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Abstract 
 

Fluid behavior at the microscale exhibits large surface to volume ratios increasing the 

significance of interfacial phenomena.   We have studied two microfluidic phenomena that utilize 

interplay between microstructure and chemical composition.  The first one causes liquid droplets 

to roll off from surfaces with a very high contact angle. This phenomenon is called 

superhydrophobic behavior, can be controlled by several tuning parameters.  The second one 

changes the wettability of liquids on a dielectric coated surface with electric potential.  The 

experimental studies were done by first fabricating an ordered array of glass nanocones.  Fiber 

drawing and differential glass etching processes were used to produce cone like structures with 

lattice constant of 40 µm down to 1.6 µm.  The superhydrophobic behavior was first studied and 

modeled in a series of nanocone wafers of increasing aspect ratio from .3 to 15.  The 

characterization was done by the measurement of the contact and rolling angles.  The Wenzel to 

Cassie transition of wetting states was observed.  The contact angles were calculated by using the 

‘axisymmetric drop shape analysis’ approach.  Next, the study of the electrowetting behavior of 

two broad categories of structured surfaces was done.  One was a low aspect ratio surface 

exhibiting Wenzel wetting and the other was a high aspect ratio surface exhibiting Cassie wetting.  

The device for experimental study was prepared by coating additional layers, which included 

conductive gold and dielectric Parylene-C coatings.  Studies were done using silicone oil and air 

as the ambient medium.  Images of drops were taken at different voltages and the contact angles 

were calculated geometrically.  Electrowetting on nanocone arrays was modeled using an energy-

based approach and the obtained theoretical curves were compared to the experimental ones.  Oil 

helped in achieving a large contact angle change.  A qualitative analysis of the electrowetting 

properties of the surfaces was done based on the voltage-contact angle curves.  
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Chapter 1 

Introduction 
 

Motivation 
 

Nature, over several billions of years of evolution by natural selection has presented itself 

as an amazing system in a constant trend of optimization.  From a macroscopic scale down to 

molecular level biological structures have exhibited some very interesting properties.  Studies 

from systematically ordered matter in a nanometer scale in biological systems have always been 

of great technological and scientific significance.  One such revolution is based on the 

organization and control of matter on the nanometer scale. An example in a biological level is a 

protein, which is 1 to 20 nm in size.  

The objective of achieving functionality at such a length-scale can be attributed to several 

factors.  One of the factors relevant to this thesis is achieving very high surface areas and the 

other is handling the increased relative significance of properties like surface tension, diffusion, 

viscosity and local electrical effects compared to macroscopic entities.  Apart from just scaling 

down the size, topography, which is specified here by the aspect ratio of surface features, is a 

critical factor in fabricating high surface area nanostructures.  

Fabricating high aspect ratio features has been a limiting factor in the more popular and 

easily implementable MEMS lithography technologies.  Several other methods have been put 

forward (which will be discussed in the next section) for producing vertically projecting features 

in a controlled manner.  A good understanding of the properties of glass made it a suitable raw 
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material for such a nanofabrication process.  The main properties of glass, which stand out in 

context of this thesis, are its excellent homogeneity in a variety of forms and sizes, and the 

flexibility of introducing variation in chemical composition.  Glass proved to be an excellent 

material of choice for gaining control over the principal factors like feature size, uniformity and 

aspect ratio.  The fabricated glass-based devices with aptly tuned parameters were extensively 

tested for the possibility of having finely tunable wetting properties.  The property comes from 

twenty-five year old nature inspired SEM studies of water repellant outer plant surfaces, which 

revealed amazing microstructural diversity.  The studies resulted in a theoretically well-accounted 

connection between the roughness of a surface and its repellency to water.  

A similar connection was established in the thesis between the fabricated nanostructures 

and the resulting superhydrophobic behavior in them.  Several randomly rough surfaces can be 

crudely made but a good control over its morphology is difficult to attain.  For a surface that 

comes with micro/nano protrusions of similar shapes and dimensions that are regularly spaced the 

controllability is very well enhanced.  This can be seen both in a fabrication as well as in a 

characterization point of view.  Silicon micromachining is commonly used to produce such micro 

protrusions but for a glass based composite surface anisotropic wet chemical etching was the 

most effective in terms of time, cost effectiveness and controllability.  The ease of controlling the 

aspect ratio through the etching process and the reproducibility of the process helped in the study 

of the correlation of the feature–defined parameters to the wettability-defined ones.  The feature-

defined parameters were governed by the nature of the fabrication and the etching process.  The 

wettability-defined parameters were based on principles of interfacial free energies and the 

resulting contact angles of the water droplets.  

The next step was in studying a similar correlation but with a different approach. The 

goal here was to dynamically adjust the same interfacial energies of a given water repellant 

surface unlike the previous case which used a slightly altered fabrication sequence to produce 

devices that repelled water to different degrees.  The approach was based on an interfacial 

electrical phenomenon that causes redistribution of charges in an interface when an electrical 

potential is applied between the droplet sitting on a surface and an electrode underlying a 

dielectric layer.  Electrowetting seemed to be an advantageous method of control especially on 

structured rough surfaces due to the bigger range of control they offer.  A simple study on the 

general nature of the electrowetitng behavior of hydrophobic to superhydrophobic surfaces was 

carried out.  
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Organization and Summary of Thesis 
 
This thesis has three broad sections.  A literature review is given in the introduction of each 

chapter referencing the related work.  

 

- The second chapter discusses the fabrication process of the nanocone glass surfaces.  The 

fabrication involves glass drawing; bundling and redrawing processes until features of 

desired dimensions are obtained.  The fabrication is followed by characterization of the 

etching process.  The activities of the constituent ions of the etching solutions are calculated 

and a relationship is established between the solution concentration and the etch rate contrast 

of the core and the cladding glass.  The dependence of the aspect ratio of the nanocones on 

the type of etching solution is analyzed.  

 

- The third chapter discusses the superhydrophobic properties of the nanocone glass surfaces. 

A series of wafers etched to different aspect ratios are treated with a hydrophobic silane and 

tested for superhydrophobicity.  A goniometric experimental setup is employed to image the 

advancing and receding contact angles of water drops dispensed on the surface of the wafers. 

An “axisymmetric drop shape analysis” approach is employed to calculate the contact angles 

of the drops.  The rolling angles of the wafers are also measured.  A relationship is 

established between the contact angles and the aspect ratio.  A sharp transition of the wetting 

regime of the surface from “Wenzel” to “Cassie” as the aspect ratio is increased is also 

observed. 

 

- The fourth chapter discusses the electrowetting behavior of similarly fabricated structures. 

The wafers are first prepared for the “electrowetting on dielectric” experiment by coating a 

conductive layer followed by a dielectric coating.  An e-beam evaporation process deposits 

the gold layer and the Parylene-C dielectric is coated by vapor deposition.  A low aspect 

ratio (which is treated as a surface that falls under the Wenzel wetting regime), a high aspect 

ratio (which is treated as a surface that falls under the Cassie wetting regime) and a plane 

surface are the test devices on which the experiments are performed.  The theoretical 

evaluations for a voltage driven droplet on the various surfaces are done based on an energy 

minimization approach.  The role of surface geometry and the effect of oil as the ambient 

medium around the droplet are also evaluated.  Analyzing the voltage-current curves and the 

3 
 



   Chapter 1: Introduction 
   
 

voltage-contact angle curves of the droplet helped in the characterization of the wetting 

behavior.  A qualitative comparison of the dynamic wetting behavior of the surfaces is done 

based on the electrowetting parameters.  

- The final chapter briefly discusses the possible applications of the various results and the 

future work. 
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Chapter 2 

Fabrication of Nanocone Glass Arrays 
 

Background 
 
Literature Review 
 

In this thesis work nanocone glass arrays were fabricated using a glass drawing and 

differential etching process [1.1].  The fabrication technique of drawing, bundling and redrawing 

dissimilar glasses that show an etch rate contrast was inspired by the work on nanochannel array 

glass [1.2].  A similar manufacturing technology based on a glass drawing and differential etching 

process is present in the work on microchannel plate detectors [1.3].  The main difference 

between the nanochannel array glass and the fabrication process discussed in this chapter is the 

reversed degrees of etchability of the core and cladding glass and the different types of glasses 

used.  Several works have been reported in fabricating vertically projecting sharp features in the 

nanometric scale and the challenge has been in gaining control over feature parameters like aspect 

ratio, tip sharpness, lattice spacing and alignment.  Arrays of molybdenum cones with a height of 

1.5 µm, lattice spacing of 12.7 µm and a tip radius of about 500 Å have been produced to serve as 

thin film field emission cathodes [1.4].  For a similar field emission application, vertically aligned 

carbon nanotubes were grown by a PECVD process [1.5].  A silicon-based focused ion beam 

milling process followed by a HFCVD process has also been used in producing diamond tips with 

an aspect ratio of 7.5 and a tip radius as small as 50 nm [1.6].  Sharp cones that are 40 µm tall 

have also been produced in silicon by a femtosecond laser irradiation [1.7]. Another work based 

on femtosecond laser irradiation is used controlled laser spot diameters to produces surfaces in 

silicon ranging from 30 µm - 250 µm in size [1.8].  An RIE - based ‘Black Silicon’ method has 



                             Chapter 2: Fabrication of Nanocone Glass Arrays 
   

 6

also been introduced to produce high aspect ratio trenches in silicon and polymer [1.9].  Needle-

like structures, which are 1 µm - 2µm tall and with a pitch of .5 µm - 1µm have been fabricated 

by a similar black silicon method [1.10].  Silicon and Germanium nanocones were fabricated by a 

metal-catalyzed CVD process where the apex angles were tuned by the catalyst size used [1.11].  

A pair of alkali borosilicate glasses was used as the raw materials for the fabrication 

process.  For a borosilicate glass the glassformer ratio (SiO2: B2O3) has a direct implication on 

certain properties of the glass.  It has been shown that the type, degree, rapidity and the final 

phase composition be determined by the temperature of heat treatment and the composition of the 

original glass [1.12, 1.13, 1.14, 1.15].  The drawn and fused glass bundle was sliced and etched to 

produce the nanocones. HF was used as the etching solution as it readily attacks glass.  A very 

detailed review on wet chemical etching of silicate glasses in hydrofluoric acid based solutions 

has been reported [1.16].  A similar report on the mechanism of etching of SiO2 with hydrofluoric 

acid has been reported [1.17].  In this chapter the etching mechanism is characterized by 

comparing the constituent ion activities of the etching solution with two parameters.  One is the 

etch rate contrast of the two glasses and the other is the aspect ratio of the nanocones. An 

approach for analyzing the fluoride compositions of solutions with specific ranges of formal 

concentrations have from the activities of the solution species has been reported [1.18, 1.19]. 

 The fabricated nanocone arrays have many possible applications.  One of it has been to 

produce a tunable range of superhydrophobic surfaces [1.20].  

 

Significant glass properties for the fabrication process 
A careful analysis is required on the glasses for the drawing, fusion and etching process.  There 

are several physical and chemical properties of glass, which have to be understood before 

making the right choice for fabrication. Most of the information in the following sections were 

obtained from textbooks on glass properties [1.21]. 

  

Definition 

Glass is defined as an amorphous solid completely lacking in long-range periodic atomic 

structure and exhibiting a region of glass transformation behavior.  It is formed by cooling a 

liquid, which is at a temperature well above the melting temperature of that substance down to a 

temperature below its melting temperature without crystallization. 
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Glass Melting 

The glass making procedure involves selection of raw materials, calculation of the relative 

proportions of each to use in the batch, and weighing and mixing these materials to provide a 

homogeneous starting material.  During the initial heating process these raw materials undergo a 

series of physical and chemical changes to produce the melt.  The main batch material used to 

produce a specific type of glass is the glass former.  This serves the primary source of structure. 

Glass formers in commercial oxide glasses are silica, boric oxide and phosphoric oxide that 

readily form single component glasses.  A large number of several other compounds may also act 

as glassformers under certain circumstances.  With the exception of germanium dioxide these 

oxides do not form glasses by themselves unless very rapidly quenched or vapor deposited, but 

can serve as glassformers when mixed with other oxides.  A vast number of commercial glasses 

are based on silica.  Due to the high melting temperature (>2000ºC) required to produce vitreous 

silica, production of silicate glasses requires the addition of a flux that serves to reduce the 

processing temperature to within practical limits.  The most common fluxes are the alkali oxides 

like sodium oxide and lead oxide.  Excessive addition of alkali oxides can result in serious 

degradation of glass.  This is usually countered by the addition of property modifiers like alkaline 

earth and transition metal oxides and most importantly aluminum oxide.  The glass 

transformation process is illustrated in Fig. 1.1. 

   

Immiscibility 

Phase separation due to the liquid-liquid immiscibility of glass melts is a common phenomenon. 

This separation of melts into two liquid phases can be explained by the behavior of the free 

energy of the system.  

ΔGm = ΔHm – TΔSm

       = αX1X2 - T (- R [X1lnX1+ X2lnX2]) 

       = αX1 X2 + TR [X1lnX1+ X2lnX2], 

ΔHm - enthalpy of mixing, ΔSm - entropy of mixing, ΔGm - free energy of the system 

X1 - concentration expressed as a mole fraction of phase 1, X2 - concentration expressed as a 

mole fraction of phase 2, α - a constant related to the energies of the bonds among the various 

components, R - gas constant 

Since X1 and X2 are fractions the term inside the brackets will always be negative.  Therefore 

ΔGm will be positive or negative based on the value of α.  If α is negative ΔGm will also be 
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negative with minimum at X1 = X2 and the system will not exhibit phase separation.  However if 

α is positive the will be competition between the contributions of enthalpy and entropy of mixing 

and the sign on ΔGm will be a function of temperature.  At T = 0K the entropy term will be 0 and 

the free energy would be positive, resulting in phase separation if allowed by kinetics.  At 

sufficiently high temperature, usually designated as the critical temperature Tc, the entropy term 

would dominate resulting in negative free energy and a homogeneous melt.  Between 0 and Tc, 

competition between enthalpy and entropy results in a curve.  Stable immiscibility occurs when 

glasses separate into two or more distinct phases above the critical temperature resulting in the 

glass showing distinct layers of different composition or milkiness under cooling (Fig. 1.2). 

Metastable immiscibility occurs at temperatures below the critical temperature. 

In the fabrication process that we discuss in this chapter glass phase separation plays a crucial 

role which will be discussed in detail in a later section. 

 

Viscosity  

Viscosity is a measure of resistance of a liquid to shear deformation.  

V = F*d/A*v,  

 

 

 

 

 

Fig. 1.1 – Temperature-Enthalpy relation                      Fig. 1.2 - Composition and Free Energy 

      - A glass transformation process               - A binary immiscible system 
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F = tangential force applied to two parallel planes, A = area of the planes, d = distance between 

the planes, v = relative velocity of the two planes, V = Viscosity 

Viscosity is useful in controlling the ease of glass formation and also important in determining 

the melting conditions necessary to form a bubble free homogeneous melt, the temperature of 

annealing to remove the internal stresses, and the temperature range used to form commercial 

products.  

Temperature – Viscosity cycle  

The section below discusses a range of temperatures and corresponding viscosities as the glass 

goes through the softening process (Fig 1.3). The viscosities given are for a soda-lime melt.  

Melting Point - Temperature at which a typical melt is obtained with fining and homogeneity 

(Viscosity – 1-10 Pa s). 

Working Point - Temperature at which the melt is delivered to a processing device (Viscosity – 

103 Pa s). 

Softening Point - Temperature at which the melt ceases to prevent its deformation under its own 

weight (Viscosity – 106.6 Pa s). 

Dilatometric Softening Point - Temperature at which the sample reaches the maximum length in a 

length versus temperature curve during heating of a glass (Viscosity – 108–109 Pa s). 

Annealing Point - Temperature at which the stress is substantially relieved for a few minutes 

(Viscosity – 1012–1012.4 Pa s). 

Strain Point = Temperature at which the stress is substantially relieved for several hours 

(Viscosity – 1013.5 Pa s). 

Viscosity of the melt can be affected by several factors like temperature, composition, thermal 

history, phase separation and crystallization. 

 

Thermal Expansion 

The thermal expansion coefficient of a material is a measure of the rate of change of volume and 

therefore density with temperature.  

The linear thermal expansion coefficient is defined as  

αL = (dL/dT)p/L 

L = length of the sample 

T = specified temperature 

(dL/dT) p = slope of the curve at constant pressure 
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The thermal expansion curve for a glass indicates three important pieces of information: the 

thermal expansion coefficient, the glass transition temperature and the dilatometric softening 

temperature.  Each of these properties is a strong function of glass composition. Thermal 

expansion coefficients of glasses with a few exceptions increase with increasing temperature. 

Vitreous silica and few other fully linked network glasses display negative thermal expansion 

coefficients over a limited temperature range. These glasses have high resistance to thermal 

shock. Addition of modifier ions to silica fills the small gaps preventing bond bending and hence 

increases the thermal expansion coefficient. The fabrication process of the nanocone arrays 

involves the drawing of two dissimilar glasses.  The glasses must have similar coefficients of 

thermal expansion in order to survive together without stress development after melting and 

drawing together.  

 

Diffusion 

A number of properties of glass are controlled by diffusion.  Diffusion or the transport of atoms 

or ions through a vitreous network is expressed in terms of the diffusion coefficient. 

 

 

 

 

 

 
 

Fig. 1.3 - Viscosity Temperature relationship for Soda – Lime glass 
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J = -D∂c/∂x 

J = flux of the diffusing species 

∂c/∂x = concentration gradient of the diffusing species in the direction x. 

The majority of data for ionic diffusion deals with sodium whose diffusion coefficients in sodium 

silicate glasses increase with increasing sodium oxide concentrations.  

Diffusion of an ion, which is a primary component of the glass, is referred to as self- diffusion. 

Inter diffusion or ion exchange occurs when a glass containing one mobile ion A is exposed to a 

source of a different mobile ion B.  Ions from the glass diffuse out of the sample while ions from 

the source diffuse into the sample with different speeds in glass due to its different sizes. Since 

the faster ion will tend to outrun the slower ion an electric field will develop trying to accelerate 

the slower ion and slow down the faster ion until the fluxes of both the ions are identical.  

The interdiffusion coefficient can be expressed as 

D = DaDb / (DaCa + DbCb), 

Da and Db are the tracer diffusion coefficients of ions A and B and Ca and Cb are the fractional 

concentrations of ions A and B.  Ion exchange can be used to alter the near surface properties of 

an existing glass and also to strengthen glasses in the near surface region.  The interdiffusive 

nature of the borosilicate glasses was one of the limiting factors in achieving smaller and smaller 

regions of immiscibility.  The fusion temperature of the drawn fibers and the desired feature size 

had to be carefully selected to preserve the features and avoid interdiffusion of the constituent 

ions from one region to the other to the other.  

 

Chemical Durability 

Silicate glasses are highly inert towards all liquids and gases at low temperatures (<300ºC) except 

hydrofluoric acid solutions and water.  Ion exchange causes leaching of alkali ions from 

multicomponent silicate glasses leaving a surface layer on the glass depleted of these ions. 

Generally the composition of glassformers can affect the chemical durability of the glass.  In this 

fabrication a pair of borosilicate glasses (Schott 8330 and Schott 8487) was used.  The selection 

of the glasses was primarily based on the ratio of the glass formers (SiO2: B2O3).   

  

Alkali Borosilicate glasses 
Since alkali borosilicate glasses seemed to have properties that suited the drawing and etching 

process they were used as the perform materials.  This section briefly discusses alkali 
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borosilicate glasses and the technical properties of the two glasses that were used in the 

fabrication. 

 

General Properties 

Adding boron to the silica creates borosilicate glass.  Adding alkali modifiers to borate glasses 

creates alkali borosilicate glasses.  The two glassy phases of borosilicate glasses are the silica-rich 

and the borate phases.  As mentioned earlier the type, degree, rapidity and the final phase 

composition be controlled by the temperature of heat treatment and the composition of the 

original glass [1.12, 1.13, 1.14, 1.15].  The final phase composition affects the etchability of the 

glasses. When an alkali oxide is added to a borosilicate glass it associates itself with the borate, 

silica or both. This can affect the resulting structure and hence the degree of phase separation.  A 

sodium-lithium borosilicate system has shown increased phase separation when compared to a 

sodium-potassium borosilicate system.  Addition of alumina reduces the phase separation.  Pyrex 

is a phase alkali separated borosilicate glass.  Its chemical durability is strongly dependent on its 

phase separation.  If an interconnected microstructure of a chemically soluble phase is formed 

within a chemically durable phase then the more soluble phase will be preferentially attacked. 

This is the basic process behind the production of the microporous glass and the Vycor type 

processes.  If a chemically durable phase is formed dispersed in a less durable phase then the 

resultant glass may have a lower durability over the parent glass whilst a lower durability phase 

disperse in a more durable phase would give an increased durability over the parent glass. 

Electrical conductivity depends on the diffusion of alkali ions under influence of electric field.  It 

increases for glasses that separate to give an alkali rich matrix or an interconnected 

microstructure. 

 

Technical Data 

Two types of glasses are used glasses for the fabrication process.  Duran® 8330 (Table 

1.1) is manufactured by Schott glass and is available in tubes, capillaries, and rods.  It has a low 

rate of thermal expansion and is resistant to corrosion.   
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Table 1.1 – Technical Data for Schott-8330 Glass 

Property Value 

Thermal Coefficient of Expansion (0/300°C) 33 X 10 -7/°C 

Transformation Temperature 525°C 

Annealing Point 560°C 

Softening Point 825°C 

Strain Point 525°C  

Working Point 1260°C 

Density 2.23 g/cm3

Poisson's Ratio 0.20 

Refractive Index 1.473 

Dielectric Constant 4.6 

Hydrolytic Resistance Class 1 

Acid Resistance Class 1 (High) 

Alkali Resistance Class 2 

Chemical Composition 

(Main components in approx weight %) 

SiO2 (81%) 

BB2O3(13%) 

Na2O+K2O(4%) 

Al2O3(2%) 
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Glass 8487 (Table 1.2) is manufactured by Schott glass has lower chemical durability and has a 

higher thermal expansion which makes it suitable for sealing with Tungsten. 

 

 

 

 

 

 

 

 
Table 1.2 – Technical Data for Schott-8487 Glass 

Property Value 

Thermal Coefficient of Expansion 

(0/300°C) 

39 X 10 -7/°C 

Transformation Temperature 525°C 

Annealing Point 560°C 

Softening Point 775°C 

Working Point 1135°C 

Density 2.25 g/cm3

Refractive Index 1.479 

Dielectric Constant 4.9 

Hydrolytic Resistance Class HGB4 

Acid Resistance Class S 3 (Low) 

Alkali Resistance Class A 3 

Chemical Composition 

(Main components in approx weight %) 

SiO2 (75.5%) 

BB2O3(16.5%) 

Na2O+K2O(1.5%) 

Al2O3(4%) 

CaO(.5%) 

MgO(.5%) 

 

 



                             Chapter 2: Fabrication of Nanocone Glass Arrays 
   

 15

Fiber Fabrication 

The Draw Tower 
This section describes the draw tower and the drawing principle that is used to melt a rod of 

Schott-8330 glass (core) inside a tube of Schott-8487 glass (cladding) in the furnace, followed by 

drawing the molten glasses together into fibers. The fabrication methodology has been inspired 

by the nanochannel array glass [1.2]. 

 

Description 

Advantek Engineering’s custom engineered glass drawing tower was used to fabricate the 

required fibers.  The drawing tower is based on a modular design.  The main tower components 

included are a) the main structural frame b) computerized direct drive servo system with custom 

vacuum chucks for the feed c) 1100ºC oven with compact heat zones for maximum perform yield 

and very long life heating element d) 25 kg tractor draw system for the draw e) Zumbach laser 

micrometer system f) automatic carbide cutter g) computer automated touch control panel.  A 

simple schematic (Fig. 1.4) and the technical data (Table 1.3) for the Advantek Engineering’s 

glass drawing tower is given.  The draw mechanism helps drawing fibers of relatively small 

dimensions with low to medium draw tension and fairly high draw speeds.  Additionally a single 

stage dry scroll pump connects to the preform holder.  A small laser micrometer stationed below 

the furnace measures the diameter of the fiber coming out of the furnace in real time.  The cut 

fibers are collected in a grounded metal container to prevent the fibers from flying off due to 

static charge build up.  The furnace temperature, feed rate, draw rate and preform dimensions can 

be programmed in through a touch control panel.  The instantaneous fiber diameter, draw tension, 

preform-top position, and furnace temperature are indicated through the course of the drawing. 

 

The Drawing Principle 

The glass assembly consists typically of a rod in a tube perform which is suspended vertically 

above a cylindrical furnace into which it is slowly fed. A starting furnace temperature is set based 

on the kind of glass used.  The two glasses used must have well matched thermal expansion 

coefficients to avoid stress build up and eventual breakage.  The drawing process is relatively 

straightforward.  Once the furnace reaches the preset temperature the glass softens and is pulled 

from below at a rate exceeding that of the feed.  For a closed system like the furnace the ingoing 

preform feed mass must equal the out coming fiber mass.  This implies a reduced cross sectional 
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area of the fiber, which is drawn faster than it is fed to allow for the increased length caused by 

the pull.  This can be described mathematically and can be controlled by dictating the feed and 

the draw rates.  Fibers of the desired diameters can be obtained by calculating the proper rates as 

a function of the desired reduction. 

FS / DS = FA / PD  FS / DS = (OD2
cladding – ID2

cladding + OD2
core)/ OD2

fiber, 

FS = feed speed in m/min - rate at which the preform is fed into the furnace, DS = draw speed in 

m/min – rate at which the fiber is pulled out of the furnace, PA = cross sectional area of the 

starting preform, FD = cross sectional area of the end fiber, OD = outer diameter, ID = inner 

diameter 

 

 

 
Table 1.3 – Technical Specifications –  

Glass Draw Tower   

         

                          

Property Value 

Drawing Speed Range .5-12 m/min 

Feed Speed Range 
.0005 – 1 m/min  

Tower Height 3.6 m 

Max. No. of Preforms 1 

Max. Preform Length/ 

Diameter 

1000/40 mm 

Max. /Min. Fiber 

Diameter 

18  / .2 mm 

Draw Speed Accuracy ± .08% 

Feed Speed Accuracy ± 0.0001 m/min 

Max. Oven Temperature 

/Control after tuning 

1100 / .25 ºC 

  Fig. 1.4 – Functional Schematic of the Glass                                      

Draw Tower 
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The rod and tube dimensions, the desired target diameter and draw speed are fed into the control 

panel, which calculates the necessary feed speed.  As the glass fiber comes out of the furnace it 

cools down by ambient air convection briefly before it reaches a pair of rubber belts whose speed 

directly control the draw rate.  Manual draw speed adjustment can stabilize a fluctuating fiber 

diameter.  If the diameter of the fiber increases above its target, the drawing speed is increased; if 

the fiber diameter starts falling below the target, the drawing speed is decreased.  Heating the 

glass to a sufficient temperature that determines an optimal viscosity is the key to drawing glass 

as shown in Fig. 1.5. 

The First Draw 
 
The section below discusses each of the drawing steps that are implemented to attain feature sizes 

in a decremental fashion.  The very first draw in this fabrication process always starts with a rod 

in tube preform.  Following it each draw stage uses fibers from the previous draw, which are 

drawn together again to get scaled down features.  The calculations for making rough estimates 

of the resulting feature sizes are also discussed. 

 

Preform Preparation 

The primary step in the glass drawing process is the preparation of the preform.  The glasses 

chosen for the fabrication were a pair of borosilicate glasses.  The technical specifications for the 

two glasses are given in the previous section.  The glasses are thoroughly cleaned in an ultrasonic 

water bath. The core glass Schott 8330 serves as the rod and the cladding glass Schott 8487 

serves as the tube.  The rod in tube perform is prepared by using a set of clamps that tightly holds 

the glasses together.  The vacuum fixtures help in providing sufficient clamping pressure to make 

sure the tubing does not fall when hung from the feed slide.  The final perform as depicted in Fig. 

1.6 is attached directly to the preform holder of the draw tower. 
 

Process 

The final goal of every drawing process is to produce fibers of the desired size that are a good 

replication of the starting preform.  In this draw two dissimilar glasses in the preform would form 

the core and cladding section in the final fiber.  The preform is suspended in the draw tower.  An 

adequate vacuum that helps close the interstitial spaces between the rod and the tube without 

affecting the size and shape of the fiber is necessary for uniformity.  Very high temperatures can 

cause excessive softening and reduced viscosity making it hard to draw the fiber.  Very low 
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temperature might increase the viscosity, which is again hard to draw.  The tension on the 

drawing belts is a good indication of the viscosity of the glass that is being currently drawn. 

 

Assembly 

The temperature of the furnace is set above to the softening temperature of the glass, which is 

around 821ºC for Pyrex.  The furnace heats up within a few minutes.  The softened glass starts 

moving out of the furnace under gravity by stretching and forming an hourglass shape.  The 

vacuum pump is activated and a minimal vacuum is maintained.  This is sufficient for the sealing 

and stretching process of the glass that helps eliminating the gaps that may occur in the interface 

between the core and cladding.  The fiber cutter is turned on and the laser micrometer is brought 

to position, the feed and draw process are started, and the out coming fiber is accommodated into 

the drawing assembly.  A stabilized target fiber diameter and uniform features when looked in the 

optical microscope indicate equilibration. 

 

 

 

 

 

                                

Fig. 1.5 – Optimal viscosity range for glass drawing               Fig. 1.6 – Preform assembly for the         

first draw 
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Typical Experiment Log 

8: 50 am – Preform loaded.  Staring preform position is 983.4 mm.  Furnace set to 880 ºC.  Iris 

partially closed.  

9:25 am – Preform drops.  Vacuum turned on (-5 inches of Hg).  Feed started (Feed Speed = 

7.247 mm/min).  Draw started (Draw Speed = 8 m/min).  Cutter turned on (Cut Length = 700 

mm).  Iris closed. Tension = .45 kg, Target Diameter = 1.08 mm, Yield ~ 1400 pieces of fiber  

 
Calculations 
Calculating the net reduction in surface area of the fibers when compared to the starting preform 

is a rough procedure for estimating the desired feature size.  This indicates the required number of 

draws and the required target fiber diameters to reach to a desired lattice constant.  Gaps in the 

perform collapse under vacuum and heat conditions during the drawing process thereby reduce 

the effective diameter.  Hence the calculations in Table 1.4 show the features sizes but are not 

exact. 

 

 

 
 

Table1.4 - Approximate Feature Size Calculations 
 

Draw No - 

Preform 

Type 

Preform 

Diameter (mm) 

Fiber 

Diameter 

(mm) 

Feature Size 

(μm) 

Surface 

Area 

ratio of 

Preform 

to Fiber 

Lattice 

Constant 

(μm) 

1 - Rod in 

Tube 

Rod– 20.0  

Tube– 23.9  

1.08 903.75 (Core) 

1080 

(Cladding) 

1:22.13 1080 

2 – Hex 

Bundle 

Bundle (End to 

End) – 25.4 

1.154 (End 

to End) 

41.06 (Core) 

49.07 

(Cladding) 

1:22.01 49.07 

3 – Hex 

Bundle 

Bundle (End to 

End) – 25.4 

1.016 (End 

to End) 

1.64 (Core) 

1.96 (Cladding) 

1:25 1.96 
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The Second Draw 
This section discusses the process of double drawing fibers in order to get down to a smaller 

feature size.  It also discusses the hexagonal bundling process, which is crucial in getting a 

uniform array of features that are free of holes and gaps. 

 
Bundling 

In order to scale down to the required feature size the fibers are bundled together to make a 

preform for a second draw (Fig. 1.7).  The resulting lattice constant of the double drawn fibers 

would have to be approximately 40 µm.  The chosen fibers for bundling were the best ones that 

were obtained after the complete equilibration of the draw under similar operating conditions and 

with minimally deviant diameters.  The bundling was of hexagonal type and the resulting bundle 

was hexagonal in shape. 

 

Packing Efficiency: Hexagonal close packing involves the stacking of fibers so that fibers in 

alternating layers overlie one another.  Hexagonal packing provides maximal packing density. 

This holds for both circular fibers and hexagonal fibers.  Dense packing helps in accommodating 

more number of fibers efficiently thereby eliminating gaps and non-uniformity.  

 

Fiber area efficiency: The target diameter of the fibers used is chosen in the draw process so that 

an exact integer number can be accommodated in a hexagonal bundle of known size.  They must 

also support easy manual bundling.  Extremely thin fibers of sizes less than .5mm are very hard to 

bundle.  A tradeoff on target feature size for a reasonable fiber thickness must be chosen for ease 

of bundling.  Making the fiber diameter small also minimizes error due to small deviations in the 

fiber diameter.  Apart from better packing density small fibers primarily help in getting to the 

desired small feature limit.  Stacking of fibers is done carefully ensuring uniformity at every 

stage.  This is achieved by periodic checks for gaps, missing fibers, short fibers, crossing fibers or 

rotated fiber domains. 

 

Preform preparation 

After the bundle is made it is prepared to serve as the preform for the second draw (Fig. 1.8).  

One end section of the bundle is wrapped with Teflon tape.  Metal clamps are attached to that 

portion thereby holding the entire bundle together.  The Teflon tape serves as a good cushion 

between the clamps and fibers thereby eliminating gaps.  The bundle is positioned vertically and 
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sliding hexagonal clamps are assembled along the length of the bundle.  The hexagonal case is 

isolated from the bundle leaving it purely supported by the 5-tiered sliding clamps and choke 

ring.  This type of assembly design greatly helped in the maintainability of the hexagonal bundle 

through the course of the preform preparation and drawing.  
In this draw a hexagonal bundle of fibers from the first draw would form a fiber that has the 

profile of the entire bundle. 

 

Typical Experiment Log 

12:15 pm – Preform loaded.  Staring preform position is 675 mm.  Preform bottom just in furnace 

(~5 mm below the top of the furnace).  Furnace set to 950ºC.  Iris partially closed. 

12:42 pm – Furnace temperature = 950ºC. Feed started (Feed Speed = 5.835 mm/min).   

1:08 pm – Preform drops. Preform position = 529mm. Draw started (Draw Speed = 8 m/min). 

Cutter turned on (Cut Length = 700 mm). Iris closed. 

1:29 pm – Drawing equilibrated 

Tension = .78 kg, Target face to face distance of fiber = .686 mm, Yield ~ 1500 pieces of fiber 

 

 

 

                       

  Fig. 1.7– Fiber Bundle Schematic               Fig. 1.8– Preform Assembly Feeding to  

     Hot Furnace 
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The Third Draw 
This is similar to the second draw and results in feature sizes of 1.6 μm.  The end profiles of the 

fibers from each of the draws are shown in Fig. 1.9. 

 

Bundling and Preform Preparation 

The fibers are now bundled again for the third and final draw.  This draw must still maintain 

minimum distortion of the shape of the double drawn bundle.  The target lattice constant for the 

double drawn fiber would be approximately 1.6 μm.  The bundling and preform preparation is 

exactly similar to described for the second draw.  

 

Typical Experiment Log 

11:35 am – Preform loaded.  Staring preform position is 550 mm.  Furnace set to 950ºC.  Iris 

partially closed. 

12:06 pm – Furnace temperature = 950ºC.  Feed started (Feed Speed = 5.835 mm/min).  

12:30 pm – Preform drops.  Draw started (Draw Speed = 8 m/min).  Cutter turned on (Cut Length 

= 100 mm).  Iris closed.  Furnace Temperature lowered to 850ºC. 

12:40 – Furnace Temperature = 850ºC. Preform position = 365 mm. 

1:29 pm – Drawing equilibrated, Tension = .78 kg, Target face to face distance of fiber = .686 

mm, Yield ~ 1500 pieces of fiber  

 

 

 

Fig.  1.9 - Fiber End Profiles at Various Draw Stages 
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Wafer Fabrication 

Fusion 
The experimental step that follows the drawing is the fusion process.  Fusion involves the heating 

of a fiber bundle consisting of tiny features of glasses with different compositions.  In this stage 

properties like phase separation and interdiffusion that play an important role are discussed. 

  

The Fusion Furnace 

A Lindberg Hinged 555000 Series tube furnace is used for the fusion process.  The furnace is of 

vertical type and can process tube lengths from ¾ - 6".   It operates on 50/60 Hz single phase 

240V AC.  The maximum operating temperature is 1200ºC.  An alloy heating element, high 

temperature ceramic fiber insulation and a Platinel II thermocouple form the primary 

components.  Temperature profiling is achieved by a three zone heated chamber system.  The 

three zones are of equal length and power output.  A three-zone type of temperature profiling 

helps achieve greater linear temperature uniformity.  Several factors can affect the temperature 

uniformity like load, operating temperature and vacuum conditions.  The intense heat softens the 

glass and burns off other unwanted constituents.  Simple programs specifying the intended 

heating profile can be keyed into the controller.  Profiles typically run through a ramp to high 

value, dwell, and ramp to low value style. 

 

Fusion Bundle Preparation 

A thoroughly cleaned tube made of Schott 8330 glass of 25.4 mm O.D and a 1.5 mm wall is 

typically used for making the fusion bundle.  A smaller bundle is more robust for better heat 

distribution and hence more uniformity.  One end of the tube is closed and the other end is flared. 

The fibers are uniformly packed in the tube.  The final fusion bundle is always in a cylindrical 

tube.  The same hexagonal packing process is employed to ensure that the bundle is well packed 

and uniform.  The vacuum clamps are mounted on the flared side of the tube and fixed to the 

preform vacuum chuck of the furnace. 

 

Fusion Process 

The goal of the fusion process is to heat the bundle up to a point where the tube softens and just 

begins to collapse.  This must eliminate gaps and interstitial spaces resulting in a continuous 

matrix.  The fusion must thereby help maintain a fixed alignment of the fibers in a rigid rod. 
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Fusing a bundle of considerable size also helps in creating a fiber matrix which is easier to handle 

and useful for surface based experiments.  A high quality fused perform in this case would consist 

of uniform and periodic hexagonal channels (each channel corresponding to a fiber in the 

bundle).  This hexagon can have the double or the triple drawn fiber profile based on which was 

used for the fusion.  The fusion perform is positioned in the middle zone which is the central 

point of heat distribution maintained at the highest temperature (Fig. 1.10).  The starting diameter 

of the tube was 25.4 mm, which reduced to 24 mm as a result of the collapse due to fusion.  The 

highest temperature reached in the process must not be too much above the softening point of the 

glass causing it to stretch and lose its cylindrical shape.  The vacuum system in the fusion furnace 

is an important feature.  The vacuum plays a pivotal role in removing the air from the small 

spaces and keeping the fibers in place.  An annealing process that avoids stress development in 

the heat-treated glasses follows the softening process.  Several tries of fusion helped optimize 

temperature and other operating conditions.  A fundamental advantage of keeping the fusion 

process completely independent of the draw is ease of tuning of parameters.  

 

 

 

 

 

                    
Fig. 1.10 –Temperature Profile - Fusion of the Triple Drawn Fibers 
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Phase separation and Interdiffusion 

We have already discussed the theory of phase separation in borosilicate glasses which makes 

them separate into two distinct regions called phases. The degree of separation of the borate and 

silica phases of the glasses used depends on the initial chemical composition and also on heat 

treatment. This in turn affects the etch rate contrast of the glasses.  In the immiscibility region of 

the Na2O-B2O3-SiO2 system present in the borosilicate glasses that were drawn there is a great 

tendency to phase separate.  Phase separation implies micro structural changes after heat 

treatment.  It can result from spinoidal decomposition (two interconnected interpenetrating 

networks) or nucleation (droplets of one phase of a matrix in the other).  In the case of spinoidal 

decomposition, the borate-rich phase can be leached out by dilute acid, leaving a sponge 

consisting of about 96 % silica.  The fundamental separation here involves that of the silica-rich 

and the alkali borate-rich phase.  The degree of interconnection of the two phases depends on the 

constituent components present in the glass.  The increased borate content in the 8487 glass 

causes increased connectivity of the easily etched phase.  The scale phase separation can be 

increased by suitable heat treatment until the dimensions of the separated regions, as seen on an 

electron micrograph, are of one or more microns. 

Interdiffusion of the glasses, which can occur at high temperatures, can cause reduced channel 

width and homogenization.   This can completely destroy the feature uniformity.  Additional 

phase separation can cause high degrees of heterogeneities in the fused bundle. 

 

Slicing and Polishing 
The sections below discuss the process of preparing the fused bundle for the etching process.  For 

enhancing features in the order of a few microns by etching the surface roughness present in 

wafers has to be much lesser than the feature size to avoid non uniformity in the etching profile. 

Hence the wafers have to be polished to a very fine degree 

 

Slicing - Once the fusion process is complete the bundle is sliced into wafers and polished.  The 

slicing method must not introduce structural damage and defects to the area under analysis.  The 

Isomet 1000 precision sectioning saw that can handle a wide range of materials including glass 

was used.  The saw, which is a 7” blade, has a large cutting capacity.  It is equipped with variable 

speed up to 975 rpm and position control to handle different substrates of various sizes.  Fixtures 

supporting a sample holder attached to an externally controllable arm hold the fused bundle. 

Loads are applied on the arm based on a gravity feed design to adjust the counterbalancing weight 
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of the sample.  The relative horizontal positioning of the fused bundle with respect to the can be 

controlled by the digital micrometer.  It has a constant water-cooling system that keeps that 

sample from getting overheated due to friction.  The assembly is completely encased in a 

transparent hood.  An interlock system prevents the motion of the saw once the hood is opened.  

 

The slicing process involves  

- Careful mounting of the fused bundle in the sample holder with right orientation -  The axis of 

the fused cylinder must be perpendicular to the plane of the diamond saw.  This ensures parallel 

slices.  

- Setting the thickness - The micrometer reading must take into account the blade thickness and 

the possible reduction in thickness due to polishing.  The final wafer after slicing and polishing is 

1.5 mm thick. 

- Setting the speed of the diamond coated saw followed by the cutting -  The sample holder must 

be held against the direction of the cutting towards the very end of the slicing process to ensure 

that the saw does not chip off the rest of the slice in an uneven fashion. 

 

Polishing - Polishing creates a smooth, shiny, flat, and defect free surface.  The sliced wafers 

were polished in an ULTRAPOL polisher that can make both flat and angled surfaces.  A rotating 

wheel in the polisher holds polishing films.  These diamond lapping films are coated with are 8" 

in diameter.  The dimension of the diamond lapping indicates the minimum structure dimension 

that it can polish.  The polishing films are changed periodically due to wear and tear.  A built in 

tachometer helps control the speed of the wheel.  The sample to be polished is wax mounted on a 

flat metal holder.  This is attached to a movable arm in the polisher.  The angular, vertical and 

horizontal alignment of the surface of the sample can be controlled by a set of micrometers.  The 

surface to be polished must be kept as parallel as possible to the surface of the polishing area to 

ensure flatness and uniformity of the finished surface.  The feed is gravity based allowing the 

sample to push against the rotating diamond lapping under the weight of its metal mount.  An 

LED indicator driven by a touch sensor indicates whether the currently contacting surface has 

been polished.  A water spraying system fed from a reservoir helps keep the sample from 

overheating due to friction.  

A series of films were used to get down to a very fine polished surface.  The sample was first 

hand polished to remove large burrs left from the slicing.  The sample was then mounted on the 

polisher and ran through 30 μm, 15 μm, 6 μm, 3 μm and 1 μm lappings in that order.  This 
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stepwise polishing helped eliminate scratches and unevenness of a range of dimensions down to a 

micron.  The final polishing touch was given using an alumina lapping of .5 μm to make it 

smoother and shinier.  The microstructure of the surface was examined in an optical microscope 

to check for a uniformly and evenly polished surface. 
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Structure Fabrication 

 

Hydrofluoric Acid Solutions 
This section explains the equilibration of different aqueous solutions containing HF that are used 

in the etching process.  Knowledge on the constituent ions of the solutions is essential to 

understanding the etching chemistry of these solutions on the multicomponent borosilicate glass.  

 

Glass and HF 

HF or HF containing aqueous solutions at room temperature readily dissolves silicate glasses. 

Hydrofluoric acid is weak due to its incomplete dissociation.  It however contains H+, HF2
- and F- 

ions along with the un-dissociated HF molecules.  The mechanism involved in the dissolution 

reaction of pure HF with borosilicate glasses is the same though the rate of etching may vary with 

different etchant compositions and glasses.  Three primary reactive species are HF and HF2
- and 

the catalytic species are the H+ ions.  HF2
- ions are adsorbed by surface silanol groups, HF 

molecules by vicinal silanol groups and H+ by surface bridging oxygen in siloxane units. 

However the reactivity of Fluoride is considered to be negligible though the concentration of the 

Fluoride ions play an important role in controlling the etch rate.  

The dissolutions of vitreous SiO2 in HF solution can be described by the following reaction 

 

SiO2 + 6HF ->> H2SiF6 + 2H2O 

 

Equilibria of HF solutions 

Glass etching process involves the breaking of the covalently connected siloxane bond structure. 

This results in the release of silicon from the glass.  The etching of silicate glasses in aqueous HF 

solutions has been discussed in detail in [1.16, 1.17].  The wafer consists of a matrix of core 

Schott 8330 and cladding Schott 8487 glass that underwent the drawing and fusion processes.  

Schott 8330 is an acid resistant glass with 13% B2O3 and the Schott 8487 is an easily etchable 

glass with an increased 16.5% B2O3.  In borosilicate glasses, B2O3 forms an independent network 

forming oxide, which is incorporated into the silicate network.  The change in etch rate of 

borosilicate glasses in BHF solutions can be positive negative or zero with the increase of B B2O3 

content in the glass.  In contrast, the etch rate in HF etchants increases with B2O3 content.  This is 
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because the B-O-Si and the B-O-B bonds are more rapidly attacked by H  ions, which are almost 

absent in the BHF solutions.  

+

Several parameters were studied and the following two were chosen to control the etching 

mechanism  

- Fluoride Ion concentration 

- Concentration of Dimer (HF) and Bifluoride Ion (HF2
-) 

 

Dilute HF (DHF) solutions 

The following equilibria can explain dilute HF solutions 

HF ↔ H+ + F-

HF + F- ↔ HF2
-

The ionic strength of dilute HF solutions is very slow and calculations can be done with 

concentrations instead of activities.  

The concentration of the solution can be expressed in terms of its constituent ions by the 

following equation 

[HF]added = [HF] + [H+] + [HF2
-]               ……………………..(1.1) 

Concentrated HF solutions 

HF solutions with concentrations above 1M HF have known to exhibit the presence of higher 

polymeric ions HnFn+1-.  Such solutions exhibit higher acidity and greater etch rates due to 

enhanced reactivity towards the siloxane bonds.  However, higher equilibrium must be 

considered. 

HF + HF2- ↔ H2F3
-

The concentration of the solution can be expressed in terms of its constituent ions by the 

following equation 

[HF]added = [HF] + [H+] + [HF2
-]                       ……………………..(1.2) 

 

Buffered HF solutions 

Addition of NH4F to HF solution shifts equilibria resulting in an increased HF2
- concentration 

well as PH.  Etch rate of silicate glasses depend on HF2
- ion concentrations and therefore addition 

of buffered NH4F affects the etching behavior significantly.  

The concentration of the solution can be expressed in terms of its constituent ions by the 

following equation 

[HF]added + [F-] added = [HF] + [F-] + 2[HF2
-]    ……………………..(1.3) 
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Etching 
The etching of the constituent glasses is the crucial stage in producing the nanocones.  The 

detailed etching experiment and the parameters set for a desired etching profile are discussed 

here.  

 

Etching Parameters 

Amorphous borosilicate glass is a good candidate for isotropic etching due to its 

microstructurability and diffusion properties.  A functional structure on the composite wafer 

fabricated with the required morphology is obtained by selecting an appropriate etching process. 

Chemical solution based wet etching and vapor/reactive ion/ sputter based dry etchings are the 

two common forms of etching.  Chemically strong bases and acids may etch glass.  HF reacts 

with the silicates producing soluble silicon fluoride, which diffuses producing a groove.  A 

multicomponent glass etches un-uniformly resulting in a jagged surface.  As already seen in the 

section on glass properties, glass is easily etched by hydrofluoric acid solution.  

The etching process is determined by the following parameters 

a) Etching solution - The composition of the fluoride solutions used in the etching of borosilicate 

glass greatly determines factors in the process chemistry like the etch rate and the surface 

roughness. 

b) Etching temperature – Temperature can speed up the chemical reaction causing increased 

etch rate. 

c) Agitation – Ultrasonic stirring continuously exposes the surface of the sample to fresh 

volumes of acid resulting in enhanced uniformity and etch rate.  However the stirring may not be 

favorable choice for extremely fine and delicate structure profiles.  

 

 The quality of the etched wafer was determined by the following parameters.  SEM microscopy 

gave best results in the study of morphology of the etched sample. 

 a) Structure Accuracy – An under etched structure displays unfinished stunted cones and an 

over etched structure displays long thread like cones that may not stand upright on the base.  This 

can be mostly controlled by tuning the time and in some cases the etchant. 

b) Cone tip sharpness - Rounded tips functionally deviate from the desired sharp tipped cones 

indicating inappropriate etching parameters. 
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c) Cone wall roughness – In spite of fine polishing etching can cause a lot of surface roughness 

in multicomponent glasses.  Smooth walls are the most desired feature and depend on the type of 

etching solution used.  

d) Defect Density – Missing fibers in the bundle, poorly polished wafers, inconsistency in feature 

sizes can cause defects in the etched sample. 

 

Choice of Solutions 

A range of solutions chosen as given in Table 1.5 for the etching of the multicomponent 

borosilicate glass wafers can be divided into two regions. 

Region 1 – DHF - Simple dilute HF solutions 

Region 2 – BHF - Buffered HF solutions that were mixed with NH4F 

The objective was to obtain a series of structures with differing aspect ratios.  The formal 

concentrations of the solutions were tuned by several trial etches to obtain structures of the 

desired aspect ratio. 

 

Procedure 

Safety was of prime importance when dealing with HF solutions.  The fluoride ion in HF readily 

penetrates into the skin causing destruction of deep tissues and bones and makes HF an extremely 

dangerous acid to work with.  A high degree of familiarity with the hazards specific to HF is 

required.  The following safety measures which are strictly recommended for the use of HF was 

implemented 

- Experiments were done in a ventilated fume hood. 

- Area of experiments were equipped with a safety shower and eye wash 

- Use of Personal Protective equipments like goggles, face shields, double layered 

- Nitrile + neoprene gloves, apron and completely covered clothing  

Several sliced and polished samples were kept ready for a series of etching experiments.  Each 

time the sample was placed in a HF resistant PTFE container its polished side facing up.  The 

smallest one was chosen to reduce waste.  The container was clamped such that it is partially 

immersed in an ultrasonic bath.  The measured volume of the etching solution was dripped on to 

the sample using a pipette.  All containers and devices that handled HF were HF resistant and 

were mostly made of Teflon.  The timer was started at the same instant to keep track of the 

etching time.   After the expiration of the set time the remaining HF in the sample was carefully 

removed in the hood.  The sample was rinsed ultrasonically with water and isopropanol to get rid 
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of any etch reactants that may still be on the surface and finally was dried using a fresh jet of air. 

An optical microscope view of the sample gave a good idea of the degree of completion of the 

etch process for the desired aspect ratio. 

 

Etch Rate Calculations 

In this section the differential etching process is evaluated by calculating the etch rates of the 

individual core and cladding glass.  Individual slices of Schott 8330 and Schott-8487 are etched 

together in various etching solutions and the etch rates are calculated from weight loss in the 

slices and the slice dimensions. 

 

Etch Rates 

The samples etched contained a matrix of 8330 cores surrounded by 8487 claddings.  It is the 

differences in etching rates of these two types of glasses that result in the nanocone structure.  

The faster etching cladding glass must etch back faster relative to the slower etching core glass 

resulting in a tapered array of cones.  Etch rate contrast is the fundamental concept of a 

differential etching process.  So learning the etch rates of the independent glasses was useful 

estimate in determining the etch rate contrast of the two glasses. 

 

Table 1.5 – Etching Test Series 

Slice Number Etchant Etch Time 

(min) 

275 1.5ml BHF + 3.5ml DHF 30  

255 1 ml BHF + 4 ml DHF 30  

256 .6 ml BHF + 4.4 ml DHF 15  

257 .4 ml BHF + 4.6 ml DHF 15  

258 .2 ml BHF + 4.8 ml DHF 15  

259 .1 ml BHF + 4.9 ml DHF 10  

278 5 ml DHF 10  

261 4.7 ml DHF + .280 ml Water 15  

271 4.85 ml DHF + .160 ml Water 30  

290 4.9 ml DHF + .100 ml Water 60  
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It was useful to build a relationship between the etch rate ratios of the single glass wafers 

and the calculated aspect ratios of composite glass wafers samples.  

The most common technique to calculate the etch rate is by measuring weight loss of the 

etched sample.  Decrease in the wafer thickness of the unprocessed slices can be calculated by the 

measured mass loss for a known surface area.  The slices were made from the original 8330-rod 

and 8487-tube that was used as the starting preform in the first drawing process.  The 8330 slices 

were flat circular wafers and the 8487 slices were flat circular rings.  This was to ensure faithful 

replication of the glass profile in the composite fabricated wafer.  Flatness was obtained by a 

similar polishing procedure as described in the previous section.  A series of 8330 and 8487 glass 

slices were weighed in an ultramicrobalance and the required parameters were measured.  These 

slices were processed together through an exactly similar etching procedure as the previous 

processed wafers (Fig 1.11). 

 The main conditions that were replicated are etched time, ultrasonic agitation and 

etching solution. The weight was measured again after the etching and the loss in weight was 

noted.  

Etch rate (E.R) which is the rate at which the core and the cladding glass are etched by the etchant 

is given by the formula below 

 

E.R = Δd/t = Δm/ρ*SA*Δt 

Weight before Etching = m_initial 

Weight after Etching = m_final 

ρ = Density  

Δt = Etch time 

Δd = Thickness Change 

Δm = Mass Change = m_final- m_initial 

SA = Surface Area 

 

Core Slice 

Radius = rcore = 10mm  

Thickness = tcore  

Total Surface Area = SAcore = 2(π* rcore * rcore) + 2*3.14* rcore *tcore

Density = ρcore= 2.23 g/cm3
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Core Etch Rate = ERcore = Δd/t = Δm/ρ_co*SAcore*Δt 

 

Cladding Slice 

Outer Radius = rcladding_outer = 23.9 mm 

Inner Radius = rcladding_inner = 22.7 mm 

Thickness = tcladding  

Total Surface Area = SAcladding = 2(π* rcladding_outer * rcladding_outer) - 2(π* rcladding_inner * rcladding_inner) + 

2* π * rcladding_outer *tcladding+ 2* π * rcladding_inner*tcladding

Density = ρcladding = 2.21 g/cm3

Cladding Etch Rate = ERcladding = Δd/t = Δm/ρ_cl*SAcladding*Δt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

Fig.  1.11 – Wafers for Etch Rate Calculations 
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The dimensional parameters of each of the wafers used for the etch rate calculations is 

listed in Table 1.6.  For a glass of known density and dimensions the calculations were done to 

calculate the etch rate and tabulated as shown in Table 1.7. 

 

 

 

Table 1.6 – Wafer Parameters for Etch Tests 

 

Test  

Number 

Etch process 

replicated 

Slice Thickness 

(inches) 

Surface 

Area(mm^2) 

280 278 8330 

8487 

.0714 

.08745 

7.4189 

4.128136 

281 275 8330 

8487 

.0669 

.0909 

7.347 

4.25636 

282 255 8330 

8487 

.0721 

.0937 

7.43 

4.3604 

283 256 8330 

8487 

.0722 

.08485 

7.4316 

4.0315 

284 257 8330 

8487 

.0798 

.0907 

7.5529 

4.2489 

285 258 8330 

8487 

.0707 

.08775 

7.4077 

4.139286 

286 290 8330 

8487 

.0744 

.09485 

7.4667 

4.40316 

287 259 8330 

8487 

.0730 

.09255 

7.444 

4.31768 

288 261 8330 

8487 

.075 

.0880 

7.47634 

4.128136 

289 271 8330 

8487 

.0704 

.09685 

7.40296 

4.47749 
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Table 1.7 – Etch Rates of Individual Core and Cladding Glass 

 

Test  

Number 

Slice Weight Loss 

mg 

Etch Time 

(min) 

Etch Rate 

(μm/min) 

280 8330 

8487 

2.2225 

4.7346 

10 .13433 

.50973 

281 8330 

8487 

3.0892 

2.2677 

30 .06285 

.07893 

282 8330 

8487 

4.5309 

3.6268 

30 .091152 

.12322 

283 8330 

8487 

3.3375 

2.5534 

15 .13425 

.18766 

284 8330 

8487 

2.8067 

2.5795 

15 .11109 

.17988 

285 8330 

8487 

2.8596 

3.0706 

15 .1154 

.21979 

286 8330 

8487 

2.6672 

8.7632 

15 .026697 

.14742 

287 8330 

8487 

2.2043 

2.6093 

10 .13278 

.26859 

288 8330 

8487 

2.4109 

4.8621 

15 .09640 

.3472 

289 8330 

8487 

2.0473 

6.0127 

30 .041338 

.20373 
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Etching Characterization 
Work has been reported in studying the etching mechanism by calculating the activities of the 

constituent ions used in the solutions based on the equilibria [1.18, 1.19].  This section uses a 

similar approach in calculating the values of the ion activities for varying solution molalities. 

 

Activity of solution species 

A good characterization of the fluoride solutions helps in understanding and controlling the 

etching mechanism.  This involves the calculation of the solution species activities of different 

solutions of a range of concentrations.  The activity of a substance is closely related to its 

concentration and is given by  

ai = exp[(μi - μi
o) / RT] 

ai = Activity of the species i 

μi = Chemical Potential of species i in that phase 

μi
o = Chemical potential of species i in its standard state 

R = Standard gas constant. 

T = Absolute temperature  

 

A direct use of measured concentration of a substance may not give accurate indication of its 

chemical effectiveness and activity is used instead.  For each solution type the activity is 

calculated by multiplying the calculated concentration by a known activity coefficient.  The 

activity coefficient is a measure of how much the solution differs from the ideal solution i.e. one 

in which the effectiveness of each molecule is equal to its theoretical effectiveness. 

Since a range of concentrations of HF and NH4F are used in both the pure DHF etchants as well 

as the BHF etchants the activities are calculated from the following equilibria. 

 

HF ↔  H+ + F-   Ka  = aH+ *  aF- / aHF     = bH+* bF- * γ²± / bHF  * γHF              …….(1.4) 

H+ + F- ↔ HF2
-  K1 = aHF2- / aHF*  aF-     = bHF2- / bHF*  bF-       …….(1.5) 

HF + HF2- ↔  H2F3- K2  = aH2F3- /  aHF * aHF2-       = bH2F3- /  bHF * bHF2      …….(1.6) 

 

ax = Activity of species x    Ka=6.84*10-4 

bx = Molality of x     K1 = 5 

γx = Activity coefficient of x    K2 = .58 
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Molalities of Basic Concentrations 

The molality of a species in solution is the number of moles of that solute per kilogram of 

solvent. The molalities of the etching solutions are given in Table 1.8.  

Molality = (Weight of Solute / Molecular Weight) / Weight of Solvent 

 

HF in Concentrated HF 

Weight percent = 49.1 

Molecular weight = 20.01 * 10-3 g/mol 

Molality =  48.2077 m 

 

HF in Dilute HF (10:1 DHF) 

Weight percent = 4.4635 

Molecular weight = 20.01 * 10-3 g/mol 

Molality = 2.33485 m 

 

NH4F in Buffered HF (10:1 BHF) 

Weight percent = 36.6 

Molecular weight = 37.04 * 10-3 g/mol 

Molality = 16.80477 m 

 

HF in Buffered HF (10:1 BHF) 

Weight percent = 4.6 

Molecular weight = 20.01 * 10-3 g/mol 

Molality = 3.9096 m 

 

Solvent Mass in Basic Concentrations 

Mass of Water Solvent in Solution = Wt% of Water* Density 

 

Concentrated HF 

Weight percent = 50.9 

Density = 1165 g/m3

Solvent Mass = 592.985 g 
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Dilute HF (10:1 DHF) 

Weight percent = 95.5363 

Density = 1165 g/m3

Solvent Mass = 1112.9978 g 

 

Buffered HF (10:1 BHF) 

Weight percent = 58.8 

Density = 1100 g/m3

Solvent Mass = 646.8 g 

 

Species Concentrations 

Since the etching solutions are a mixture of at most two different solutions the molalities are 

calculated by the formula below 

For a solution AB containing species A and B 

MolalityA     = (C_AA* M_SolventA    + C_AB* M_SolventB B )/ M_SolventAB

MolalityB     = (C_BA* M_SolventA    + C_BB* M_SolventB B )/ M_SolventAB 

 

 

 

 

Table 1.8 – Molalities of Etching Solutions 

Slice Number NH4F Concentration (m) HF Concentration (m) 

275 3.35080 2.64884 

255 2.13174 2.5346 

256 1.2339 2.4504 

257 .808352 2.410599 

258 .3972888 2.37207 

259 .196966 2.3533 

278 - 2.33848 

261 - 1.6449 

271 - .92496 

290 - .57642 
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Calculation of constituent ion concentration 

Using Eqns. 1.2 – 1.6 we get five linear equations with five unknowns 

 

Ka  =  aH+* aF-  / aHF              …….(1.7) 

K1  = aHF2- / aHF*  aF-        …….(1.8) 

K2  = aH2F3- /  aHF * aHF2        …….(1.9) 

[[HF]added = [HF] + [H+] + [HF2
-]      …….(1.10) 

[HF]added + [F-]added = [HF] + [F-] + 2[HF2
-]     …….(1.11) 

 

The required activities are then replaced with the ratio of the concentration to the activity 

coefficient.  An activity coefficient is taken from the graph for a specific formal concentration of 

2m pure HF.  It is assumed that the activity coefficients remain unchanged with the addition of 

more NH4F.  The above set of equations can be written in terms of unknown variables.  The 

activities of the constituent ions are given in Table 1.9.  

 

 

 

 

 

Table 1.9 – Activities of Etching Species 

Slice 

Number 

Calculated H+ activity 

(mol/kg) 

Calculated HF 

activity (mol/kg) 

Calculated H2F3-

activity (mol/kg) 

275 .000118263 .211833 1.41147 

255 .000563001 .388757 .998577 

256 .0035422 .726322 .554027 

257 .0107784 .991504 .339287 

258 .0257632 1.20055 .208111 

259 .0702727 1.39822 .10349 

278 .1384777 1.652097 .055731407 

261 .09512555 1.194624 .0194971 

271 .05458255 .70839377 .00446944 

290 .035087 .457552 .001650705 
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.000684 = a*b/c 

5 = b*d/c 

.58 = e/c*d 

C1 = a+c+d+2e 

C1+C2 = b+c+2d+3e 

γ± = .79  

 γHF    =.75  
a = Activity of H+ ions = Concentration of H+ ions / Activity coefficient   = [H+]/.79 

b = Activity of F- ions = Concentration of F- ions / Activity coefficient   = [F-]/.79 

c = Activity of HF ions = Concentration of HF ions / Activity coefficient   = [HF]/.75 

d =Activity of HF2
- ions = Concentration of HF2

- ions / Activity coefficient   = [HF2
-]/.79 

e =Activity of H2F3
- ions = Concentration of H2F3

- ions / Activity coefficient   = [H2F3
-]/.79 

 

Solving the above linear equations the activities were obtained for the concentrations of the major 

ions.  

 

Etching Profile vs. Time 

A series of etch tests were done to understand the feature profiles at various stages of etching 

process.  The successful completion of a nanocone etching process depends on the etching time. 

But it is necessary to note that while the etch time determines the completion of the etching; it 

does not affect the final aspect ratio. The etch time is decided based on material, the feature size, 

and etching conditions like ultrasonic agitation (which typically doubles the etch rate) but is not 

crucial in terms of determining the aspect ratio.  Wafers from the fusion of the double drawn 

fibers were sliced and etched for a range of periods as shown in Table 1.10.  The resulting 

structures were imaged with an SEM.  

 

 

Table 1.10 – Etch Tests for Double Drawn Wafers 

Slice Number Etching Solution Time (min) 

291 DHF 10:1 15 

292 DHF 10:1 75 

293 DHF 10:1 135 
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Analysis and Interpretation of Results 
Scanning electron microscope analysis was employed to analyze the feature profiles.  The actual 

feature size and uniformity and the aspect ratio of the etched cones was calculated from the SEM 

images, which is discussed in this section. 

 

Imaging 

The structured wafers were imaged using a scanning electron microscope.  An SEM uses an 

electron gun as its source to produce high resolution (nanometer to micrometer scale) and high 

magnification images (10X to 100000X) (Fig. 1.12).  An electron beam with an energy ranging 

from 100 to 30,000 eV is highly focused by a series of electromagnetic lenses to a spot size less 

than 10nm which scans point by point to form an image.  It irradiates a micro volume of the 

sample and loses energy resulting in the emission of secondary electrons, which are collected and 

amplified.  The specimen chamber is maintained at a clean, high vacuum in the order of 10-6Torr.  

 

 

 

 

 
 

       Fig. 1.12 – Electron Probe Parameters of the SEM 
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The samples have to be prepared in a manner that will make it suitable for viewing in the SEM.  

The surface is made conductive by coating a thin layer of gold in the order of a few hundred 

angstroms using the Sputter Coater.  

Since the probe being used is an electron gun several control mechanisms can affect the quality of 

the imaging process.  Based on the detail of interest the electron beam parameters are adjusted to 

get an appropriate scan of the image.  The various electron bean parameters are the electron probe 

diameter, electron probe current, electron probe convergence and the electron bean accelerating 

voltage can be tuned to get the SEM operating in various imaging modes like the high resolution, 

high current, depth of focus and low voltage mode.  For the etched wafers structural detail was of 

prime importance and the SEM was operated with a relatively high emission current setting and a 

good depth of focus.  The structures were imaged at various levels of magnification and the 

feature sizes of the structures were noted. 

 

Aspect Ratio  

The aspect ratio of the nanocone features obtained here is defined as the ratio of the height and 

the width of each nanocone respectively. The aspect ratio control is useful for various 

applications.  We can see that for a given multicomponent glass surface the aspect ratio obtained 

after etching depends on the etching concentration.  The aspect ratios of the various structured 

surfaces were calculated from the SEM images taken. The samples were viewed with a 45º for 

best capture of topographic details.  The samples were also rotated in order to avoid the features 

lining up.  The tilt and rotation introduced in the cone was considered in the geometric calculation 

of the aspect ratio (Fig. 1.13).   The results are tabulated in Table 1.11 and are from the 

measurements made from a 10X magnified image of each of the structures. 

Etch rates and Aspect Ratio 

The contrast in the etch rates of the individual core and cladding glass is given by the etch rate 

ratio which is expressed as the rate of the faster etching glass to the slower etching one.  This is 

geometrically related to the slope of the nanocone and hence can be expressed in terms of the 

aspect ratio.  The relationship given below geometrically relates the aspect ratio with the etch rate 

ratio of the nanocones.  

Etch_rate_ratio = (1+ 4(Aspect_ratio)2)1/2 

Aspect ratio = Height of nanocone/Width of nanocone  

Etch rate ratio = Etch rate (Faster etching glass) / Etch rate (Slower etching glass)  
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Fig. 1.13 – Aspect Ratio Geometry 

 

 

Table 1.11 – Aspect Ratio Measurements 
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 Slice 

No. 

Actual Width 

(cm) –  

wa 

Measured 

Height 

(cm) - 

(hm) 

Actual 

Height 

(cm) -  

(ha) 

Aspect 

Ratio 

(ha/wa) 

275 1.824828 .5 .7071 .3874885 

255 1.31529 .5 .7071 .5376000 

256 1.258967 .7 .9899 .7863113 

257 1.004987 .9 1.27278 1.26646 

258 1.1 1.3 1.83846 1.671327 

259 1 1.6 2.26272 2.26272 

278 .6 2.2 3.11124 5.1854 

261 .5 2.7 3.81834 7.63668 

271 .45 3.6 5.09112 11.3136 

290 .4 4.3 6.08106 15.20265 
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Images 

The following SEM images (Fig. 1.14 – Fig. 1.23) correspond to each of the etched slices. 

 
                         Fig. 1.14 – Slice 275 (Aspect Ratio - .38) 

 
          Fig. 1.15 – Slice 255 (Aspect Ratio - .53) 
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Fig. 1.16 – Slice 256 (Aspect Ratio - .78) 

 

 
Fig. 1.17 – Slice 257 (Aspect Ratio – 1.2) 
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Fig. 1.18 – Slice 258 (Aspect Ratio – 1.6) 

 
Fig. 1.19 – Slice 259 (Aspect Ratio – 2.2) 
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Fig. 1.20 – Slice 278 (Aspect Ratio – 5.1) 

 

 
Fig. 1.21 – Slice 261 (Aspect Ratio 7.6) 
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 Fig. 1.22 – Slice 271 (Aspect Ratio 11.3) 

 

 
     Fig. 1.23 – Slice 290 (Aspect Ratio 15.2) 

 49



                             Chapter 2: Fabrication of Nanocone Glass Arrays 
   

The following SEM images (Fig. 1.24 – Fig. 1.26) depict the time dependent etching 

process for a set of double drawn wafers of lattice constant of 40 μm.  

 
Fig. 1.24 – Sample 291 (Etched for 15 minutes) 

 
Fig. 1.25 – Sample 292 (Etched for 75 minutes) 
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Fig. 1.26 – Sample 293 (Etched for 135 minutes) 

 

Discussion of results 

Etch Rate Contrast: The core and cladding glasses have an etch rate contrast.  This is primarily 

estimated by the borate content of the glasses which is the easily etched phase when compared to 

the acid-resistant silica phase.  The etch rate calculations of the individual untreated core and 

cladding glass for a range of etching concentrations helped in determining the etch rate contrast.  

The etch rates contrast for the various etch tests indicate that they do depend on the etching 

concentration.  The etch rate contrast is considerably high for pure HF solutions and diminishes 

for solutions with buffer.  We can see that there is significant difference between the theoretically 

predicted aspect ratios (from the etch rate ratios) the experimentally obtained ones.  This can be 

attributed to the increased phase separation in the processed wafers due to the heat treatment by 

the fusion process.  Thus we observe much larger aspect ratios when compared to the etch rate 

ratios of the untreated core and cladding slices.  

 

Feature Size Limitation: The smallest attainable feature was a lattice constant of 1.6μm, which 

was present in the triple drawn fibers.  The next smallest feature was 40μm present in the double 

drawn fibers.  Good estimates of the target fiber size and the number of redraws help in the 

calculation of the final desired lattice constant.  Quality of the structure in the final wafer depends 
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on the bundling and drawing process.  A defect free wafer is free of holes and gaps, which tends 

to cause non-uniformities during the etching process.  Going to smaller feature sizes was limited 

by a few factors.  Some were experimental limitations like the cladding wall thickness, which 

could not survive more number of draws.  Another experimental limitation was on the maximum 

preform size that could be fed into the furnace at each draw.  The most significant is the 

thermodynamic limitation of interdiffusion of extremely small feature sizes during heat treatment. 

 

Role of ionic species in etching process: HF served as the primary etching solution for the glass 

wafers.  Various concentrations of pure HF were used for etching the wafers.  The high etch rate 

contrast of the glasses to pure HF resulted in high aspect ratio features ranging from 5 to 15.  

However adding a buffer like NH4F changed the etching behavior of the glass and reduced the 

aspect ratio of the features with more and more buffer.  The nature of etching solutions was 

understood by characterizing them in terms of the constituent ions.  The activities of the ionic 

species were calculated for various etching solutions.  The three primary species that control the 

etching mechanism are HF, HF2
- and H+ ions. The H+ ions, which are the catalytic species, are 

mainly responsible for leaching out the borate rich phase of the glass.  Their concentrations drop 

down significantly as the buffer is increased resulting in a diminished etched rate contrast and 

hence lowered aspect ratio.  The concentration of the H+ ions also reduces with the increased 

dilution which indicates that they play a lesser role in etching as the dilution is increased.  A 

similar trend is seen for the HF ions.  But even with the dilution and the reduced ionic effect, the 

aspect ratio increases and this is due to the role of water in attacking the faster etching cladding 

glass.  Hence though the etching takes a long time high aspect ratios are obtained due to the 

strong preferential attacking of the cladding glass by water.   

 

The role of various parameters in the nanocone fabrication process is shown in Fig. 1.27.  
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Fig. 1.27 – Relationship between etching and nanocone parameters (Figure is taken from [1.1])  

 

Listed in the next page are figures that summarize the fabrication process.  The time dependent 

differential etching process was studied by etching wafers from the double drawn fusion (Fig. 

1.28). The species-concentration dependent etch rate contrast leads to structures of varying aspect 

ratios for the same type of glass structure (Fig. 1.29). The steps involves in the fabrication 

process are depicted in Fig. 1.30.   
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Fig. 1.28 – Differential etching process (at various time stages of etching)  

Figure is taken from [1.1]. 

 

 

                 
Fig. 1.29 – Nanocone Arrays of Different        Fig. 1.30 – Steps of the fabrication process 

Aspect Ratios. Figure is taken from [1.1]      Figure is taken from [1.1] 
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Chapter 3 

Static Wetting Properties 
 

Background 
 
Literature Review 
 

 A series of vertically aligned glass nanocones were fabricated for superhydrophobic treatment 

and testing [1.1].  Superhydrophobic surfaces require both surface roughness and low surface 

energy and several methods to produce such surfaces have been reported.  Tunable plasma based 

techniques have been used to produce surfaces exhibiting contact angles of 102˚ up to 180˚ based 

on preparation conditions [2.1].  Irradiation of femtosecond laser pulses on silicon has been used 

to produce structure for superhydrophobic surfaces [1.8].  The water repellant behavior of 

microstructured surfaces was first studied on a surface of a lotus leaf [2.2].  The earliest and most 

fundamental theories on wetting regimes of rough surfaces were put forth by Wenzel and Cassie-

Baxter [2.3, 2.4].  The degree of fractional wetting seen in a droplet under the Cassie regime has 

been shown to be dependent on the fractional wetting area of the features.  A rough surface, 

which is hydrophobic, to begin with can be in a fully wetted Wenzel state or in a partially wetted 

Cassie state.  This primarily depends on the aspect ratio of the protrusions causing the roughness. 

Several works have been reported to explain the tunability of wetting regimes behavior on 

surfaces with vertically aligned projections.  The surfaces of different aspect ratios were coated 

with a suitable hydrophobic SAM.  A good relationship has been established between the pillar 

height, contact angle and the roughness factor of pillar like surfaces [2.5].  A model to design a 

robust superhydrophobic surface by comparing the theoretical and experimental contact angles 

has been reported [2.6].  Tuning of feature parameters and the type of hydrophobic surface has 

been implemented to produce superhydrophobic surfaces [2.7].  A transition from Cassie to 
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Wenzel state can also be driven by external force as seen in electrowetting [2.8].  The dynamic 

contact angles on surfaces coated by fluorinated alkyltrichlorosilane have been studied [2.9].  A 

characterization of the wetting property of the surfaces was done based on the dynamic contact 

angles and the sliding angles.  This was implemented by an experimental goniometric setup to 

image advancing and receding droplets on the various surfaces.  Several works have been 

published on experimental methods to measure the contact angle and different methods have also 

been compared [2.10].  The contact angle hysteresis has been a critical parameter of analysis in 

these experiments. A useful prediction of hysteresis in terms of tunable feature geometry has been 

reported [2.11].  A relationship between the sliding angles and the contact angles of 

superhydrophobic surfaces has also been established [2.12].   The drop images were analyzed by 

implementing the axisymmetric drop shape analysis method.  The fundamental theory behind the 

method is based on the Young - Laplace equation of capillarity.  The method is based on an 

optimized contact angle calculation by comparing the theoretical and experimental drop fit values 

[2.13].  A user interfaced tool written in Python was used to run each image through a code 

sequence that converted the drop coordinates to plot coordinates followed by geometric 

computation of contact angle.  The advancing and receding contact angles were plotted with 

respect to the aspect ratio of the nanocone wafers.  A surface tension based model was used to 

explain the effect of the restoring pressure on the penetration depth of the droplets, which was in 

turn ascribed to the apex half angle of the nanocones [2.14].  As the aspect ratio was increased a 

sharp transition from the Wenzel to the Cassie regime was observed in the varying contact and 

rolling angles [1.20].  Several papers explaining the nature of the Wenzel to Cassie transition of 

wetting states have been published [2.15, 2.16].  

 

Nature’s contribution – The lotus effect 
The main trigger to the extensive study of the wetting properties of surfaces was the discovery of 

the lotus effect [2.2].  This section discusses the lotus effect, which is the well-known water 

repellent behavior of lotus leaves.  

 

Botanist, Wilhelm Barthlott from the University of Bonn discovered the Lotus effect in 1975.  

The discovery was led by examining the micro and nanostructured surface of a lotus leaf under an 

SEM (Fig. 2.1).  The Lotus effect is the theory behind the self-cleaning property of the leaves of 

the lotus plant that is connected to its water repellant behavior (Fig. 2.2).  This effect was 

explained to be completely dependent on the physio-chemical property of the leaves.  The 
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chemical aspect was attributed to the presence of soluble lipids called waxes on the surface, 

which are poorly wettable.  The physical aspect of roughness in the dimensions of micrometers 

further enhances the poor wettability.  A combination of the effect of a hydrophobic substance 

and countless miniature protrusions renders the ability of the lotus leaf to let water droplets roll 

off the surface allowing it to remove the dirt and soil as it moves.  This microstructural diversity 

observed SEM studies on several biological surfaces reveals their tendency to minimize the 

contact area of anything that comes into contact with the surface.  Contaminations that are larger 

than the cellular structure are carried away easily due to the minimum energy expended in 

removing the particle when compared to the energy absorbed in carrying away the particle.  This 

energy gain is due to the minimal contact area that the interfacial structure provides to the water 

droplet.  This discovery has proved to be of great technological significance in synthesizing 

artificial superhydrophobic surfaces.  

 

 

 

 

 

 

 

 

   
      Fig. 2.1 – SEM image of Lotus Leaf        Fig. 2.2– Water Rolling off a Lotus Leaf 
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Theory of Superhydrophobic Behavior 
 

Contact Angle Theory 
The contact angle is the most relevant parameter to describing the wetting property of a surface 

with respect to a liquid. This section discusses the basic theory of static and dynamic contact 

angles. 

 

Young’s Equation 

For a drop of liquid L in coexistence with a gas phase G that is put on a substrate S the key 

equation describing this situation is the Young’s equation which describes the force balance 

between the interfacial tensions formed at the solid-liquid-vapor contact line.  

cos θY = (γsv – γsl) / γlv  

θY = Young’s contact angle 

γsv = Surface Tension (energy per unit surface) of the solid-vapor Interface 

γsl = Surface Tension of the solid-liquid interface 

γlv = Surface Tension of the liquid-vapor interface 

 

Static Contact Angle 

An important parameter given by the Young’s expression is the contact angle θY (Fig. 2.3).  This 

equilibrium contact angle is that of a droplet on an ideal hydrophobic surface, which is smooth, 

planar, rigid and homogeneous.  When the solid surface becomes disordered the advancing and 

receding contact angles are taken into consideration.  A liquid that rests on a solid surface without 

wetting it exhibits a definite angle of contact between the liquid and the solid phase.   

 

 
Fig. 2.3 – Young’s contact angle 
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This is a result of the mechanical equilibrium the drop tries to attain under the action of three 

surface tensions.  It is as geometric measure of the angle formed by the liquid at the solid-liquid-

vapor boundary.  Contact angle is a good parameter that describes the degree of wetting of a 

liquid and hydrophobic surfaces are those with contact angles greater than 90°.  It can be 

attributed to a balance between the cohesive intermolecular forces of the liquid and the adhesive 

forces between the solid and liquid. 

 

Dynamic Contact Angles 

An interface is not always in a state of definite equilibrium and hence it is more useful to 

understand the significance of both static as well as dynamic contact angles.  The dynamic 

contact angle describes the happenings at the three-phase boundary during the wetting and 

dewetting process.  Dynamic contact angles are measured when the liquid phase in the system 

tends to approach the equilibrium state.  An advancing contact angle (θA) is measured when the 

droplet’s contact angle tends to increase and a receding contact angle (θR) is measured when the 

droplet’s contact angle tends to decrease.  Advancing and receding angles can be understood from 

a droplet on a tilted surface (that advances on the downhill side and recedes on the uphill side) 

and droplets undergoing evaporation or condensation.  An alternate type of dynamic angle is 

called as the rolling angle, which is the tilt angle at which a droplet rolls off a surface.  Fig. 2.4 

represents the static and dynamic contact angles of liquids on surfaces. 

 

Hysteresis 

A drop that sits on a tilted surface exhibits different contact angles at different ends of the tilt. 

When the upper and lower angles just approach the receded and advanced contact angle the drop 

begins to move. 

 

 
 

Fig. 2.4 – Static and Dynamic Contact Angles 
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The range of angles between the advancing and the receding is referred to as the contact 

hysteresis and plays an important role in understanding the nature of drop motion in a surface 

[2.11].  Surface non-homogeneities and roughness contribute to the contact angle hysteresis of a 

droplet on a surface.  Increase in roughness increases the hysteresis although the change is the 

angle is not too large.  For much higher degrees of roughness hysteresis almost vanishes due to 

large increases in the contact angle.  Based on the contact angles we can summarize that 

superhydrophobic surfaces tend to have a high static contact angle, a low contact angle hysteresis 

and a low rolling angle as well.  

 

Wetting Regimes and Roughness 
This section introduces the theoretical classification put forth by Wenzel and Cassie to explain 

the energy states which attributes to hydrophobic - superhydrophobic surfaces [2.3, 2.4]. 

 

Classification 

Wenzel, Cassie and Baxter did the earliest work on surface roughness and wetting theory 

classification.  A hydrophobic surface that exhibits more and more roughness on its surface tends 

to be superhydrophobic.  On a rough surface there can be at least two regimes for the contact 

profile on the surface (Fig. 2.5).  Their classification is listed below and the theory supporting it is 

provided in a forthcoming section. 

a - Wenzel Regime (The droplets retains complete contact with the solid at all points) 

b - Cassie – Baxter Regime (Air pockets are confined between the solid liquid interface) 

 

Role of Roughness 

A non-uniform solid surface is characterized in terms of its roughness. The simplest way to 

express roughness r is by computing the dispersion of the surface around its mean position z. 

R = (1/N) ∑(x,y) € surface | z(x,y) – z) | 

Wenzel regime - A solid surface is best characterized by describing the effective area using a 

coefficient r, which gives the ratio of the actual to the apparent or projected area.  This is referred 

to as the Wenzel variable. Presence of roughness in a surface leads to a corrected Young’s contact 

angle. 

cosθW = r* cosθY 

Cassie Baxter Regime - Cassie Baxter regime involves liquids that do not completely fill up the 

roughness grooves of the surface.  Hence the interface can be considered as composite having 
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both liquid-air as well as liquid-solid interfaces.  Thus the apparent contact angle is expressed in 

terms of the surface area fractions occupied by each of these interfaces. 

cosθW = φs*cosθW + (1- φs)*cos180º 

 φs - fractional area of the solid-liquid interface 

1-φs  - fractional area of the liquid-air interface 

 

Once the substrate is hydrophobic the contact angle increases sharply and tends to obey one of the 

mentioned wetting regimes.  The Wenzel regime is homogeneous with higher hysteresis dues to 

the water sticking to the surface.  The Cassie-Baxter is heterogeneous with a lower hysteresis and 

sliding angle thus making it roll off more easily when a droplet is sitting on air pockets.  It has 

also been realized that the drop has to be sufficiently large when compared to the roughness scale. 

As seen for ideal surfaces the contact angle is the only independent variable that can be expressed 

in terms of minimization of the Gibb’s energy of a drop.  For rough surfaces both the roughness 

factor as well as the apparent contact angle play a role. 
In general the Gibb’s energy of an interfacial system can be given as  

G = σlfAlf + σslAsl + σsfAsf 

σ - Interfacial tension  

A - Interfacial area. 

 
 
Degree of Wetting 

A water droplet on a surface that is hydrophobic tends to bead up instead of spreading on the 

surface.  The degree of hydrophobicity of a surface is best characterized by its contact angle.   

 

 

 
    Fig. 2.5 - Cassie –Wenzel Regimes 
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A contact angle of 0° indicates complete wetting while a contact angle between 0° and 90° shows 

hydrophilic behavior wherein the water droplet tends to spread on the surface.  Contact angles 

greater than 90° represent hydrophobic surfaces.  The maximum attainable contact angle for a 

smooth surface was measured to be around 120°.  But introducing roughness can boost the 

contact angle of a surface almost by 40°-50° making it fall in the category of superhydrophobic or 

ultrahydrophobic surfaces.  A relationship of contact angle and wetting degree is illustrated in 

Fig. 2.6. 

 

Interfaces 
This section discusses the relevance of the physio-chemical properties of an interface that is 

formed by a surface and the interacting liquid to its wetting behavior.  

 

An Interface 

In physical chemistry an interface has been defined as the common boundary between two 

phases. It can be summarized in terms of the three states of matter as follows 

Gas – Liquid, Gas – Solid, Liquid – Liquid, Liquid – Solid, Solid – Solid 

The thermodynamic functions of free energy, enthalpy and entropy can be defined for and 

interface as well.  A system involving an interface is not completely stable since equilibrium is 

dependent on certain factors.  Direction and structure are also characteristics involved in the study 

of interfacial forces.  

 

 

 

 

 

 
 

Fig. 2.6 – Degrees of Wetting of Surfaces 
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Capillarity 

The interfacial energy is referred to as the sum of the free energies of all the molecules present in 

the interface.  The stable existence of an interface between any two phases depends on the free 

energy of the formation of the interface that is positive. 

This can be illustrated by liquid that behave as if it were surrounded by an elastic skin with a 

tendency to contract making drops of liquid uninfluenced by gravity to adopt to a truly spherical 

shape.  Capillarity deals with such equilibrium configurations describing macroscopic behavior of 

interfaces. This fundamental capillarity can be explained by the expression below which is 

commonly referred to as the Young–Laplace equation. 

 

ΔP = σ*(1/R1 +1/R2) 

ΔP – Pressure Difference between the phases 

R1 and R2 – Two principal radii of curvature of the droplet. 

σ = Interfacial Tension of the Droplet Surface 

 

The cohesion between the molecules of the liquid tends to surpass their tendency to disperse. 

Cohesion is present to a great extent in the interior phase of the liquid medium while the exterior 

mainly consists of atoms and molecules that would like to separate under the influence of thermal 

motion.  The system now tries to attain minimum free energy state thereby undergoing 

spontaneous contraction.  Solids cannot flow and hence do not undergo surface area 

minimization.  Neither do the free energies of gases or miscible liquids offer any opposition to 

dispersion of one material over another.  A more useful term is the interfacial tension of a given 

liquid surface is measured by finding the force across any line on the surface divided by the 

length of the line segment.  Thus, the interfacial tension becomes a force per unit length, which is 

equal to the energy per surface area. 

 

Surface Tension 

Surface Tension is a characteristic property of a liquid that attributes to the attractive forces 

between the molecules of a liquid thus holding the liquid together. 

Surface tension can therefore be quantified in terms of the various intermolecular forces acting on 

a unit length at the liquid-air interface.  Hence it is defined as the   "Perpendicular force acting on 

the unit length of the surface of a liquid.  

γ = F/l 
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Surface tension is typically measured in N/m.  It is affected by factors like intermolecular forces, 

hydrogen bonding and temperature.  As a general rule the greater the proportion of the polar 

groups (e.g. O-H groups) the greater the attractive forces between them.  Strong attractive forces 

give rise to high surface tension thus making liquids to form discreet droplets on a surface rather 

than dispersing and wetting it completely.  Increased temperature causes reduction of surface 

tension due to reduced inter molecular attraction.  Surface tension produces several observable 

phenomena like the capillarity and spreading of oil on water.  Table 2.1 lists the surface tensions 

of commonly used fluids.  

 

Hydrophobicity 

Superhydrophobic behavior cannot be exhibited by a surface that is not hydrophobic to begin 

with.  This section discusses the basis for chemically treating a surface with hydrophobic coating.  
 

Physio-Chemical Basis 

Contact Angles on surfaces are defined using water as the liquid medium.  Hence the behavior of 

water and its interaction with various surfaces help in defining the surface properties.  Water is a 

polar substance, which accounts for its ability to interact with ionic surfaces.  Bulk liquid water is 

strongly influenced by hydrogen bond interactions, which are composed of several covalent O-H 

bonds.  The hydrophobic effect can be explained in thermodynamic terms and primarily deals 

with the interaction of the solid – liquid boundary.  

 

ΔGs = ΔHs – TΔSs

ΔGs - The free energy of solvation 

ΔHs – The enthalpy of solvation 

ΔSs – The entropy of solvation. 

At room temperature, the enthalpy of solvation is negligible while the entropy is negative causing 

increase in free energy.  At much higher temperatures hydrogen bonding diminishes and entropy 

is negligible and enthalpy dominates which is unfavorable in terms of hydrophobicity.  A surface 

when treated with the right chemicals can be made resistant to wetting by water.  A common 

understanding of hydrophobic behavior is associated with the demixing of oil and water.  Several 

materials can be coated on a surface to make it hydrophobic out of which the most commonly 

used ones are rich in hydrocarbons, fluorine or siloxane.  A well known hydrophobic material is 

polytetrafluoroethylene (PTFE), which has trade name of Teflon.  The fluorine has the highest 
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electro negativity in the periodic table and it tends show lower critical surface tension due to a 

stable covalent bond.  The critical surface tension is unique for any solid and is determined by 

plotting the cosine of the contact angles of liquids of different surface tensions and extrapolating 

to 1.  Contact Angles vary for different liquids on different substrates based on the individual 

properties of each of them.  Listed in Table 2.2 are the contact angles of water on various smooth 

surfaces.  

 

Silane Treatment of Surfaces 

Silanes are primarily any of the series of covalently bonded compounds containing the elements 

Silicon and Hydrogen, having the chemical formula SinH2n+2 where n=1,2,3.. 

The silanes are structural analogues of the saturated hydrocarbons (alkanes) but are much less 

stable because the Si-Si bond has strength slightly lower than the C-C bond.  In a surface 

treatment perspective silanes are silicon chemicals that possess a hydrolytically sensitive center 

that can react with inorganic substrates such as glass to form stable covalent bonds and possess an 

organic substitution that alters the physical interactions of treated substrates.   

 

 

 

 

 

Table 2.1 - Surface Tensions of common fluids 

Name Surface tension @ 20 °C  

(mN/m) 

Acetone  25.20 

Ethanol 22.10 

Glycerin 63.4 

Mercury 425.41 

Water 72.80 

Benzene 28.9 

Castor Oil 39 

Olive Oil 35.8 

Liquid Petroleum 33.1 

 

http://en.wikipedia.org/wiki/Chemical_bond
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Along with several other applications silanes are used to modify the surface energy or wettability 

of substrates.  These silanes unlike the normal silanes (which are used as coupling agents in 

adhesive applications) do not impart chemical reactivity to the substrate.  Hence they are termed 

as non-functional silanes. They are grouped as hydrophobic and hydrophilic silanes.  

The main classes of hydrophobic silanes are as follows. 

-Methyl 

-Linear Alkyl 

-Branched Alkyl 

-Fluorinated Alkly 

-Aryl 

-Dipodal  

 
 
 

 

Table 2.2 – Water Contact Angle on Surfaces 

    
Smooth Surface Water Contact 

Angle (θ) 

Heptadecafluorodecyltrimethoxysilane 115° 

poly(tetrafluoroethylene) 108 - 112° 

poly(propylene) 108° 

Poly(ethylene) 88 -103° 

Poly(styrene) 94° 

Dimethyldichlorosilane (Smooth Treated) 95 – 105° 

Diamond 87° 

Human skin 75 – 90° 

Silicon (Etched) 86 - 88° 

Steel  70 - 75° 

Gold (Typical) 66° 

Talc 50 - 55° 

Platinum 40° 

Soda Lime Glass < 15° 

Gold (Clean) <10° 
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Surface modification is maximized when silanes react with the substrate surface and present the 

maximum number of accessible sites with appropriate surface energies.  Silanes with alkyl groups 

such as butyl or octyl are hydrophobic.  Alkoxysilyl groups, which are attached generally, help in 

the penetration, curing and bonding of silane with the substrate rendering the surface with 

hydrophobic property. Table 2.3 lists the critical surface tensions of various materials. 

 

 

Self-Assembled Monolayers (SAMs) 

A Self-Assembled Monolayer (SAM) is formed when surfactant molecules spontaneously adsorb 

in a monomolecular layer on surfaces. 

 

 

Table 2.3 – Critical Surface Tensions of Surfaces 

 Smooth Surface Critical Surface Tension 

(dynes/cm) 

Heptadecafluorodecyltrimethoxysil

ane 

12 

poly(tetrafluoroethylene) 18.5 

Soda Lime Glass (Wet) 30 

poly(propylene) 31 

Poly(ethylene) 33 

Poly(styrene) 34 

Paraffin wax 25.5 

Poly Vinyl Chloride 39 

Copper 44 

Nylon 6/6 45 – 46 

Soda Lime Glass (Dry) 47 

Fused Silica  78 

Titanium Dioxide (Anatase) 91 

Ferric Oxide 107 

Tin Oxide 111 
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The self – assembly process involves the association of molecules into well-ordered domains. 

SAM’s generally render a permanent modification of the surface due to the chemical bond that is 

formed by the silanes used.  Common long chain alkyl silanes used in the formation of SAMs are 

simple hydrocarbon, fluoroalkyl and end-group substituted silanes.  SAM’s can be formed with 

silanes using simple solution deposition process.  Silanes can have more than one hydrolysable 

group and those with one group finally form a single oxane bond with the substrate accompanied 

by the loss of water.  The selection of a hydrophobic silane for treatment of a surface depends on 

several factors like the type and concentration of the hydroxyl groups on the surface, hydrolytic 

stability of the bond formed and the physical dimensions of the substrate features.  

 

Contact Angle measurement 
The two approaches to making contact angle measurements of a drop on a surface, which is 

introduced in this section. 

 

Goniometry 

A simple goniometric measurement involves a goniometer scale that indicates the measure of the 

contact angle of the drop when viewed manually from the side of the drop.  For computer 

interfaced goniometry the horizontal microscope is replaced by a camera, which is interfaced with 

a computer program that fits a circle to the drop section and determines the angle with respect to 

the projected substrate surface.  Goniometry techniques can be used over a wide range of 

substrates and smaller volumes of liquid.  Since goniometry involves either manual or tool based 

fitting of the contact angle geometry it can be error prone.  Hence multiple measurements are 

used to adequately characterize a surface.  

 

Tensiometry 

A tensiometric method involves calculation of contact angle by measuring the forces of 

interaction as the liquid makes contact with the solid surface.  Liquid surface tension and solid 

geometry are required parameters in order to establish the contact angle from the forces.  
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Characterization of Static Wetting Behavior 
The experimental wafers for the superhydrophobic tests in this section are the ones fabricated by 

the process discussed in the previous chapter. This section explains the hydrophobic treatment of 

the structures surfaces followed by a detailed contact angle analysis of a water droplet on each of 

these wafers.  

 

Wafers for Hydrophobic Treatment 

 

Fabricated Wafers – Brief Discussion 

The wafers used for the preparation of superhydrophobic samples were obtained by a glass 

drawing and fusing process as described in the previous chapter.  Two types of borosilicate 

glasses with slightly varying composition were used as the initial core and cladding glass 

performs.  The glasses had a slightly varying composition making one more etchable than the 

other.  The glasses were drawn together in the draw tower, bundled in a hexagonal casing and 

redrawn.  The double drawn fibers were re-bundled again in a similar fashion and drawn the third 

time.   The triple drawn fibers were fused in a glass bundle in a fusion furnace.  

The multiple drawing and bundling were to attain a highly periodic multicomponent glass surface 

with extremely small feature sizes.  The fusion helped eliminate the interstitial spaces between 

the bundled fibers thereby resulting in a well-fused array of glass structure.  The fused bundle 

was sliced and polished to a good degree of finesse with respect to the feature size.  Several sliced 

wafers were etched with ultrasonic agitation in a series of HF solutions as listed in the previous 

chapter (Fig. 2.7).  The glasses have a definite etch rate contrast, which can be accounted by their 

difference in borate content.  The cladding glass (Schott 8487) etches at a faster rate relative to 

the core glass (Schott 8330).  This results in the regions containing the core glass protruding out 

from an etched back cladding background.  These protruding features are termed as nanocones 

since they resemble a sharp tipped cone.  The achievable lattice constant of the nanocones was 

1.6 μm.   

The profiles of the etched cones were controlled by using various concentrations of pure HF as 

well as buffered HF solutions.  The etch time controlled the completeness of the etching process 

in order to obtained nanocones that were neither incomplete nor overetched.  The detailed etching 

process and characterization is explained in the previous chapter.   The aspect ratio of the cones 

was geometrically calculated from the SEM images.  Structures with aspect ratios ranging from .3 
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to 15 were obtained.  The buffered HF solutions contributed to the lower aspect ratio features and 

the pure HF solutions rendered features with higher aspect ratio.  

 

 

 
Fig. 2.7 – Etched series of nanocone glass arrays for the superhydrophobic tests. Figure is taken from 

[1.1] 
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Application of the Self-Assembled Monolayer 

All of the etched wafers along with a flat unstructured homogeneous microscope glass slide were 

the chosen samples for treatment with the hydrophobic SAM.  The first step in the treatment 

involves the complete immersion of the sample in a beaker containing 1% solution of 

tridecafluoro-1,1,2,2-tetrahydrooctyl trichlorosilane (Fig. 2.8)  in hexane for 30 minutes.  A 

smooth surface treated with octadecyltrichlorosilane can give a contact angle of around 102° to 

109°, which is highly hydrophobic.  A fluorinated alkylsilane provides an even better 

hydrophobic surface treatment by oxane bond formation with hydrogens of the hydroxyl groups 

on the surface.  This results in complete and conformal shielding of the polar regions of the wafer 

by a non-polar interface.  The hexanes are unreactive and primarily serve as an inert non-polar 

solvent.  Hexanes, used as a suspension medium offer good coverage of the substrate by the 

fluorine-terminated monolayers.  The samples are thermally cured by drying and heating in a 

furnace at 110°C for 15 min.  They were finally cleaned and cleaned in isopropanol with 

ultrasonic agitation.  The samples are allowed to thoroughly dry for at least 24 h at room 

temperature before testing.  After allowing complete curing the samples are given a rough test for 

superhydrophobic behavior.  Generally a drop of water is dispensed on the surface of the sample 

through a water dispenser and its behavior is noted.  The most primary thing to look for in a 

manual test is whether the SAM has coated the surface well rendering a uniform hydrophobic 

surface. 

 

 

 

 
 

Fig. 2.8– Silane for hydrophobic treatment 
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This is indicated by absence of any sticky droplets or regions with hydrophilic behavior.  The 

next step involves an estimate of the degree of superhydrophobicity of a surface, which can be 

made by just observing the dynamic behavior of dispensed water droplets.  Excellent 

superhydrophobic behavior is observed in surfaces, which do not allow any water droplet to stay 

on its surface.  Droplets on such surfaces get completely repelled just on contact with the surface 

with very high contact angles.  Surfaces that show very high contact angles and small rolling 

angles also have good superhydrophobic properties.  For surfaces that does not let the water roll 

off easily contact angle observation can be done.  

All the wafers treated with the hydrophobic SAM showed reasonably agreeable hydrophobic-

superhydrophobic behavior based on their aspect ratios.  They were chosen for the nest step, 

which was the formal measurement of the dynamic contact angles. 

 

 

Imaging of Drops and Rolling Angle Measurement 
This section gives the experiment for imaging the advancing and receding drop profiles on the 

wafer.  It also discusses the rolling angle measurements.  The experiment is followed by a 

theoretical discussion of the physical model implemented to analyze the drop shape and calculate 

the contact angle.  

 

Contact Angle 

The setup for contact angle measurements consisted of a goniometric arrangement where the drop 

was observed from the side as shown in Fig. 2.9.  The wafer was placed on an optical stage with 

controllable x y and z movements with its treated structured side facing up.  A graduated 

dispenser with a micro-tipped stainless steel needle that served as the water droplet dispenser was 

clamped well above the wafer.  The minimum dispensable volume of the syringe is 1 μl. A small 

needle tip helps minimizing the distortion of the drop due to adhesion of the fluid to the needle.  

A high speed Mikrotron black and white video camera with a lens mount was lined up 

horizontally to focus well on a droplet that is being dispensed on the wafer below.  The camera 

was 12V DC powered and run by a python program from the computer terminal.  A 2.5X, 4X 

objective microscope lenses were used to focus on the drop to obtain the appropriate 

magnification.  The camera was interfaced with a python based tool for capturing images.  A fiber 

optic illuminator was placed behind the drop setup to light up the drop for achieving good 

contrast image capture.  The liquid volume chosen for each of these drops was about 10 μl.  The 
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lighting and focus was adjusted and the needle location is set so that the needle is visible in the 

images.  

The advancing contact angle was measured as the droplet was slowly dispensed (as the volume of 

the droplet got bigger).  Following that the receding contact angles were measured by slowly 

withdrawing the liquid from the surface of the wafer.  Advancing and receding angles were 

measured from at least five different spots on the surface of the wafer to avoid any large deviation 

of measurement due sticky spots or defective regions.  Advancing and receding drop images were 

taken from every region selected.  For best approximation purposes images a sapphire lens ball 

(3mm diameter) was placed on the wafers.  The balls were places in the same spots from which 

the drop images were taken in order to obtain best correspondence of the drop and ball images.  It 

was used in determination of the baseline which if incorrectly calibrated can lead to inaccuracies 

in the contact angle values. 

 

Rolling Angle 

The rolling angle was measured by placing a droplet on the surface followed by slowly 

introducing a gradual tilt to the surface till the droplet rolls of the surface.   

 

 

 

 
Fig. 2.9 - Goniometric setup for contact angle measurement 
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An accurate measurement of the rolling angle is obtained by ensuring that the two faces of the 

wafer are very parallel.  The standard 10μl drop was dispensed on all of the substrates followed 

by the withdrawal of the needle tip from the drop.  The wafer was placed on a highly level optical 

stage with x, y, z micrometer controls.  A double-sided tape was used to carefully attach the wafer 

to the stage to prevent it from sliding during the tilt.  A precision level gauge was used to ensure 

the initial evenness of the wafer base.  A tilt in the x direction was introduced through the 

micrometer controls till the droplet rolled off the surface completely and the degree of tilt was 

noted in the level gauge.  Surfaces on which the drops did not roll off can be characterized as 

having a high hysteresis due to lower aspect ratio and vice versa (Fig.  2.10).  

Surfaces on which droplets never underwent a tilt before they rolled off had a roll off angle 0° 

and those, which never rolled, were treated to have a roll off angle 90°. 

 
Axisymmetric Drop Shape Analysis 
Several works have been published discussing methods and approaches for accurate calculation 

of the contact angle. In this section we discuss the model was implemented for drop shape 

analysis [2.13]. The model is based on a comparison and error minimization technique of the 

experimental data with the theoretical one.  

 

Approach 

A small drop will always tend to be spherical.  The gravitational effects decrease as the cube of 

the linear dimension whereas the surface forces decrease as the square of the linear dimension of 

the drop and both effects determine the effective shape of the drop. 

 

 

 

. 

Fig. 2.10 – Effect of hysteresis during roll-off 
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A drop is generally termed as a pendant or a sessile drop.  

Pendant Drop – A drop that hangs from a tip generally elongates, as it grows larger because the 

variation in hydrostatic pressure eventually becomes appreciable in comparison with that given 

by the curvature of the apex.  

Sessile Drop – A sitting drop or a continuous drop of liquid on a solid substrate under steady state 

conditions.  

 

In our experiment droplets are observed in their sessile state.  An axisymmetric drop is considered 

to be symmetric about its z (vertical) axis.  Several numerical methods have been established to 

study a drop shape and calculate parameters such as the interfacial tension and contact angle.  The 

most basic approach involves a systematic comparison of the experimental profile of a drop 

(obtained from a captured image) with the theoretically calculated one followed by an error 

minimization method to get the most optimal approximation of the drop profile.  Since the 

experimentally obtained drop shape is used in calculating the discrepancy with the theoretical 

curve the images have to be of very good quality.  The theoretical curve is based on the Laplace 

equation explaining fundamental capillarity described in the previous section.  

 

The approach that we have employed approach involves the steps mentioned below 

- Experimental acquisition of images of advancing and receding drops on the various 

substrates (Discussed in the previous section) 

- The numerical integration of Laplace equation with the appropriate boundary conditions 

- Application of a suitable non-linear least squares optimization technique to fit a the drop 

profile 

- Geometric computation of the contact angle by measuring the slope of the tangent to the 

drop plot and the three phase interface 

 

Laplace model 

Laplace equation is given by 

 

ΔP = λ*(1/R1 +1/R2)………………………………………………………………….(2.1) 

ΔP – Pressure Difference between the phases 

R1 and R2 – Two principal radii of curvature of the droplet. 

σ = Interfacial Tension of the Droplet Surface 
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If gravity is the only outside force acting on a droplet pressure difference can be expressed as  

 

ΔP = ΔP0 + (Δσ)*g*z…………………………………………………………………(2.2) 

 ΔP0 = Pressure Difference at a selected datum plane 

Δσ = Density difference of the two bulk phases 

g = Acceleration due to gravity 

z = Vertical height of the drop from the datum plane 

 

Let us consider an axisymmetric sessile drop whose apex lies in the origin (O) of the coordinate 

system (Fig. 2.11).   At the apex R gives the radius of curvature.  

1/R1 = 1/R2 = c 

c = curvature at the origin of the coordinates 

t = (Δσ)*g = capillary constant 

Δσ = .9982 g/cm3

g = 9.8 m/s2

 λ = 72.785 dynes/cm2  

ΔP0 = 2*c* λ…………………………………………………………………..………….(2.3) 

From equations (1), (2) and (3) and from Fig 2.7 we get a set of ordinary differential equations 

which are expressed as a function of the arc length s. 

 

 

Fig. 2.11 – Sessile Drop for Axisymmetric Drop Shape Model 
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dx/ds = cosA…………………………………………………………..………………… (2.4) 

dz/ds = sinA………………………………………………………………..……………. (2.5) 

dA/ds = 2*c + t*z – sinA/x………………………………………………….………….. (2.6) 

Here A is the angle subtended by the tangent, which becomes the liquid contact angle at the three-

phase boundary. 

 

Boundary conditions (Note: The actual boundary conditions implemented for the contact angle 

calculation takes into consideration the needle tip present in top of the drop.  Hence they are not 

similar to the perfectly sessile drop assumption as shown in figure.  The parametric limits were 

user defined and based on selected boundary of the droplet segment to be analyzed). 

 

x(0) = z(0) = A(0) …………………..……………………………………...………….. (2.7) 

At the apex where s = 0, which is the origin O 

dA/ds = c …………………………………………………………………...………….. (2.8) 

 

For a given curvature and capillary constant integration of the above expressions can plot a 

theoretical curve.  A Runge-Kutta method was used to solve the equations.  The integration can 

be stopped at various limits of s, A, x or z.  

 

Error function computation 

In order to compare the theoretical and experimental profile of the drop an appropriate translation 

and rotation of the drop coordinate system must be done (Fig. 2.12).  This corrects any 

imperfections in the horizontal and vertical alignments of the camera and also takes into 

consideration the right magnification of the image obtained.   Calculating the pixels per 

millimeter of the image does conversion of from image coordinates to plot coordinates.  A 

sapphire ball of known 3mm diameter is placed in every corresponding region where the drop is 

dispensed for advancing and receding image capture.  The lens ball is highly spherical and gives a 

good approximation to perfectly spherical and symmetrical drop.  However an elliptical fit of the 

data points is used for achieving better correction of vertical and horizontal misalignment.  The 

elliptical fit code sequence for a sapphire ball image provides the necessary parameters for the 

coordinate transformation (image rotation and substrate baseline shift) of the actual drop image.  

 

The equations after transformation become 
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q1 = X0/R0…………………………………..……………………………………….… (2.9) 

q2 = Z0/R0……………………………………………………………….……………. (2.10) 

q3 = R0……………………………………………….………….………...……….….. (2.11) 

q4 = (Δσ)*g .R02/λ………………………………………………....………….……..... (2.12) 

The computed error function is given by  

En = ½*distances (experimental_drop_points, theoretical_drop_points) 2

 

Program Tool 
The logic for axisymmetric drop shape analysis was implemented in Python. The images obtained 

were first run through the code sequence for establishing the baseline of the substrate and 

derotating an image coordinate to plot coordinate. This was followed by the contact angle 

calculation. 

Flow 

User interface, theoretical and experimental calculations were Python coded.  The flow of the 

programming sequence is depicted in the following page (Fig. 2.13).  

Fig. 2.14 represents the screen shots of the tool i) establishing the baseline with a sapphire ball 

image ii) advancing drop image fit iii) receding drop fit 

 

 

 
Fig. 2.12 – Sessile Drop (With Needle) - Experimental and Theoretical Drop Fit 
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Fig. 2.13 – Contact Angle Computation Model – Program flow 
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Fig. 2.14 – Screenshots from the drop shape analysis tool 
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Analysis and Results 
 

Measured Wetting Angles 
Table 2.4 represents the contact angles obtained for the etched wafers including a flat coated 

(with SAM) glass slide.  Table 2.5 represents the rolling angles of all the wafers.  

 

Images of Drop Shapes 
High quality drop images were crucial for accurate drop shape analysis. This was ensured by a 

sturdy experimental setup. The wafer was first imaged with a sapphire ball positioned on its 

surface. Imaging an advancing and a receding drop in the same region corresponding to the 

sapphire ball followed this.  

 

Fig. 2.15 – Fig. 2.24 represent the images of the substrate taken with an advancing drop, receding 

drop and sapphire ball in a given region of the substrate. The drops are taken with the needle tip. 

 

Table 2.4 –Advancing and Receding Contact Angles of the Etched Wafers 

 

Wafer No. Advancing Contact Angle (°) Receding Contact Angle  (°) 

Slide 120 90 

291 114.8  81.5 

292 134.6 87.5 

293 150.8 109.4 

294 170.8 120.5 

295 179.4 171.8 

296 172.6 164.2 

297 173.4 169.6 

299 169.7 165.5 

300 178.9 175.2 

301 174.0 171.0 
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Table 2.5 –Rolling Angles of Etched Wafers 

Wafer No. Rolling Angle (°) 

291 90 

292 90 

293 90 

294 90 

295 40 

296 15 

297 0 

299 0 

300 0 

301 0 

 

 

 

      
Fig. 2.15 – Drop Shape Images of Sample 291 

 

 

 

        
Fig. 2.16 – Drop Shape Images of Sample 292 
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Fig. 2.17 – Drop Shape Images of Sample 293 

 

 

 

 

    
Fig. 2.18 – Drop Shape Images of Sample 294 

 

 

 

    
Fig. 2.19 – Drop Shape Images of Sample 295 
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Fig. 2.20 – Drop Shape Images of Sample 296 

 

 

 

 

    
Fig. 2.21 – Drop Shape Images of Sample 297 

 

 

 

 

      
Fig. 2.22 – Drop Shape Images of Sample 299 
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Fig. 2.23 – Drop Shape Images of Sample 300 

 

 

 

 

       
 

Fig. 2.24 – Drop Shape Images of Sample 301 

 

 

 

Interpretation of the Results 
This section discusses the Cassie and Wenzel states of structured surfaces in terms of a surface 

tension model [2.14]. The surface tension model integrates the surface tension around each of the 

nanocone features to evaluate the downward pressure that can be supported by the features. The 

model also shows that the optimal design parameters for a superhydrophobic surface are the 

lattice constant, nanocone apex half-angle and the Young’s contact angle. 
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Surface Tension Model of a Nanocone 

In order to analyze the effect of force on the vertically aligned nanocones it is useful to first 

consider a single nanocone, which holds a liquid drop at the upper section (Cassie state) as shown 

in Fig. 2.25. The surface curvature caused near the solid surface is ignored and a flat surface 

liquid contact angle is considered. The force acting vertically on the water is obtained by 

integrating it around the three-phase boundary line and can be expressed in terms of surface 

tension. The force increases linearly with the depth of penetration of the liquid. 

 

F = 2*π*γ*(d*tanφ)*sin(θ0 – 90 – φ) 

 γ = surface tension of the liquid 

 θ0 = liquid-solid contact angle (flat surface) 

d*tanφ = radius of the three phase circle 

φ = nanocone half apex angle 

Since P = F/A the restoring pressure for an array of nanocone can be expressed as  

P = 2*γ*√(πρρsinφ)*sin(θ0 – 90 – φ) 

ρ = density of nanocones 

Ρ = fraction of the wet area relative to projected area 

Fig. 2.26 shows the plot of the pressure with respect to the apex half angle. The following can be 

observed 

 

 

 
Fig. 2.25 – Liquid on a vertically aligned nanocone array. Figure is taken from [1.20] 

 

 86



     Chapter 3:  Static Wetting Properties 
   

- High aspect ratios characterized by low values of φ have low restoring pressure and a 

reduced depth of penetration.  

 

- Low aspect ratios characterized by high values of φ experience considerable restoring 

pressure caused by the reversed vertical surface tension forces which pulls the liquid 

further down into the features.  

- At an apex half angle φ = θ0 – 90, the restoring pressure drops to 0 making the surface 

tension forces completely horizontal.  

 

Thus we can see that maximization of the restoring pressure can give optimal parameters for a 

successful design of hydrophobic to superhydrophobic surfaces. The parameters are mainly the 

lattice constant (spacing between the features), apex angle and contact angle.  

 

Wenzel – Cassie Transition  

 

Fig. 2.27 shows a plot of the dynamic contact angles of the wafers with varying aspect ratios. The 

aspect ratios can be compared to the half apex angle discussed in the previous section. 

 

 

 

 
  Fig. 2.26 – Restoring pressure as a function of the apex half angle.  

Figure is taken from [1.20] 
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The values represent the mean of 5 different measurements of corresponding advancing receding 

and sapphire ball images taken at different spots on the surface of the wafer. An error bar is 

shows the standard deviation of each of these measurements. We can see that the advancing 

increases gradually with increasing aspect ratio and the rolling angles decrease. Hysteresis 

dominates in the lower aspect ratio regions due to low receding angles thereby making the 

droplets sticky and difficult to roll off. 

 
Fig. 2.27 – Dynamic Contact Angles of the Nanocones with varying aspect ratio. 

Figure is taken from [1.20] 
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Wenzel Regime 

The Wenzel regime can be observed in aspect ratios ranging from .3 – 1. The presence of Wenzel 

state is primarily indicated by values of φ> θA – 90°, which in agreement with the model 

discussed in the previous section, must pull the droplet down to a wetted Wenzel state. 

Such surfaces do not roll off the surfaces at any inclination (indicated as 90°) primarily due to the 

dominance of hysteresis.  

Fig. 2.28 represents the drop profiles and the corresponding surfaces of the Wenzel and the 

Cassie states. 

  

 

.  

Fig. 2.28 – Surfaces resulting in a Wenzel drop (above) and a Cassie drop (below) 

Figure is taken from [1.20] 
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Cassie Regime 

Cassie – Baxter state takes over at higher aspect ratios and values of θA – 90° >φ> θR – 90°. For 

such a range of low half apex angles a poor restoring force results in the water being pushed 

upwards thereby trapping a layer of air under the liquid. The rolling angles undergo an abrupt 

change from the non-rolling Wenzel regime. For increasing aspect ratios the drops start to roll at 

smaller angles like 35° and 15° and then undergo a complete de-wetting state where they could 

not be balanced on the surface (indicated as 0). This sharp transition occurs when the apex angle 

is decreased from 32°. Thus, the Wenzel-Cassie transition is clearly observed as the aspect ratio 

of the nanocones was gradually increased. 
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Chapter 4 

Dynamic Wetting Properties 

 

Background 
 

Literature Review 
 
This chapter discusses a study of the electrowetting properties of structured surfaces.  Devices for 

the electrowetting experiments were prepared after adding additional layers on the wafers 

fabricated from the process discussed in the first chapter.  Electrowetting involves the contact 

angle based actuation of a droplet on a surface by the application of voltage.  Electrowetting 

based droplet manipulation has been studied extensively for a wide range of applications [3.1, 

3.2, 3.3].  A work describing the fundamental EW and EWOD principles for microactuation has 

been reported [3.4].  A detailed review on electrowetting from basics to applications has been 

recently published [3.5].  Several theoretical approaches in understanding and characterizing 

EWOD behavior have been reported.  One broad category has been based on the energy 

minimization of interfaces.  Work has been reported describing an energy-based model for 

estimating the electrowetting actuation force acting on a droplet during its wetting transition 

[3.6].  The other broad approach is based on the exploitation of the electromechanical forces that 

are responsible for the droplet movement [3.7].  In this chapter theoretical explanations of the 

electrowetting behavior are given based on the energy minimization approach, which is simpler 

and yet physically accounts for the observable phenomena.  Three categories of surfaces were 

chosen for the experiments.  The first was a low aspect ratio surface that was expected to exhibit 

the Wenzel regime of wetting.  The second was a high aspect ratio surface that was expected to 
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exhibit the Cassie regime of wetting.  The third was a plane and smooth surface.  The nano-

structured wafers were fabricated by a technique discussed in the second chapter of the thesis. 

The lattice contact of the features was 7µm.  A conductive gold layer was coated by e-beam 

evaporation. Several works on material considerations for effectively reducing the voltage 

requirements of the EWOD process have been reported [3.8, 3.9]. It has been shown that a 

smooth and thin dielectric coating that has a high breakdown voltage and the presence of an 

ambient medium like oil can greatly enhance the effective contact angle change [3.10].  Parylene-

C was used as the dielectric layer and was coated by a CVD process to a 1µm thickness. The 

wetting behavior of the surfaces was tested by application of dc voltage. Various voltage 

parameters like the threshold; saturation and breakdown voltages were studied and analyzed in 

each of the cases.  Work describing the relationship between hysteresis and actuation potentials in 

an electrowetting system has been established [3.10].  The phenomena of contact angle saturation 

can be described as the absence of further wetting as the applied voltage is increased.  At the 

onset of contact angle saturation the device fails to follow the Young-Lippmann’s equation of 

electrowetting.  A detailed study has been done on the phenomena of contact angle saturation 

[3.11].  The electrowetting parameters of the structured surfaces were analyzed. Several works 

explaining the electrowetting behavior on superhydrophobic surfaces have been reported.  A 

work describing the dynamic electric control of droplets on superhydrophobic surfaces through 

the entire range of wetting has been reported [3.12].  A wetting process in structured surface 

exhibiting a superhydrophobic contact angle has been reported to involve a Cassie-Wenzel 

transition of wetting states [2.8].  A similar work has been reported on achieving completely 

reversible wetting on liquid marbles coated with hydrophobic material [3.13].  Here, we try and 

analyze the occurrence of transition of ‘Cassie-Wenzel-Fully Wetted’ states in all the wafers 

tested.  The electrowetting tests were performed using both oil and air as the ambient medium. An 

ac voltage based actuation of droplets on superhydrophobic surfaces has also been reported 

[3.14]. 

 

 

A few electrokinetic phenomena 

This section introduces the electrical double layer, which is the origin of several interesting and 

useful electro-kinetic effects.  It also discusses briefly electro-osmosis, electrophoresis and 

dielectrophoresis. 
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The Electrical Double Layer 

Studying the electrical charges at solid surfaces interfacing an electrolyte and the consequent 

potentials gives rise to a whole new range of electrical phenomena.  

This is caused by the charging of the solid surface caused due to the differences between the ion 

affinities of the solid surface and the solution.  A useful kind of charging is the ‘Electrical Double 

Layer’ as shown in Fig. 3.1.  The Stern double layer model describes the EDL as a layer of ions 

and counter ions developed around a surface of a particle carrying a net charge.  The surface 

charges induce counterions, which form a monolayer that is adsorbed directly on the surface, and 

are dehydrated.  This layer of ions is referred to as the Stern layer.  The counterions are 

electrostatically and rigidly attached to the surface charges.   

The layer next to the Stern layer is the outer Gouy layer separated from the Stern layer by a Stern 

plane at a distance δ from the surface.  The distance corresponds roughly to the radius of a 

hydrated ion.   All of the counterions do not lie in the same plane because of their tendency to 

diffuse away thereby reducing in concentration further and further away from the surface.    

 

 

 

 

 

Fig. 3.1 – The Electrical Double Layer 
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Hence, an EDL contains an inner Stern layer of firmly bound ions and an outer diffuse layer of 

loosely bound ions.  A boundary within this diffuse layer sets the limit for the specific particle 

and is called as the slipping boundary caused by the space charge distribution between 

electrostatics and diffusion.  The zeta potential is this position dependent potential that is 

calculated within the plane of shear present in the space charge boundary.  The zeta potential of 

the particle is calculated from the slipping boundary. 

The effective thickness of the diffuse layer is defined by the Debye length, which is given by 

κ= 2q2n/εKT 

q - Charge of the particle 

n - Concentration of the positive (or negative) ions of the liquid 

K – Boltzmann constant 

T – Temperature 

Electrically the EDL can be considered as a series combination of two parallel plate capacitors.  

 

Electrophoresis 

Electrophoresis is the migration of charged particles in a liquid in response to an electric field 

placed in a solution.  The mobility of the molecule (which is its velocity divided by the electric 

field gradient) depends on several physical conditions, the size and shape of the particles of the 

medium and its net charge.  It indicates the balance between the electric force that acts in favor 

of the motion and the frictional force that opposes it which is constant for a given ion under a 

given set of conditions.  

The electrophoretic mobility a useful practical quantity given by the following equation. 

µp = z/6πηr 

r – Radius of the particle 

z – Net charge of the particle 

 

Electro-osmosis 

The diffuse part of the EDL moves when subjected to an electric potential.  The tangential 

electric force applied along a charged surface a Columbic force is exerted on the ions of the EDL 

causing migration.  For a solution like water the cohesive nature of the hydrogen bonding of its 

molecules the entire solution is pulled creating a uniform velocity profile across the solution. 

Electro-osmosis (EO) is the bulk liquid flow caused through a pore caused by a migrating ionic 

sheath.  The volume of the solution transported per unit time is 
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V = AεEζ/4πηL 

A - Total effective area of the pores 

ζ - Double layer zeta potential 

L - Pore length   

EO is very useful for creating EO flows due to its pressure building ability in contrast to the 

mechanical pressure driven flow and can also be driven by AC fields.  An AC EO a time and 

frequency dependent field that interacts with the formed EDL generating a net force.  The 

direction of the fluid remains the same due to the simultaneous cancellation of changing 

polarities and field directions.  Velocity obtained through AC EO depends on the applied 

frequency and medium conductivity.  Low frequencies give time for the space charge 

distribution causing smaller tangential fields and hence smaller EO velocities.  At higher 

frequencies the charge in the EDL is smaller and impedance across the electrolyte dominates. 

The main advantage of AC EO is low driving voltage when compared to DC.  

 

Dielectrophoresis 

DEP is particle motion induced by spatially non-uniform electric fields and produces a force 

leading to directed motion of objects.  The phenomenon mainly arises due to the difference in the 

magnitudes of the forces experienced by the electrical charges within an unbalanced dipole 

caused by a non-homogeneous electric field.  A net imbalance in force causes the particles to 

migrate to a region of greatest field intensity (Fig. 3.2).  

The DEP force is given by 

F = ½αV∆|E|² 

α - Effective polarizability of the particle 

E – Electric field 

V – Volume of the particle 

Generally for a particle that is more polarisable than the medium surrounding it the dipole tends 

to align itself with the field forcing it towards the high electric field region and vice versa.  This 

can result in an attractive (positive DEP) or repulsive force (negative DEP).  

The DEP acting on a homogeneous, isotropic dielectric sphere is given by 

F = 2πr3εmRe[(εp* – εm*)/(εp* – 2εm*)] ∆|E|² 

r - Radius 

εm - Permittivity of the medium 

εm* - Complex permittivity of the medium 
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εp* - Complex permittivity of the particle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 – Dielectrophoresis 
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Electrowetting 
This section discusses in detail the theoretical background and the principle of the electrowetting 

phenomenon.  EWOD can bring about a change in the contact angle of a droplet on a dielectric 

coated device by the application of voltage.  The principles of EWOD are discussed. 

 

Theoretical Background 

 

Introduction 

Electrowetting is the modern version of the electro-capillarity principle, which was discovered 

by a Nobel laureate named Gabriel Lippmann in 1875.  Lippmann discovered that by applying a 

voltage between mercury and an electrolyte a depression of the mercury, which is in contact with 

the electrolyte solution, can be obtained.  It was explained that the effect occurred due to the 

changes in the charges of the Electrical Double Layer and the interfacial tensions of the mercury 

electrolyte interface.  Following Lippmann several works have been published directly dealing 

with contact angle changes of sessile droplets sitting on conductive surfaces.  Theses effects 

were referred to as ‘Electrowetting’ or ‘General Electrowetting’ or ‘Continuous Electrowetting’. 

But the biggest drawback of the conventional form of electrowetting is the requirement of large 

voltages due to the larger charge separation in comparison to an electrocapillary setup.  

This issue was addressed by introducing a major voltage drop across an inserted layer of 

insulator between the liquid and the electrode and this was called ‘Electrowetting on Dielectric’ 

(EWOD).  In a EWOD setup as shown in Fig. 3.3 an electrical double layer builds at the 

interface of the droplet and the dielectric and since the thickness of the dielectric is much larger 

that the EDL the total charge capacity of the system is increased.  

 

Young’s equation 

Electrowetting is a combination of two fields, which are interfacial chemistry and electrostatics. 

Generally droplets of size < 1mm sitting on a dielectric surface and surrounded by an ambient 

medium like air (commonly used) or oil are studied for EWOD experiments.  Both gravity and 

surface tension affect the behavior of the water droplets and the effects of gravity diminish as the 

droplet of study becomes smaller and smaller.  The Bond number Bo determines the strength of 

gravity. 
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Bo = √(g∆ρR2/σlv) 

 

As already seen in the previous chapter the free energy of a droplet (unelectrified) is determined 

by surface tension and can be given by the following Young equation. 

cosθY = (γsv – γsl) / γlv  

θY = Young’s contact angle 

γsv = Surface Tension (energy per unit surface) of the solid-vapor interface 

γsl = Surface Tension of the solid-liquid interface 

γlv = Surface Tension of the liquid-vapor interface 

 

Lippmann-Young Equation 

When an electric voltage is applied an electrostatic term is added to the system making it readjust 

itself for a minimization of energy of the total system.  This readjustment results in the effective 

change in the contact angle of the droplet and the final equation of electrowetting can be given 

by using Lippmann’s electrostatic expression. 

 

cosθV = cos θY + ½ (ε0εrV
2)/(d* γlv) ………………………………………………..(3.1) 

V - Applied Voltage 

d - Thickness of the dielectric medium 

θV - Electrowetting Contact Angle  

 

 

 

 

 

Fig. 3.3 – Voltage induced charge redistribution of a droplet interface 
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The additional term represents the electrostatic energy balance on the liquid droplet resulting 

from the charging of the flat plate capacitor that is created by the liquid, dielectric, solid 

boundary.  While interfacial energies, permittivities and insulator thickness are constants that 

depend on the material and medium properties, the voltage is the parameter that plays a dynamic 

role in decreasing the contact angle and causing wetting.   The important thing to be noted is that 

the above equation that correlates the contact angle and the applied voltage does not hold goods 

only for a certain range of voltages.  Above that an effect called as the contact angle saturation is 

experienced where the contact angle does not decrease in agreement with the Lippmann-Young 

equation. 

 

Contact Angle Saturation 

Electrowetting can cause a considerable reduction in the contact angle from the initial contact 

angle (when no voltage is applied) thereby making it suitable for application in several droplet 

manipulation devices.  Gaining maximum control over the contact angle works very favorably 

for most of these applications.  A control over the contact angle implies the ability to achieve 

complete wetting and de-wetting by the alteration of a given range of voltages.  But however it 

has always been observed that this has not been possible even at very high driving voltages.  

The issue of contact angle saturation has been addressed extensively by several works which 

attribute the saturation to i) The actual contact line is shifted due to the injection of charge 

carriers inside the insulator causing alterations in free energies ii) Non – linear effects caused by 

the divergence of electric fields in the contact line iii) Imbalance of repelling charges at the 

contact line beyond a threshold voltage.  The listed ones have been commonly used to describe 

the phenomena of contact angle saturation.  

 

Evaluations – EWOD in rough and planar surfaces 

Electrowetting phenomena are evaluated based on the energy minimization approach. 

Evaluations are done based on the surface roughness and the presence or absence of an ambient 

oil medium around the droplet.  The nature of electrowetting is described by primarily applying 

the Lippmann-Young equation to each of the cases. 

 

Energy Minimization approach 

Two broad conceptual approaches to explaining the EWOD theory have been put forward.  The 

first being the energy minimization approach and second being the electrohydrodynamic 
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approach.  The energy minimization is more simplistic and accounts for the equilibrium shape of 

the droplet in terms of the free energy of minimization.  The electrohydrodynamic approach 

takes into consideration the electromechanical forces exerted by field on the liquid, and hence 

rigorously considers fluid properties like viscosity etc.  

The energy approach is used in this chapter and is centered on the tendency of the droplet to 

minimize its energy, which acts as the driving force behind the observed contact angle change.  

 

Review on Contact Angle Equations 

As seen in detail in the previous chapter superhydrophobic surfaces exhibit extremely large 

contact angles (generally greater than 150˚).  The large contact angles are primarily contributed 

by enhanced surface roughness followed by chemical hydrophobic treatment of the surface.  

 

When a solid surface is physically structured a roughness factor is introduced into the system 

r - Actual Surface Area/Projected (Horizontal) Surface Area 

 

For r>1 the de-wetting properties are enhanced due to an increased contact angle.  Rough wetting 

regimes can be Wenzel or Cassie-Baxter.  

The force balance Young-Laplace equation gives the contact angle of a planar hydrophobic 

surface. 

cosθY = (γsv – γsl) / γlv………………………………………………….………………………(3.2) 

 

The apparent contact angle of a Wenzel surface is given below. 

cosθw = r* cosθY …………………………………………………………….……………….(3.3) 

r – roughness ratio  

The apparent contact angle of a Cassie surface is given by 

cosθW = φs* cosθY + φl*cos180º ………………………………………………......…….………..(3.4) 

φs – Fraction of the wetted solid-liquid contact area 

φl – Fraction of the liquid- air interface 

The bottom of a Cassie droplet is heterogeneous since it interfaces with both enclosed air pockets 

and solid structure.  Thus the Cassie apparent contact angle is expressed as fractional contact 

angle contributions from the solid liquid interface and the liquid air interface.  The Cassie surface 

reduces to a Wenzel surface if the φl = 0. 
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A Planar Surface – Ambient Air Medium 

A planar hydrophobic surface is smooth and homogeneous and suits the definition of Young’s 

contact angle (Fig. 3.4).  A conductive surface coated with a smooth dielectric can be a suitable 

device.  The dielectric is chosen to be a hydrophobic material (cosθY > 90˚) to achieve the 

ultimate goal of wetting.  The dielectric prevents leakage of the across the device and 

capacitively charges up resulting in an EDL.  Though the EDL behaves like a uniform parallel 

plate capacitor across the bulk of the solution there is an enhanced charging at the three phase 

contact regions resulting in an electric field induced force.  Eqn. 3.1 gives the balance of forces 

in voltage-subjected system.  

Energy Balance 

cosθY = (γsv – γsl) / γlv  

Electrowetting 

cosθV = cos θY + ½ (ε0εrV
2)/(d* γlv) 

We can see from the EWOD equation that increasing the dielectric constant and decreasing its 

thickness can obtain a larger contact angle change for a given voltage.  The inverse 

proportionality to the liquid air interfacial tension shows that electrowetting change favors a low 

surface energy liquid. 

 

A Planar Surface – Ambient Oil Medium 

An ambient oil medium consists of a setup similar to the section described in the previous 

section but with air replaced by oil.  Oil is a non-polar substance and has a lower surface tension 

than water.  

 

 

 
Fig. 3.4 – Droplet on a Plane Hydrophobic surface with air as an ambient medium 
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Hence it easily seeps in between the liquid solid region forming a thin film of oil that separates 

the liquid polar drop and the solid.  The outer region of the drop interfaces with oil instead of air. 

The water droplet being less dense tends to sink into the bottom of the oil medium.  

Drawing the contact line and analyzing the two-phase interface gives the following force balance 

equation (Fig. 3.5).  

 

cosθY = (γoo – γlo) / γlo   =  -1 

o - oil interface 

 

The resulting electrowetting equation becomes 

cosθV = cos θY (~cos180) + ½ (ε0εrV
2)/(d* γlo) 

 

We can make two inferences from the above equations 

-  The initial contact angle can be boosted to a high superhydrophobic value by introducing oil 

as an interfacial medium.  We can see that the contact angles of droplets tend to shoot up to 

the maximum 180˚ when interfaced with oil.  A high starting contact angle provides a large 

tuning range, which is a very useful feature for most applications.  Also a reduced hysteresis 

(due to the oil) is very favorable for the reversibility or de-wetting to take place.  

 

 

 

 
Fig. 3.5 – Droplet on a Plane Hydrophobic surface with oil as an ambient medium 
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- The electrostatic energy contribution is increased with the γlo factor in the denominator.  

This is due to the fact that oil has a much lower interfacial energy with water when compare 

to air.  Thus a small voltage can help in attaining a considerable contact angle change.   

 

A Wenzel Surface – Ambient Air Medium 

A droplet in the Wenzel regime completely penetrates into the surface features thereby holding a 

homogeneous interface at the droplet bottom (Fig. 3.6).  The only difference of is that Wenzel 

droplet sits with an initial contact angle given by the roughness factor.  A Wenzel surface for 

electrowetting can be made to have a fairly large initial contact angle when compared to a smooth 

hydrophobic surface but a still suffers hysteresis. Hysteresis makes reversibility more difficult to 

attain.  

 

A Wenzel Surface – Ambient Oil Medium 

A droplet in the Wenzel regime surrounded by an oil medium still penetrates into the surface 

features and the oil forms a layer between the liquid and the solid medium (Fig. 3.7).  So the 

contact angle of water is further raised to the ideal value by the presence of the oil.  The presence 

of oil lowers hysteresis affects and reduces the effective voltage requirements for the wetting 

process as explained in the planar – oil system.  The layer of oil below the liquid acts as a smooth 

interface below and the droplet acts like it were on a perfectly smooth surface free of micro-

cracks and irregularities.  This smoothness greatly helps in the reduction of contact angle 

hysteresis 

 

 

 

Fig. 3.6 – Droplet on a Wenzel surface with air as an ambient medium 
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A Cassie-Baxter Surface – Ambient Air Medium 

A Cassie droplet attains energy minimization by resting on the tips of the surface structures (Fig. 

3.8).  It has a very high contact angle (>150˚) and shows very low contact angle hysteresis due to 

the intermittent air surfaces beneath the surface of the droplet.  Such surfaces show a high initial 

contact angle and slightly altered electrowetting behavior.  The alteration is mainly caused due to 

the fractional wetting of the projected surface. 

The wetting process for a Cassie drop involves the following phenomenon as described in an 

extensive work on droplet microfluidics [3.15]. 

- Horizontal movement (contact angle change) of the three-phase contact line. 

-     Vertical movement (horizontal contact line shift).  The vertical movement is 

characterized by slow penetration of the liquid down into the features. 

 

Analyzing Fig. 3.8 we can write the following force balance equation at the contact line of the 

Cassie drop.  The force balance equation reduces to 

cosθ = (γsl – γsv) / γlv  

An effective solid liquid interfacial energy γesl, is contributed by the solid and the air contacts at 

the bottom of the drop.  It has been shown that electric field induced force is only observed in the 

fractional area f which has been wetted by the surface [3.15]. 

 

Thus Lippmann’s equation reduces to 

cosθV = cos θY + ½ f(ε0εrV
2)/(d* γlv) ………………………………………………………..(3.5) 

 

 

 

Fig. 3.7 – Droplet on a Wenzel surface with oil as an ambient medium 
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The fractional wetting causes fractional electrostatic energy thereby reducing the overall contact 

angle change for given voltage.  Thus we can conclude that for a droplet sitting in the Cassie-

Baxter regime the electrowetting effect is much weaker.  

 

The voltage induced vertical motion of the baseline occurs resulting in a change in the 

instantaneous Young’s angle of the drop (Fig. 3.9).  This gradual change in the Young’s angle is 

due to a downward capillary force which changes the shape of the meniscus of the liquid between 

the features and makes it move down and wet the surface.  The onset of complete wetting is 

characterized by a threshold voltage at which the convex to concave meniscus transition occurs.  

It has been shown that the electrowetting contact angle can be expressed in terms of the 

capacitance change due to the vertical distance moved by the droplet after the application of 

voltage [3.15].  

 

cosθV = cosθY + ½ (ε0εrV
2 *A)/(d 2* γlv *L) ………………………………….………………..(3.6) 

A – Effective perimeter in a unit capillary membrane of the structure 

L – Effective perimeter of the unit capillary membrane 

The ratio A/L varies for different structure profiles. 

During the onset of action of the vertical electrostatic pressure 

cosθV=0 

½ (ε0εrV
2)/d2  = - γlv *cos θY *L /A…………………………………………………………….(3.7) 

 

 

 

Fig. 3.8 – Droplet on a Cassie surface with air as an ambient medium 
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The expression on the right side of the equation is the pressure that will drive the liquid inside the 

surface of the capillary that is nothing but the vertical electrostatic pressure on the liquid.  It has 

also been shown that the apparent contact angle change induced by the vertical motion changes 

the electrowetting contact angle only slightly more than Eqn. 3.5.  The vertical movement 

induced change depends on the feature geometry.  Hence the voltage induced contact angle 

change can be approximated to Eqn. 3.5 for a Cassie Baxter surface. 

The nature of reversibility for this model has been estimated to be poor due to the reduced energy 

state attained by the water drop that made to penetrate into the (normally unreachable) feature 

depth.  Hence it is not energy-favorable for the droplet to pop back up on the withdrawal of the 

voltage and it remains in the wetted state.  

 

A Cassie-Baxter Surface – Ambient Oil Medium 

A drop on a Cassie surface surrounded completely by oil allows the oil to easily penetrate into the 

surface features (Fig. 3.10).  This results in the air pockets seen in a regular Cassie setup being 

replaced with oil. 

On the application of the voltage a phenomena very similar to that obtained in the previous 

section is observed.  The downward capillary force tries to push the oil out of regions between the 

structures.  The force and contact angle change is similar but with the interfacial energies 

replaced with that of the oil.  Oil, as previously discussed helps lowering the electrowetting 

voltage.  

 

 

 

 

Fig. 3.9 – Contact Angles of a Cassie surface 
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The force balance equation at the baseline is given below. 

cosθ = (γoo – γol) / γlo  

The oil-modified Cassie electrowetting equations are 

cosθV = cos θY + ½ f(ε0εrV
2)/(d* γlo) ……………………………………………….………..(3.8) 

Apart from the increased wetting a more useful interpretation can be made from this model.  The 

introduction of oil also helps in reducing hysteresis as already seen in the previous cases.  Oil also 

helps in achieving reversibility, which is not possible in the presence of air pockets.  This is 

because of the competitive tendency of the oil to push back the liquid to its initial Cassie position 

on the withdrawal of the voltage.  Hence this setup is more advantageous when droplet actuation 

experiments are done on a superhydrophobic surface.  

 
 

 

 

 

 

 

 

 

 

 

Fig. 3.10 – Droplet on a Cassie surface with oil as an ambient medium 
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Preparation of the EWOD Device 
A good selection and application of the insulating layer on the rough substrates can drastically 

improve the electrowetting behavior.  This section discusses the layering process that is employed 

to fabricate the electrowetting device.  

 

Material Considerations 

Several reports have been published on optimized electrowetting devices [3.5, 3.8, 3.9].  Most 

results show that electrowetting depends weakly on the liquid properties but more critically on the 

properties and type of insulator used.  The fine-tuning of the dielectric layer is done mainly to 

favor electrowetting at much lower voltages, but at the same time the long-term stability of the 

device is also of utmost importance.  As already discussed a high initial contact angle is useful for 

getting a larger range of wettability control as well as reduced hysteresis.  Thus the dielectric 

materials are insulating hydrophobic layers.  The thickness of the dielectric must also be thin and 

still must not suffer breakdown for a suitable range of voltages.  The conductive layer used can be 

a thin coating of any chemically inert metal like gold.  Conductive electrodes spaces periodically 

created by lithography techniques have also been used.  For surfaces with features it is very 

important to have conformal and thin coating on the entire projected surface area.  Vertically 

projecting spikes with a high aspect ratio are very challenging surfaces to uniformly deposit 

material.  A technique like vapor deposition and evaporation are more anisotropic in nature and 

the material manages to arrive inside the surface features (which are spaced in the order of a few 

hundred nanometers) and deposit a smooth layer.  The coating thickness is also a very critical 

parameter.  Apart from increasing voltage requirements a thick coating of dielectric layer can also 

cover up the required surface features that might affect the initial contact angle of the surface 

during the electrowetting experiment.  Suitable bonding materials can be additionally coated to 

improve the adhesion of the conductive and insulating layers.  

 

Substrate Layer 

The goal of the electrowetting experiments is to study behavior of droplets in the Wenzel and 

Cassie and smooth hydrophobic regime under the influence of an electric field.  The Wenzel and 

Cassie fabrication is similar to that discussed in the previous chapters.  Glass drawing followed 

by the differential etching results in features with a low and high aspect ratio.  The etched wafers 

were cleaned ultrasonically in water and isopropanol.  The results of the etching were two 



   Chapter 4:  Dynamic Wetting Properties 
   

 109 

features with a high and low aspect ratio.  The samples were etched to an aspect ratio that made 

them fall under the Cassie and Wenzel regimes of surfaces.  The lattice constant of these features 

is 7µm.  The etching parameters for the substrates under electrowetting study are listed in Table 

3.1.  SEM images of the etched features are shown in Fig. 3.11.  The low aspect ratio was 

classified as a Wenzel surface since it is expected to show an initial contact angle in air similar to 

that shown by a surface in a Wenzel wetting regime.  The high aspect ratio was classified as a 

Cassie surface since it is expected to show an initial contact angle in air similar to that shown by a 

surface in a Cassie wetting regime.  This aspect ratio based classification was done mainly based 

on the study in the third chapter of this thesis on superhydrophobic behavior. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.11 – SEM images of Etched Wafers having a Low (left) and High Aspect Ratio (right) 

 

 
 
 

Table 3.1 – Substrate Etching parameters for the EWOD experiments 

Slice Etching Solution Etch 

Time 

Aspect 

Ratio 

412 – High 

Aspect Ratio 

1.5ml BHF + 3.5ml 

DHF 

60 min .35 

416 – Low 

Aspect Ratio 

10:1 DHF 30 min 5 

Glass Slide - - - 
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Conductive Coating by E-Beam Evaporation 

A conformal coating of gold on the low and high aspect ratio surfaces was chosen to serve as the 

conductive layer. The samples were placed in an e-beam evaporation chamber and were coated 

with gold. An e-beam evaporator uses a magnetic field to direct a high-energy electron beam (3 – 

20keV) on target materials to melt and vaporize them. The eventual condensation of the 

vaporized metal results in its deposition on the substrate.  

The system mainly consists of an electron beam evaporation gun, the material to be coated and 

the target metals placed in crucibles.  The setup is enclosed in a vacuum chamber, which allows 

the molecules to evaporate freely.  E-beam evaporation is a physical vapor deposition process not 

involving any chemical reactions.  Film thickness control quartz based monitor is available which 

helps in knowing the amount of metal that has been deposited.  Generally a high deposition rate 

of 50 – 500 nm/min can be obtained.  The etched glass wafers were treated with 100 nm of 

chrome followed by 500 nm of gold in order to safely ensure a conformal coating on the surface 

features.  The chrome coating was primarily done to improve it’s the adhesion of glass with the 

gold.  Evaporation seemed to be a better choice than sputtering for the deposition of gold due to 

its anisotropic nature.  Anisotropic deposition seemed more favorable for the gold atoms to get 

into the high aspect ratio features.  

 

Dielectric Coating by CVD Technique 

The dielectric layer chosen for the electrowetting device is Parylene-C.  Parylene-C is a member 

of the linear crystalline parylene polymeric series and contains a chlorine atom substituted for one 

of the aromatic hydrogen.  A vapor deposition process deposits Parylene films where they 

polymerize upon adsorption onto the substrate.  A 1-µm thick Parylene-C coating was deposited 

on the gold-coated samples in a SCS (Specialty Coating Systems) labcoater.  

Heating of the Parylene-C powder loaded in the system causes the vaporization of the dimer 

followed by pyrolysis.  At room temperature and pressure of .1 Torr the vaporized monomer 

deposits and polymerizes on the substrates.  Parylene is inert and can give a very conformal 

pinhole free coating on topographically patterned surfaces.  Parylene has high dielectric 

breakdown strength (Table 3.2) and hence a 1 µm thick coating was used. Parylene-C and Teflon 

are the commonly used dielectric coatings.  Parylene has slightly better dielectric properties than 

Teflon and has been reported not to breakdown at 250V applied.  However though Parylene is a 

good insulator it is much less hydrophobic than Teflon and other popular hydrophobic coatings.  



   Chapter 4:  Dynamic Wetting Properties 
   

 111 

The Parylene deposition (Fig. 3.12) process first involves the vaporization of the solid dimer at 

approximately 150°C.  Next, the quantitative cleavage of the dimer at the two methylene-

methylene bonds takes place at a temperature of around 670°C to yield the stable monomeric 

para-xylylene.  

Finally, the monomer enters the room temperature deposition chamber where it simultaneously 

adsorbs and polymerizes on the substrate.  The system is also equipped with the pumps for 

maintaining the pressure and a protective cold trap that condenses and collects Parylene 

byproducts thereby preventing contamination.  The deposition rate is fairly fast (about .2 

mils/hour).  

 

 

Table 3.2 – Parylene-C properties 

Property Value 

Dielectric Strength – 1 mil 

films 

5600 dc volts/ mil  

Surface Resistivity (23˚ C) 1014 ohms 

Dielectric Constant 3.15 (60 Hz) 

3.10 (1 KHz) 

2.95 (1 MHz) 

 

 

 

 

Fig. 3.12 – Schematic of the Parylene deposition process 
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A silane primer is used which is a commercially available parylene deposition-bonding agent 

marketed under the product name A174 Silane.  It interfacially bonds the gold with the deposited 

Parylene C by creating chemical linkages. 

The chemical agent in A174 Silane is gamma-methacryloxypropyltrimethoxysilane.  Equal 

proportions of deionized water and isopropyl alcohol are mixed and the A-174 silane is added 

such that the proportion of the water-IPA and the silane is 200:1.  After stirring continuously the 

solution is left to sit at room temperature for about two hours.  The wafers are soaked in the 

solution followed by cleaning in IPA.  The wafers are dried completely.  The treated wafers must 

be used within a few hours of coating for the Parylene deposition.  

Fig. 3.13 shows the SEM images of the Parylene coated wafers.  The wafers were coated with 

gold in the sputter coater for viewing in the SEM. 

 

Silicone oil 

The oil used in the electrowetting tests was silicone oil. Silicone oil is an optically clear fluid with 

a refractive index of 1.397.  It shows excellent water-repellency and low surface tension.  The 

surface tension of silicone oil with a viscosity of 5cSt is 19.7mN/m.  It also has very low toxicity 

and can be used freely as the ambient environment of liquids and devices.  In our experiments 

silicone oil with a 2cSt viscosity was used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 – SEM images of the low (left) and high aspect ratio (right) wafers after coating with Gold 

and Parylene 
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EWOD – Experiments and Observations 
The actual electrowetting property of the surfaces is observed in the experiment.  The 

experimental process is described in this section.  This is followed by detailed analysis of the 

wetting produced in each of the surfaces.  The results are characterized using the images of the 

drop taken during the electowetting process and the current voltage curves. 

 

Experimental Setup 

 

The experimental setting for performing the electrowetting consist of the following equipments i) 

A Melsobel color camera ii) An adjustable focus, lighting lens iii) A Keithley source meter iv) A 

precision 3-axis Signatone micropositioner iv) Tungsten Probe Tips with holders iv) Video Tool 

box software interfaced with the camera v) Labtracer software interfaced with the Source meter 

as shown in Fig. 3.14. 

 

 

 

 

 

 

Fig. 3.14 – Schematic of the EWOD Experimental Setup 
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The droplet’s volume is about 10 µl and is dispensed on a suitable defect free region of the wafer.  

The power supply is given though a general purpose source meter that can measure up to 200V, 

1A and 20W power output.  The source meter is GPIB interfaced with a Lab View driven tool. 

The tool can control the DC voltage profile.  The voltage supply directly connects to tungsten 

probe tips are mounted on the probe holders using a screw mount system.  The probe holders are 

pliable and are bent to an angle to reach and make easy contact of the probe tip with the wafer 

inside the dish.  The micropositioner are equipped with probing features and have the linear X-Y-

Z motion control with 100 threads per inch drives.  A pivot head is attached has additional control 

knobs for quick and coarse positioning of the probe tip.  The micropositioner has a magnetic base 

for steady positioning.  The wafer to be analyzed is placed in a transparent Petri dish.  The wafer 

is placed against the wall of the dish for better image quality.  The positive probe tip is immersed 

in the droplet and the negative terminal is contacted with the conducting gold layer.  

Since the gold layer is buried under the Parylene more attention was needed to get good contact 

of the conductor.  Imaging was done using a high speed, high resolution equipped with a C– type 

lens mount.  A USB interface was used to drive the camera through a Video toolbox in the 

computer terminal.  It was positioned to line up horizontally to focus on the drop.  The camera 

was placed on a mount for adjustable vertical height.  A variable focus, variable lighting lens was 

attached to the camera. The entire setup was placed in an optical table.  

 

The droplets that were tested using air as the ambient medium were first tested for its 

hydrophobic/superhydrophobic behavior.  This was done by manual observation of the drop 

profile and also by the geometric estimation of the contact angle from the image of the drop 

before the application of any voltage.  For oil based tests the contamination free silicone oil was 

filled in the Petri dish till a level where both the wafer and the droplet can be completely 

immersed.  The wetting was characterized by running the device through a series of tests of 

varying voltage ranges and sweep times.  The linear step voltages were introduced with a 25 ms 

delay and were useful for comparing the contact angles at various voltages.  The voltage – current 

curve of the test was also taken.  Several tests were done to make a better estimation of critical 

values such as the threshold, breakdown and saturation voltages.  For a given wafer and a given 

set of conditions multiple sets of measurements were taken with the drop positioned in different 

locations in the surface and with the probes contacting different points of gold in the wafer.  This 

is primarily to eliminate the effect of the errors introduced due to poor electrical contact and 
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defective regions under the drop. Both step and sweep voltages were applied to the droplet and 

snapshots of the droplet were taken in fixed intervals of time.  For estimation of the contact 

angles at voltages, images of the wetting drop were taken at every 5V increment.  The contact 

angle was estimated geometrically from the drop image.  

 

 

Observations – Contact Angle Changes 

 

Planar Surface – Air Medium 

The planar surface used was a piece of microscope glass slide coated with gold and Parylene-C. 

The slide was placed in the Petri dish and a droplet of water was dispensed on a clean region of 

the slide.  A DC potential was applied between the positive probe, which was immersed in the 

droplet, and the negative one that was placed firmly against the surface of the slide.  

 The parylene seems to have barely managed to make the surface 

hydrophobic.  The actuation voltage was estimated from the contact angles.  The device seemed 

to have a fairly low threshold voltage of 5 volts.  The wetting response seemed to be very gradual 

in the air environment (Fig. 3.15b – 3.15e).  A useful wetting range of voltages was between 5V – 

60V where gradual contact angle decrease of about 35˚ was observed (Table 3.3).  For a different 

test set the breakdown seemed to happen at around 100V.  Breakdown was characterized by a 

current leakage causing bubbling in the droplet.  The removal of the applied voltage in every case 

resulted in partial irreversibility of the wetting.  The VI curve is shown in Fig. 3.15a. 

 

Table 3.3 – Wetting voltages of a planar device in air medium 

Voltage (V) Contact Angle 

0 92̊  

20 78̊  

40 69̊  

60 55̊  

80 55̊  

100 55̊  

0 65̊  
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Fig. 3.15a – VI curve of the EW test on planar surface in air 

 

 

   

 

 

Fig. 3.15b – Planar Surface –Air Medium (0V)     Fig. 3.15c – Planar Surface –Air Medium (5V) 

Surface seems just hydrophobic 
 Contact Angle - 92˚ 

Drop actuated to contact angle 
change at ~ 5V. Contact Angle - 90˚ 
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 Fig. 3.15d – Planar Surface –Air Medium (60V) Fig. 3.15e – Planar Surface –Air Medium 

(Returned to 0V) 

 

Planar Surface – Oil Medium 

The planar surface used with oil is similar to the one used in the previous section.  The wafer was 

immersed in the oil filled dish.  A droplet was allowed to completely sink down and settle on a 

smooth section of the glass slide and the potential was applied.  As expected with the oil the 

droplet had a high contact angle.  The threshold voltage was 5V.  The wetting response was 

gradual in the oil environment (Fig. 3.16b – 3.16e).  A smoothly changing contact angle was 

observed as the voltage was varied from 0 – 80V (Table 3.4).   

 

 

                            Table 3.4 – Wetting voltages of a planar device in oil medium 

Voltage (V) Contact Angle 

0 132̊  

20 115̊  

40 100̊  

60 88̊  

80 80̊  

0 120̊  

Maximum wetting witnessed at ~ 60V.  
Contact Angle is 55˚ 
Contact angle saturates after 60V 

Voltage returned back to 0. 
Incomplete reversal of wetting 
Contact Angle is 65˚ 
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The removal of the applied voltage in every case resulted in good reversibility back to a contact 

angle of 120̊.  The VI curve is shown in Fig. 3.16a. 

 

 

Fig. 3.16a – VI curve of the EW test on planar surface with oil 

 

    

 

 

 

Fig. 3.16b – Planar Surface –Oil Medium (0V) Fig. 3.16c – Planar Surface –Oil Medium (5V) 

Large contact angle due to the oil 
Contact Angle - 132˚ 

Actuation Voltage ~ 5V 
Contact Angle - 128˚ 
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Fig. 3.16d – Planar Surface –Oil Medium (85V)   Fig. 3.16e – Planar Surface –Oil Medium       

(Returned to 0V) 

 

 

A Breakdown condition 

For another set of experiments with the planar surface and the oil an early breakdown occurred at 

around 85V as seen in Fig. 3.16f and Fig. 3.16g.   

 

 

 
Fig. 3.16f – Wetting at breakdown condition 

Maximum observed wetting ~ 85 V 
Contact angle – 80˚ 
Breakdown observed at higher voltages  

Voltage returned back to 0V.  
Almost complete reversal of wetting 
observed , Contact Angle is 120˚ 
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The breakdown induced complete wetting but reversal was still present.  Due to the early 

breakdown the complete useful wettable range could not be tapped in the device.  

 

 

Wenzel Surface – Air Medium 

The wafer with a Wenzel surface is placed in the Petri dish and firm contact of the negative probe 

is made against the smooth edge of the wafer to avoid interference with the featured regions.  The 

droplet is placed on the rough section of the wafer (other than the edge) and a potential is applied.  

 The Wenzel surface shows an initial contact angle of 114̊  due to the combination of 

surface roughness and the poorer hydrophobic properties of Parylene-C.  The threshold voltage 

was at about 5V when a small noticeable change was observed.  The contact angle change was 

more gradual (Fig. 3.17b – Fig. 3.17e).  Breakdown for a different test set was observed as low as 

75V. The breakdown induced complete wetting but no reversibility was observed.  An effective 

change of 25̊ was observed with a voltage range of 90V followed by a brief range of saturation 

(Table 3.5).  The VI curve is shown in Fig. 3.17a. 

 

 

 
 

Fig. 3.16g – Leakage across the dielectric 
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Table 3.5 – Wetting voltages of a Wenzel device in air medium 

Voltage (V) Contact Angle 

0 114̊  

20 108̊  

40 101̊  

60 96̊  

80 90̊  

100 87̊  

0 87̊  

 

 

 

 

Fig. 3.17a – VI curve of the EW test on Wenzel surface surrounded with air 
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Fig. 3.17b – Wenzel Surface –Air Medium (0V) Fig. 3.17c – Wenzel Surface –Air Medium (5V) 

 

 

 

      

 

 

 

 

Fig. 3.17d – Wenzel Surface –Air Medium                Fig. 3.17e – Wenzel Surface –Air Medium  

90V  (Returned to 0V) 

 

 

 

Contact angle - 114˚ Threshold Voltage ~ 5V 
Contact Angle - 113˚ 

Maximum wetting observed - 90 V 
Followed by saturation / breakdown 
Contact Angle – 87̊  

Voltage is returned back to 0V. 
No reversal of the contact angle 
was observed 
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Wenzel Surface – Oil Medium 

The Wenzel surface shows a very high contact angle of 155̊  (Table 3.6). This threshold voltage 

was at about 5V. Breakdown for a different test set was observed at 115V. An effective change of 

90̊  was observed with a voltage range of 120V (Fig. 3.18b – 3.18e). The removal of the applied 

voltage in every case resulted in excellent reversibility back to a contact angle of 155˚. The VI 

curve is shown in Fig. 3.18a. 

 

. 

Table 3.6 – Wetting voltages of a Wenzel device in oil medium 

Voltage (V) Contact Angle 

0 155̊  

20 134̊  

40 115̊  

60 100̊  

80 77̊  

100 70̊  

120 66̊  

0 155̊  

 

 

 

Fig. 3.18a – VI curve of the EW test on Wenzel surface surrounded with oil 
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Fig. 3.18b – Wenzel Surface –Oil Medium (0V) Fig. 3.18c – Wenzel Surface –Oil Medium (5V) 

 

 

 

   

 

 

 

 

Fig. 3.18d – Wenzel Surface –Oil Medium             Fig. 3.18e – Wenzel Surface –Oil Medium (0V-

(120V)               Returned) 

 

 

 

Contact angle - 160˚ Threshold Voltage ~ 5V 
Contact Angle - 153˚ 

Maximum wetting was observed at  
120 V 
Contact Angle – 66˚ 

Voltage is returned back to 0V. 
Almost complete reversal of the 
contact angle was observed 
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Cassie Surface – Oil Medium 

The Cassie surface shows a very high contact angle of 150̊ .  This threshold voltage was at about 

25V till a noticeable wetting change was observed.  No significant change in contact angle was 

observed with the Cassie surface (Fig. 3.19b – 3.19e).  The VI curve is shown in Fig. 3.19a.  The 

contact angle mostly occurred during the vertical motion of the drop towards the surface.  No 

signs of breakdown were observed even at voltages as high as 150V (Table 3.7). 

  

Table 3.7 – Wetting voltages of a Cassie device in oil medium 

Voltage (V) Contact Angle 

0 180̊  

20 180̊  

40 170̊  

60 151̊  

80 135̊  

100 130̊  

120 128̊  

140 134̊  

0 138̊  

 

 

Fig. 3.19a – VI curve of the EW test on Cassie surface surrounded with oil 
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Fig. 3.19b – Cassie Surface –Oil Medium (0V)    Fig. 3.21c – Cassie Surface –Oil Medium (30V)    

 

 

      

 

 

 

 

   Fig. 3.19d – Cassie Surface –Oil Medium               Fig. 3.19e – Cassie Surface –Oil Medium (0V 

    140V                                Returned)  

 

 

Contact angle - 180˚ Threshold Voltage ~ 30V  
Contact Angle - 170˚ 

Maximum wetting was observed at  
100 V 
Contact Angle – 90˚ 

Voltage is returned back to 0V. 
Irreversibility of the contact angle 
was observed. 
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Modeling of EWOD on Nanocone surfaces 
 

The electrowetting behavior of a water droplet on an ideally planar surface surrounded by air 

can be expressed in terms of the conventional Lippman-Young equation.  But when a structured 

(topographically patterned) surface or an ambient oil medium (instead of air) is introduced the 

voltage induced contact angle change is greatly affected.  In this section we study theoretically 

the effect of the nanocone structure and the role of oil in the electrowetting behavior and 

compare it to the experimentally obtained values.  

 

Interfacial energies and areas of structured surfaces 

A surface can exhibit structure in terms of random roughness or a periodic structure as seen in the 

nanocones.  Here we consider the structured surface to be a well-ordered nanocone glass array.  A 

drop of water sitting on such a surface in air could fall in either one of the well-known wetting 

regimes.  A drop on a surface in the Wenzel regime is expected to completely wet the solid 

interface and one on a Cassie regime is expected to partially wet the solid interface.  In our 

experimental analysis we use two surfaces, which can be classified as Wenzel or Cassie purely by 

known surface geometry (which is the aspect ratio).  

For a structured surface the macroscopic interfacial tension can be expressed as 

γmacro= ∫micro γmicro(X).dA / Aprojected 

Aprojected = Amacro 

The voltage-induced electrowetting changes the microscopic γ over some regions resulting in an 

effective change in the macroscopic γ and hence the effective contact angle change.  

For a drop of liquid resting on such a surface surrounded by air the modified solid-liquid 

interfacial tension can be given as  

γmacro* Amacro = Anon-wetted* γla + Awetted *γls ………………………….…………………………...3.9 

The effect of voltage on such an interface is that it modifies the solid liquid surface tension given 

by the Lippman’s equation  

γls(V) = γls – ½*C*V2 ……………………………………………………………………...…3.10 

Incorporating Eqn. 3.10 in Eqn. 3.9 we get  

γslm = (Anon-wetted/Amacro)* γla + (Awetted/Amacro)*(γls - ½*C*V 2) ……………………..…….…..….3.11 

γslm = Electrowetting modified solid-liquid interfacial tension of a structured surface 

γls(V) = Solid-liquid interfacial tension at voltage V 

γls = Solid-liquid interfacial tension 
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γla = Surface tension of the liquid 

Awetted = Area of the wetted region of the structure 

Anon-wetted = Area of the liquid-air interface around the wetted cone 

Amacro = Area of the projected hexagonal lattice 

C = Capacitance formed by the electrical double layer 

V = Voltage applied 

 

Interfacial areas of a nanocone 

Water on a given structured hydrophobic surface partially or fully wets it based on its geometry. 

But the presence of an ambient medium like oil might enable a drop on a Wenzel surface to have 

a very high contact angle as if it were in a Cassie-like state.  Such a Cassie-like state is also 

observed on a plane medium surrounded by oil.  On a plane surface the transition from a Cassie-

like to a Wenzel state is more straightforward due to the absence of structure and the voltage of 

transition can be directly measured from the contact angle.  But in order to understand the nature 

of transition of a Cassie-like drop to a Wenzel drop on a Wenzel surface in oil we have to take 

into consideration the role of roughness in the wetting process.  Hence we assume that a drop on a 

Wenzel surface in oil will tend to exhibit partial wetting.   

The following parameters define the geometry of a partially wetted nanocone 

a = face to face length of the hexagonal base 

h = height of the nanocone 

r = base radius of the nanocone 

hw = wetted nanocone height 

rw = wetted nanocone radius 

φ = Nanocone apex half-angle 

 

Using these parameters the areas listed in Eqn. 3.11 can be calculated. 

 

1- Projected Area 

The projected area is the base hexagonal area of the nanocone and is the same for the Cassie and 

the Wenzel surface. 

Amacro = Am = (√3*a2)/2 

a = 7*10-6 m 

Am = 42.4352*10-12 m2 
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2 - Wetted Areas 

The wetted area of a partially wetted nanocone (as shown in Fig. 3.20) is the surface area of the 

fractionally wetted cone.  Since we have assumed a fractionally wetted behavior for a Wenzel 

surface in the presence of oil the expressions for the fractionally wetted areas for a Wenzel 

surface is also derived.  A Wenzel surface in air is expected to show a fully wetted state and the 

wetted area is calculated from the known height of the nanocone. 

 

i) Partially wetted Cassie surface  

Awetted = Apartially_wetted_cassie = Ap_w_c  = (π*hw
2*sinφ) / cos2φ 

φ = 13º, sinφ = .22495, cosφ = .97437, tanφ = .23086 

Ap_w_c = .743499*hw
2 m2 

 

ii) Partially wetted Wenzel surface 

Awetted = Apartially_wetted_wenzel = Ap_w_w  = (π*hw
2*sinφ) / cos2φ 

φ = 32º, sinφ = .529919, cosφ = .84804, tanφ = .624869 

Ap_w_w = 2.3105*hw
2 m2 

 

 

 

 

 

Fig. 3.20 – Fractional wetting profile of a single nanocone 
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iii) Fully wetted Wenzel surface 

Awetted = Afully_wetted_wenzel  = Af_w_w = π*h2*(sinφ-sin2φ)/cos2φ  + (√3*a2/2) 

h = 7.07*10-6 m, φ = 32º, sinφ = .529919, cosφ = .84804, a = 7*10-6 m 

Af_w_w = 96.8*10-12 m2 

 

3 - Non-wetted areas 

The non-wetted region of a given nanocone refers to the area where the liquid interfaces with the 

ambient medium like air (or oil) instead of the solid.  This is calculated by subtracting the area of 

the hexagonal base from the projected circular area of the wetted nanocone.  For any partially 

wetted surface such an area exists due to the presence of air (or oil) pockets in each of the 

nanocones.  But for a fully wetted nanocone the nonwetted area is absent since the liquid 

completely interfaces with the solid surface. 

 

i) Partially wetted Cassie surface 

Anon_wetted  = Anon_wetted_cassie = An_w_c = (√3*a2/2) - (π*hw
2*tan2φ) 

φ = 13º, tanφ = .23086, a = 7*10-6 m 

An_w_c = (42.4352*10-12 - .16735*hw
2) m2 

 

ii) Partially wetted Wenzel surface 

Anon_wetted = Anon_wetted_wenzel = An_w_w = (√3*a2/2) - (π*hw
2*tan2φ) 

φ = 32º, tanφ = .624869, a = 7*10-6 m 

An_w_w = (42.4352*10-12 – 1.22613*hw
2) m2 

 

iii) Fully wetted Wenzel surface 

Anon_wetted = 0 

 

Fractional Areas 
 

Let f1 = Awetted / Amacro and f2 = Anonwetted / Amacro 

 

1 - Cassie surface 

 

f1 = f1cassie_partial = f1c_p = Ap_w_c / Am 
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Amacro = 42.4352*10-12 m2 

Ap_w_c= .743499*hw
2 m2 

f1c_p = .017532*1012*hw
2 

f2 = f2cassie_partial = f2c_p = An_w_c / Am 

f2c_p = 1 – (.003943*1012*hw
2) 

 

2 - Wenzel surface 

 

i) Partially wetted 

f1 = f1wenzel_partial = f1w_p = Ap_w_w / Am 

Amacro = 42.4352*10-12 m2 

Ap_w_c= 2.31369*hw
2 m2 

f1w_p  = .05452*1012*hw
2 

f2 = f2wenzel_partial = f2w_p = An_w_w / Am 

f2w_p = 1 – (.02889*1012*hw
2) 

 

ii) Fully wetted 

f1 = f1wenzel_full = f1w_f = Af_w_w / Am 

Amacro = 42.4352*10-12 m2 

A f_w_w = 96.8*10-12 m2 

f1w_f  = 2.2811 

f2 = f2wenzel_full = f2w_f = 0 

f2w_f = 0 

 

Electrowetting equations – Energy based approach 
 
 
A Cassie surface in Air 

The modified solid-liquid interfacial tension for a drop fractionally wetting a structured surface 

can be given by Eqn. 3.11, which can be re-written as below. 

γslm = f2c_p* γla + f1c_p*(γls – (½*ε0*εr*V
2 /d))………………………..…………..…..……..…..3.12 

d = thickness of the dielectric layer 

ε0 and εr –dielectric constants of air and the dielectric layer respectively 
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The interfacial tension of a solid liquid interface in air γls can be expressed in terms of the basic 

Young’s contact angle equation 

γls = γsa – γla*cosθY……………………..……………………………………..……..………...3.13 

cosθY - The contact angle of water on a flat Parylene-C surface in air 

γsa = 0 (but we maintain the factor for the derivations) 

Incorporating Eqn. 3.13 in Eqn. 3.12 we get 

((f1c_p*γsa)- γslm)/γla = (f1c_p*cosθY )- f2c_p + ((f1c_p* ½*ε0*εr*V
2 )/(d*γla)) 

cosθW = (f1c_p*cosθY ) – f2c_p + ((f1 c_p*½* ε0*εr*V
2)/(d*γla)) .…………………….…….…...3.14 

η = (½*ε0*εr*V
2) / (d*γla ) – dimensionless value that represents the strength of the electrostatic 

energy in comparison to the surface tension. 

d = 1*10-6 m 

εr = 2.7 

γla = 72.8*10-3 N/m  

θY = 90º -Measured contact angle of water in Parylene-C in air 

Substituting the constant values and fractional area expressions in Eqn. 3.14 we get 

(.003943*1012  + .0028785*109 *V 2)*hw
2 + (-1-cosθW) = 0……………………………..…...3.15 

The fractional wetting of a nanocone Cassie surface (as shown in Fig. 3.21) can be analyzed 

using Eqn. 3.15, which solves for the unknown wetted height.  

 

 

 

 

 

Fig. 3.21 – Cassie wetting profile of a single nanocone 
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If the surface produced the desired electrowetting behavior the fractional wetting and nonwetting 

areas can be calculated at each of the voltages.  This fractional value can first help in knowing the 

increasing depth of penetration as the voltage is tuned up.  The most useful and interesting 

observation that can be made is the transition from the fractionally wetted Cassie state to the fully 

wetted Wenzel state.   The knowledge of the voltage values that induces this important transition 

is necessary for achieving a full-fledged contact angle change for a given voltage range.  

In our case no noticeable electrowetting was observed on a drop of water on a Cassie surface 

surrounded by air.  Hence we stop with the derived expression since the values of cosθW are 

unknown. 

 

A Wenzel surface in Air 

A drop sitting on a Wenzel surface in air is expected to drop the surface completely.  Hence such 

a surface does have liquid-air interfaces since the air pockets are filled with water in the Wenzel 

state.  

Eqn. 3.11 can give the modified solid-liquid interfacial tension for a drop wetting a structured 

surface. 

Since, Anonwetted = 0  

f2 = 0 

γslm = f1w_f*(γls – (½*ε0*εr*V
2 /d))………….……………………………………………….…3.16 

Here again, the interfacial tension of a solid liquid interface in air γls can be expressed in terms of 

Eqn. 3.13. 

γls = γsa – γla*cosθY  

cosθY  - The contact angle of water on a flat Parylene- C surface in air 

 

Incorporating Eqn. 3.13 in Eqn. 3.16 we get 

((f1 w_f*γslm)- γsa)/γla = (f1 w_f*cosθY) + ((f1 w_f*½* ε0*εr*V
2)/(d*γla)) 

cosθW  = (f1 w_f*cosθY) + ((f1 w_f*½* ε0*εr*V
2)/(d*γla)) ……………………….…….……....3.17 

θY = 90º - Measured contact angle of water in Parylene-C in air 

 

Substituting the constant values and fractional area expressions in Eqn. 3.17 we get 

cosθW = .37452*10-3*V 2 …………………………………………………….…….………….3.18 
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Eqn. 3.18 gives the wetting behavior of a drop in a Wenzel surface in air.  The contact angle 

change is affected by the constant value of surface roughness.  

The theoretically calculated contact angles from Eqn. 3.18 and the experimentally obtained values 

are shown in Fig. 3.22.  We can see the effect of the roughness-driven hysteresis in the actual 

data when compared to the ideal one.  The hysteresis causes early saturation and a poor contact 

angle change.  

 

Planar surface in air 

A plane surface in air simply follows the Lippman-Young relation since the surface is assumed to 

show no roughness.  Hence for such a surface the wetted area is the same as the projected area. 

Anonwetted = 0, Awetted = Amacro  

Since, Anonwetted = 0, f2 = 0 

Since Awetted = Amacro, f1 = 1 

γslm = γls – (½*ε0*εr*V
2 /d))………….……………………………………………….……..….3.19 
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Fig. 3.22 – EWOD – Wenzel Air 
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Incorporating Eqn. 3.13 in Eqn. 3.19 we get the conventional Lippman-Young equation 

(γsa- γslm)/γla = cosθY  + ((½*ε0*εr*V
2)/(d*γla ))  

cosθW  = cosθY + ((½*ε0*εr*V
2)/(d*γla)) ……………………….…….……….……………..3.20 

 

θY = 90º -Measured contact angle of water in Parylene-C in air 

Substituting the constant values and fractional area expressions in Eqn. 3.20 we get 

cosθW = .1641188*10-3*V 2 ……………………………………………..……….…….……..3.21 

 

We can compare Eqn. 3.18 and Eqn. 3.21 to notice the effect of roughness on the contact angle 

change for a fully wetted surface.  The Wenzel surface has a reduced contact angle change due to 

the surface roughness factor given by f1.  

 

The theoretically obtained contact angles from Eqn. 3.21 and the experimental ones can be 

compared in Fig. 3.23.  We can see that the experimental curve is closer to the theoretical one due 

to the reduced hysteresis unlike the Wenzel surface.  
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Fig. 3.23 –EWOD – Planar Air 



   Chapter 4:  Dynamic Wetting Properties 
   

 136 

A Cassie surface in Oil 

A drop on a Cassie surface surrounded by oil is similar to the Cassie surface in air except that the 

oil replaces the air.  Oil pockets are present between each of the nanocones instead of air.  The 

partial wetting process involves the vertical downward force pushing of oil out of the nanocones 

till a condition is reached where the oil is completed pushed out of the nanocone regions resulting 

in complete wetting.  This condition is equivalent to the Cassie to Wenzel transition of the drop 

undergoing electrowetting.   

The modified solid-liquid interfacial tension for a drop fractionally wetting a structured surface in 

oil medium can be given by Eqn. 3.12, which can be re-written as below. 

γslm = f2c_p*γlo + f1c_p*(γsl – (½*ε0*εr*V
2 /d))………………………..…………..…….………..3.22 

The interfacial tension of a solid liquid interface in oil γls can be expressed in terms of the basic 

Young’s contact angle equation 

γls = γso – γlo*cosθY……………………..…………………………………….….……..………..3.23 

cosθY - The contact angle of water on a flat Parylene-C surface in oil 

 

Incorporating Eqn. 3.23 in Eqn. 3.22 we get 

((f1c_p*γso )- γslm)/γlo = (f1c_p*cosθY )- f2c_p +((f1c_p* ½*ε0* εr*V
2 )/(d* γlo )) 

cosθW = (f1c_p*cosθY ) – f2c_p + ((f1c_p*½* ε0*εr*V
2 )/(d*γlo )) .……………………...…….….3.24 

d = 1*10-6 m 

εr = 2.7 

γlo = 34*10-3 N/m  

θY = 132º -Measured contact angle of water in Parylene-C in oil 

cos θY = -.66913 

Substituting the constant values and fractional area expressions in Eqn. 3.25 we get 

(.066164*109*V 2 - .0077881*1012)*hw
2 + (-1-cosθW) = 0……………………………..……..3.25 

The fractional wetting of a nanocone Cassie surface in oil can be analyzed using Eqn. 3.25, which 

also solves for the unknown wetted height.  

 

The fractional wetting area (Fig. 3.24) for a Cassie surface is 0 initially since the drop is not in 

contact with the spikes due to the presence of the oil. The fractional wetting area gradually 

increases with the contact angle change.  In an ideal case a steady increase in fractional area till 

the Cassie to Wenzel transition occurs followed by complete wetting and an increased fractional 

area (which is equal to the roughness factor of the surface) must be observed.  But in our case the 
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drop down of the fractional wetting area is seen only due to the effect of saturation, which occurs 

even before any transition thus not obeying the derived Lippman-Young equation.  

 

A Wenzel surface in Oil 

A drop sitting on a Wenzel surface in oil has a very high contact angle.  This is due to the layer of 

oil present between the drop and the nanocone structure.  Such a drop is considered to be in a 

Cassie-like state due to the very high contact angle.  For such surface electrowetting involves the 

pushing of the oil out of the surface and allowing the water to completely wet it.  In order to 

understand the nature of the Cassie-like to Wenzel transition we have assumed that the drop 

exhibits fractional wetting before it completely wets the surface.  

 

The modified solid-liquid interfacial tension for a drop fractionally wetting a structured surface in 

oil medium can be given by Eqn. 3.12, which can be re-written as below. 

γslm = f2w_p* γlo + f1w_p*(γsl– (½*ε0* εr*V
2 /d))………………………..…………..…….………3.25 

d = thickness of the dielectric layer 

ε0 and εr –dielectric constants of air and the dielectric layer respectively 
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Fig. 3.24 – Fractional Wetting – Cassie Oil 
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The interfacial tension of a solid liquid interface in oil γls can be expressed in terms of the basic 

Young’s contact angle in Eqn. 3.23 

γls = γso – γlo*cosθY  

cosθY - The contact angle of water on a flat Parylene-C surface in oil 

Incorporating Eqn. 3.23 in Eqn. 3.25 we get 

((f1w_p*γso )- γslm)/γlo = (f1w_p*cosθY )- f2w_p +((f1w_p * ½*ε0* εr*V
2 )/(d*γlo )) 

cosθW = (f1w_p*cosθY) – f2w_p + ((f1w_p*½* ε0*εr*V
2)/(d*γlo)) .……………………….…….…3.26 

d = 1*10-6 m 

εr = 2.7 

γlo = 34*10-3 N/m  

θY = 132º -Measured contact angle of water in Parylene-C in oil 

cos θY = -.66913 

Substituting the constant values and fractional area expressions in Eqn. 3.26 we get 

(.019166*109*V 2 - .00749*1012)*hw
2 + (-1-cosθW) = 0……………………………..…..……..3.27 

The above equation solves for the fractional wetting height at various electrowetting voltages as 

the drop transitions from a Cassie-like state to a Wenzel state.   

The fractional wetting areas for a Wenzel surface in oil are shown in Fig. 3.25.  The negative 

fractional wetting area and the sudden shoot of the fractional wetting area are not realistic and can 

be attributed to mathematical errors in the computation. 

 

Planar surface in oil 

A plane surface in oil shows a very high initial contact angle due to the presence of oil. Such a 

surface can also be assumed to be in a Cassie-like state to begin with.  But due to the absence of 

roughness there cannot be any possible fractional wetting and the drop only transition from a 

Cassie-like state to fully wetted state. During this transition the oil is completely pushed from the 

surface. 

Anonwetted = 0, Awetted = Amacro  

Since, Anonwetted = 0, f2 = 0 

Since Awetted = Amacro, f1 = 1 

γslm = γls – (½*ε0*εr*V
2 /d))………….……………………………………………….……….3.28 

 

From Eqn. 3.28 we get the conventional Lippman-Young equation in oil 

(γsa- γslm)/γlo = cosθY  + ((½*ε0*εr*V
2)/(d*γlo ))  
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cosθW  = cosθY + ((½*ε0*εr*V
2)/(d*γlo)) ……………………….…….…….………………..3.29 

θY = 132º -Measured contact angle of water in Parylene-C in oil  

γlo = 34*10-3 N/m  

cos θY = -.66913 

 

Substituting the constant values and fractional area expressions in Eqn. 3.29 we get 

cosθW = -.66913 +(.3515*10-3*V 2) …………………………………………..…….………..3.30 

We can see from Eqn. 3.30 that the presence of oil has improved the contact angle change.  The 

theoretical and experimental values of the electrowetting on a planar surface in an ambient oil 

medium are compared in Fig. 3.26.  We can see that the experimental curve saturates more 

quickly than the ideal one.  
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Fig. 3.25 – Fractional Wetting – Wenzel Oil 
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Fig.  3.26 – EWOD – Planar Oil 

 

Performance Analysis 

The results discussed in the previous section were analyzed.  

Surface properties like interfacial tension and roughness determined factors like the initial contact 

angle and hysteresis.  The breakdown voltage was determined by the dielectric strength and the 

quality of the dielectric coating on the surface.  The current-voltage and the contact angle-voltage 

(Fig. 3.27 and 3.28) can help in estimating the optimal performance parameters.  

 

Maximum Wetting: The maximum wetting is happens for devices that show maximum contact 

angle change.  Oil has certainly helped boosting degree of contact angle change.  Though all the 

wafers are coated with the same dielectric type and thickness, the Wenzel surface in oil showed 

maximum contact angle change especially when compared to the planar oil surface.  Apart from 

the oil contributing to a reduced hysteresis the dielectric seems to have made a better coating on 

the Wenzel surface.  The presence of a small amount of roughness must have helped the dielectric 

adhere better to the surface.  The repeatability of the EW on this device also seemed to be good 
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on the Wenzel surface when compared to the planar surface.  The Cassie surface shows a lower 

range accounted by the fractional electrostatic energy.   

 

Reversibility: Degree of reversibility of the wetting and dewetting process is a direct implication 

of contact angle hysteresis.  As already seen hysteresis is contributed by roughness. In the air 

medium as expected the planar surface shows slightly better reversibility than the Wenzel surface 

due to the effect of its smoothness.  But the presence of oil drastically changes the effects of 

hysteresis.  The Wenzel surface in oil showed complete reversibility when compared to the planar 

surface that showed only almost complete reversibility.  The better reversibility here could again 

be attributed to a better quality dielectric coating.  

 

Threshold Voltage: A fairly low threshold of ~3-5V was observed in all the wafers with and 

without oil except for the Cassie surface which seemed to have a higher threshold voltage.  A low 

threshold voltage is very good for actuation and tapping the complete range of wetting on a given 

device.  The lower value for the Cassie surface can be attributed to the greater resistance to the 

droplet moving down the oil and wetting the surface.  

 

Breakdown Voltages: Breakdown was observed in some of the cases characterized by bubbling 

and a leakage current in the VI curve.  The planar surface in oil seemed to have the lowest 

breakdown voltage of about 85V.  Wenzel surfaces showed a higher breakdown voltage of about 

120V. No breakdown was observed in the Cassie surfaces till 180V.   Breakdown voltages also 

varied for different test sets for a given sample.   This can be attributed to poor contact or a local 

damage of the dielectric.   The quality of and strength of the dielectric film and the nature of 

voltage sweep can affect the breakdown process.   A smooth sweep or step with delay seemed 

better than a sharp step up voltage.  

 

Saturation Voltage: The effects of saturation were not observed in all the cases due to the 

occurrence of early breakdown.  But the effects of saturation were most significant in the Cassie 

surface which seemed to have lower and lower contact angle change for higher voltages.  The air 

based Planar and Wenzel surfaces showed more saturation that the oil-based wafers which 

showed a sharper decline in contact angle.  We can say the presence of air around the droplet can 

enhance the saturation effects.  But for the Cassie drop saturation is contributed by the fractional 

wetting design.  
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On the overall we can conclude that the oil based EW setup is advantageous when compared to 

an air based one in terms of achieving maximum wettability, minimum saturation and better 

reversibility.  Oil also helps in preventing droplets from evaporating though it can cause 

contamination.  The Wenzel surface in the air showed the best wetting characteristics and this can 

be attributed to ease of better dielectric coating on a rough surface.  Since the Parylene was not 

very hydrophobic a larger range of contact angle change could not be attained.  A qualitative 

comparison of the electrowetting parameters of the surfaces is done in Table 3.8. 
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Fig. 3.27 – Contact Angle Vs Voltage for air based devices 
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Fig. 3.28 – Contact Angle Vs Voltage for oil based devices 

 

 

 

 

 Table 3.8 – Qualitative comparison of EWOD substrates  

Parameter Plane-air Plane-oil Wenzel-air Wenzel-oil Cassie-oil 

Degree of 

Wettability 

Low Moderate Low High Very Low 

Reversibility Low Moderate Absent Complete Very Low 

Threshold 

Voltage 

Low Low Low Low High 

Breakdown 

Voltage 

Moderate Low Moderate Moderate – 

High 

Very High 

Saturation High Low High Very Low Very High 
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Chapter 5 

Conclusions 

 

Fabrication 

 
In this thesis we have discussed in detail a novel method of fabricating nanocone glass 

arrays.  The method uses glass as a raw material and a drawing and bundling process.  Certain 

glasses can be easily melted together and can be drawn to the desired size.  Glass properties like 

viscosity, thermal expansion, phase separation and interdiffusion proved to be critical to the 

selection criteria.  The drawing and bundling chain of processes proved to be a very effective 

technique to obtain surfaces with replicated features.  The effectiveness was both in terms of cost 

as well as efficiency.  Commercially available glasses are cheaply available and the draw tower 

can be used to draw different types of glasses with a good degree of flexibility.  Efficient 

bundling and a good control over the drawing and fusion process can help produce a defect free 

fusion bundle.  Various drawing experiments resulted in wafers of extremely small feature sizes 

(lattice constant - 1.6µm, 7µm, 40µm).  The lattice spacing was mainly controlled by the number 

of draws and the nature of the glass.  The main limitation to going down to smaller feature sizes 

was set by the glass interdiffusion which dominates during the fusion process.  Small lattice 

spacing proved to be very useful in producing a closely packed array of nanocones.   

The next parameter of control was the aspect ratio.  The difference in the etch rates of the 

two starting glasses and the chemistry of various HF based etching solutions were the two factors 

that produced the nanocone features.  The additional phase separation caused by the heat 

treatment (during the fusion process) also resulted in an enhanced etch rate contrast.  This was 
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inferred by the resulting difference in the observed aspect ratio and the calculated etch rate ratios 

for the various unprocessed core and cladding wafers.   

The nature of the etching solutions and their relationship to the nanocone aspect ratio was 

analyzed.  This analysis was done by calculating the activities of the constituent ions of each of 

the solutions.  Other etching conditions like etching time and presence of ultrasonic agitation 

proved essential but not critical to obtaining a specific aspect ratio.  Nanocones with aspect ratios 

of .4 - 13 were obtained.  Such a process with good control over lattice constant, aspect ratio and 

tip sharpness has many potential applications.  Like nanocones, arrays of nanoneedles, nanowires 

(glass drawn with metal wires), nanoholes (glass drawn with salt filled cores) can be fabricated.  

These nanostructured surfaces can be used for a wide range of applications like superhydrophobic 

surfaces, parallel needle probes for drug delivery and blood withdrawal, filters and field emitters.  

Altering the chemical composition of the glasses used can also produce features with interesting 

optical properties that might make them suitable for optical probe arrays. 
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Superhydrophobic behavior 
 

The fabricated nanocone arrays were coated with hydrophobic material called the SAM 

(Self Assembled Monolayer) to produce superhydrophobic surfaces.  In this thesis the nature and 

fundamentals of superhydrophobic behavior are discussed.  The nanocone arrays were treated as 

potential superhydrophobic surfaces and were tested and characterized.  The close packing of the 

sharp-tipped features and the high aspect ratio served as the crucial factors.   

Simple tests for water-repellency showed increasing hydrophobic behavior with 

increasing contact angle.  A more detailed characterization was done by testing the degree of 

hydrophobic-superhydrophobic behavior in each of the wafers by measuring the rolling and 

dynamic contact angles.  The advancing and receding angles were measured by experimentally 

capturing images of the advancing and receding drops on each of the surfaces and fitting the drop 

shape to a theoretically determined one.   A flat glass slide coated with SAM was also tested in 

the experiments.   

The results were also predicted based on a surface tension model.  This approach predicts 

the effects of the forces due to the surface tension of liquid which rests on the nanocone features.  

The forces may pull the droplet down causing complete wetting as seen in the Wenzel regime or 

it may reverse and push the droplet out of the nanocone features as seen in the Cassie regime.  

These forces are mainly controlled by the geometry of the nanocone surface and the Young’s 

contact angle of the hydrophobic coating used.  For a given hydrophobic coating (SAM) we have 

seen how changes in the geometry can affect the forces and the dominance of hysteresis.   

A Wenzel-Cassie transition of wetting states as the aspect ratio of the nanocones was 

increased was predicted by the model and confirmed by the experimental observations.  The 

agreement of the model with the experimental observations serves as a good lead to design 

optimal superhydrophobic surfaces.  An appropriate choice of hydrophobic material and careful 

design of surface geometry can help producing highly tunable water-repellent surfaces.  
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Electrowetting on Dielectric 

 
The next property that was explored on the nanocone arrays was electrowetting on 

dielectric. Two nanocone surfaces were chosen for the experiments.  One was a low aspect ratio 

surface which was expected to exhibit the Wenzel wetting regime based on the model discussed 

and the other was a high aspect ratio surface expected to exhibit the Cassie wetting regime.  A 

plane glass slide was also used for the experiments.   

The surfaces were coated with gold (conducting layer) using an e-beam evaporation 

process.  The evaporation technique gave better control on the amount of gold deposited and the 

uniformity of the coating when compared to the sputtering process.  The dielectric used was 

Parylene-C which was deposited using a CVD technique.  Parylene-C has superior dielectric 

properties than Teflon and can be coated conformally without pin-holes using the CVD 

technique.  The EWOD experiments were carried out using both air and silicone oil as the 

ambient medium.   

Images of the drops were captured at various step voltages and a rough estimation of the 

contact angle was done.  Challenges in obtaining a conformal coating of dielectric/gold on the 

high aspect ratio features resulted in poor and inconsistent results on the Cassie surfaces.  

However, considerable wetting was observed on the Planar and Wenzel surfaces.  A large contact 

angle change was observed with the Wenzel surface in the presence of oil.  Oil proved to increase 

the effective contact angle change and reduce the hysteresis.   

An energy based approach was used to model the electrowetting behavior on each of the 

surfaces both in the presence of air as well as oil as the ambient medium.    The nature of 

electrowetting on dielectric was compared for the Wenzel, Cassie and Planar surface in both air 

and oil.  The comparison was done by taking into consideration various phenomena like contact 

angle change, saturation, reversibility, threshold and breakdown.  Next, the electrowetting 

equations for each of the surfaces were derived based on the feature geometry and properties of 

the ambient medium.  A comparison of the experimental and theoretical wetting angles was done. 

The disagreement of the data was mostly due to hysteresis which cannot be accounted by theory. 

The Wenzel surface in oil was assumed to be in a Cassie-like state and the fractional wetting 

areas at various voltages were calculated.  

A Cassie to Wenzel transition in the Cassie and Wenzel surface (in oil) was expected. 

However due to the effects of saturation the transition was not observed in the Cassie surface. 

Several improvements can be done both in the layering process to achieve conformal coatings of 
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the dielectric and conductive layer. The poor hydrophobic property of Parylene-C also reduced 

the initial contact angle of the surfaces. This can be improved by using a dielectric which is more 

hydrophobic than Parylene-C.  The contact angle in here was estimated by a rough geometric plot 

on the drop. This may have led to inaccuracies which can be dealt by using the axisymmetric drop 

shape analysis to estimate the advancing and receding (wetting and dewetting) angles.  More 

research will be needed in the future to fully understand the electrowetting behavior of water on 

these surfaces. 

The study of electrowetting on dielectric on nanostructured superhydrophobic surfaces is 

useful for designing various lab-on-a chip devices that are based on hydrophobic substrates.  The 

Cassie-Wenzel transition in electrowetting may serve as useful switching phenomena for 

microfluidic applications. The nanostructure increases the observed contact angle change relative 

to a planer surface when there is a transition from the Cassie to the Wenzel state.  A low – voltage 

driven wetting process can be used for various droplet manipulation applications like mixing and 

separation.  
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