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ABSTRACT 

 

Team formation is one of the key stages in project management. The cost associated 

with the individuals who form a team and the quality of the tasks completed by the team 

are two of the main concerns in team formation problems. In this study, two mathematical 

models to optimize simultaneously cost and quality in a team formation problem are 

developed. Because team formation problem arises in uncertain environment, different 

scenarios are defined for the time requirement of the project. Two-stage stochastic 

programming and multi-stage stochastic programming are applied to solve the first and the 

second model respectively. The presented models and their solution methodology can be 

applied in different types of projects. In this study, a project that involves an overhaul of 

an aircraft is presented as a case study in which the goals are to minimize staffing costs and 

maximize the reliability of the aircraft by staffing workforce with high competency. 
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INTRODUCTION AND GENERAL INFORMATION 

Projects typically have a wide variety of goals and involve many internal and external 

actors in different activity sectors. Project management is an approach for operation with 

a single predetermined final product (Beaudry& Dionne, 1989). The project management 

approach should be flexible and effective for achieving a specific output while respecting 

the limitations on budget, schedule and quality.  Project managers must always take into 

account the trade-off among the project completion time, the project cost and the project 

performance (Gagnon et al., 2012). A project team is typically formed with members from 

different fields and groups with different skills that work together to accomplish a project 

(Wang and Zhang, 2015; Tavana et al., 2013; Shipley and Johnson, 2009; Corgnet, 2010; 

Tseng et al., 2004). Personnel selection for a project team is a challenging problem for 

most organizations because it involves the evaluation of different criteria. Therefore, it can 

be considered as a multi-criteria decision making (MCDM) problem.  Selecting appropriate 

persons from a pool of candidates has a significant impact on the success of a project 

(Pitchai et al., 2016). The selection process must satisfy the assignment of candidates to 

the appropriate roles. It also needs to assure that the qualities of each candidate are 

optimally matched with the team positions that have different functional requirements (Wi 

et al., 2009; Agustín-Blas et al., 2011; Zhang and Zhang, 2013; Dorn et al., 2011; Boon 

and Sierksma, 2003). 

If the team members of a project do not have required competencies, the performance 

and the quality of the project can be jeopardized. (Snyder 2014). Competency is the 

knowledge, skills, ability and attitude (KSAA) that an individual needs to complete specific 

job-related tasks successfully (Liu, Ruan et al. 2005).  Individual’s KSAA is obtained and 

developed through education, training, and on-the- job experience. In the personnel 

selection process, organizations and projects have a set of competencies associated with 

the tasks that are directly related to the job. An individual possesses the KSAAs enable 
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them to perform the desired task in an acceptable level of competency. In this study, the 

quality of the project is measured in terms of the competency of team members. 

Competency based on NASA 2009 competency model generally includes personal 

effectiveness competencies, academic competencies, workplace competencies, industry- 

wide technical competencies, industry-sector technical competencies and occupational- 

specific requirement competencies. NASA 2009 competency model is shown in Figure 1-

1. The arrangement of the tiers in a pyramidal shape is not meant to be hierarchical, or to 

imply that competencies at the top are at a higher level of skill. The model’s shape 

represents the increasing specialization and specificity in the application of skills as you 

move up the tiers. Tiers 1 through 3 contain Foundation Competencies, which form the 

foundation needed to be ready to enter the workplace. Tiers 4 and 5 contain Industry 

Competencies, which are specific to an industry or industry sector. Tires 6 to 9 include 

occupation competencies. 

 

 

Figure 1-1: NASA Competency based model 

 

 In competency-based selection procedure, the critical competencies associated with 

performing a job are defined and the competency of job candidates is evaluated and 

determined if they match for the job, they are applying [Competency-Based Employee 

Selection].  
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Also, one of the most related operational expenses in the projects is personal hiring, 

wage and training cost(Maurer 2010); therefore, companies try to use these resources 

appropriately. As a result, team formation problem has attracted many researchers. 

However, formation of an effective and successful team with conflicting objectives is still 

an open problem (Cheatham and Cleereman, 2006; Tavana et al., 2013; Pitchai et al., 

2016).  

Through reviewing the related research on the team formation problem, it can be 

observed that this problem has been studied in different aspects such as the competency of 

the team members (Baykasoglu et al., 2007; Strnad and Guid, 2010; Zhang and Zhang, 

2013), the communication among the team members (Zhang and Zhang, 2013; Wi et al, 

2009) and the psychological factors (Corgnet, 2010; Tseng et al., 2004).   

 In this research, I develop two stochastic mathematical modeling for a team formation 

problem in multi-disciplinary projects to optimize cost and competency simultaneously.  
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LITERATURE REVIEW 

Developing the project team problem has been intensely studied in various domains.  

A review of the relevant literature is presented. 

Zzkarian and Kusiak (1999) were the first to present an analytical model to build multi-

functional teams in the domain of concurrent engineering. The methodology was based on 

the Analytical Hierarchy Process (AHP) approach and the Quality Function Deployment 

(QFD) method. A QFD planning matrix was used to organize the factors considered in the 

team selection. The importance measure for each team member was determined with the 

AHP approach. A mathematical programming model was developed to determine the 

composition of a team. The methodology developed in that paper was tested by the 

selection of teams in concurrent engineering. Then, Chen and Lin (2004) applied a similar 

approach and developed an AHP for a team formation problem. They considered three 

fundamental description for the team members. The first was multi-functional knowledge 

of the team members, the second was teamwork capability of the team member by 

considering their experience and communication skills, and the third was flexibility in job 

assignments. Karsak (2000) developed a fuzzy multi-objective linear mathematical 

modeling to select individuals from a pool of candidates for a certain job. Fuzzy numbers 

were used to describe candidate skills. The proposed method integrated the decision-

maker's linguistic assessments about subjective factors such as excellence in oral 

communication skills, personality, leadership, and quantitative factors such as aptitude test 

score within the multiple objective programming framework. The importance degree of 

each objective was considered by applying the composition operator to the objective's 

membership function and the membership function corresponding to its fuzzy priority 

defined by linguistic variables. 

 Tsai, Moskowitz et al. (2003) presented a model in which candidates and tasks were 
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respectively set as controllable and uncontrollable factors. Taguchi’s parameter design was 

used to identify selected candidates, which produced robust performance and reduced total 

project cost and time. In this model, three levels (optimistic, rational and pessimistic) for 

the candidate ability for each task type were defined before applying Taguchi’s parameter 

design. Tseng, Huang et al. (2004) suggested a group formation model using fuzzy set 

theory and gray theory to develop a methodology for team formation in multi-functional 

projects.  Fuzzy sets theory was applied to deal with problems involving ambiguities, which 

are normally confronted in multi-functional teams formation practice and form groups, 

when there is no clear boundary for relationship between customers’ requirements and 

project characteristics. Grey decision theory was also used to select desired team members 

through abstractural information. Specifically, the team member was required to be 

competent in his/her work and also able to share other’s responsibility.   

Baykasoglu, Dereli et al. (2007) developed an analytical model for the project team 

selection problem by considering several human and nonhuman factors. Because of the 

imprecise nature of the problem, fuzzy concepts like triangular fuzzy numbers and 

linguistic variables were used. The proposed model was a fuzzy multiple objective 

optimization model with fuzzy objectives and crisp constraints. The skill suitability of each 

team candidate was reflected to the model by suitability values. These values were obtained 

by using the fuzzy ratings method. The suitability values of the candidates and the size of 

the each project team were modeled as fuzzy objectives. The proposed algorithm 

considered the time and the budget limitations of each project and interpersonal relations 

between the team candidates. These issues were modeled as hard-crisp constraints. The 

proposed model used fuzzy objectives and crisp constraints to select the most suitable team 

members to form the best possible team for a given project. Simulated annealing procedure 

was used to obtain optimal solution and the Zimmerman’s max–min method was used to 

select the preferred solution among other several local optima solution.  

Wi, Oh et al. (2009) presented a framework for analyzing the knowledge of the 

candidates in a project team and their collaboration ability for managers and team 
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members. They proposed a nonlinear model and used a weighted method to combine two 

objectives; then, a genetic algorithm and social network measures were applied to choose 

the team manager and team members. However, the cost and number of people who are 

needed for the project is not considered. Feng, Jiang et al. (2010) suggested a multi-

objective integer programming model for member selection of cross functional team with 

respected to the individual capabilities of candidates and the collaborative performance on 

a pair of candidates. In order to select the desired members, firstly, a multi-objective 0–1 

programming model was built using the individual and collaborative performances, which 

was an NP-hard problem. To solve the model, an improved non-dominated sorting genetic 

algorithm II (INSGA-II) was developed.  

Strnad and Guid (2010) presented a new fuzzy-genetic analytical model for the project 

team formation. They used fuzzy description to express the required team capabilities. It 

built on previous quantitive approaches, but added several modeling enhancements like 

derivation of personnel attributes from dynamic quantitive data, complex attribute 

modeling, and handling of necessary over competency. A single compound objective 

function, which incorporated multiple opposing criteria was defined and in order to select 

multiple project teams with possibly conflicting requirements a special adaptation of island 

genetic algorithm with mixed crossover was proposed. 

Zhang and Zhang (2013) proposed a multi-objective nonlinear model for new product 

development projects that considered capabilities of all members and relationship of each 

pair of candidates. A Fuzzy Analytic Hierarchy Process based on fuzzy linguistic 

preference relations was applied and the Multi- Objective Particle Swarm Optimization 

(MOPSO) algorithm was implemented to search for Pareto solutions. The cost and 

capability of each skill is not considered; only the overall capability required for the project 

is considered. Tavana, Azizi et al. (2013) presented a two-phase frame work for player 

selection in multi-player sports. The first phase assessed the players with fuzzy ranking 

method and selected the top performers; then, at the second phase evaluated the 

combination of the selected players with a Fuzzy Interface System and selected the best 
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combination for the team formation. Gutiérrez, Astudillo et al. (2016) proposed a 

mathematical model for the Multiple Team Formation Problem (MTFP) to maximize the 

efficiency understood as the number of positive interpersonal relationships among people 

who share a multidisciplinary work cell. 

According to the literature review, most of the existing research presents analytical 

models and focuses on the individual performance of candidates for the project, while it 

seldom considers the individual performance for each role/task in the member selection 

process. Also, the human resource cost and the required time that is needed to accomplish 

a task are not considered. To the best of our knowledge, there is no study in the literature 

that applied stochastic programming into the team formation problem. But, in the real-

world problems, the exact modeling of many situations may not be possible due to the 

different types of perturbation in the business environment.  Therefore, adopting a 

stochastic optimization approach in the decision-making process is inevitable to obtain a 

robust decision. 

The innovation of this research is developing two mathematical modeling for the team 

formation problems. The models maximize the competency of each candidate for each 

work discipline, and minimize the accommodation cost, the wage cost as well as the idle 

cost of selected candidates simultaneously with the augmented epsilon-constraint method 

(Mavrotas, 2009). To make the model more practical, different scenarios are considered 

for the required amount of time that is needed to accomplish a task. The first mathematical 

modeling is for the project with different work unit that work independently from each 

other each work unit has different work disciplines. The second mathematical modeling is 

for the project with different work units that are worked independently from each other and 

the work assigned to the work units is mutually exclusive in terms of time period and the 

work of each work unit should be finished in a sequence of time and each work unit has 

some work disciplines.  
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MATERIALS AND METHODS 

The innovation of this research is developing two mathematical modeling for the team 

formation problems. The models maximize the competency of each candidate for each 

work discipline, and minimize the accommodation cost, the wage cost as well as the idle 

cost of selected candidates simultaneously with the augmented epsilon-constraint method 

(Mavrotas, 2009). To make the model more practical, different scenarios are considered 

for the required amount of time that is needed to accomplish a task. The first mathematical 

modeling is for the project with different work unit that work independently from each 

other each work unit has different work disciplines. The second mathematical modeling is 

for the project with different work units that are worked independently from each other and 

the work assigned to the work units is mutually exclusive in terms of time period and the 

work of each work unit should be finished in a sequence of time and each work unit has 

some work disciplines.  

3.1. Two-stage stochastic modeling for a team formation 

problem to optimize cost and competency  

3.1.1. Problem definition 

This paper investigates a multi-objective stochastic team formation problem for a 

project- oriented organization based on the competency of candidates and cost. To make 

this research applicable to commercial projects, the following assumptions are made. 

 

 There are U work units. Work unit refers to a place where work is preformed (Birge 

1982) such as shop floors where manufacturing work is performed or offices where 

office work is performed. Work units are independent from each other. 

 Each work unit has W work disciplines (WDs). 
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 There are N candidates, and some of them should be assigned to the project. 

 Each individual can be assigned to more than one WDs. 

 Each selected candidate can work in a particular WD in a unit with only one 

competency level. 

 The decision maker (DM) evaluates the competency of each candidate for each 

WD. 

 Different scenarios are defined to estimate the required amount of time for 

accomplishing each WD in each unit. 

 The Wage of each candidate for each WD is directly related to his or her 

competency in that WD.  

 The time that selected candidate needs to accomplish a task is indirectly related to 

his or her competency. 

 The amount of time that each individual spends in each WD in each scenario should 

be more than the minimum required for that WD. 

  Total time that selected candidate spends during the project should be less than his 

or her available time. 

 

3.1.1.1. Linguistic Parameter Definition 

In practice, natural language is more often applied in the decision process that crisp 

values cause imprecision and cannot reflect the expert judgments. Therefore, linguistic 

terms are used for assessment of competency. Five-levels scale (Greatly exceeds 

expectations, Exceeds Expectations, Meets Expectations, Occasionally Meets Expectations 

and Unsatisfactory) is used to evaluate competencies. The DM scores personal 

effectiveness competencies, academic competencies, workplace competencies, industry-

wide technical competencies, industry-sector technical competencies and occupational- 

specific requirement competencies for each candidate for each WD from 5 to 1 based on 

their competency levels on that WD as shown in Table 3.1. Then, the total score for each 

candidate for each WD is obtained by the average of competency scores in all mentioned 

nine fields. 



 

10 

 

Table 3.1: Competency level 

Competency Linguistic Parameter Score 

Greatly exceeds expectations 5 

Exceeds Expectations 4 

Meets Expectations 3 

Occasionally Meets Expectations 2 

Unsatisfactory 0 

 

3.1.1.2. Model Formulation 

The following notations are used in the model formulation. 

Sets:  

I  Set of all available workforces for the project   

U Sets of all units  

W Sets of all work disciplines  

S Sets of all possible scenarios  

Parameter

s: 

 

𝑇𝑢𝑤
𝑠  Required time for work discipline w in unit u in scenario s 

𝑏𝑢𝑤 
Minimum percentage time that each candidate who is selected for work discipline w 

in unit u in scenario s should spend 

𝐻𝑖
0 Available time of candidate i at the beginning of planning horizon 

𝐸𝑖𝑢𝑤 
competency score of candidate i in work unit u in WD w 

 

𝐶 Accommodation cost of working for the project 

𝑟𝑖𝑢𝑤 Cost of working of candidate i in work unit u in WD w  

𝑉𝑖 The unit cost for idle time of selected candidate i 

𝑃𝑠 Probability of scenario s 

𝛼𝑖𝑢𝑤 The rate of completing a task in work unit u in WD w that assigned to candidate i 
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Variables:  

𝑋𝑖𝑢𝑤 1 if candidate i is selected for work discipline w in unit u, 0 otherwise 

𝑌𝑖 1 if candidate i is selected for the project 

𝐼𝑑𝑖
𝑠 The idle time of selected candidate at the end of time horizon in scenario s 

𝑡𝑖𝑢𝑤
𝑠  The time that candidate i work in work discipline w in unit u in scenario s  

  

In terms of the above-mentioned notations, the multi-objective stochastic team 

formation problem can be formulated as follows.  

Model 1-1 

 

𝑀𝑖𝑛𝑍1 = ∑ 𝐶𝑌𝑖

𝐼

𝑖=1

+ (∑ ∑ ∑ ∑ 𝑃𝑠𝑟𝑖𝑢𝑤𝑡𝑖𝑢𝑤
𝑠

𝐼

𝑖=1

𝑊

𝑤=1

𝑈

𝑢=1

𝑆

𝑠=1

) + ∑ ∑(𝑃𝑠𝐼𝑑𝑖
𝑠𝑉𝑖

𝐼

𝑖=1

𝑆

𝑠=1

)                                                      (1 − 1) 

𝑀𝑎𝑥 𝑍2 =  ∑ ∑ ∑ ∑ 𝑃𝑠(𝐸𝑖𝑢𝑤𝑡𝑖𝑢𝑤
𝑠 𝛼𝑖𝑢𝑤/𝑇𝑢𝑤

𝑠 )

𝐼

𝑖=1

𝑊

𝑤=1

𝑈

𝑢=1

𝑆

𝑠=1

                                                                                      (1 − 2) 

𝑌𝑖 ≥ 𝑋𝑖𝑢𝑤       ∀𝑖, 𝑢, 𝑤                                                                                                                                             (1 − 3) 

∑ ∑ 𝑋𝑖𝑢𝑤

𝑊

𝑤=1

𝑈

𝑢=1

≥ 𝑌𝑖               ∀𝑖                                                                                                                                 (1 − 4) 

∑ 𝑡𝑖𝑢𝑤𝑘
𝑠 𝛼𝑘 =

𝐼

𝑖=1

𝑇𝑢𝑤
𝑠          ∀𝑢, 𝑤, 𝑠                                                                                                                           (1 − 5) 

𝑡𝑖𝑢𝑤𝑘
𝑠 ≥ 𝑏𝑢𝑤 𝑇𝑢𝑤

𝑠 𝑋𝑖𝑢𝑤   ∀𝑠, 𝑖, 𝑢, 𝑤                                                                                                                         (1 − 6) 

𝑡𝑖𝑢𝑤𝑘
𝑠 ≤ 𝑀𝑋𝑖𝑢𝑤       ∀𝑠, 𝑖, 𝑢, 𝑤, 𝑘                                                                                                                            (1 − 7) 

∑ ∑ 𝑡𝑖𝑢𝑤𝑘
𝑠 ≤ ℎ𝑖𝑌𝑖           ∀𝑖

𝑊

𝑤=1

𝑈

𝑢=1

                                                                                                                                (1 − 8) 

ℎ𝑖𝑌𝑖 − ∑ ∑ 𝑡𝑖𝑢𝑤𝑘
𝑠 = 𝐼𝑑𝑖

𝑠         ∀𝑖, 𝑠

𝑊

𝑤=1

𝑈

𝑢=1

                                                                                                                (1 − 9) 

𝑌𝑖 , 𝑋𝑖𝑢𝑤 ∈ {0,1}    ∀𝑖, 𝑢, 𝑤         𝑡𝑖𝑢𝑤
𝑠 , 𝐼𝑑𝑖

𝑠  ≥ 0      ∀𝑖, 𝑢, 𝑤, 𝑠                                                                          (1 − 10)    

 

Equation 1 and 2 imply the elements of objective functions. Equation 1 is to minimize 

the total cost including accommodation cost (training, hiring etc.) of selected candidates, 

the wage of the selected candidates based on their competency and the cost of idle time of 
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the selected candidates during the project. Equation 2 is to maximize the total competency 

of selected candidates. Equations 3 restricts WD assignment to the candidate who is 

selected for the project. Equation 4 ensures that if a candidate is selected, he or she should 

be assigned to at least one WD.  Equation 5 ensures the fulfillment of required time in 

scenario s based on competency level. Equation 6 implies that the allocated time for each 

selected candidate for a specific WD should be more than the minimum required for that 

WD in scenario s. Equation7 ensures the time assignment to each WD in each unit to the 

selected candidate for that specific WD in that unit in scenario s. Equation8 implies that 

the total time that each selected candidate works in all WD in all units should be less than  

or equal to his or her availability.  Equation 9 calculates the idle time of each selected 

candidate at the end of the project under scenario s.  Equation 10 declares variables. 

3.1.2. Solution methodology 

    We have two challenges to solve the model. First, the model is stochastic and the second 

the model has more than one objective; so, we cannot obtain a single solution. For the first 

challenge, two-stage stochastic programming is used and for the second challenge the 

augmented epsilon constraint method is used.  

 

3.1.2.1. Stochastic optimization methodology 

Stochastic optimization is currently one of the most robust tools for decision-making 

that is used to handle uncertainty. In real life, the exact value of many parameters are 

unknown and the exact modeling of many situations may not be possible. Therefore, 

stochastic programming is extensively used in in a wide range of problems such as supply 

chain, finance, production planning, energy, etc. (Körpeoğlu, Yaman et al. 2011, 

Ramezani, Bashiri et al. 2013, Valladão, Veiga et al. 2014, Cobuloglu and Büyüktahtakın 

2017) to make a robust decision. Stochastic programming methods is used whenever the 

probability of the distribution of the input data are known or can be estimated.  Therefore, 

the results of the decisions taken at present time are not known until the unknown data is 

revealed (Housh, Ostfeld et al. 2013). 
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Two-stage stochastic programs are the most extensively used version of stochastic 

programs. In a two-stage approach, the DM takes some decision in the first stage, before 

the realization of the uncertainty. After uncertainty is realized a recourse decision can be 

made in the second stage to compensate any possible negative effect of the decision that 

have been made in the first-stage.  

A standard formulation of two-stage stochastic linear program is as follows: 

𝑀𝑖𝑛𝑥𝐶𝑇𝑥 + 𝐸[𝑄(𝑥, 𝜀(𝑤))] 

St: 

𝐴𝑥=𝑏      𝑥≥0 

where Q(𝑥,ε(𝜔)) is the optimal value of the second-stage problem 

𝑀𝑖𝑛𝑥𝑞𝑇𝑦 

St: 

𝑇𝑥+𝑊𝑦=ℎ   𝑦≥0 

where x and y are the first and second stage variables, respectively. The second stage 

problem depends on data (q, h, T, W) where any or all elements can be random.  

In the presented model, the decision variables specifying the selected candidates for the 

project and the assignment of candidates to each WD, namely those binary variables are 

considered as the first- stage variables. The second stage variables are the continues 

variables related to the amount of time that is assigned to each selected candidate and the 

idle time of each selected candidate, which can be made after the realization of uncertain 

parameters.  

3.1.2.2. Multi-objective Methodology 

There are three methods for solving multi-objective problems. They are prior methods, 

interactive methods, and posterior methods. These methods are classified based on the 

phase in which a DM is involved in the decision-making process (Hwang and Masud 2012). 

In prior methods, the DM expresses his or her preferences prior to the solution process such 
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as setting goals or weights to the objective function. The criticism of this method is its 

difficulty for the DM to quantify his or her preference accurately before knowing the values 

of the objectives. In the interactive methods, the DM progressively conveys the search into 

the most preferred solution. The disadvantage of this method is that the DM never sees the 

whole picture (Pareto set) of the solution. In the posterior methods, efficient solutions of 

the problems are generated and then the DM selects the most preferred solution among all 

of the solutions. The drawback of this method is its difficulty in computation because the 

calculation of the efficient solution is usually a time-consuming process (Mavrotas 2009). 

In this paper, the Augmented Epsilon-Constraint method (Marvotas, 2009), which is the 

improved version of the conventional epsilon-constraint method is applied. The efficiency 

of the obtained solutions is guaranteed by the improved version as it only produces the 

efficient solutions, but not the conventional one (Marvotas, 2009).   

In the augmented epsilon constraint method, the most important objective function (the 

first objective in this paper) is optimized while the other objectives (here the second) are 

added to the constraints as follows: 

Model G (General Augmented Epsilon Constraint method): 

Max (−𝑓1(𝑥, 𝑡) + 𝑒𝑝𝑠
𝑠2

𝑟2
⁄ )                                                                                          (G-1) 

Subject to: 

𝑓2(𝑥, 𝑡) − 𝑠2 = 𝑒2                                                                                                                  (G-2) 

𝑥, 𝑡 ∈ 𝑆                                                                                                                                   (G-3)      

where 𝑟2 is the range of the second objective function, eps is a very small number (10-3 to 

10-9) and  𝑠2 is the slack variable.  

The range of 𝑒2  can be calculated by the payoff table that is obtained from the 

lexicographic table subjected to the feasible set S.  

Then, by dividing the range of constrained objectives (𝑓2(𝑥, 𝑡)) to q equal intervals, 

different values for  𝑒2 can be calculated as follows: 

𝑟2 = 𝑓2
𝑚𝑎𝑥(𝑥, 𝑡) − 𝑓2

𝑚𝑖𝑛(𝑥, 𝑡)                                                                                     (G − 4)                        
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𝑒2
𝑘 = 𝑓2

𝑚𝑖𝑛(𝑥, 𝑡) +
𝑟2

𝑞⁄    𝑓𝑜𝑟 𝑘 = 0, … , 𝑞 − 1                                                       (G − 5)              

After solving Model 1 for each grid of (𝑒2
𝑖 ), a Pareto set is constructed. 

After finding the grid points (𝑒2
𝑘) from the pay-off table, the single objective stochastic 

model is presented for each grid point (Model 2).  

 

Model 2: 

 

𝑀𝑖𝑛𝑍𝑘 = ∑ 𝐶𝑌𝑖

𝐼

𝑖=1

+ (∑ ∑ ∑ ∑ 𝑃𝑠𝑟𝑖𝑢𝑤𝑡𝑖𝑢𝑤
𝑠

𝐼

𝑖=1

𝑊

𝑤=1

𝑈

𝑢=1

𝑆

𝑠=1

+ ∑ ∑(𝑃𝑠𝐼𝑑𝑖
𝑠𝑉𝑖

𝐼

𝑖=1

𝑆

𝑠=1

) +  𝑒𝑝𝑠
𝑠2

𝑘

𝑟2
⁄                  (1 − 16)  

∑ ∑ 𝑋𝑖𝑢𝑤

𝑊

𝑤=1

𝑈

𝑢=1

≥ 𝑌𝑖               ∀𝑖                                                                                                                            (1 − 17)  

∑ 𝑡𝑖𝑢𝑤𝑘
𝑠 𝛼𝑘 =

𝐼

𝑖=1

𝑇𝑢𝑤
𝑠          ∀𝑢, 𝑤, 𝑠                                                                                                                       (1 − 18)  

𝑡𝑖𝑢𝑤𝑘
𝑠 ≥ 𝑏𝑢𝑤 𝑇𝑢𝑤

𝑠 𝑋𝑖𝑢𝑤   ∀𝑠, 𝑖, 𝑢, 𝑤                                                                                                                    (1 − 19)   

𝑡𝑖𝑢𝑤𝑘
𝑠 ≤ 𝑀𝑋𝑖𝑢𝑤       ∀𝑠, 𝑖, 𝑢, 𝑤, 𝑘                                                                                                                      (1 − 20)  

∑ ∑ 𝑡𝑖𝑢𝑤𝑘
𝑠 ≤ ℎ𝑖𝑌𝑖           ∀𝑖

𝑊

𝑤=1

𝑈

𝑢=1

                                                                                                                          (1 − 21)  

ℎ𝑖𝑌𝑖 − ∑ ∑ 𝑡𝑖𝑢𝑤𝑘
𝑠 = 𝐼𝑑𝑖

𝑠         ∀𝑖, 𝑠

𝑊

𝑤=1

𝑈

𝑢=1

                                                                                                             (1 − 22)  

∑ ∑ ∑ ∑ 𝑃𝑠(
𝐸𝑖𝑢𝑤𝑡𝑖𝑢𝑤

𝑠 𝛼𝑖𝑢𝑤
𝑇𝑢𝑤

𝑠⁄ )

𝐼

𝑖=1

𝑊

𝑤=1

𝑈

𝑢=1

𝑆

𝑠=1

− 𝑠2
𝑘 = 𝑒2

𝑘  ∀𝑘 ∈ 𝐾                                                                     (1 − 23)  

𝑌𝑖 , 𝑋𝑖𝑢𝑤 ∈ {0,1} ∀𝑖, 𝑢, 𝑤      𝑡𝑖𝑢𝑤
𝑠 , 𝐼𝑑𝑖

𝑠 , 𝑠2
𝑘 , 𝑒2

𝑘 ≥ 0  ∀𝑖, 𝑢, 𝑤, 𝑠, 𝑘                                                                 (1 − 24)  

The presented model is implemented using Gurobi and Python. It takes less than 1 

minutes to solve a realistic problem instance with as many candidates as 120. The project 

team formation problem is not a daily operational problem that needs to be run multiple 

times a day, so the solution time is not overly concerned. 
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 3.2. Multi-stage stochastic modeling for a team 

formation problem to optimize cost and competency 

When the industry is faced with sequential decisions over time such as team 

formation during the project period, multi-stage stochastic programming is one of the most 

appropriate methods to achieve robust decisions in the presence of future uncertainty. 

Therefore, in the second model, we assume that work units work independently from each 

other in a sequence of time; for example, Work Unit 2 starts working after finishing the 

work in Work Unit 1. The innovation of this model is that the competency of each candidate 

for each work discipline, and the accommodation cost, wage cost based on competency 

and the idle cost of selected candidates are considered and optimized simultaneously with 

the Augmented Epsilon-Constraint method (Mavrotas, 2009). To make the model more 

practical, different scenarios in each stage are considered for the required amount of time 

that is needed to accomplish a task. Having sufficient scenarios to realistically represent 

real-world environments often leads to higher computational complexity for the presented 

problem. Thus, I have adopted Scenario Cluster Decomposition (SCD) methods in my 

modeling and developed a heuristic algorithm. It is shown that the model can be solved for 

problems with a practical size.  

3.2.1. Problem Definition 

This model investigates a multi-objective stochastic team formation problem for a 

multi-disciplinary project considering competency of candidate and cost. To make this 

research applicable for commercial projects, the following assumptions are made

 There are U work units. Work unit refers to a place where work is performed such 

as shop floors where manufacturing work is performed or offices where office work 

is performed (Wil, Desel et al. 2003). Work units are independent from each other, 

i.e., each work units can be set up independently from other work units.  

 Work assigned to the work units is mutually exclusive in terms of time period. 
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  Each work unit has W work disciplines (WDs). 

 There are N candidates and some of them should be assigned to the project. 

 Each individual can be assigned to more than one WD. 

 The competency of each candidate for each WD is identified. 

 Different scenarios are defined to estimate the required time for accomplishing each 

WD in each unit. 

 For each WD, a competency profile is defined which describes job-relevant 

behavior, motivation, and its required skills. Each decision maker (DM) evaluates 

the competency of each candidate for each WD. 

 Three levels of competency are defined. Level 1 is the worst, level 2 is moderate, 

and level 3 is excellent. 

 The time that a selected candidate needs to accomplish a task is related to his or her 

competency. 

 The wage of each candidate for WD is directly proportional to his or her 

competency in that WD. 

 The amount of time that each individual spends in each WD in each scenario should 

be more than the minimum required for that WD. 

 Total time that selected candidate spends during the project should be less than 

his or her available time 

 

3.2.1.1. Model Formulation 

The following notations are used in the model formulation. 

Sets:  

I  Set of all available workforces for the project   

U Sets of all units  

W Sets of all work disciplines  

L Sets of all competency levels  
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S Sets of all possible scenarios  

Parameters:  

N Number of candidates 

𝑇𝑢𝑤
𝑠  Required time for WD w in unit u in scenario s 

𝑏𝑢𝑤 
Minimum percentage time that each candidate who is selected for WD w in unit 

u in scenario s should spend on it 

𝐻𝑖
0 Available time of candidate i at the beginning of the project 

𝐸𝑖𝑤𝑙 1 if candidate i has level l in discipline w, 0 otherwise 

𝐶𝑖 Fixed cost of training for candidate i 

𝑟𝑤𝑙 Wage of working in WD w at level l in each unit time 

𝐾𝑖 The unit cost for idle time of selected candidate i 

𝑃𝑠 Probability of scenario s 

𝛼𝑙 The rate of completing a task at competency level 𝑙 

Variables:  

𝑌𝑖 1 if candidate i is selected for the project 

𝑋𝑠
𝑖𝑢𝑤 1 if candidate i is selected for WD w in unit u in scenario s, 0 otherwise 

ℎ𝑖
𝑢𝑠 The availability of candidate i at the end of working in unit u in scenario s 

𝑡𝑖𝑢𝑤𝑙
𝑠  

The time that candidate i work in level l in WD w in unit u in scenario s (during 

the time period u) 

𝐼𝐷𝐿𝑇𝑖
𝑠 The idle time of selected candidate i at the end of the last unit in scenario s 

With the consideration of all the above assumptions, the multi-objective stochastic 

model can be developed as follows: 

𝑴𝒐𝒅𝒆𝒍 𝟐. 𝟏: 

Min 𝑍1 = ∑ 𝐶𝑖𝑌𝑖
𝐼
𝑖=1 + ∑ ∑ ∑ ∑ ∑ 𝑟𝑤𝑙𝑡𝑖𝑢𝑤𝑙

𝑠 𝑃𝑠 + 𝑃𝑠(∑ 𝐾𝑖ℎ𝑖
𝑈𝑌𝑖

𝐼
𝑖=1

𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1 ) (2.1-1) 

Max 𝑍2 = ∑ ∑ ∑ ∑ ∑ 𝐸𝑖𝑤𝑙 𝑡𝑖𝑢𝑤𝑙
𝑠 𝑙𝑃𝑠𝐿

𝑙=1
𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1  (2.1-2) 

Subject to: 

𝑌𝑖 ≤ ∑ 𝑋𝑖𝑢𝑤
𝑠     ∀𝑖, 𝑢, 𝑠𝑊

𝑤=1  (2.1-3) 

𝑌𝑖 ≤ 𝑋𝑠
𝑖𝑢𝑤       ∀𝑖, 𝑤, 𝑢, 𝑠    (2.1-4) 

∑ ∑ 𝑡𝑖𝑢𝑤𝑙 
𝑠 𝛼𝑙

𝐼
𝑖=1  ≥ 𝑇𝑤𝑢

𝑠    ∀𝑢 𝑠, 𝑤𝐿
𝑙=1  (2.1-5) 
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∑ 𝑡𝑖𝑢𝑤𝑙 
𝑠𝐿

𝑙=1  ≥ 𝑏𝑢𝑤𝑇𝑢𝑤
𝑠 𝑋𝑖𝑢𝑤

𝑠    ∀𝑢, 𝑖, 𝑠, 𝑤 (2.1-6) 

∑ 𝑡𝑖𝑢𝑤𝑙 
𝑠𝐿

𝑙=1  ≤ 𝑀𝑋𝑖𝑢𝑤
𝑠    ∀𝑢, 𝑖, 𝑠, 𝑤 (2.1-7) 

∑ ∑ 𝑡𝑖𝑢𝑤𝑙
𝑠𝐿

𝑙=1  ≤ 𝐻𝑖
0 𝑌𝑖   ∀𝑖, 𝑠𝑊

𝑤=1 , 𝑢 (2.1-8) 

ℎ𝑖
1𝑠 = 𝐻𝑖

0 − ∑ ∑ 𝑡𝑖1𝑤𝑙
𝑠𝐿

𝑙=1     ∀𝑖, 𝑠𝑊
𝑤=1  (2.1-9) 

ℎ𝑖
𝑢𝑠 = ℎ𝑖

𝑢−1𝑠 − ∑ ∑ 𝑡𝑖𝑢𝑤𝑙
𝑠𝐿

𝑙=1     ∀𝑖, 𝑠𝑊
𝑤=1 , 𝑢 ≥ 2   (2.1-10) 

∑ ∑ 𝑡𝑖𝑢𝑤𝑙
𝑠𝐿

𝑙=1  ≤ ℎ𝑖
𝑢−1𝑠  ∀𝑖, 𝑠𝑊

𝑤=1 , 𝑢 (2.1-11) 

𝑌𝑖 , 𝑋𝑠
𝑖𝑢𝑤 ∈ {0,1}, 𝑡𝑖𝑢𝑤𝑙

𝑠 , ℎ𝑖
𝑢𝑠 ≥ 0      (2.1-12) 

 

Equations 1 and 2 are the two objective functions. Equation 1 is to minimize the total 

cost including the fixed cost of hiring selected candidates, the wages of selected candidates 

are based on their competency and cost of their idle times. Equation 2 is to maximize the 

total competency of selected candidates. Equation 3 ensures that if a candidate is selected, 

he or she should be assigned to at least one WD in each scenario. Equation 4 restricts WD 

assignment to the candidate who is selected. Equation 5 ensures the fulfillment of required 

time based on competency in scenario s. Equation 6 implies that the allocated time for each 

selected candidate for a specific WD should be more than the minimum required for that 

WD under scenario s. Equation 7 ensures the time assignment to each WD in each unit to 

the candidates selected for that specific WD in that unit under scenario s. Equation 8 

implies that the total time that each selected candidate works in a unit should be less than 

his or her availability. Equation 9 calculates the availability of each selected candidate right 

after completing the work in the first unit. Equation 10 calculates the availability of each 

selected candidate right after finishing the work in each unit under scenario s. Equation 11 

shows that the time that each selected candidate spends in all WD in all levels at the uth 

unit should be less than his or her availability at the end of the previous unit under scenario 

s. Equation 12 declares variables.  

The third term in Equation 1 is non-linear. To linearize it, the third term is changed to 

the following and Equations 1-14 – 1-16 are added to the model. 

𝑃𝑠 ∑ 𝐾𝑖𝐼𝐷𝐿𝑇𝑖
𝑠𝐼

𝑖=1                                                                                                                                                           
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ℎ𝑖
𝑈𝑠 ≥ 𝐼𝐷𝐿𝑇𝑖

𝑠     ∀ 𝑖, 𝑠 (2.1-14)                                                                                                    

𝐼𝐷𝐿𝑇𝑖
𝑠 ≤ 𝑀𝑌𝑖      ∀ 𝑖, 𝑠 (2.1-15) 

𝐼𝐷𝐿𝑇𝑖
𝑠 ≥ 𝑀(1 − 𝑌𝑖) + ℎ𝑖

𝑈𝑠     ∀ 𝑖, 𝑠 (2.1-16) 

3.2.2. Solution Methodology 

There exist multiple challenges in solving the presented problem. In this section, these 

challenges are addressed and appropriate solution methods are presented. The first 

challenge is dealing with more than one objective. A Multi-Objective method is applied 

when there is more than one objective function and, in general, when there is no single 

optimal solution that simultaneously optimizes all of the objective functions. 

The next challenge is remodeling the presented problem as a stochastic programming 

model in which different scenarios are considered. Because the number of scenarios is large 

in real-world applications, the final challenge is developing a method that can efficiently 

handle a problem instance with a large number of scenarios. 

3.2.2.1. Multi-Objective Methodology 

     For solving multi-objective, the Augmented epsilon constraint method is  used and it 

was explained in Section 3.2.2.2.  

 

3.2.2.2. Stochastic Optimization Methodology 

Stochastic optimization is one of the best tools to provide a robust solution in decision 

making. It is used to handle uncertainty. In real life, the exact values of many parameters 

are unknown. Therefore, stochastic programming is extensively applied in real-world 

applications in a broad range of problems such as supply chain, finance, production 

planning, energy, etc.(Körpeoğlu, Yaman et al. 2011, Ramezani, Bashiri et al. 2013, 

Valladão, Veiga et al. 2014, Cobuloglu and Büyüktahtakın 2017). In stochastic 

programming, the main source of uncertainty is randomness and uncertain parameters are 
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considered as random variables with a known probability distribution(Housh, Ostfeld et al. 

2013). 

Two-stage stochastic programs are the most extensively used version of stochastic 

programs. In a two-stage approach, the plan for the entire multi-period planning horizon is 

decided before uncertainty is recognized, and only a limited recourse decision can be made 

afterward. A detailed explanation about stochastic programming, its applications, and 

solution techniques can be found in (Birge and Louveaux 2011)  

Multi-stage Stochastic Programming (MSP) models generally appear in multi-period 

planning problems under uncertain parameters with dynamic and non-stationary behavior 

over the planning horizon (Zanjani, Bajgiran et al. 2016). In MSP, the planning decisions 

are made in several stages instead of two stages. Hence, this approach allows us to correct 

the decisions when more information regarding the uncertainty is recognized. Therefore, 

in comparison to two–stage, MSP models provide better results since they incorporate data 

as they become available. As a result, the MSP model is more appropriate for the dynamic 

planning process. 

MSP places an emphasis on the decisions that must be made here-and-now, given 

present information, future uncertainties and possible recourse action in the future. The 

decisions at each stage are made while considering that modification and correction will 

be possible at later stages (recourse decisions) (Kazemi Zanjani, Nourelfath et al. 2010, 

Housh, Ostfeld et al. 2013). The MSP solves for an optimal policy that contains the first-

stage decision (constant) and the recourse decision (updated based on past realization). The 

first-stage decision does not depend on observations and can always be implemented on 

any new scenario. However, the recourse decision at each successive stage relies on 

information revealed up to this stage. In this problem, each work unit is considered as a 

stage. For instance, Work Unit 1 is considered as Stage 1. The selected candidates are 

considered as the first-stage decision and the assignment of selected candidates to each 

WD in each unit and the time that each selected candidate should spend on each WD in 
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each unit are considered as recourse decision. A detailed explanation of MSP can be found 

in Birge and Louveaux (2010). 

The size of MSP problems is typically large. Hence, it is hard to solve it by a direct 

solution technique. The difficulty in solving is because the problem dimension increases 

exponentially as the number of scenarios and stages increases (Rosa and Ruszczyński 

1996). To handle this computational difficulty, decomposition techniques are applied in 

solution approaches by decomposing the main problem into smaller and easier-to-solve 

sub-problems. These techniques can be found in (Ruszczynski 1989),(Rockafellar and 

Wets 1991), (Escudero, Kamesam et al. 1993), (Escudero, Garín et al. 2012) and (Zanjani, 

Bajgiran et al. 2016). 

The method used by Kazemi et al. (2016) for Multi-Stage Stochastic Mixed-Integer 

problems interests us most. I extended the method and applied it to the proposed Multi-

Objective MSP.  

Defining scenarios is a common tool to represent the stochastic process (Dupačová, 

Consigli et al. 2000). The uncertainty is represented through a scenario tree. Such a 

scenario tree is shown in Figure 1. A scenario tree consists of nodes and stages. Each stage 

indicates the stage of time when new information is revealed. Each planning horizon might 

have a number of periods (Kazemi Zanjani, Nourelfath et al. 2010). Each stage 

encompasses a number of nodes and arcs. Each node presents a possible state of the 

stochastic process, and the root node represents the current time. Each node has a unique 

ancestor. The arcs represent the links between the nodes and are associated with the 

conditional probability. The probability of each node in the scenario tree is calculated by 

multiplying the probability of that arc from the root node to that node, and the sum of the 

probabilities of nodes at each stage should be equal to one. A path from the root node to 

the leaf node (end of the path) represents a scenario (Kazemi et al., 2010). Figure 3-1 

represents a four-stage scenario tree. Each node has two branches to the subsequent stage 
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that demonstrate two possible scenarios for the subsequent stage. As a result, there are eight 

scenarios at the end of Stage 4. 

 

 

In this paper, a multi-stage stochastic program for a team formation problem with 

uncertainty in required work time (work estimation) for each WD in each work unit is 

proposed. Required time uncertainty originates from the condition of the work unit. For 

instance, the required time for completing the tasks of each unit based on its condition can 

be low, moderate or high. We assume that the uncertain required time for each WD in each 

work unit evolves as a discrete stochastic process during the planning horizon, which forms 

a scenario tree. Each stage in a scenario tree corresponds to a work unit. Therefore, each 
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Figure 3-1: A four-stage scenario tree 
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work unit corresponds to a time period. In addition, each stage has a limited number of  

work time estimation scenarios (low, moderate, high). To maintain the MSP model at a 

manageable size, we assume that each node contains a number of WDs. This means that 

uncertain work estimation is stationary for all the WDs included in a node in a particular 

time period. For example, if a work estimation is low for the first WD at node n in its 

corresponding time period, it should be low for the rest of the WDs at node n. To obtain 

the multi-stage stochastic formulation, each decision variable (𝑥𝑡) in Model 1 should be 

considered for each scenario. However, the flow of available information should be 

conformed by the decision process. This means that the decisions must be non-anticipative 

or implementable (Kazemi et al., 2010). The non-anticipativity condition (NAC) 

demonstrates that the decision variables for each node in a scenario tree at Stage t take the 

same value for any pair of indistinguishable scenarios at that stage. For example as shown 

in Figure 1, Scenarios 1, 2, 3 and 4 at Stage 2 in Node 2 are indistinguishable scenarios. 

There are two approaches to impose NAC in MSP leading to split variable and compact 

variable formulation. In split variable formulation, non-anticipativity is enforced by adding 

extra constraints explicitly. Even though this method increases the size of the problem, the 

decomposition approach can be used for splitting variables formulation. The explicit NAC 

for every pair of scenarios (s and s’) that are indistinguishable up to Stage t can be 

expressed as follows: 

(𝑥1(𝑠), … , 𝑥𝑡(𝑠)) = (𝑥1(𝑠′), … , 𝑥𝑡(𝑠′))                                                                            

       In the compact formulation approach, the non-anticipativity is considered in an 

implicit way and decision variables are associated with the nodes in a scenario tree. In this 

problem, the split variable approach is used to enforce NAC. There are several 

decomposition strategies in the literature for solving large-scale multi-stage stochastic 

programs (Ruszczyński 1997). I found that the Hybrid Scenario Cluster Decomposition 

(HSCD) algorithm for the mixed integer programming model presented by Kazemi et al. 
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(2016) is very interesting to us. I adopted the algorithm and modified it for the proposed 

multi-objective linear programming model.  

The procedures that are required to solve the multi-objective MSP team formation 

problem are summarized in Figure 3-2. 

 

 

 

 3.2.2.3. Scenario Cluster Decomposition Algorithm 

In the SCD algorithm, the original scenario tree is broken down into smaller sub-trees 

that share a number of predecessor nodes. Then, the multi-stage stochastic model is  

decomposed into scenario cluster sub models with an addition of a Lagrangian penalty to 

Input data and define different 

scenario tree 

Partition the scenario trees into a 

numbers of clusters  

Solve Z1 for all clusters Solve Z2 for all clusters 

Form the payoff table and find 

the range of Z2  

Construct the grid of Z2 for all 

clusters 

Add NAC into the objective 

function (Z1) 

Solve the multi-objective problem based on Epsilon 

Constraint Augmented method and sub-gradient method for 

each cluster of each grid 

Aggregate the solutions of all clusters for each grid and 

find the optimal solution of the main problem for each grid  

Construct Pareto Front 

Figure 3-2: The framework of the proposed model 
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its objective function to compensate the lack of NAC (Kazemi et al 2016).  In this 

algorithm, instead of solving all of the scenarios together that causes computational 

difficulty, each cluster is solved separately, and the solutions of all clusters are aggregated 

for the final solution.  

 

3.2.2.3.1. Partitioning the scenario tree into scenario cluster sub-trees 

The first step in an SCD algorithm is to choose the break stage (Rockfellar and Wets, 

1991; Escudero et al., 2012) to breakdown the scenario tree into a set of scenario cluster 

sub-trees. After choosing the break stage, the scenario tree is decomposed into 𝑃 scenario 

cluster sub-trees.  

The definitions that are needed in partitioning the scenario and formulation of scenario 

clusters are described in Table 3.2.   

 

Table 3.2: The Notations for the SCD Algorithm 

Notation Definition 

Ω Set of Scenarios 

ω Specific Scenario 

𝜏∗ Break-stage 𝜏∗ ∈ 𝑇 

𝑊𝜔 The probability assigned to ω 

𝑃 Set of scenario cluster sub-tree 𝑝 ∈ 𝑃 

𝑁𝑝 Set of nodes that belong to sub-tree 𝑝 ∈ 𝑃 

𝑁1 Set of nodes that belong to stage not after 𝜏∗ 

𝑁2 Set of nodes that belong to stage after 𝜏∗ 

𝑁𝜏

𝑝
 Set of nodes that belong to stage 𝜏 ∈ 𝑇 of sub-tree 𝑝 ∈ 𝑃 

𝑁𝜏 Set of nodes that belong to stage 𝜏 ∈ 𝑇 

𝑁1
𝑝
 𝑁1 ∩ 𝑁𝑝 

𝑁2
𝑝
 𝑁2 ∩ 𝑁𝑝 

𝜂𝑛 Set of sub-trees that have node n in common 

Ωp Set of scenarios belonging to sub-tree 𝑝 ∈ 𝑃 

𝑝𝜂𝑛 The first ordered sub-trees belonging to 𝜂𝑛 

𝑝
𝜂𝑛 The last ordered sub-trees belonging to 𝜂𝑛 
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For example, in Figure 3.1, the breaking stage is at 𝜏* = 2 and there are four scenario 

cluster sub-trees. Additionally,𝑁1 = {1,2,3}, 𝑁2 = {4,5, … ,15},𝑁1
1 = {1,2} and 𝑁2

1 =

{4,8,9}. 

 

3.2.2.3.2. Scenario cluster sub-model formulation 

After breaking down the scenario tree into P clusters, converting the multi-objective 

problem into its equivalent single objective, and finding the pay-off table and ei (i=1) for 

each cluster, the model is decomposed into P sub-models accordingly. In this problem, 

selecting candidates is considered as the first-stage decision. The assignment of selected 

candidates to each WD in each unit and their time allocation are considered as a recourse 

decision. Therefore, the single objective multi-stage stochastic sub-model for each cluster 

is presented by the compact formulation. This model is equivalent to the multi-objective 

model. 

Model 2.2: 

Min 𝑍1
𝑝 = ∑ 𝐶𝑖𝑌𝑖

𝑛
𝑖=1 + ∑ ∑ ∑ ∑ ∑ 𝑤𝑝(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝 +𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑆
𝑠=1𝑛∈𝑁1

𝑝

∑ ∑ ∑ ∑ ∑ 𝑝𝑟(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 + ∑ ∑ 𝑝𝑟(𝑛)𝐾𝑖(𝐼𝐷𝐿𝑇𝑖(𝑛))𝑛

𝑖=1𝑛∈𝑁4
𝑝

𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑆
𝑠=1𝑛∈𝑁2

𝑝 +

∑ 𝑒𝑝𝑠 × 𝑠2
𝑝

(𝑛)/𝑟2𝑛∈𝑁𝑝                                                                                               (2.2-1)  

𝑌𝑖 ≤ ∑ (𝑋𝑠
𝑖𝑤(𝑛))

𝑝
    ∀𝑖, 𝑝, 𝑛 ∈ 𝑁𝑝, 𝑠  𝑊

𝑤=1                                       (2.2-2) 

𝑌𝑖 ≤ (𝑋𝑠
𝑖𝑤(𝑛))

𝑝
    ∀𝑖, 𝑤, 𝑛 ∈ 𝑁𝑝, 𝑠                                                                                  (2.2-3) 

∑ ∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))

𝑝
∗𝐼

𝑖=1 𝛼𝑙
𝐿
𝑙=1 ≥ 𝑇𝑤𝑢

𝑠    ∀𝑢 ∈ 𝑈𝑛, 𝑛 ∈ 𝑁𝑝, 𝑠, 𝑤                                             (2.2-4) 

∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))

𝑝
≥ 𝑏𝑢𝑤𝑇𝑢𝑤

𝑠 (𝑋𝑠
𝑖𝑤(𝑛))

𝑝
 𝐿

𝑙=1  ∀𝑛 ∈ 𝑁𝑝, 𝑢 ∈ 𝑈𝑛, 𝑖, 𝑤, 𝑠                             (2.2-5) 

∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))

𝑝
≤ 𝑀(𝑋𝑠

𝑖𝑤(𝑛))
𝑝𝐿

𝑙=1   ∀ 𝑖, 𝑤, 𝑛 ∈ 𝑁𝑝, 𝑠                                                    (2.2-6) 

(ℎ𝑖
𝑠(𝑛))

𝑝
= 𝐻𝑖

0  − ∑ ∑ 𝑡𝑖𝑤𝑙
𝑠 (𝑛)     ∀𝑛 ∈ (𝑁𝑝 ∩ 𝑁1), 𝑖, 𝑠  𝐿

𝑙=1
𝑊
𝑤=1                                 (2.2-7) 

(ℎ𝑖
𝑠(𝑛))𝑝 ≥ (ℎ𝑖

𝑠(𝑎(𝑛)))𝑝 − ∑ ∑ (𝑡𝑖𝑤𝑙
𝑠𝐿

𝑙=1
𝑊
𝑤=1 (𝑛))𝑝   ∀𝑛 ∈ 𝑁𝑝, 𝑖, 𝑠                           (2.2-8) 

∑ ∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 ≤ 𝐻𝑖

0𝑌𝑖        ∀
𝐿
𝑙=1 𝑛 ∈ 𝑁𝑝𝑊

𝑤=1 , 𝑖, 𝑠                                                            (2.2-9) 

∑ ∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 ≤ ℎ𝑖

𝑠(𝑎(𝑛))     𝑛 ∈ 𝑁𝑝, 𝑖, 𝑠                                         𝐿
𝑙=1

𝑊
𝑤=1                 (2.2-10) 

(ℎ𝑖
𝑠(𝑛))𝑝 ≥ (𝑍𝑖(𝑛))𝑝    ∀𝑛 ∈ 𝑁4

𝑝
, 𝑠, 𝑖                                                                             (2.2-11) 
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(𝑍𝑖(𝑛))𝑝 ≤ 𝑀𝑌𝑖      ∀𝑛 ∈ 𝑁4

𝑝
, 𝑖, 𝑠                                                                                   (2.2-12) 

(𝑍𝑖(𝑛))𝑝 ≥ 𝑀(1 − 𝑌𝑖) + (ℎ𝑖
𝑠(𝑛))𝑝     ∀𝑛 ∈ 𝑁4

𝑝
, 𝑖, 𝑠                                                  (2.2-13)                                             

∑ ∑ ∑ ∑ ∑ 𝐸𝑖𝑤𝑙 (𝑡𝑖𝑤𝑙
𝑠 (𝑛))

𝑝
𝑙 − 𝑠2

𝑝(𝑛)𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1 = 𝑒2

𝑘𝑝(𝑛)∀𝑛 ∈ 𝑁𝑝, 𝑘 ∈ 𝑞   (2.2-14) 

(𝑋𝑖𝑤
𝑠 (𝑛))𝑝, 𝑌𝑖  ∈ {0,1}, (ℎ𝑖(𝑛))

𝑝
≥ 0, (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝 ≥ 0, 𝑠2
𝑝(𝑛) ≥ 0, 𝐼𝐷𝐿𝑇𝑖(𝑛) ≥ 0  (2.2-15) 

where n represents nodes in a scenario tree, a(n) is the ancestor of node n, s is the scenario 

of work estimation, 𝑈𝑛 is a set of work units related to node n. The node probability before 

break stage for each sub-tree 𝑝  can be expressed as  

𝑤𝑝(𝑛) = ∑ 𝑤𝜔(𝑛)𝜔𝜖Ω𝑝 , where 𝑤𝜔 is the likelihood of scenario (Escudero et al., 2012).  

The sub-problems in Model 2 should be connected to each other by enforcing NAC: 

(ℎ𝑖(𝑛))
𝑝

− (ℎ𝑖(𝑛))
𝑝′

= 0   ∀𝑖, 𝑝, 𝑝′ ∈ 𝜂𝑛: 𝑝 ≠ 𝑝′, 𝑛 ∈ 𝑁1                                   (2.2-16) 

(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 − (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝′
= 0   ∀𝑖, 𝑤, 𝑙, 𝑠, 𝑝, 𝑝′ ∈ 𝜂𝑛: 𝑝 ≠ 𝑝′, 𝑛 ∈ 𝑁1                   (2. 2-17) 

(𝑋𝑖𝑤𝑙
𝑠 (𝑛))𝑝 − (𝑋𝑖𝑤𝑙

𝑠 (𝑛))𝑝′
= 0   ∀𝑖, 𝑤, 𝑙, 𝑠, 𝑝, 𝑝′ ∈ 𝜂𝑛: 𝑝 ≠ 𝑝′, 𝑛 ∈ 𝑁1                  (2.2-18) 

Each of the equality constraints in Equations (2.2-16, 2.2-17, 2.2-18) can be converted 

into two inequality constraints as follows (Kazemi et al., 2016).  

(ℎ𝑖(𝑛))
𝑝

− (ℎ𝑖(𝑛))
𝑝+1

≤ 0         ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                                (2.2-19) 

(ℎ𝑖(𝑛))𝑝𝜂𝑛 − (ℎ𝑖(𝑛))𝑝𝜂𝑛 ≤ 0         ∀𝑛 ∈ 𝑁1                                                              (2.2-20) 

(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 − (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝+1 ≤ 0    ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                                 (2.2-21) 

(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝𝜂𝑛 − (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝𝜂𝑛 ≤ 0      ∀𝑛 ∈ 𝑁1                                                           (2.2-22) 

(𝑋𝑖𝑤𝑙
𝑠 (𝑛))𝑝 − (𝑋𝑖𝑤𝑙

𝑠 (𝑛))𝑝+1 ≤ 0    ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                              (2.2-23) 

(𝑋𝑖𝑤𝑙
𝑠 (𝑛))𝑝𝜂𝑛 − (𝑋𝑖𝑤𝑙

𝑠 (𝑛))𝑝𝜂𝑛 ≤ 0      ∀𝑛 ∈ 𝑁1                                                        (2.2-24) 

Then, the multi-stage stochastic (MSS) model can be formulated by using the splitting 

variable approach for all the sub-trees (Escudero et al., 2012) of each grid, as shown in 

Model 3.  
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Model 3: 

𝑀𝑖𝑛 𝑍𝑀𝑆𝑆𝑃  = ∑ 𝐶𝑌𝑖
𝐼
𝑖=1 + ∑ ∑ ∑ ∑ ∑ ∑ 𝑤𝑝(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝 +𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑆
𝑠=1𝑛∈𝑁1

𝑝
𝑃
𝑝=1

∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝑟(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝𝐿

𝑙=1
𝐼
𝑖=1

𝑊
𝑤=1

𝑆
𝑠=1𝑛∈𝑁2

𝑝
𝑃
𝑝=1 +

∑ ∑ ∑ 𝑝𝑟(𝑛)𝐾𝑖(𝐼𝐷𝐿𝑇(𝑛))𝑝 + ∑ ∑ 𝑒𝑝𝑠 × 𝑠2
𝑝

(𝑛)/𝑟2𝑛∈𝑁𝑝
𝑃
𝑝=1

𝑛
𝑖=1𝑛∈𝑁4

𝑝
𝑃
𝑝=1        (2.3-1)  

Subject to: 

𝑌𝑖 ≤ ∑ (𝑋𝑠
𝑖𝑤(𝑛))

𝑝
     ∀𝑝 ∈ 𝜂𝑛, 𝑖, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑠  𝑊

𝑤=1                                               (2.3-2) 

𝑌𝑖 ≤ (𝑋𝑠
𝑖𝑤(𝑛))

𝑝
     ∀𝑝 ∈ 𝜂𝑛, 𝑤, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑠                                                       (2.3-3)                                                                 

(ℎ𝑖(𝑛))
𝑝

= 𝐻𝑖
0 − ∑ ∑ 𝑡𝑖𝑤𝑙

𝑠 (𝑛)     ∀𝑝 ∈ 𝜂𝑛, 𝑛 ∈ 𝑁1, 𝑖, 𝑠            𝐿
𝑙=1

𝑊
𝑤=1                     (2.3-4) 

(ℎ𝑖(𝑛))
𝑝

= (ℎ𝑖(𝑎(𝑛)))
𝑝

− ∑ ∑ (𝑡𝑖𝑤𝑙
𝑠𝐿

𝑙=1
𝑊
𝑤=1 (𝑛))𝑝    ∀𝑝 ∈ 𝜂𝑛, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑖, 𝑠  (2.3-5) 

∑ ∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 ≤ 𝐻𝑖

0𝑌𝑖         ∀𝑝 ∈ 𝜂𝑛,𝐿
𝑙=1 𝑛 ∈ {𝑁1, 𝑁2}𝑊

𝑤=1 , 𝑖, 𝑠                               (2.3-6) 

∑ ∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 ≤ ℎ𝑖(𝑎(𝑛))      ∀𝑝 ∈ 𝜂𝑛, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑖, 𝑠            𝐿

𝑙=1
𝑊
𝑤=1               (2.3-7) 

∑ ∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝𝛼𝑙

𝐼
𝑖=1

𝐿
𝑙=1 ) ≥ 𝑇𝑢𝑤

𝑠 (𝑛)  ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑢 ∈ 𝑈𝑛, 𝑤, 𝑠            (2.3-8) 

∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 ≥ 𝑏𝑢𝑤𝑇𝑢𝑤

𝑠 (𝑋𝑠
𝑖𝑤(𝑛))

𝑝𝐿
𝑙=1  ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑢 ∈ 𝑈𝑛, 𝑖, 𝑤, 𝑠   (2.3-9) 

∑ (𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝) ≤ 𝑀(𝑋𝑠

𝑖𝑤(𝑛))𝑝𝐿
𝑙=1   ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈ {𝑁1, 𝑁2}, 𝑢 ∈ 𝑈𝑛, 𝑖, 𝑤, 𝑠          (2.3-10) 

(ℎ𝑖
𝑠(𝑛))𝑝 ≥ (𝐼𝐷𝐿𝑇𝑖(𝑛))𝑝    ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈ 𝑁4

𝑝
, 𝑠, 𝑖                                                 (2.3-11) 

(𝐼𝐷𝐿𝑇𝑖(𝑛))𝑝 ≤ 𝑀𝑌𝑖      ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈ 𝑁4

𝑝
, 𝑠, 𝑖                                                        (2.3-12) 

(𝐼𝐷𝐿𝑇𝑖(𝑛))𝑝 ≥ 𝑀(1 − 𝑌𝑖) + (ℎ𝑖
𝑠(𝑛))𝑝   ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈ 𝑁4

𝑝
, 𝑠, 𝑖                           (2.3-13) 

∑ ∑ ∑ ∑ ∑ 𝐸𝑖𝑤𝑙 (𝑡𝑖𝑤𝑙
𝑠 (𝑛))

𝑝
𝑙 − 𝑠2

𝑝(𝑛)𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1 = 𝑒2

𝑘𝑝(𝑛)  ∀ 𝑝 ∈ 𝜂𝑛, 𝑛 ∈

{𝑁1, 𝑁2}, 𝑘 ∈ 𝑞                                                                                                       (2.3-14) 

(ℎ𝑖(𝑛))
𝑝

− (ℎ𝑖(𝑛))
𝑝+1

≤ 0         ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                                 (2.3-15) 

(ℎ𝑖(𝑛))𝑝𝜂𝑛 − (ℎ𝑖(𝑛))𝑝𝜂𝑛 ≤ 0          ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                               (2.3-16) 

(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝 − (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝+1 ≤ 0    ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                                  (2.3-17) 

(𝑡𝑖𝑤𝑙
𝑠 (𝑛))𝑝𝜂𝑛 − (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝𝜂𝑛 ≤ 0    ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                               (2.3-18) 

(𝑋𝑖𝑤
𝑠 (𝑛))𝑝 − (𝑋𝑖𝑤

𝑠 (𝑛))𝑝+1 ≤ 0    ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                                   (2.3-19) 

(𝑋𝑖𝑤
𝑠 (𝑛))𝑝𝜂𝑛 − (𝑋𝑖𝑤

𝑠 (𝑛))𝑝𝜂𝑛 ≤ 0    ∀𝑝 = 𝑝𝜂𝑛 , … , 𝑝
𝜂𝑛 , 𝑛 ∈ 𝑁1                                (2.3-20) 
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𝑌𝑖 , 𝑋𝑖𝑤
𝑝 (𝑛) ∈ {0,1},   (ℎ𝑖(𝑛))

𝑝
≥ 0, (𝑡𝑖𝑤𝑙

𝑠 (𝑛))𝑝 ≥ 0, 𝑠2
𝑝(𝑛) ≥ 0, 𝐼𝐷𝐿𝑇𝑖

𝑝(𝑛) ≥ 0  ∀ 𝑝 ∈ 𝜂𝑛, 

𝑛 ∈ {𝑁1, 𝑁2}                                                                                                             (2.3-21)  

    

The NACs constraints in Equations (2.3-15 – 2.3-20) in Model 3 can be relaxed by 

adding Lagrangian penalty 𝜇1
𝑝(𝑛) for Constraints (2.3-15 and 2.3-16), 𝜇2

𝑝(𝑛) for 

Constraints (2.3-17 and 2.3-18), and 𝜇3
𝑝(𝑛) for Constraints (2.3-19 and 2.3-20) to the 

objective function to compensate for the lack of non-anticipativity. The sub-gradient 

algorithm can be used to solve the Lagrangian model (Boyds, 2008). The Lagrangian 

relaxation of Model 3 after relaxing the NACs can be presented as follows:  

Model 4 (𝜇1, 𝜇2, 𝜇3, 𝑃): 

𝑀𝑖𝑛 𝑍𝑆𝐶𝐷 = ∑ 𝐶𝑌𝑖
𝐼
𝑖=1 + ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑤𝑝(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑢𝑤𝑙

𝑠 (𝑛))𝑝 +𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆 
𝑠=1𝑛∈𝑁1

𝑝
𝑃
𝑝=1

∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝑟(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑢𝑤𝑙
𝑠 (𝑛))𝑝 +𝐿

𝑙=1
𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1𝑛∈𝑁2

𝑝
𝑃
𝑝=1

∑ ∑ ∑ 𝑝𝑟(𝑛)𝐾𝑖(𝐼𝐷𝐿𝑇𝑖(𝑛))𝑝 + ∑ ∑ 𝑒𝑝𝑠(𝑠2
𝑝

(𝑛)/𝑟2𝑛∈𝑁𝑝
𝑃
𝑝=1

𝑛
𝑖=1𝑛∈𝑁4

𝑝
𝑃
𝑝=1 +

∑ ∑ ∑ 𝜇1
𝑝(𝑛)((ℎ𝑖(𝑛))

𝑝
− (ℎ𝑖(𝑛))

𝑝+1
)𝐼

𝑖=1 + ∑ ∑ 𝜇1

𝑝𝜂𝑛
(𝑛)((𝐼

𝑖=1𝑛∈𝑁1𝑛∈𝑁1

𝑝𝜂𝑛−1

𝑝=𝑝𝜂𝑛
ℎ𝑖(𝑛))𝑝𝜂𝑛 −

(ℎ𝑖(𝑛))
𝑝𝜂𝑛

) + ∑ ∑ ∑ ∑ ∑ ∑ ∑ 𝜇2
𝑝(𝑛)((𝑡𝑖𝑢𝑤𝑙

𝑠 (𝑛))𝑝 −𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1𝑛∈𝑁1

𝑝𝜂𝑛−1

𝑝=𝑝𝜂𝑛

(𝑡𝑖𝑢𝑤𝑙
𝑠 (𝑛))𝑝+1)  + ∑ ∑ ∑ ∑ ∑ ∑ 𝜇2

𝑝𝜂𝑛
(𝑛)((𝑡𝑖𝑢𝑤𝑙

𝑠 (𝑛))𝑝𝜂𝑛 −𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1𝑛∈𝑁1

(𝑡𝑖𝑢𝑤𝑙
𝑠 (𝑛))𝑝𝜂𝑛 ) + ∑ ∑ ∑ ∑ 𝜇3

𝑝(𝑛)((𝑋𝑖𝑤
𝑠 (𝑛))𝑝 − (𝑋𝑖𝑤

𝑠 (𝑛))𝑝+1)𝐼
𝑖=1

𝑊
𝑤=1 +𝑛∈𝑁1

𝑝𝜂𝑛−1

𝑝=𝑝𝜂𝑛

∑ ∑ 𝜇3

𝑝𝜂𝑛
(𝑛)(𝐼

𝑖=1𝑛∈𝑁1
(𝑋𝑖𝑤

𝑠 (𝑛))𝑝𝜂𝑛 −

(𝑋𝑖𝑤
𝑠 (𝑛))𝑝𝜂𝑛 )                                                                                                (2.4-1)    

   

Subject To:  

Equations (2.3-2 – 2.3-14) and (2.3-21). 

According to the SCD algorithm, Model 4 can be decomposed into P smaller sub- 

problems. Its objective function for each grid can be obtained by summing the objective 

function values of all sub-trees for that grid.   



 

31 

 

For each cluster 𝑝, that 𝑝=𝑝
𝜂𝑛° + 1, … , 𝑝

𝜂𝑛0  where 𝑛0 ∈ 𝑁1, the scenario cluster sub-

model can be presented (in compact formulation) as follows: 

Model 5: 

𝑀𝑖𝑛 𝑍𝑆𝐶𝐷
𝑝

= ∑ 𝐶𝑌𝑖
𝐼
𝑖=1 +

∑ ∑ 𝑝𝑟(𝑛)𝐾𝑖(𝐼𝐷𝐿𝑇𝑖(𝑛))𝑛
𝑖=1𝑛∈𝑙𝑎𝑠𝑡𝑛𝑜𝑑𝑒𝑠 ∑ ∑ ∑ ∑ ∑ ∑ 𝑤𝑝(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑢𝑤𝑙

𝑠 (𝑛))𝑝𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1𝑛∈𝑁1

𝑝 +

∑ ∑ ∑ ∑ ∑ ∑ 𝑝𝑟(𝑛)𝑟𝑤𝑙(𝑡𝑖𝑢𝑤𝑙
𝑠 (𝑛))𝑝 + ∑ ∑ (𝜇1

𝑝(𝑛) −𝐼
𝑖=1𝑛∈𝑁1

𝑝
𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1𝑛∈𝑁2

𝑝

𝜇1
𝑝−1

(𝑛))(ℎ𝑖(𝑛))𝑝 + ∑ ∑ ∑ ∑ ∑ ∑ (𝜇2
𝑝(𝑛) − 𝜇2

𝑝−1
(𝑛)) (𝑡𝑖𝑢𝑤𝑙

𝑠 (𝑛))𝑝  +𝐿
𝑙=1

𝐼
𝑖=1

𝑊
𝑤=1

𝑈
𝑢=1

𝑆
𝑠=1𝑛∈𝑁1

𝑝

∑ ∑ ∑ (𝜇3
𝑝(𝑛) − 𝜇3

𝑝−1
(𝑛))(𝑋𝑠

𝑖𝑤(𝑛))
𝑝𝐼

𝑖=1
𝑊
𝑤=1𝑛∈𝑁1

𝑝 + ∑ 𝑒𝑝𝑠 × 𝑠2
𝑝

(𝑛)/𝑟2𝑛∈𝑁𝑝                  (2.5-1)    

Subject to:  

Equations (2.2-2 – 2.2-15). 

For 𝑝 = 𝑝
𝜂𝑛° , the term (𝜇2

𝑝(𝑛) − 𝜇2
𝑝−1

(𝑛)) should be changed to (𝜇2

𝑝𝜂𝑛
(𝑛) − 𝜇2

𝑝𝜂𝑛
(𝑛)) 

in the objective function. The scenario cluster sub-models in Model 5 are solved for each 

grid (𝑒2
𝑘) by implementing the sub-gradient algorithm (Kazemi et al., 2016).  

The SCD algorithm solves each cluster independently. Therefore, the first stage 

decision cannot be fixed for all the clusters. To fix the first stage decision for all the 

clusters, a First Stage Variable Fixing Heuristic (FVFH) algorithm is proposed. Model 5 is 

solved for all clusters by the sub-gradient algorithm after implementing the FVFH 

algorithm. After fixing the first stage decision by FVFH, the constraint in Equation (2.5-2) 

is added to Model 5 and the model is solved by fixing the values for 𝑌𝑖.  

 

Algorithm 1: FVFH Algorithm 

Step 1:  Solve the MSMIP (Model 5) for all clusters for each grid and obtain the vector of 

binary decision variable (𝑌𝑖) for all clusters 

For (∀ 𝑘 ∈ 𝑞, 𝑖 ∈ 𝐼) do 

Step 2:  Over all clusters, (𝑝) count the number of clusters where the given binary 

variable takes 1. 

 Step 3: Update Counter = ∑ 𝑌𝑖
𝑃
𝑝=1  
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 Step 4: Fix the value of (𝑌𝑖) as follows and solve the MSMIP by the updated value of 

(𝑌𝑖) (first stage decision variable). 

       𝑌𝑖
𝑒 = {

1                𝐶𝑜𝑢𝑛𝑡𝑒𝑟 >
𝑃

2

0              𝐶𝑜𝑢𝑛𝑡𝑒𝑟 ≤
𝑃

2

 

  End for 

 

If 𝑌𝑖
𝑒 equals one, constraint in Equation (5-2) needs to be added to Model 5.  

𝑌𝑖 = 𝑌𝑖
𝑒                                                                                                                        (2.5-2)                                                                                                                                 

        

The presented solution methodology is implemented using Gurobi and Python. It takes 

less than six hours to solve a realistic problem instance with as many as 120 candidates. 

The project team formation problem is not a daily operational problem that needs to be run 

multiple times a day, so the solution time is not overly concerned. 
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RESULTS AND DISCUSSION 

The presented models are implemented using Gurobi and Python. It takes less than 40 

minutes for the first model  and less than 6 hours for the second model to solve a realistic 

problem instance with as many candidates as 120 . The project team formation problem is 

not a daily operational problem that needs to be run multiple times a day, so the solution 

time is not overly concerned. 

4.1. Case Study 

The global cost of Maintenance, Repair, and Overhaul (MRO) activities in 2015 was 

nearly $67.1B. Therefore, MRO plays a significant role in the economic activities of a 

business (Harrison.M). The main concerns of MRO are downtime, quality, and cost. An 

airline only earns revenue when its aircraft fly. As a result, downtime is a critical factor 

that should be considered in MRO. The quality of the MRO activities, which is expressed 

by reliability, is another priority. The quality of MRO depends on the quality of labors used 

in an MRO project, and it also affects the downtime. The price of MRO activities is an 

important issue in the industry(Borkowski 2007). Therefore, it is essential to develop a 

model that can help plan the MRO activities with objectives such as maximizing the quality 

of the tasks and minimizing the cost of performing the activities.  

The MRO market is divided into four distinct areas: aircraft heavy maintenance, engine 

overhaul, component MRO, and line maintenance. The global MRO market shared by each 

area in 2015 is shown in Figure 4.1 (Harrison.M). Labor cost for heavy maintenance, line 

maintenance, engine and component MRO account for 70%, 85%, 20% and 40% of the 

total cost, respectively (Aero Strategy Management Consulting, 2009). As a result, labor 

cost is the dominant cost component of heavy maintenance and line maintenance. 

Therefore, developing a model that can minimize the labor cost and simultaneously 

maximize the quality of labors in these two types of MRO is necessary 
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Figure 4-1: MRO market by activity type 

 

4.1.1. Case Study for the First Model 

In this case study, a contract for Level D check of aircraft heavy maintenance for one 

aircraft is considered. Level D check is the inspection and repair of the aircraft airframe, 

performed at specified time intervals. In Level D check, the aircraft is taken apart 

completely and each part checked thoroughly in order to return the aircraft to its original 

condition. Also, it requires 10000 to 30000 man hours (Aero Strategy Management 

Consulting, 2009).  Level D check includes 4-unit works, namely mechanical, airframe and 

structure, avionic-electrical equipment and avionic- nonelectrical equipment. Each unit has 

five WDs.  

The amount of required time for an aircraft is stochastic and will not be known until 

after inspections. Three discrete scenarios are considered for the total amount of time 

needed for an aircraft. It is a random variable drawn from a range as shown in Table 4-1. 

(Aero Strategy Management Consulting, 2009). 

 

Table 4.1: The data for total required man hours in different scenarios 

Scenario  Total Required man hours Probability  

1  Uniform(8000,10000) 1/3 

2 Uniform(15000,20000) 1/3 

3 Uniform(25000,30000) 1/3 

 

The first stage decision is to employ a subset of 120 candidates and assign them to 

different WDs in different units. Then in the second stage, allocate the time to each selected 

40%

22%

19%

19%

Engin Compnent AirFrame Line
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candidate for working in WDs in different units. What distinguishes individuals from each 

other is their competency to work in each WD and their availability. We assume that each 

individual works for 12 hours and 7 days of a week (Borkowski 2007). And, the overhaul 

for each aircraft should be accomplished in 6 weeks. Therefore, the time period of the 

project is six month. After each individual is employed in the first stage, there will be a 

fixed cost equal to $2000 for training and accommodation. We consider five competency 

levels for each WD and obtain the score of each candidate for each WD based on the 

average of their score in all of the competencies for that WD.  

The employees are paid hourly with a rate that is dependent upon their competency in 

each WD that ranges from $10/hr to $50/hr. The rate of completing a task at competency 

levels 2 to 5 are from 0.1 to 1 task/hr and for level 0 is 0.01 task/hr. We assume a penalty 

cost of $20/hr for idle (unutilized) time of the selected candidates at the end of the project. 

Once an induvial is assigned to a WD in a unit he or she should work at least 8% of total 

time of that task. Figure 4.2 illustrates the results in a Pareto optimal curve. As shown in 

the plot the competency increases as the cost increases and it confirms that the two 

objective functions in this problem are conflicting. In Grid Points 1 to 5, 102, 98, 90, 86, 

and 84 candidates are selected respectively. The Pareto optimal curves help DMs to make 

a decision by considering the whole picture and based on DMs’ preference one grid point 

can be selected as the solution. As an example if DM prefers cost to competency the Grid 

Point 1 or 2 can be selected. 

The expected value of perfect information (EVPI) and the value of stochastic solution 

(VSS) have been used to determine the importance of using stochastic programming in 

mathematical modeling (Birge 1982). 

The EVPI measures the maximum amount of money a DM would be worthwhile to 

spend in order to know the complete and accurate information about the future.  
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Figure 4-2: The Pareto optimal curve 

 

The EVPI is the differences between Wait-and-See (WS) solution and the recourse 

problem solution (RP) approach and is defined as EVPI=RP-WS. In the WS approach, 

perfect information is available. And the model is solved for each scenario separately, and 

the mean of objective functions is known as WS solution. Table 4.2 shows the solution of 

RP, WS and EVPI for Z1 of each grid.  The positive value of EVPI for each grid shows the 

maximum amount of money DM would be ready to spend to obtain the perfect information 

about the future. These results are consistent with the following expressions (4-1 and 4-2) 

those are proven the necessity of using two-stage stochastic programming in our specific 

problem (Madansky 1960). 

𝑅𝑃 ≥ 𝑊𝑆 (4.1)      

𝐸𝑉𝑃𝐼 ≥ 0  (4.2) 

 

Table 4.2: The results of EVPI 

Grid RP WS EVPI 

1 1,134,004 826,710 307,294 

2 1,189,929 896,888 293,041 

3 1,233,440 956,027 277,413 

4 1,291,558 1,031,695 259,863 

5 1,380,604 1,105,910 274,694 
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The value of stochastic solution (VSS) is the concept that precisely measures the 

expected gain form solving the stochastic model instead of solving the deterministic model. 

The VSS is the differences between the expected value solution (EEV) and recourse 

problem solution (RP) and is defined as VSS=EEV-RP.  In EEV approach, first all random 

variables are replaced by their mean value and the model is solved (EV). Then the expected 

cost is obtained when the optimal variables of EV approach are considered as an input. The 

computation shows that there is no feasible solution for the second-stage decision in our 

problem. Therefore, according to Bridge (1981)(Birge 1982) Bridge (1981)𝐸𝐸𝑉 = +∞.  

And these results are consistent with the following inequalities (Madansky 1960):  

𝐸𝐸𝑉 ≥ 𝑅𝑃 ≥ 𝑊𝑆 ≥ 𝐸𝑉  

These reports confirm the accurateness of two-stage stochastic program for our specific 

problem.  

4.1.2. Case Study for the Second Model 

In this case study, a team formation problem is considered for a level D of aircraft 

heavy maintenance project. Aircraft heavy maintenance is the inspection and repair of the 

aircraft airframe, performed at specified time intervals. Scheduled inspections are typically 

based on a fixed number of flight hours and the number of take-offs and landings. Level D 

includes a comprehensive structural inspection and overhaul of the aircraft, intending to 

return it to its original condition. The frequency of a level D check is approximately every 

20,000 to 24,000 flight hours, and it takes 30 to 45 days. Additionally, it requires 10,000 

to 30,000 man hours (Aero Strategy Management Consulting, 2009).  

A contract for overhaul of four commercial aircraft is considered. Due to the limitation 

of resources such as the capacity of the maintenance station (hangar) and repair shops, only 

one aircraft at a time can undergo the overhaul. The amount of required man hours for each 

aircraft is stochastic and will not be known until after inspections. Three discrete scenarios 



 

38 

 

are considered for the total amount of work needed for each aircraft, which is a random 

variable drawn from a range, as shown in Table 4.3. 

 

Table 4.3: The data for total required man hours in different scenarios 

Scenario  Total Required man hours Probability  

1  Uniform (8000,10000) 1/3 

2 Uniform (15000,20000) 1/3 

3 Uniform (25000,30000) 1/3 

 

There are five WDs for each aircraft, and each aircraft is considered as a work unit. 

The first stage decision is to employ a subset of 115 candidates. Then, in each stage, we 

assign the individuals from the subset to the different WD in the work unit corresponding 

to that stage. What distinguishes individuals from each other is their competency to work 

in each WD and their availability. We assume that each individual works for 12 hours and 

7 days a week (Borkowski, 2007). After each individual is employed in each stage, there 

will be a fixed cost equal to $2,000 for training and accommodation. We consider three 

competency levels for each WD. The employees are paid hourly with a rate that is 

dependent on their competency in each WD that ranges from $10/hr to $40/hr. The rate of 

completing a task at competency levels 1, 2, and 3 are 0.2, 0.8, and 1 task/hr, respectively. 

We assume a penalty cost of $20/hr for the idle (unutilized) time of the individuals at the 

end of the last stage. Once an individual is assigned to a WD in a unit, he or she should 

work at least 8% of total time of that task. The solution for the presented problem instance 

is as follows.  

The value of the total cost and total competency for each grid is shown in Table 4.4. 

Additionally, the Pareto optimal set is depicted in Figure 4. As shown in Figure 4.3 and 

Table 4.4, competency increases as the cost increases and it confirms that two objective 

functions in this problem are conflicting. As it is shown in Table 4.4, the maximum 

competency is obtained at Grid 4, and its corresponding cost is 8,932,187. Furthermore, 

minimum cost is achieved at Grid 1 and its corresponding competency is 4,999,374. 

Therefore, the Pareto optimal set helps DMs to make the decision by considering the whole 
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picture, and, based on DMs’ preference, one grid point is selected as the solution. In Grid 

1, 90 individuals are selected as the first-stage decision, in Grid 2, 64 candidates are 

selected, and in Grids 3 and 4, 87 and 110 candidates are selected, respectively, as the first-

stage decision. Additionally, the solution of each cluster for each grid will be provided to 

DMs. The selected candidates in Grid 1 do not have the maximum competency and because 

of this, more candidates are selected to accomplish the project. 

 

Table 4.4: The value of each objective function for each grid 

Grid Z1 Z2 

1 $4,999,374 451,651 

2 $5,978,060 657,733 

3 $7,220,329 863,814 

4 $8,932,187 1,069,895 

      

 

 

Figure 4-3: The Pareto optimal set 
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CONCLUSIONS AND RECOMMENDATIONS 

    In this study, I proposed two new and generic multi-objective stochastic model for a 

team formation problem for simultaneous optimization of cost and competency (the two 

important factors in team formation problems). I applied the Augmented Epsilon-

Constraint method to convert the multi-objective model to its equivalent single objective 

model. The computational challenge in the multi-stage stochastic model was resolved by 

partitioning the relatively large size of scenarios into small sub-scenarios; subsequently, 

SCD and a sub-gradient algorithm were adopted for the multi-objective model. The set of 

Pareto-optimal solutions has been generated by the Augmented Epsilon Constraint method, 

which showed the tradeoff between the two objectives and gave important insights into the 

problem. A case study from the airline industry was presented to demonstrate an 

application of the model and its solution methodology, in which a contractor for 

overhauling a set of aircraft was to make a decision for employing a subset of individuals 

from a pool of candidates such that labor cost is minimized and quality of maintenance is 

maximized by choosing candidates with high competency. The model can help DMs to 

form a team in an effective and efficient way under uncertain environments where the 

amount of required man hours is unknown in different stages of a project. 

Several promising new research directions could be explored beyond the current 

research. Additional objectives such as maximization of compatibility in collaboration 

between individuals who work in the same WD can be considered. Additional employment 

scenarios can also be considered in modeling. Application and sensitivity analysis of the 

presented work in various industries are also encouraged.     
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