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Abstract 

Understanding the effect of supplemental irrigation and timing of nitrogen 

availability on yield of cotton is pertinent to the success of Tennessee cotton 

producers. Response to irrigation and nitrogen source is likely to vary across 

greatly differing soil types. This research indicated the need for higher amounts 

of water and earlier irrigation initiation to optimize yields in coarse-textured, low 

water holding capacity soils. Deep silt loam soils did not respond to irrigation in 

two wet years. Delaying nitrogen availability via use of a polymer coated urea 

fertilizer generally either lowered or did not affect yield. Delaying nitrogen 

availability was less detrimental to yield in coarse-textured soils, but was not a 

superior method to supply crop nitrogen demand.  

Soil sampling is the foundation for addressing a field’s nutrient status and 

possible need for fertilization. Proper fertilization is economically and 

agronomically attractive, as well as environmentally responsible. To facilitate 

precision nutrient management, sampling methods are needed to more precisely 

define nutrient variability than a field average. We looked at techniques for grid 

sampling, delineation of management zones, and optimal intensity of cores 

necessary. Grid sampling is a popular method for diagnosing in-field nutrient 

variability, but is time consuming. We found grid-point sampling to capture more 

variability across a field than grid-cell sampling, agreeing with the majority of 

previous research. Delineation of management zones was successful in grouping 

nutrient variability using soil maps of varying scale and yield maps. A sampling 

intensity of 2-8 cores/acre was optimal. 
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Introduction 

	   Constant advances in agriculture must be made to keep up with the 

demand of a rapidly growing world population. Producers are always learning, 

through the experiences of each growing season, and are continually compiling 

information to improve efficiency of operation. Improving profitability by gaining 

some kind of edge or advantage is a top priority. Simultaneously, the 

environmental impact of large-scale agriculture is becoming a focus of regulators 

and industry. Not only should producers allocate resources as to maximize their 

profit margin, but they should also bear in mind their environmental impact, and 

manage resources accordingly. From an agronomic perspective, fertilizer use 

efficiency and irrigation management allow one to most appropriate apply 

nutrients and water to optimize crop yield and minimize economic input. From an 

environmental perspective, fertilizer use efficiency and irrigation management 

ideally allow one to minimize added nutrients and to vary application of them 

spatially at rates matching crop demand, and to irrigate appropriately, avoiding 

nutrient leaching and wasted water caused by over-irrigation.  
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Chapter I 

Effect of Delayed Nitrogen Availability via Use of Polymer-

Coated Urea on Cotton Yield and Nitrogen Uptake Across a 

Range of Soil Water Holding Capacities and Irrigation Regimes 
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1  Abstract 

 Achieving optimal cotton yields is dependent on adequate supplies of 

nitrogen and water to the crop. In the Mid-South, cotton has traditionally been 

grown without irrigation, however, irrigated cotton acreage is on the rise as a 

means of protection against the risk of dry growing seasons. Supplemental 

irrigation often provides yield boosts, even in wet years. Response to irrigation 

varies across soil types, with coarse-textured, low water holding capacity soils 

requiring greater water input to optimize yields. While heavy water input is 

necessary to provide adequate soil moisture in coarse-textured soils, questions 

arise about its effect on nitrogen availability. With an interest in water and 

nitrogen interactions across soils, our objective was to examine the effect of 

delaying nitrogen availability using a polymer-coated urea on cotton yield, 

especially in coarse-textured soils and under heavy irrigation. 

 Cotton was grown on soils ranging from deep silt loam to shallow silt loam 

over sand, with some coarse material throughout. Irrigation treatments were 

applied ranging from rainfed to 1.5 inches/week beginning at square. Ammonium 

nitrate and a polymer-coated urea were used as nitrogen sources. In two wet 

years, deep silt loam soils did not respond to irrigation. Shallow, more coarse-

textured soils showed significant yield boosts with irrigation in both years, and 

decreases in yield with over-irrigation in both years. Polymer coated urea 

generally either negatively affected yield or did not result in yield differences. 

Yield on shallower, more coarse-textured soil was slightly increased as a result of 

delayed nitrogen availability, but were still overall lower than yields with 
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ammonium nitrate. Nitrogen uptake, as indicated by leaf nitrogen content, and 

nitrogen removal by harvested cotton was higher for ammonium nitrate than 

polymer coated urea. 

2  Introduction 

 Nitrogen and water are the two greatest yield-limiting factors for cotton 

production. Proper nitrogen management in cotton (Gossypium hirsutum) 

growing systems is important economically and environmentally. In Tennessee, 

the nitrogen recommendation for cotton is 60-80 pounds of nitrogen per acre 

annually. While nitrogen requirements are not extremely high for cotton, yield is 

sensitive to over and under-fertilization of nitrogen. Similarly to many crops, a 

limited supply of nitrogen in cotton will restrict yield potential. Cotton without 

adequate accessible nitrogen will exhibit slow growth, an increase in fruit shed, 

and premature cutout. Premature cutout will limit the potential sites of boll 

formation, and boll-shed is a very evident loss of potential yield because of 

inadequate nitrogen to support filling of that boll (Hake et al., 1991).   

 An excess supply of nitrogen to a cotton crop can also be detrimental to 

yield, which is inconsistent with the response of many crops. Cotton is naturally a 

perennial, tropical plant, but in a row crop setting, it is grown as an annual. In 

order to achieve a harvestable crop by fall, cotton should quickly establish 

vegetative growth and set fruit compared to its natural progression.  An excess 

supply of nutrients, especially nitrogen, will encourage the cotton to continue 

vegetative growth for too long, delaying maturity.  If maturity is delayed too long, 

optimal lint yield will not be achieved because harvest or frost will end the 
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growing season before bolls fully develop.  Excess nitrogen can also promote 

rank vegetative growth, which leads to several problems.  Rank vegetation 

increases attractiveness to insects, increases incidence of boll rot, and 

decreases the effectiveness of harvest preparation measures (Guthrie et al., 

1994).   

 In addition to being sensitive to adequate nitrogen availability, cotton 

yields are also dependent on the timely availability of nitrogen. Nitrogen uptake is 

small during vegetative establishment, about the first forty to fifty days after 

planting. The uptake of nitrogen increases rapidly at flowering, as bolls are set 

and boll loading begins. Twenty-five to forty percent of cotton’s seasonal nitrogen 

accumulation occurs during the first two weeks of bloom (Guthrie et al., 1994). To 

ensure that nitrogen is readily available at flowering, growers sometimes delay 

nitrogen application until after planting or split nitrogen application and apply 

some at first flower (Morrow and Krieg, 1990).   

 Cotton in west Tennessee is grown on soils ranging from deep silt loams 

with excellent water holding capacity and good nutrient retention to sandy soils 

with poor water holding capacity and less ability to retain applied nutrients. 

Irrigated cotton acreage is currently small in west Tennessee, but is growing 

steadily (Gwathmey et al., 2011). Irrigation management for cotton in the humid 

southeastern U.S. is an important area of study. Small amounts of water applied 

at proper timing can significantly boost yield. With an increase in irrigated cotton 

acreage, questions arise about how it might affect nitrogen management. Soils 

with poor water holding capacity (WHC), caused by coarse texture, are inherently 
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more prone to leaching loss of nitrogen, even with proper management of 

irrigation. Over-irrigation could exacerbate the issue of nitrogen loss in coarse 

texture soils. With the growing acreage of irrigated cotton in west Tennessee, 

new fertilizer technology should be evaluated on various soils and under various 

irrigation scenarios.   

3  Literature Review and Background 

3.1 Nitrogen Fertilizer Technologies 

 Applied nitrogen fertilizer is most commonly lost to the environment 

through leaching of nitrate and denitrification. Nitrate leaching contributes to 

ground and surface water contamination, while denitrification releases 

greenhouse gases, such as nitrogen gas and nitrous oxide (Rochester, 

2012)(Wilson et al., 2010). The two most limiting factors for the loss of applied 

nitrogen fertilizer are the amount of nitrogen present in the soil environment and 

the length of time the nitrogen fertilizer resides in the soil environment. Higher 

amounts of nitrogen present lend the nitrogen to becoming more susceptible to 

loss. The longer the nitrogen resides in the soil without being taken up by the 

crop, the higher the probability of nitrogen loss. Slow or controlled release 

fertilizer technology attempts to address the issues of higher nitrogen 

concentrations in the soil at any given time and the length of time nitrogen 

fertilizer resides in the soil. Controlled release fertilizer nitrogen is released 

gradually from a protective coating, so the total amount in the soil at any given 

time is minimized, and residual time in soil is reduced because of the time spent 

protected by the coating.  
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 Sulfur-coated materials were among the first widely used slow-release 

fertilizer technologies. Sulfur coated urea has been used as a slow-release 

nitrogen source, but the main problem with sulfur-coated materials is their 

unpredictability in regard to nutrient release. Release of nitrogen from sulfur-

coated urea relies on a coating failure mechanism. Holes in the coating made by 

microorganisms, cracking of the sulfur shell, or adsorption of the wax sealant by 

soil particles act as pathways for diffusion of urea into the soil environment. This 

coating failure mechanism has proven hard to predict accurately and calls for 

more sophisticated fertilizer technology (Jarrell and Boersma, 1979).   

 Other slow release technologies include resin, wax, and aldehyde 

condensate coatings, as well as complex polymers (Chen et al., 2008). More 

advanced fertilizer technologies have begun to use the term controlled-release 

as opposed to slow-release. Controlled-release nitrogen fertilizers have shown 

promise in cotton production. Oosterhuis and Howard (2008) compared a 

polyolefin thermoplastic resin-coated urea (Meister programmed-release N) to 

ammonium nitrate. They found that MPR-N material achieved similar yields to 

ammonium nitrate, even when application rates were reduced to 60% of the 

recommended rate. They concluded this controlled-release material could 

potentially increase nitrogen use efficiency in cotton production, while 

maintaining yields. This research, however, failed to also reduce rates of 

application for ammonium nitrate (AN) from current recommendations to see if 

those recommendations are just higher than necessary to begin with. Also of 

concern was lack of a control plot with no applied nitrogen to incorporate residual 



	   8	  

nitrogen supply into results. Shoji et al. (2001) examined MPR-N in barley, 

potato, and corn systems and found promising results in each system. In each 

cropping system, controlled-release materials reduced denitrification losses of 

nitrous oxide and showed potential for improved nitrogen use efficiency. Nitrogen 

tracer studies indicated less movement of nitrogen to deeper parts of the soil 

profile when using controlled-release fertilizer in several cropping systems 

(Wilson et al., 2010). 

 Slow or controlled-release fertilizers could be useful in reducing nitrate 

leaching and/or denitrification. Soil types and irrigation management can 

influence the effectiveness and susceptibility to loss of nitrogen fertilizers. For 

example, potato production systems often combine sandy soils and heavy 

irrigation, causing farmers to traditionally apply multiple sidedressings of nitrogen 

with around eight fertigation treatments per season to keep ample nitrogen 

available (Shoji et al., 2001). Slow or controlled-release fertilizers have been 

shown to markedly increase nitrogen use efficiency and nitrogen fertilizer 

recovery in potato production while achieving similar or greater tuber yields 

(Wilson et al., 2010). Low-lying areas prone to denitrification and fields subject to 

over-irrigation are other examples of situations that could see potential benefits 

from the use of controlled-release fertilizers.   

3.2 Environmentally Smart Nitrogen 

 Environmentally Smart Nitrogen (ESN) is a polymer-coated urea fertilizer. 

The manufacturer, Agrium Inc., describes ESN as quality urea granules 

encapsulated by a flexible polymer coating that reduces the risk of nitrogen loss 
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by protecting the nitrogen and releasing it over time. ESN technology is 

advertised as temperature-controlled release that is slightly moisture dependent, 

as adequate antecedent moisture is necessary to support diffusion of water into 

and out of polymer coating. Moisture permeates the coating, creating a nitrogen 

solution that moves out of the coating at a rate dependent on soil temperature 

(“How ESN Technology Works”, 2014). The effect of temperature on nitrogen 

release from ESN may be due to an increased difference in water vapor pressure 

between the environment and the internal surface of the fertilizer granule with 

increasing temperature, as well as the increased moisture permeability of 

polymer coating with increasing temperature (Gandeza et al., 1991). Agrium Inc. 

advertises ESN as releasing 80% of its nitrogen between 30 and 60 days at 23 C 

(ESN Polymer Coated Urea (MSDS No. 14250), 2004).   

 Golden et al. (2011) tested and proved the information provided by Agrium 

Inc. to be true for a wide range of Arkansas soils. In the clayey soils tested, ESN 

released nitrogen at a rate that followed a curvilinear pattern, while nitrogen was 

released at a linear rate in silt loam and sandy soils. Initial release of nitrogen by 

ESN was more rapid in the clayey soils. By forty days after application, nitrogen 

retention by the ESN fertilizer was similar among soils and ranged from 17 to 

25%. Golden et al. (2011) found that nitrogen release was not affected by soil 

moisture in the range 125 to 389 g H2O kg-1, except for a slight increase in initial 

release (first five days) in higher moisture conditions. They also found 

temperature to truly be the driving factor behind nitrogen release from ESN. By 

forty days after application, nitrogen release ranged from 29% at 15 C to 87% at 
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30 C. At 15 C, nitrogen release was minimal, but increased to a linear response 

that ended up releasing similar amounts to the highest temperatures at 20 C. At 

25 and 30 C, nitrogen release occurred curvilinearly, with release slowing over 

time, and similarly releasing the majority of nitrogen by forty days. 

 ESN merits study because of its potential to reduce nitrogen loss, increase 

fertilizer nitrogen recovery, and therefore improve nitrogen use efficiency. Other 

potential benefits include a wider fertilizer application window, a longer shelf life 

than uncoated fertilizer, and grower incentives for use of ESN (“How ESN 

Technology Works”, 2014). Even considering potential environmental benefits, a 

product like ESN will struggle to be desirable if cost is prohibitive compared with 

conventional fertilizers. ESN is being marketed primarily to Midwestern U.S. corn 

growers, indicating it may be economically feasible for large-scale agriculture 

(Golden et al., 2011). 

3.3 ESN in Production Systems 

 Research on ESN has begun to evaluate the potential of increasing 

nitrogen use efficiency and fertilizer nitrogen recovery. ESN has been studied in 

several cropping systems and has shown promise as an alternative nitrogen 

source. In Arkansas, ESN achieved slightly higher yields than urea when pre-

plant incorporated in corn production (Mozaffari et al., 2012). Corn research in 

North Carolina showed ESN achieving similar and sometimes greater yields as 

compared to urea ammonium nitrate on coastal plain, piedmont, and mountain 

sites. ESN achieved greater nitrogen use efficiency, stover % nitrogen, and 

nitrogen uptake compared with urea ammonium nitrate (Cahill et al., 2010).   
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 Potato production typically creates a system prone to loss of nitrogen, 

leading to environmental degradation as well as wasted inputs (Wilson et al., 

2009). The combination of sandy soils, heavy irrigation, and high nitrogen 

requirements create an environment highly susceptible to leaching of nitrate. 

Researchers in Minnesota found a single application of the total nitrogen 

requirement applied as ESN pre-plant, at planting, or at emergence all performed 

similarly to traditional split nitrogen applications, with up to six conventional 

nitrogen applications being used. Tuber yield and quality were not affected by 

nitrogen treatment. They suggested ESN to be economically feasible and 

possibly favorable over conventional fertilizer in this system because of reduced 

fertigation and associated management costs (Wilson et al., 2009). ESN has also 

been shown to reduce nitrate leaching and improve fertilizer nitrogen recovery 

over two split applications of conventional nitrogen in potato production (Wilson 

et al., 2010). 

 Although literature on ESN use in cotton production is sparse, Agrium Inc. 

claims it to be a good match of nitrogen release for the needs of a cotton crop. 

They recommend applying either pre-plant or as a side or top-dress application, 

noting that a side or top-dress application two to four weeks after planting may 

offer an optimal match between nitrogen release from ESN and cotton nitrogen 

uptake. They also recognize split nitrogen application strategies and would 

recommend sufficient soluble nitrogen at planting to last several weeks, then the 

remainder of nitrogen requirement applied as ESN. Incorporation of ESN is 

preferred but not essential (“Maximizing Cotton Performance with ESN”, 2014). 
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 Mozaffari et al. (2012 a) found similar yields in Arkansas cotton when ESN 

and urea were applied pre-plant and incorporated in a Marvel silt loam in a dry 

year. The next year, they tested several combinations of urea and ESN and saw 

no difference among fertilizer combinations. It was another dry spring and 

summer for Arkansas, so potential for leaching and denitrification was lower than 

normal (Mozaffari et al., 2012 b). Research has not been done to evaluate ESN 

in cotton production in soils with limited water-holding capacity or across a range 

of irrigation management schemes. Questions also remain about the 

effectiveness of ESN or other granular controlled release fertilizers in no-till 

cotton production, as is prevalent in west Tennessee, in which case the material 

would likely be broadcast and not incorporated.  

3.4 Cotton Irrigation 

 Use of irrigation for cotton in the Mid-South is heavily dependent on 

climactic conditions from year to year. Rainfed yields sometimes are no lower 

than irrigated yields, but in many years, cotton yields can be significantly boosted 

by supplemental irrigation. The framework for the irrigation portion of this 

research was part of an ongoing irrigation rate and timing study for cotton across 

soils varying in water holding capacity, surface soil texture, and depth to sand. 

From 2006 to 2009, rate and timing research was conducted in uniform deep silt 

loam soils. Findings in the deep silt loam soils indicated a need for one inch/week 

of irrigation in two years, one and a half inches/week in a severe drought year, 

and no yield boost from supplemental irrigation in one year (Gwathmey et al., 

2011). Optimal yields were often achieved when irrigation was delayed until 
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bloom or two weeks post bloom, except in years with early dry periods. Data 

collected on the deep silt loam soils was generally in agreement with findings 

from Barber and Francis (2011) on cotton in Arkansas. They found that irrigation 

should be started around first flower to optimize yield and that 2-3 weeks after 

first flower was a critical time to have adequate soil moisture. Jalota et al. (2006) 

also concurred that flowering is the most sensitive stage of cotton to water stress, 

in terms of effect on yield. Huber et al. (1999), also in the Mid-South, found a rate 

of one inch per week to significantly boost yields in the majority of years in a silt 

loam soil. Application rates above one inch per week were not beneficial to yield. 

From 2010 to 2012, the rate and timing research was moved to the field of 

study discussed in this paper. Significant soil variability exists in this field, as is 

discussed in Materials and Methods. The goal of using this field was to collect 

data for the various rates and initiation timings on soils like those used in the 

prior study as well as soils with lower water holding capacities, caused by more 

coarse texture in the surface soil and a shallower depth to sand layer. Lower 

WHC soils did respond differently to irrigation, as they required 1.5”/wk to 

optimize yield and starting at square or first bloom (Duncan, 2012). Detar (2008) 

noted that not only do sandy soils require higher water input to maintain 

adequate soil moisture, but they also can not withstand significant deficits in soil 

moisture without negatively affecting yield, as deeper higher WHC soils can 

withstand to a degree. Cotton yields in the lower WHC soils, when irrigated 

appropriately, were often close to optimal yields in intermediate or deeper soils. 

To achieve good yield in the low WHC soil, however, heavy irrigation input is 
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required. Could heavy irrigation in coarse textured soils lead to significant nitrate 

leaching such that yield potential is limited, and can delaying nitrogen availability 

using controlled release fertilizer technology prove effective in improving crop 

nitrogen removal? 

 Coarse texture, low WHC soils are inherently more prone to nitrate 

leaching than finer texture, higher WHC soils for several reasons. A coarse 

textured soil profile leads to a less tortuous path for water to travel through, while 

less sorption capability and the effect of gravimetric potential further allow water 

to move downward through the profile with more ease than in other soils. Coarse 

texture soils are also typically lower in soil organic matter and cation exchange 

capacity, contributing to ease of water and nutrient movement. Nitrate movement 

deeper into a profile can happen quickly in coarse texture soils with water input, 

but as texture slowly becomes finer in composition, rate of nitrate leaching 

quickly decreases (Aulakh and BijaySingh, 1997). Wang et al. (2010) further 

supported the notion that extreme conditions, whether coarse soil texture or 

heavy water input or both, are necessary to facilitate significant leaching of 

nitrate. In monitoring soil water status for cotton research preceding this study, 

we found irrigation events did not penetrate past about 5-10 inches, and multi-

inch rain events were necessary to penetrate to near the bottom of cotton rooting 

depth, depending upon existing soil water status.  

 While excessive soil moisture can move nitrate downward through a 

profile and negatively affect availability, adequate soil water is necessary for 

optimum nitrogen uptake. To realize full yield potential, not only is adequate 
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available nitrogen in the crop rooting zone critical, but so is ample water input to 

facilitate uptake of the nitrogen by the crop. The effect of varying levels of 

nitrogen fertilization can be overshadowed by a lack of adequate soil moisture to 

support plant growth and accessibility of nutrients (Pettigrew and Zeng, 2014). 

While water stress and nitrogen availability stress can each alone lower yields, 

the two stresses together form the most detrimental situation to yield potential 

(Zelinski and Grimes, 1995). For cotton grown in the many soil types in our study, 

the research question was how do we apply supplemental irrigation as to 

optimize yield, and how will traditional and controlled release fertilizer respond to 

the varying levels of irrigation across soil types.  

 Interactions are often found in cotton research between irrigation and 

nitrogen, with soil being as uniform as possible (Boquet and Coco, 1988; 

Bronson et al., 2006; Bronson et al., 2001; Bronson, 2008; McConnell et al., 

1989; Vories et al., 2014; Pettigrew and Zeng, 2014; Singh et al., 2010). Often, 

these interactions are among varying rates of water application and levels of 

nitrogen application. Interactions are also found between irrigation and soil type, 

with nitrogen source and rate held constant (Vories et al., 2015; Jalota et al., 

2006; Tolk and Howell, 2010). Interactions between soils, irrigation, and nitrogen, 

while important, are complex, and as such are not often examined. Li et al. 

(2000) conducted field-scale research to examine the effect of differing levels of 

water input and nitrogen application rates on yield across a field that varied in soil 

type. Our research is unique in that it examines varying soils, irrigation, and 

nitrogen source simultaneously, and that it does so using irrigation regimes with 
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varying initiation timings and application rates and nitrogen sources, as opposed 

to rate of nitrogen application.  

4  Objectives 

The objectives for this research are: 

• Observe the potential effect of delayed nitrogen availability via use of ESN 

on cotton yield, nitrogen uptake, and nitrogen removal in soils ranging 

from low WHC to high WHC and under various irrigation regimes.  

• Add to our current knowledge about appropriate irrigation initiation  

timing and rate of water application for cotton in variable soils in west 

Tennessee. 

5  Materials and Methods 

 The research was located at the West Tennessee Research and 

Education Center (WTREC) in Jackson, TN and was done in 2013 and 2014. 

The experiment was arranged in a randomized complete block (RCBD) split-plot 

design. Cotton plots were six rows wide, with 38-inch row spacing, and thirty feet 

long. Four center rows of each whole plot were harvest rows, while the outer two 

rows served as border rows. Cotton rows were kept as similar as possible to their 

position in years’ past, to continue the validity of soil evaluation for each plot. 

Each of these plots was randomly assigned an irrigation treatment, within soil 

block. Whole plots were then split, and half the plot received ammonium nitrate 

fertilizer, while the other half received ESN. Each subplot, therefore, consisted of 

two harvest rows and one border row nearest to the next whole plot. The fertilizer 

treatments were assigned randomly to each plot.   
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Cotton (Phytogen 375) was direct seeded on May 8, 2013 and May 6, 

2014 in a no-till cropping system that has been cropped in cotton since 2010. All 

areas of the study site tested high in phosphorous and potassium in both years 

according to University of Tennessee recommendations, so no additional 

fertilizer was added. Nitrogen fertilizer was hand spread once cotton plants had 

emerged so that we could be certain of plot location. This resulted in nitrogen 

application two to three weeks after planting.  Ammonium nitrate and ESN were 

both broadcast applied at a rate of 80 pounds N/acre.   

A location with variation in soils was chosen for this study. Soils ranged 

from a deep silt loam to a moderately deep silt loam over sand to a shallow silt 

loam over sand (Figure 1-1). The experiment was blocked on soils, differing 

markedly by their texture, horizonation, and water holding capacity. Soil 

delineations were made by a combination of ground-penetrating radar, electrical 

conductivity measurements, and soil cores (Duncan, 2012). Seven soil blocks 

were used in the experiment, with average water-holding capacities ranging from 

0.7 to 1.9 in/ft.   

 Seven irrigation treatments were used as part of an ongoing deficit 

irrigation study (Table 1-1). Irrigation treatments varied in rate of water 

application, as well as timing of irrigation initiation. Irrigation was applied through 

a drip irrigation system, which achieved varying irrigation rates through use of 

three different John-Deere T-tape sizes. One line of drip tape was laid per row of 

cotton. To achieve 0.5, 1.0, and 1.5 inches/week, drip tapes rated .110, .220, and 

.340 gallons/minute per 100 feet were used. This allowed the entire system to 
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run the same amount of time, while applying three different rates. Irrigation was 

applied three days a week, Mondays, Wednesdays, and Fridays, and was 

adjusted for rainfall. Irrigation time, adjusted for rainfall, was based on the 1.0 

inch per week treatment. With no rainfall, the irrigation system was run long 

enough to apply 0.4” on Monday, 0.3” on Wednesday, and 0.3” on Friday, in the 

1.0”/week treatment. This schedule was adjusted for rainfall to achieve as close 

to 1.0 inch per week as possible. Some rainfall events brought over an inch in a 

short amount of time, so response to these events was made based on judgment 

of soil water status over the following days. At the beginning of the irrigation 

season, valves were opened for plots receiving irrigation starting at square. The 

remaining plots were irrigated at first bloom, except the dryland plots. All irrigated 

plots received supplemental water as required until cracked boll. 

 To monitor the nitrogen status of the cotton throughout the growing 

season, leaf samples were taken at first flower and at mid-bloom, approximately 

five weeks past first flower. Leaf samples were taken from plots in irrigation 

treatments 1, 5, 6, and 7 and from all combinations of soil block and N source. 

Dates of sampling were July 8 and August 14 in 2013 and July 17 and August 22 

in 2014. The uppermost mature leaf on a given plant was sampled, and twenty 

per plot were taken. Petioles were discarded. Samples were sent to the UT Soil 

Plant and Pest Center, where they were analyzed for total combustible nitrogen 

content.  

 Both years of this study could be considered wet years, even for the 

humid mid-south (Table 1-2). In 2013, WTREC received 21.5 inches of rain from 
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planting to harvest (May 8-October 8), of which, 6.7 inches fell from square to 

cracked boll. The rainfall was fairly evenly distributed and growing conditions 

were very good in 2013, as evidenced by high yields. In 2014, WTREC received 

32.7 inches of rain from planting to harvest (May 6-October 5), of which, 9.0 

inches fell from square to cracked boll. Rainfall was more biased toward early 

season events in 2014. May through mid-June was very wet in 2014, while 

rainfall the rest of the season was more sporadic and came mostly in several 

large events.   

Cotton was harvested by a combine with a two-row header and a load cell 

used for obtaining seed cotton weights by plot. After cotton harvest, subsamples 

of the seed cotton were ginned to collect seed samples and cottonseed was 

analyzed for total nitrogen content. Like leaf samples, seed samples were only 

collected for irrigation treatments 1, 5, 6, and 7. Nitrogen content in lint is 

minimal, so cottonseed nitrogen content can be considered the nitrogen removal 

by the cotton crop. Larger samples of seed cotton were ginned for turnout values 

and lint was sent to the USDA Agricultural Marketing Service’s Memphis 

Classing Office for quality analysis. With turnout for each plot, a production yield 

in lbs/acre can be calculated following the formula: plot seed cotton weight (lbs) x 

turnout x 43,560 sq. ft. per acre / 190 sq. ft. per two harvest rows. Turnout and 

seed N data also yield N removal values in lbs N/acre for each plot following the 

formula: seed N (%) / 100 x plot seed cotton weight (lbs) x (1-turnout) x 43,560 

sq. ft. per acre / 190 sq. ft. per two harvest rows. Quality information was 

produced for each plot including color grade, leaf grade, micronaire, length, 
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strength, and uniformity. In both years, this quality data was input into the 2013 

and 2014 Cotton Loan Price Valuation Program developed by Cotton Inc. and 

Mississippi State University to assign a price in cents/pound to the cotton lint 

from each treatment combination (Cotton Inc., 2013; Cotton Inc., 2014). 

For statistical analysis, the two years were analyzed separately. Mixed 

model analysis of variance was run in SAS 9.3, and the experiment was 

analyzed as an RCBD split-plot. Experimental area was blocked on soil, irrigation 

was the whole plot treatment factor, and N source was the sub-plot treatment 

factor. For yield and quality data, all irrigation treatments were included in the 

analysis. When looking at leaf N and N removal, the program was reduced to just 

include irrigation treatments 1, 5, 6, and 7. For yield in both years, a significant 

block*treatment interaction existed (Figures 1-3 and 1-4). A block*treatment 

interaction in our case indicates differences in treatment response across soil 

types. To address this interaction and study how the response of treatment 

combinations varied across soil type, a variable “soil type” was added to the 

analysis. The variable “soil type” grouped soil blocks in to low, intermediate, and 

high WHC based on apparent groupings by yield response in the block*treatment 

interaction plots (Figure 1-2). This division was the same in both years, soil block 

1 was low WHC, blocks 2 and 3 formed the intermediate WHC soil type, and 

blocks 4-7 formed the high WHC soil type. Mean separation was achieved using 

LSD p=0.05. Quality data, leaf N, and N removal saw no significant 

block*treatment interactions, so only main treatment effects were examined for 

significance.  
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6  Results and Discussion 

6.1 Cotton Yields 

The nature of this research, in observing effects of N source, irrigation 

regime, and soil impact, was designed with an interest in interactions. Main 

treatment effects were reported and should be noted before examining 

interactions. Main effects, however, may be of little value when interactions are 

significant and show differing responses from levels of one treatment factor to 

levels of another treatment factor. Nitrogen source had a significant main effect 

on lint yield in 2013 and 2014 (Table 1-3). In both years, ammonium nitrate 

resulted in higher yields, 1458 to 1375 lbs lint/acre in 2013 and 1233 to 1105 lbs 

lint/acre in 2014, compared to ESN averaged across all soil blocks and all 

irrigation regimes. Irrigation also had a significant main effect in both years. In 

2013, initiating irrigation at bloom and at a rate of 1.5”/wk optimized yield, 

averaged across all soil blocks and both fertilizers, and was the only irrigation 

treatment yielding significantly greater than rainfed (Figure 1-5). In 2014, the 

bloom 1.5”/wk treatment as well as the square 0.5”/wk, bloom 1.5”/wk treatment 

optimized yield averaged across soil blocks and N sources (Figure 1-6). All 

irrigation treatments significantly boosted yield over dryland, except square 

0.5”/wk, the lowest application treatment. Effect of soil type alone on yield was 

examined to further validate separation of soil blocks into the three soil types 

(Table 1-3). In 2013, low WHC soils yielded, on average, 1112 lbs lint/acre, 

intermediate WHC soils yielded 1461 lbs lint/acre, and high WHC yielded 1676 
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lbs lint/acre, all significantly different from one another. In 2014, low WHC soils 

yielded an average of 875 lbs lint/acre, intermediate WHC soils yielded 1238 lbs 

lint/acre, and high WHC soils yielded 1396 lbs lint/acre, all significantly different 

from one another. These results indicate grouping of soil blocks for an additional 

variable in analysis was justified and helpful. 

 In 2013, there was a significant irrigation*fertilizer interaction (Figure 1-7). 

Recall, the values reported in this interaction are averaged over all soil blocks. 

Four of the seven irrigation treatments yielded significantly higher when using 

AN. Two of the irrigation treatments, square 0.5”/wk and square 0.5”/wk, bloom 

1.5”/wk, resulted in similar yields between N sources. One irrigation treatment, 

bloom 1.0”/wk, resulted in higher yield using ESN. Irrigation*fertilizer interaction 

was non-significant in 2014. 

 Significant irrigation*soil type interactions existed in 2013 and 2014 

(Figures 1-8 and 1-9). The differences between soil types were more pronounced 

in 2013. In both years, yields on high WHC soils were unaffected by irrigation 

treatment. Not surprising was the fact that high WHC soils saw no yield increase 

from irrigating in two wet years. It was unexpected, however, to see no yield 

decrease from over-irrigation in the high WHC soils, as observed in previous 

studies (Gwathmey et al., 2011; Duncan, 2012). For intermediate WHC soils, 

significant yield loss was seen without irrigation or without enough irrigation in 

both years. In 2013, initiating irrigation at square and applying 1.0”/wk to total 3.4 

inches yielded similarly to high WHC soils, while waiting until bloom to irrigate 

and applying 1.5”/wk to total 3.7 inches achieved optimal yields. In 2014, in 
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intermediate WHC soils, irrigating beginning at bloom and applying 1.0”/wk, 

resulting in total application of 3.8 inches, was sufficient to achieve optimal 

yields. Irrigation regimes beginning earlier or applying more water did not result 

in further yield increase. For low WHC soils, increases in yield were observed in 

both years with application of optimal irrigation. In 2013, applying 1.5”/wk starting 

at bloom was necessary to optimize yield, with total input of 3.7 inches, above 

which extra water was significantly detrimental to yield. In 2014, the same 

treatment reached optimal yield, applying 5.7 inches. At the heaviest irrigation, a 

significant yield downturn was seen. These results in low WHC soils affirm our 

findings in previous years that water is not always needed early in these soils, 

but it is needed at a high rate once initiated. The effect of over irrigation being 

detrimental to yield in low WHC soils, however, had not occurred on this field 

prior to these two growing seasons. Of note in Figures 1-8 and 1-9 is that low 

WHC and intermediate WHC soils can yield just as well as high WHC soils can. 

Achieving high yields on these soils, however, requires precise irrigation 

management, as yield is quickly diminished by under or over irrigation. It seems 

the high and, to a degree, intermediate WHC soils are much less difficult to 

manage and provide appropriate amounts of supplemental irrigation, due to their 

inherent buffer in soil moisture and water holding capacity.  

 Both 2013 and 2014 also saw significant three-way interactions between 

soil type (or soil water regime), fertilizer, and irrigation. These interactions are 

depicted in Figures 1-10 and 1-11. These interactions are complex, but 

illustrating them attempts to capture all we have discussed previously about each 
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of the three factors. Irrigation treatment effects are evident by soil type, as 

mentioned previously. Main effect of soil type is evident, in that high WHC soils 

yielded higher, on average, than intermediate WHC soils, which yielded higher 

than low WHC soils. Main effect of N source is also evident. AN yields are almost 

always either similar to or greater than ESN yields for a given irrigation treatment 

and soil type. The greatest additional benefit received from examining the three-

way interactions is the observation of changing yield response to N source as soil 

type changes. In 2013, two of seven irrigation treatments responded with 

statistically higher yields when N source was AN in high and intermediate WHC 

soils, while the fertilizers yielded similarly in all other treatments. For low WHC 

soils, however, two of seven irrigation treatments responded with statistically 

higher yields when N source was ESN, while only one irrigation treatment yielded 

higher paired with AN. In 2014, four of seven irrigation treatments significantly 

favored high yields with AN in high WHC soils, two of seven favored high yields 

with AN in intermediate WHC soils, and in low WHC soils, only one irrigation 

treatment paired with AN resulted in significantly higher yield than with ESN. All 

other treatment combinations yielded similarly between N sources. These three-

way interactions indicate more competitiveness of the ESN in low WHC soils 

than in deeper, higher WHC soils. However, this competitiveness may be viewed 

more as simply catching up to AN in low WHC soils, and not as a clear yield 

advantage achieved by using ESN in low WHC soils. Yields when using ESN 

were often similar to those achieved using AN, but AN more often outperformed 

ESN. 
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6.2 Leaf Nitrogen Content, Nitrogen Removal, and Lint Quality 

 Main effects and treatment interactions were examined for significance in 

leaf N content, N removal, and lint quality aspects as block*treatment interactions 

were not significant. All leaf sampling events were significantly affected by N 

source (Table 1-4). AN resulted in higher leaf N values compared to ESN at both 

sampling times in both years. The leaf N values obtained were all within sufficient 

range at the first bloom sampling (3.0-4.5%). However, all leaf N values sampled 

mid-late bloom were under the lower level of sufficiency range (3.0-4.5%) 

provided in the SERA6 bulletin (Mitchell and Baker, 2000). Leaf N main effect of 

N source indicates potentially more N availability from AN, which was indicated 

by a yield main effect reflecting higher yields with AN. Higher leaf N contents at 

first bloom presumably indicate uptake and storage of N that is soon transported 

to boll formation sites where it is actively used in seed production. Lower leaf N 

contents at the second sampling show a shift from vegetative growth toward a 

reproductive focus.  

 Nitrogen removal by the cotton crop via seed N content was also 

significantly affected by only N source (Table 1-5). Averaged across soil blocks 

and irrigation treatments, cotton fertilized with AN removed an average of 82 lbs 

N/acre in 2013, while cotton fertilized with ESN removed 75 lbs N/acre. In 2014, 

N removal when using AN was 63 lbs N/acre and was 54 lbs N/acre when using 

ESN. These N removal values were high, relative to the 80 lbs N/acre that was 
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applied regardless of N source. The significant effect of N source of N removal 

again indicates higher available N with AN compared to ESN. 

 Lint quality components color grade, leaf grade, micronaire, length, 

strength, uniformity, and price were analyzed for main effect significance. No 

significant block*treatment interaction existed for any quality components in 

either year. In 2013, N source had a significant effect on micronaire (p=.0006), 

with ESN having higher micronaire values, and on length (p=.0451), with AN 

yielding higher length values. Irrigation treatment had a significant effect on 

micronaire (p=.0194), due to lower water application treatments giving lower 

micronaire values. These differences in quality components did not lead to any 

significant difference in lint price due to N source, irrigation treatment, or 

interaction of the two. In 2014, irrigation treatment had a significant effect on 

micronaire (p=.0060), this time with the dryland cotton having higher micronaire 

values than all irrigated treatments. No significant effects were detected on lint 

price due to N source, irrigation treatment, or interaction of the two. Cotton lint 

quality, in general, was unaffected by applied treatments, as lint price is the most 

important of the quality components to consider.  

6.3 Nitrogen Source Considerations 

 Concerning N source comparison, our results favor higher yields and N 

uptake/removal on average when using AN compared with ESN. While ESN did 

show more promise, in the form of either similar or sometimes higher yields than 

AN, in low WHC soils, it still was not observed to be a superior N source in that 
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situation. AN was used as the standard for comparison because there was little 

concern for loss to volatilization when broadcast.  

 The nature of polymer-coated urea is such that water must diffuse in and 

out of the coating to release nitrogen. When broadcast applied, the surface area 

that is in contact with soil is much less than it would be if incorporated. Less 

surface area in contact with soil could mean less opportunity for moisture 

diffusion. Being only in contact with the surface of soil also exposes the polymer 

coated material to the first part of the soil profile to dry out, which could lead to 

less potential amount of time for water diffusion to occur. Being a urea-based 

fertilizer, there is also some concern about volatilization loss. While protected in 

polymer coating, urea should be stable, but a window of volatilization opportunity 

may exist as the nitrogen solution is released from coating. Another potential 

issue with broadcast ESN is physical movement of the fertilizer material. While a 

conventional granular material like AN will quickly dissolve into soil profile, ESN 

prills remain on the soil surface even after N release has likely fully occurred. 

While no-till production systems leave a good amount of crop residue on the 

surface, still some movement of ESN with large rain events is expected. On low 

WHC soils, even when yield is good, plants are often smaller and leave 

significantly less residue cover. Movement of ESN within a plot or even off plot 

could lead to less N release than desired within the area of interest. Finally, when 

dealing with controlled release fertilizer material, it is necessary for release of N 

to match crop N demand for optimal performance. Our delayed broadcasting of 

ESN until post-emergence was within the allowable application window 
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suggested by Agrium Inc. for cotton, but perhaps ESN could be applied at 

planting or even before planting and still provide ample available N at appropriate 

times and without exposing the nitrogen to potential leaching loss with heavy 

rains early in growing season. While ESN was generally outperformed by AN 

under conditions of this study, it warrants examination using different application 

strategies and timing. ESN could be mixed with a more quickly available form of 

N to compliment its slow release, or applied at an earlier time. ESN also could be 

incorporated after application, though the feasibility of this in no-till cotton 

production could be questionable.  

7  Conclusion 

 Cotton yields in the Mid-South are most limited by water and nitrogen. 

Being a humid environment, supplemental irrigation is not always necessary to 

grow a profitable crop, but irrigation can often increase yields with relatively small 

inputs. Irrigated cotton acreage is growing in west TN and is present on fields of 

widely ranging soil types, textures, and water holding capacities. It is important to 

know how varying soils are best managed with irrigation to promote optimal 

yields. New and promising nitrogen fertilizers also should be evaluated for 

potential effectiveness or yield benefit. This research compared a polymer-

coated urea, ESN, with AN in soils ranging from low to high WHC, and from 

primarily sandy texture to primarily silt loam texture. Irrigation regimes from rain-

fed up to 1.5”/wk starting at square were implemented over soil blocks and with 

both N sources.  
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Cotton yields in 2013 and 2014 revealed several treatment interactions. 

High WHC soils did not respond to irrigation, positively or negatively, in either 

year. Intermediate WHC soils did require some supplemental irrigation to 

optimize yield, applying either 1.5” or 1.0”/wk starting at bloom, for 2013 and 

2014, respectively. Low WHC soils saw the most dramatic yield increase from 

irrigating, when 1.5”/wk was applied starting at bloom. Low WHC soils also saw a 

decrease in yield with apparent over-irrigation. N sources responded somewhat 

differently between soil blocks. ESN was more competitive with, even sometimes 

out-yielding AN, in low WHC soils. High and intermediate WHC soils favored 

higher yields when using AN over ESN. Leaf N samples and N removal values 

further indicated higher available N from AN, in general. N availability from ESN 

may have been lower due being broadcast and unincorporated, as less surface 

area of the coating was available for diffusion. It also may be vulnerable to 

physical movement away from area of deposition, and to some volatilization. 

Finally, timing of N release from a controlled release fertilizer should match or 

precede N demand from the crop, and ESN may benefit from earlier application. 

While ESN was outperformed, in most cases, by AN, it showed some promise in 

low WHC soils, as hypothesized. The price of ESN is also prohibitive to its use 

unless significant yield benefit is observed or growers are subsidized for its use. 

ESN polymer-coated urea material warrants further investigation with varying 

application strategies and timing for soils or management systems vulnerable to 

N loss.  
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9  Appendix: Figures and Tables 

	  
 
Figure 1-1: Aerial view of variable soils in field of study (left). Predicted depth to 

sand map of field of study (right). Note similarity between red areas in predicted 

depth to sand map and dry/less established crop areas on aerial image (Duncan, 

2012).  
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Figure 1-2: Plots in use for experiment separated by soil type.  
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Table 1-1:  Irrigation treatments and applied water per treatment. 

Treatment 
Number 

Initiation Rate 
(in/week) 

2013 Total Water 
Applied (inches) 

2014 Total Water 
Applied (inches) 

1 Square 1.5 5.1 7.5 
2 Square 1 3.4 5.0 
3 Square 0.5 1.7 2.5 
4 Bloom 1.5 3.7 5.7 
5 Bloom 1 2.4 3.8 
6 Square, Bloom 0.5, 1.5 4.1 6.3 
7 Dryland 0 0 0 
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Table 1-2: Weekly and cumulative rainfall and crop water use (“MOIST”, 2015) 

  
2013 2014 

  Rainfall 
(in) 

Crop 
Water 

Use (in) 
Rainfall 

(in) 

Crop 
Water 

Use (in) 
 

Week # 
May 1 1.7 0.3 0.4 0.5 

  2 0.7 0.4 3.1 0.3 
  3 3.0 0.5 0.1 0.5 
  4 2.6 0.4 0.5 0.4 

June 5 0.4 0.5 3.5 0.5 
  6 0.8 0.8 4.7 0.7 
  7 1.5 0.9 0 1.1 
  8 0.2 1.2 0.6 1.0 

July 9 0.7 1.1 2.8 1.3 
  10 0.5 1.4 0.5 1.5 
  11 1.1 1.3 2.3 1.2 
  12 2 1.2 0.2 1.6 

August 13 0.5 1.1 0 1.5 
  14 0.6 1.1 2.3 1.3 
  15 0.8 1.1 0.3 1.5 
  16 0.3 1.3 2.5 1.4 
  17 0 1.4 0.4 1.2 

September 18 0.4 1.1 1.7 1.0 
  19 0.6 1.0 5.8 0.7 
  20 2.4 0.8 0.3 0.6 
  21 0 0.7 0 0.7 

October 22 0.8 0.4 0.7 0.5 

 
Total  21.5 20.1 32.7 21.0 
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Figure 1-3: The interactive effect of fertilizer source and soil on lint yield in 2013 

(p=0.0004). 
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Figure 1-4: The interactive effect of fertilizer source and soil on lint yield in 2014  

(p=0.01). 
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Table 1-3: Fertilizer and soil type main effects on yield. Mean values are cotton 

lint yields in lbs/acre, and letter groupings were established using LSD means 

separation at p=0.05.  

2013 2014 
(p=.0005)          Fertilizer Main Effect          (p<.0001) 

  Mean 
Letter 
Group 

 
Mean 

Letter 
Group 

AN 1458 A AN 1233 A 
ESN 1374 B ESN 1105 B 

(p<.0001)          Soil Type Main Effect          (p<.0001) 

  Mean 
Letter 
Group 

 
Mean 

Letter 
Group 

Low WHC 1112 C Low WHC 875 C 
Intermediate WHC 1461 B Intermediate WHC 1238 B 

High WHC 1676 A High WHC 1396 A 
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Figure 1-5: Cotton lint yield per irrigation treatment in 2013. Irrigation main effect 

was significant (p=.0001). Irrigation treatments arranged from least amount of 

applied water (left) to most applied (right). Mean separation achieved using LSD 

p=0.05. 
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Figure 1-6: Cotton lint yield per irrigation treatment in 2014. Irrigation main effect 

was significant (p<.0001). Irrigation treatments arranged from least amount of 

applied water (left) to most applied (right). Mean separation achieved using LSD 

p=0.05. 
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Figure 1-7: Cotton lint yield, as influenced by N source, per irrigation treatment in 

2013. Irrigation*fertilizer interaction was significant (p=.0015). Irrigation 

treatments are arranged from least amount of water applied (left) to most applied 

water (right). S denotes significant difference between N source at given 

irrigation treatment, p=.05.  
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Figure 1-8: Cotton lint yield, as influenced by soil type, per irrigation treatment in 

2013. Irrigation*soil type interaction was significant (p=.0006). Irrigation 

treatments are arranged from least amount of water applied (left) to most applied 

water (right).  
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Figure 1-9: Cotton lint yield, as influenced by soil type, per irrigation treatment in 

2014. Irrigation*soil type interaction was significant (p=<.0001). Irrigation 

treatments are arranged from least amount of water applied (left) to most applied 

water (right). 
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Figure 1-10: Cotton lint yield, as affected by soil type and N source, per irrigation 

treatment in 2013. This three-way interaction between soil type, fertilizer, and 

irrigation was significant (p=.0045).  
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Figure 1-11: Cotton lint yield, as affected by soil type and N source, per irrigation 

treatment in 2014. This three-way interaction between soil type, fertilizer, and 

irrigation was significant (p=.0246). 
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Table 1-4: Fertilizer main effects on total leaf N content. Letter groupings 

achieved using LSD mean separation at p=.05.  

N Source Effect on Total Leaf N Content 
First Bloom Sampling 

2013 (p=.0067) 2014 (p<.0001) 

  
Leaf N 

(%) 
Letter 
Group 

 

Leaf N 
(%) 

Letter 
Group 

AN 3.7 A AN 3.5 A 
ESN 3.6 B ESN 3.0 B 

Mid-Bloom Sampling 
2013 (p=.0001) 2014 (p=.0001) 

  
Leaf N 

(%) 
Letter 
Group 

 

Leaf N 
(%) 

Letter 
Group 

AN 2.7 A AN 2.6 A 
ESN 2.4 B ESN 2.4 B 
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Table 1-5: Fertilizer main effects on N removal. Letter groupings achieved using 

LSD mean separation at p=.05.  

N Source Effect on N Removal by Cotton 
2013 (p=.0038) 2014 (p<.0001) 

  
Mean 

(lbs/acre) 
Letter 
Group 

 

Mean 
(lbs/acre) 

Letter 
Group 

AN 82 A AN 63  A 
ESN 75 B ESN 54  B 
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Chapter II 

Precision Soil Sampling Strategies for Agricultural Fields of 

Tennessee 
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1  Abstract 

	   Soil sampling is the foundation for managing the nutrient aspect of 

production agriculture. A soil sample should be representative of a selected area, 

to appropriately address the fertility status of that area and recommend potential 

applications. To implement variable rate fertilizer application, some degree of 

detail is necessary about nutrient variability across a field. Grid sampling and 

zone sampling are methods of soil sampling that may give a better resolution of 

nutrient variability than a field average value. Grid sampling may be the more 

time and labor-intensive of the two, but zone sampling requires some prior 

knowledge of the field as a basis on which to form zones. For any sampling 

method, the question exists as to how many cores should be taken to form a 

composite sample that one can be reasonably confident in the result obtained.  

 Nutrient levels obtained by grid-point and grid-cell sampling are frequently 

not in agreement. Grid-point sampling captures more in-field variability, when 

examined across a whole field. Grid-cell sampling tends to dilute some high and 

low areas, thus decreasing measured and apparent variability across a whole 

field. Yield maps and soil maps were all successful in grouping some variation 

when used to form zones. It is difficult to assess the utility and practicality of 

using these zoning techniques without a large-scale study and economic 

analysis. Optimal sampling intensity varies between fields exhibiting different 

degrees of variability; more cores are needed in highly variable areas to assess 

nutrient status. For conditions of this study, 2-8 cores/acre achieved repeatable 

results.  
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2  Introduction 

Providing sufficient plant-available nutrients is crucial to successful 

agriculture. Soil sampling is the tool by which native nutrient levels are estimated 

and supplemental nutrient applications are recommended to increase the 

likelihood of obtaining best yields. Nutrient recommendations from soil tests are 

subject to a number of potential sources of error. While errors are possible from 

the extraction process and in the critical levels achieved by soil test calibration, 

the greatest source of error resides in the collection of the soil sample in the field 

(Beegle, 2005). Proper sampling technique, like appropriate depth and adequate 

sample mixing, must be adhered to. The heterogeneous nature of soil spatially 

complicates the necessary goal of obtaining a representative sample. Collecting 

a large number of samples to form a composite sample is typically the approach 

used to achieve a soil sample that results in an extracted nutrient value that is a 

representative mean value of the area sampled. Even considering the errors 

associated with the steps in obtaining a soil test value and recommendation, soil 

sampling has proven vastly beneficial to the profitability of agriculture.  

 Agricultural fields have traditionally been treated as homogeneous in 

fertility status and nutrient need by sampling large areas and fertilizing uniformly. 

While significant field spatial nutrient variability has been recognized for quite 

some time, addressing this spatial variability by varying fertilizer rates has only 

become feasible and attractive in the last few decades (Sawyer, 1994). Mallarino 

and Wittry (2004) summarized the numerous factors that cause spatial variability 

in nutrient levels across a given field. On a regional scale, geography, climate, 
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and vegetative characteristics affect expected nutrient levels. On a field scale, 

soil type, topography, and field history, including prior crops and management 

practices, can be expected to influence nutrient variability. Orientation of 

cropping rows, nutrient application method and uniformity, and compaction can 

further complicate the issue of variability of soil nutrients throughout a field. 

Uniform application of nutrients has the benefit of simplicity and low sampling 

cost/labor. Uniform application, however, is subject to significant under and over 

fertilization throughout a field (Penny et al., 1996). Assuming a representative 

sample is collected that represents the mean nutrient status, there are inevitably 

areas with greater and lower extracted nutrient values. Under fertilization is 

undesirable because of potential yield loss, while over fertilization could mean 

unnecessary monetary input as well as potential environmental loss.  

 Variable rate fertilizer application attempts to redistribute application of 

nutrients to these areas of differing native soil fertility. Ideally, improving the 

correlation of applied nutrient with nutrient need across a field will improve 

nutrient use efficiency, maximize yields across a larger portion of a field, and 

improve crop uptake across a larger area. Soil sampling is fundamental to 

learning and acting upon the degree to which soil nutrients vary spatially. An 

important consideration for variable rate application is the suitability of a 

particular field. For example, Mueller et al. (2001) sampled a field that did not 

contain sufficient inherent variability to economically warrant any more detail than 

a simple field average value. Grid sampling and management zone sampling are 

methods for assessing soil nutrient variability about the field with the goal of 
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applying rates of fertilizer that more appropriately meet crop demand, in specific 

field areas, than a uniform rate application. An objective look at these sampling 

methods is needed to provide a better understanding of pros and cons for 

Tennessee farmers considering their use.  

3  Literature Review and Background 

3.1 Grid Soil Sampling 

 Grid soil sampling involves subdivision of a field at regular intervals and 

can be conducted two basic ways. Grid-cell sampling is a random sampling of 

the whole area of a grid-cell of whichever shape is used. Grid-point sampling is a 

sample of usually a smaller number of cores taken near grid intersections or 

center points (Havlin et al., 2014). Note that both methods involve collecting 

multiple cores and mixing to form a composite sample. Grid-point sampling is the 

more often practiced grid sampling scheme. Grid-cell sampling requires more 

labor as more cores are collected and are more physically spread out than the 

cores collected for a grid-point sample. Also, with GPS and GIS technology, grid-

point sampling locations are easily found, while grid-cell sampling requires 

flagging of a cell’s borders or constant contact with GPS. Another difference lies 

in the use of received soil test values. Grid-point samples are typically 

geospatially interpolated using Kriging or Inverse-Distance-Weighting methods to 

achieve a continuous map of nutrient values. Grid-cell samples give a pixelated, 

but complete, map of field nutrient values. Wollenhaupt et al. (1994) suggests 

that grid-cell produced maps are not ideal for variable rate application because of 

their non-continuity.  
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 Much research has focused on grid size and its effect on resolution of 

nutrient maps. The consensus of grid size research has been a better resolution 

from smaller grid size (Sawchik and Mallarino, 2007; Mallarino and Wittry, 2004; 

Stepien et al., 2013; Bronson et al., 2000).  Economics of more intense sampling 

and differences in applied fertilizer costs and returns from yield differences must 

be examined, but as Anderson and Bullock (1998) noted, the most appropriate 

sampling scheme will vary by field. Some fields are better suited to variable rate 

application because they present more nutrient or pH variability and at least 

some areas where nutrients test less than optimal. Although grid size has been 

researched frequently, relatively few studies have compared grid-cell and grid-

point sampling. Disagreement exists in the literature on which grid sampling 

method captures the most variability. A common perception is that grid-cell 

sampling tends to dilute the effect of local highs and lows, while grid-point 

sampling will catch more areas of high and low nutrient status. Wollenhaupt et al. 

(1994) and Thompson et al. (2004) noted these differential tendencies and 

concluded that grid-point sampling revealed more variability than grid-cell 

sampling. Flowers et al. (2005), however, found a grid-cell sampling scheme 

captured more variability than grid-point sampling. Our objective is to compare 

the variability revealed by grid-point and grid-cell sampling.  

3.2 Zone Soil Sampling 

 Another soil sampling strategy to facilitate variable rate fertilizer 

application is management zone sampling. This method requires dividing a field 

into zones that encompass areas of similar fertility status and that are different 
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from other parts of the field. A benefit of zone sampling over grid sampling is less 

intensive sampling and fewer samples to be analyzed (Khosla et al., 2002). While 

simple in theory, management zone sampling is more complex in design than 

grid sampling because of the necessity of some kind of field knowledge to base 

zones on. Many techniques for zone delineation have been used, including yield 

maps, bare soil imagery, electrical conductivity maps, topography, soil maps, 

remote sensing, slope, and farmer knowledge (Thompson et al., 2004; Khosla et 

al., 2002).  

Using yield history to form zones has consistently proven an effective 

technique to group soil nutrient variation (Thompson et al., 2004; Flowers et al., 

2005; Hornung et al., 2006). Electrical conductivity maps show promise for some 

fields (Peralta and Costa, 2013), and remote sensing images have been 

successfully used to form nutrient management zones (Thompson et al., 2004). 

Electrical conductivity data and remotely sensed images are relatively hard to 

obtain, while yield maps are becoming more common for farmers interested in 

precision agriculture. Among the more easily obtained data for delineating zones, 

less certainty exists about their ability to accurately divide fields into management 

units. Thompson et al. (2004) successfully used soil maps to form management 

zones, as did Kravchenko and Bullock (2000), who also noted that organic matter 

content was the soil property most related to soil nutrient status. Franzen et al. 

(2002), however, concluded that Order 2 soil surveys, the commonly published 

scale, were not consistently effective at forming management zones. They found 

Order 1 soil surveys to better represent nutrient management zones, but noted 
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the difficulty of obtaining such detailed soil maps. Topographic elements such as 

slope and elevation have been used successfully to delineate management 

zones (Franzen et al., 1998; Khosla et al., 2002), which makes sense because 

several studies have noted the interrelationships between topographic elements 

and yield and soil properties (Changere and Lal, 1997; McConkey et al., 1997). 

Incorporation of farmer knowledge into a zone delineation plan has proven 

important (Khosla et al., 2002), and can be a standalone method for forming 

management zones. Hornung et al. (2006) pointed out that using multiple data 

layers when forming zones is not always beneficial, and that a farmer’s intimate 

knowledge of the field should always be consulted. Our objective is to examine 

the effectiveness of several more readily available zone delineation techniques 

for forming nutrient management zones in Tennessee. 

3.3 Soil Sampling Intensity 

 Soil sampling intensity, or the number of individual cores taken per 

composite sample, is also an important component of proper soil sampling to 

implement variable rate nutrient application. The inherent and human-induced 

spatial variability of soil nutrients is the underlying cause of the uncertain nature 

of soil sampling, while errors in sampling technique and analysis further 

exacerbate uncertainty. Even considering uncertainty, soil sampling has proven a 

greatly beneficial guide for improving agricultural productivity and profitability. 

The number of cores taken can have a great impact on the accuracy to be 

expected of results. Kariuki et al. (2009) noted that too few cores would lead to 

greater uncertainty about the resulting test values and too many cores would 
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incur unnecessary labor. University recommendations are often 15-25 cores to 

form a composite sample (Daniels et al., 2015), but often lack a recommendation 

of size of area that should be sampled. Several researchers have recommended 

a need for significantly more subsamples; Daniels et al. (2001) recommended 48 

subsamples to be within reasonable error of the mean value, while Friesen and 

Blair (1984) suggested 40-80 cores were necessary. Kariuki et al. (2009) arrived 

at a lower recommended number of subsamples of 22. The recommended 

number of subsamples should be aimed toward the nutrient measure that shows 

the highest variability for that area. The University of Tennessee recommends a 

minimum of 20 cores to be taken from an area no larger than ten acres for field 

crops, resulting in an intensity of about 2 cores/acre (Savoy and Joines, 2015). 

While several studies have used iterative processes to determine a minimum 

number of cores to reach a certain level of certainty, it is of interest to physically 

take cores at differing intensity levels, with replication, to observe the variation 

associated with each level of intensity.  

4  Objectives 

The objectives for this study are: 

• Compare grid sampling techniques for capturing field variability 

• Evaluate zone delineation methods for potential to group variability in 

Tennessee fields 

• Test and verify University of Tennessee recommendation for soil sampling 

intensity 
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5  Materials and Methods 

5.1 Grid Soil Sampling 

 Two fields were sampled at the University of Tennessee Research and 

Education Center in Milan in March 2014. A field exhibiting a high degree of 

variability in soils, topography, and yield potential and another field exhibiting little 

variation were chosen. The two fields sampled were recommended by staff of the 

research center for these qualities. Each field was divided into one-acre grids 

using ArcGIS 10.1 software. This resulted in 33 grid-cells in the more variable 

field, and 25 grid-cells in the less variable field. Grid orientation was north-south 

to avoid any sampling bias that could be introduced by adjusting grid orientation 

(Flowers et al., 2005). ArcMap shape-files were created to identify the center 

point and borders of each one-acre grid cell. In field, a Trimble Nomad unit 

running ArcPad was used for orientation and navigation.  

 Each grid was sampled in triplicate at its center (grid-point) by taking six 

cores in a ten-foot radius about the center point, and doing so three times. Each 

grid was also sampled in triplicate by randomly taking sixteen cores throughout 

the grid area in a zig-zag pattern (grid-cell), and doing so three times (Figure 2-

1). Cores were hand-crushed and mixed in field, and a composite sample was 

taken. Samples were analyzed at the University of Tennessee Soil, Plant, and 

Pest Center. Samples were air-dried, ground, and passed through a no. 10 mesh 

sieve with an opening of 2.00 mm. Soil nutrients P, K, Ca, and Mg were extracted 

using Mehlich 1 reagent and test levels determined using inductively coupled 

plasma optical emission spectrometry. Lime requirement was determined using 
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the Moore-Sikora buffer, and water pH was determined using a pH electrode at a 

1:1 soil to water solution ratio. 

The mean was calculated for each grid, and each sampling strategy within 

that grid. These mean values were averaged across a field within sampling 

strategy to give an overall field mean. An overall field SD was calculated using 

the mean values for each grid, within sampling strategy, therefore using 33 

values in the more variable field and 25 values in the less variable field (Table 2-

1). Coefficient of variation (CV) values were calculated for each sampling 

strategy, in each field, using these overall field mean values and SD (Table 2-1).  

CV values were compared as suggested by Thompson et al. (2004), with a 

reduction in CV indicating less variability found by that scheme. Proc GLM 

routine of SAS 9.3 was used to separate averaged mean values within each field, 

nutrient, and sampling scheme (LSD p=.10). pH test values were converted to 

[H+] for statistical analysis then back to pH for reporting mean and CV. Also 

within Proc GLM, Levene’s test for equality of variances and a Zarr 

approximation were used to identify significance of differences between the SD 

and CV values, respectively. Grid-point and grid-cell mean sampled values were 

charted with their SD error bars for each field, and a percentage agreement 

between the two methods was calculated by number of grids where the error 

bars overlapped, divided by total number of grids (Table 2-2).  

5.2 Zone Soil Sampling 

 Grid-point mean values for each grid were used in evaluating success of 

management zone delineation techniques. CV for all grid-point mean values 
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within a field was calculated for each field as a standard for comparison. When 

zones were formed, grid-point mean values that resided within the boundaries of 

each zone were used to calculate a CV, and each zoning method was assigned 

an average CV value calculated by averaging the multiple zone CVs for that 

zoning technique. Zone delineation techniques were evaluated by comparing 

zone CV to overall field CV and comparing zone CVs to one another (Tables 2-3 

and 2-4). Lower CV values achieved with zoning techniques would indicate some 

grouping of nutrient variability.  

5.2.1 Yield Zones 

 Cotton yield maps from the 2013 growing season were used to construct 

yield-based management zones. Yield data was cleaned up as recommended by 

Blackmore and Moore (1999) and Weisz et al. (2003) by buffering data around 

field edges and removing unreasonable outliers. Yield increments were formed to 

create four classes of yield potential. Jenks Natural Breaks procedure in ArcMap 

was used as a basis for size of yield increments. These increments were 

adjusted to include a reasonable amount of field area in each zone. Yield 

intervals were not the same for both fields, as the less variable field tended to 

have higher yields overall and a smaller range of yields, while the more variable 

field had lower average yield but covered a greater range of yields (Figure 2-2).  

5.2.2 Soil Zones 

 Published Order 2 soil surveys of each field (NRCS Web Soil Survey) 

were used to delineate soil zones. Each different soil series mapped was used as 

a separate management zone. In our case, this led to a reasonable number of 
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management zones (3-4), but if needed, similar soil series could likely be 

grouped. Order 1 soil surveys had also been prepared for each field. In the less 

variable field, each soil series was used as an individual management zone, as 

done for the Order 2 survey zones (Figure 2-3). However, for the more variable 

field, the soils map produced by an Order 1 soil survey became complex. To 

keep the number of zones reasonable, all variations of a soil series were grouped 

as one. For example, Loring soils with differing slopes and erosion classes were 

grouped together because of their common series description (Figure 2-4). 

5.3 Soil Sampling Intensity 

 A two-acre area of each field was divided into nine equal-size grid cells, 

each of approximate size .22 acres.  Each grid cell yielded a composite sample 

achieved by taking sixteen random cores. These nine values from the .22 acre 

areas were averaged for each nutrient to give a representative mean value for 

the full two-acre area. Each full two-acre area was then sampled in triplicate at 

intensities of 1, 2, 4, 8, and 16 cores/acre (2, 4, 8, 16, and 32 physical cores 

taken in each two-acre area). A mean was calculated for each sampling intensity, 

with the three samples taken at each intensity in each field. Mean separation was 

conducted using LSD at p=.05 (Tables 2-5 and 2-6). Standard deviations and 

CVs about the overall mean were calculated to evaluate the repeatability of a 

given intensity. Levene’s test for standard deviations was used as a separation 

method within field and nutrient and between sampling intensities (Tables 2-5 

and 2-6). CV for sampling intensities was plotted for each field to observe 

patterns in variation across changing core intensities (Figures 2-5 and 2-6).  
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6  Results and Discussion 

6.1 Grid Soil Sampling 

 Mean nutrient test values, along with their standard deviations, were 

calculated for each sampling method, within each field (Table 2-1). While mean 

soil test value and standard deviation are useful in showing agreement, or 

disagreement, between sampling methods, comparing CV values most 

appropriately indicates which sampling method captured more in-field nutrient 

variability by acting as a standard index. CV values can simply be compared 

numerically or ranges can be used to differentiate degrees of variability, as 

suggested by Wilding et al. (1994). CV values of 0-15%, 15-35%, and 35-100% 

represent low, medium, and high variability, respectively. In side-by-side 

comparison, grid-point sampling resulted in greater CV values than did grid-cell 

sampling for all measured	  nutrients (P, K, Mg, Ca, and pH), and in both fields. In 

several instances, shifting from grid-cell to grid-point sampling resulted in a 

higher variability classification. In the more highly variable field, P increased from 

31 to 49%, medium to high, and Ca increased from 15 to 23%, low to medium. In 

the slightly variable field, P increased from 23 to 46%, medium to high, K 

increased from 14 to 26%, low to medium, Ca increased from 14 to 19%, low to 

medium, and pH increased from 34 to 63%, medium to high. Our findings 

strongly support the hypothesis that grid-point sampling captures more in-field 

nutrient variability than does grid-cell sampling, and agree with the conclusions of 

Wollenhaupt et al. (1994) and Thompson et al. (2004). This conclusion is 
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contrary to that of Flowers et al. (2005), who suggested greater variability was 

captured using grid-cell sampling.  

 Overall mean soil test levels were similar between grid-point and grid-cell 

sampling for all nutrients in the more highly variable field. In the less variable 

field, significant difference existed between the overall mean achieved by the two 

sampling methods for K and pH. Similar overall means, for the most part, lend 

credence to each method’s ability to thoroughly assess a whole field average 

value. SD varied significantly between the sampling methods for P, K, and Mg in 

the more variable field and for P, K, Ca, and pH in the less variable field. CV 

varied significantly between sampling methods for P and Mg in the more variable 

field and for P, K, Ca, and pH in the less variable field. As noted previously, SD 

and CV were numerically higher for grid-point sampling than grid-cell sampling 

for all nutrients in both fields. More significant differences were detected in the 

less variable field than the more variable field for mean (2/5 vs. 0/5), SD (4/5 vs. 

3/5), and CV (4/5 vs. 2/5). The less variable field, while not as uniform in nutrient 

levels as suspected, was cleaner, i.e. the data was not as noisy, leading to better 

separation between sampling methods in that field. Mean nutrient test values 

were generally higher in the less variable field. All nutrients except Mg had higher 

test values in that field. Interestingly, SD values were also commonly higher in 

the less variable field, except for Mg. Partially, this could be due to the higher test 

values allowing more inherent room for variability around the mean. It also 

indicates, however, that apparent variability of a field in topography, soils, and 

yield potential does not always predict degree of nutrient variability in that field. 
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CV values followed a more expected pattern; within sampling schemes, CV was 

always higher in the more variable field. In other words, with respect to the mean 

level of each nutrient, the SD values were relatively higher in the more variable 

field. It should be noted in comparing sampling methods, that mean values and 

their subsequent effect on SD and CV were composed of differing numbers of 

input values between sampling methods. In grid-cell sampling, 16 cores were 

taken per composite sample, leading to a mean of more values than grid-point 

sampling, which consisted of 6 cores per composite sample. The greater number 

of cores per grid-cell sample could lead to more dilution of variability and a 

seemingly lowered ability to indicate variation across a field. The differing number 

of cores for each sampling method was instituted to mimic technique commonly 

used for each sampling method in production agriculture. Per area covered in 

each sampling scheme (one-acre square for grid-cell vs. a 20 foot diameter circle 

for grid-point), either method could be considered an intense sampling of that 

area.  

 Percent agreement between grid-point and grid-cell sample nutrient 

values was calculated for each nutrient in each field (Table 2-2). Percent 

agreement is a measure of how often the two sampling strategies give a 

statistically similar measured nutrient value for that grid. Percent agreement 

values between grid-point and grid-cell sampling were not particularly high. Only 

two of ten instances were greater than 70% in agreement, while the majority of 

percent agreement values were less than two-thirds. Variability of the field did not 

have a consistent impact on how often the sampling strategies were in 
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agreement. For P, K, and pH, the more highly variable field had higher percent 

agreement values. For Mg and Ca, however, the less variable field had higher 

percent agreement values.  

 Percent agreement values that are not exceedingly high are not an 

indicator of improper sampling, rather, they are an artifact of natural soil 

variability and of the inherent differences in grid-point and grid-cell sampling and 

what each strategy attempts to capture. Grid-cell sampling is used to pursue a 

nutrient value that is averaged for and representative of that entire grid area. 

Grid-point sampling is focused on sampling a much smaller area, in an attempt to 

capture an accurate nutrient value of a literal and spatial point in the field. Grid-

point values should not be assumed to accurately represent the entire grid area 

around them. Percent agreement values in Table 3 suggest this extrapolation 

could be flawed in a significant number of cases. Grid-point values are best 

suited for geospatial interpolation, which is how they are often managed, and 

production of continuous maps of nutrient values.  

6.2 Zone Soil Sampling 

 Evaluation of zoning success is best approached by numerical 

comparison of CV values, as suggested by Thompson et al. (2004). Successful 

zoning for a particular nutrient is indicated by a reduction in CV from overall field 

CV. Two main questions were addressed when testing strategies for creating 

nutrient management zones; were these zone delineation techniques useful for 

grouping variability, and were there differences in response to zone delineation 

between fields?  



	   69	  

 Each of the zone delineation strategies implemented seemed to 

successfully group some variation and improve upon overall field CV. Delineating 

zones was unsuccessful in only a few instances - detailed soil maps P zoning in 

the highly variable field (Table 2-3), NRCS-WSS K zoning in the less variable 

field, and NRCS-WSS pH zoning in the less variable field (Table 2-4). 

Differences between the techniques were small. Numerically, CV values are 

lowest when using yield maps to form zones across all nutrients and both fields 

except for K and Mg in the highly variable field.  

 Response to zone delineation varied more significantly between fields 

than between zoning technique. Average reduction in CV achieved by zoning 

was greater for all nutrients except P in the more highly variable field. Zoning for 

P resulted in similar reductions in both fields. Zone delineation could be predicted 

to be more successful in fields exhibiting greater variability, if zones are created 

appropriately, so as to group variation. With less overall variability, zoning, even 

at its best, can only help to a certain degree. A key concern that is not addressed 

by this research is potential agronomic and economic impact of this zoning effect. 

While our results show the potential for these zoning techniques to group nutrient 

variability, further research should seek to discover the agronomic and economic 

validity of implementing zoning practices.  

6.3 Soil Sampling Intensity 

 Recommendations for soil sampling intensity perhaps should be nutrient-

specific, and choosing an intensity level that is appropriate for all nutrients 

requires some compromise. While a high degree of confidence in values 
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obtained is desirable, a practical number of physical cores is also a necessity. 

We examined our soil sampling intensity data with two different approaches. 

Firstly, means and standard deviations were compared for each intensity within 

nutrient and within field (Tables 2-5 and 2-6). Mean values were separated using 

LSD mean separation. SD values were statistically separated using Levene’s test 

for equality of variances. A lower SD value is more desirable, as this indicates 

sampled values that were closer to one another, or in better agreement. High 

standard deviations are indicative of widely separated values and less 

confidence in the values obtained if that sampling intensity was used.  

 Mean values, for the most part, did not change with changes in sampling 

intensity. Only in a couple instances, P and Ca in the less variable field, did mean 

value show a change when sampled more intensely. When multiple composite 

samples are taken, it seems the mean of those samples can be assumed a good 

representation, but when only one composite sample is taken, as is practical and 

commonplace, the SD about the representative mean value gives an indication of 

how confident one can be in the value received. Ideally, standard deviation would 

consistently, perhaps nonlinearly, decrease as sampling intensity increases. This 

was observed, for the most part. Exceptions did exist, however, as soil sampling 

is inherently a messy and imprecise science. Possible errors exist in all facets of 

the soil sampling and analyzing process, as mentioned earlier. A 

recommendation of sampling intensity can be made by finding the sampling 

intensity that statistically minimizes standard deviation or at least results in a 

statistically lower standard deviation than the least intense level used.  
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 Using this strategy, let us first examine the more highly variable field. For 

P, an intensity of 8 cores/acre must be used to achieve a significantly lower SD 

compared to 1 core/acre. A further improvement in SD can be seen when 

intensity is increased to 16 cores/acre. For K, an intensity of 8 cores/acre is 

needed to realize a significant decrease in SD. For Mg, increasing sampling 

intensity to just 2 cores/acre significantly lowered SD. For Ca, an intensity of 8 

cores/acre was again needed to achieve a decrease in SD. For pH, simply 

increasing intensity to 2 cores/acre significantly lowered SD. For P, K, and Ca, an 

intensity of 8 cores/acre was needed to significantly improve confidence in 

repeatability of sampling, while an intensity of 2 cores/acre was required for Mg 

and pH. Recall, the area sampled in the more highly variable field was not 

uniform in soil type, topography, or yield potential. The variability of this area 

sampled in the highly variable field may lend itself to a more pronounced benefit 

from increased sampling intensity compared to a more uniform area.  

 The area sampled in the less variable field was uniform in soil type and 

much less variable in yield potential. There was no clear decrease in SD for P, K, 

Mg, or Ca with increased sampling intensity. In fact, SD increased at the highest 

sampling intensity over at least one of the lesser intense sampling intensities for 

each of the nutrients in the less variable field. For pH, sampling intensity of 2 

cores/acre significantly reduced SD over 1 core/acre. The area sampled in the 

less variable field represents a more uniform sampling area, which is ideally what 

a producer aims to create by using zoning techniques. The lack of decreasing SD 

with increasing sampling intensity in this field suggests that sampling intensities 
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do not need to be as high if an area is uniform in soil type, topography, and yield 

potential. Increasing SD at high sampling intensities in this field further support a 

notion of fewer needed cores. Physical mixing of too many cores in field is 

exhausting and likely leads to error in obtaining a representative sample.  

 The second method we used to look at sampling intensity data was 

comparison of CV, and in doing so we could compare all nutrients 

simultaneously. Using CV puts all nutrients on the same percentage scale, 

whereas SD is unique to each nutrient. Kariuki et al. (2009) suggests achieving 

CV lower than 20% is an acceptable level of confidence for soil sampling. Using 

this guideline, we see similarities to recommendations derived from SD. In the 

more variable field (Figure 2-5), 4 of the 5 nutrients start over 20% CV at 1 

core/acre. When intensity increased to 2 cores/acre, only 3 of the 5 are above 

20% CV, and P and K are close to that threshold. At 4 cores/acre, only P and pH 

are still above 20% CV, and at 8 cores/acre, only pH remains high. In both fields, 

pH consistently decreases in CV with increased sampling intensity, but never 

reaches the 20% mark. pH is notoriously highly variable, due to inconsistent 

spreading of lime and fertilizer (Flowers et al. 2005). In the less variable field 

(Figure 2-6), only P and pH are over 20% CV at an intensity of 1 core/acre. At 2 

cores/acre, K rises slightly above 20% CV, but is probably just noise as it is well 

below 20% CV at all other intensities. For the most part, all nutrients are below or 

at least hovering near the 20% CV threshold at all intensities in the less variable 

field, reflecting the trend seen with SD. Curiously, P and Ca rose to their highest 
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CV at the most intense sampling, probably a result of the physical mixing issue 

with an excessive amount of soil mentioned prior.  

While the results of the less variable field suggest no benefit of sampling 

intensity greater than 1 core/acre, except for pH, the results from the more 

variable field should not be ignored. Ideally, uniform areas could be identified and 

sampled, but in practice, fields are often sampled as a whole or field divisions are 

made arbitrarily or improperly. When more variability existed within a sampling 

area, 2-8 cores/acre were needed to assess nutrient status consistently. Current 

University of Tennessee recommendation of at least 2 cores/acre seems 

accurate. Sampling areas should always be formed in such a way to make them 

as uniform as possible, and should be sampled at intensities of 2-8 cores/acre. 

Sampling intensities higher than 8 cores/acre may not be practical because of 

the physical limitation of proper mixing of soil cores.  

7  Conclusion 

 The basic goal of soil sampling is to identify soil supplies of critical 

nutrients and to address any nutrients that are deficient so as to optimize the 

probability of achieving best economic yields. Whether soil sampling aims to 

simply obtain a field average for uniform application or attempts to capture and 

address in-field variability with variable rate application of nutrients, proper 

sampling techniques should be followed and adequate numbers of cores 

collected. This research looked to provide information for Tennessee row crop 

producers on techniques for sampling to address nutrient variability and how 

intensely an area should be sampled. Grid soil sampling is a popular strategy for 
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assessing in-field nutrient variability, but an important distinction should be made 

between grid-point and grid-cell sampling. Our data show that grid-point sampling 

captures more variability, but the point samples are not necessarily 

representative of the full cell area around them. Zone soil sampling can be used 

to capture more nutrient variability than a field-average value and is less 

time/labor intensive than grid sampling, but requires prior knowledge of some 

field characteristics. Zone delineation using soil maps of varying survey intensity 

and yield maps consistently grouped and reduced variation compared to whole 

field, but questions remain about economic and agronomic effectiveness of 

zoning strategies. Suggesting a sampling intensity, in cores/acre, is difficult 

because some nutrients tend to exhibit more variability than others. Also, data 

concerning the repeatability of sampling intensity tends to be noisy, leading to 

inconclusiveness on the appropriateness of a given intensity. Nevertheless, a 

sampling intensity of 2 cores/acre is recommended as a minimum, while no more 

than 8 cores/acre are recommended due to the physical size of soil sample that 

is possible at higher intensities. This study reveals promise for the use of 

precision soil sampling strategies in Tennessee to address nutrient variability, yet 

suitability of a field for precision soil sampling is an important consideration. A 

field should have enough spatial variability to warrant varying of nutrient 

application rates to better suit crops in specific field areas, and a field should 

certainly have areas low enough in one or more nutrients that fertilization is even 

recommended. While variability within the high or very high range may be 

recognized and identified, nutrient recommendations are not going to change. 
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Further study of these techniques and ideas should begin to evaluate economic 

and agronomic effectiveness of precision soil sampling. 
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9  Appendix: Figures and Tables 

 

	  

Figure 2-1: Grid-cell sampling (left) vs. grid-point sampling (right). Each grid was 

sampled six times in total, three by each grid sampling method.  

  

	  

	  	  

	  

	  
	  

	  

	  

	  

	  

	  

	  

	  
	  

	  
	  

	  	  	   	  	  	  

VS. 



	   82	  

 

<300

300$575

575$830

830$1350

<1000

1000$1170

1170$1340

1340$1500

Yield/(lbs/acre)

Yield/(lbs/acre)

	  

Figure 2-2: Yield-based management zones in the more variable field (top) and 

less variable field (bottom).  
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Abbreviation Soil Series Abbreviation Soil Series 
Ce Center Fa Falaya 
Le Lexington Lo Loring 
Pr Providence Rt  Routon 

 

Figure 2-3: Order 1 soil survey (left) and Order 2 soil survey (right) for the less 

variable field. 
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Abbreviation Soil Series Abbreviation Soil Series 
Co Collins Fa Falaya 
Gr Grenada Le/Lx Lexington 
Lo Loring Pr Providence 

 

Figure 2-4: Order 1 soil survey (top) and Order 2 soil survey (bottom) for the 

more variable field. 
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Table 2-1: Mean, standard deviation, and CV compared between nutrients and 

sampling method within each field. Bolded values indicate significant differences 

between numbers for that nutrient in that field at significance level p=.10.  

        Mean   
      P K Mg Ca pH 

Highly Variable  Grid-Cell 15.5 97.0 147.5 1457.5 6.2 
Field   Grid-Point 15.7 97.9 149.3 1465.1 6.3 

Slightly Variable  Grid-Cell 44.3 147.4 137.0 2267.3 6.8 
Field   Grid-Point 43.5 152.2 129.0 2175.6 6.7 
 

        Standard Deviation   
      P K Mg Ca [H+] 

Highly Variable  Grid-Cell 4.9 22.3 36.8 218.6 3.2E-07 
Field   Grid-Point 7.7 30.6 48.1 337.3 6.9E-07 

Slightly Variable  Grid-Cell 10.1 21.1 31.5 308.7 5.7E-08 
Field   Grid-Point 19.8 39.6 35.3 416.9 1.9E-07 
 

        Coefficient of Variation   
      P K Mg Ca [H+] 
Highly Variable  Grid-Cell 31.3 23.0 24.9 15.0 50.2 
Field   Grid-Point 49.0 31.2 32.2 23.0 96.9 
Slightly Variable  Grid-Cell 22.9 14.3 23.0 13.6 33.6 
Field   Grid-Point 45.6 26.0 27.4 19.2 63.2 
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Table 2-2: Percent agreement between grid-point and grid-cell sampling. 

    Percent Agreement   
  P K Mg Ca pH 
Slightly Variable Field 57 65 74 65 52 
Highly Variable Field 65 77 65 58 68 
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Table 2-3: CV values achieved by each zoning method compared to overall field 

CV in the more highly variable field. 

    CV (%)   
Zone P K Mg Ca pH 
Overall Field 49 31 32 23 97 
NRCS-WSS 44 25 29 21 84 
Soil Maps 51 24 24 22 91 
Yield  40 27 29 21 81 
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Table 2-4:  CV values achieved by each zoning method compared to overall field 

CV in the less variable field. 

    CV (%)   
Zone P K Mg Ca pH 
Overall Field  46 26 27 19 63 
NRCS-WSS  44 27 26 19 65 
Soil Maps 39 24 27 17 59 
Yield  36 23 26 17 55 
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Table 2-5: Mean and standard deviation for each sampling intensity in the field 

more variable in soil type, topography, and yield potential. Mean separation LSD 

p=.05, and SD separated with Levene’s test, p=.10. 

Nutrient Cores Mean Letter Sep. SD Letter Sep. 
  1/Acre 16 A 5 A 
  2/Acre 16 A 4 AB 
P 4/Acre 19 A 4 AB 
  8/Acre 21 A 2 B 
  16/Acre 20 A 1 C 
  1/Acre 98 A 15 A 
  2/Acre 86 A 16 A 
K 4/Acre 95 A 9 AB 
  8/Acre 94 A 7 B 
  16/Acre 85 A 6 B 
  1/Acre 181 A 46 A 
  2/Acre 140 B 14 B 

Mg 4/Acre 145 AB 14 B 
  8/Acre 141 B 9 B 
  16/Acre 145 AB 10 B 
  1/Acre 1268 A 172 A 
  2/Acre 1236 A 90 AB 

Ca 4/Acre 1282 A 84 AB 
  8/Acre 1311 A 72 B 
  16/Acre 1275 A 52 B 
  1/Acre 1.79E-06 A 9.19E-07 A 
  2/Acre 1.16E-06 A 3.36E-07 BC 

[H+] 4/Acre 8.21E-07 A 4.17E-07 B 
  8/Acre 8.15E-07 A 3.12E-07 BC 
  16/Acre 8.77E-07 A 1.84E-07 C 
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Table 2-6: Mean and standard deviation for each sampling intensity in the field 

less variable in soil type, topography, and yield potential. Mean separation LSD 

p=.05, and SD separated with Levene’s test, p=.10. 

Nutrient Cores Mean Letter Sep. SD Letter Sep. 
  1/Acre 30 B 7 A 
  2/Acre 37 AB 2 B 
P 4/Acre 41 A 6 A 
  8/Acre 40 A 6 A 
  16/Acre 43 A 9 A 
  1/Acre 144 A 17 AB 
  2/Acre 154 A 25 A 
K 4/Acre 128 A 12 B 
  8/Acre 132 A 9 B 
  16/Acre 147 A 13 AB 
  1/Acre 131 A 17 AB 
  2/Acre 158 A 22 A 

Mg 4/Acre 142 A 6 B 
  8/Acre 145 A 9 B 
  16/Acre 151 A 12 AB 
  1/Acre 2022 B 121 B 
  2/Acre 2396 AB 286 A 

Ca 4/Acre 2372 AB 296 A 
  8/Acre 2229 AB 216 AB 
  16/Acre 2477 A 370 A 
  1/Acre 5.09E-07 A 3.63E-07 A 
  2/Acre 1.61E-07 B 7.30E-08 B 

[H+] 4/Acre 1.76E-07 AB 5.20E-08 B 
  8/Acre 1.79E-07 AB 5.50E-08 B 
  16/Acre 1.89E-07 AB 4.40E-08 B 
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Figure 2-5: CV for each nutrient and sampling intensity in the more highly 

variable field. 20% CV threshold is marked with bold line. 
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Figure 2-6: CV for each nutrient and sampling intensity in the less variable field. 

20%	  CV	  threshold	  is	  marked	  with	  bold	  line.  
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Conclusion 

Agriculture is an ever-evolving and actively changing pursuit. Production 

techniques, like irrigation management should be continually refined, in order to 

optimize probabilities of good yields. New advances in technology, such as 

controlled-release fertilizers, should be evaluated for their effectiveness 

agronomically and economically. Producers are in need of sound research to 

provide guidance on these aspects of production. Environmental pressures are 

also mounting on agriculture, as potential negative impacts of production inputs 

are being studied and brought into focus. With the well-being of producers in 

mind, and the importance of the environmental impact of fertilizer and water 

inputs, this research strives to provide guidance on appropriate application 

techniques and strategies for fertilizers and water.  
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