
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

5-2005

Using Platform Express for System-on-Chip Design
Mardavsinh Harisinh Wala
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Wala, Mardavsinh Harisinh, "Using Platform Express for System-on-Chip Design. " Master's Thesis, University of Tennessee, 2005.
https://trace.tennessee.edu/utk_gradthes/2545

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Mardavsinh Harisinh Wala entitled "Using Platform Express
for System-on-Chip Design." I have examined the final electronic copy of this thesis for form and content
and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of
Science, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Gregory D. Peterson, Mohammed Ferdjallah

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Mardavsinh Harisinh Wala entitled “Using
Platform Express for System-on-Chip Design.” I have examined the final electronic copy of
this thesis for form and content and recommend that it be accepted in partial fulfillment
of the requirements for the degree of Master of Science, with a major in Electrical
Engineering.

We have read this thesis and
recommend its acceptance:

Gregory D. Peterson

Mohammed Ferdjallah

Donald W. Bouldin

Major Professor

Acceptance for the Council:

Anne Mayhew

Vice Chancellor and Dean of Graduate
Studies

(Original signatures are on file with official student records.)

Using Platform Express for System-on-Chip
Design

A Thesis
Presented for the

Master of Science Degree
University of Tennessee, Knoxville

Mardavsinh Harisinh Wala
May 2005

ii

Copyright © 2005 by Mardavsinh Wala.

All rights reserved.

iii

To my parents and all my teachers

iv

AACCKKNN OOWWLLEEDDGG EEMMEENNTTSS

Silent gratitude isn’t much use to anyone.
—Gladys Bertha Stern (1890-1973).

I would like to convey my sincere thanks to my academic and research advisor, Dr. Don
Bouldin, for allowing me to pursue this research opportunity under his able guidance. I
am thrilled that he let me lead the way here at UT, by being his first student to ever use
Platform Express for SoC design. I gratefully acknowledge Dr. Gregory Peterson and Dr.
Mohammed Ferdjallah for taking interest and serving on my committee.

Without the Mentor Graphics’ excellent tech support team, I would never have been
able to finish what I started. Special thanks to Mr. Tomas Thoresen for looking into
each of my Service Requests and for patiently answering all my queries. Many thanks to
Jiri “Mr. Leon” Gaisler of Gaisler Research, for the ‘how to’ on building the sparc-elf-
gcc compiler for Solaris and to our System Administer, Mr. Matt Disney, for help in
installing the build after finding several workarounds, suitable to our VLSI lab
machines. Thanks also to Mr. Klaus Knopper for making Knoppix—Linux-on-a-CD.

I am very grateful to Mr. Mark Alexander and the Vice Chancellor’s Office for the
Division of Student Affairs, for providing financial support in the form of Graduate
Technology Assistantship during my course of study. I am also grateful to the Associate
Dean of Students, Mr. J. J. Brown and the Dean of Students, Dr. Maxine Thompson for
offering me the GA opportunity during my final year. I also thank Dean Brown for his
flexibility and understanding while I was working towards finishing this thesis. I
consider myself to be very fortunate for having worked for all these outstanding people.

I express my special gratitude to my parents, Mr. Harish Wala and Mrs. Ranjan Wala,
for giving me the freedom to choose and for believing in my choices. Without their
moral, spiritual and lots of financial(!) support, I would not have come this far in life. A
big ‘Thank you!’ to all my uncles, aunts and cousins—in India and in the United
States—for making me feel at home every time I visited them.

I wish to thank my colleagues and friends in Knoxville for their friendship (and in no
particular order): Ashwin Balakrishnan, Karthik Kirubakaran, Jeongmin Jeon, Rajgopal,
Tanvir Alam, Wasima Khan and Yongpin Han, for their valuable tips in some of my
classes. Chaya Chandrasekaran, Barrett Bogue, Jill Patterson, Catherine Elliott and
Patrick Ladd, for being excellent work mates at the Dean of Students office. Faezeh
Jalali, for free tickets to the Clarence Brown Theatre and for occasionally lending her
wonderful 1992 Chrysler New Yorker. Rohan Thomas and Venkatesh Bhaskaran, for
having me as their virtual roommate and for all the field trips in and around Knoxville.
Ravi Aggarwal, Raghvendra Hegde, Gaurav Baone, Ikramuddin Shaik, Gagan Rajpal,
Shraddha Deodhar-Oak, Manisha Gautam and Niti Sharan, for all the dinners and
movies. Bhanuprasad Rekapalli, for being my personal trainer and gym buddy. Peter
Koffman and Chaya, for getting me inVOLved in UTHSMUN-2k5 and for inviting me
to ‘chill-n-grill’ at the home and away football games.

Lastly, I want to thank Ashita Dave, for all her support and encouragement and for
always being there for me.

v

AABBSS TTRR AA CCTT

The advent of nanoscale technology brings with it an increase in system complexity with

integrated circuit transistor numbers reaching hundreds of millions. Systems-on-chip are

attaining a level of complexity where design turn-around times are a major factor.

Reusing existing intellectual property blocks that are already verified for functionality

could help minimize the design time and increase system reliability. This allows the

designers to focus on more important product design aspects. Platform-based design is

an effective method to deal with the increasing pressure on time-to-market. The

approach also provides a practical solution to reduce the design and manufacturing

costs.

This thesis is a result of the of the ongoing Volunteer SoC project at the University of

Tennessee and in this, we explore the possibility of employing the Platform Express (PX)

tool for designing SoCs. The PX application enables system designers to rapidly build

and verify SoC design concepts. The tool also promotes Intellectual Property (IP)

integration within the built-in PX libraries. The tool utilizes XML for describing the IP

data, which allows smooth integration of IP into a single design from many different

sources.

We have followed the complete IP integration flow and have successfully installed a

component into the tool’s library and have also generated a system design using the

same IP.

vi

CCOONNTTEENNTTSS

1 ..1

INTRODUCTION ...1

1.1 THE SoC DESIGN CHALLENGE..1

1.2 MOTIVATION...4

1.3 THESIS GOALS ...7

1.4 PROJECT COMPONENTS...7

1.4.1 Leon2 Processor IP Core ...7
1.4.2 The AMBA Bus Interface ..8

1.5 THESIS ORGANIZATION ... 10

2 ... 12

BACKGROUND ... 12

2.1 FROM SCHEMATICS TO SOCs... 12

2.2 WHAT IS A PLATFORM? .. 15

2.2.1 Platform Postulates .. 16
2.2.2 Platform Types.. 17

3 ... 19

METHODOLOGY ... 19

3.1 PLATFORM-BASED DESIGN FLOW ... 19

3.2 ENHANCING THE Volunteer SoC PLATFORM.. 19

3.2.1 The AES (Rijndael) IP Core ... 20
Release Information... 20
General Description... 21
3.2.2 The Platform Express Environment ... 21
3.2.3 Defining the Bus Interface.. 24
3.2.4 Platform Express: Concepts and Objects ... 30

4 ... 36

IMPLEMENTATION .. 36

4.1 OBTAINING THE AES IP CORE .. 38

4.2 OBTAINING PLATFORM EXPRESS... 39

4.3 COMPILING THE IP CORE... 40

vii

4.4 INTEGRATING THE IP CORE... 42

4.4.1 Starting with the Compiled HDL Model .. 42
4.4.2 Configuring Buses .. 45
4.4.3 Describing the Component Appearance... 49
4.4.4 Setting up the Verification Environment.. 49
4.4.5 Adding Supporting Files.. 51
4.4.6 Generating a Black Box Component... 52

4.5 GENERATING A TEST DESIGN... 55

4.5.1 Building Designs Featuring Black Box IPs... 59
4.6 VERIFYING THE DESIGN.. 62

5 ... 63

CONCLUSIONS.. 63

5.1 CONTRIBUTIONS... 63

5.2 CURRENT STATUS AND FUTURE WORK .. 64

REFERENCES... 65

APPENDICES.. 68

Appendix A .. 69

VHDL SOURCE CODE LISTING ... 69

Appendix B .. 79

COMPONENT XML FILE... 79

Appendix C .. 83

THE sparc-elf-gcc BUILD FOR SOLARIS... 83

Appendix D.. 85

PARTIAL ‘BUILD’ LOG ... 85

VITA... 88

viii

LLIISSTT OOFF TTAABB LLEESS

Table 2.2-1: Some of the Many Commercially Available Reference Designs and
Platforms ... 18

Table 3.2-1: AES (Rijndael) Encryption Core integrated with Platform Express Release
Information... 20

Table 3.2-2: AES Core Bus Interface Signals.. 25

Table 3.2-3: Burst Signal Encoding .. 28

Table 3.2-4: AES Core Register Information.. 28

Table 3.2-5: Platform Express Object and Routine Types ... 31

Table 4.4-1: Signal Dumping Dialog Box Information ... 44

Table 4.4-2: Presentation Information... 49

ix

LLIISSTT OOFF FFIIGG UURREESS

Figure 1.1-1: Moore’s Law depicting increasing transistor complexity with advancement
in semiconductor manufacturing process technology ...2

Figure 1.1-2: Design Productivity Gap – Difference between the number of physical
transistors available on a chip (solid curve) and the number of transistors that can
be handled by current design tools(dashed curve) ...3

Figure 1.2-1: Design flow for Volunteer SoC. The selected IP is already verified for
correct functionality. ...5

Figure 1.2-2: Design flow using Platform Express™. The design is created from the
pre-installed IP components into the Platform Express™ library.5

Figure 1.2-3: The Platform Express™ Environment ...6

Figure 1.4-1: Leon2 Architecture ...8

Figure 1.4-2: The Advanced High-performance Bus Signals ..9

Figure 1.5-1: The Advanced Peripheral Bus Bridge Signals.. 10

Figure 2.1-1: From Schematics to SoCs... 13

Figure 2.1-2: Bridging the Design Productivity Gap ... 14

Figure 2.2-1: Platform Definitions.. 16

Figure 3.2-1: Platform-based Design Flow.. 20

Figure 3.2-2: AES Encryption Core Architecture .. 22

Figure 3.2-3: AES Encryption Core File Hierarchy ... 22

Figure 3.2-4: AES Core Interfaced with Input and Output RAM Blocks........................ 22

Figure 3.2-5: SPIRIT Schema and Generator Interface .. 24

Figure 3.2-6: The Platform Express Directory Structure.. 33

Figure 3.2-7: (a) Creating a VOLIPository library into pxLibraries; (b) Creating
subdirectories in VOLIPository; (c) Directory Structure Showing Location of the
aes.xml File of the aes Component. .. 35

Figure 4.1-1: IP Integration and Platform Creation using Platform Express 37

Figure 4.4-1: PxEdit Environment ... 43

Figure 4.4-2: Signal Dumping Dialog Box .. 43

Figure 4.4-3: HDL Location Specification .. 44

x

Figure 4.4-4: Bus Name Input Dialog Box ... 46

Figure 4.4-5: Bus Interface Specification... 46

Figure 4.4-6: Signal Mapping ... 46

Figure 4.4-7: Bus Connection and Memory Map Specification ... 46

Figure 4.4-8: Register Bank Window.. 47

Figure 4.4-9: Register List Input Table .. 47

Figure 4.4-10: Field List Information for controlReg.. 48

Figure 4.4-11: Field List Information for dataLoadReg .. 48

Figure 4.4-12: Field List Information for cipherOutReg .. 48

Figure 4.4-13: Field List Information for statusReg .. 48

Figure 4.4-14: Field List Information for memReg.. 48

Figure 4.4-15: Component Appearance Description... 50

Figure 4.4-16: Verification Environment Specifications ... 50

Figure 4.4-17: Fileset Specification ... 51

Figure 4.4-18: PxEdit Validation Message... 51

Figure 4.4-19: Invoking the Black Box Generator Interface .. 53

Figure 4.4-20: Component Editor Dialog Box ... 54

Figure 4.4-21: Bus Interface Dialog Box ... 54

Figure 4.4-22: BBC Generator Interface ... 54

Figure 4.4-23: bbcLib Creation Directory ... 54

Figure 4.4-24: bbcLib Creation Message ... 54

Figure 4.5-1: mcore_ahb Configuration Window .. 55

Figure 4.5-2: Updated Component Browser... 56

Figure 4.5-3: AHB-APB Bus Bridge Dialog Box ... 57

Figure 4.5-4: Bus Bridge Configuration ... 57

Figure 4.5-5: Interrupt Bus Configuration... 57

Figure 4.5-6: Leon2-AES Before AHB Bus Attachment .. 57

Figure 4.5-7: Leon2-AES After AHB Bus Attachment... 57

xi

Figure 4.5-8: Directory Structure of Generated Design .. 58

Figure 4.5-9: Output Pane Build Log Messages ... 59

Figure 4.5-10: Seamless Environment – ModelSim Application with Waveform Viewer 60

Figure 4.5-11: The build.xml file before Modification (a); Modified Build File with
Verilog Compile Instructions (b) ... 62

1

11
IINNTTRROODDUUCCTTIIOONN

There is nothing more difficult to take in hand, more perilous to conduct or more uncertain in its
success than to take the lead in the introduction of a new order of things.

—Niccolo Machiavelli (1469-1527), The Prince.

ith continued advancement in silicon process technologies, the data density on

integrated circuit chips is growing by leaps and bounds in accordance to what

is widely known as Moore’s Law [1]—first stated by Intel founder Gordon Moore in

1965. During recent years, the sudden increase in gate count (Figure 1.1-1) and the steady

demand for mobile, portable, high-speed gadgets has resulted in a large market for

electronic consumables in the form of cell phones, PDAs, digital camcorders, personal

CD/DVD players, video game consoles and the like. These factors have entailed chip

designers to design exceedingly complex chips.

1.1 THE SOC DESIGN CHALLENGE

System-on-a-Chip (SoC) design refers to implementing an entire electronics sub-system

on a single IC. Smaller feature sizes makes adding extra circuitry on a silicon die more

cost-effective. Chips manufactured with these dies consist of one (or more)

processor(s), a high-performance bus, custom logic (digital and analog), memory devices

and peripherals along with software code. SoC design requires developing innovative

techniques to tackle design complexity and its related risks. The semiconductor industry

addresses these challenges by adopting new design schemes and by using improved

electronic design automation (EDA) tools.

W

2

1970 1975 1980 1985 1990 1995 2000 2005 2010

10
4

10
5

10
6

10
7

10
8

Year

Tr
an

si
st

or
s

Moore's Law

8086

486 DX Processor

386 Processor

286

8080

Pentium 4 Processor
Pentium III Processor

Pentium II Processor

Pentium Processor

Figure 1.1-1: Moore’s Law depicting increasing transistor complexity with advancement
in semiconductor manufacturing process technology

The relentless progress in the semiconductor manufacturing process witnesses a

continual reduction in the integrated circuit (IC) feature sizes for wires, transistors and

contacts. The successive advancement to a smaller feature size requires altering

thecomplete design and manufacture flow to accommodate the new physical effects

associated with the decrease in size. Since the design methodologies and tools do not

progress as swiftly as the process technology changes, there always exists a productivity

gap, shown in Figure 1.1-2. The increased design complexity and slowly evolving design

methodologies prevent the silicon design teams from exploiting the full potential for

SoC design that is allowed by the advanced process technology.

Many corporations are now exploring a platform-based design (PBD) approach to

address the growing complexity of SoC design [2]. Platform-based design methodology

defines a robust, flexible design around a stable core platform, connected by means of

Source: Intel Corporation

3

Figure 1.1-2: Design Productivity Gap – Difference between the number of physical
transistors available on a chip (solid curve) and the number of transistors that can be

handled by current design tools(dashed curve)

standard buses, which have been optimized for use with the processor core. Once a

platform is created, design teams can produce a new SoC quickly using mostly existing,

pre-verified intellectual property (IP) blocks or virtual components (VC) and hence

complete the design without requiring much new circuitry or software. This approach

helps reducing the time-to-market drastically and increasing the system reliability to a

large extent.

For a PBD methodology to be robust, it must be able to adjust to design re-spins

and enhancements without extra change to the base platform elements. The availability

of a library of components, which include specialized microprocessors, digital signal

processing IP cores and may be some internally generated, custom application specific

integrated circuits, would help designers narrow down their design choices.

Furthermore, the ability to perform several design iterations in a short period of time

would allow them to determine a suitable configurable hardware platform.

4

1.2 MOTIVATION

There may be several high-end EDA tools available for research purposes to a single

educational institution but what is generally missing is the availability of an internally

designed library of custom IP blocks, which may be used to build a large SoC and its

derivatives using those tools. The graduate program in the Electrical and Computer

Engineering department at the University of Tennessee [3] spanning four semesters,

addresses this issue by offering courses intended to equip individual students with the

understanding of design for reuse and a team of students with the understanding of

design with reuse.

In the spring of 2003, the graduate class consisting of sixteen students was split into

groups of twos and fours and each group was assigned the task to simulate, synthesize

and test, a single IP core—either internally generated or obtained for free. The intention

was to verify each IP block for functionality before integrating it with the open core

Volunteer SoC platform [4].

When the SoC platform was completed in August 2004, the next step in the design

process was to raise the level of abstraction through which the platform designers

integrated the IP blocks. This way the designers could work directly at the component

level rather than at the VHDL-entry level and they could also rapidly identify, select and

integrate (or remove) the required IP block into (or from) their design. Figure 1.2-1 and

Figure 1.2-2 show the difference between the two design flows.

The idea thus conceived, was the major motivational factor for taking the Volunteer

SoC project to the next level and selecting Platform Express™ [5], an EDA tool by

Mentor Graphics®, which our department had acquired in 2002 for this purpose. The

PX environment, as shown in Figure 1.2-3, presents users with a graphical interface and

allows them to enter designs as block diagrams by selecting processors, memories and

peripherals from a library of components. The tool includes a memory map display for

assessing address space. Upon successful completion of graphical entry, PX automati

5

Figure 1.2-1: Design flow for Volunteer SoC. The selected IP is already verified for

correct functionality.

Figure 1.2-2: Design flow using Platform Express™. The design is created from the

pre-installed IP components into the Platform Express™ library.

6

Design Editor Component Browser

Memory Map Pane

Figure 1.2-3: The Platform Express™ Environment

cally generates the design along with software to run on the design and a test bench to

drive it. The environment then calls upon verification tools and rapidly generates the

otherwise time-consuming verification scripts and diagnostic code for each peripheral

and memory component in the generated design. The designers have an option of

proceeding on to hardware/software co-verification using the Seamless® co-verification

environment or using the ModelSim® simulation tool to perform RT level hardware

verification. Such a PBD methodology supported with Platform Express generates

hardware and software designs together with the custom execution environment

required to verify the designs. The latest release of Platform Express at the time of this

project was version 2.1h.

7

1.3 THESIS GOALS

This thesis is intended to demonstrate the use of the Platform Express environment for

developing system platforms for SoC designs. It is also expected to serve as a guide to

platform-based SoC design using PX.

The goals of this project were:

� To install a pre-verified IP core into the PX component library and follow

the design flow described previously in Figure 1.2-2

� To prepare an instructional write-up explaining the complete IP integration

and platform building process

1.4 PROJECT COMPONENTS

Since the baseline platform is kept in the public domain and also given the fact that in

an academic research environment cost is always a major constraint, only freely available

IP cores have been used.

1.4.1 Leon2 Processor IP Core
Initially developed by Jiri Gaisler during his work at the European Space Agency (ESA),

the 32-bit SPARC compatible Leon2 processor [6] is now maintained under contract by

Gaisler Research in Sweden. ESA promotes development of SoC designs using the

SPARC architecture; therefore, Leon2 is available for free download under GNU Lesser

General Public License (LGPL) and GNU General Public License (GPL).

The Leon2 processor, shown in Figure 1.4-1 has the following noteworthy features:

� SPARC V8 compliant integer unit with 5-stage pipeline

� Hardware multiply, divide and MAC units

� Separate instruction and data cache (Harvard architecture)

� AMBA 2.0 AHB and APB on-chip buses

� 8/16/32-bits memory controller for external PROM and SRAM

� On-chip peripherals such as uarts, timers, interrupt controller and 16-bit

I/O port

8

Figure 1.4-1: Leon2 Architecture

1.4.2 The AMBA Bus Interface
The Advanced Microcontroller Bus Architecture (AMBA) [7] is ARM’s no-cost, open

specification, which defines an on-chip communications standard for designing high-

performance embedded microcontrollers. The AMBA specification has become a de

facto standard for the semiconductor industry, and has been adopted by more than 90%

of ARM’s partners and a number of IP providers. The specification has been

successfully implemented in several ASIC designs. Since the AMBA interface is

processor and technology independent, it enhances the reusability of peripheral and

system components across a wide range of applications. Three distinct buses are defined

within the AMBA specification:

� Advanced High-performance Bus (AHB)

The AMBA AHB is suited for high-performance, high clock frequency system

modules. The AHB acts as the high-performance system backbone bus. AHB

supports the efficient connection of processors, on-chip memories and off-chip

external memory interfaces with low-power peripheral macrocell functions. AHB is

also specified to ensure ease of use in an efficient design flow using synthesis and

automated test techniques.

9

Figure 1.4-2: The Advanced High-performance Bus Signals [8]

The AHB is recommended for all new designs, not only because it provides a

higher bandwidth solution, but also because the single-clock-edge protocol results in

a smoother integration with design automation tools used during a typical ASIC

development. Figure 1.4-2 illustrates the bus signals for AHB.

� Advanced System Bus (ASB)

The AMBA ASB is for high-performance system modules. AMBA ASB is an

alternative system bus suitable for use where the high-performance features of AHB

are not required. ASB also supports the efficient connection of processors, on-chip

memories and off-chip external memory interfaces with low-power peripheral

macrocell functions.

A full AHB/ASB interface is recommended for bus masters, on-chip memory

blocks, external memory interfaces, high-bandwidth peripherals with FIFO

interfaces and DMA slave peripherals. (Note that ASB is not implemented on

Leon2 and therefore not used in our project.)

10

� Advanced Peripheral Bus (APB)

The AMBA APB is for low-power peripherals. AMBA APB is optimized for

minimal power consumption and reduced interface complexity to support

peripheral functions. APB can be used in conjunction with either version of the

system bus.
A simple AHB/APB interface is suggested for register-mapped slave devices

(shown in Figure 1.5-1) and low power interfaces where clocks cannot be globally

routed and grouping narrow-bus peripherals to avoid loading the bus.

1.5 THESIS ORGANIZATION

Chapter 2, “Background”, discusses the factors that led to the emergence and adoption of

platform-based design approach as a preferred method for designing complex SoCs. It

also acquaints the reader with the several definitions of platform—both commercial and

academic, and explains the role of IP in helping improve existing platforms. It then

provides an overview of the ongoing Volunteer SoC project at the University of

Tennessee’s Microelectronics Systems Laboratory.

Figure 1.5-1: The Advanced Peripheral Bus Bridge Signals [8]

11

Chapter 3, “Methodology”, outlines the platform-based design flow and describes the

AES IP core, available from OpenCores.org, to be integrated with our baseline

platform. It also describes the Platform Express EDA tool and explains the steps needed

to be taken before the IP component can be integrated for use with the Platform Express

environment.

Chapter 4, “Implementation”, describes the process of integration of the AMBA-

compliant IP core, as a component inside the Platform Express library created by the IP

integrator. It also describes using the installed component to build a test design from

the point of view of a system designer. The Seamless CVE interface is used to validate

the component for functionality using the ModelSim application.

Lastly, chapter 5, “Conclusions”, summarizes and concludes the thesis with

recommendations for future enhancements for the Volunteer SoC platform.

12

22
BBAACCKKGGRROOUUNNDD

If you try to build everything from scratch, you’ll never get to the market.
-- Ronnie Vasishta, LSI Logic.

maller integrated circuit (IC) feature sizes, increased time-to-market (TTM)

pressures, coupled with prohibitive costs of ownership for IC masks have pushed

the semiconductor industry to look for design alternatives that use an existing base of

components and architectures. The pursuit for flexible yet economically feasible design

approach along with the development towards higher level of design abstractions has

led to the emergence of a platform-based design methodology.

2.1 FROM SCHEMATICS TO SOCS

As depicted in Figure 2.1-1, the semiconductor industry has come a long way from

considering schematics as state-of-the-art for system implementation and then adopting

a register-transfer level (RTL) design entry mechanism with the advent of hardware

description languages (HDLs). This transition proved advantageous because it was

possible to build and test, larger, more complex designs in comparatively less amount of

time using RTL HDL descriptions instead of schematics. The availability of a broad

range of simulation and verification tools to help ease the RTL HDL verification also

contributed to the wide acceptance and success of this methodology [9].

In the current scenario when it is typical for an SoC to contain tens of millions of

gates combined in processor cores, on-chip interconnects, specialized DSP units and

analog components, it is a challenging task for the chip design teams to completely

design all the components from scratch. Moreover, they have a product launch deadline

to meet. Circumstances such as these have resulted in a trend towards increased IP

S

13

Figure 2.1-1: From Schematics to SoCs [10]

reuse, which requires little or no modification on the reusable IP blocks. A major

benefit of this approach is that properly defined IP blocks can be reused across multiple

designs. Figure 2.1-2 illustrates the role of IP reuse methodology in closing the design

productivity gap.

There are however, some setbacks associated with the IP reuse methodology. For

example, designing a system having multiple IP blocks obtained from different sources,

would call for extensive training for the design team members in each of the specialized

hardware/software IP protocols. Additionally, some components may also require

extended licensing negotiations. Meeting all these requirements could result in a few

months of dead time — before designers even get started on the project!

The platform-based design approach enables design teams to rapidly integrate

multiple functionalities on a single chip from a library of specialized IP using standard

interfaces. More importantly, by providing the designers up to 90% of the required

hardware and software in an integrated SoC platform, it allows them to focus design

resources on differentiating their product [11].

14

Figure 2.1-2: Bridging the Design Productivity Gap [12]

On the whole, a platform-based SoC design approach can be translated into four

major gains:

� Shorter time-to-market: The intentional and extensive reuse of preexisting

known verified IP — when designing platform-based solutions — permits

design cycles of six months or less [13] and reduces overall design risk to a great

extent [14]. The widespread reuse of standardized IP blocks and software

eliminates the need for training design engineers in discrete protocols, thus ena-

bling companies to introduce their product in the market on time.

� Reduced development costs: Employing a PBD approach significantly limits

the number of third-party virtual components to be integrated on the SoC. This

translates to huge savings in development costs.

� Minimal verification time: PBD methodology facilitates hardware/software

co-simulation by providing the integrated SoC platform as a total development

environment for system-level functional verification [15]. Considerable savings

in verification time can be realized by employing this technique.

15

� Lower power consumption: Since all the separate components on an

integrated platform are optimized to minimize gate-level power dissipation and

to lower false signal fluctuations, the overall power consumption in a platform-

based SoC is substantially reduced [11].

2.2 WHAT IS A PLATFORM?

There have been several attempts by the semiconductor industry to define the term –

platform. The Platform-based Design Development Working Group (PBD DWG) of the

Virtual Socket Interface Alliance (VSIA) – formed with a vision to standardize platform

engineering for SoC-based systems – defines a platform as a “library of virtual

components and an architectural framework consisting of a set of integrated and pre-

qualified software and hardware IP blocks, models, EDA and software tools, libraries

and methodology to support rapid product development through architectural

exploration, integration and verification”. The study group extends this definition a little

further to explain platform-based design as an “integration-oriented designed

approach emphasizing systematic reuse, for developing complex products based upon

platforms, intended to reduce development risks, costs and time to market” [16].

Despite efforts by the PBD DWG, the definition of platform is still unclear because

various semiconductor disciplines prefer their own version for the meaning of platform.

With tool companies, SoC providers and manufacturing companies offering platform-

based solutions depending on their area of technical expertise [17], it is very crucial for

the customer to understand how each of them defines a platform. Figure 2.2-1 lists some

of the definitions provided by the industry and by academia.

In the sub-sections that follow, we enumerate some of the platform postulates put

forward by Bob Altizer and his VSIA PBD Study Group [16]. We also discuss some of

the platform types characterized by Frank Schirrmeister of Cadence Labs [18].

16

“An integration platform is a reuse mix-n-match environment designed specifically to target an application
domain. The domain is selected based on market objectives and is focused to yield a high probability of
reuse over a period of time.” – Cadence White Paper, The IP Reuse Evolution.

“A platform is a collection of assets, which can be used to leverage reuse and rapidly develop new products.
At a minimum, it defines the operating environment, high level product architecture for all products
developed based on this platform, and set of development policies for extending the platform and developing
point products from the platform.” – Motorola PCS/ATSO, Reuse Lifecycle Model-v1.0.

“An embedded system platform is an architectural framework for rapid integration of embedded SoC-based
designs, consisting of a set of pre-qualified software and hardware IP blocks and a methodology to support
rapid architectural exploration, integration, and verification.” – Frank Pospiech, Alcatel.

“We define platform-based design as the creation of a stable microprocessor-based architecture that can be
rapidly extended, customized for a range of applications and delivered to customers for quick deployment.”
– Jean-Marc Chateau, STMicroelectronics.

“A platform is, in general, an abstraction that covers a number of possible refinements into a lower level. For
every platform, there is a view that is used to map the upper layers of abstraction into the platform and a
view that is used to define the class of lower level abstractions implied by the platform.” – Alberto
Sangiovanni-Vincentelli, University of California at Berkeley.

Figure 2.2-1: Platform Definitions

2.2.1 Platform Postulates

The following set of postulates were developed by the VSIA PBD DWG [16] to
help recognize, appreciate and understand the finer points of PBD.
� A platform can be viewed as an integration-ready ensemble of hardware and

software components that would act as a starting point for future derivative

product designs.

� To be successful – in addition to pre-verified and pre-defined platforms – PBD

approach depends heavily on the availability of product differentiating IP

components, an integration-oriented design flow along with the accessibility to

support on issues regarding tools usage, applications and systems.

� From the economic standpoint, PBD can help increase profits since it allows

systematic and planned IP reuse, improves successive product capabilities and

quality and reduces the overall TTM drastically.

� Finally, the profits should be large enough to rationalize the investment in

platform development and procurement of special IP blocks, integration tools

and support services.

17

2.2.2 Platform Types

Depending on the suitability to a particular specification and the availability of

customization options, platforms can be classified into four categories [18].

� Full-application Platforms: These platforms allow designers to develop full

applications on top of hardware-software architectures. To facilitate users in

derivative-product design, full-application platforms generally contain a library

of hardware modules, with each module having multiple design schemes.

Designers can choose from this broad range of available modules to build

complex

� Processor-centric Platforms: These platforms concentrate more on specific

processor cores and also focus on the software access to the processor.

Designers oftentimes require additional application-specific hardware blocks

and in some cases, a different real-time operating system (RTOS), to achieve full

applications. Improv Jazz and ST StarCore best illustrate this platform type.

� Communication-centric Platforms: This design approach offers consumers

an optimized, customizable communications platform, suitable for a specific

application. Here again the derivative-product designer is required to include

components to obtain a complete application. Sonics and PalmChip

architectures are the prominent examples.

� Fully Programmable Platforms: These platforms are similar to full-

application and processor-centric platforms except that these also include

embedded reconfigurable logic. The addition of programmable logic enables

designers to customize the platform with both hardware and software.

Examples include Triscend, Altera Excalibur and Xilinx P-FPGA platforms.

Table 2.2-1 lists some commercially available platform cores and designs.

18

Table 2.2-1: Some of the Many Commercially Available Reference Designs and
Platforms

CHIPMAKER
REFERENCE DESIGN

or PLATFORM
END-USER MARKET SYSTEM CUSTOMERS

TI OMAP Cell phone handsets Ericsson, Nokia, Sony
Ericsson

Velocity Wireless, Consumer NEC-Matshushiti, HP
Philips

nExperia Home Network
Gateways AOL

Qualcomm Binary Routine Environment for
Wireless (BREW)

Cell phones, Cellular
infrastructure Verizon, Sony

Xscale Cell phone handsets,
PDA HP-Compaq, Toshiba

Intel
PC Motherboards Personal computers Many

Portal Player Digital Media Player MP3 devices Apple

Source: International Business Strategies Inc.

For platform-based designs employing the Volunteer SoC platform, the Leon

processor will be common to all derivative designs and therefore, our platform—due to

its focus on the processor core—is processor-centric. An application-oriented platform can be

realized by adding specialized IP cores to extend the capabilities of our processor-centric

baseline platform.

19

33
MMEETTHHOODDOOLLOOGGYY

… with proper design, the features come cheaply. This approach is arduous, but continues to succeed.
—Dennis Ritchie, AT&T Bell Labs.

ur design methodology covers design aspects ranging from specification to
implementation. While the discussion of requirements for our open SoC

platform presented in the previous chapter fixes the platform specifications for our
design, this chapter explains the subsequent steps needed to be taken in the PBD flow
proposed by Kuetzer, et al. [19].

3.1 PLATFORM-BASED DESIGN FLOW

The PBD flow comprises of four phases: phase 1 deals with identifying the function
that the system will eventually implement. Phase 2 involves identifying the system
architectures through which the functionality can be implemented. Phase 3 involves
selecting the optimal architecture from the set of previously identified architectures
deemed suitable for system implementation, as well as selecting the system components
that effectively meet the necessary specifications. Finally, phase 4 focuses on realizing
the implementation of the system function on the chosen architecture through
hardware synthesis and software assembly of system components. Figure 3.2-1 illustrates
the design flow to be followed while designing a platform-based system.

3.2 ENHANCING THE VOLUNTEER SOC PLATFORM

We will now describe the approach to add functionality to the Volunteer SoC platform
for implementing a desired application. Since the platform is kept in the public domain
and due to the lack of design guidelines for packaging and incorporating IP for reuse
with the Volunteer SoC, this thesis is a result of our effort to outline a procedure for
adding specialized IP blocks to enhance the capabilities of our platform.

O

20

Figure 3.2-1: Platform-based Design Flow [19]

Table 3.2-1: AES (Rijndael) Encryption Core integrated with Platform Express Release
Information

ITEM DESCRIPTION

Version 1.0

Release Date November 2004

As an illustration, we will use Platform Express to include the AES encryption IP

core, available from OpenCores.org, to add encryption functionality to the Volunteer SoC

platform. The following sections introduce the AES IP core and the Platform Express

tool and explain the process of making the AES core AMBA-compliant before being

added as a peripheral to the Leon CPU core.

3.2.1 The AES (Rijndael) IP Core

Release Information

Table 3.2-1 provides information about this release of the AES encryption core when

integrated with Platform Express.

21

General Description

The AES encryption core available from OpenCores.org implements the Rijndael

standard with a 128-bit key expansion module. In addition to the key expansion module,

the core also consists of an initial permutation module, a round permutation module

and a final permutation module. The round permutation module loops internally to

perform ten iterations on the 128-bit key and data inputs. Figure 3.2-2 illustrates the

overall architecture of the AES encryption core.

The core requires a key and a plain text input at the start of each encryption

sequence. The start is indicated by asserting the ld pin high. Upon encryption the done

pin is asserted high for one clock cycle. The core completes a single encryption

sequence in twelve clock cycles (ten for the round permutation module and one each

for the initial and final permutation modules). The user may choose to ignore the done

output and can opt to time the completion of encryption sequence externally. Figure

3.2-3 shows the hierarchy structure for the AES (Rijndael) encryption core Verilog

source files. A thorough description of the Rijndael standard is provided in this paper

by Daemen, et al. [20].

Before adding the AES core to the Leon CPU as a peripheral, the AES core had

been modified by interfacing it with an input RAM to store the 128-bit key and 128-bit

data and an output RAM to store the 128-bit encrypted data. Figure 3.2-4 shows the

RAM-IP-RAM block diagram.

3.2.2 The Platform Express Environment

Besides being one of the seven founding members of the Structure for Packaging,

Integrating and Re-using IP within Tool-flows (SPIRIT) Consortium [21], Mentor

Graphics Corporation is also one of the steering committee members of the

conglomerate. This group comprising of leading EDA vendors (Mentor Graphics,

Cadence Design Systems and Synopsys), a leading star IP provider (ARM Ltd) and

22

leading SoC integrators and manufacturers (STMicroelectronics and Philips), aims at

setting stan-

23

Figure 3.2-2: AES Encryption Core Architecture

Figure 3.2-3: AES Encryption Core File Hierarchy

Figure 3.2-4: AES Core Interfaced with Input and Output RAM Blocks

24

-dards for IP description and IP packaging, to enable an efficient and a cost-effective IP

integration process with tools and IP from multiple vendors. Figure 3.2-5 depicts the

SPIRIT schema and generator interface.

Platform Express is one such SPIRIT-compliant EDA tool, which allows the system

designer to quickly build a system design using the components that the IP integrators

have created from their own hardware designs. The PX interface presents the facility of

selecting a platform core (such as ARM926, ARM966) for use as a design foundation.

The platform core components are available via the libraries from licensed component

library developers, in addition to the various demonstration libraries that PX ships with.

Most platform cores are provided as ‘open source’, however source code for proprietary

components is not supplied and they are available only for simulation purposes.

The PX application allows creating and implementing user-defined libraries and

provides a built-in IP metadata generation interface—PxEdit—to realize that objective.

The IP metadata describes the characteristics of the IP components; this includes

information about invoking simulation and verification environment that the

component requires, and allows setting up and logging of design configuration. Platform

Express uses the open source Extensible Markup Language (XML) as the metadata

language (also a SPIRIT standard) to describe the IP components for integration with

the PX component libraries. The XML metadata, in association with the PX application

also initiates other code written in Java, VHDL and Verilog that allow components to

function in a design.

The PX application speeds up design creation by presenting the significant design

elements in detail, within the PX application. The PX Design Editor is context-aware

and allows immediate configuration. Once the design is created, PX provides tools for

automating the build process. The resulting build files also include ones that could be

used for validation with Seamless CVE. PX offers automatic bus decoding and automatic

bus and interrupt-bridging.

25

Figure 3.2-5: SPIRIT Schema and Generator Interface

Thus, when used in conjunction with Seamless CVE, PX not only presents the vital

functionality for designing and building complex SoC subsystems but also provides

access to software debugging tools, such as XRAY Debugger, and hardware logic

simulation tools, such as ModelSim and NCSim

3.2.3 Defining the Bus Interface

Building a platform around a standard bus architecture allows flexibility and ease of

extension. Since Leon has adopted the AMBA AHB and APB as an on-chip bus

standard, it was natural to opt for the same standard for integrating our IP core. A

wrapper was written in VHDL to package the RAM-IP-RAM module for effortless

integration.

The AES component is an AHB master connected as a peripheral. It communicates

with the Leon processor via the AHB and uses a peripheral bus bridge for data transfer

between Leon and itself. Table 3.2-2 lists the bus interface signals of the top entity
aes.vhd.

Source: SPIRIT Consortium

26

Table 3.2-2: AES Core Bus Interface Signals
SIGNAL NAME TYPE BUS TYPE DESCRIPTION

HCLK Input AHB
Bus Clock: Times all transfers. All signal timings
are related to the rising edge of HCLK.

HRESETN Input AHB
Reset: Bus reset signal used to reset the system and
the bus. This is the only active LOW signal.

HGRANT Input AHB

Bus Grant: Indicates that bus master X is currently
the highest priority master. Ownership of the
address/control signals changes at the end of a
transfer when HREADYi is HIGH, so the master gets
access to the bus when both HREADYi and
HGRANTx are HIGH.

HREADYi Input AHB

Transfer Done: Indicates that a transfer is finished
on the bus when HIGH. The signal may be driven
LOW to extend a transfer. HREADYi is the HREADY
input to a slave.

HRESP [1:0] Input AHB
Transfer Response: Provides information on the
status of the transfer.

HRDATA [31:0] Input AHB
Read Data Bus: Used to transfer data from bus
slaves to bus master during read operation.

HREADYo Output AHB

Transfer Done: Indicates that a transfer is finished
on the bus when HIGH. The signal may be driven
LOW to extend a transfer. HREADYo is the HREADY
input from a slave.

HBUSREQ Output AHB
Bus Request: Indicates to the bus arbiter that a bus
master X requires the bus. A maximum number
of 16 bus masters are possible in the system.

HTRANS [1:0] Output AHB
Transfer Type: Indicates the type of the current
transfer, which can be NONSEQUENTIAL,
SEQUENTIAL, IDLE or BUSY.

HADDR [31:0] Output AHB Address Bus: The 32-bit system address bus.

HWRITE Output AHB
Transfer Direction: Indicates a write transfer when
HIGH and a read transfer when LOW.

HSIZE [2:0] Output AHB
Transfer Size: Indicates the transfer size, which is
typically byte (8-bit), halfword (16-bit) or word
(32-bit).

HBURST [2:0] Output AHB
Burst Type: Indicates if the transfer forms part of a
burst. 4, 8, 16 beat transfers are supported, with
the burst being either incrementing or wrapping.

HWDATA [31:0] Output AHB
Write Data Bus: Used to transfer data from the
master to the bus slaves during write operations.

PSELx Input APB
APB Select: Indicates that the slave device is
selected and a data transfer is required. Each bus
slave has a PSELx signal.

27

Continued

SIGNAL NAME TYPE BUS TYPE DESCRIPTION

PENABLE Input APB

APB Strobe: Used to time all accesses on the
peripheral bus. The enable signal is used to
indicate the second cycle of the APB transfer. The
rising edge of PENABLE occurs in the middle of the
APB transfer.

PADDR [31:0] Input APB
APB Address Bus: 32-bit APB address bus driven by
a peripheral bus bridge unit.

PWRITE Input APB
APB Transfer Direction: Indicates APB write access
when HIGH and a read access when LOW.

PWDATA [31:0] Input APB
APB Write Data Bus: Driven by the peripheral bus
bridge unit during write cycle. PWRITE is HIGH.

PRDATA [31:0] Output APB
APB read Data Bus: Driven by the peripheral bus
bridge unit during read cycles. PWRITE is LOW.

IRQ Output -
Interrupt: Active HIGH interrupt output. The chosen
bus interface type does not affect the function of
this signal.

The top entity aes.vhd contains the bus interface signals and a DMA-like controller

aes_enc_ctrl_struct.vhd. This module contains registers, required to setup, control and

monitor the data transfer process. The master is connected to the slave interface of the

peripheral bus bridge. The master initializes the bridge to receive data from the buffer

located in the SDRAM. For initialization, the master has to specify signals to indicate

the data size (HSIZE [2:0]) and burst type (HBURST [2:0]).

Both incrementing and wrapping bursts for 4-, 8-, and 16-beat bursts are supported

in the AMBA AHB protocol, in addition to undefined-length bursts and single

transfers. A beat is a transfer of data packets, thus an 8-beat wrapping burst is a transfer

of 8 packets. Incrementing bursts access sequential locations and the address of each

transfer in the burst is just an increment of the previous address. Wrapping bursts also

access sequential locations, but if the start address of the transfer is not aligned with the

total number of bytes in the bursts, then the address of the transfers in the bursts will

wrap when the boundary is reached. For instance, if the starting address of a 4-beat

wrapping burst of data size 4-bytes (32 bits) is 0x34, four transfers occur on addresses

28

0x34, 0x38, 0x3C and 0x30, thus, the address wrap at 16-byte (128-bit) boundaries

(Note: the amount of data transferred, i.e. the number of beats times data size, is also 128

bits; 128324 =×). Table 3.2-3 presents the burst signal encoding useful for defining

burst types on the AHB interface.

While specifying addresses for access during a burst transfer, one must conform to

the restrictions that exist regarding burst transfer addressing on the AHB interface. One

of which is that bursts must not cross a 1kB address boundary. This condition sets the

upper limit on the on the length of an incrementing burst. Another one states that all

transfers within a burst must be aligned to the address boundary equal to the size of the

transfer. For example, word (32-bit) transfers must be aligned to 32-bit address

boundaries (i.e., HADDR [1:0] = 00).

The DMA-like controller implemented in aes_enc_ctrl_struct.vhd uses the 8-beat

incrementing burst transfer (HBURST = INCR8) to fetch a total of 256-bit data comprising of

the 128-bit Plain text and the 128-bit Key, via eight sequential, word (32-bit) accesses

(HSIZE = 32) to the SDRAM location starting 0x40000000. The data is stored in the two

input RAM blocks, internal to the AES top entity—topmodule.v. The AES core reads the

input data from the RAMs and generates the encrypted Cipher text output, which is

stored in the output RAM block. The DMA-like controller then transfers the 128-bit

encrypted data to the other SDRAM location, 0x40001000. Information regarding the

data transfer base addresses is contained in the registers in aes_enc_ctrl_struct.vhd. Table

3.2-4 provides the register information of aes_enc_ctrl_struct.vhd.

The address offset is the offset with respect to the AHB/APB peripheral bus bridge

address, which in our case is 0xc0000000. A complete listing of the source code of the

AMBA-compliant wrapper, aes.vhd, along with the controller module,

aes_enc_ctrl_struct.vhd, is provided in Appendix A.

29

Table 3.2-3: Burst Signal Encoding

HBURST [2:0] TYPE DESCRIPTION

000 SINGLE Single transfer

001 INCR
Incrementing transfer of unspecified
length

010 WRAP4 4-beat wrapping burst
011 INCR4 4-beat incrementing burst
100 WRAP8 8-beat wrapping burst
101 INCR8 8-beat incrementing burst
110 WRAP16 16-beat wrapping burst
111 INCR16 16-beat incrementing burst

Table 3.2-4: AES Core Register Information

REGISTER NAME
ADDRESS
OFFSET

DESCRIPTION

Control Register 0x00

Bit 0 is used to enable the AES core: 1-enable,
0-disable
Bit 2 is used to enable IRQ: 1-enable, 0-disable
Bit 3 used to generate IRQ request: 1-enable,
0-disable

Key / Plain text Input
Address 0x04

This register contains the 32-bit base address
of the Key and Plain text input from the
SDRAM location starting 0x40000000

Cipher text Output
Address 0x08

This register contains the 32-bit base address
of the Cipher text output to the SDRAM
location starting 0x40001000

Status Register 0x0C

Bit 0 contains the status of transfer done: 1-
ready, 0-busy
Bit 1 contains the status of transfer direction:
1-write, 0-read

Current Address 0x10
This register contains the 32-bit address from
(to) which the DMA-like controller
(aes_enc_ctrl_struct.vhd) reads (writes) data

30

It can be observed that the controller implements a finite state machine (FSM) for

accesses to the Leon SDRAM:

TYPE state_type IS (idle, bus_req, bus_grant, bus_own, load_key, load_text,
xfer_end);

The FSM consists of seven states and starts in the IDLE state upon being reset. In

this state, all registers and bus contents are initialized to zero.

One clock cycle later, the FSM moves to the BUS_REQ state, where it checks for

internal signal conditions. When the signal dma_xfer_req of record, r, is asserted high, the

internal signal sig_HBUSREQ is set high. Then, if the AES core is selected and enabled

(aes_en) and data is ready for transfer to the AES core (sig_dataRdy), signals in the other

record, tmp, are backed up. The FSM goes to the next state BUS_GRANT if all these signals

and the ahb_hgrant signal are high. The register that counts the number of data transfers,

n, is initialized to seven in the record, tmp, so that the count becomes zero after a total

of eight transfers. The eight transfers consist of four transfers each, of width 32 bits, for

Key and Plain text.

When in the BUS_GRANT state, the FSM simply skips one clock cycle before accepting

ownership of the bus in the next state, BUS_OWN.

In this state, the FSM waits until the AHB master asserts HIGH on the signal

ahb_hready. The FSM makes the signal sig_dataRdy LOW as an indication to the AES core

that all data is still not present for encryption. The FSM also sets the transfer type for

the first data transfer as Nonsequential (HTRANS = HTRANS_NONSEQ). The data transfer begins

in the next state, LOAD_KEY.

During the LOAD_KEY state, the FSM loops for four clock cycles to load the 128-bit

Key in one of the input RAM blocks. This has been implemented by a two-state minor

FSM within this state, which also sets the subsequent transfer types as Sequential (HTRANS

31

= HTRANS_SEQ). The FSM loads the 128-bit Plain Text the same way in the other input

RAM block in the next state, LOAD_TEXT.

With all data now stored in the internal input RAMs, it is available for encryption by

the AES core. The FSM pulses the signal, sig_dataRdy, HIGH to convey this to the to

AES core, and also sets the signal, sig_Go, HIGH to begin encryption. The FSM then

moves on to the final state, XFER_END.

The last state of the FSM signals the completion of the encryption process and all

the data transfers that occurred during that process (sig_finish = ‘1’). The FSM disables

the AES core and returns to the IDLE state.

3.2.4 Platform Express: Concepts and Objects

A system designer using the PX application needs objects to quickly create a design. A

system integrator creates these objects from the available hardware designs. The PX

object types can be categorized as components, buses and routines. Table 3.2-5, from the

Platform Express Integrator’s Guide [22], shows the object and routine types that can be

defined into a component library.

Object Types

PX objects are classified as components and buses, and are defined using schemas that

the PX software can use.

Schemas

The PX schemas are based on the World Wide Web Consortium (W3C) standard

for XML 1.0, accepted in 2001. The schema for component files is located in the

$PXHOME/schema/3.5 directory. A more easy-to-read version in the HTML format can

be found in $PXHOME/doc/schema.

32

Table 3.2-5: Platform Express Object and Routine Types

TYPE CREATION PROCESS NOTES

Component:
A set of files containing all information
required by the Platform Express
application to use the component in a
design.
Subtypes:
 Platform core
 Hierarchical Component
 Bus Bridge
 Peripheral

1. Locate a similar component to use
as a template.

2. Make a component directory.

3. Edit the component’s XML file.

4. Add necessary support files –
Generators, Configurators, HDL or
C code.

5. Test the component.

6. Package the library.

Use PxEdit to quickly enter basic
component information.
Hierarchical Components can be
created using a HC Generator.

Buses:
Used to connect components together.

1. Create a bus definition based on an
official specification

2. Create a decoder so that
components can connect to the bus.

3. Write a component that references
the bus so that the bus can be
tested.

4. Test the bus.

5. Package the library.

Bus interface definitions and decoders
must be available before a component
can be tested.
Platform Express libraries provide
several common types.

Generators:
Invoked by a user to perform actions.
For instance, the Platform Express
application uses generators to create
design documentation and to build the
HDL model of the final design.

1. Define the function in its simplest
terms. It is advisable to write many
small generators than a single large
one.

2. Write the generator(s).

3. Attach the generator(s) to the
components, or make them
accessible through a visible
generator chain.

Most generators are written for
components.
Users can create stand-alone generators
such as the PxDoc library.
The PxDoc and checkEnvironment
libraries contain only generators.

Configurators:
Used to instantiate elements.
Invoked when a component is added to
a design.

1. Decide on the type of the
configurator required.

2. Write a configurator in Java, if the
provided default configurator is
unusable.

3. Attach the configurator to the
component.

The default configurator is very flexible
and can handle most needs in the
component’s XML.
The pxSampleLib library contains a
component with a custom configurator.

Platform Metadata (PMD):
Changes a component based upon what
other components are present in the
design, in a manner specified by the
PMD writer.
Changes can be as simple as restricting
choices in a dialog box, or as extreme as
adding or deleting a bus interface.

1. Define the triggering component,
the affected components and the
changes to be made.

2. Create transformers either in Java
or XLST.

3. Package the PMD in its own
directory in a component library.

The components referenced by a PMD
need not be in the same component
library as the PMD.

Source: Platform Express Integrator’s Guide

33

Components

These represent the different types of IP blocks that can be included in the chip

design. Since they appear in the Component Browser as icons, they are the most visible

among all PX objects. Users can drag-n-drop components into the Design Editor.

Platform cores, hierarchical components and bus bridges are subtypes that can be used

to start a design. Peripherals form the other subtype, which can only be added to

existing buses.

Buses

Buses are a fundamental notion of the PX code structure, because all components

are connected using buses. A component is not displayed in the Component Browser, if

it cannot connect to any of the active bus types (in the current design) using any of the

bus bridges. The bus implementation is a three-step process—signals are described in

bus definition files, the HDL for the component-bus connection is generated from bus

decoder templates and finally, pins to connect the signals are set up in the component’s

bus interface section.

Note: Writing the PX Routine Types (Generators, Configurators and PMD) are

beyond the scope of this thesis and hence, not discussed here. Readers are strongly

encouraged to refer to the Platform Express Integrator’s Guide [22] for information on

Routine Types.

Platform Express Directory Structure

The exploded view of the PX directory structure can be observed in Figure 3.2-6. The

default PX installation results in two top-level file directories pxhome and pxLibraries.

The pxhome directory contains all the core information including integrator scripts

and the Platform Express application code. pxLibraries contains all the libraries that came

with the PX environment. However, not having any of these libraries does not influence

PX performance. It is under pxLibraries directory that you will package your components

in a physical library.

34

Figure 3.2-6: The Platform Express Directory Structure

35

Integrators should package their components according to a specific directory

structure that allows the included PX utilities to locate supporting files. This generic

directory structure is illustrated in under <yourLibrary>, where <yourLibrary> is a single

distinctively named directory within pxLibraries. The name of <yourLibrary> should be

suggestive of the components it may include.

The required directory, componentLibrary, under <yourLibrary> contains the

subdirectories for components, bus definitions and routine types. However, all of the

subdirectories may not be required. The other required element in <yourLibrary> is the

Pxkey file, which holds the licensing information for your packaged component.

<yourLibrary> may also contain other optional directories and support files such as

index.xml or Makefile.

The component subdirectory under componentLibrary may contain multiple

components, one of which could be <yourComponent>. Each of <yourComponent> must

have at least one <version> directory, where <version> is a number in the form of X.Y. If

multiple <version> directories are present then PX will use the most recent version (the

one with the highest number).

The <version> directory contains <yourComponent>.XML file and all the supporting

files or directories that you want to protect using Pxkey.

Figure 3.2-7 illustrates the directory structure of an AES IP component that was

packaged into a physical library named VOLIPository (equivalent to <yourLibrary>) and

later integrated into the Platform Express environment.

The next chapter discusses the details of preparing the IP component before

installing it in a component library.

36

Figure 3.2-7: (a)Creating a VOLIPository library into pxLibraries; (b)Creating
subdirectories in VOLIPository; (c)Directory Structure Showing Location of the

aes.xml File of the aes Component.

37

44
IIMMPPLLEEMMEENNTTAATTIIOONN

--From Gordon E. Moore’s paper, “Cramming more components onto integrated circuits”

his chapter explains the use of the Platform Express application from two different

design perspectives – that of a System Designer and another of an IP Integrator. The

orange arrows in Figure 4.1-1 indicate the complete process – from IP integration to

platform conception – followed in this project. As an IP integrator we need to carry out

steps 1 through 7 to be able to use the installed IP, when performing the role of a

system designer in step 8.
4 . 1 T ES T

Step 1 indicates that the raw IP can be described either using VHDL or Verilog. In
step 2, if the IP needs memory for storing data before and after processing it then input
and output RAMs are added. We are executing step 3 because our choice of HDL is
VHDL while our IP is described in Verilog. (If your IP along with its bus-compliant
wrapper is described using the same HDL then step 3 can be omitted). In step 4 we add
the AMBA-compliant wrapper to our peripheral module. In step 5, we use the PxEdit
tool to generate our IP’s metadata file in XML (explained in Section 4.4) before installing
it into the pxLibraries (step 6). Next we generate a Pxkey (step 7) to protect our IP from
modifications and also so that it appears in the Component Browser of the PX
application.

T

38

Figure 4.1-1: IP Integration and Platform Creation using Platform Express

39

This exercise describes the following steps:
� Obtaining the AES IP core

� Obtaining the Platform Express design environment

� Compiling the IP Core using ModelSim

� Installing the AES component using pxedit, mkIndex and Pxkeygen

� Generating a test design using Platform Express

� Verifying the design for correctness using Seamless CVE

4.1 OBTAINING THE AES IP CORE

The required AES IP component for integration with Platform Express can be obtained

from the OpenCores website. The following instructions describe the process of

obtaining the IP core via the Internet.

1 Point your web browser to http://www.opencores.org/

2 Click CVSGet under Tools menu

3 On the CVS Module Download page type aes_core in the Module Name

box and click the Create module.tar.gz button

4 On the Download page, enter the required information and the click the

Download button

5 Save the aes_core.tar.gz file in your home directory

6 At the Unix prompt, type the following commands

Mkdir test; cd test

gunzip –c /home/<yourUsername>/aes_core.tar.gz | xvf –

cd aes_core/rtl/verilog

cp /home/wala/test/hdl/aes/controller.v .

cp /home/wala/test/hdl/aes/topmodule.v .

cp /home/wala/test/hdl/aes/aes.vhd .

cp /home/wala/test/hdl/aes/aes_enc_ctrl_struct.vhd .

cd home

40

4.2 OBTAINING PLATFORM EXPRESS

The Platform Express version used at the time of this project was 2.1h. A fully functional,

latest version of Platform Express can be obtained for free from the Mentor Graphics

website. The following instructions describe the process of obtaining the Platform

Express environment via the Internet.

1 Point your web browser to
http://www.mentor.com/products/embedded_software/platform_baseddesign/download.

cfm
2 On the Product Download page, enter the required information; check the

Platform Express with all libraries for Solaris 2.8 box under Combined

Software Plus Libraries option and click the Get Software button and

save the pxplus_ss5_<ver>.exe in your home directory

3 At the Unix prompt, type the following commands in the exact sequence to

install the PX environment

chmod 775 pxplus_ss5_<ver>.exe

pxplus_ss5_<ver>.exe

4 Type either D or P when the installation executable starts and then type

Agree to accept the license terms. Finally, just hit the Enter key to accept

the default installation home directory

Alternately, a copy of Platform Express version 2.1h can be obtained by executing the

following command. For installing the software, follow steps 3 and 4 described above.

cp /home/wala/PlatformExpress2.1h/pxplus_ss5_2.1h.exe .

41

4.3 COMPILING THE IP CORE

Before we begin installing our IP component into our Platform Express library, we need

to compile it for a smooth integration process. The following instructions describe the

compilation process using ModelSim.

1. Copy the compile script file into your test/aes_core/rtl/verilog directory.

cd test/aes_core/rtl/verilog

cp /home/wala/test/hdl/aes/compile .

Compile Script
#!

source ~cad/.cshrc

mentor_tools

vlib work

vmap dware /home/wala/dware

vmap dw06 /home/wala/dw06

vmap work work

vcom -work work target.vhd device.vhd amba.vhd

vcom -work work config.vhd sparcv8.vhd iface.vhd

vcom -work work DW_ram_r_w_a_dff_inst.vhd

vlog -work work timescale.v aes_rcon.v aes_sbox.v

vlog -work work aes_key_expand_128.v aes_cipher_top.v

vlog -work work controller.v topmodule.v

vcom –work work aes_enc_ctrl_struct.vhd aes.vhd

The script instantiates the necessary tools, creates a work library, maps the work library

to compilation library and defines the compilation order according to component

hierarchy.

2. Make an executable compile file and start compile process

chmod 775 compile

compile

42

The ModelSim output should be identical to:
Compilation Log
Copying /sw/mentor/ModelSim_SE5.8d/modeltech/sunos5/../modelsim.ini to
modelsim.ini
Modifying modelsim.ini
Modifying modelsim.ini
Modifying modelsim.ini
Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004
-- Loading package standard
-- Loading package std_logic_1164
-- Loading package attributes
-- Loading package std_logic_misc
-- Loading package std_logic_arith
-- Loading package dwpackages
-- Loading package dw06_components
-- Compiling entity dw_ram_r_w_a_dff_inst
-- Compiling architecture inst of dw_ram_r_w_a_dff_inst
-- Loading entity dw_ram_r_w_a_dff
-- Compiling configuration dw_ram_r_w_a_dff_inst_cfg_inst
-- Loading entity dw_ram_r_w_a_dff_inst
-- Loading architecture inst of dw_ram_r_w_a_dff_inst
-- Loading configuration dw_ram_r_w_a_dff_cfg_sim
Model Technology ModelSim SE vlog 5.8d Compiler 2004.06 Jun 12 2004
-- Compiling module aes_rcon
-- Compiling module aes_sbox

Top level modules:
 aes_rcon
 aes_sbox
Model Technology ModelSim SE vlog 5.8d Compiler 2004.06 Jun 12 2004
-- Compiling module aes_key_expand_128
-- Compiling module aes_cipher_top

Top level modules:
 aes_cipher_top
Model Technology ModelSim SE vlog 5.8d Compiler 2004.06 Jun 12 2004
-- Compiling module controller
-- Compiling module topmodule

Top level modules:
 topmodule
Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004
-- Loading package standard
-- Loading package std_logic_1164
-- Loading package std_logic_arith
-- Loading package std_logic_signed
-- Compiling entity aes_enc_ctrl_struct
-- Compiling architecture structural of aes_enc_ctrl_struct
-- Loading package vl_types
-- Loading entity topmodule
-- Compiling entity aes
-- Compiling architecture rtl of aes
-- Loading entity aes_enc_ctrl_struct

43

4.4 INTEGRATING THE IP CORE

The PxEdit tool supplied with the PX software significantly reduces the amount of
typing required in creating component definition files. The tool allows the user to fill in
fields for standard elements of the component, and then generates the XML for these
areas. The XML file created is a valid XML file and can be customized according to
needs.

4.4.1 Starting with the Compiled HDL Model

1. Copy the .plex_rc script file into your test/aes_core/rtl/verilog directory.

cp /home/wala/.plex_rc .

.plex_rc Script
setenv PXHOME /home/wala/PlatformExpress2.1h/pxhome

setenv PXPATH

 /home/wala/PlatformExpress2.1h/pxLibraries/AMBA:

 /home/wala/PlatformExpress2.1h/pxLibraries/Inventra:

 /home/wala/PlatformExpress2.1h/pxLibraries/Leon2:

 /home/wala/PlatformExpress2.1h/pxLibraries/PxArm9:

 /home/wala/PlatformExpress2.1h/pxLibraries/Utility:

setenv MODELTECH /sw/mentor/ModelSim_SE5.8d/modeltech

setenv CVE_HOME /sw/mentor/CVE5.0/cve_home.ss5

setenv JAVAHOME $CVE_HOME/jre

setenv PATH $JAVAHOME/bin:$PATH

2. Invoke the PxEdit tool

source ~cad/.cshrc

mentor_tools

source .plex_rc

$PXHOME/tools/bin/px&

The PxEdit window will appear as shown in Figure 4.4-1. Select option New
under the File tab.

3. Fill in the dialog box with the definition information as shown in Figure 4.4-2
and Table 4.4-1.

4. Click OK. PxEdit now extracts the top-level signal names from the HDL library.
Maximize the window to view the navigation tabs located on the right side.

44

Figure 4.4-1: PxEdit Environment

Figure 4.4-2: Signal Dumping Dialog Box

45

Table 4.4-1: Signal Dumping Dialog Box Information

Intellectual Property
Type

Select Component. The Platform Core option can only be selected if
the IP is a core or a CPU.

Module/Entity Name
Enter the topmost HDL model name exactly; this field is case-
sensitive.

Simulation Environment
Select modelsim. The modelsimcve option is selected only when the
HDL model is compiled using Seamless PSP.

HDL Library Location

This refers to the directory containing the HDL library compiled
by ModelSim—usually work. Use the Browse button to select
any file under the work directory. Figure 4.4-3 shows the _info file
selected inside the work directory for illustration purposes.

Figure 4.4-3: HDL Location Specification

46

4.4.2 Configuring Buses

PX uses the bus information to connect components together. Buses are also essential

because they define the address spaces of the components. Standard bus information,

such as signals, is defined separately in a bus definition (busdef) file, and must be in

$PXPATH for PxEdit to work correctly (see, amba*.xml under pxLibraries/AMBA/

componentLibrary/busdef or pVCI.xml under pxLibraries/Inventra/componentLibrary/ busdef).

1. Click the busInterfaces tab at the right. For our design we are going to connect

the components using the industry standard AMBA bus. Primarily three bus

types will be used for connecting the IP core with the Leon2 CPU—the AMBA

AHB, the AMBA APB and a single pin interrupt bus for generating IRQ

requests.

2. Pick these buses by highlighting the appropriate options under the Bus

Available list and clicking Select. Figure 4.4-4 depicts the bus name input dialog

box that comes up after bus selection. The role of the component as a bus

master or a bus slave is defined in the next resulting dialog box, shown in Figure

4.4-5.

For the sake of convenience, name the AHB master bus as AHB_mst, the APB

slave bus as APB_slv and the Single Pin Interrupt bus as IRQ_slv.

3. Click on a cell in the Signal Mapping table to list the set of signals for that bus

type. Map each bus signal in the table to the corresponding bus signal listed in

the drop-down menu (see Figure 4.4-6).

4. The bus connections can be specified as required or optional in the Select

Master/Slave/System bus table. The default value for all connections is

optional. Set this to required, for the APB slave and the single pin interrupt

bus, as shown in Figure 4.4-7.

5. Specify the connection of the AES core on the APB slave bus with respect to

the Leon address space. Select the APB_slv bus in the Select Master/

Slave/System table. Click Add above the MemMap/AddressBlock table and

fill in the values in the table as shown in Figure 4.4-7.

47

Figure 4.4-4: Bus Name Input Dialog Box

Figure 4.4-5: Bus Interface Specification

Figure 4.4-6: Signal Mapping

Figure 4.4-7: Bus Connection and Memory Map Specification

48

6. In the registerBank/name window, click Add and name the field as registers,

as shown in Figure 4.4-8. Click Registers and enter the register information in

the Register List table as shown in Figure 4.4-9. Use New to add registers and

save your work frequently. Specify the register bit information in the Field List

for each register. Click Save before closing the window to avoid validation

errors. The detailed bit information for controlReg, dataLoadReg, cipherOutReg,

statusReg and memReg is shown in Figure 4.4-10 – 14, respectively.

Figure 4.4-8: Register Bank Window

Figure 4.4-9: Register List Input Table

49

Figure 4.4-10: Field List Information for controlReg

Figure 4.4-11: Field List Information for dataLoadReg

Figure 4.4-12: Field List Information for cipherOutReg

Figure 4.4-13: Field List Information for statusReg

Figure 4.4-14: Field List Information for memReg

50

4.4.3 Describing the Component Appearance

In the Platform Express environment, the appearance of your component can be

described under the presentation tab. Table 4.4-2 lists the input fields found under this

item, while Figure 4.4-15 actually shows the presentation interface, with information

entered in all fields with respect to our AES component.

4.4.4 Setting up the Verification Environment

The details required to create your component in the final design are to be provided

under this option. It is always better to have a component support more than one

simulation environment and language, this way it stands a better chance to be

incorporated in many designs. Various fields and entries in this tab are illustrated in

Figure 4.4-16.

Table 4.4-2: Presentation Information

Display Label

The preferred name for the component is to be entered here.
The component will be referenced by this name in the
Component Browser. If multiple names are entered, only
component will be referred by the first one. Spaces are valid in
Display Labels (as opposed to Register Names and Register Field
Names).

Icon

The icon shows up in the block diagram of the component,
when it is dragged into the Design Editor. Enter the relative path
to the icon in the library directory. Users can create icons in GIF
or JPEG formats measuring 100 pixels by 35 pixels (width X
height). Leaving this field blank automatically allows Platform
Express to use the default icon.

Document Location

Any support information for the component – web URL, relative
path to the location of datasheets or application notes – goes in
this field. The information will be available to end-users when
they right-click your component and select Browse.

51

Figure 4.4-15: Component Appearance Description

Figure 4.4-16: Verification Environment Specifications

1. Click the hwModel tab and click Add under the VerificationEnv field. Enter

any name under id (preferably indicating simulator and language type). Select

the HDL of your component description from the drop-down menu under

language.

2. Add a field under EnvironmentId and select an option from the drop-down

menu for envIdentifier.

3. Add a field under Parameter and enter the entity names of the modules in your

component – in the bottom-up hierarchical order – under value. Select

entityName from the drop-down list under name.

4. From a list of options under fileType, select the HDL source in which your

component is described.

5. Specify a fileset for your Parameter value under fileSetRef. This exact fileset

ID will be referenced under the fileSets tab.

52

4.4.5 Adding Supporting Files

Under fileSets, you will specify the location of all files under fileSetRef in hwModel.

Additionally, you may also specify supporting software files for your component if it

generates its own drivers.

1. Add a field under File Set and enter the exact fileSetId as the one under

fileSetRef. Make sure that the spelling and the case are identical.

2. Add the relative location of each file belonging to this fileset. In our case, it is

the top-level file aes.vhd under hdlsrc directory, as shown in Figure 4.4-17. Under

the other required field, fileType, specify all HDL of all your files.

3. After adding all files for a particular fileset, click Add to specify another fileset.

4. Save your work and eliminate validation errors, if any. Usually pxEdit will

generate a message similar to the one shown in Figure 4.4-18.

For more information on adding supporting filesets, see mcore_ahb.xml under
pxLibraries/Leon2/componentLibrary/component/mcore_ahb/1.0.

Figure 4.4-17: Fileset Specification

Figure 4.4-18: PxEdit Validation Message

53

A component wrapper recognized by the Platform Express application can be
generated using PxEdit. The tool only results in a bare minimum XML structure of the
component. The XML file, attached in Appendix B, is editable outside of the PxEdit
environment in any text editor, if the component requires any dependencies to be
added. In our case however, no additional generators/configurators or dependencies are
required for the AES IP core. For details regarding adding CPU cores, writing
generators and configurators, resolving dependencies, adding bus interfaces (other than
the included AMBA and Inventra buses) and to read more on adding components,
please refer to the Platform Express Integrator’s Guide [22].

Once the component XML file is created, make a new component library under

pxLibraries and package your component into that library as described in section 3.3.
Next, edit .plex_rc by adding the new component library location to $PXPATH. In order
to reduce the Platform Express loading time, generate an index.xml file for the component
using mkIndex. From the command prompt, traverse to the pxLibraries directory and
enter the following command:

$PXHOME/tools/bin/mkIndex <libraryName>

IP integrators can prevent end-users from modifying their libraries by using Pxkeygen
utility to generate a Pxkey file. Modification is only possible when end-users buy the
Pxkey license. To generate Pxkey, go to the pxLibraries directory and enter the following
command:

$PXHOME/tools/bin/Pxkeygen.sh <libraryName>

The next section illustrates the process of integrating a component described using

multiple HDLs (VHDL + Verilog) and can be skipped if you are working with a
component written entirely in just one HDL.

4.4.6 Generating a Black Box Component

Since most companies prefer using only one HDL to describe their IP cores, the current
version of Platform Express only supports verification of a component described in a
single HDL. In our case however, since we have used the AES IP core available on
OpenCores.org, written in Verilog and the AMBA wrapper written in-house using
VHDL, the design verification process is not possible. (This issue has been reported to
the Platform Express support team and is likely to be resolved in the future releases.)

54

Nevertheless, the current version of the Platform Express environment provides a

smart way to describe a component as a black box in which only the bus interface

signals are imported in the XML file and no filesets are created.

The Generate Black Box option under Tools menu (see Figure 4.4-19) in Platform

Express application brings up the black box generator interface that allows users to

create components for installation under the black box library (bbcLib).

1. Click on the generator interface and in the resulting BBC Component

Editor dialog box (see Figure 4.4-20) enter the name of the component.

2. Click and drag the Bus Interface symbol, onto the component name in

the black box editor. In the resulting Bus Interface Editor dialog box shown in

Figure 4.4-21, specify the Bus Type as ambaAHB Master.

3. Repeat step 2 twice, and specify Bus Type as ambaAPB Slave and Interrupt

Slave. The black box generator interface would now be identical to Figure
4.4-22.

4. Select File > Generate… and navigate to the PlatformExpress2.1h directory in the

dialog box that appears. Select pxLibraries and click Generate as illustrated in

Figure 4.4-23. The bbcLib library will be placed inside the pxLibraries directory.

The terminal window will show an output similar to Figure 4.4-24.

Figure 4.4-19: Invoking the Black Box Generator Interface

55

Figure 4.4-20: Component Editor Dialog Box

Figure 4.4-21: Bus Interface Dialog Box

Figure 4.4-22: BBC Generator Interface

Figure 4.4-23: bbcLib Creation Directory

Figure 4.4-24: bbcLib Creation Message

56

4.5 GENERATING A TEST DESIGN

 With the component XML file validated and all the filesets packaged in the proper

component libraries (VOLIPository and bbcLib), we can now verify the behavior of the

integrated IP core in the Platform Express environment.

1. From the command prompt, invoke PX by issuing the following command:

$PXHOME/bin/px –refresh &

Alternately, if PX is already running, select File > Refresh Libraries to reload

newly added libraries without exiting.

2. Notice that the installed component libraries are not visible in the Component

Browser yet. This is because initially, PX only shows components (CPU cores)

that could be dragged onto the Design Editor Pane. Perform a drag-n-drop on

the Leon2 Processor. Go through the resulting Configure mcore_ahb

window (shown in Figure 4.5-1) and click OK. Leon2 CPU core will now appear

in the Design Editor; simultaneously PX will update the Component Browser as

shown in Figure 4.5-2.

Figure 4.5-1: mcore_ahb Configuration Window

57

Figure 4.5-2: Updated Component Browser

3. Select aes2 (aes, in your case) under bbcLib and drag it onto the ambaAHB_1

master bus of the Leon2 CPU. As shown in Figure 4.5-3, a Bus Bridge

Required window will come up. This is to bridge the connection between the

AHB master of Leon2 with APB slave of AES. Select the opaque bus bridge,

Leon2 – apbmst_obb for this purpose.

4. Leave the values unchanged in the Configure apbmst_obb dialog box shown

in Figure 4.5-4 and click OK.

5. Do the same for the singlePinInterruptBus_1 configuration dialog box shown

in Figure 4.5-5.

6. At this point the AES core will appear in the Design Editor as shown in Figure

4.5-6. Attach the ambaAHB_2 master bus on the AES to the ambaAHB_1

master bus of Leon2 by performing a drag-n-drop operation. This way a non-

processor component like AES can have access to the master bus. The resulting

change is shown in Figure 4.5-7

7. Click to save the design under <savedProject> directory and then click

 to build it. Click OK on the resulting Required Configuration window

and watch the Output Pane for

58

Figure 4.5-3: AHB-APB Bus Bridge Dialog Box

Figure 4.5-4: Bus Bridge Configuration

Figure 4.5-5: Interrupt Bus Configuration

Figure 4.5-6: Leon2-AES Before AHB Bus Attachment

Figure 4.5-7: Leon2-AES After AHB Bus Attachment

59

build status messages. During this ‘build’ process, PX will generate an HDL

system design based on the contents of the Design Editor and the component

configurations.

 Note: Performing a build is not possible without proper software

compilation tools. For instance, Leon2 core requires the sparc-elf-gcc cross-

compiler for compiling the boot code (Refer to Appendix C for information on

building a sparc-elf-gcc cross-compiler for PX running on Solaris machines).

Also, all configurable settings can be accessed by selecting Settings >

Configure All. For more information on various configure options available to

system designers, please refer to the Platform Express User’s Guide. [23]

8. The build process generates a savedProject.plx file inside the <savedProject>

directory along with other sub-directories to hold the HDL source files of the

design, object files, build scripts and configuration files. The directory structure

of the saved project is shown in Figure 4.5-8. Once the build process is

completed, the last few lines of a successful build will be identical to those

depicted in Figure 4.5-9. Refer to Appendix D for the detailed build log.

<savedProject>

 +- verificationEnv

 | |

 | +- Modelsim

 | +- designData

 | +- exec [Generated files for Seamless execution]

 | +- hdl [Generated HDL files, build scripts and compiled

 | | models]

 | +- software [Contains compiled object files and source
 | | code for the main diagnostics file]

 | +- testbench

 | |- pxenv.properties
 | |- pxenv.sh [PX_HDL_BUILD Directory Specifications]

 |- <savedProject>.plx

Figure 4.5-8: Directory Structure of Generated Design

60

Figure 4.5-9: Output Pane Build Log Messages

9. Click to execute the build and invoke the Seamless CVE session. This will

bring up the ModelSim application and its Wave Viewer interface (shown in Figure

4.5-10).

The next section explains the process of generating a build for designs featuring a

black box component (see Section 4.4.6) and can be skipped if your test design consists

of IPs described using a single HDL.

4.5.1 Building Designs Featuring Black Box IPs

Generating a black box component in a manner described in Section 4.4.6 results in a

top-level bbc_top.vhd file in the hdlSrc directory of the bbcLib component directory.

This file is essentially an AMBA-compliant wrapper. Follow the steps below to

successfully build a design consisting of IPs described in multiple HDLs.

61

Figure 4.5-10: Seamless Environment – ModelSim Application with Waveform Viewer

1. Move all the HDL files (VHDL as well as Verilog) into the hdlSrc directory of

the bbcLib component library.

2. Modify the architecture declaration in the bbc_top.vhd file to include port-

mapping statements to the lower-level aes_enc_ctrl_struct.vhd file. Leave the

architecture declaration of the aes_enc_ctrl_struct.vhd file empty. This is to hide

the Verilog files instantiation declared inside aes_enc_ctrl_struct.vhd from the

PX environment.

3. Modify the aes.xml file under pxLibraries/bbcLib/component-

Library/component/aes/1.0 using PxEdit or a text editor to include

aes_enc_ctrl_struct.vhd under hwmodel and filesets. For reference, use the XML

file generated in Section 4.4 or the one included in Appendix B.

62

4. Create and build the design as described in Section 4.5, steps 1—8. Do not

execute the build yet.

5. From the terminal window, navigate to the <savedProject>/verificationEnv

/Modelsim/hdl directory and modify the PX-generated build.xml script. Insert

“vlog” statements to allow compilation of the previously hidden Verilog files.

Figure 4.5-11 shows the pre- and post-modification snapshots of the build.xml

script.

6. Modify the aes_enc_ctrl_struct.vhd by adding statements in the previously empty

architecture declaration.

7. Under the same <savedProject>/verificationEnv/Modelsim/hdl directory, type ant.

‘Ant’ [24] is the Java equivalent of the ‘Make’ command and uses XML-based

configuration files to execute tasks. In this case, ant will be using the modified

build.xml script to compile all the HDL files in our design.

8. After executing all the instructions in the build script, ant will generate a message

similar to:

BUILD SUCCESSFUL

Total time: 31 seconds

Note: Errors in the build script will result in a “Build Failed” message.

9. Go back to the PX application and complete step-10 as described in Section 4.5.

This completes our one design cycle using Platform Express. Users can examine the

design, make further changes and enhancements and cycle through the design flow as

explained in this chapter.

63

Figure 4.5-11: The build.xml file before Modification (a); Modified Build File with

Verilog Compile Instructions (b)

4.6 VERIFYING THE DESIGN

Currently, only a few processors are supported by Seamless in PX. The ARM’s Processor

Support Package (PSP) and the MIPS PSP are supported but not Leon. Therefore, as of

now, due to the unavailability of a Seamless model of the Leon processor,

simulation/optimization of Leon CPU core is not possible using Seamless application.

This means that at present, the test design can only be simulated and verified for

correctness using a hardware simulator such as the ModelSim application.

a

b

64

55
CCOONNCCLLUUSSIIOONNSS

Being a pioneer is non-trivial.
--Don Bouldin

Results! Why man, I have gotten a lot of results. I know a several thousand things that won’t work.

--Thomas A. Edison

he primary objective of the Volunteer SoC project is to allow designers to be able

to reuse their current design by having it as a starting point for their future work.

In this task we explored the possibility of using Platform Express to quickly generate a

platform for our future SoC designs. The choice of this tool proved to be not just right

but also very appropriate. In addition to allowing designers to rapidly create system

designs, PX also enables IP developers to showcase their components for possible use

in that design.

5.1 CONTRIBUTIONS

In our attempt at using the PX application for the first time at the University of

Tennessee, we overcame some minor as well as a few major issues and were successful

in implementing a processor-centric platform subsystem for derivative designs. The

complete IP integration and platform design flow, illustrated in Figure 4.1-1 (Chapter 4),

was followed while using Platform Express for the SoC platform design.

The detailed explanation of IP installation and platform building process is given in

this thesis and it is intended for use as an instructional guide for students at our

university.

T

65

One of the main problems encountered during this project was the unavailability of

the Solaris build of the sparc-elf-gcc cross-compiler for Leon2 CPU. This compiler has

been built at our university and copies are available for download [25]. Additionally, one

copy sent to Gaisler Research is available for download, while the other sent to Mentor

Graphics is for their internal use to assist in problems involving the Leon2 CPU core.

5.2 CURRENT STATUS AND FUTURE WORK

At the time of writing this thesis, the platform building process and functional

verification of the platform using the ModeSim hardware simulator has been completed.

With the availability of the Leon2 Seamless model, co-simulation of both the hardware

and software components of the design will be possible.

One of the tasks in the near future can be to add more IP cores to the existing

VOLIPository component library and enhance the existing platform. Another possibility

is to use the recently acquired Virtex II™ series FPGAs to prototype the platform-

based SoCs designed using PX.

66

RREEFFEERREENNCCEESS

67

[1] Moore, G., “Cramming More Components onto Electronic Circuits”. [Online].
Available: ftp://download.intel.com/research/silicon/moorespaper.pdf

[2] Bouldin, D., “Platform-based System-on-Chip Design,” Proceedings of 2003 NASA
Symposium on VLSI Design, Cour d’Alene, ID, pp.1-4, May 28-29, 2003.

[3] Bouldin, D., Microelectronic Systems Courses, University of Tennessee.
http://vlsi1.engr.utk.edu/ece/bouldin_courses/

[4] Bouldin, D., and R. Srivastava, “An open System-on-Chip Platform for Education ,”
Proceedings of 2004 European Workshop on Microelectronics Education (EWME), Lausanne,
Switzerland, April 15-16, 2004.

[5] Mentor Graphics Corporation. http://www.mentor.com/platform_ex/

[6] Gaisler Research. http://www.gaisler.com/

[7] AMBA 2.0 Specification. http://www.gaisler.com/doc/amba.pdf

[8] Weiss, R., “Advanced Microprocessor Bus Architecture (AMBA) Bus Sysem,”
Electronic Design, March 2001. [Online]. Available: http://www.elecdesign.com/Articles/
ArticleID/4165/4165.html

[9] Chandra, R., “IP-Reuse and Platform-based Design,” D&R Industry Articles, August
2003, [Online] Available: http://www.us.design-reuse.com/articles/article6125.html

[10] Sangiovanni-Vincentelli, A., “The Tides of EDA,” IEEE Design & Test of Computers,
pp. 59-75, November-December 2003

[11] Fritz, D., “Why Platform-based Design works better than discrete IP approach,”
Portable Design, October 2003, [Online] Available: http://pd.pennnet.com/Articles/
Article_Display.cfm?Section=Articles&Subsection=Display&ARTICLE_ID=189021

[12] Borel, J., “Design Automation in MEDEA: Present and Future,” IEEE Micro, Vol.
19, No. 5, pp. 71-79, September 1999.

[13] Billie, A., and S. Hatliff, “Platform approach speeds MIPS-based SoCs,” EEDesign,
October 2001, [Online]. Available: http://www.eetimes.com/story/OEG20011012S0-
076

[14] Bouldin, D., “Platform-based System-on-Chip Design,” Proceedings of 2003 NASA
Symposium on VLSI Design, Cour d’Alene, ID, pp.1-4, May 28-29, 2003.

[15] Tarverdians, F., “A Platform-based Design can reduce DSC design time and cost,”
Portable Design, March 2004, [Online] Available:
http://pd.pennnet.com/Articles/Article_Display.cfm?Section=Archives&Subsection=
Display&ARTICLE_ID=199976&KEYWORD=ARC

[16] Altizer, R., “Platform-based Design: The Next Reuse Frontier,” Embedded Systems
Conference, San Francisco, CA, March 14, 2002.

68

[17] Zaidi, J., “Different platform types are needed for SoC Design,” EEDesign, January
2003, [Online] Available: http://eetimes.com/story/OEG20030131S0057

[18] Schirrmeister, F., and G. Martin, “A Design Chain for Embedded Systems,” IEEE
Computer, Embedded Systems Column, pp. 100-103, March 2002.

[19] Kuetzer, K., A. R. Newton, J.M. Rabaey, A. Sangiovanni-Vincentelli, “System Level
Design: Orthogonalization of Concerns and Platform based Design,” IEEE Transactions
on Computer Aided Design of Integrated Circuits and Systems, Vol.19, No.12, pp. 1523-1543,
December 2000.

[20] AES Algorithm (Rijndael)Information, National Institute of Standards and Technology,
Computer Security Division. [Online] Available: http://csrc.nist.gov/CryptoToolkit/aes/
rijndael/

[21] SPIRIT Consortium, http://www.spiritconsortium.com/

[22] Mentor Graphics Corporation, “Platform Express Integrator’s Guide,” July 2004
[Online] Available: http://www.mentor.com/products/embedded_software/plat-
form_baseddesign/platform_express/upload/pxCompIntGuide.pdf

[23] Mentor Graphics Corporation, “Platform Express User’s Guide,” July 2004
[Online] Available: http://www.mentor.com/products/embedded_software/plat-
form_baseddesign/platform_express/upload/px_help.pdf

[24] The Apache Ant Project, http://ant.apache.org/

[25] Sparc-elf-gcc for Solaris, http://vlsi1.engr.utk.edu/~wala/sparc-elf-gcc.html

69

AAPPPPEENNDDIICCEESS

70

AAppppeennddiixx AA
VVHHDDLL SSOOUURRCCEE CCOODDEE LLIISSTTIINNGG

AES.VHD
--+---+
--| Module: AES.VHD |
--| Top level AMBA AHB/APB wrapper |
--| |
--| Modified by: Mardav Wala [mardav.wala@gmail.com] |
--| |
--| Project: Using Platform Express for System-on-Chip Design |
--+---+

-- Standard Libraries

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_signed.ALL;
USE IEEE.std_logic_arith.ALL;

ENTITY aes IS
 PORT(
 HRESETn :IN STD_LOGIC;
 HCLK :IN STD_LOGIC;
 HGRANT :IN STD_ULOGIC;
 HREADY :IN STD_ULOGIC;
 HRESP :IN STD_LOGIC_VECTOR(1 downto 0);
 HRDATA :IN STD_LOGIC_VECTOR(31 downto 0);

 HBUSREQ :OUT STD_ULOGIC;
 HLOCK :OUT STD_ULOGIC;
 HTRANS :OUT STD_LOGIC_VECTOR(1 downto 0);
 HADDR :OUT STD_LOGIC_VECTOR(31 downto 0);
 HWRITE :OUT STD_ULOGIC;
 HSIZE :OUT STD_LOGIC_VECTOR(2 downto 0);
 HBURST :OUT STD_LOGIC_VECTOR(2 downto 0);
 HPROT :OUT STD_LOGIC_VECTOR(3 downto 0);
 HWDATA :OUT STD_LOGIC_VECTOR(31 downto 0);

 PSELx :IN STD_ULOGIC;
 PENABLE :IN STD_ULOGIC;
 PADDR :IN STD_LOGIC_VECTOR(31 downto 0);
 PWRITE :IN STD_ULOGIC;
 PWDATA :IN STD_LOGIC_VECTOR(31 downto 0);

 PRDATA :OUT STD_LOGIC_VECTOR(31 downto 0);
 irq :OUT STD_LOGIC
);
END aes;

ARCHITECTURE rtl OF aes IS

 COMPONENT aes_enc_ctrl
 PORT(
 RST :IN STD_LOGIC;
 CLK :IN STD_LOGIC;
 AHB_HGRANT :IN STD_ULOGIC;
 AHB_HREADY :IN STD_ULOGIC;
 AHB_HRESP :IN STD_LOGIC_VECTOR(1 downto 0);
 AHB_HRDATA :IN STD_LOGIC_VECTOR(31 downto 0);

71

 AHB_HBUSREQ :OUT STD_ULOGIC;
 AHB_HLOCK :OUT STD_ULOGIC;
 AHB_HTRANS :OUT STD_LOGIC_VECTOR(1 downto 0);
 AHB_HADDR :OUT STD_LOGIC_VECTOR(31 downto 0);
 AHB_HWRITE :OUT STD_LOGIC;
 AHB_HSIZE :OUT STD_LOGIC_VECTOR(2 downto 0);
 AHB_HBURST :OUT STD_LOGIC_VECTOR(2 downto 0);
 AHB_HPROT :OUT STD_LOGIC_VECTOR(3 downto 0);
 AHB_HWDATA :OUT STD_LOGIC_VECTOR(31 downto 0);

 APB_PSEL :IN STD_ULOGIC;
 APB_PENABLE :IN STD_ULOGIC;
 APB_PADDR :IN STD_LOGIC_VECTOR(31 downto 0);
 APB_PWRITE :IN STD_ULOGIC;
 APB_PWDATA :IN STD_LOGIC_VECTOR(31 downto 0);

 APB_PRDATA :OUT STD_LOGIC_VECTOR(31 downto 0);
 irq :OUT STD_LOGIC
);
END COMPONENT;

BEGIN
AES: aes_enc_ctrl_struct PORT MAP(
 RST => HRESETn,
 CLK => HCLK,
 AHB_HGRANT => HGRANT,
 AHB_HREADY => HREADY,
 AHB_HRESP => HRESP,
 AHB_HRDATA => HRDATA,

 AHB_HBUSREQ => HBUSREQ,
 AHB_HLOCK => HLOCK,
 AHB_HTRANS => HTRANS,
 AHB_HADDR => HADDR,
 AHB_HWRITE => HWRITE,
 AHB_HSIZE => HSIZE,
 AHB_HBURST => HBURST,
 AHB_HPROT => HPROT,
 AHB_HWDATA => HWDATA,

 APB_PSEL => PSELx,
 APB_PENABLE => PENABLE,
 APB_PADDR => PADDR,
 APB_PWRITE => PWRITE,
 APB_PWDATA => PWDATA,

 APB_PRDATA => PRDATA,
 irq => irq
);
END;

72

AES_ENC_CTRL_STRUCT.VHD
--+--
--| File: AES_ENC_CTRL_STRUCT.VHD
--| Describes the AMBA AHB/APB bus-compatible controller module for the
--| AES Rijndael encryption IP core available from OpenCores.org
--| Based on the MDCT.VHD module described in the Ogg-on-a-Chip Project
--| by Luis Azuara. [http://oggonachip.sourceforge.net]
--|
--| Modified by: Rishi Srivastava
--|
--| Revised by: MARDAV WALA [mardav@gmail.com]
--|
--| Project: Using Platform Express for System-on-Chip Design
--| [MS Thesis. University of Tennessee, May 2005]
--|
--| Sub-Files: AES_RCON.V, AES_SBOX.V, AES_KEY_EXPAND_128.V,
--| AES_CIPHER_TOP.V, DW_RAM.VHD, CONTROLLER.V, TOPMODULE.V
--+--

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE IEEE.std_logic_signed.ALL;
USE IEEE.std_logic_arith.ALL;
--USE mywork.iface.ALL;

ENTITY aes_enc_ctrl_struct IS

 PORT(
 RST :IN STD_LOGIC;
 CLK :IN STD_LOGIC;

 -- AHB Bus Signals
 AHB_HGRANT :IN STD_ULOGIC;
 AHB_HREADY :IN STD_ULOGIC;
 AHB_HRESP :IN STD_LOGIC_VECTOR(1 downto 0);
 AHB_HRDATA :IN STD_LOGIC_VECTOR(31 downto 0);

 AHB_HBUSREQ :OUT STD_ULOGIC;
 AHB_HLOCK :OUT STD_ULOGIC;
 AHB_HTRANS :OUT STD_LOGIC_VECTOR(1 downto 0);
 AHB_HADDR :OUT STD_LOGIC_VECTOR(31 downto 0);
 AHB_HWRITE :OUT STD_LOGIC;
 AHB_HSIZE :OUT STD_LOGIC_VECTOR(2 downto 0);
 AHB_HBURST :OUT STD_LOGIC_VECTOR(2 downto 0);
 AHB_HPROT :OUT STD_LOGIC_VECTOR(3 downto 0);
 AHB_HWDATA :OUT STD_LOGIC_VECTOR(31 downto 0);

 -- APB Bus Signals
 APB_PSEL :IN STD_ULOGIC;
 APB_PENABLE :IN STD_ULOGIC;
 APB_PADDR :IN STD_LOGIC_VECTOR(31 downto 0);
 APB_PWRITE :IN STD_ULOGIC;
 APB_PWDATA :IN STD_LOGIC_VECTOR(31 downto 0);

 APB_PRDATA :OUT STD_LOGIC_VECTOR(31 downto 0);

 -- Single Pin Interrupt Bus Signal
 irq :OUT STD_LOGIC
);
END aes_enc_ctrl_struct;

73

--
ARCHITECTURE structural of aes_enc_ctrl_struct IS
--
-- Memory Map
-- ADDRESS NAME DESCRIPTION
-- 0x80000300 Control Register Bit 0: AES Core On/Off
-- Bit 2: IRQ enabled/disabled
-- Bit 3: IRQ request
-- 0x80000304 Key/Plain Text Read Start Address 32 bits: 0x40000000
-- 0x80000308 Cipher Text Write Start Address 32 bits: 0x40001000
-- 0x8000030C Status Register Bit 0: Ready/Busy
-- Bit 1: Reading/Writing
-- (READ ONLY)
-- 0x80000310 Current Memory Register 32 bits: Actual DMA Address
-- (READ ONLY)

 -- TOPMODULE.V

 COMPONENT topmodule
 PORT(
 inst_test_clk :IN STD_LOGIC;
 rst :IN STD_LOGIC;
 inst_rst_n :IN STD_LOGIC;
 in_cs_n :IN STD_LOGIC;
 in_cs_n1 :IN STD_LOGIC;
 Go :IN STD_LOGIC;
 inst_wr_n :IN STD_LOGIC;
 inst_wr_addr :IN STD_LOGIC_VECTOR(3 downto 0);
 inst_rd_addr1 :IN STD_LOGIC_VECTOR(3 downto 0);
 inst_data_in :IN STD_LOGIC_VECTOR(31 downto 0);
 inst_key_in :IN STD_LOGIC_VECTOR(31 downto 0);

 data_out_inst1 :OUT STD_LOGIC_VECTOR(31 downto 0)
);
 END COMPONENT;

 -- AES Record Signals

 TYPE aes_regs IS RECORD
 -- Memory Mapped Registers
 -- Control Register: 0x80000300
 aes_en_req :STD_LOGIC; -- Bit 0: AES core enabled if '1', disabled if '0'
 irq_en :STD_LOGIC; -- Bit 2: IRQ enabled if '1', disabled if '0'
 irq :STD_LOGIC; -- Bit 3: IRQ request generated if '1', not if '0'

 -- Read Memory Transfer Address: 32 bit at 0x80000304
 rd_start_addr :STD_LOGIC_VECTOR(31 downto 0);

 -- Write Memory Transfer Address: 32 bit at 0x80000308
 wr_start_addr :STD_LOGIC_VECTOR(31 downto 0);

 -- Status Register: 32 bit at 0x8000030C
 ready :STD_LOGIC; -- Bit 0: Function done if '1', busy if '0' /Read Only
 mem_wr :STD_LOGIC; -- Bit 1: Writing if '1', reading if '0' / Read Only

 -- Current Memory Register: 32 bit at 0x80000310
 mem_addr :STD_LOGIC_VECTOR(31 downto 0);
 -- End Memory Mapped Registers

 -- Internal Registers
 wr_n :STD_LOGIC;
 dma_xfer_req :STD_LOGIC;
 aes_en :STD_LOGIC;
 n :STD_LOGIC_VECTOR(2 downto 0);
 data_in :STD_LOGIC_VECTOR(31 downto 0);
 key_in :STD_LOGIC_VECTOR(31 downto 0);
 aes_addr :STD_LOGIC_VECTOR(3 downto 0);

74

 -- AMBA Status Registers
 bus_active :STD_LOGIC;
 bus_own :STD_LOGIC;
 bus_grant :STD_LOGIC;
 END RECORD;

 -- Constants

 -- HTRANS (Transfer Type | Output from the AHB MASTER)
 CONSTANT HTRANS_IDLE :STD_LOGIC_VECTOR(1 downto 0) := "00";
 CONSTANT HTRANS_BUSY :STD_LOGIC_VECTOR(1 downto 0) := "01";
 CONSTANT HTRANS_NONSEQ :STD_LOGIC_VECTOR(1 downto 0) := "10";
 CONSTANT HTRANS_SEQ :STD_LOGIC_VECTOR(1 downto 0) := "11";

 -- HBURST (Address Increments | Output from the AHB MASTER)
 CONSTANT HBURST_SINGLE :STD_LOGIC_VECTOR(2 downto 0) := "000";
 CONSTANT HBURST_INCR :STD_LOGIC_VECTOR(2 downto 0) := "001";
 CONSTANT HBURST_WRAP4 :STD_LOGIC_VECTOR(2 downto 0) := "010";
 CONSTANT HBURST_INCR4 :STD_LOGIC_VECTOR(2 downto 0) := "011";
 CONSTANT HBURST_WRAP8 :STD_LOGIC_VECTOR(2 downto 0) := "100";
 CONSTANT HBURST_INCR8 :STD_LOGIC_VECTOR(2 downto 0) := "101";
 CONSTANT HBURST_WRAP16 :STD_LOGIC_VECTOR(2 downto 0) := "110";
 CONSTANT HBURST_INCR16 :STD_LOGIC_VECTOR(2 downto 0) := "111";

 -- HSIZE (Transfer Size | Output from the AHB MASTER)
 CONSTANT HSIZE_BYTE :STD_LOGIC_VECTOR(2 downto 0) := "000";
 CONSTANT HSIZE_HWORD :STD_LOGIC_VECTOR(2 downto 0) := "001";
 CONSTANT HSIZE_WORD :STD_LOGIC_VECTOR(2 downto 0) := "010";
 CONSTANT HSIZE_DWORD :STD_LOGIC_VECTOR(2 downto 0) := "011";
 CONSTANT HSIZE_4WORD :STD_LOGIC_VECTOR(2 downto 0) := "100";
 CONSTANT HSIZE_8WORD :STD_LOGIC_VECTOR(2 downto 0) := "101";
 CONSTANT HSIZE_16WORD :STD_LOGIC_VECTOR(2 downto 0) := "110";
 CONSTANT HSIZE_32WORD :STD_LOGIC_VECTOR(2 downto 0) := "111";

 -- HRESP (Transfer Response | Output from the AHB SLAVE)
 CONSTANT HRESP_OKAY :STD_LOGIC_VECTOR(1 downto 0) := "00";
 CONSTANT HRESP_ERROR :STD_LOGIC_VECTOR(1 downto 0) := "01";
 CONSTANT HRESP_RETRY :STD_LOGIC_VECTOR(1 downto 0) := "10";
 CONSTANT HRESP_SPLIT :STD_LOGIC_VECTOR(1 downto 0) := "11";

 -- Signals / Registers

 SIGNAL r, tmp :aes_regs;
 SIGNAL sig_dataRdy :STD_LOGIC;
 SIGNAL sig_finish :STD_LOGIC;
 SIGNAL sig_mem_wr :STD_LOGIC;
 SIGNAL sig_rst_n :STD_LOGIC;
 SIGNAL sig_cs_n :STD_LOGIC;
 SIGNAL sig_cs_n1 :STD_LOGIC;
 SIGNAL sig_wr_n :STD_LOGIC;
 SIGNAL sig_Go :STD_LOGIC;
 SIGNAL sig_key_in :STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL sig_data_in :STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL sig_data_out :STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL sig_addr_in :STD_LOGIC_VECTOR(3 downto 0);
 SIGNAL sig_addr_out :STD_LOGIC_VECTOR(3 downto 0);

 SIGNAL sig_HADDR :STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL sig_HTRANS :STD_LOGIC_VECTOR(1 downto 0);
 SIGNAL sig_HWRITE :STD_LOGIC;
 SIGNAL sig_HWDATA :STD_LOGIC_VECTOR(31 downto 0);
 SIGNAL sig_HBUSREQ :STD_LOGIC;

 SIGNAL sig_PRDATA :STD_LOGIC_VECTOR(31 downto 0);

 TYPE state_type IS (idle, bus_req, bus_grant, bus_own, load_key, load_text,
xfer_end);

75

 SIGNAL cstate, nstate :state_type;

 --

 BEGIN
 AES_ENC: topmodule PORT MAP(
 data_out_inst1 => sig_data_out,
 inst_rst_n => sig_rst_n,
 inst_wr_n => sig_wr_n,
 inst_test_clk => CLK,
 inst_rd_addr1 => sig_addr_out,
 inst_wr_addr => sig_addr_in,
 inst_data_in => sig_data_in,
 inst_key_in => sig_key_in,
 Go => sig_Go,
 rst => RST,
 in_cs_n => sig_cs_n,
 in_cs_n1 => sig_cs_n1
);

 state_reg: process(CLK, RST, nstate)
 BEGIN
 IF (RST = '0') THEN
 cstate <= idle;
 ELSIF (CLK'event and CLK = '1') THEN
 cstate <= nstate;
 END IF;
 END PROCESS; -- state_reg

 the_process: PROCESS(CLK, RST, APB_PSEL, APB_PENABLE, APB_PADDR, APB_PWRITE,
APB_PWDATA, cstate, sig_dataRdy, AHB_HREADY, AHB_HGRANT, AHB_HRDATA, AHB_HRESP)
 BEGIN
 IF (CLK'event and CLK = '1') THEN
 tmp <= r;

 IF (RST = '0') THEN -- Asynchronous Reset
 sig_finish <= '0';
 sig_mem_wr <= '0';
 sig_rst_n <= '0';
 sig_cs_n <= '0';
 sig_cs_n1 <= '0';
 sig_wr_n <= '0';
 sig_Go <= '0';
 sig_key_in <= (others => '0');
 sig_data_in <= (others => '0');
 sig_addr_in <= (others => '0');
 sig_addr_out <= (others => '0');
 sig_HADDR <= (others => '0');
 sig_HTRANS <= (others => '0');
 sig_HWRITE <= '0';
 sig_HWDATA <= (others => '0');
 sig_dataRdy <= '1';
 ELSE
 sig_rst_n <= '1';
 sig_cs_n <= '0';
 sig_cs_n1 <= '0';
 sig_wr_n <= tmp.wr_n;
 sig_PRDATA <= (others => '0');

 -- APB Bus Conditions

 IF (APB_PSEL and APB_PENABLE and APB_PWRITE) = '1' THEN
 -- Write the PWDATA to the registers depending on the PADDR bus contents
 CASE APB_PADDR(4 downto 2) IS
 WHEN "000" =>
 -- PADDR = 0x80000300
 tmp.aes_en_req <= APB_PWDATA(0);

76

 tmp.irq_en <= APB_PWDATA(2);
 IF (APB_PWDATA(3) = '0') THEN
 tmp.irq <= '0'; -- Allow IRQ Reset only
 END IF;
 IF (tmp.aes_en_req = '1' and r.aes_en_req = '0' and r.ready = '1') THEN
 -- Initialize AES transaction when ENABLED and READY
 tmp.aes_en <= '1'; -- Enable AES core
 tmp.mem_addr <= X"40000000"; -- Initial memory read address is
0x40000000
 tmp.mem_wr <= '0'; -- Start Read cycle
 tmp.ready <= '0';
 tmp.wr_n <= '0';
 tmp.aes_addr <= (others => '0');
 sig_finish <= '0';
 sig_HTRANS <= HTRANS_NONSEQ; -- First transaction is ALWAYS non-
sequential
 --cstate <= bus_req; -- Request bus for transaction
 END IF;
 WHEN "001" =>
 -- PADDR = 0x80000304
 tmp.rd_start_addr <= APB_PWDATA;
 WHEN "010" =>
 -- PADDR = 0x80000308
 tmp.wr_start_addr <= APB_PWDATA;
 WHEN others => null;
 END CASE;
 ELSIF (APB_PSEL = '1'and APB_PENABLE = '1' and APB_PWRITE = '0') THEN
 -- Read the register contents on PRDATA depending on the PADDR bus contents
 CASE APB_PADDR(4 downto 2) IS
 WHEN "000" =>
 -- PADDR = 0x80000300
 sig_PRDATA(0) <= r.aes_en or r.aes_en_req;
 sig_PRDATA(2) <= r.irq_en;
 sig_PRDATA(3) <= r.irq;
 WHEN "001" =>
 -- PADDR = 0x80000304
 sig_PRDATA <= r.rd_start_addr;
 WHEN "010" =>
 -- PADDR = 0x80000308
 sig_PRDATA <= r.wr_start_addr;
 WHEN "011" =>
 -- PADDR = 0x8000030C
 sig_PRDATA(0) <= r.ready;
 sig_PRDATA(1) <= r.mem_wr;
 WHEN "100" =>
 -- PADDR = 0x80000310
 sig_PRDATA <= r.mem_addr;
 WHEN others => null;
 END CASE;
 END IF;

 -- AHB Bus Conditions

 CASE cstate IS
 WHEN idle =>
 -- Initialize all registers/bus contents
 sig_finish <= '0';
 sig_mem_wr <= '0';
 sig_rst_n <= '0';
 sig_cs_n <= '0';
 sig_cs_n1 <= '0';
 sig_wr_n <= '0';
 sig_Go <= '0';
 sig_key_in <= (others => '0');
 sig_data_in <= (others => '0');
 sig_addr_in <= (others => '0');
 sig_addr_out <= (others => '0');

77

 sig_HADDR <= (others => '0');
 sig_HTRANS <= (others => '0');
 sig_HWRITE <= '0';
 sig_HWDATA <= (others => '0');
 sig_dataRdy <= '1';
 nstate <= bus_req;

 WHEN bus_req =>
 -- Request bus for transaction
 IF (r.dma_xfer_req = '1') THEN
 sig_HBUSREQ <= '1';
 sig_dataRdy <= '0';
 ELSE
 sig_HBUSREQ <= '0';
 END IF;
 IF (sig_dataRdy and r.aes_en) = '1' THEN
 -- Backup register signals...
 tmp.n <= "111"; -- Initially number of WORDS (32-bit data) is
set to 7 (for counting eight 32-bit data 7...6...5...4)
 tmp.dma_xfer_req <= '1';
 tmp.mem_addr <= X"40000000";
 ELSIF (r.aes_en = '0') THEN
 END IF;
 -- ...and check for bus ownership
 tmp.bus_grant <= AHB_HGRANT;
 IF (tmp.bus_grant and r.dma_xfer_req) = '1' THEN
 -- Bus granted upon request
 tmp.bus_active <= '1';
 nstate <= bus_grant;
 ELSIF (tmp.bus_grant = '1' and r.bus_grant = '0' and r.dma_xfer_req = '0')
THEN
 -- Bus granted without request
 tmp.bus_active <= '0';
 sig_HTRANS <= HTRANS_IDLE; -- Do nothing!
 sig_HBUSREQ <= '0';
 END IF;

 WHEN bus_grant =>
 -- Skip first bus_own after granted
 IF (r.bus_active = '1' and AHB_HREADY = '1' and sig_dataRdy = '0') THEN
 -- Own bus at next clock
 nstate <= bus_own;
 END IF;

 WHEN bus_own =>
 -- Get ready for transaction
 IF (r.bus_active = '1' and AHB_HREADY = '1' and sig_dataRdy = '0') THEN
 tmp.bus_own <= '1';
 sig_HTRANS <= HTRANS_SEQ; -- Subsequent bus transfers are ALWAYS
sequential
 nstate <= load_key;
 END IF;

 WHEN load_key =>
 -- Load 128-bit KEY for encryption
 sig_key_in <= tmp.key_in;
 sig_addr_in <= tmp.aes_addr - 1;
 tmp.aes_addr <= r.aes_addr + 1;
 CASE tmp.n(2 downto 0) IS
 WHEN "011" =>
 -- The 128-bit KEY comprising of four WORDS has been written
 nstate <= load_text;
 WHEN others =>
 IF (sig_mem_wr = '0') THEN
 -- Write the KEY onto the internal DW_RAM
 tmp.key_in <= AHB_HRDATA;
 tmp.wr_n <= '0';
 END IF;
 tmp.mem_addr <= r.mem_addr + 4; -- Update next Read address

78

 tmp.n <= r.n - 1; -- One WORD has already been written
 nstate <= load_key; -- Continue until 4 WORDS (128-bits)
have been written
 END CASE; -- tmp.n

 WHEN load_text =>
 -- Load 128-bit PLAIN TEXT for encryption
 sig_data_in <= tmp.data_in;
 sig_addr_in <= tmp.aes_addr - 1;
 tmp.aes_addr <= r.aes_addr + 1;
 CASE tmp.n(2 downto 0) IS
 WHEN "000" =>
 -- The 128-bit Plain Text comprising of four WORDS have been read
 sig_dataRdy <= '1'; -- All data is present for encryption
 IF (r.aes_en = '1') THEN
 -- End transaction and start outputting data onto PRDATA bus
 sig_HTRANS <= HTRANS_NONSEQ;
 sig_HWRITE <= '0';
 ELSE
 -- End transaction and switch to idle state
 sig_HTRANS <= HTRANS_IDLE;
 tmp.dma_xfer_req <= '0';
 END IF;
 sig_Go <= '1';
 nstate <= xfer_end;
 WHEN others =>
 IF (sig_mem_wr = '0') THEN
 -- Write the PLAIN TEXT onto the internal DW_RAM
 tmp.data_in <= AHB_HRDATA;
 tmp.wr_n <= '0';
 END IF;
 tmp.mem_addr <= r.mem_addr + 4; -- Update next Read address
 tmp.n <= r.n - 1; -- One WORD has already been written
 nstate <= load_text; -- Continue until all 4 WORDS (128-bits)
have been written
 END CASE; -- tmp.n

 WHEN xfer_end =>
 IF (sig_finish = '1') THEN
 tmp.ready <= '1';
 tmp.aes_en <= '0';
 tmp.aes_en_req <= '0';
 tmp.irq <= r.irq_en;
 tmp.dma_xfer_req <= '0';
 sig_mem_wr <= '1';
 nstate <= idle;
 ELSE
 sig_mem_wr <= '0';
 END IF;

 WHEN others =>
 nstate <= idle;
 END CASE; -- cstate
 END IF;
 END IF;
 END process; -- the_process

 -- Encryption output on the AMBA bus
 irq <= r.irq;
 APB_PRDATA <= sig_PRDATA;
 AHB_HADDR <= r.mem_addr;
 AHB_HTRANS <= sig_HTRANS;
 AHB_HBUSREQ <= sig_HBUSREQ;
 AHB_HWDATA <= sig_HWDATA;
 AHB_HLOCK <= '0';
 AHB_HWRITE <= sig_HWRITE;
 AHB_HSIZE <= HSIZE_WORD;
 AHB_HBURST <= HBURST_INCR8;

79

 AHB_HPROT <= (others => '0');

 -- Synchronize data with CLK, RST signals
 sync: PROCESS(CLK, RST)
 BEGIN
 IF rst='0' THEN
 r.rd_start_addr <= (others => '0');
 r.n <= (others => '0');
 r.wr_start_addr <= (others => '0');
 r.mem_addr <= (others => '0');
 r.aes_en <= '0';
 r.aes_en_req <= '0';
 r.dma_xfer_req <= '0';
 r.ready <= '1';
 r.mem_wr <= '0';
 r.irq_en <= '0';
 r.irq <= '0';
 r.bus_own <= '0';
 r.bus_grant <= '0';
 r.bus_active <= '0';
 r.wr_n <= '0';
 r.aes_addr <= "1010";
 r.data_in <= (others => '0');
 r.key_in <= (others => '0');
 ELSIF RISING_EDGE(CLK) THEN
 r <= tmp;
 END IF;
 END PROCESS; -- sync

END structural;

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
package aes_enc_ctrl_struct_pkg is
 component aes_enc_ctrl_struct
 port (
 RST :IN STD_LOGIC;
 CLK :IN STD_LOGIC;

 -- AHB Bus Signals
 AHB_HGRANT :IN STD_ULOGIC;
 AHB_HREADY :IN STD_ULOGIC;
 AHB_HRESP :IN STD_LOGIC_VECTOR(1 downto 0);
 AHB_HRDATA :IN STD_LOGIC_VECTOR(31 downto 0);
 AHB_HBUSREQ :OUT STD_ULOGIC;
 AHB_HLOCK :OUT STD_ULOGIC;
 AHB_HTRANS :OUT STD_LOGIC_VECTOR(1 downto 0);
 AHB_HADDR :OUT STD_LOGIC_VECTOR(31 downto 0);
 AHB_HWRITE :OUT STD_LOGIC;
 AHB_HSIZE :OUT STD_LOGIC_VECTOR(2 downto 0);
 AHB_HBURST :OUT STD_LOGIC_VECTOR(2 downto 0);
 AHB_HPROT :OUT STD_LOGIC_VECTOR(3 downto 0);
 AHB_HWDATA :OUT STD_LOGIC_VECTOR(31 downto 0);

 -- APB Bus Signals
 APB_PSEL :IN STD_ULOGIC;
 APB_PENABLE :IN STD_ULOGIC;
 APB_PADDR :IN STD_LOGIC_VECTOR(31 downto 0);
 APB_PWRITE :IN STD_ULOGIC;
 APB_PWDATA :IN STD_LOGIC_VECTOR(31 downto 0);
 APB_PRDATA :OUT STD_LOGIC_VECTOR(31 downto 0);

 -- Single Pin Interrupt Bus Signal
 irq :OUT STD_LOGIC
);
 end component;
end aes_enc_ctrl_struct_pkg;

80

AAppppeennddiixx BB
CCOOMMPPOONNEENNTT XXMMLL FFIILLEE

AES.XML
<?xml version="1.0" encoding="UTF-8"?>
<ip:component xmlns:ip="http://www.mentor.com/platform_ex/Namespace/IP"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.mentor.com/platform_ex/Namespace/IP
http://www.mentor.com/platform_ex/XMLSchema/3.5/component.xsd">
 <ip:vendor>UT</ip:vendor>
 <ip:library>VOLIPository</ip:library>
 <ip:name>aes</ip:name>
 <ip:version>1.0</ip:version>

 <ip:busInterfaces>
 <ip:busInterface ip:id="busInterface_0">
 <ip:name>AHB_mst</ip:name>
 <ip:busType ip:library="AMBA" ip:name="ambaAHB" ip:vendor="Mentor"/>

 <ip:master>
 <ip:addressSpaceRef ip:addressSpaceRef="ExternalMemory"/>
 <ip:presentation/>
 </ip:master>

 <ip:signalMap>
 <ip:signalName ip:busSignal="HRESETN">hresetn</ip:signalName>
 <ip:signalName ip:busSignal="HCLK">hclk</ip:signalName>
 <ip:signalName ip:busSignal="HGRANTx">hgrant</ip:signalName>
 <ip:signalName ip:busSignal="HREADYin">hready</ip:signalName>
 <ip:signalName ip:busSignal="HRESP">hresp</ip:signalName>
 <ip:signalName ip:busSignal="HRDATA">hrdata</ip:signalName>
 <ip:signalName ip:busSignal="HBUSREQx">hbusreq</ip:signalName>
 <ip:signalName ip:busSignal="HLOCKx">hlock</ip:signalName>
 <ip:signalName ip:busSignal="HTRANS">htrans</ip:signalName>
 <ip:signalName ip:busSignal="HADDR">haddr</ip:signalName>
 <ip:signalName ip:busSignal="HWRITE">hwrite</ip:signalName>
 <ip:signalName ip:busSignal="HSIZE">hsize</ip:signalName>
 <ip:signalName ip:busSignal="HBURST">hburst</ip:signalName>
 <ip:signalName ip:busSignal="HPROT">hprot</ip:signalName>
 <ip:signalName ip:busSignal="HWDATA">hwdata</ip:signalName>
 </ip:signalMap>
 </ip:busInterface>
 <ip:busInterface ip:id="busInterface_1">
 <ip:name>APB_slv</ip:name>
 <ip:busType ip:library="AMBA" ip:name="ambaAPB" ip:vendor="Mentor"/>
 <ip:slave>
 <ip:memoryMap>
 <ip:addressBlock>
 <ip:baseAddress ip:configGroups="requiredConfig"
ip:id="baseAddress_0">0x00000000</ip:baseAddress>
 <ip:bitOffset>0</ip:bitOffset>
 <ip:range>20</ip:range>
<!-- <ip:width>32</ip:width>-->
 </ip:addressBlock>
 </ip:memoryMap>
 </ip:slave>
 <ip:connection>required</ip:connection>
 <ip:signalMap>
 <ip:signalName ip:busSignal="PSELx">pselx</ip:signalName>
 <ip:signalName ip:busSignal="PENABLE">penable</ip:signalName>
 <ip:signalName ip:busSignal="PADDR">paddr</ip:signalName>
 <ip:signalName ip:busSignal="PWRITE">pwrite</ip:signalName>

81

 <ip:signalName ip:busSignal="PWDATA">pwdata</ip:signalName>
 <ip:signalName ip:busSignal="PRDATA">prdata</ip:signalName>
 </ip:signalMap>
 </ip:busInterface>
 <ip:busInterface ip:id="busInterface_2">
 <ip:name>IRQ_slv</ip:name>
 <ip:busType ip:library="Utility" ip:name="singlePinInterrupt"
ip:vendor="Mentor"/>
 <ip:slave>
 <ip:memoryMap/>
 </ip:slave>
 <ip:connection>required</ip:connection>
 <ip:signalMap>
 <ip:signalName ip:busSignal="interruptAH">irq</ip:signalName>
 </ip:signalMap>
 </ip:busInterface>
 </ip:busInterfaces>
 <ip:addressSpaces>
 <ip:addressSpace>
 <ip:name>ExternalMemory</ip:name>
 <ip:range>4G</ip:range>
 </ip:addressSpace>
 </ip:addressSpaces>

 <ip:registerBanks>
 <ip:registerBank>
 <ip:name>registers</ip:name>
 <ip:register>
 <ip:name>controlReg</ip:name>
 <ip:addressOffset>0x0</ip:addressOffset>
 <ip:size>32</ip:size>
 <ip:access>read-write</ip:access>
 <ip:resetValue>-1</ip:resetValue>
 <ip:field>
 <ip:name>coreEnable</ip:name>
 <ip:bitOffset>0</ip:bitOffset>
 <ip:bitWidth>1</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>set if AES core selected</ip:description>
 </ip:field>
 <ip:field>
 <ip:name>Reserved1</ip:name>
 <ip:bitOffset>1</ip:bitOffset>
 <ip:bitWidth>1</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>Reserved</ip:description>
 </ip:field>
 <ip:field>
 <ip:name>irqEnable</ip:name>
 <ip:bitOffset>2</ip:bitOffset>
 <ip:bitWidth>1</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>set if IRQ enabled</ip:description>
 </ip:field>
 <ip:field>
 <ip:name>irqRequest</ip:name>
 <ip:bitOffset>3</ip:bitOffset>
 <ip:bitWidth>1</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>set if IRQ requested</ip:description>
 </ip:field>
 <ip:field>
 <ip:name>Reserved2</ip:name>
 <ip:bitOffset>4</ip:bitOffset>
 <ip:bitWidth>28</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>Reserved</ip:description>
 </ip:field>

82

 <ip:description>Bits 0, 2, 3 are set/reset depending on selection of
the AES core, interrupt enabling and interrupting requesting,
respectively.</ip:description>
 </ip:register>
 <ip:register>
 <ip:name>dataLoadReg</ip:name>
 <ip:addressOffset>0x4</ip:addressOffset>
 <ip:size>32</ip:size>
 <ip:access>read-write</ip:access>
 <ip:resetValue>-1</ip:resetValue>
 <ip:field>
 <ip:name>rdStartAddr</ip:name>
 <ip:bitOffset>0</ip:bitOffset>
 <ip:bitWidth>32</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>Input KEY and PLAIN from this
address</ip:description>
 <ip:values>
 <ip:value>0x40000000</ip:value>
 <ip:description>Leon2 Internal RAM location</ip:description>
 <ip:name>rdAddr</ip:name>
 </ip:values>
 </ip:field>
 <ip:description>This register holds the address from which the KEY
and PLAIN TEXT are used for encryption</ip:description>
 </ip:register>
 <ip:register>
 <ip:name>cipherOutReg</ip:name>
 <ip:addressOffset>0x8</ip:addressOffset>
 <ip:size>32</ip:size>
 <ip:access>read-write</ip:access>
 <ip:resetValue>-1</ip:resetValue>
 <ip:field>
 <ip:name>wrStartAddr</ip:name>
 <ip:bitOffset>0</ip:bitOffset>
 <ip:bitWidth>32</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>Cipher output stored to this
address</ip:description>
 <ip:values>
 <ip:value>0x40001000</ip:value>
 <ip:description>Leon2 Internal RAM location</ip:description>
 <ip:name>wrAddr</ip:name>
 </ip:values>
 </ip:field>
 <ip:description>This register holds the address where the ciphered
output from the AES core is stored</ip:description>
 </ip:register>
 <ip:register>
 <ip:name>statusReg</ip:name>
 <ip:addressOffset>0xc</ip:addressOffset>
 <ip:size>32</ip:size>
 <ip:access>read-only</ip:access>
 <ip:resetValue>-1</ip:resetValue>
 <ip:field>
 <ip:name>ready</ip:name>
 <ip:bitOffset>0</ip:bitOffset>
 <ip:bitWidth>1</ip:bitWidth>
 <ip:access>read-only</ip:access>
 <ip:description>Ready/Busy status indicator</ip:description>
 </ip:field>
 <ip:field>
 <ip:name>memwr</ip:name>
 <ip:bitOffset>1</ip:bitOffset>
 <ip:bitWidth>1</ip:bitWidth>
 <ip:access>read-only</ip:access>
 <ip:description>Writing/Reading status indicator</ip:description>
 </ip:field>
 <ip:field>

83

 <ip:name>Reserved3</ip:name>
 <ip:bitOffset>2</ip:bitOffset>
 <ip:bitWidth>30</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>Reserved</ip:description>
 </ip:field>
 <ip:description>Bits 0, 1 are set/reset if the AES core is ready/busy
or if data is being written to/read from the core, respectively</ip:description>
 </ip:register>
 <ip:register>
 <ip:name>memReg</ip:name>
 <ip:addressOffset>0x10</ip:addressOffset>
 <ip:size>32</ip:size>
 <ip:access>read-only</ip:access>
 <ip:resetValue>-1</ip:resetValue>
 <ip:field>
 <ip:name>currentHADDR</ip:name>
 <ip:bitOffset>0</ip:bitOffset>
 <ip:bitWidth>32</ip:bitWidth>
 <ip:access>read-write</ip:access>
 <ip:description>Current Address on AHB HADDR</ip:description>
 </ip:field>
 <ip:description>This register holds the actual DMA
address</ip:description>
 </ip:register>
 </ip:registerBank>
 </ip:registerBanks>

 <ip:presentation>

 <ip:displayLabel>AES Encryption Core</ip:displayLabel>
 <ip:icon>images/oc_logo_outlined.gif</ip:icon>
 <ip:document ip:menuDescription="AES Rijndael
Core">http://www.opencores.org</ip:document>
 </ip:presentation>

 <ip:hwModel>
 <ip:name>aes</ip:name>
 <ip:verificationEnvironment ip:id="modelsimVHDL">
 <ip:envIdentifier>ModelsimVhdl</ip:envIdentifier>
 <ip:language>vhdl</ip:language>
 <ip:defaultFileBuilder>
 <ip:fileType>vhdlSource</ip:fileType>
 </ip:defaultFileBuilder>

 <ip:fileSetRef>fs-externalVhdlSource</ip:fileSetRef>
 <ip:parameter ip:name="entityName">aes</ip:parameter>
 </ip:verificationEnvironment>
 </ip:hwModel>

 <ip:fileSets>
 <ip:fileSet ip:fileSetId="fs-externalVhdlSource">
 <ip:file>
 <ip:name>hdlsrc/aes_enc_ctrl_struct.vhd</ip:name>
 <ip:fileType>vhdlSource</ip:fileType>
 </ip:file>
 <ip:file>
 <ip:name>hdlsrc/aes.vhd</ip:name>
 <ip:fileType>vhdlSource</ip:fileType>
 </ip:file>

 </ip:fileSet>
 </ip:fileSets>

 <ip:persistentInstanceData ip:id="persistentData" ip:resolve="user"/>
</ip:component>

84

AAppppeennddiixx CC
TTHHEE ssppaarrcc--eellff--ggcccc BBUUIILLDD FFOORR SSOOLLAARRIISS

The information provided here is intended mainly for first-time enthusiasts. For those

who believe strongly in the ‘design reuse theory’, a copy of the Solaris build for sparc-

elf-gcc is available at http://vlsi1.engr.utk.edu/~wala/sparc-elf-gcc.html.

Many thanks to Jiri Gaisler, for providing the ‘how to’ on building this cross-

compiler and to our System Administrator, Matt Disney, for finding workarounds that

suited our system. One of the popular tutorials on this subject is written by William

Gatliff and can be obtained at http://www.microcross.com/gnu-arm7t-microcross.pdf.

1. Obtain the Linux Bare-C Cross-compiler (BCC) system for Leon2 from

http://www.gaisler.com under Downloads > CCS.

2. Get the gcc-3.2.3 and binutils-2.14 sources from http://www.gnu.org. You need

not build newlib as the one in Linux BCC can be used on Solaris.

3. Start by installing the Linux BCC on your Solaris host under the /opt directory.

BCC is provided as a bzipped tar-file. To unpack it in the /opt directory:

cd /opt

bunzip2 bcc-linux-<version>.tar.bz2

tar –xvf bcc-linux-<version>.tar

After installation, add /opt/sparc-elf/bin to the PATH variable. Note: Do not add

any other path – /opt/sparc/elf/sparc-elf/bin.

4. Build and install binutils-2.14 and gcc-3.2.3 as explained in Bill Gatliff’s tutorial.

Configure the build with target=sparc-elf --prefix=/opt/sparc-elf --enable-

languages=c,c++

85

5. Install the libio and mkprom utilities as explained below:

cd /opt/sparc-elf/src/libio

make install

cd ../mkprom

make install

6. Test the compiler by compiling a test application.

The following are Matt Disney’s install notes:

Observe that in our case, Linux BCC was installed under /sw2.

I had to create a symbolic link in the binutils source directory to
/dev/null.
 For example:
 cd binutils-2.14
 mkdir dev
 ln -s /dev/null dev/null

Here is my configure command line for binutils (run from the build-binutils
directory):
/sw2/sparc-elf/binutils-2.14/configure --target=sparc-elf
- --prefix=/sw/sparc-elf/ --disable-nls

After running make in build-binutils, the build would break with errors
from make about bfd/po. I had to cd into bfd/po and then copy Makefile.in
to Makefile (which was blank). Then go back up to the build-binutils
directory and run make again to finish the build.

Here is my configure command line for gcc (run from the build-gcc
directory):
/sw2/sparc-elf/gcc-3.2.3/configure
- --with-gcc-version-trigger=/sw2/sparc-elf/gcc-3.2.3/gcc/version.c
- --host=sparc-sun-solaris2.8 --target=sparc-elf --prefix=/sw/sparc-elf
- --with-newlib --without-headers --with-gnu-as --with-gnu-ld --disable-
shared
- --enable-languages=c --disable-nls --norecursion

86

AAppppeennddiixx DD
PPAARRTTIIAALL ‘‘BBUUIILLDD’’ LLOOGG

Running generator chain: vendor=Mentor library=topLevel name=Build
Generating the SW Builder Scripts
received 5 options
processed: CONFIG_IU_FASTDECODE = yes
processed: CONFIG_IU_FASTJUMP = yes
processed: CONFIG_PERI_LCONF = yes
processed: CONFIG_IU_LDELAY = 1
processed: CONFIG_IU_NWINDOWS = 8
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/testbe
nch/pxdefault_tb

untar:
 [untar] Expanding:
/tnfs/home/wala/PlatformExpress2.1h/pxLibraries/Leon2/leon2/leon2-1.0.3.gtar.gz into
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/design
Data/libraryData/Mentor_Leon2

modelsim:
 [echo] Leon2 common build: modelsim

untar:
 [untar] Expanding:
/tnfs/home/wala/PlatformExpress2.1h/pxLibraries/Leon2/leon2/leon2-1.0.3.gtar.gz into
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/design
Data/libraryData/Mentor_Leon2

compile:
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/hdl
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2

87

 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2
 [copy] Copying 158 files to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0
 [copy] Copying 236 files to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/exec

compile:
 [exec] ** Warning: (vlib-34) Library already exists at
"work/wala_userlibrary_aes_blckbox_bbcLib_Mentor_bbcLib_aes_1".
 [exec] ** Warning: (vlib-34) Library already exists at
"work/wala_userlibrary_aes_blckbox_bbcLib".
 [exec] ** Warning: (vlib-34) Library already exists at
"work/wala_userlibrary_aes_blckbox_bbcLib_Mentor_Leon2_mcore_ahb_1".
 [exec] ** Warning: (vlib-34) Library already exists at
"../designData/libraryData/Mentor_Leon2/leon2.lib".
 [exec] ** Warning: (vlib-34) Library already exists at "work/leon2_apbmst_obb".
 [exec] ** Warning: (vlib-34) Library already exists at "work/pxdefault_tb".
 [exec] Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004
 [exec] -- Loading package standard
 [exec] -- Loading package std_logic_1164
 [exec] -- Compiling package amba
 [exec] -- Compiling package target
 [exec] Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004
 [exec] -- Loading package standard
 [exec] -- Loading package std_logic_1164
 [exec] -- Loading package target
 [exec] -- Compiling package device
 [exec] Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004
 [exec] -- Loading package standard
 [exec] -- Loading package std_logic_1164
 [exec] -- Compiling entity pxdefault_tb
 [exec] -- Compiling architecture platformexpress of pxdefault_tb
 [exec] -- Loading entity top
 [exec] -- Compiling configuration pxconfig_pxdefault_tb
 [exec] -- Loading entity pxdefault_tb
 [exec] -- Loading architecture platformexpress of pxdefault_tb
 [exec] -- Loading configuration pxconfig_top
#!/bin/sh -ev

Px Generated File ##
Platform Express, Version 2.1h (build 835) ##
SoC Verification Division ##
Mentor Graphics Corporation ##

Generated on: March 16, 2005 11:13:24 PM EST ##
Generated by: wala ##
Software compile script ##

88

if [-f ../../pxenv.sh] ; then . ../../pxenv.sh; fi
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/loc
ore1.S -o ./locore1.o
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/leo
n_test.c -o ./leon_test.o
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/mis
c.c -o ./misc.o
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/mis
c.c:38:5: warning: multi-line string literals are deprecated
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/irq
ctrl.c -o ./irqctrl.o
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/irq
ctrl.c:66:21: warning: multi-line string literals are deprecated
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/uar
t.c -o ./uart.o
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/pxC
oreLib.c -o ./mcore_ahb_pxCoreLib.o
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
coreDiagnostics/_mcore_ahb_1/printToPort.c -o ./printToPort.o
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include
coreDiagnostics/_mcore_ahb_1/pxDiagnostics.c -o ./pxDiagnostics.o

sparc-elf-gcc ./mcore_ahb_pxCoreLib.o \
./printToPort.o \
./misc.o \
./uart.o \
./locore1.o \
./pxDiagnostics.o \
./leon_test.o \
./irqctrl.o \
 -g -nostdlib -static -N -e _hardreset -T ./linker.ld -o boot.elf
sparc-elf-objcopy --remove-section=.comment boot.elf

sparc-elf-objdump -s boot.elf >
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/exec/r
am.dat
 [copy] Copying 1 file to
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/exec

89

VVIITTAA

Mardavsinh Wala was born in Ahmedabad, India. He attended Nirma Institute

Technology, Ahmedabad from 1997 to 2001 where he graduated with a Bachelor of

Engineering degree in Instrumentation and Control Engineering. Mardav came to the

United States of America in the Spring of 2002 for his Masters’ study in the Department

of Electrical and Computer Engineering at University of Tennessee. Since then, he has

worked as a Graduate Technology Assistant for the Office of the Vice Chancellor of

Student Affairs and the Office of the Dean of Students. He began working for his thesis

research under Dr. Don Bouldin in Spring 2004. He will be awarded the Master of

Science degree in May 2005.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	5-2005

	Using Platform Express for System-on-Chip Design
	Mardavsinh Harisinh Wala
	Recommended Citation

	Microsoft Word - Wala, Mardavsinh.doc

