can be studied within the formalism. Although 

there is no experiment with which to compare the results obtained here ,  

they a re  apparently substantiated t o  some extent by the correspondence 
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principle arguments . Since the entire treatment up to the expansion of 

the density matrices in Chapter IV is exact and is based on the Liouville 

equation, any inaccuracies must enter in or after the expansion. However, 

the expansion is essential� equivalent to a Hartree-Fock treatment, 

which is known to be valid for weakly interacting systems . 

Perhaps the most critical inaccuracy in the zero-order equations 

arises from the electrostatic potential. The fact that this term diverges 

at short distances, or in the momentum representation, at long wavelengths, 

makes it necessary to assume a screened potential. This must be done on 

a phenomenalogical basis and is consequently not rigorous . A second dif

ficulty is that when radiation fields are represented, there is no rigor

ous justification for the expansion of the density matrix. However, it 

is reasonable to suppose that this is possible , just as it is when only 

Coulomb forces are considered. 

Although the previous considerations indicating the weak points 

in this t�esis are quite pertinent, it is nonetheless appropriate to indi

cate future directions of research. Foremost among these is a detailed 

examination of a perturbation treatment applicable to a system in which 

both longitudinal and transverse electromagnetic interactions are signif• 

icant. This study would have meaning both in the classical and quantum 

mechanical realms. Since, as was mentioned earlier, situations exist in 

which quantum systems display collective behavior, the arguments for such 

an investigation are quite cogent. 

Another interesting problem would be to include the spin variables 

in the calculations in order to determine their effects on the dispersion 

relation. One would expect these terms to contribute to the transverse 
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fields. 

Again, in relation to the first suggestion, first-order kinetic 

equations would contain information about particle correlations . Deri

vation of a true, irreversible Fokker-Planck equation from these could 

be expected to yield information concerning energy losses , etc� in a 

quantized plasma . Along these same lines, the determination or the par

ticle correlation function for a plasma is a quite useful objective. 

However, both of these last two problems depend on the proper derivation 

of first-order equations . Consequently, this seems to be the most appro

priate step in extending the theory. 



PART n 

CYCLOO.'RON INSTABILITIES IN A BOUNDED PLASMA 



CHAPTER I 

INTRODUCTION 

Since the pioneering work of Langmuir and Tonks* (16) in 1929, the 

theory or plasma oscillations has received increasing attention, particu

larly in the last ten years . One of the major obstacles to the evalua

tion of the theory has been the extreme difficulty encountered in the 

interpretation of experimental data . However, with the improvement in 

plasma diagnostics, it has become evident that oscillatory phenomena play 

an important role in the interactions of the particles composing a plasma . 

or particular interest are the unstable modes of oscillation, in which a 

small disturbance grows in time or space, eventually disrupting the con

fined system. 

In Chapter II of this part of the dissertation, the oscillations 

of a cylindrical shell of plasma in a uniform axial magnetic field are 

considered. The formulation of the problem in terms of the two-fluid 

magnetohydrodynamic equations is shown to lead to a dispersion relation 

for the frequencies of oscillation of the plasma . This dispers ion rela

tion is solved in the limit of short wave length axial disturbances and 

under certain circumstances growing modes are predicted. Finally, a 

comparison of the results with experimental data is gtven.  

I .  REVIEW OF THE THEORY 

After the classic papers or Langmuir and Tonks (1.6), plasma oscil-

*References are listed as in Part I. 
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lations were considered in a slightly different manner by A.  A. Vlasov 

(18) , who treated the system of charged particles by means of a modified 

Boltzmann equation for each species of particle .  Vlasov omitted the 

collision term in the Boltzmann equation and calculated the average or 

self-consistent electromagnetic field by using the particle distribution 

functions as sources in Maxwell 1 s  equations . After linearization of this 

system of equations, Vlasov was able to obtain a dispersion relation for 

the oscillation frequencies. 

Later, Landau (12 ) ,  employing the Vlasov equations, showed that 

damped and growing modes of oscillation could exist in a plasma for cer

tain initial configurations . In addition, Landau showed that, in the 

most rigorous sense, a proper dispersion relation for a plasma does not 

exist. Van Kampen (17• ) also demonstrated that for a given wave nlD!lber of 

a disturbance, a continuous range of frequencies is possible . 

In recent years plasma oscillations have been scrutinized care

fully by theorists in an effort to find possible unstable or growing modes 

of oscillation in a plasma, since , under certain circumstances, a small 

disturbance will propagate and grow either in space or time, preventing 

containment . All of these studies, as well as those previously dis

cussed, are based upon linearized versions of the statistical or magneto

hydrodynamic equations governing a plasma , and their predictions are con

tingent upon the validity of the linearization. A recent paper by 

Bernstein and Trahan (4) contains a complete bibliography or linearized 

treatments as well as the few attempts to study non-linear properties of 

a plasma. However, the usefulness of the linear theories , in the absence 

of any interesting non-linear investigations , is considerable . In par-
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ticular, Harris (8 -10) has shown that unstable longitudinal oscillations 

may exist in a plasma in a uniform magnetic field when the initial ion 

or electron velocity distributions are sufficiently an isotropic and when 

the density or the plasma exceeds a certain critical value. Harris 

showed that when the ion cyclotron frequency uuc � became less than the 

electron plasma frequency uupe , instabilities would develop. This has 

particular significance for thermonuclear devices such as DCX. Drummond, 

Rosenbluth and Johnson (6) have determined lower limits for instability 

for both ion and electron longitudinal oscillations in terms of the degree 

or anisotropy of the initial velocity distributions . A similar result 

has been obtained by Post (lj) for unstable transverse hydromagnetic waves 

in a magnetic mirror machine . 

A limitation on the applicability of Harris ' treatment of longi

tudinal oscillations arises because this work, like most other previous 

studies ,  considers oscillations in an unbounded plasma. As yet, only a 

few authors have attempted to study finite systems . Thus ,  one has no idea 

how the finite boundaries will affect plasma oscillation frequencies . 

For this reason it is of considerable interest to examine the problem of 

the finite, cylindrical shell of plasma in a uniform magnetic field. In 
Chapter II one form of this problem which approximates the situation 

existing in the DCX machine of Project Sherwood ( 2 )  is examined. 

Specifically, the problem consists of an examination of the oscil

lations of a cylindrical shell of plasma of infinite length and limiting 

radii r1 and r2 • Initially, the ions are assumed to more in Larmor orbits 

in a uniform external magnetic field and the electrons are assumed ata-
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tionary. The equations governing the system are linearized and the dis

persion relation for longitudinal (electrostatic ) waves is derived. See 

Fig. 1. 
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CHAPTER II 

SOLUTION OF THE PROBLEM 

In this chapter the basic equations governing the plasma are 

derived from the Vlasov equations and the range of validity of the theory 

is discussed. A perturbation treatment which consists of linearizing 

the equations is used to obtain the dispersion relation for longitudinal 

or electrostatic waves in a plasma . This dispersion relation is solved 

for the oscillation frequencies in the limit of short wavelength axial 

disturbances. Criteria for instability are derived and discussed. 

I. THE VLASOV EQUATIONS 

As was mentioned previously, the basi� for many theoretical inves

tigations of plasmas is the Vlasov equations. These sre a set of coupled 

equations for the distribution functions of each species of the plasma 

and Maxwell' s  equations with the distributj.ons used as sources , i .e . ,  

Jf, 
� 1:  

and 

+ 'V- ·Vf, .. �.( E t- � X  8) + F. ] - � 
'l'Yl_, dV 

..... ·-" _ 1. d B  V x.  E -- c. - J  J t  
..... -

.L iJE + Y1f L � �� v rJ.3 v \1 '1.  8 :: c d:l: � :s s J 
- · E  L.f Tr  �s 'TJs jf.s d 3tr .J v 
- -

v · B  = 0 .)  

(1) - 0 )  -

(2a) 

(2b) 

(2c) 

(2d} 

where fs is the distribution function for species ' s ' , v is the velocity 

and es and Me the charge and mass respectively. In the term Fe are 
- ... 

included all external forces imposed upon the system, while E and B are 
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the average internal electric and magnetic fields arising from the charges 

and currents within the system. 

Eq .  (1) is quite similar to the Boltzmann equation, except that 

the collision term is neglected. This is a quite common practice in . .  

plasma physics, although it necessarily places a certain limitation on 

the validity of the treatments . However, for relatively low density sys-

tems in which collisions are infrequent, or for times short compared to 

the collision time, it is a valid approximation. The use of the 11average11 

or self-consistent electromagnetic field in Eq .  (1) is, of course, 

subject to the same restriction since the distribution functions are 

sources . 

Unfortunately, the complexity of the Vlasov equations limits their 

usefulness . While some exact solutions have been found, most treatments 

employ a linearized form of the above equations in which the distributions 

and fields are assumed to differ slightly from "equilibrium" values.  

Most discussions of plasma oscillations are based on  this procedure . 

The Vlasov equations yeild information about the change in space 

and the change in velocity space of the distributions . In this inves

tigation, a simplification is possible which will reduce the number of 

variables necessary to specify the distributions . Here, one considers a 

plasma of sufficiently low density to make it possible to assume that 

there are no random or thermal velocities .  That is, the distribution 

function f is written 

(3) 

Now·, it is fairly· simple. to · snow ·that· this distribution function 
. . 

satisfies the Vlasov equa·tion provided certain restrictions are placed 
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upon NB, the number of particles of type s at a point in sp�ce, and vs, 

the velocity of a particle of species a at a point in space . These 

restrictions will be seen to comprise the two-fluid magnetohydrodynamic 

equations for electrons and ions . 

Now, let us consider each term of Eq. (1) with the distribution 

function at Eq. (3) .  One has 

/-.: [1fs(lt,t.) I ciT· Vtrt�>)} = a#s l(v ·V(It,�)) + Hs � lt1F· Vs) .  t)VJ, di:' iV itt 
� ·lrt[NsJ'tv-- vsJj = .,; ·�.t Jr(;-- vs) f" NsiT .�s·tJ��J'riJ-;.s) 

and fi . 2 ... [II s J ('jJ- _ V s)1 ::. .£ ,ys . � J (ij- _ ys) ms t) tr 'J ms ov- · 

Now, we note that from the properties of the delta function, 
( v, - v:J ;)  Jt ii-- vs) = 0 1  A. :.t k  rv"' " 
(1r,.: - V!) � tftv -vs) = - J ( 1?- vs)/ J.. -:. k .  

t!J�I(. 

(4) 

(5) 

(6) 

(7)  

(8 ) 

Thus, one can add and subtractA/.dV?Jl��o Eqs . (4) and (5 ) ,  and add Eqs. 
"$it 

(4)-(6) to gett 

[ ��.,. r; ,..ptYs �J/Jv. vsjcr.,;-ifs) - !ls f. vr .Jrrr - iJ.s) 
� -

11 s - �vs , J( .. i/r) _ f's 11s;.._irrr-vs) -r h ttJ YJ. � ,Jr,r -Ps) 
+ tr tr • J7L • ;jVJ u- ·  in; J Y  '77; )� ( 9) .. ...::. 

_ [ �Hs r ..-V . 11s 'f.s7 cfr,;. _ ys) + f ov.r + t� . p ;s _ !;}fv cfr,;-ys) .) 
- 7� j '  J� JrJ.r s 

since i? or fi- - v.s)  = fs Jrv- - P�) (10) I 

Jt i7- -Y�) [ -{;- • p AIS -fAI.S �.vJ: ct if -vs)[ V� f Jl!-f)IJ p.y.r): d(;,.;r)"p,fts;� (11) 
and Eqs. (7) and (8 ) have been usedo Thus, the distribution function 

given by Eq. (3) satisfies the Vlasov equation if 

(12) 

(13 )  
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Eq. (4) and Eq . (13) represent "continuity" equations and "equations of 

motion" for the particles . They must be used in conjunction with 

Maxwell's equations to describe the plasma . 

The justification for the use of the Vlasov equations or, equiva-

lently, Eqs . (4) , (13 ) , and Eqs . (2a) -(2d) is simple . Since the most 

interesting cases will occur for plasmas of densities < 1014 particles 

cm;3, it is easy to see that the collision integral will not be needed. 

Following the arguments of Simon (22 ) ,  one can assume that the initial 

distribution has been randomized when a particle has suffered a deflec

tion of 90°. In a plasma, the significant interaction for low energies 

(non-relativistic) is the Coulomb interaction. It can be shown (22) 

that small angle deflections make a more significant contribution than 

large angle scatters, since the Coulomb forces are active at long ranges . 

The "effective" cross-section for a series of random encounters leading 

to a 90° deflection is 

(14) 

where v is the average velocity of the particles . For 300 kev. protons, 

this is 
':1. o-'2 o 

) 2..-
so rr( :J. ;.� • t  ,._ y (j"t ff = ,00 • 10 '3 • /. IJ · /O-tZ .._ LfC · /t/ - 2.. c-n,.2 

Hence, for a particle density of 1014 cm. -3, the average time 

(15)  

necessary to  randomize the distribution (assuming that the magnitude of 

the initial velocity is not significantly changed during collisions) is 

1:c. o 1/. :::. �ff v- = 1�. 'iiJ •ID.,..'I. 10  9 ,-v • Z.J ./Jec . (16) 

However, the times of observation will be determined by the frequencies 

of oscillation of the disturbances , which one expects to be of the order 

of Wp 1 where w;. 4 17Ne2 (1/M:t 1/Me) is the plasma frequency. For a 



79 

plasma of electrons and protons , this is approximate�: 

Wpl _ {"'!aAI:}·J:.. - ( 4JT 10 ''f.� 3  •/D-� 0) ·t ,.. / 0 .  '/ 4A<. 1  (l7 ) 'I•/D· '&.? 
Hence , one sees that for a relatively long time, the Vlasov equations 

are quite useful. In addition, the approximation becomes better for 
_, · - ..1 lower densities since Wp ... 1/N<� while tcoll .... 1/N. Furthermore, for DCX, 

where the proton energy is about 300 kev and the electron energy about 

1/40 ev, the ratio of electron velocity to proton velocity is 

\'� = (!!t!e lf.,. lite E'p (lB ) ..... 
so it is quite reasonable to assume initially that Ve = o. Thus, the 

assumptions of the problem as stated in Chapter I are seen to be justifi-

able for low densities and in the energy range in llhich we are interested. 

Finally, one finds experimentally in DCX that the average time for an ion 

to be lost via charge exchange is of the order of seconds--again much 

longer than the period of one plasma Qscillation. 

One final approximation remains to be discussed. As indicated, 

in this investigation only longitudinal or electrostatic interactions 

are considered. This means that in the low frequency approximation, the 

displacement current and the perturbed magnetic field are neglected. In 

effect, one assumes that W /k �< c.  This type of approximation has been 

discussed in some detail by Bernstein and Trehan (4) and Bernstein and 

Kulsrud (3) • When the equations governing the plasma are linearized and 

Fourier analyzed (exp i[wt + Q¢:+ kz ) 1 one finds that the transvers,e fields 

are multiplied by factors We; , {))c. e. ( td , is the cyclotron frequency for ions l: � c1.,e 
or electrons), w�e. (t.cJ(¥is the plasma frequency for ions or electrons) and 

VO/c. Hence, if one restricts the treatment to longitudinal (electrosta

tic) disturbances ,  one is assuming that the foregoing quantities are small, 
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(lBa) 

Thus the phase velocities of the plasma waves and the particle velocities 

must be small compared to the velocity of light. 

In view of the fact that this investigation is primarily concerned 

with the state of a plasma such as occurs in DCX, some of these require-

ments can be seen to be valid already. For example, the densities con

sidered will ra�ge between 1rP-1aB particles/cm3 o For such a system, the 

plasma frequency is 1o8-1o9 cycles/sec.  Consequently, for �(, c, the treat

ment must be restricted to k<lcm-1, i .e . ,  to short wavelengths . 

For 300 kev protons and electrons at room temperature, it has al

ready been seen that the initial particle velocities are < 109 em/sec . ,  so 

V0/c - O  is a fairly good approximation for the ions and very good for the 

electrons . 

Finally, the magnetic field in DCX is about 1oh gauss . For such a 

field, the ion cyclotron frequency is about 1o8 cycles per second. Thus, 

�·· will be essentially zero for k � 1 cm-1, again in the short wavelength 

region. However, the electron cyclotron frequency is approximately three 

orders of magnitude greater than � ci• Consequently, one must go to very 

large k( -, 100) before �e can be neglected compared with c.  The restric

tion on W 1 the frequency of oscillation of the disturbance in the plasma, 

must be justified a posteriori, since one does not know what values 

will assume until the dispersion relation is solved. 

All of the foregoing is simply an expression of the fact (3,4) 

that Coulomb disturbances are most responsible for plasma instabilities .  

II . THE DISPERSION RELATION 

In the linear approximation one assumes that each quantity can be 
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written in the form G0 + g, where G0 is the initial value and g is the 

perturbed quantity. Powers and products greater than one of the perturbed 

quantities are neglected. If the initial quantities are time independent1 

Eqs . (4) and (13) become 
a.v:> .,.. v. ( �tl i1� � � 0 ll; r "Y1s v/� )  =- �..., 7i: s (19) 

(20) 

Now, in keeping with the assumptions previous discussed, one has 

(subscript i for ions , e for electrons ) :  
_,. _... 0 .... Vt· = v ... t- tr .. ) 
....lo b I.\ v �· -=- h.. w, i ip )  

� � Ve. =- 'lre.; 

All = ,..v...o f n"· ) 

Ale -= N/) 1- llt..J 
#.. o :: Ale o = N o  G(tt) ) , [ 0 .) ll <../l., ) /Z. >.k ;2. c:-(11) : 

I ) hI ( ./? (.. /-{.)_ - � ) (3 = - Bo 2 J 

£ = e . 

(21) 

(22) 

( 23 )  

(24) 

(25)  

(26) 

(27 ) 

(28 )  

(29) 
,.... 

In the above, ¢ is a unit vector in the (cylindrical) aximuthal direc-

tion, � is a unit vector in the z direction, �  ci • eB0/mic and the per

turbed electric field is written in script rather than lower case . The 

resulting equations for the plasma and fields are 

$�' +- p ·{ J/o G li:c  r 71i fl Wc c· �} = �J (30) 

��·· + ltWr.(· l . P[ IZ�t. t'f .,. vJ + V:,_ .  �(.17Wr,/ ¢}= :.: [€- nw,ty,:)( Bo �l (31) 



�· + v · (  ��� � ifeJ = OJ (32) 

;rh = -...! � + � 11-.t. � Bo l) "'1t 'me m .. c. (33) 

and 

(34) 

Here ,  since the perturbed magnetic field and the displacement current 

have been neglected, E = .. v¢, where ¢ is the scalar potential. 

The problem now consists of solving Eqs . (30)-(34) , subject to 

the appropriate boundary conditions. The first step in effecting the 

solution is to assume that all quantities can be written 

9 = 9ti'L) e -<. r w.c r-.l.fJ �-� �! (35) 
� � Jlo ..,311. 

Changing notation, with vi a v, ve : u, � = M and Me = m, one can obtain 

expressions for the components of the velocities in terms of the compo-

nents of the fields , i .e . , 
- e J., .n1. E "- + tcJc �· E ¢ 'lT I'\.. - - ) /t1 Uk.�' - ..c2..t'&- (36) 

e. i rl;_etp - We � ell. V¢ = -,M "1- - ...('2_ t. "I.- ) (;..)e., �,.  
(37 ) 

1rf 
e e z  - -
M - I ).. .ct,�. (38 ) 

with 

rLJ. - w T- ;/. wc..c.' - (39) 

and 

Utt. _ e  -i. WC�t + We e. 6�P -- ..,.., we:- - w �  
.I (40) 
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u. ¢ = 
.i.We(> - WG C2 fl't 

Wc e"1- - w �  

(41) 

u. � - (42 ) 

where 

We E.. :. (43) 

At this point it is necessary to emphasize a significant point .... 
with regard to Eqs. (36) -(38 )  and (40) - (42) . Although £. can be written 

as the gradient of a scalar, this is only an approximate relation, sub-

ject to the assumptions on the frequencies . But the rate at which work 
..... 

is done on a particle by the field (or vice versa) is simply 6 • ve 

and the average of this quantity over a period T is 

(44) 

� .:. 
It is clear that if v and C: were TT /2 out of phase , this quantity would 

be zero. However, the presence of the uniform magnetic field serves 
� 

essentially to mix the phases of v and C: with the result that they are 

no longer /T/2 out of phase and consequently, the time average of the 

power is non-zero. This important fact will be useful later in inter-

preting the results of the problem. At this point it is sufficient to 

say that it is the mechanism for energy gain by the particles (fields) 
at the expense of the fields (particles ) .  

Continuing with the solution of the problem, on the basis of 

Eq .  (35) , Eqs • .  (30) and (32) become 

'n -l" ': -#o r Ll(/1,) 11&,) li'l, - t: v I  iP-�n ).J (45) 
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{46) 

where 

/j (  h, n,�. ) -= d. Gtll ) = ! (/1, -li )  - d(/'ll. -1'1.) . (47 ) 
' �I'\. 

Insertion af: the expressions for v and u from Eqs .  (36)-(38 ) and {40)-(42 ) 
...lo 

give a relation for ni and � in terms of c o Then, this relation can .... 
be used in Poisson' s  equation to obtain a final equation for C or 

actually, ¢(r) . This equation is 

where 

P' .(. I Wfll.-,.Wc <. f-
W Wc. o�."Z.. - W "-

I +  W ' 'l--
and 

.,_ 4/TAI'e'lM Wpl --
) 

w� '-1,.,. N' (.; f'Wl . 

. .  } we.-< We.-< 
'1- ,J 

w,.�. '2. - .c?..L. 

(49) 

(50) 

(51) 

($2) 

(53) 

The boundary conditions on this equation are continuity of the potential 

(and regularity at r a 0 and r = Q) ) 

{S4) 

(55) 



and a second set of conditions which may be obtained by integrating 

Eq . (48 ) over the discontinuities at r1 and r2 • These are : 

!fJ /11 ,r r 12�� In , �  :o � /'!, _ 

���- 1- tj��- = 1£/�ur 

) 

85 

(56) 

(57 ) 

Note that the latter set of conditions are the discontinuity conditions 
_.h 

placed on the normal component of [ , due to space charges piling up, 

(58 ) 
....:.. 

where L1 €. n is the change in the normal component of 6 in crossing the 

boundary from vacuum to plasma and a- is the surface charge density. 

The solutions of Fq . (b8 ) are combinations of Bessel· functions 

of imaginary argument and Hankel functions . SpecificallY, ¢{r) is (the 

notation is that of Watson (19) ) 

A I It (hit ) ) fl. 1.. 17. I ) 

A..1 Hl,O.tt) t A"j HfltAt�.), 1t1  ( 11 l. h� )  
A �  ke ( knJ, ll (J.  t... h. >  

(59) 

(60) 

(61) 

where the Ai (i  • 1 • • •  4)  are arbitrary constants . In the above1 )\ is the 

expression given in Eq . (49) with � (r) replaced by unity. Insertion of 

these functions in the boundary conditions leads to a set of homogeneous 

algebraic equations for the constants Ai, i .e.,  

A1It ( htt,) - A :2. flf)( An,) - AJ HJ'·'tAn.J = o (62a ) ,) 
- A 2- /1}1) On�) - 113 H/2) r A!J,.J.) +- Ar /r;rtrJ,)=tJJ c62b) 
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The condition that this set of equations has a solution is that the 

determinant of the coefficients of Ai vanish, i.e. ,  

- H !'l) (An,) 0 

0 Ktl k'"-) 

-gt(kn,) r��>011 .) t P ff}'t�,,} 1[tilY�I)�) +P Hlt�h,)] 0 
-=. ()  • 

d./1. L ()/\. -,;, � � rr, J 

In the above, /) is the function defined by Eqs . (50)  and (51) with 

E (r) replaced by unity. 

(63) 

Eq, (63) is the desired dispersion relation. In principle, one 

can solve the equation for the allowed frequencies (� J • Of course , it is 

apparent that no such solution can be effected due to the complexity of 

the relations . For this reason, it is necessary to make some sort of 
approximations with the hope of obtaining a tractable expression. This 

will be considered in the next section. 
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Fortunately, as will be seen later, short wavelength oscillations 

are the most unstable . For this reason, one can simplify Eq. (63) con

siderably by replacing the cylinder functions by their asymptotic forms . 

This requires kr1, kr2, A rp r2 >) I • Hence, any roots w of the dis

persion relation must be consistent with these conditions . The asymptotic 

forms of the cylinder functions are : 

It c k�t > 

k€. { ktt) 

f!�_OJ(An.) 

f/ I, J OJ'•) 

,h �  
......., e 1kA. ) 
A., - it  y, e 'fiM ' 

;;...h 
"V e. lriil ) 

- .l')./r;JL 
"-" � }J� 

(64a) 

(6bb) 

(64c) 

Furthermore, the derivatives of these functions are, taking I {kr) 

as an example, 

with similar expressions for the other funcUons . Now, using Eqs . 

(64a ) - (6ltd) and Eq . (65 )  in Fq . (63) gives 
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h.'!., l)llt - �)/I I 
l.� -� - '-1j; �. ,tl) , 

;)I-t� _ u ,..,.,.. 
() - e /(M - �  0 )/IJ- TM� - 6 .  {66) 

[ J - ·��. 

-h "'II.' [ ] ·�� · - �  i)-t-f � - iA t� elf; 
"" '  ", ).II, "/'1 I 7Jh, 

[ J <Xh,_ L J _ �>�� 0 iA+i en. 
-l)d-�� e. �l. 

IJ 
� T)j,)-

This expression can be further simplified. Multiplication of the 

first row by k and addition to row three and multiplication of the sec

ond row by (-k) and addition to row four gives 

/lfll e 
� 

0 

. Q  

0 

;}.11 1 - t:Ah, -e� -�  ,(N )h i n ,  

- e.i� - iAh"'" 
- e.�� M� 

[-k t.<� t ..E) *' '[- J.. -•A r i>..] ,.., , n, /!., 

0 

_ ,kll.�.-e�� 

0 

[ k ·;, e 1 .;l·� r 1 -t�� 
�-� t '17� e,(;;._ - ,:)q  k+ i e � o 

= o. (67 } 

Expanding along the first column gives a 3x3 determinant which in 

turn may be expanded along its third column, yielding 



89 

= o,  

L h<ATi?n�J:;: i-<HkT�l}� (68 ) 

But, since � k(rl-r2) has only imaginary roots and k is real, this factor 

may be thrown away. 

This determinant when expanded leads to the equation 

where a • r2-r1 (70) 
and a factor ()\ 2r1r2 ) '•1 has been thrown away. Performing the individual 

multiplications yields : 

[p:. k�,lJ;.. -r)..,ll,l7-a. -.A) Pe\ -1-"- P� +,.;.k� '1lh.]e-A}t��. 

-[ P � .l.,:  �� l) ,h,. - k .._IJ ,,., • +-"-PA r)..";,J, , f <  U.je' ').4 :;. o j 
re-arranging terms one has 

or, 

and finally, 

f. Po... - � k..A ;, ' �t  � 

/l"�-n,;,l. - f"'L;). ,n,�>,_ rh. P� 

(71)· 

(73 ) 

{74) 
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Unfortunately, this equation is still somewhat too complicated even to 

find approximate solutions . However, if one considers the limit k -+ oD  , 

it is possible to simplify Eq . (74) further. Note that the terms in P 

are due to the discontinuity in d�/dr at the boundaries . But the 

boundary conditions, Eqs . (54) -(57) can be re-written, 

- �ln.t +- P1t /f I .J  

= ��n�- + �1. • 

From Fig. 2� , it can be seen that as k...,cO ,  �(r1) ,  �(r2 ) � 0 and the 

derivatives become continuous. That is, 

A ,  fr e. k') ( 1 -..L ) %, ,_l<n• 

A- .  e hh/ (k.Jt, 

(75) 

(76) 

(77 ) 

where the asymptotic form for .!t_i_(kr) , Eq. (64a ) ,  ha� been used. But 

k �o# implies from Eq . (77 ) that � _, o, since d�/dr-+go would imply 

physically unrealistic infinite fields . However, if � � o, one is justi

fied in neglecting terms in P. This argument can be substantiated in 

another manner. One can write Eq .  (74) : 

� 13 ka. = �Pa../kn,J.r� - .;2. 13 
I - P'/k�,l1 .. -(3 """" Pa/�11,;-,J.. 

with t3 = X /� .  

J (78 ) 

(79) 

Now, the terms in P contain factors k, r1, r2 in the denominator and, 

from the short wavelength conditions, can be neglected. Thus, Eq. (78 ) 
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FIGURE 2 

IJ(r) FOR SEVERAL VALUES OF k 
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becomes 

# (80) 

The roots of this equation can be found only by numerical methods . How

ever, Fig. 3 '  indicates the general · form of the functions in Eq . (80) . 

It is clear that the solutions (3 n of Eq . (80) can be written 

13n = r� n -1- 1) .,... .,_[., 
� /(().. I 

where n is an integer. Of course , one cannot find I n exactly, so 

(81) 

Eq. (81) is not very informative . However, this equation is useful in 

one respect, since the dependence of {3 n on ka is indicated crudely. In 

fact, as ka becomes very large , J n approaches zero for all n. 

With the knowledge that the roots � n can, in principle, be found, 

one can now find approximate solutions for the allowed frequencies of a 

disturbance . From Eqs . (49)-(50) , one has 

I - Wt>� - lj..)� + f->nl.f I r Wel: + w� ; -
v.J "l. JC. .t  l. w�f-w,_ Wr� ·"'--.rl.J.,_ -

I r- $11 � - f t r.u J o . 
(82) 

From Fig. 4, one sees that of the eight roots of Eq . (82 ) ,  three 

real roots always occur at values of jw /"7/iwe-l • However, in the region 

tv �  -./..t#r.; ,  pairs of complex roots may occur. From the knowledge of 
Harris ' work (9-10) ,  these are the interesting roots . Consequently, one 

can simplify the above expression if one confines it to the region 

w N -,lw,_�. 
Then, since 
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one can write 

WP6'l.. -

: (83) 

(84) 

But for the situations in which we are most interested one has, 

Bo ,-J ! D 3- tD '� 9 fN USS; (85a) 
N rv 10 � - 1ot � - 3 C85b) 

and Eq·. (84) gives "1.. 
1 tJ - 7 '-. �: '\- � I o- � < t. I . (86) 

Therefore, one is justified in neglecting this term for plasmas of phyai .. 

cal interest in the region considered. Thus, one can exam!De the new 

function g(c.o ) defined by 

I - £V,�7w-a.. - Wp�.�� 'l. t A,/·( /7- (.,4.)e ... "�- ) '.. 'L I J 
4-Jc..A.'-- �..L \. 

I 1-/JI') loa - 3- (W) = 0 • 

(87) 

The intersection of g (cJ ) with the line 1 -t-f6n2 is indicated in 

Fig .  S. Again, it is clear that for certain values o.f the parameters, 

complex roots may appear. In the figure 1 one bf :t"iye:-: po'sitibie- roots-- are 

shown; the sixth, which is real, lies outside the region of interest . 

Beginning at line A, as the parameters are changed, one progresses to 

line B, where there are two pairs of equal, real roots at approximate� 

-(£-�l)Wc::i.. At c, the roots in the ne�gbborhood of -()+ "l)Woi have 

become complex, so that there are three real and two complex roots . At 



96 

�(c..J) 

A 

J B 
/ c 

..11 

v 
p 

/ 
� I- E 

-#ti)Wc.� � j.tJh� -fJ-r)uJe� 0 

FIGURE 5 

g ( w)  VERSUS W 



91 

D, one again has five real roots . Finally, at E, complex roots again 

appear .£or which the real part of u0 is 

R(w) "" - .f w,.,.· {88 ) 

In order to determine the conditions for the occurrence of complex roots 

as seen in E,  the function g {w )  can be simplified somewhat. It will be 

seen later that complex roots occur only for {3 n<<. 1. Furthermore, at 

R{W ) .... - £UJc1, one has 

/1 ;l. w ,.,.. 
ll l.. '1.. 

f.:;JI) p, � r jf'l �� L l.  I . /;� I ""-- � "a. �e_..4 · �c� � ' t  
(89) 

Con8equently, one is justified in examining the function G(w ) defined 

by 

/ t-f3n �- �fl -w�'" = I +An l-- G tfA.J) -:: � ,  (9o) 
. "'V ....t'"2. .t. l.. I.., 

Bow1 two of the roots of this expression will be complex if 

I r fJJn � t. G c tJ)-n-. ,;.,... .J (91) 

where G{ w)min is the relati!e minimum of the funct.ion G{ c.v) . in the reg�on 

-CI+- l)Wci (w<. - (.f -l)W ci• The relative minimum can be found by dif

ferentiation ot o{c.J) ;  thus 

or 

d& _ 'J.. (.).),)- +- � w,t" . = o ) 
dW {.,IJ �  ( W f1Wc�)3 

- w  

which gives 

(92 )  

{93 )  

(94) 



since 

(95) 

Inserting the value of uJ from Eq. (94) , Eq. (91) becomes 

/r�/· < �ti; [1 r (Wtls}; (96) 

or 

(97) 
This is  the condition for ins�ability. One can see qualitatively 

the effects of the boundaries, since (r2-rl) occurs in the expression 

for 8n• 

The roots of the dispersion relation now may be found approxi-

mately'. Re-writing Eq.  ( 90) ,  one has 

U 1 +6,/')u.r)-.. W14 'j ( f.U f�weA ))..r:::$ w1�'- w� 

or 
w, ... w 

:!:. [ ( I  �13,>-)t.J'> -tU�'-1 J;. 
A sufficiently accurate result may be obtained by letting . . . . . . .  

(98 ) 

(99) 

uf :  - /PJci on the right side of the equation, since th.e correction
. 
is 

prop�rtional toW pi and is expected to be small compared to - .IPJci• 

Then, one obtains 

uJ � _ .tw"�· + WtJ�lw,/ 
- [c ' tfjl·J t"l-w��.,. - wp;,Jh 

• 

(100) 
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Now, it is of some interest to determine the maximum value of the imagi

nary part of W • rn orde� to do this, one may follow Buneman (5) or 

Bernstein and Kulsrud (3) .  let 

(101) 

and 

(102 ) 

Then, Eq.  (90) becomes 

= 0 ) (103} 

or [ . D  )... W � ]-� I fpn - � w ,� . 
(104) 

.. 
rn the region of interest one has from Eq. (100) 

(105) 

Thus, the righ� ��de of Eq.  (104) can be expanded, retaining only first 

order terms, i .e . ,  

1- -)..we.,. ':::: (w� � 1 1  [1 I ). �"l. ) 1- ' '] ' 
(106) I tt$n J ' � y� ( I r/311 '&. 

One can now take the imaginary part of both sides , noting that 

so 

n c+. )  - ' �  (...L . ) - _ j_  �,( � :. - 2.�dt ) 
...I( ,...,.. - IX( ,.-tJ..t�  - I X/� IX / "-

I X I 4A-.' � 

(107 ) 

(108 )  



or 

/ x /  

But one knows from Eq .  (101) that 

Differentiating this expression with respect to 9 gives 

or 

We choose the phase so that cos 9 <. o. Then one has 

100 

(109) 

(111) 

(l12) 

CO?r tJ.. :: -y;.... ( 113 ) 

and 

� "'  : % . 
Finally, for � ( vl)ma:x: on obtains from Eq.  (110) 

In addition, when 

CU f� 'l. >'> ( tr/Sn 1) -G '-we::; 

we see from Eq .  {100) that 

(114) 

{115 ) 

{116)  

(117 ) 



101 

Fig. 6 shows one branch of �/u; _pe as a function of PI • One 

notes that as the density increases, complex roots appear. The imaginary 

part of W /(}) pe increases to a maximum and then decreases again, approach

ing zero. 

Finally, it is useful to consider the charge states of the plasma 

as represented in various m?des • .  Fig. 1 gives several simple examples 

of the charge distributions . From the values of � obtained, one knows 

that these configurations are rotating at approximate multiples of �he 

ion cyclotron frequency, as is the electrostatic J?Otential. Ih Fig. 8 

the electric fields for such states are indicated. It is clear that a 

small charge separation can lead to complicated field configurations. 

Furthermore, as was mentioned earlier�, the particle velocities are not 

Tlr/2 out o� phase with thea� fields� so that energy transfer is possible . 

Physically, the ions ten� to "bunch, " giving rise to large electric 

fields within the plasma. This effect has apparently been observed in 

ncx. 

* See p .  12 .  



/ 
- -

FIGURE 6 
x/Wpe VERSUS H 

102 



1C3 

FIGURE 7 
CHARGE STATES IN 'THE PLASMA 
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FIGURE 8 

EmafRIC FIELTJS IN THE PLASMA 



CHAPTER IIT 

CONCWSIONS 

In the previous chapter it was shown that, under ·certain circum

stances, a cylindrical shell of plasma can be expected to exhibit grow

ing modes . The real part or the frequencies or these modes occurs at 

integral multiples or the ion cyclotron frequencyt a result predicted 

earlier by Barr� (9-10) . In addition, the imaginary part or the fre

quency is dependent upon the density and the criterion for the appear

ence of complex frequencies is quite similar to that found by Harris. 
Both of these predictions are borne out by experiment. Barnett 

(2) has found lar�e amplitude disturbances in DCX apparently oorre• 

sponding to superpositions of the modes predicted here . These disturb

ances appear after an initial time during which the plasma can be 

expedt�d to have reached a density of approximately 106 particles/om� 
For a proton plasma wi�h an energy range of 200-300 kev and a magnetic . . 
field of 104 gauss, one has for one centimeter wavelength disturbances, 

1t1 : ,  V, �  � ' t /D I  _ , ,_� (l) ,(AJ(,A, - ----;r - � J O O 

11� -: v.:l ;�,.c: � .  t"-()�ol' = r..:-.. . (2 ) 
From Eq. (97) of Chapter Ir, the critical density for ) : 1 and /:> :  /ka 

is 

"l c- ' · .3  � •.J • 1 0 � , (3 )  

Although this agrees with the experimental figure given above, one should 

exercise some caution in attributing quantitative significance to the 
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predictions of this calculation, due to the approximations made and also, 

due to the present uncertainties in ex�erimental data a However, qualita

tively the theory is surprisingly goodo The critical density predicted 

is certainly correct 1Il.�hii1 anorder ofmagnitude a Furthermore, as mentioned 

before, the instabilities are observed after a finite time following 

turning on the beame One can interpret this to mean that the plasma must 

build up to the critical density before becoming unstable . 

Besides the aforementioned data, intense radiation, almost at 

integral multiples of the cyclotron frequency, has been observed in DCXo 

Due to the intensity of the radiation, it is belie�d that it must be 

coherent and therefore, attributable to collective oscillations of the 

plasma. Experiments with OGRA, the Russian counterpart of DCX, also 

indicate t�at the plasma radiates at multiples of the cyclotron fre- . 

quency (7 ) .  ·Ebwev�r, it is not clear whether this is coherent or in

coherent radiation. 

It is apparent that from a _ qualitative viewpoint, the calculations 

prese�ted in this study are valid. However, some weak points should be 

noted. 

First, of course, the entire treatment is linearized, while a real 

plasma responds in a distinctly non-linear manner. This can be seen ver,y 

simplY• Ir, for example, the ion _ density were actually oscillatory, even 

with a growing ampli�ude �odulation,
_ 
eventually it would become negative-

a physical absurdity. Unfortunately, exact, non-linear treatments for 

physically interesting situations are, at present, beyond one 's  ability. 

A second objection--one which may be more easily corrected--is the 
-

restriction of the treatment to longitudinal oscillations . While it may 
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be quite true that the Coulomb forces are initially responsible for the 

appearence of unstable modes, it is apparent that there m�st be some 

coupling between these and the radiating transverse modes. Harris (lla) ,  

considering the infinite plasma, has indicated that this can  occur for 

certain types of velocity ·distributions . 

Finally, the announced purpose of the study, to determine the 

effects of the finite size of the plasma on the dispersion relation, has 

been accomplished to a ver,y limited degree. Unfortunately, present experi

ments can give littl� indication of the accuracy of the present treat-

ment in this respect. The advent of ncx-rr, a larger machine with a more 

homogeneous magnetic field, makes it desirable to refine the calculations 

to determine more accurately the effect of the boundaries .  HOwever, 

since such a treatment will require extensive numerical calculations, 

one should also include the transverse fields to increase the validity 

of the study. 
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