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The advent of nanoscale technology brings with it an increase in system complexity with 

integrated circuit transistor numbers reaching hundreds of millions. Systems-on-chip are 

attaining a level of complexity where design turn-around times are a major factor. 

Reusing existing intellectual property blocks that are already verified for functionality 

could help minimize the design time and increase system reliability. This allows the 

designers to focus on more important product design aspects. Platform-based design is 

an effective method to deal with the increasing pressure on time-to-market. The 

approach also provides a practical solution to reduce the design and manufacturing 

costs.  

This thesis is a result of the of the ongoing Volunteer SoC project at the University of 

Tennessee and in this, we explore the possibility of employing the Platform Express (PX) 

tool for designing SoCs. The PX application enables system designers to rapidly build 

and verify SoC design concepts. The tool also promotes Intellectual Property (IP) 

integration within the built-in PX libraries. The tool utilizes XML for describing the IP 

data, which allows smooth integration of IP into a single design from many different 

sources. 

 

We have followed the complete IP integration flow and have successfully installed a 

component into the tool’s library and have also generated a system design using the 

same IP. 
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IINNTTRROODDUUCCTTIIOONN  

 

There is nothing more difficult to take in hand, more perilous to conduct or more uncertain in its 
success than to take the lead in the introduction of a new order of things. 

—Niccolo Machiavelli (1469-1527), The Prince. 
 

ith continued advancement in silicon process technologies, the data density on 

integrated circuit chips is growing by leaps and bounds in accordance to what 

is widely known as Moore’s Law [1]—first stated by Intel founder Gordon Moore in 

1965. During recent years, the sudden increase in gate count (Figure 1.1-1) and the steady 

demand for mobile, portable, high-speed gadgets has resulted in a large market for 

electronic consumables in the form of cell phones, PDAs, digital camcorders, personal 

CD/DVD players, video game consoles and the like. These factors have entailed chip 

designers to design exceedingly complex chips. 

1.1 THE SOC DESIGN CHALLENGE 

System-on-a-Chip (SoC) design refers to implementing an entire electronics sub-system 

on a single IC. Smaller feature sizes makes adding extra circuitry on a silicon die more 

cost-effective. Chips manufactured with these dies consist of one (or more) 

processor(s), a high-performance bus, custom logic (digital and analog), memory devices 

and peripherals along with software code. SoC design requires developing innovative 

techniques to tackle design complexity and its related risks. The semiconductor industry 

addresses these challenges by adopting new design schemes and by using improved 

electronic design automation (EDA) tools. 

W 
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Figure 1.1-1: Moore’s Law depicting increasing transistor complexity with advancement 
in semiconductor manufacturing process technology 

 

The relentless progress in the semiconductor manufacturing process witnesses a 

continual reduction in the integrated circuit (IC) feature sizes for wires, transistors and 

contacts. The successive advancement to a smaller feature size requires altering 

thecomplete design and manufacture flow to accommodate the new physical effects 

associated with the decrease in size. Since the design methodologies and tools do not 

progress as swiftly as the process technology changes, there always exists a productivity 

gap, shown in Figure 1.1-2. The increased design complexity and slowly evolving design 

methodologies prevent the silicon design teams from exploiting the full potential for 

SoC design that is allowed by the advanced process technology. 

Many corporations are now exploring a platform-based design (PBD) approach to 

address the growing complexity of SoC design [2]. Platform-based design methodology 

defines a robust, flexible design around a stable core platform, connected by means of 

Source: Intel Corporation
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Figure 1.1-2: Design Productivity Gap – Difference between the number of physical 
transistors available on a chip (solid curve) and the number of transistors that can be 

handled by current design tools(dashed curve) 

 

 

standard buses, which have been optimized for use with the processor core. Once a 

platform is created, design teams can produce a new SoC quickly using mostly existing, 

pre-verified intellectual property (IP) blocks or virtual components (VC) and hence 

complete the design without requiring much new circuitry or software. This approach 

helps reducing the time-to-market drastically and increasing the system reliability to a 

large extent. 

 

For a PBD methodology to be robust, it must be able to adjust to design re-spins 

and enhancements without extra change to the base platform elements. The availability 

of a library of components, which include specialized microprocessors, digital signal 

processing IP cores and may be some internally generated, custom application specific 

integrated circuits, would help designers narrow down their design choices. 

Furthermore, the ability to perform several design iterations in a short period of time 

would allow them to determine a suitable configurable hardware platform. 
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1.2 MOTIVATION  

There may be several high-end EDA tools available for research purposes to a single 

educational institution but what is generally missing is the availability of an internally 

designed library of custom IP blocks, which may be used to build a large SoC and its 

derivatives using those tools. The graduate program in the Electrical and Computer 

Engineering department at the University of Tennessee [3] spanning four semesters, 

addresses this issue by offering courses intended to equip individual students with the 

understanding of design for reuse and a team of students with the understanding of 

design with reuse. 

 

In the spring of 2003, the graduate class consisting of sixteen students was split into 

groups of twos and fours and each group was assigned the task to simulate, synthesize 

and test, a single IP core—either internally generated or obtained for free. The intention 

was to verify each IP block for functionality before integrating it with the open core 

Volunteer SoC platform [4]. 

 

When the SoC platform was completed in August 2004, the next step in the design 

process was to raise the level of abstraction through which the platform designers 

integrated the IP blocks. This way the designers could work directly at the component 

level rather than at the VHDL-entry level and they could also rapidly identify, select and 

integrate (or remove) the required IP block into (or from) their design. Figure 1.2-1 and 

Figure 1.2-2 show the difference between the two design flows. 

 

The idea thus conceived, was the major motivational factor for taking the Volunteer 

SoC project to the next level and selecting Platform Express™ [5], an EDA tool by 

Mentor Graphics®, which our department had acquired in 2002 for this purpose. The 

PX environment, as shown in Figure 1.2-3, presents users with a graphical interface and 

allows them to enter designs as block diagrams by selecting processors, memories and 

peripherals from a library of components. The tool includes a memory map display for 

assessing address space. Upon successful completion of graphical entry, PX automati
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Figure 1.2-1: Design flow for Volunteer SoC. The selected IP is already verified for 

correct functionality. 

 

 
Figure 1.2-2: Design flow using Platform Express™. The design is created from the 

pre-installed IP components into the Platform Express™ library. 
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Figure 1.2-3: The Platform Express™ Environment 

 

 

cally generates the design along with software to run on the design and a test bench to 

drive it. The environment then calls upon verification tools and rapidly generates the 

otherwise time-consuming verification scripts and diagnostic code for each peripheral 

and memory component in the generated design. The designers have an option of 

proceeding on to hardware/software co-verification using the Seamless® co-verification 

environment or using the ModelSim® simulation tool to perform RT level hardware 

verification. Such a PBD methodology supported with Platform Express generates 

hardware and software designs together with the custom execution environment 

required to verify the designs. The latest release of Platform Express at the time of this 

project was version 2.1h. 
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1.3 THESIS GOALS 

This thesis is intended to demonstrate the use of the Platform Express environment for 

developing system platforms for SoC designs. It is also expected to serve as a guide to 

platform-based SoC design using PX. 

 
The goals of this project were: 

� To install a pre-verified IP core into the PX component library and follow 

the design flow described previously in Figure 1.2-2 

� To prepare an instructional write-up explaining the complete IP integration 

and platform building process 

1.4 PROJECT COMPONENTS 

Since the baseline platform is kept in the public domain and also given the fact that in 

an academic research environment cost is always a major constraint, only freely available 

IP cores have been used. 

1.4.1 Leon2 Processor IP Core 
Initially developed by Jiri Gaisler during his work at the European Space Agency (ESA), 

the 32-bit SPARC compatible Leon2 processor [6] is now maintained under contract by 

Gaisler Research in Sweden. ESA promotes development of SoC designs using the 

SPARC architecture; therefore, Leon2 is available for free download under GNU Lesser 

General Public License (LGPL) and GNU General Public License (GPL). 

 

The Leon2 processor, shown in Figure 1.4-1 has the following noteworthy features: 

� SPARC V8 compliant integer unit with 5-stage pipeline 

� Hardware multiply, divide and MAC units 

� Separate instruction and data cache (Harvard architecture) 

� AMBA 2.0 AHB and APB on-chip buses 

� 8/16/32-bits memory controller for external PROM and SRAM 

� On-chip peripherals such as uarts, timers, interrupt controller and 16-bit 

I/O port 
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Figure 1.4-1: Leon2 Architecture 

 

1.4.2 The AMBA Bus Interface 
The Advanced Microcontroller Bus Architecture (AMBA) [7] is ARM’s no-cost, open 

specification, which defines an on-chip communications standard for designing high-

performance embedded microcontrollers. The AMBA specification has become a de 

facto standard for the semiconductor industry, and has been adopted by more than 90% 

of ARM’s partners and a number of IP providers. The specification has been 

successfully implemented in several ASIC designs. Since the AMBA interface is 

processor and technology independent, it enhances the reusability of peripheral and 

system components across a wide range of applications. Three distinct buses are defined 

within the AMBA specification: 

 

� Advanced High-performance Bus (AHB) 

The AMBA AHB is suited for high-performance, high clock frequency system 

modules. The AHB acts as the high-performance system backbone bus. AHB 

supports the efficient connection of processors, on-chip memories and off-chip 

external memory interfaces with low-power peripheral macrocell functions. AHB is 

also specified to ensure ease of use in an efficient design flow using synthesis and 

automated test techniques. 
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Figure 1.4-2: The Advanced High-performance Bus Signals [8] 

 

The AHB is recommended for all new designs, not only because it provides a 

higher bandwidth solution, but also because the single-clock-edge protocol results in 

a smoother integration with design automation tools used during a typical ASIC 

development. Figure 1.4-2 illustrates the bus signals for AHB. 

 
� Advanced System Bus (ASB) 

The AMBA ASB is for high-performance system modules. AMBA ASB is an 

alternative system bus suitable for use where the high-performance features of AHB 

are not required. ASB also supports the efficient connection of processors, on-chip 

memories and off-chip external memory interfaces with low-power peripheral 

macrocell functions. 

 
A full AHB/ASB interface is recommended for bus masters, on-chip memory 

blocks, external memory interfaces, high-bandwidth peripherals with FIFO 

interfaces and DMA slave peripherals. (Note that ASB is not implemented on 

Leon2 and therefore not used in our project.) 
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� Advanced Peripheral Bus (APB) 

The AMBA APB is for low-power peripherals. AMBA APB is optimized for 

minimal power consumption and reduced interface complexity to support 

peripheral functions. APB can be used in conjunction with either version of the 

system bus.  
A simple AHB/APB interface is suggested for register-mapped slave devices 

(shown in Figure 1.5-1) and low power interfaces where clocks cannot be globally 

routed and grouping narrow-bus peripherals to avoid loading the bus. 

1.5 THESIS ORGANIZATION 

Chapter 2, “Background”, discusses the factors that led to the emergence and adoption of 

platform-based design approach as a preferred method for designing complex SoCs. It 

also acquaints the reader with the several definitions of platform—both commercial and 

academic, and explains the role of IP in helping improve existing platforms. It then 

provides an overview of the ongoing Volunteer SoC project at the University of 

Tennessee’s Microelectronics Systems Laboratory. 

 

 
Figure 1.5-1: The Advanced Peripheral Bus Bridge Signals [8] 
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Chapter 3, “Methodology”, outlines the platform-based design flow and describes the 

AES IP core, available from OpenCores.org, to be integrated with our baseline 

platform. It also describes the Platform Express EDA tool and explains the steps needed 

to be taken before the IP component can be integrated for use with the Platform Express 

environment. 

 
Chapter 4, “Implementation”, describes the process of integration of the AMBA-

compliant IP core, as a component inside the Platform Express library created by the IP 

integrator. It also describes using the installed component to build a test design from 

the point of view of a system designer. The Seamless CVE interface is used to validate 

the component for functionality using the ModelSim application. 

 

Lastly, chapter 5, “Conclusions”, summarizes and concludes the thesis with 

recommendations for future enhancements for the Volunteer SoC platform. 
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22  
BBAACCKKGGRROOUUNNDD  

 

If you try to build everything from scratch, you’ll never get to the market. 
-- Ronnie Vasishta, LSI Logic. 

 
maller integrated circuit (IC) feature sizes, increased time-to-market (TTM) 

pressures, coupled with prohibitive costs of ownership for IC masks have pushed 

the semiconductor industry to look for design alternatives that use an existing base of 

components and architectures. The pursuit for flexible yet economically feasible design 

approach along with the development towards higher level of design abstractions has 

led to the emergence of a platform-based design methodology. 

2.1 FROM SCHEMATICS TO SOCS 

As depicted in Figure 2.1-1, the semiconductor industry has come a long way from 

considering schematics as state-of-the-art for system implementation and then adopting 

a register-transfer level (RTL) design entry mechanism with the advent of hardware 

description languages (HDLs). This transition proved advantageous because it was 

possible to build and test, larger, more complex designs in comparatively less amount of 

time using RTL HDL descriptions instead of schematics. The availability of a broad 

range of simulation and verification tools to help ease the RTL HDL verification also 

contributed to the wide acceptance and success of this methodology [9]. 

 

In the current scenario when it is typical for an SoC to contain tens of millions of 

gates combined in processor cores, on-chip interconnects, specialized DSP units and 

analog components, it is a challenging task for the chip design teams to completely 

design all the components from scratch. Moreover, they have a product launch deadline 

to meet. Circumstances such as these have resulted in a trend towards increased IP 

S 
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Figure 2.1-1: From Schematics to SoCs [10]  

 

reuse, which requires little or no modification on the reusable IP blocks. A major 

benefit of this approach is that properly defined IP blocks can be reused across multiple 

designs. Figure 2.1-2 illustrates the role of IP reuse methodology in closing the design 

productivity gap. 

 
There are however, some setbacks associated with the IP reuse methodology. For 

example, designing a system having multiple IP blocks obtained from different sources, 

would call for extensive training for the design team members in each of the specialized 

hardware/software IP protocols. Additionally, some components may also require 

extended licensing negotiations. Meeting all these requirements could result in a few 

months of dead time — before designers even get started on the project! 

 

The platform-based design approach enables design teams to rapidly integrate 

multiple functionalities on a single chip from a library of specialized IP using standard 

interfaces. More importantly, by providing the designers up to 90% of the required 

hardware and software in an integrated SoC platform, it allows them to focus design 

resources on differentiating their product [11]. 
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Figure 2.1-2: Bridging the Design Productivity Gap [12] 

 
On the whole, a platform-based SoC design approach can be translated into four 

major gains:  

� Shorter time-to-market: The intentional and extensive reuse of preexisting 

known verified IP — when designing platform-based solutions — permits 

design cycles of six months or less [13] and reduces overall design risk to a great 

extent [14]. The widespread reuse of standardized IP blocks and software 

eliminates the need for training design engineers in discrete protocols, thus ena-

bling companies to introduce their product in the market on time. 

� Reduced development costs: Employing a PBD approach significantly limits 

the number of third-party virtual components to be integrated on the SoC. This 

translates to huge savings in development costs. 

� Minimal verification time: PBD methodology facilitates hardware/software 

co-simulation by providing the integrated SoC platform as a total development 

environment for system-level functional verification [15]. Considerable savings 

in verification time can be realized by employing this technique. 
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� Lower power consumption: Since all the separate components on an 

integrated platform are optimized to minimize gate-level power dissipation and 

to lower false signal fluctuations, the overall power consumption in a platform-

based SoC is substantially reduced [11].  

2.2 WHAT IS A PLATFORM? 

There have been several attempts by the semiconductor industry to define the term – 

platform. The Platform-based Design Development Working Group (PBD DWG) of the 

Virtual Socket Interface Alliance (VSIA) – formed with a vision to standardize platform 

engineering for SoC-based systems – defines a platform as a “library of virtual 

components and an architectural framework consisting of a set of integrated and pre-

qualified software and hardware IP blocks, models, EDA and software tools, libraries 

and methodology to support rapid product development through architectural 

exploration, integration and verification”. The study group extends this definition a little 

further to explain platform-based design as an “integration-oriented designed 

approach emphasizing systematic reuse, for developing complex products based upon 

platforms, intended to reduce development risks, costs and time to market” [16].  

 

Despite efforts by the PBD DWG, the definition of platform is still unclear because 

various semiconductor disciplines prefer their own version for the meaning of platform. 

With tool companies, SoC providers and manufacturing companies offering platform-

based solutions depending on their area of technical expertise [17], it is very crucial for 

the customer to understand how each of them defines a platform. Figure 2.2-1 lists some 

of the definitions provided by the industry and by academia.  

 

In the sub-sections that follow, we enumerate some of the platform postulates put 

forward by Bob Altizer and his VSIA PBD Study Group [16]. We also discuss some of 

the platform types characterized by Frank Schirrmeister of Cadence Labs [18]. 
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“An integration platform is a reuse mix-n-match environment designed specifically to target an application 
domain. The domain is selected based on market objectives and is focused to yield a high probability of 
reuse over a period of time.” – Cadence White Paper, The IP Reuse Evolution. 

“A platform is a collection of assets, which can be used to leverage reuse and rapidly develop new products. 
At a minimum, it defines the operating environment, high level product architecture for all products 
developed based on this platform, and set of development policies for extending the platform and developing 
point products from the platform.” – Motorola PCS/ATSO, Reuse Lifecycle Model-v1.0. 

“An embedded system platform is an architectural framework for rapid integration of embedded SoC-based 
designs, consisting of a set of pre-qualified software and hardware IP blocks and a methodology to support 
rapid architectural exploration, integration, and verification.” – Frank Pospiech, Alcatel. 

“We define platform-based design as the creation of a stable microprocessor-based architecture that can be 
rapidly extended, customized for a range of applications and delivered to customers for quick deployment.”  
– Jean-Marc Chateau, STMicroelectronics. 

“A platform is, in general, an abstraction that covers a number of possible refinements into a lower level. For 
every platform, there is a view that is used to map the upper layers of abstraction into the platform and a 
view that is used to define the class of lower level abstractions implied by the platform.” – Alberto 
Sangiovanni-Vincentelli, University of California at Berkeley. 

Figure 2.2-1: Platform Definitions 

2.2.1 Platform Postulates 

The following set of postulates were developed by the VSIA PBD DWG [16] to 
help recognize, appreciate and understand the finer points of PBD. 
� A platform can be viewed as an integration-ready ensemble of hardware and 

software components that would act as a starting point for future derivative 

product designs. 

� To be successful – in addition to pre-verified and pre-defined platforms – PBD 

approach depends heavily on the availability of product differentiating IP 

components, an integration-oriented design flow along with the accessibility to 

support on issues regarding tools usage, applications and systems. 

� From the economic standpoint, PBD can help increase profits since it allows 

systematic and planned IP reuse, improves successive product capabilities and 

quality and reduces the overall TTM drastically. 

� Finally, the profits should be large enough to rationalize the investment in 

platform development and procurement of special IP blocks, integration tools 

and support services. 
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2.2.2 Platform Types 

Depending on the suitability to a particular specification and the availability of 

customization options, platforms can be classified into four categories [18]. 

 
� Full-application Platforms: These platforms allow designers to develop full 

applications on top of hardware-software architectures. To facilitate users in 

derivative-product design, full-application platforms generally contain a library 

of hardware modules, with each module having multiple design schemes. 

Designers can choose from this broad range of available modules to build 

complex   

� Processor-centric Platforms: These platforms concentrate more on specific 

processor cores and also focus on the software access to the processor. 

Designers oftentimes require additional application-specific hardware blocks 

and in some cases, a different real-time operating system (RTOS), to achieve full 

applications. Improv Jazz and ST StarCore best illustrate this platform type. 

 

� Communication-centric Platforms: This design approach offers consumers 

an optimized, customizable communications platform, suitable for a specific 

application. Here again the derivative-product designer is required to include 

components to obtain a complete application. Sonics and PalmChip 

architectures are the prominent examples. 

 

� Fully Programmable Platforms: These platforms are similar to full-

application and processor-centric platforms except that these also include 

embedded reconfigurable logic. The addition of programmable logic enables 

designers to customize the platform with both hardware and software. 

Examples include Triscend, Altera Excalibur and Xilinx P-FPGA platforms. 

Table 2.2-1 lists some commercially available platform cores and designs. 
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Table 2.2-1: Some of the Many Commercially Available Reference Designs and 
Platforms 

CHIPMAKER 
REFERENCE DESIGN 

or PLATFORM 
END-USER MARKET SYSTEM CUSTOMERS 

TI OMAP Cell phone handsets Ericsson, Nokia, Sony 
Ericsson 

Velocity Wireless, Consumer NEC-Matshushiti, HP 
Philips 

nExperia Home Network 
Gateways AOL 

Qualcomm Binary Routine Environment for 
Wireless (BREW) 

Cell phones, Cellular 
infrastructure Verizon, Sony 

Xscale Cell phone handsets, 
PDA HP-Compaq, Toshiba 

Intel 
PC Motherboards Personal computers Many 

Portal Player Digital Media Player MP3 devices Apple 

Source: International Business Strategies Inc. 

 
 

For platform-based designs employing the Volunteer SoC platform, the Leon 

processor will be common to all derivative designs and therefore, our platform—due to 

its focus on the processor core—is processor-centric. An application-oriented platform can be 

realized by adding specialized IP cores to extend the capabilities of our processor-centric 

baseline platform. 
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33  
MMEETTHHOODDOOLLOOGGYY  

 

… with proper design, the features come cheaply. This approach is arduous, but continues to succeed. 
—Dennis Ritchie, AT&T Bell Labs. 

 
ur design methodology covers design aspects ranging from specification to 
implementation. While the discussion of requirements for our open SoC 

platform presented in the previous chapter fixes the platform specifications for our 
design, this chapter explains the subsequent steps needed to be taken in the PBD flow 
proposed by Kuetzer, et al. [19]. 

3.1 PLATFORM-BASED DESIGN FLOW 

The PBD flow comprises of four phases: phase 1 deals with identifying the function 
that the system will eventually implement. Phase 2 involves identifying the system 
architectures through which the functionality can be implemented. Phase 3 involves 
selecting the optimal architecture from the set of previously identified architectures 
deemed suitable for system implementation, as well as selecting the system components 
that effectively meet the necessary specifications. Finally, phase 4 focuses on realizing 
the implementation of the system function on the chosen architecture through 
hardware synthesis and software assembly of system components. Figure 3.2-1 illustrates 
the design flow to be followed while designing a platform-based system. 

3.2 ENHANCING THE VOLUNTEER SOC PLATFORM 

We will now describe the approach to add functionality to the Volunteer SoC platform 
for implementing a desired application. Since the platform is kept in the public domain 
and due to the lack of design guidelines for packaging and incorporating IP for reuse 
with the Volunteer SoC, this thesis is a result of our effort to outline a procedure for 
adding specialized IP blocks to enhance the capabilities of our platform. 

O 
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Figure 3.2-1: Platform-based Design Flow [19] 

 

Table 3.2-1: AES (Rijndael) Encryption Core integrated with Platform Express Release 
Information 

ITEM DESCRIPTION 

Version 1.0 

Release Date November 2004 

 
 

As an illustration, we will use Platform Express to include the AES encryption IP 

core, available from OpenCores.org, to add encryption functionality to the Volunteer SoC 

platform. The following sections introduce the AES IP core and the Platform Express 

tool and explain the process of making the AES core AMBA-compliant before being 

added as a peripheral to the Leon CPU core. 

3.2.1 The AES (Rijndael) IP Core 

Release Information 

Table 3.2-1 provides information about this release of the AES encryption core when 

integrated with Platform Express. 
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General Description 

The AES encryption core available from OpenCores.org implements the Rijndael 

standard with a 128-bit key expansion module. In addition to the key expansion module, 

the core also consists of an initial permutation module, a round permutation module 

and a final permutation module. The round permutation module loops internally to 

perform ten iterations on the 128-bit key and data inputs. Figure 3.2-2 illustrates the 

overall architecture of the AES encryption core.  

 
The core requires a key and a plain text input at the start of each encryption 

sequence. The start is indicated by asserting the ld pin high. Upon encryption the done 

pin is asserted high for one clock cycle. The core completes a single encryption 

sequence in twelve clock cycles (ten for the round permutation module and one each 

for the initial and final permutation modules). The user may choose to ignore the done 

output and can opt to time the completion of encryption sequence externally. Figure 

3.2-3 shows the hierarchy structure for the AES (Rijndael) encryption core Verilog 

source files. A thorough description of the Rijndael standard is provided in this paper 

by Daemen, et al. [20]. 

 

Before adding the AES core to the Leon CPU as a peripheral, the AES core had 

been modified by interfacing it with an input RAM to store the 128-bit key and 128-bit 

data and an output RAM to store the 128-bit encrypted data. Figure 3.2-4 shows the 

RAM-IP-RAM block diagram. 

3.2.2 The Platform Express Environment 

Besides being one of the seven founding members of the Structure for Packaging, 

Integrating and Re-using IP within Tool-flows (SPIRIT) Consortium [21], Mentor 

Graphics Corporation is also one of the steering committee members of the 

conglomerate. This group comprising of leading EDA vendors (Mentor Graphics, 

Cadence Design Systems and Synopsys), a leading star IP provider (ARM Ltd) and 
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leading SoC integrators and manufacturers (STMicroelectronics and Philips), aims at 

setting stan- 
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Figure 3.2-2: AES Encryption Core Architecture 
 

 

Figure 3.2-3: AES Encryption Core File Hierarchy 
 

 

Figure 3.2-4: AES Core Interfaced with Input and Output RAM Blocks 
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-dards for IP description and IP packaging, to enable an efficient and a cost-effective IP 

integration process with tools and IP from multiple vendors. Figure 3.2-5 depicts the 

SPIRIT schema and generator interface. 

 

Platform Express is one such SPIRIT-compliant EDA tool, which allows the system 

designer to quickly build a system design using the components that the IP integrators 

have created from their own hardware designs. The PX interface presents the facility of 

selecting a platform core (such as ARM926, ARM966) for use as a design foundation. 

The platform core components are available via the libraries from licensed component 

library developers, in addition to the various demonstration libraries that PX ships with. 

Most platform cores are provided as ‘open source’, however source code for proprietary 

components is not supplied and they are available only for simulation purposes. 

 

The PX application allows creating and implementing user-defined libraries and 

provides a built-in IP metadata generation interface—PxEdit—to realize that objective. 

The IP metadata describes the characteristics of the IP components; this includes 

information about invoking simulation and verification environment that the 

component requires, and allows setting up and logging of design configuration. Platform 

Express uses the open source Extensible Markup Language (XML) as the metadata 

language (also a SPIRIT standard) to describe the IP components for integration with 

the PX component libraries. The XML metadata, in association with the PX application 

also initiates other code written in Java, VHDL and Verilog that allow components to 

function in a design. 

 

The PX application speeds up design creation by presenting the significant design 

elements in detail, within the PX application. The PX Design Editor is context-aware 

and allows immediate configuration. Once the design is created, PX provides tools for 

automating the build process. The resulting build files also include ones that could be 

used for validation with Seamless CVE. PX offers automatic bus decoding and automatic 

bus and interrupt-bridging. 
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Figure 3.2-5: SPIRIT Schema and Generator Interface 

 

Thus, when used in conjunction with Seamless CVE, PX not only presents the vital 

functionality for designing and building complex SoC subsystems but also provides 

access to software debugging tools, such as XRAY Debugger, and hardware logic 

simulation tools, such as ModelSim and NCSim 

3.2.3 Defining the Bus Interface 

Building a platform around a standard bus architecture allows flexibility and ease of 

extension. Since Leon has adopted the AMBA AHB and APB as an on-chip bus 

standard, it was natural to opt for the same standard for integrating our IP core. A 

wrapper was written in VHDL to package the RAM-IP-RAM module for effortless 

integration.  

The AES component is an AHB master connected as a peripheral. It communicates 

with the Leon processor via the AHB and uses a peripheral bus bridge for data transfer 

between Leon and itself. Table 3.2-2 lists the bus interface signals of the top entity 
aes.vhd. 

Source: SPIRIT Consortium
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Table 3.2-2: AES Core Bus Interface Signals 
SIGNAL NAME TYPE BUS TYPE DESCRIPTION 

HCLK Input AHB 
Bus Clock: Times all transfers. All signal timings 
are related to the rising edge of HCLK. 

HRESETN Input AHB 
Reset: Bus reset signal used to reset the system and 
the bus. This is the only active LOW signal. 

HGRANT Input AHB 

Bus Grant: Indicates that bus master X is currently 
the highest priority master. Ownership of the 
address/control signals changes at the end of a 
transfer when HREADYi is HIGH, so the master gets 
access to the bus when both HREADYi and 
HGRANTx are HIGH. 

HREADYi Input AHB 

Transfer Done: Indicates that a transfer is finished 
on the bus when HIGH. The signal may be driven 
LOW to extend a transfer. HREADYi is the HREADY 
input to a slave. 

HRESP [1:0] Input AHB 
Transfer Response: Provides information on the 
status of the transfer. 

HRDATA [31:0] Input AHB 
Read Data Bus: Used to transfer data from bus 
slaves to bus master during read operation. 

HREADYo Output AHB 

Transfer Done: Indicates that a transfer is finished 
on the bus when HIGH. The signal may be driven 
LOW to extend a transfer. HREADYo is the HREADY 
input from a slave. 

HBUSREQ Output AHB 
Bus Request: Indicates to the bus arbiter that a bus 
master X requires the bus. A maximum number 
of 16 bus masters are possible in the system. 

HTRANS [1:0] Output AHB 
Transfer Type: Indicates the type of the current 
transfer, which can be NONSEQUENTIAL, 
SEQUENTIAL, IDLE or BUSY. 

HADDR [31:0] Output AHB Address Bus: The 32-bit system address bus. 

HWRITE Output AHB 
Transfer Direction: Indicates a write transfer when 
HIGH and a read transfer when LOW. 

HSIZE [2:0] Output AHB 
Transfer Size: Indicates the transfer size, which is 
typically byte (8-bit), halfword (16-bit) or word 
(32-bit). 

HBURST [2:0] Output AHB 
Burst Type: Indicates if the transfer forms part of a 
burst. 4, 8, 16 beat transfers are supported, with 
the burst being either incrementing or wrapping. 

HWDATA [31:0] Output AHB 
Write Data Bus: Used to transfer data from the 
master to the bus slaves during write operations. 

PSELx Input APB 
APB Select: Indicates that the slave device is 
selected and a data transfer is required. Each bus 
slave has a PSELx signal. 
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Continued 

SIGNAL NAME TYPE BUS TYPE DESCRIPTION 

PENABLE Input APB 

APB Strobe: Used to time all accesses on the 
peripheral bus. The enable signal is used to 
indicate the second cycle of the APB transfer. The 
rising edge of PENABLE occurs in the middle of the 
APB transfer. 

PADDR [31:0] Input APB 
APB Address Bus: 32-bit APB address bus driven by 
a peripheral bus bridge unit. 

PWRITE Input APB 
APB Transfer Direction: Indicates APB write access 
when HIGH and a read access when LOW. 

PWDATA [31:0] Input APB 
APB Write Data Bus: Driven by the peripheral bus 
bridge unit during write cycle. PWRITE is HIGH. 

PRDATA [31:0] Output APB 
APB read Data Bus: Driven by the peripheral bus 
bridge unit during read cycles. PWRITE is LOW. 

IRQ Output - 
Interrupt: Active HIGH interrupt output. The chosen 
bus interface type does not affect the function of 
this signal. 

 
 

The top entity aes.vhd contains the bus interface signals and a DMA-like controller 

aes_enc_ctrl_struct.vhd. This module contains registers, required to setup, control and 

monitor the data transfer process. The master is connected to the slave interface of the 

peripheral bus bridge. The master initializes the bridge to receive data from the buffer 

located in the SDRAM. For initialization, the master has to specify signals to indicate 

the data size (HSIZE [2:0]) and burst type (HBURST [2:0]).  

 

Both incrementing and wrapping bursts for 4-, 8-, and 16-beat bursts are supported 

in the AMBA AHB protocol, in addition to undefined-length bursts and single 

transfers. A beat is a transfer of data packets, thus an 8-beat wrapping burst is a transfer 

of 8 packets. Incrementing bursts access sequential locations and the address of each 

transfer in the burst is just an increment of the previous address. Wrapping bursts also 

access sequential locations, but if the start address of the transfer is not aligned with the 

total number of bytes in the bursts, then the address of the transfers in the bursts will 

wrap when the boundary is reached. For instance, if the starting address of a 4-beat 

wrapping burst of data size 4-bytes (32 bits) is 0x34, four transfers occur on addresses 
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0x34, 0x38, 0x3C and 0x30, thus, the address wrap at 16-byte (128-bit) boundaries 

(Note: the amount of data transferred, i.e. the number of beats times data size, is also 128 

bits; 128324 =× ). Table 3.2-3 presents the burst signal encoding useful for defining 

burst types on the AHB interface. 

 

While specifying addresses for access during a burst transfer, one must conform to 

the restrictions that exist regarding burst transfer addressing on the AHB interface. One 

of which is that bursts must not cross a 1kB address boundary. This condition sets the 

upper limit on the on the length of an incrementing burst. Another one states that all 

transfers within a burst must be aligned to the address boundary equal to the size of the 

transfer. For example, word (32-bit) transfers must be aligned to 32-bit address 

boundaries (i.e., HADDR [1:0] = 00). 

 

The DMA-like controller implemented in aes_enc_ctrl_struct.vhd uses the 8-beat 

incrementing burst transfer (HBURST = INCR8) to fetch a total of 256-bit data comprising of 

the 128-bit Plain text and the 128-bit Key, via eight sequential, word (32-bit) accesses 

(HSIZE = 32) to the SDRAM location starting 0x40000000. The data is stored in the two 

input RAM blocks, internal to the AES top entity—topmodule.v. The AES core reads the 

input data from the RAMs and generates the encrypted Cipher text output, which is 

stored in the output RAM block. The DMA-like controller then transfers the 128-bit 

encrypted data to the other SDRAM location, 0x40001000. Information regarding the 

data transfer base addresses is contained in the registers in aes_enc_ctrl_struct.vhd. Table 

3.2-4 provides the register information of aes_enc_ctrl_struct.vhd. 

 

The address offset is the offset with respect to the AHB/APB peripheral bus bridge 

address, which in our case is 0xc0000000. A complete listing of the source code of the 

AMBA-compliant wrapper, aes.vhd, along with the controller module, 

aes_enc_ctrl_struct.vhd, is provided in Appendix A. 
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Table 3.2-3: Burst Signal Encoding 

HBURST [2:0] TYPE DESCRIPTION 

000 SINGLE Single transfer 

001 INCR 
Incrementing transfer of unspecified 
length 

010 WRAP4 4-beat wrapping burst 
011 INCR4 4-beat incrementing burst 
100 WRAP8 8-beat wrapping burst 
101 INCR8 8-beat incrementing burst 
110 WRAP16 16-beat wrapping burst 
111 INCR16 16-beat incrementing burst 

 
 

Table 3.2-4: AES Core Register Information 

REGISTER NAME 
ADDRESS 
OFFSET 

DESCRIPTION 

Control Register 0x00 

Bit 0 is used to enable the AES core: 1-enable, 
0-disable 
Bit 2 is used to enable IRQ: 1-enable, 0-disable 
Bit 3 used to generate IRQ request: 1-enable, 
0-disable 

Key / Plain text Input 
Address 0x04 

This register contains the 32-bit base address 
of the Key and Plain text input from the 
SDRAM location starting 0x40000000 

Cipher text Output 
Address 0x08 

This register contains the 32-bit base address 
of the Cipher text output to the SDRAM 
location starting 0x40001000 

Status Register 0x0C 

Bit 0 contains the status of transfer done: 1-
ready, 0-busy 
Bit 1 contains the status of transfer direction: 
1-write, 0-read 

Current Address 0x10 
This register contains the 32-bit address from 
(to) which the DMA-like controller 
(aes_enc_ctrl_struct.vhd) reads (writes) data 
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It can be observed that the controller implements a finite state machine (FSM) for 

accesses to the Leon SDRAM:  

 

TYPE state_type IS (idle, bus_req, bus_grant, bus_own, load_key, load_text, 
xfer_end); 

 

The FSM consists of seven states and starts in the IDLE state upon being reset. In 

this state, all registers and bus contents are initialized to zero.  

 

One clock cycle later, the FSM moves to the BUS_REQ state, where it checks for 

internal signal conditions. When the signal dma_xfer_req of record, r, is asserted high, the 

internal signal sig_HBUSREQ is set high. Then, if the AES core is selected and enabled 

(aes_en) and data is ready for transfer to the AES core (sig_dataRdy), signals in the other 

record, tmp, are backed up. The FSM goes to the next state BUS_GRANT if all these signals 

and the ahb_hgrant signal are high. The register that counts the number of data transfers, 

n, is initialized to seven in the record, tmp, so that the count becomes zero after a total 

of eight transfers. The eight transfers consist of four transfers each, of width 32 bits, for 

Key and Plain text. 

 

When in the BUS_GRANT state, the FSM simply skips one clock cycle before accepting 

ownership of the bus in the next state, BUS_OWN. 

 

In this state, the FSM waits until the AHB master asserts HIGH on the signal 

ahb_hready. The FSM makes the signal sig_dataRdy LOW as an indication to the AES core 

that all data is still not present for encryption. The FSM also sets the transfer type for 

the first data transfer as Nonsequential (HTRANS = HTRANS_NONSEQ). The data transfer begins 

in the next state, LOAD_KEY.  

 

During the LOAD_KEY state, the FSM loops for four clock cycles to load the 128-bit 

Key in one of the input RAM blocks. This has been implemented by a two-state minor 

FSM within this state, which also sets the subsequent transfer types as Sequential (HTRANS 
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= HTRANS_SEQ). The FSM loads the 128-bit Plain Text the same way in the other input 

RAM block in the next state, LOAD_TEXT. 

 

With all data now stored in the internal input RAMs, it is available for encryption by 

the AES core. The FSM pulses the signal, sig_dataRdy, HIGH to convey this to the to 

AES core, and also sets the signal, sig_Go, HIGH to begin encryption. The FSM then 

moves on to the final state, XFER_END.   

 

The last state of the FSM signals the completion of the encryption process and all 

the data transfers that occurred during that process (sig_finish = ‘1’). The FSM disables 

the AES core and returns to the IDLE state. 

3.2.4 Platform Express: Concepts and Objects 

A system designer using the PX application needs objects to quickly create a design. A 

system integrator creates these objects from the available hardware designs. The PX 

object types can be categorized as components, buses and routines. Table 3.2-5, from the 

Platform Express Integrator’s Guide [22], shows the object and routine types that can be 

defined into a component library. 

Object Types 

PX objects are classified as components and buses, and are defined using schemas that 

the PX software can use. 

 

Schemas 

The PX schemas are based on the World Wide Web Consortium (W3C) standard 

for XML 1.0, accepted in 2001. The schema for component files is located in the 

$PXHOME/schema/3.5 directory. A more easy-to-read version in the HTML format can 

be found in $PXHOME/doc/schema. 
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Table 3.2-5: Platform Express Object and Routine Types 

TYPE CREATION PROCESS NOTES 

Component: 
A set of files containing all information 
required by the Platform Express 
application to use the component in a 
design. 
Subtypes: 
 Platform core 
 Hierarchical Component 
 Bus Bridge 
 Peripheral 

1. Locate a similar component to use 
as a template. 

2. Make a component directory. 

3. Edit the component’s XML file. 

4. Add necessary support files – 
Generators, Configurators, HDL or 
C code. 

5. Test the component. 

6. Package the library. 

Use PxEdit to quickly enter basic 
component information. 
Hierarchical Components can be 
created using a HC Generator. 

Buses: 
Used to connect components together. 

1. Create a bus definition based on an 
official specification 

2. Create a decoder so that 
components can connect to the bus. 

3. Write a component that references 
the bus so that the bus can be 
tested. 

4. Test the bus. 

5. Package the library. 

Bus interface definitions and decoders 
must be available before a component 
can be tested. 
Platform Express libraries provide 
several common types. 

Generators: 
Invoked by a user to perform actions. 
For instance, the Platform Express 
application uses generators to create 
design documentation and to build the 
HDL model of the final design. 

1. Define the function in its simplest 
terms. It is advisable to write many 
small generators than a single large 
one. 

2. Write the generator(s). 

3. Attach the generator(s) to the 
components, or make them 
accessible through a visible 
generator chain. 

Most generators are written for 
components. 
Users can create stand-alone generators 
such as the PxDoc library. 
The PxDoc and checkEnvironment 
libraries contain only generators. 

Configurators: 
Used to instantiate elements. 
Invoked when a component is added to 
a design. 

1. Decide on the type of the 
configurator required. 

2. Write a configurator in Java, if the 
provided default configurator is 
unusable. 

3. Attach the configurator to the 
component. 

The default configurator is very flexible 
and can handle most needs in the 
component’s XML. 
The pxSampleLib library contains a 
component with a custom configurator. 

Platform Metadata (PMD): 
Changes a component based upon what 
other components are present in the 
design, in a manner specified by the 
PMD writer. 
Changes can be as simple as restricting 
choices in a dialog box, or as extreme as 
adding or deleting a bus interface. 

1. Define the triggering component, 
the affected components and the 
changes to be made. 

2. Create transformers either in Java 
or XLST. 

3. Package the PMD in its own 
directory in a component library. 

The components referenced by a PMD 
need not be in the same component 
library as the PMD. 

Source: Platform Express Integrator’s Guide 
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Components 

These represent the different types of IP blocks that can be included in the chip 

design. Since they appear in the Component Browser as icons, they are the most visible 

among all PX objects. Users can drag-n-drop components into the Design Editor. 

Platform cores, hierarchical components and bus bridges are subtypes that can be used 

to start a design. Peripherals form the other subtype, which can only be added to 

existing buses. 

 

Buses 

Buses are a fundamental notion of the PX code structure, because all components 

are connected using buses. A component is not displayed in the Component Browser, if 

it cannot connect to any of the active bus types (in the current design) using any of the 

bus bridges. The bus implementation is a three-step process—signals are described in 

bus definition files, the HDL for the component-bus connection is generated from bus 

decoder templates and finally, pins to connect the signals are set up in the component’s 

bus interface section. 

Note: Writing the PX Routine Types (Generators, Configurators and PMD) are 

beyond the scope of this thesis and hence, not discussed here. Readers are strongly 

encouraged to refer to the Platform Express Integrator’s Guide [22] for information on 

Routine Types. 

Platform Express Directory Structure 

The exploded view of the PX directory structure can be observed in Figure 3.2-6. The 

default PX installation results in two top-level file directories pxhome and pxLibraries. 

 

The pxhome directory contains all the core information including integrator scripts 

and the Platform Express application code. pxLibraries contains all the libraries that came 

with the PX environment. However, not having any of these libraries does not influence 

PX performance. It is under pxLibraries directory that you will package your components 

in a physical library. 
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Figure 3.2-6: The Platform Express Directory Structure 
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Integrators should package their components according to a specific directory 

structure that allows the included PX utilities to locate supporting files. This generic 

directory structure is illustrated in  under <yourLibrary>, where <yourLibrary> is a single 

distinctively named directory within pxLibraries. The name of <yourLibrary> should be 

suggestive of the components it may include. 

 

The required directory, componentLibrary, under <yourLibrary> contains the 

subdirectories for components, bus definitions and routine types. However, all of the 

subdirectories may not be required. The other required element in <yourLibrary> is the 

Pxkey file, which holds the licensing information for your packaged component. 

<yourLibrary> may also contain other optional directories and support files such as 

index.xml or Makefile. 

 

The component subdirectory under componentLibrary may contain multiple 

components, one of which could be <yourComponent>. Each of <yourComponent> must 

have at least one <version> directory, where <version> is a number in the form of X.Y. If 

multiple <version> directories are present then PX will use the most recent version (the 

one with the highest number). 

 

The <version> directory contains <yourComponent>.XML file and all the supporting 

files or directories that you want to protect using Pxkey. 

 

Figure 3.2-7 illustrates the directory structure of an AES IP component that was 

packaged into a physical library named VOLIPository (equivalent to <yourLibrary>) and 

later integrated into the Platform Express environment. 

 

The next chapter discusses the details of preparing the IP component before 

installing it in a component library. 
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Figure 3.2-7: (a)Creating a VOLIPository library into pxLibraries; (b)Creating 
subdirectories in VOLIPository; (c)Directory Structure Showing Location of the 

aes.xml File of the aes Component. 
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44  
IIMMPPLLEEMMEENNTTAATTIIOONN  

 

 
--From Gordon E. Moore’s paper, “Cramming more components onto integrated circuits” 

 

his chapter explains the use of the Platform Express application from two different 

design perspectives – that of a System Designer and another of an IP Integrator. The 

orange arrows in Figure 4.1-1 indicate the complete process – from IP integration to 

platform conception – followed in this project. As an IP integrator we need to carry out 

steps 1 through 7 to be able to use the installed IP, when performing the role of a 

system designer in step 8. 
4 . 1  T ES T  

Step 1 indicates that the raw IP can be described either using VHDL or Verilog. In 
step 2, if the IP needs memory for storing data before and after processing it then input 
and output RAMs are added. We are executing step 3 because our choice of HDL is 
VHDL while our IP is described in Verilog. (If your IP along with its bus-compliant 
wrapper is described using the same HDL then step 3 can be omitted). In step 4 we add 
the AMBA-compliant wrapper to our peripheral module. In step 5, we use the PxEdit 
tool to generate our IP’s metadata file in XML (explained in Section 4.4) before installing 
it into the pxLibraries (step 6). Next we generate a Pxkey (step 7) to protect our IP from 
modifications and also so that it appears in the Component Browser of the PX 
application.   

T 
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Figure 4.1-1: IP Integration and Platform Creation using Platform Express 
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This exercise describes the following steps: 
� Obtaining the AES IP core 

� Obtaining the Platform Express design environment 

� Compiling the IP Core using ModelSim 

� Installing the AES component using pxedit, mkIndex and Pxkeygen 

� Generating a test design using Platform Express 

� Verifying the design for correctness using Seamless CVE 

4.1 OBTAINING THE AES IP CORE 

The required AES IP component for integration with Platform Express can be obtained 

from the OpenCores website. The following instructions describe the process of 

obtaining the IP core via the Internet. 

 

1 Point your web browser to http://www.opencores.org/ 

2 Click CVSGet under Tools menu 

3 On the CVS Module Download page type aes_core in the Module Name 

box and click the Create module.tar.gz button 

4 On the Download page, enter the required information and the click  the 

Download button 

5 Save the aes_core.tar.gz file in your home directory 

6 At the Unix prompt, type the following commands 

 

Mkdir test; cd test 

gunzip –c /home/<yourUsername>/aes_core.tar.gz | xvf – 

cd aes_core/rtl/verilog 

cp /home/wala/test/hdl/aes/controller.v . 

cp /home/wala/test/hdl/aes/topmodule.v . 

cp /home/wala/test/hdl/aes/aes.vhd . 

cp /home/wala/test/hdl/aes/aes_enc_ctrl_struct.vhd . 

cd home 
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4.2 OBTAINING PLATFORM EXPRESS 

The Platform Express version used at the time of this project was 2.1h. A fully functional, 

latest version of Platform Express can be obtained for free from the Mentor Graphics 

website. The following instructions describe the process of obtaining the Platform 

Express environment via the Internet. 

 

1 Point your web browser to 
http://www.mentor.com/products/embedded_software/platform_baseddesign/download.

cfm 
2 On the Product Download page, enter the required information; check the 

Platform Express with all libraries for Solaris 2.8 box under Combined 

Software Plus Libraries option and click the Get Software button and 

save the pxplus_ss5_<ver>.exe in your home directory 

3 At the Unix prompt, type the following commands in the exact sequence to 

install the PX environment 

 

chmod 775 pxplus_ss5_<ver>.exe 

pxplus_ss5_<ver>.exe 

 

4 Type either D or P when the installation executable starts and then type 

Agree to accept the license terms. Finally, just hit the Enter key to accept 

the default installation home directory 

 

Alternately, a copy of Platform Express version 2.1h can be obtained by executing the 

following command. For installing the software, follow steps 3 and 4 described above. 

 

cp /home/wala/PlatformExpress2.1h/pxplus_ss5_2.1h.exe . 
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4.3 COMPILING THE IP CORE 

Before we begin installing our IP component into our Platform Express library, we need 

to compile it for a smooth integration process. The following instructions describe the 

compilation process using ModelSim. 

 

1. Copy the compile script file into your test/aes_core/rtl/verilog directory. 

 

cd test/aes_core/rtl/verilog 

cp /home/wala/test/hdl/aes/compile . 

 
Compile Script 
#! 

source ~cad/.cshrc 

mentor_tools 

vlib work 

vmap dware /home/wala/dware 

vmap dw06 /home/wala/dw06 

vmap work work 

vcom -work work target.vhd device.vhd amba.vhd  

vcom -work work config.vhd sparcv8.vhd iface.vhd  

vcom -work work DW_ram_r_w_a_dff_inst.vhd 

vlog -work work timescale.v aes_rcon.v aes_sbox.v  

vlog -work work aes_key_expand_128.v aes_cipher_top.v 

vlog -work work controller.v topmodule.v 

vcom –work work aes_enc_ctrl_struct.vhd aes.vhd 

 

The script instantiates the necessary tools, creates a work library, maps the work library 

to compilation library and defines the compilation order according to component 

hierarchy. 

2. Make an executable compile file and start compile process 

 
chmod 775 compile 

compile 
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The ModelSim output should be identical to: 
Compilation Log 
Copying /sw/mentor/ModelSim_SE5.8d/modeltech/sunos5/../modelsim.ini to 
modelsim.ini 
Modifying modelsim.ini 
Modifying modelsim.ini 
Modifying modelsim.ini 
Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004 
-- Loading package standard 
-- Loading package std_logic_1164 
-- Loading package attributes 
-- Loading package std_logic_misc 
-- Loading package std_logic_arith 
-- Loading package dwpackages 
-- Loading package dw06_components 
-- Compiling entity dw_ram_r_w_a_dff_inst 
-- Compiling architecture inst of dw_ram_r_w_a_dff_inst 
-- Loading entity dw_ram_r_w_a_dff 
-- Compiling configuration dw_ram_r_w_a_dff_inst_cfg_inst 
-- Loading entity dw_ram_r_w_a_dff_inst 
-- Loading architecture inst of dw_ram_r_w_a_dff_inst 
-- Loading configuration dw_ram_r_w_a_dff_cfg_sim 
Model Technology ModelSim SE vlog 5.8d Compiler 2004.06 Jun 12 2004 
-- Compiling module aes_rcon 
-- Compiling module aes_sbox 
 
Top level modules: 
        aes_rcon 
        aes_sbox 
Model Technology ModelSim SE vlog 5.8d Compiler 2004.06 Jun 12 2004 
-- Compiling module aes_key_expand_128 
-- Compiling module aes_cipher_top 
 
Top level modules: 
        aes_cipher_top 
Model Technology ModelSim SE vlog 5.8d Compiler 2004.06 Jun 12 2004 
-- Compiling module controller 
-- Compiling module topmodule 
 
Top level modules: 
        topmodule 
Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004 
-- Loading package standard 
-- Loading package std_logic_1164 
-- Loading package std_logic_arith 
-- Loading package std_logic_signed 
-- Compiling entity aes_enc_ctrl_struct 
-- Compiling architecture structural of aes_enc_ctrl_struct 
-- Loading package vl_types 
-- Loading entity topmodule 
-- Compiling entity aes 
-- Compiling architecture rtl of aes 
-- Loading entity aes_enc_ctrl_struct 
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4.4 INTEGRATING THE IP CORE 

The PxEdit tool supplied with the PX software significantly reduces the amount of 
typing required in creating component definition files. The tool allows the user to fill in 
fields for standard elements of the component, and then generates the XML for these 
areas. The XML file created is a valid XML file and can be customized according to 
needs. 

4.4.1 Starting with the Compiled HDL Model 

1. Copy the .plex_rc script file into your test/aes_core/rtl/verilog directory. 

cp /home/wala/.plex_rc . 
 

.plex_rc Script 
setenv PXHOME /home/wala/PlatformExpress2.1h/pxhome 

setenv PXPATH 

      /home/wala/PlatformExpress2.1h/pxLibraries/AMBA: 

      /home/wala/PlatformExpress2.1h/pxLibraries/Inventra: 

      /home/wala/PlatformExpress2.1h/pxLibraries/Leon2: 

      /home/wala/PlatformExpress2.1h/pxLibraries/PxArm9: 

      /home/wala/PlatformExpress2.1h/pxLibraries/Utility: 

setenv MODELTECH /sw/mentor/ModelSim_SE5.8d/modeltech 

setenv CVE_HOME /sw/mentor/CVE5.0/cve_home.ss5 

setenv JAVAHOME $CVE_HOME/jre 

setenv PATH $JAVAHOME/bin:$PATH 

 
2. Invoke the PxEdit tool 

source ~cad/.cshrc 

mentor_tools 

source .plex_rc 

$PXHOME/tools/bin/px& 
 

The PxEdit window will appear as shown in Figure 4.4-1. Select option New 
under the File tab. 

3. Fill in the dialog box with the definition information as shown in Figure 4.4-2 
and Table 4.4-1. 

4. Click OK. PxEdit now extracts the top-level signal names from the HDL library. 
Maximize the window to view the navigation tabs located on the right side. 
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Figure 4.4-1: PxEdit Environment 

 

 

Figure 4.4-2: Signal Dumping Dialog Box 
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Table 4.4-1: Signal Dumping Dialog Box Information 

Intellectual Property 
Type 

Select Component. The Platform Core option can only be selected if 
the IP is a core or a CPU. 

Module/Entity Name 
Enter the topmost HDL model name exactly; this field is case-
sensitive. 

Simulation Environment 
Select modelsim. The modelsimcve option is selected only when the 
HDL model is compiled using Seamless PSP. 

HDL Library Location 

This refers to the directory containing the HDL library compiled 
by ModelSim—usually work. Use the Browse button to select 
any file under the work directory. Figure 4.4-3 shows the _info file 
selected inside the work directory for illustration purposes. 

 
 
 

 

 
Figure 4.4-3: HDL Location Specification 
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4.4.2 Configuring Buses 

PX uses the bus information to connect components together. Buses are also essential 

because they define the address spaces of the components. Standard bus information, 

such as signals, is defined separately in a bus definition (busdef) file, and must be in 

$PXPATH for PxEdit to work correctly (see, amba*.xml under pxLibraries/AMBA/ 

componentLibrary/busdef or pVCI.xml under pxLibraries/Inventra/componentLibrary/ busdef). 

 

1. Click the busInterfaces tab at the right. For our design we are going to connect 

the components using the industry standard AMBA bus. Primarily three bus 

types will be used for connecting the IP core with the Leon2 CPU—the AMBA 

AHB, the AMBA APB and a single pin interrupt bus for generating IRQ 

requests. 

2. Pick these buses by highlighting the appropriate options under the Bus 

Available list and clicking Select. Figure 4.4-4 depicts the bus name input dialog 

box that comes up after bus selection. The role of the component as a bus 

master or a bus slave is defined in the next resulting dialog box, shown in Figure 

4.4-5. 

For the sake of convenience, name the AHB master bus as AHB_mst, the APB 

slave bus as APB_slv and the Single Pin Interrupt bus as IRQ_slv. 

3. Click on a cell in the Signal Mapping table to list the set of signals for that bus 

type. Map each bus signal in the table to the corresponding bus signal listed in 

the drop-down menu (see Figure 4.4-6). 

4. The bus connections can be specified as required or optional in the Select 

Master/Slave/System bus table. The default value for all connections is 

optional. Set this to required, for the APB slave and the single pin interrupt 

bus, as shown in Figure 4.4-7. 

5. Specify the connection of the AES core on the APB slave bus with respect to 

the Leon address space. Select the APB_slv bus in the Select Master/ 

Slave/System table. Click Add above the MemMap/AddressBlock table and 

fill in the values in the table as shown in Figure 4.4-7.  
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Figure 4.4-4: Bus Name Input Dialog Box 

 

 
Figure 4.4-5: Bus Interface Specification 

 

Figure 4.4-6: Signal Mapping 
 

Figure 4.4-7: Bus Connection and Memory Map Specification 
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6. In the registerBank/name window, click Add and name the field as registers, 

as shown in Figure 4.4-8. Click Registers and enter the register information in 

the Register List table as shown in Figure 4.4-9. Use New to add registers and 

save your work frequently. Specify the register bit information in the Field List 

for each register. Click Save before closing the window to avoid validation 

errors. The detailed bit information for controlReg, dataLoadReg, cipherOutReg, 

statusReg and memReg is shown in Figure 4.4-10 – 14, respectively.  

 

 
Figure 4.4-8: Register Bank Window 

Figure 4.4-9: Register List Input Table 
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Figure 4.4-10: Field List Information for controlReg 
 

 

Figure 4.4-11: Field List Information for dataLoadReg 
 

 

Figure 4.4-12: Field List Information for cipherOutReg 
 

 

Figure 4.4-13: Field List Information for statusReg 
 

 

Figure 4.4-14: Field List Information for memReg 
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4.4.3 Describing the Component Appearance 

In the Platform Express environment, the appearance of your component can be 

described under the presentation tab. Table 4.4-2 lists the input fields found under this 

item, while Figure 4.4-15 actually shows the presentation interface, with information 

entered in all fields with respect to our AES component. 

 

4.4.4 Setting up the Verification Environment 

The details required to create your component in the final design are to be provided 

under this option. It is always better to have a component support more than one 

simulation environment and language, this way it stands a better chance to be 

incorporated in many designs. Various fields and entries in this tab are illustrated in 

Figure 4.4-16. 

 

Table 4.4-2: Presentation Information 

Display Label 

The preferred name for the component is to be entered here. 
The component will be referenced by this name in the 
Component Browser. If multiple names are entered, only 
component will be referred by the first one. Spaces are valid in 
Display Labels (as opposed to Register Names and Register Field 
Names). 

Icon 

The icon shows up in the block diagram of the component, 
when it is dragged into the Design Editor. Enter the relative path 
to the icon in the library directory. Users can create icons in GIF 
or JPEG formats measuring 100 pixels by 35 pixels (width X 
height). Leaving this field blank automatically allows Platform 
Express to use the default icon. 

Document Location 

Any support information for the component – web URL, relative 
path to the location of datasheets or application notes – goes in 
this field. The information will be available to end-users when 
they right-click your component and select Browse. 
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Figure 4.4-15: Component Appearance Description 

 
Figure 4.4-16: Verification Environment Specifications 

 

1. Click the hwModel tab and click Add under the VerificationEnv field. Enter 

any name under id (preferably indicating simulator and language type). Select 

the HDL of your component description from the drop-down menu under 

language. 

2. Add a field under EnvironmentId and select an option from the drop-down 

menu for envIdentifier.  

3. Add a field under Parameter and enter the entity names of the modules in your 

component – in the bottom-up hierarchical order – under value. Select 

entityName from the drop-down list under name. 

4.  From a list of options under fileType, select the HDL source in which your 

component is described. 

5. Specify a fileset for your Parameter value under fileSetRef. This exact fileset 

ID will be referenced under the fileSets tab. 



 

52 

4.4.5 Adding Supporting Files 

Under fileSets, you will specify the location of all files under fileSetRef in hwModel. 

Additionally, you may also specify supporting software files for your component if it 

generates its own drivers. 

1. Add a field under File Set and enter the exact fileSetId as the one under 

fileSetRef. Make sure that the spelling and the case are identical. 

2. Add the relative location of each file belonging to this fileset. In our case, it is 

the top-level file aes.vhd under hdlsrc directory, as shown in Figure 4.4-17. Under 

the other required field, fileType, specify all HDL of all your files. 

3. After adding all files for a particular fileset, click Add to specify another fileset. 

4. Save your work and eliminate validation errors, if any. Usually pxEdit will 

generate a message similar to the one shown in Figure 4.4-18. 

For more information on adding supporting filesets, see mcore_ahb.xml under 
pxLibraries/Leon2/componentLibrary/component/mcore_ahb/1.0.  

 
 

 

     
Figure 4.4-17: Fileset Specification 

 
 

Figure 4.4-18: PxEdit Validation Message 
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A component wrapper recognized by the Platform Express application can be 
generated using PxEdit. The tool only results in a bare minimum XML structure of the 
component. The XML file, attached in Appendix B, is editable outside of the PxEdit 
environment in any text editor, if the component requires any dependencies to be 
added. In our case however, no additional generators/configurators or dependencies are 
required for the AES IP core. For details regarding adding CPU cores, writing 
generators and configurators, resolving dependencies, adding bus interfaces (other than 
the included AMBA and Inventra buses) and to read more on adding components, 
please refer to the Platform Express Integrator’s Guide [22]. 

 
Once the component XML file is created, make a new component library under 

pxLibraries and package your component into that library as described in section 3.3. 
Next, edit .plex_rc by adding the new component library location to $PXPATH. In order 
to reduce the Platform Express loading time, generate an index.xml file for the component 
using mkIndex. From the command prompt, traverse to the pxLibraries directory and 
enter the following command: 

$PXHOME/tools/bin/mkIndex <libraryName> 

IP integrators can prevent end-users from modifying their libraries by using Pxkeygen 
utility to generate a Pxkey file. Modification is only possible when end-users buy the 
Pxkey license. To generate Pxkey, go to the pxLibraries directory and enter the following 
command: 

$PXHOME/tools/bin/Pxkeygen.sh <libraryName> 

 
The next section illustrates the process of integrating a component described using 

multiple HDLs (VHDL + Verilog) and can be skipped if you are working with a 
component written entirely in just one HDL.  

4.4.6 Generating a Black Box Component 

Since most companies prefer using only one HDL to describe their IP cores, the current 
version of Platform Express only supports verification of a component described in a 
single HDL. In our case however, since we have used the AES IP core available on 
OpenCores.org, written in Verilog and the AMBA wrapper written in-house using 
VHDL, the design verification process is not possible. (This issue has been reported to 
the Platform Express support team and is likely to be resolved in the future releases.)  
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Nevertheless, the current version of the Platform Express environment provides a 

smart way to describe a component as a black box in which only the bus interface 

signals are imported in the XML file and no filesets are created.  

 
The Generate Black Box option under Tools menu (see Figure 4.4-19) in Platform 

Express application brings up the black box generator interface that allows users to 

create components for installation under the black box library (bbcLib). 

1. Click  on the generator interface and in the resulting BBC Component 

Editor dialog box (see Figure 4.4-20) enter the name of the component. 

2. Click and drag the Bus Interface symbol,  onto the component name in 

the black box editor. In the resulting Bus Interface Editor dialog box shown in 

Figure 4.4-21, specify the Bus Type as ambaAHB Master.  

3. Repeat step 2 twice, and specify Bus Type as ambaAPB Slave and Interrupt 

Slave. The black box generator interface would now be identical to Figure 
4.4-22. 

4. Select File > Generate… and navigate to the PlatformExpress2.1h directory in the 

dialog box that appears. Select pxLibraries and click Generate as illustrated in 

Figure 4.4-23. The bbcLib library will be placed inside the pxLibraries directory. 

The terminal window will show an output similar to Figure 4.4-24. 

 
 

 
Figure 4.4-19: Invoking the Black Box Generator Interface 
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Figure 4.4-20: Component Editor Dialog Box 

 

 

 
Figure 4.4-21: Bus Interface Dialog Box 

 

 
Figure 4.4-22: BBC Generator Interface 

 

 

 
Figure 4.4-23: bbcLib Creation Directory 

 

 

Figure 4.4-24: bbcLib Creation Message 
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4.5 GENERATING A TEST DESIGN 

 With the component XML file validated and all the filesets packaged in the proper 

component libraries (VOLIPository and bbcLib), we can now verify the behavior of the 

integrated IP core in the Platform Express environment. 

1. From the command prompt, invoke PX by issuing the following command: 

$PXHOME/bin/px –refresh & 

Alternately, if PX is already running, select File > Refresh Libraries to reload 

newly added libraries without exiting. 

2. Notice that the installed component libraries are not visible in the Component 

Browser yet. This is because initially, PX only shows components (CPU cores) 

that could be dragged onto the Design Editor Pane. Perform a drag-n-drop on 

the Leon2 Processor. Go through the resulting Configure mcore_ahb 

window (shown in Figure 4.5-1) and click OK. Leon2 CPU core will now appear 

in the Design Editor; simultaneously PX will update the Component Browser as 

shown in Figure 4.5-2. 
 

 
Figure 4.5-1: mcore_ahb Configuration Window 
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Figure 4.5-2: Updated Component Browser 

 
3. Select aes2 (aes, in your case) under bbcLib and drag it onto the ambaAHB_1 

master bus of the Leon2 CPU. As shown in Figure 4.5-3, a Bus Bridge 

Required window will come up. This is to bridge the connection between the 

AHB master of Leon2 with APB slave of AES. Select the opaque bus bridge, 

Leon2 – apbmst_obb for this purpose. 

4. Leave the values unchanged in the Configure apbmst_obb dialog box shown 

in Figure 4.5-4 and click OK.  

5. Do the same for the singlePinInterruptBus_1 configuration dialog box shown 

in Figure 4.5-5. 

6. At this point the AES core will appear in the Design Editor as shown in Figure 

4.5-6. Attach the ambaAHB_2 master bus on the AES to the ambaAHB_1 

master bus of Leon2 by performing a drag-n-drop operation. This way a non-

processor component like AES can have access to the master bus. The resulting 

change is shown in Figure 4.5-7 

7. Click  to save the design under <savedProject> directory and then click 

 to build it. Click OK on the resulting Required Configuration window 

and watch the Output Pane for  
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Figure 4.5-3: AHB-APB Bus Bridge Dialog Box 

 
Figure 4.5-4: Bus Bridge Configuration  

 
Figure 4.5-5: Interrupt Bus Configuration 

 

 

 

Figure 4.5-6: Leon2-AES Before AHB Bus Attachment 
 

 

Figure 4.5-7: Leon2-AES After AHB Bus Attachment 
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build status messages. During this ‘build’ process, PX will generate an HDL 

system design based on the contents of the Design Editor and the component 

configurations. 

 Note: Performing a build is not possible without proper software 

compilation tools. For instance, Leon2 core requires the sparc-elf-gcc cross-

compiler for compiling the boot code (Refer to Appendix C for information on 

building a sparc-elf-gcc cross-compiler for PX running on Solaris machines). 

Also, all configurable settings can be accessed by selecting Settings > 

Configure All. For more information on various configure options available to 

system designers, please refer to the Platform Express User’s Guide. [23] 

 

8. The build process generates a savedProject.plx file inside the <savedProject> 

directory along with other sub-directories to hold the HDL source files of the 

design, object files, build scripts and configuration files. The directory structure 

of the saved project is shown in Figure 4.5-8. Once the build process is 

completed, the last few lines of a successful build will be identical to those 

depicted in Figure 4.5-9. Refer to Appendix D for the detailed build log. 

 
 
 
<savedProject> 

  +- verificationEnv 

  | | 

  | +- Modelsim 

  |  +- designData 

  |  +- exec [Generated files for Seamless execution] 

  |  +- hdl [Generated HDL files, build scripts and compiled 

  |  | models] 

  |  +- software [Contains compiled object files and source
  |  | code for the main diagnostics file] 

  |  +- testbench 

  |  |- pxenv.properties 
  |  |- pxenv.sh [PX_HDL_BUILD Directory Specifications] 

 |- <savedProject>.plx 

Figure 4.5-8: Directory Structure of Generated Design 
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Figure 4.5-9: Output Pane Build Log Messages 

9. Click  to execute the build and invoke the Seamless CVE session. This will 

bring up the ModelSim application and its Wave Viewer interface (shown in Figure 

4.5-10). 

 
The next section explains the process of generating a build for designs featuring a 

black box component (see Section 4.4.6) and can be skipped if your test design consists 

of IPs described using a single HDL. 

4.5.1 Building Designs Featuring Black Box IPs 

Generating a black box component in a manner described in Section 4.4.6 results in a 

top-level bbc_top.vhd file in the hdlSrc directory of the bbcLib component directory. 

This file is essentially an AMBA-compliant wrapper. Follow the steps below to 

successfully build a design consisting of IPs described in multiple HDLs. 
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Figure 4.5-10: Seamless Environment – ModelSim Application with Waveform Viewer  

 
1. Move all the HDL files (VHDL as well as Verilog) into the hdlSrc directory of 

the bbcLib component library. 

 

2. Modify the architecture declaration in the bbc_top.vhd file to include port-

mapping statements to the lower-level aes_enc_ctrl_struct.vhd file. Leave the 

architecture declaration of the aes_enc_ctrl_struct.vhd file empty. This is to hide 

the Verilog files instantiation declared inside aes_enc_ctrl_struct.vhd from the 

PX environment. 

 

3. Modify the aes.xml file under pxLibraries/bbcLib/component-

Library/component/aes/1.0 using PxEdit or a text editor to include 

aes_enc_ctrl_struct.vhd under hwmodel and filesets. For reference, use the XML 

file generated in Section 4.4 or the one included in Appendix B. 
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4. Create and build the design as described in Section 4.5, steps 1—8. Do not 

execute the build yet. 

 

5. From the terminal window, navigate to the <savedProject>/verificationEnv 

/Modelsim/hdl directory and modify the PX-generated build.xml script. Insert 

“vlog” statements to allow compilation of the previously hidden Verilog files. 

Figure 4.5-11 shows the pre- and post-modification snapshots of the build.xml 

script. 

 

6. Modify the aes_enc_ctrl_struct.vhd by adding statements in the previously empty 

architecture declaration. 

 

7. Under the same <savedProject>/verificationEnv/Modelsim/hdl directory, type ant. 

‘Ant’ [24] is the Java equivalent of the ‘Make’ command and uses XML-based 

configuration files to execute tasks. In this case, ant will be using the modified 

build.xml script to compile all the HDL files in our design. 

 

8. After executing all the instructions in the build script, ant will generate a message 

similar to: 

BUILD SUCCESSFUL 

Total time: 31 seconds 

Note: Errors in the build script will result in a “Build Failed” message. 
 

9. Go back to the PX application and complete step-10 as described in Section 4.5. 

 

This completes our one design cycle using Platform Express. Users can examine the 

design, make further changes and enhancements and cycle through the design flow as 

explained in this chapter. 
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Figure 4.5-11: The build.xml file before Modification (a); Modified Build File with 

Verilog Compile Instructions (b) 

 

4.6 VERIFYING THE DESIGN 

Currently, only a few processors are supported by Seamless in PX. The ARM’s Processor 

Support Package (PSP) and the MIPS PSP are supported but not Leon. Therefore, as of 

now, due to the unavailability of a Seamless model of the Leon processor, 

simulation/optimization of Leon CPU core is not possible using Seamless application. 

This means that at present, the test design can only be simulated and verified for 

correctness using a hardware simulator such as the ModelSim application. 

 

a

b 
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55  
CCOONNCCLLUUSSIIOONNSS  

 

Being a pioneer is non-trivial. 
--Don Bouldin 

 
Results! Why man, I have gotten a lot of results. I know a several thousand things that won’t work. 

--Thomas A. Edison 
 

he primary objective of the Volunteer SoC project is to allow designers to be able 

to reuse their current design by having it as a starting point for their future work. 

In this task we explored the possibility of using Platform Express to quickly generate a 

platform for our future SoC designs. The choice of this tool proved to be not just right 

but also very appropriate. In addition to allowing designers to rapidly create system 

designs, PX also enables IP developers to showcase their components for possible use 

in that design.  

5.1 CONTRIBUTIONS 

In our attempt at using the PX application for the first time at the University of 

Tennessee, we overcame some minor as well as a few major issues and were successful 

in implementing a processor-centric platform subsystem for derivative designs. The 

complete IP integration and platform design flow, illustrated in Figure 4.1-1 (Chapter 4), 

was followed while using Platform Express for the SoC platform design. 

 

The detailed explanation of IP installation and platform building process is given in 

this thesis and it is intended for use as an instructional guide for students at our 

university. 

T 
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One of the main problems encountered during this project was the unavailability of 

the Solaris build of the sparc-elf-gcc cross-compiler for Leon2 CPU. This compiler has 

been built at our university and copies are available for download [25]. Additionally, one 

copy sent to Gaisler Research is available for download, while the other sent to Mentor 

Graphics is for their internal use to assist in problems involving the Leon2 CPU core. 

5.2 CURRENT STATUS AND FUTURE WORK 

At the time of writing this thesis, the platform building process and functional 

verification of the platform using the ModeSim hardware simulator has been completed. 

With the availability of the Leon2 Seamless model, co-simulation of both the hardware 

and software components of the design will be possible. 

 

One of the tasks in the near future can be to add more IP cores to the existing 

VOLIPository component library and enhance the existing platform. Another possibility 

is to use the recently acquired Virtex II™ series FPGAs to prototype the platform-

based SoCs designed using PX. 
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AAppppeennddiixx  AA  
VVHHDDLL  SSOOUURRCCEE  CCOODDEE  LLIISSTTIINNGG  

 
AES.VHD 
--+-----------------------------------------------------------+ 
--| Module: AES.VHD                                           | 
--|         Top level AMBA AHB/APB wrapper      | 
--|                                                           | 
--| Modified by: Mardav Wala [mardav.wala@gmail.com]          | 
--|                                                           | 
--| Project: Using Platform Express for System-on-Chip Design | 
--+-----------------------------------------------------------+ 
 
--- 
-- Standard Libraries 
--- 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.std_logic_signed.ALL; 
USE IEEE.std_logic_arith.ALL; 
 
ENTITY aes IS 
 PORT( 
  HRESETn  :IN STD_LOGIC; 
  HCLK  :IN STD_LOGIC; 
  HGRANT  :IN STD_ULOGIC; 
  HREADY  :IN STD_ULOGIC; 
  HRESP  :IN STD_LOGIC_VECTOR(1 downto 0); 
  HRDATA  :IN STD_LOGIC_VECTOR(31 downto 0); 
    
  HBUSREQ  :OUT STD_ULOGIC; 
  HLOCK  :OUT STD_ULOGIC; 
  HTRANS  :OUT STD_LOGIC_VECTOR(1 downto 0); 
  HADDR  :OUT STD_LOGIC_VECTOR(31 downto 0); 
  HWRITE  :OUT STD_ULOGIC; 
  HSIZE  :OUT STD_LOGIC_VECTOR(2 downto 0); 
  HBURST  :OUT STD_LOGIC_VECTOR(2 downto 0); 
  HPROT  :OUT STD_LOGIC_VECTOR(3 downto 0); 
  HWDATA  :OUT STD_LOGIC_VECTOR(31 downto 0); 
   
  PSELx  :IN STD_ULOGIC; 
  PENABLE  :IN STD_ULOGIC; 
  PADDR  :IN STD_LOGIC_VECTOR(31 downto 0); 
  PWRITE  :IN STD_ULOGIC; 
  PWDATA  :IN STD_LOGIC_VECTOR(31 downto 0); 
    
  PRDATA  :OUT STD_LOGIC_VECTOR(31 downto 0); 
  irq  :OUT STD_LOGIC 
  ); 
END aes; 
 
ARCHITECTURE rtl OF aes IS 
  
 COMPONENT aes_enc_ctrl 
 PORT( 
  RST  :IN STD_LOGIC; 
  CLK  :IN STD_LOGIC; 
  AHB_HGRANT :IN STD_ULOGIC; 
  AHB_HREADY :IN STD_ULOGIC; 
  AHB_HRESP :IN STD_LOGIC_VECTOR(1 downto 0); 
  AHB_HRDATA :IN STD_LOGIC_VECTOR(31 downto 0); 
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  AHB_HBUSREQ :OUT STD_ULOGIC; 
  AHB_HLOCK :OUT STD_ULOGIC; 
  AHB_HTRANS :OUT STD_LOGIC_VECTOR(1 downto 0); 
  AHB_HADDR :OUT STD_LOGIC_VECTOR(31 downto 0); 
  AHB_HWRITE :OUT STD_LOGIC; 
  AHB_HSIZE :OUT STD_LOGIC_VECTOR(2 downto 0); 
  AHB_HBURST :OUT STD_LOGIC_VECTOR(2 downto 0); 
  AHB_HPROT :OUT STD_LOGIC_VECTOR(3 downto 0); 
  AHB_HWDATA :OUT STD_LOGIC_VECTOR(31 downto 0); 
    
  APB_PSEL :IN STD_ULOGIC; 
  APB_PENABLE :IN STD_ULOGIC; 
  APB_PADDR :IN STD_LOGIC_VECTOR(31 downto 0); 
  APB_PWRITE :IN STD_ULOGIC; 
  APB_PWDATA :IN STD_LOGIC_VECTOR(31 downto 0); 
   
  APB_PRDATA :OUT STD_LOGIC_VECTOR(31 downto 0); 
  irq  :OUT STD_LOGIC 
  ); 
END COMPONENT;  
  
BEGIN 
AES: aes_enc_ctrl_struct PORT MAP( 
  RST  => HRESETn, 
  CLK  => HCLK, 
  AHB_HGRANT => HGRANT, 
  AHB_HREADY => HREADY, 
  AHB_HRESP => HRESP, 
  AHB_HRDATA => HRDATA, 
   
  AHB_HBUSREQ => HBUSREQ, 
  AHB_HLOCK => HLOCK, 
  AHB_HTRANS => HTRANS, 
  AHB_HADDR => HADDR, 
  AHB_HWRITE => HWRITE, 
  AHB_HSIZE => HSIZE, 
  AHB_HBURST => HBURST, 
  AHB_HPROT => HPROT, 
  AHB_HWDATA => HWDATA, 
   
  APB_PSEL => PSELx, 
  APB_PENABLE => PENABLE, 
  APB_PADDR => PADDR, 
  APB_PWRITE => PWRITE, 
  APB_PWDATA => PWDATA, 
   
  APB_PRDATA => PRDATA, 
  irq  => irq 
  ); 
END;
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AES_ENC_CTRL_STRUCT.VHD 
--+---------------------------------------------------------------------- 
--| File: AES_ENC_CTRL_STRUCT.VHD 
--|  Describes the AMBA AHB/APB bus-compatible controller module for the 
--|  AES Rijndael encryption IP core available from OpenCores.org 
--|  Based on the MDCT.VHD module described in the Ogg-on-a-Chip Project 
--|  by Luis Azuara. [http://oggonachip.sourceforge.net] 
--| 
--| Modified by: Rishi Srivastava 
--| 
--| Revised by: MARDAV WALA [mardav@gmail.com] 
--| 
--| Project: Using Platform Express for System-on-Chip Design 
--|  [MS Thesis. University of Tennessee, May 2005] 
--| 
--| Sub-Files: AES_RCON.V, AES_SBOX.V, AES_KEY_EXPAND_128.V, 
--|  AES_CIPHER_TOP.V, DW_RAM.VHD, CONTROLLER.V, TOPMODULE.V 
--+---------------------------------------------------------------------- 
 
LIBRARY IEEE; 
USE IEEE.std_logic_1164.ALL; 
USE IEEE.std_logic_signed.ALL; 
USE IEEE.std_logic_arith.ALL; 
--USE mywork.iface.ALL; 
 
---------------------- 
ENTITY aes_enc_ctrl_struct IS 
---------------------- 
  PORT( 
      RST         :IN STD_LOGIC; 
      CLK         :IN STD_LOGIC; 
 
      -- AHB Bus Signals 
      AHB_HGRANT  :IN STD_ULOGIC; 
      AHB_HREADY  :IN STD_ULOGIC; 
      AHB_HRESP   :IN STD_LOGIC_VECTOR(1 downto 0); 
      AHB_HRDATA  :IN STD_LOGIC_VECTOR(31 downto 0); 
 
      AHB_HBUSREQ :OUT STD_ULOGIC; 
      AHB_HLOCK   :OUT STD_ULOGIC; 
      AHB_HTRANS  :OUT STD_LOGIC_VECTOR(1 downto 0); 
      AHB_HADDR   :OUT STD_LOGIC_VECTOR(31 downto 0); 
      AHB_HWRITE  :OUT STD_LOGIC; 
      AHB_HSIZE   :OUT STD_LOGIC_VECTOR(2 downto 0); 
      AHB_HBURST  :OUT STD_LOGIC_VECTOR(2 downto 0); 
      AHB_HPROT   :OUT STD_LOGIC_VECTOR(3 downto 0); 
      AHB_HWDATA  :OUT STD_LOGIC_VECTOR(31 downto 0); 
 
      -- APB Bus Signals 
      APB_PSEL    :IN STD_ULOGIC; 
      APB_PENABLE :IN STD_ULOGIC; 
      APB_PADDR   :IN STD_LOGIC_VECTOR(31 downto 0); 
      APB_PWRITE  :IN STD_ULOGIC; 
      APB_PWDATA  :IN STD_LOGIC_VECTOR(31 downto 0); 
 
      APB_PRDATA  :OUT STD_LOGIC_VECTOR(31 downto 0); 
 
      -- Single Pin Interrupt Bus Signal 
      irq         :OUT STD_LOGIC 
      ); 
END aes_enc_ctrl_struct; 
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-------------------------------------------- 
ARCHITECTURE structural of aes_enc_ctrl_struct IS 
-------------------------------------------- 
-- Memory Map 
-- ADDRESS        NAME                               DESCRIPTION 
-- 0x80000300     Control Register                   Bit 0: AES Core On/Off 
--         Bit 2: IRQ enabled/disabled 
--        Bit 3: IRQ request 
-- 0x80000304     Key/Plain Text Read Start Address  32 bits: 0x40000000 
-- 0x80000308     Cipher Text Write Start Address    32 bits: 0x40001000 
-- 0x8000030C     Status Register                    Bit 0: Ready/Busy 
--        Bit 1: Reading/Writing 
--        (READ ONLY) 
-- 0x80000310     Current Memory Register            32 bits: Actual DMA Address 
--         (READ ONLY) 
 
  --- 
  -- TOPMODULE.V 
  --- 
  COMPONENT topmodule 
  PORT( 
    inst_test_clk :IN STD_LOGIC; 
    rst           :IN STD_LOGIC; 
    inst_rst_n    :IN STD_LOGIC; 
    in_cs_n       :IN STD_LOGIC; 
    in_cs_n1      :IN STD_LOGIC; 
    Go            :IN STD_LOGIC; 
    inst_wr_n     :IN STD_LOGIC; 
    inst_wr_addr  :IN STD_LOGIC_VECTOR(3 downto 0); 
    inst_rd_addr1 :IN STD_LOGIC_VECTOR(3 downto 0); 
    inst_data_in  :IN STD_LOGIC_VECTOR(31 downto 0); 
    inst_key_in   :IN STD_LOGIC_VECTOR(31 downto 0); 
 
    data_out_inst1  :OUT STD_LOGIC_VECTOR(31 downto 0) 
    ); 
  END COMPONENT; 
 
  --- 
  -- AES Record Signals 
  --- 
  TYPE aes_regs IS RECORD 
  -- Memory Mapped Registers 
  -- Control Register: 0x80000300 
  aes_en_req  :STD_LOGIC; -- Bit 0: AES core enabled if '1', disabled if '0' 
  irq_en      :STD_LOGIC; -- Bit 2: IRQ enabled if '1', disabled if '0' 
  irq         :STD_LOGIC; -- Bit 3: IRQ request generated if '1', not if '0' 
 
  -- Read Memory Transfer Address: 32 bit at 0x80000304 
  rd_start_addr :STD_LOGIC_VECTOR(31 downto 0); 
 
  -- Write Memory Transfer Address: 32 bit at 0x80000308 
  wr_start_addr :STD_LOGIC_VECTOR(31 downto 0); 
 
  -- Status Register: 32 bit at 0x8000030C 
  ready       :STD_LOGIC; -- Bit 0: Function done if '1', busy if '0' /Read Only 
  mem_wr      :STD_LOGIC; -- Bit 1: Writing if '1', reading if '0' / Read Only 
 
  -- Current Memory Register: 32 bit at 0x80000310 
  mem_addr    :STD_LOGIC_VECTOR(31 downto 0); 
  -- End Memory Mapped Registers 
 
  -- Internal Registers 
  wr_n          :STD_LOGIC; 
  dma_xfer_req  :STD_LOGIC; 
  aes_en        :STD_LOGIC; 
  n             :STD_LOGIC_VECTOR(2 downto 0); 
  data_in   :STD_LOGIC_VECTOR(31 downto 0); 
  key_in    :STD_LOGIC_VECTOR(31 downto 0); 
  aes_addr  :STD_LOGIC_VECTOR(3 downto 0); 
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  -- AMBA Status Registers 
  bus_active  :STD_LOGIC; 
  bus_own     :STD_LOGIC; 
  bus_grant   :STD_LOGIC;  
  END RECORD; 
  --- 
  -- Constants 
  --- 
  -- HTRANS (Transfer Type  | Output from the AHB MASTER) 
  CONSTANT HTRANS_IDLE    :STD_LOGIC_VECTOR(1 downto 0) := "00"; 
  CONSTANT HTRANS_BUSY    :STD_LOGIC_VECTOR(1 downto 0) := "01"; 
  CONSTANT HTRANS_NONSEQ  :STD_LOGIC_VECTOR(1 downto 0) := "10"; 
  CONSTANT HTRANS_SEQ     :STD_LOGIC_VECTOR(1 downto 0) := "11"; 
 
  -- HBURST (Address Increments | Output from the AHB MASTER) 
  CONSTANT HBURST_SINGLE  :STD_LOGIC_VECTOR(2 downto 0) := "000"; 
  CONSTANT HBURST_INCR    :STD_LOGIC_VECTOR(2 downto 0) := "001"; 
  CONSTANT HBURST_WRAP4   :STD_LOGIC_VECTOR(2 downto 0) := "010"; 
  CONSTANT HBURST_INCR4   :STD_LOGIC_VECTOR(2 downto 0) := "011"; 
  CONSTANT HBURST_WRAP8   :STD_LOGIC_VECTOR(2 downto 0) := "100"; 
  CONSTANT HBURST_INCR8   :STD_LOGIC_VECTOR(2 downto 0) := "101"; 
  CONSTANT HBURST_WRAP16  :STD_LOGIC_VECTOR(2 downto 0) := "110"; 
  CONSTANT HBURST_INCR16  :STD_LOGIC_VECTOR(2 downto 0) := "111"; 
 
  -- HSIZE (Transfer Size | Output from the AHB MASTER) 
  CONSTANT HSIZE_BYTE   :STD_LOGIC_VECTOR(2 downto 0) := "000"; 
  CONSTANT HSIZE_HWORD  :STD_LOGIC_VECTOR(2 downto 0) := "001"; 
  CONSTANT HSIZE_WORD   :STD_LOGIC_VECTOR(2 downto 0) := "010"; 
  CONSTANT HSIZE_DWORD  :STD_LOGIC_VECTOR(2 downto 0) := "011"; 
  CONSTANT HSIZE_4WORD  :STD_LOGIC_VECTOR(2 downto 0) := "100"; 
  CONSTANT HSIZE_8WORD  :STD_LOGIC_VECTOR(2 downto 0) := "101"; 
  CONSTANT HSIZE_16WORD :STD_LOGIC_VECTOR(2 downto 0) := "110"; 
  CONSTANT HSIZE_32WORD :STD_LOGIC_VECTOR(2 downto 0) := "111"; 
 
  -- HRESP (Transfer Response | Output from the AHB SLAVE) 
  CONSTANT HRESP_OKAY   :STD_LOGIC_VECTOR(1 downto 0) := "00"; 
  CONSTANT HRESP_ERROR  :STD_LOGIC_VECTOR(1 downto 0) := "01"; 
  CONSTANT HRESP_RETRY  :STD_LOGIC_VECTOR(1 downto 0) := "10"; 
  CONSTANT HRESP_SPLIT  :STD_LOGIC_VECTOR(1 downto 0) := "11"; 
 
  --- 
  -- Signals / Registers 
  --- 
  SIGNAL r, tmp   :aes_regs; 
  SIGNAL sig_dataRdy  :STD_LOGIC; 
  SIGNAL sig_finish   :STD_LOGIC; 
  SIGNAL sig_mem_wr   :STD_LOGIC; 
  SIGNAL sig_rst_n    :STD_LOGIC; 
  SIGNAL sig_cs_n     :STD_LOGIC; 
  SIGNAL sig_cs_n1    :STD_LOGIC; 
  SIGNAL sig_wr_n     :STD_LOGIC; 
  SIGNAL sig_Go       :STD_LOGIC; 
  SIGNAL sig_key_in   :STD_LOGIC_VECTOR(31 downto 0); 
  SIGNAL sig_data_in  :STD_LOGIC_VECTOR(31 downto 0); 
  SIGNAL sig_data_out :STD_LOGIC_VECTOR(31 downto 0); 
  SIGNAL sig_addr_in  :STD_LOGIC_VECTOR(3 downto 0); 
  SIGNAL sig_addr_out :STD_LOGIC_VECTOR(3 downto 0); 
 
  SIGNAL sig_HADDR    :STD_LOGIC_VECTOR(31 downto 0); 
  SIGNAL sig_HTRANS   :STD_LOGIC_VECTOR(1 downto 0); 
  SIGNAL sig_HWRITE   :STD_LOGIC; 
  SIGNAL sig_HWDATA   :STD_LOGIC_VECTOR(31 downto 0); 
  SIGNAL sig_HBUSREQ  :STD_LOGIC; 
 
  SIGNAL sig_PRDATA   :STD_LOGIC_VECTOR(31 downto 0); 
 
  TYPE state_type IS (idle, bus_req, bus_grant, bus_own, load_key, load_text, 
xfer_end); 
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  SIGNAL cstate, nstate  :state_type; 
  --- 
  -- 
  --- 
  BEGIN 
  AES_ENC:  topmodule PORT MAP( 
    data_out_inst1  => sig_data_out, 
    inst_rst_n      => sig_rst_n, 
    inst_wr_n       => sig_wr_n, 
    inst_test_clk   => CLK, 
    inst_rd_addr1   => sig_addr_out, 
    inst_wr_addr    => sig_addr_in, 
    inst_data_in    => sig_data_in, 
    inst_key_in     => sig_key_in, 
    Go              => sig_Go, 
    rst             => RST, 
    in_cs_n         => sig_cs_n, 
    in_cs_n1        => sig_cs_n1 
    ); 
 
  state_reg: process(CLK, RST, nstate) 
  BEGIN 
    IF (RST = '0') THEN 
      cstate  <= idle; 
    ELSIF (CLK'event and CLK = '1') THEN 
      cstate  <= nstate; 
    END IF; 
  END PROCESS; -- state_reg 
 
  the_process:  PROCESS(CLK, RST, APB_PSEL, APB_PENABLE, APB_PADDR, APB_PWRITE, 
APB_PWDATA, cstate, sig_dataRdy, AHB_HREADY, AHB_HGRANT, AHB_HRDATA, AHB_HRESP) 
  BEGIN 
  IF (CLK'event and CLK = '1') THEN 
    tmp <= r; 
 
    IF (RST = '0') THEN     -- Asynchronous Reset 
      sig_finish    <= '0'; 
      sig_mem_wr    <= '0'; 
      sig_rst_n     <= '0'; 
      sig_cs_n      <= '0'; 
      sig_cs_n1     <= '0'; 
      sig_wr_n      <= '0'; 
      sig_Go        <= '0'; 
      sig_key_in    <= (others => '0'); 
      sig_data_in   <= (others => '0'); 
      sig_addr_in   <= (others => '0'); 
      sig_addr_out  <= (others => '0'); 
      sig_HADDR     <= (others => '0'); 
      sig_HTRANS    <= (others => '0'); 
      sig_HWRITE    <= '0'; 
      sig_HWDATA    <= (others => '0'); 
      sig_dataRdy   <= '1'; 
    ELSE 
      sig_rst_n     <= '1'; 
      sig_cs_n      <= '0'; 
      sig_cs_n1     <= '0'; 
      sig_wr_n      <= tmp.wr_n; 
      sig_PRDATA    <= (others => '0'); 
 
 --------------------- 
 -- APB Bus Conditions 
 --------------------- 
  
      IF (APB_PSEL and APB_PENABLE and APB_PWRITE) = '1' THEN 
      -- Write the PWDATA to the registers depending on the PADDR bus contents 
        CASE APB_PADDR(4 downto 2) IS 
          WHEN "000" => 
          -- PADDR = 0x80000300 
            tmp.aes_en_req  <= APB_PWDATA(0); 
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            tmp.irq_en      <= APB_PWDATA(2); 
            IF (APB_PWDATA(3) = '0') THEN 
              tmp.irq <= '0';                -- Allow IRQ Reset only 
            END IF; 
            IF (tmp.aes_en_req = '1' and r.aes_en_req = '0' and r.ready = '1') THEN 
            -- Initialize AES transaction when ENABLED and READY 
              tmp.aes_en    <= '1';          -- Enable AES core 
              tmp.mem_addr  <= X"40000000";  -- Initial memory read address is 
0x40000000 
              tmp.mem_wr    <= '0';          -- Start Read cycle 
              tmp.ready     <= '0'; 
              tmp.wr_n      <= '0'; 
              tmp.aes_addr  <= (others => '0'); 
              sig_finish    <= '0'; 
              sig_HTRANS    <= HTRANS_NONSEQ; -- First transaction is ALWAYS non-
sequential 
              --cstate        <= bus_req;       -- Request bus for transaction 
            END IF; 
          WHEN "001" => 
          -- PADDR = 0x80000304 
            tmp.rd_start_addr <= APB_PWDATA; 
          WHEN "010" => 
          -- PADDR = 0x80000308 
            tmp.wr_start_addr <= APB_PWDATA; 
          WHEN others => null; 
        END CASE; 
      ELSIF (APB_PSEL = '1'and APB_PENABLE = '1' and APB_PWRITE = '0') THEN 
      -- Read the register contents on PRDATA depending on the PADDR bus contents 
        CASE APB_PADDR(4 downto 2) IS 
          WHEN "000" => 
          -- PADDR = 0x80000300 
            sig_PRDATA(0)  <= r.aes_en or r.aes_en_req; 
            sig_PRDATA(2)  <= r.irq_en; 
            sig_PRDATA(3)  <= r.irq; 
          WHEN "001" => 
          -- PADDR = 0x80000304 
            sig_PRDATA <= r.rd_start_addr; 
          WHEN "010" => 
          -- PADDR = 0x80000308 
            sig_PRDATA <= r.wr_start_addr; 
          WHEN "011" => 
          -- PADDR = 0x8000030C 
            sig_PRDATA(0)  <= r.ready; 
            sig_PRDATA(1)  <= r.mem_wr; 
          WHEN "100" => 
          -- PADDR = 0x80000310 
            sig_PRDATA <= r.mem_addr; 
          WHEN others => null; 
        END CASE; 
      END IF; 
    
 --------------------- 
 -- AHB Bus Conditions 
 --------------------- 
  
   CASE cstate IS 
     WHEN idle => 
     -- Initialize all registers/bus contents 
       sig_finish    <= '0'; 
       sig_mem_wr    <= '0'; 
       sig_rst_n     <= '0'; 
       sig_cs_n      <= '0'; 
       sig_cs_n1     <= '0'; 
       sig_wr_n      <= '0'; 
       sig_Go        <= '0'; 
       sig_key_in    <= (others => '0'); 
       sig_data_in   <= (others => '0'); 
       sig_addr_in   <= (others => '0'); 
       sig_addr_out  <= (others => '0'); 
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       sig_HADDR     <= (others => '0'); 
       sig_HTRANS    <= (others => '0'); 
       sig_HWRITE    <= '0'; 
       sig_HWDATA    <= (others => '0'); 
       sig_dataRdy   <= '1'; 
       nstate        <= bus_req; 
 
     WHEN bus_req => 
     -- Request bus for transaction 
       IF (r.dma_xfer_req = '1') THEN 
         sig_HBUSREQ   <= '1'; 
         sig_dataRdy   <= '0'; 
       ELSE 
         sig_HBUSREQ   <= '0'; 
       END IF; 
        IF (sig_dataRdy and r.aes_en) = '1' THEN 
       -- Backup register signals... 
         tmp.n             <= "111";  -- Initially number of WORDS (32-bit data) is 
set to 7 (for counting eight 32-bit data 7...6...5...4) 
         tmp.dma_xfer_req  <= '1'; 
         tmp.mem_addr      <= X"40000000"; 
       ELSIF (r.aes_en = '0') THEN 
       END IF; 
       -- ...and check for bus ownership 
       tmp.bus_grant <= AHB_HGRANT; 
       IF (tmp.bus_grant and r.dma_xfer_req) = '1' THEN 
       -- Bus granted upon request 
         tmp.bus_active  <= '1'; 
         nstate          <= bus_grant; 
       ELSIF (tmp.bus_grant = '1' and r.bus_grant = '0' and r.dma_xfer_req = '0') 
THEN 
       -- Bus granted without request 
         tmp.bus_active  <= '0'; 
         sig_HTRANS      <= HTRANS_IDLE;  -- Do nothing! 
         sig_HBUSREQ     <= '0'; 
       END IF; 
 
       WHEN bus_grant => 
       -- Skip first bus_own after granted 
         IF (r.bus_active = '1' and AHB_HREADY = '1' and sig_dataRdy = '0') THEN 
         -- Own bus at next clock 
           nstate <= bus_own; 
         END IF; 
 
       WHEN bus_own => 
       -- Get ready for transaction 
        IF (r.bus_active = '1' and AHB_HREADY = '1' and sig_dataRdy = '0') THEN 
          tmp.bus_own   <= '1'; 
          sig_HTRANS    <= HTRANS_SEQ;      -- Subsequent bus transfers are ALWAYS 
sequential 
          nstate        <= load_key; 
        END IF; 
 
       WHEN load_key => 
       -- Load 128-bit KEY for encryption 
         sig_key_in    <= tmp.key_in; 
         sig_addr_in   <= tmp.aes_addr - 1; 
         tmp.aes_addr  <= r.aes_addr + 1; 
         CASE tmp.n(2 downto 0) IS 
           WHEN "011" => 
           -- The 128-bit KEY comprising of four WORDS has been written 
             nstate   <= load_text; 
           WHEN others => 
             IF (sig_mem_wr = '0') THEN 
             -- Write the KEY onto the internal DW_RAM 
               tmp.key_in <= AHB_HRDATA; 
               tmp.wr_n    <= '0'; 
             END IF; 
           tmp.mem_addr  <= r.mem_addr + 4;  -- Update next Read address 
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           tmp.n         <= r.n - 1;         -- One WORD has already been written 
           nstate        <= load_key;        -- Continue until 4 WORDS (128-bits) 
have been written 
           END CASE; -- tmp.n 
 
       WHEN load_text => 
       -- Load 128-bit PLAIN TEXT for encryption 
         sig_data_in   <= tmp.data_in; 
         sig_addr_in   <= tmp.aes_addr - 1; 
         tmp.aes_addr  <= r.aes_addr + 1; 
         CASE tmp.n(2 downto 0) IS 
           WHEN "000" => 
           -- The 128-bit Plain Text comprising of four WORDS have been read 
             sig_dataRdy <= '1';  -- All data is present for encryption 
             IF (r.aes_en = '1') THEN 
             -- End transaction and start outputting data onto PRDATA bus 
               sig_HTRANS  <= HTRANS_NONSEQ; 
               sig_HWRITE  <= '0'; 
             ELSE 
             -- End transaction and switch to idle state 
               sig_HTRANS        <= HTRANS_IDLE; 
               tmp.dma_xfer_req  <= '0'; 
             END IF; 
             sig_Go  <= '1'; 
             nstate  <= xfer_end; 
           WHEN others => 
             IF (sig_mem_wr = '0') THEN 
             -- Write the PLAIN TEXT onto the internal DW_RAM 
               tmp.data_in  <= AHB_HRDATA; 
               tmp.wr_n    <= '0'; 
             END IF; 
           tmp.mem_addr  <= r.mem_addr + 4;  -- Update next Read address 
           tmp.n         <= r.n - 1;         -- One WORD has already been written 
           nstate        <= load_text;       -- Continue until all 4 WORDS (128-bits) 
have been written 
           END CASE; -- tmp.n 
 
       WHEN xfer_end => 
         IF (sig_finish = '1') THEN 
           tmp.ready         <= '1'; 
           tmp.aes_en        <= '0'; 
           tmp.aes_en_req    <= '0'; 
           tmp.irq           <= r.irq_en; 
           tmp.dma_xfer_req  <= '0'; 
           sig_mem_wr        <= '1'; 
           nstate            <= idle; 
         ELSE 
           sig_mem_wr        <= '0'; 
         END IF; 
 
       WHEN others => 
         nstate <= idle; 
       END CASE; -- cstate 
     END IF; 
  END IF; 
 END process; -- the_process 
   
 
  -- Encryption output on the AMBA bus 
  irq   <= r.irq; 
  APB_PRDATA  <= sig_PRDATA; 
  AHB_HADDR   <= r.mem_addr; 
  AHB_HTRANS  <= sig_HTRANS; 
  AHB_HBUSREQ <= sig_HBUSREQ; 
  AHB_HWDATA  <= sig_HWDATA; 
  AHB_HLOCK   <= '0'; 
  AHB_HWRITE  <= sig_HWRITE; 
  AHB_HSIZE   <= HSIZE_WORD; 
  AHB_HBURST  <= HBURST_INCR8; 
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  AHB_HPROT   <= (others => '0'); 
 
  -- Synchronize data with CLK, RST signals 
  sync: PROCESS(CLK, RST) 
  BEGIN 
  IF rst='0' THEN 
    r.rd_start_addr <= (others => '0'); 
    r.n             <= (others => '0'); 
    r.wr_start_addr <= (others => '0'); 
    r.mem_addr      <= (others => '0'); 
    r.aes_en        <= '0'; 
    r.aes_en_req    <= '0'; 
    r.dma_xfer_req  <= '0'; 
    r.ready         <= '1'; 
    r.mem_wr        <= '0'; 
    r.irq_en        <= '0'; 
    r.irq           <= '0'; 
    r.bus_own       <= '0'; 
    r.bus_grant     <= '0'; 
    r.bus_active    <= '0'; 
    r.wr_n          <= '0'; 
    r.aes_addr      <= "1010"; 
    r.data_in       <= (others => '0'); 
    r.key_in        <= (others => '0'); 
  ELSIF RISING_EDGE(CLK) THEN 
    r <=  tmp; 
  END IF; 
  END PROCESS; -- sync 
 
END structural; 
 
--- 
library ieee; 
use     ieee.std_logic_1164.all; 
use  IEEE.std_logic_arith.all; 
package aes_enc_ctrl_struct_pkg is   
  component aes_enc_ctrl_struct 
  port (   
      RST         :IN STD_LOGIC; 
      CLK         :IN STD_LOGIC; 
 
      -- AHB Bus Signals 
      AHB_HGRANT  :IN STD_ULOGIC; 
      AHB_HREADY  :IN STD_ULOGIC; 
      AHB_HRESP   :IN STD_LOGIC_VECTOR(1 downto 0); 
      AHB_HRDATA  :IN STD_LOGIC_VECTOR(31 downto 0); 
      AHB_HBUSREQ :OUT STD_ULOGIC; 
      AHB_HLOCK   :OUT STD_ULOGIC; 
      AHB_HTRANS  :OUT STD_LOGIC_VECTOR(1 downto 0); 
      AHB_HADDR   :OUT STD_LOGIC_VECTOR(31 downto 0); 
      AHB_HWRITE  :OUT STD_LOGIC; 
      AHB_HSIZE   :OUT STD_LOGIC_VECTOR(2 downto 0); 
      AHB_HBURST  :OUT STD_LOGIC_VECTOR(2 downto 0); 
      AHB_HPROT   :OUT STD_LOGIC_VECTOR(3 downto 0); 
      AHB_HWDATA  :OUT STD_LOGIC_VECTOR(31 downto 0); 
 
      -- APB Bus Signals 
      APB_PSEL    :IN STD_ULOGIC; 
      APB_PENABLE :IN STD_ULOGIC; 
      APB_PADDR   :IN STD_LOGIC_VECTOR(31 downto 0); 
      APB_PWRITE  :IN STD_ULOGIC; 
      APB_PWDATA  :IN STD_LOGIC_VECTOR(31 downto 0); 
      APB_PRDATA  :OUT STD_LOGIC_VECTOR(31 downto 0); 
 
      -- Single Pin Interrupt Bus Signal 
      irq         :OUT STD_LOGIC 
     ); 
  end component; 
end aes_enc_ctrl_struct_pkg; 
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AAppppeennddiixx  BB  
CCOOMMPPOONNEENNTT  XXMMLL  FFIILLEE  

 
AES.XML 
<?xml version="1.0" encoding="UTF-8"?> 
<ip:component xmlns:ip="http://www.mentor.com/platform_ex/Namespace/IP" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.mentor.com/platform_ex/Namespace/IP 
http://www.mentor.com/platform_ex/XMLSchema/3.5/component.xsd"> 
    <ip:vendor>UT</ip:vendor> 
    <ip:library>VOLIPository</ip:library> 
    <ip:name>aes</ip:name> 
    <ip:version>1.0</ip:version> 
     
    <ip:busInterfaces> 
        <ip:busInterface ip:id="busInterface_0"> 
            <ip:name>AHB_mst</ip:name> 
            <ip:busType ip:library="AMBA" ip:name="ambaAHB" ip:vendor="Mentor"/> 
 
            <ip:master> 
                <ip:addressSpaceRef ip:addressSpaceRef="ExternalMemory"/> 
                <ip:presentation/> 
            </ip:master>        
                
        <ip:signalMap> 
                <ip:signalName ip:busSignal="HRESETN">hresetn</ip:signalName> 
                <ip:signalName ip:busSignal="HCLK">hclk</ip:signalName> 
                <ip:signalName ip:busSignal="HGRANTx">hgrant</ip:signalName> 
                <ip:signalName ip:busSignal="HREADYin">hready</ip:signalName> 
                <ip:signalName ip:busSignal="HRESP">hresp</ip:signalName> 
                <ip:signalName ip:busSignal="HRDATA">hrdata</ip:signalName> 
                <ip:signalName ip:busSignal="HBUSREQx">hbusreq</ip:signalName> 
                <ip:signalName ip:busSignal="HLOCKx">hlock</ip:signalName> 
                <ip:signalName ip:busSignal="HTRANS">htrans</ip:signalName> 
                <ip:signalName ip:busSignal="HADDR">haddr</ip:signalName> 
                <ip:signalName ip:busSignal="HWRITE">hwrite</ip:signalName> 
                <ip:signalName ip:busSignal="HSIZE">hsize</ip:signalName> 
                <ip:signalName ip:busSignal="HBURST">hburst</ip:signalName> 
                <ip:signalName ip:busSignal="HPROT">hprot</ip:signalName> 
                <ip:signalName ip:busSignal="HWDATA">hwdata</ip:signalName> 
            </ip:signalMap> 
        </ip:busInterface> 
        <ip:busInterface ip:id="busInterface_1"> 
            <ip:name>APB_slv</ip:name> 
            <ip:busType ip:library="AMBA" ip:name="ambaAPB" ip:vendor="Mentor"/> 
            <ip:slave> 
                <ip:memoryMap> 
                    <ip:addressBlock> 
                        <ip:baseAddress ip:configGroups="requiredConfig" 
ip:id="baseAddress_0">0x00000000</ip:baseAddress> 
                        <ip:bitOffset>0</ip:bitOffset> 
                        <ip:range>20</ip:range> 
<!--                    <ip:width>32</ip:width>--> 
                    </ip:addressBlock> 
                </ip:memoryMap> 
            </ip:slave> 
        <ip:connection>required</ip:connection> 
            <ip:signalMap> 
                <ip:signalName ip:busSignal="PSELx">pselx</ip:signalName> 
                <ip:signalName ip:busSignal="PENABLE">penable</ip:signalName> 
                <ip:signalName ip:busSignal="PADDR">paddr</ip:signalName> 
                <ip:signalName ip:busSignal="PWRITE">pwrite</ip:signalName> 
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                <ip:signalName ip:busSignal="PWDATA">pwdata</ip:signalName> 
                <ip:signalName ip:busSignal="PRDATA">prdata</ip:signalName> 
            </ip:signalMap> 
        </ip:busInterface> 
        <ip:busInterface ip:id="busInterface_2"> 
            <ip:name>IRQ_slv</ip:name> 
            <ip:busType ip:library="Utility" ip:name="singlePinInterrupt" 
ip:vendor="Mentor"/> 
            <ip:slave> 
                <ip:memoryMap/> 
            </ip:slave> 
        <ip:connection>required</ip:connection> 
            <ip:signalMap> 
                <ip:signalName ip:busSignal="interruptAH">irq</ip:signalName> 
            </ip:signalMap> 
        </ip:busInterface> 
    </ip:busInterfaces> 
    <ip:addressSpaces> 
        <ip:addressSpace> 
            <ip:name>ExternalMemory</ip:name> 
            <ip:range>4G</ip:range> 
        </ip:addressSpace> 
    </ip:addressSpaces> 
     
    <ip:registerBanks> 
        <ip:registerBank> 
            <ip:name>registers</ip:name> 
            <ip:register> 
                <ip:name>controlReg</ip:name> 
                <ip:addressOffset>0x0</ip:addressOffset> 
                <ip:size>32</ip:size> 
                <ip:access>read-write</ip:access> 
                <ip:resetValue>-1</ip:resetValue> 
                <ip:field> 
                    <ip:name>coreEnable</ip:name> 
                    <ip:bitOffset>0</ip:bitOffset> 
                    <ip:bitWidth>1</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>set if AES core selected</ip:description> 
                </ip:field> 
                <ip:field> 
                    <ip:name>Reserved1</ip:name> 
                    <ip:bitOffset>1</ip:bitOffset> 
                    <ip:bitWidth>1</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>Reserved</ip:description> 
                </ip:field> 
                <ip:field> 
                    <ip:name>irqEnable</ip:name> 
                    <ip:bitOffset>2</ip:bitOffset> 
                    <ip:bitWidth>1</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>set if IRQ enabled</ip:description> 
                </ip:field> 
                <ip:field> 
                    <ip:name>irqRequest</ip:name> 
                    <ip:bitOffset>3</ip:bitOffset> 
                    <ip:bitWidth>1</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>set if IRQ requested</ip:description> 
                </ip:field> 
                <ip:field> 
                    <ip:name>Reserved2</ip:name> 
                    <ip:bitOffset>4</ip:bitOffset> 
                    <ip:bitWidth>28</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                <ip:description>Reserved</ip:description> 
                </ip:field> 
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                <ip:description>Bits 0, 2, 3 are set/reset depending on selection of 
the AES core, interrupt enabling and interrupting requesting, 
respectively.</ip:description> 
            </ip:register> 
            <ip:register> 
                <ip:name>dataLoadReg</ip:name> 
                <ip:addressOffset>0x4</ip:addressOffset> 
                <ip:size>32</ip:size> 
                <ip:access>read-write</ip:access> 
                <ip:resetValue>-1</ip:resetValue> 
                <ip:field> 
                    <ip:name>rdStartAddr</ip:name> 
                    <ip:bitOffset>0</ip:bitOffset> 
                    <ip:bitWidth>32</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>Input KEY and PLAIN from this 
address</ip:description> 
                    <ip:values> 
                        <ip:value>0x40000000</ip:value> 
                        <ip:description>Leon2 Internal RAM location</ip:description> 
                        <ip:name>rdAddr</ip:name> 
                    </ip:values> 
                </ip:field> 
                <ip:description>This register holds the address from which the KEY 
and PLAIN TEXT are used for encryption</ip:description> 
            </ip:register> 
            <ip:register> 
                <ip:name>cipherOutReg</ip:name> 
                <ip:addressOffset>0x8</ip:addressOffset> 
                <ip:size>32</ip:size> 
                <ip:access>read-write</ip:access> 
                <ip:resetValue>-1</ip:resetValue> 
                <ip:field> 
                    <ip:name>wrStartAddr</ip:name> 
                    <ip:bitOffset>0</ip:bitOffset> 
                    <ip:bitWidth>32</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>Cipher output stored to this 
address</ip:description> 
                    <ip:values> 
                        <ip:value>0x40001000</ip:value> 
                        <ip:description>Leon2 Internal RAM location</ip:description> 
                        <ip:name>wrAddr</ip:name> 
                    </ip:values> 
                </ip:field> 
                <ip:description>This register holds the address where the ciphered 
output from the AES core is stored</ip:description> 
            </ip:register> 
            <ip:register> 
                <ip:name>statusReg</ip:name> 
                <ip:addressOffset>0xc</ip:addressOffset> 
                <ip:size>32</ip:size> 
                <ip:access>read-only</ip:access> 
                <ip:resetValue>-1</ip:resetValue> 
                <ip:field> 
                    <ip:name>ready</ip:name> 
                    <ip:bitOffset>0</ip:bitOffset> 
                    <ip:bitWidth>1</ip:bitWidth> 
                    <ip:access>read-only</ip:access> 
                    <ip:description>Ready/Busy status indicator</ip:description> 
                </ip:field> 
                <ip:field> 
                    <ip:name>memwr</ip:name> 
                    <ip:bitOffset>1</ip:bitOffset> 
                    <ip:bitWidth>1</ip:bitWidth> 
                    <ip:access>read-only</ip:access> 
                    <ip:description>Writing/Reading status indicator</ip:description> 
                </ip:field> 
                <ip:field> 
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                    <ip:name>Reserved3</ip:name> 
                    <ip:bitOffset>2</ip:bitOffset> 
                    <ip:bitWidth>30</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>Reserved</ip:description> 
                </ip:field> 
                <ip:description>Bits 0, 1 are set/reset if the AES core is ready/busy 
or if data is being written to/read from the core, respectively</ip:description> 
            </ip:register> 
            <ip:register> 
                <ip:name>memReg</ip:name> 
                <ip:addressOffset>0x10</ip:addressOffset> 
                <ip:size>32</ip:size> 
                <ip:access>read-only</ip:access> 
                <ip:resetValue>-1</ip:resetValue> 
                <ip:field> 
                    <ip:name>currentHADDR</ip:name> 
                    <ip:bitOffset>0</ip:bitOffset> 
                    <ip:bitWidth>32</ip:bitWidth> 
                    <ip:access>read-write</ip:access> 
                    <ip:description>Current Address on AHB HADDR</ip:description> 
                </ip:field> 
                <ip:description>This register holds the actual DMA 
address</ip:description> 
            </ip:register> 
        </ip:registerBank> 
    </ip:registerBanks> 
     
    <ip:presentation> 
         
        <ip:displayLabel>AES Encryption Core</ip:displayLabel> 
        <ip:icon>images/oc_logo_outlined.gif</ip:icon> 
        <ip:document ip:menuDescription="AES Rijndael 
Core">http://www.opencores.org</ip:document> 
    </ip:presentation> 
     
    <ip:hwModel> 
        <ip:name>aes</ip:name> 
        <ip:verificationEnvironment ip:id="modelsimVHDL"> 
            <ip:envIdentifier>ModelsimVhdl</ip:envIdentifier> 
            <ip:language>vhdl</ip:language> 
            <ip:defaultFileBuilder> 
                <ip:fileType>vhdlSource</ip:fileType> 
            </ip:defaultFileBuilder> 
             
        <ip:fileSetRef>fs-externalVhdlSource</ip:fileSetRef> 
            <ip:parameter ip:name="entityName">aes</ip:parameter> 
        </ip:verificationEnvironment> 
   </ip:hwModel> 
 
    <ip:fileSets> 
        <ip:fileSet ip:fileSetId="fs-externalVhdlSource"> 
            <ip:file> 
                <ip:name>hdlsrc/aes_enc_ctrl_struct.vhd</ip:name> 
                <ip:fileType>vhdlSource</ip:fileType> 
            </ip:file> 
  <ip:file> 
                <ip:name>hdlsrc/aes.vhd</ip:name> 
                <ip:fileType>vhdlSource</ip:fileType> 
            </ip:file> 
 
        </ip:fileSet> 
    </ip:fileSets> 
 
    <ip:persistentInstanceData ip:id="persistentData" ip:resolve="user"/> 
</ip:component> 
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AAppppeennddiixx  CC  
TTHHEE  ssppaarrcc--eellff--ggcccc  BBUUIILLDD  FFOORR  SSOOLLAARRIISS    

 

The information provided here is intended mainly for first-time enthusiasts. For those 

who believe strongly in the ‘design reuse theory’, a copy of the Solaris build for sparc-

elf-gcc is available at http://vlsi1.engr.utk.edu/~wala/sparc-elf-gcc.html. 

 

Many thanks to Jiri Gaisler, for providing the ‘how to’ on building this cross-

compiler and to our System Administrator, Matt Disney, for finding workarounds that 

suited our system. One of the popular tutorials on this subject is written by William 

Gatliff and can be obtained at http://www.microcross.com/gnu-arm7t-microcross.pdf. 

 

 

1. Obtain the Linux Bare-C Cross-compiler (BCC) system for Leon2 from 

http://www.gaisler.com under Downloads > CCS.  

2. Get the gcc-3.2.3 and binutils-2.14 sources from http://www.gnu.org. You need 

not build newlib as the one in Linux BCC can be used on Solaris. 

3. Start by installing the Linux BCC on your Solaris host under the /opt directory. 

BCC is provided as a bzipped tar-file. To unpack it in the /opt directory: 

cd /opt 

bunzip2 bcc-linux-<version>.tar.bz2 

tar –xvf bcc-linux-<version>.tar 

After installation, add /opt/sparc-elf/bin to the PATH variable. Note: Do not add 

any other path – /opt/sparc/elf/sparc-elf/bin. 

4. Build and install binutils-2.14 and gcc-3.2.3 as explained in Bill Gatliff’s tutorial. 

Configure the build with target=sparc-elf --prefix=/opt/sparc-elf --enable-

languages=c,c++
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5. Install the libio and mkprom utilities as explained below: 

cd /opt/sparc-elf/src/libio 

make install 

cd ../mkprom 

make install 

 
6. Test the compiler by compiling a test application. 

 

The following are Matt Disney’s install notes:  

Observe that in our case, Linux BCC was installed under /sw2. 

 
I had to create a symbolic link in the binutils source directory to 
/dev/null. 
    For example: 
    cd binutils-2.14 
    mkdir dev 
    ln -s /dev/null dev/null 
     
Here is my configure command line for binutils (run from the build-binutils 
directory): 
/sw2/sparc-elf/binutils-2.14/configure  --target=sparc-elf 
- --prefix=/sw/sparc-elf/ --disable-nls 
     
After running make in build-binutils, the build would break with errors 
from make about bfd/po. I had to cd into bfd/po and then copy Makefile.in 
to Makefile (which was blank). Then go back up to the build-binutils 
directory and run make again to finish the build. 
     
Here is my configure command line for gcc (run from the build-gcc 
directory): 
/sw2/sparc-elf/gcc-3.2.3/configure 
- --with-gcc-version-trigger=/sw2/sparc-elf/gcc-3.2.3/gcc/version.c 
- --host=sparc-sun-solaris2.8 --target=sparc-elf --prefix=/sw/sparc-elf 
- --with-newlib --without-headers --with-gnu-as --with-gnu-ld --disable-
shared 
- --enable-languages=c --disable-nls --norecursion 
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Running generator chain: vendor=Mentor library=topLevel name=Build 
Generating the SW Builder Scripts 
received 5 options 
processed: CONFIG_IU_FASTDECODE = yes 
processed: CONFIG_IU_FASTJUMP = yes 
processed: CONFIG_PERI_LCONF = yes 
processed: CONFIG_IU_LDELAY = 1 
processed: CONFIG_IU_NWINDOWS = 8 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/testbe
nch/pxdefault_tb 
 
untar: 
    [untar] Expanding: 
/tnfs/home/wala/PlatformExpress2.1h/pxLibraries/Leon2/leon2/leon2-1.0.3.gtar.gz into 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/design
Data/libraryData/Mentor_Leon2 
 
modelsim: 
     [echo] Leon2 common build: modelsim 
 
untar: 
    [untar] Expanding: 
/tnfs/home/wala/PlatformExpress2.1h/pxLibraries/Leon2/leon2/leon2-1.0.3.gtar.gz into 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/design
Data/libraryData/Mentor_Leon2 
 
compile: 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/hdl 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
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     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0/hdlsrc/leon2 
     [copy] Copying 158 files to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2/componentLi
brary/component/mcore_ahb/1.0 
     [copy] Copying 236 files to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/exportedFiles/Leon2 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/exec 
 
compile: 
     [exec] ** Warning: (vlib-34) Library already exists at 
"work/wala_userlibrary_aes_blckbox_bbcLib_Mentor_bbcLib_aes_1". 
     [exec] ** Warning: (vlib-34) Library already exists at 
"work/wala_userlibrary_aes_blckbox_bbcLib". 
     [exec] ** Warning: (vlib-34) Library already exists at 
"work/wala_userlibrary_aes_blckbox_bbcLib_Mentor_Leon2_mcore_ahb_1". 
     [exec] ** Warning: (vlib-34) Library already exists at 
"../designData/libraryData/Mentor_Leon2/leon2.lib". 
     [exec] ** Warning: (vlib-34) Library already exists at "work/leon2_apbmst_obb". 
     [exec] ** Warning: (vlib-34) Library already exists at "work/pxdefault_tb". 
     [exec] Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004 
     [exec] -- Loading package standard 
     [exec] -- Loading package std_logic_1164 
     [exec] -- Compiling package amba 
     [exec] -- Compiling package target 
     [exec] Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004 
     [exec] -- Loading package standard 
     [exec] -- Loading package std_logic_1164 
     [exec] -- Loading package target 
     [exec] -- Compiling package device 
     [exec] Model Technology ModelSim SE vcom 5.8d Compiler 2004.06 Jun 12 2004 
     [exec] -- Loading package standard 
     [exec] -- Loading package std_logic_1164 
     [exec] -- Compiling entity pxdefault_tb 
     [exec] -- Compiling architecture platformexpress of pxdefault_tb 
     [exec] -- Loading entity top 
     [exec] -- Compiling configuration pxconfig_pxdefault_tb 
     [exec] -- Loading entity pxdefault_tb 
     [exec] -- Loading architecture platformexpress of pxdefault_tb 
     [exec] -- Loading configuration pxconfig_top 
#!/bin/sh -ev 
######################################################################## 
##                    Px Generated File                               ## 
##              Platform Express, Version 2.1h (build 835)            ## 
##              SoC Verification Division                             ## 
##              Mentor Graphics Corporation                           ## 
##                                                                    ## 
## Generated on: March 16, 2005 11:13:24 PM EST                       ## 
## Generated by: wala                                                 ## 
## Software compile script                                            ## 
######################################################################## 
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if [ -f ../../pxenv.sh ] ; then . ../../pxenv.sh; fi 
sparc-elf-gcc -c -g  -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include   
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/loc
ore1.S -o ./locore1.o 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include   
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/leo
n_test.c -o ./leon_test.o 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include   
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/mis
c.c -o ./misc.o 
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/mis
c.c:38:5: warning: multi-line string literals are deprecated 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include   
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/irq
ctrl.c -o ./irqctrl.o 
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/irq
ctrl.c:66:21: warning: multi-line string literals are deprecated 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include   
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/uar
t.c -o ./uart.o 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include  
../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software/pxC
oreLib.c -o ./mcore_ahb_pxCoreLib.o 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include  
coreDiagnostics/_mcore_ahb_1/printToPort.c -o ./printToPort.o 
sparc-elf-gcc -c -g -D__leon__ -
I../../../../exportedFiles/Leon2/componentLibrary/component/mcore_ahb/1.0/software -
I../../../../exportedFiles/Leon2/common/include  
coreDiagnostics/_mcore_ahb_1/pxDiagnostics.c -o ./pxDiagnostics.o 
 
sparc-elf-gcc ./mcore_ahb_pxCoreLib.o \ 
./printToPort.o \ 
./misc.o \ 
./uart.o \ 
./locore1.o \ 
./pxDiagnostics.o \ 
./leon_test.o \ 
./irqctrl.o \ 
 -g  -nostdlib -static -N  -e _hardreset   -T ./linker.ld  -o boot.elf 
sparc-elf-objcopy --remove-section=.comment boot.elf 
 
sparc-elf-objdump -s boot.elf > 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/exec/r
am.dat 
     [copy] Copying 1 file to 
/tnfs/home/wala/pxPrj/blackBoxTest/aes_blckbox_bbcLib/verificationEnv/Modelsim/exec 
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