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ABSTRACT 
 

The electrical analysis of the biological material has been in existence since the 

turn of last century. A novel application of this technology to cellular monolayers was 

implemented by Giaever and Keese 20 years ago with their Electrical Cell-Substrate 

Impedance Sensing (ECIS) system. The capabilities of a real-time system for endothelial 

impedance measurement are of immense importance. The endothelium is typically the 

body’s first contact with stimuli and its reaction to medical conditions of inflammation, 

disease, and body response are of great significance to understanding the physiology of 

numerous conditions ranging from heart, lung, and renal disease, to intestinal diseases. It 

is the purpose of this Master’s thesis to analyze and optimize the ECIS system for making 

quantitative measurements of endothelial monolayer impedance, and accurately applying 

the results to a thoroughly reviewed analysis package in order to produce accurate 

cellular resistance parameters. The optimization of data acquisition (DAQ) is 

accomplished by systematic noise recognition, examination, and minimization; a task that 

has previously been unexplored in any studies using the ECIS system. Harmonic, 60 Hz, 

and Gaussian noise sources were well documented in unfiltered data and successfully 

minimized in the DAQ. Analog to digital (A/D) noise was found to be the lower limit of 

reducible noise and was properly documented and considered in analysis. Contamination 

of the electrode arrays from manufacturing processes and proper electrical connection 

were also found to be of concern to the proper functioning of the system. Analysis of the 

optimized acquired data was performed in the LabVIEW programming environment, as it 

offered a more flexible software package than that provided by the current commercially 
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available ECIS system. The optimized system was applied to a further look into hand 

arm-vibration syndrome (HAVS) and it was concluded that the acceleration exposure 

dose, incorrectly calculated from the international standards, did not elicit an acute 

endothelial inflammation response by our measurements. The cumulative result of this 

study is that the ECIS system has been optimized and various unresolved sources of error 

were corrected for a more accurate real-time measurement of the endothelial monolayer 

barrier function in response to stimuli.  
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PART 1: INTRODUCTION 
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I. Introduction 
 
A. THE CELL AND ITS POTENTIAL 
 

The cell is often thought of as the basic building block upon which living 

organisms are made. For a medical researcher, the cell is an important area of interest. 

Behavior at the tissue or cellular level is one of the lowest levels at which physical 

phenomenon can be inferred to the greater organism as a whole, specifically the health of 

an individual. There are over 200 different types of cells alone in the human body and 

much about those cells that remains unknown. Disease, infection, trauma, and other 

health related phenomenon have all been traced down to the cellular level to better 

understand their cause and impact on a cell. There is much to be learned from the 

mysterious cell. 

What was known about the properties of living cells until the application of 

electrical measurement to biological materials was based on traditional objective 

research. The entire field of cell biology was based upon the microscope viewing of 

particular cells and a further chemical decomposition of certain parts of those cells. The 

behavior and reaction of cells in culture was limited to a visual account of the behavior 

and by the limited objective magnification of a light diffraction/reflection microscope. 

The invention of technology that allowed for the electrical measurement of cells would in 

turn allow for another dimension - another facet of cell existence to be uncovered -

besides their visual appearance and chemical composition: their electrical nature. 

Much of the intricate behavior of organisms is made possible by the electrical 

activity of the living cells that comprise the organism. [1] The control and regulation of 

organism sensory perception, circulatory function, muscle control, assessment, etc. is 



 3

viable though the electrical activity and response of different cells in the body. The 

fundamental mechanisms for the electrical activity of different cells in general are quite 

similar. The membrane of a eukaryotic mammalian cell is composed of a lipid bilayer 

that serves the purpose of separating the intracellular ionic solution of the cytoplasm from 

the extracellular environment. This membrane includes various proteins, receptors, ionic 

channels, and ionic pumps that are responsible for maintaining the intracellular ionic 

concentrations and electric potential relative to the extracellular environment. [2] 

 

B. A BRIEF HISTORY OF CELLULAR ELECTRICAL MEASUREMENTS 
 

Since the turn of last century, the electrical activity of cultured cells has been 

studied. In 1902, Bernstein first hypothesized that there was a resting potential to a cell. 

[3] Experimental studies into the electrical properties of cell membranes began in 1923, 

with Cole and Curtis. Using a Wheatstone bridge the two were able to measure 

membrane resistance and capacitance. [4] Their studies demonstrated that a cell has high-

conductance in its cytoplasm (nearly 30-60% of that of the bath environment) surrounded 

by a membrane of low conductance with a capacitance of approximately 1 mF/cm2. In 

1939, Cole and Curtis were able to measure the change in conductance of a giant squid 

axon during the firing of an action potential (AP) using a Wheatstone bridge. [5] Around 

the same time, Hodgkin and Huxley, using microelectrodes, were able to measure the AP 

of a squid axon cell. [6]  

Traditionally, cell potential has been measured in three ways: an intracellular 

recording, a cell patch, and a close proximity extracellular electrode placement. [1] 

(Figure A-1) In all three techniques, the ground lead is a distant reference electrode in 
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the extracellular bath. Because the system has such a large impedance, the leads are 

connected to a high input impedance amplifier to be able to measure the small cellular 

potential. For the intracellular measurement, the lead is placed intracellularly by the 

difficult process of inserting a micropipette with an internal electrode through the cell 

membrane. This process forms a seal between the cytoplasm and the electrode, but 

suffers from a fragile connection that makes long-term recordings very difficult to take, 

because the cell is in constant motion. As is often is the case, the damage caused by the 

impalement of the cell membrane compromises the intracellular ionic composition, that 

in turn can affect the intrinsic properties of the cell. [7] In the second method, a whole 

cell patch is formed when the micropipette electrode is brought into contact with the cell 

membrane, but does not pierce it. A seal with the membrane is formed by applying light 

suction in the pipette. This allows for measurement of the transmembrane potential and is 

done without damaging the cell membrane and thus compromising the interior ionic 

composition of the cell. Additionally, it allows for the observation of current flow and 

impedance through the small patch of membrane encompassed by the tip of the 

micropipette. Similar to the intracellular electrode placement, this method suffers from a 

weak connection to the cell that inhibits the long-term recording of cell potential. In a 

third method, the micropipette can be removed from any contact with the cell altogether 

and positioned in close proximity to the cell membrane. This potential measurement is on 

a much smaller order of magnitude to the other reference electrode than the other two 

methods. While this technique does not harm the cell in any way, the measurement is 

limited by a much smaller signal amplitude, as well as a signal shape that is very different 

from the transmembrane potential readings of the first two methods.  
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Longer time period measurement of the electrical properties of cultured cells in-

vitro were made possible by rethinking the positioning of the electrodes, from placing 

them on or near a cellular surface to bringing the cells themselves to the electrode 

surface. [1] Thus the invention of the planar microelectrode in the beginning of the 

1970s. The planar microelectrode has since been used as a substrate for culturing and 

observing cell APs, and additionally, measuring the impedance of the cell/substrate 

system. The later being the focus of this study.  

Planar microelectrode arrays for cellular impedance studies are comprised of 

substrate of glass, plastic, or silicon in which the circuitry of the array may be imprinted. 

[1] (Figure A-2) On top of the substrate layer, a conductor (gold, platinum, indium-tin-

oxide, iridium, etc.) is put down to form the circuit. A non-conductive layer (photoresist, 

polyamide, silicon dioxide, silicon nitride, etc.) is deposited over the entire surface and 

then removed in the areas where the electrodes are located so that the sites where 

recording takes place are more accurately defined. Cells are then cultured directly on this 

surface in a contained volume, making direct contact with the electrode at the exposed 

conductor site. The number of cells, from a single cell to a population of cells, that can be 

recorded is both directly and indirectly dependent upon the size of the electrode. The 

larger the electrode, the more cells that can be cultured on its surface, but the less 

resolution for individual cell impedance measurement. [8] This is actually encompassed 

into the design of the planar microelectrode, because the electrode where the cellular 

measurements are made is a very small area, designed to sufficiently restrict the 

impedance enough to allow measurement of cellular impedance. The other much larger 

electrode on the culture surface serves as the ground for the return current. Since the 
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larger electrode can be considered to be in series with the small but much larger 

impedance electrode, its larger size does not sufficiently increase the impedance. 

Therefore, the large ground electrode only serves the purpose of connecting the circuit. 

As with the traditional cell potential measurement methods, each electrode must be 

connected to a high input impedance, low noise amplification voltage recorder to amplify 

the extremely small extracellular potential. 

In 1972, C A. Thomas et al. were the first to use a microelectrode array to record 

electrically active cells cultured in vitro. [9] They used a gold plated nickel electrode on 

glass and finished with a patterned photoresist. A glass ring was glued to the glass with 

beeswax to form the containment volume chamber over the patterned microelectrodes. 

Thomas used this system to simultaneously record the extracellular electrical activity of 

contracting embryonic chick heart cells in different electrodes. Following the success of 

Thomas, the planar microelectrode array has been used to study many differing cell types 

in many differing conditions. 

With the advent of the technology, the means for testing the electrical properties 

of biological material became possible. Impedance measurements have been made on 

everything from whole blood and erythrocytes [10], [11], to algae [12], neural tissue [5], 

[6], cultured cell suspensions [13], bacterial growth [14], anchorage dependent cell 

cultures [15], human body water volume [16], and even organs in the body [17]. Much 

regarding the behavior of biological material has been found through these studies, and 

perhaps most importantly, that the electrical properties of biological materials are 

frequency dependent; that allows the researcher to study a more focused range of 

frequencies in order to observe cellular response. However, in only the study of 
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anchorage dependent cells (Giaever and Keese) was the planar microelectrode used with 

an applied external current to measure cellular impedance. Giaever and Keese named 

their technique Electrical Cell-Substrate Impedance Sensing or ECIS. 

 

C. THE GIAEVER/KEESE ELECTRICAL IMPEDANCE MEASUREMENT 
SYSTEM 
 

Electrical Cell-Substrate Impedance Sensing allows for real-time data of cellular 

impedance to be acquired, specifically allowing for a biosensory system that is capable of 

detecting the effect of whatever stimuli are put into the cells’ environment. The 

importance of a technology such as ECIS is not only evident in the scientific community, 

where factors such as cell micromotion [8], growth and toxicity [18], and cell adhesion 

[19],[20] have been studied, but also in the medical field, researching breast cancer [21], 

the blood/brain barrier effect [22],[23], dose-response effects [24],[25], and angiogenesis 

[26], just to name a few of the areas in which ECIS plays a large role. 

Giaever and Keese published their first paper on the ECIS system in 1984. In this 

work, the ECIS system is defined and applied to a culture of fibroblasts. Giaever and 

Keese were the first to apply an external electric field from planar microelectrodes to cell 

culture, whereas in previous studies involving the Ussing chamber [27] or planar 

microelectrodes [9], only the innate bioelectric field of tissue was measured.  From this 

study, Giaever and Keese determined that the resistance measurements they were making 

were dependent on the morphology and density of the attached cells. Furthermore, the 

fluctuations of those resistances represented the micromotion of the cells, as evidenced 

by the application of cytochalasin B, a known microtubule inhibiting drug. [28]. Once the 
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cytochalasin was added to the culture, implying that the micromotion of the cells was 

stopped, the fluctuation in the resistance “disappeared,” meaning that the micromotion of 

the cells was causing the fluctuating resistance. Giaever and Keese also determined that 

the system they had originated had no effect on the normal attachment and growth of 

cultured cells. However, this was only done with a microscope analysis of the cells at 

different time periods to check for excessive cell death at the electrode site. The 

implications of this study would revolutionize the way that cells could be viewed. The 

implementation of the ECIS system in cell studies would provide another glimpse into 

the window of cell behavior, a real-time quantitative observation of electrical behavior, 

and a much-needed tool for scientists researching biological material. 

Giaever and Keese did a follow-up analysis of their micromotion studies in 1991. 

In this study Giaever and Keese were able to quantify some of the measurements they 

were making and give a more detailed account of the ECIS system. The amount of 

resolution their system was able to detect was down to 1 nm of movement of the cell 

layer on the electrode, much better resolution than a traditional light microscope. In the 

1984 study, the two believed that the micromotion of the cell occurred only from the 

initial attachment to confluence of the cells, and a result of the movements of cell during 

division and subsequent covering of the electrode. However, with further analysis, the 

micromotion behavior was found not to end upon the cells reaching confluence. The 

hypothesis then was that the cell motion was between the cell surface and the electrode 

surface. This required them to take the cell/electrode geometry into account in their 

model; the extent to which will be further discussed in Part 3. Giaever and Keese 

concluded that while the spatial values for quantifying micromotion were very much 
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dependent on the shape used to model the cell, the resistance was only dependent on two 

values: the resistance between the cells, and the resistance beneath the cells and the 

electrode. The quantification of cell impedance into these two values becomes integral to 

the way in which the ECIS system is used in all further scientific studies. 

 
 

II. Motivation/Problem Definition 
 

Electrical Cell-Substrate Impedance Sensing was pioneered by Giaever and Keese 

in 1984 as a way of applying an electric field to cultured cells and reading back the 

information. Little about the system has changed in the almost 20 years it has been 

around. In 1991, Giaever and Keese formed the Applied BioPhysics Company in order to 

market a totally contained ECIS system to researchers. The system has been used since 

then in dozens of peer referenced journal articles without much question as to the validity 

of the measurements this system is making. Several studies have emphasized an 

optimization [20] or redefining [29] of the ECIS system, but this refers only to the 

analysis of the data, not the analysis of the data acquisition. 

A system such as ECIS, since it involves the application of electricity, will have 

some definite sources of noise to contend with in an electrically wired environment. To 

date, there have been few studies involving ECIS that have also involved a look at the 

noise that the electrodes are recording. The gold plated surface that cultured cells adhere 

to must first be coated with a substrate that binds the cells to it. It is a very non-

physiologic surface for the cells, that does not have elastic properties or permeate 

substances as many tissues surrounding the cells would in a non-cultured environment. 

Furthermore, ECIS is touted as a non-invasive method for observing cells[15],[20], but 
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repeatedly shocking cells with a non-physiologic external electrical field is bound to 

cause some effect. Even in one of the studies involving ECIS, a direct current (a thousand 

times larger than that used to record data) is applied to endothelial cells, effectively 

shocking them off the electrode. [26] 

Another one of the limitations of ECIS is the scale of the observable area of the 

individual culture wells. The aperture of the photoresist covering the electrode is only 

250 µm. The well holds 50 µL of fluid and only about 50 cells actually cover the 

electrode. This small volume of cells will attach and reach confluence within a manner of 

hours. This makes any study on long-term cell response, longer than 1 to 3 days, very 

difficult to perform with ECIS, because the cells die off so quickly. The window of time 

that cellular effects are visible to ECIS is only enough for the acute response of cells to 

stimulus to be measured. 

This look at the shortcomings of ECIS is meant in no way to overshadow the 

importance of the information ECIS has to offer. It still provides an extra dimension to 

cellular research. However, a scientific research tool cannot and should not be used in 

peer referenced scientific journal articles without a careful examination of its faults. It is 

the purpose of this project to research the ECIS system itself and analyze the accuracy 

and credibility of its results. Improvements in noise reduction, data acquisition, data 

analysis, and an overall improvement in the qualitative accuracy of Giaever and Keese’s 

original ECIS system are all objectives of this Master’s thesis. 
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III. Thesis Outline 
 

This thesis presents a definitive study of the ECIS system and the optimization of 

its assessment of the endothelial monolayer barrier function. This is accomplished 

through the identification of errors in measurement of electrical voltage data, caused by 

noise, and corrections to the analytical model used to formulate the quantitative 

impedance terms. The remainder of this thesis is organized into parts outlining cellular 

impedance system noise, experimental cellular impedance measurements, and the overall 

conclusions of the thesis. There is an abstract, introduction, body, and conclusion to each 

part, so that each may be mostly inclusive. 

Part 2, on cellular impedance system noise, deals with the process of defining, 

determining, and minimizing noise sources from the system. A discussion of common 

noise sources is given in order to define them in the system. The general electrical model 

of the ECIS system and recording system are introduced. Examples of specific noise 

sources documented in the ECIS system are shown and methods are applied to minimize 

the noise prevalent in our system. Part 3, on experimental cell measurement, deals with 

the process of preparing cell culture and electrodes for ECIS and the subsequent data 

obtained from cell attachment, micromotion, and further experimentation concerning 

drug reaction and other stimuli. A data analysis section is included in this part as a 

demonstration of the application of the theoretical model to the formulation of the 

quantitative resistance variables. Part 4 discusses the application of the optimized system 

to vibration induced cell response, included as a study on the effectiveness of the new 

system to an area of study that has not previously been focused on with ECIS. Finally, an 

entire part is dedicated to the summary of all of the conclusions of the previous parts and 



 12

a subsequent integration of those conclusions into a concise conclusion for the entire 

thesis.  A definitive conclusion is formed that addresses the improvements made to the 

original ECIS system and the overall optimization of ECIS for further scientific studies.
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PART 2: CELLULAR IMPEDANCE SYSTEM NOISE 
CHARACTERIZATION AND REDUCTION
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Abstract 
 

This part focuses on the analysis and optimization of the Electrical Cell-Substrate 

Impedance Sensing (ECIS) system, with respect to noise, in order to produce accurate 

cellular resistance parameters that represent the endothelial monolayer barrier function. 

The optimization of data acquisition (DAQ) is accomplished by careful noise recognition, 

examination, and cancellation on the naked or non-cell seeded electrode measurements. 

This has not been explored in any previous studies based on the ECIS system. Harmonic 

noise was observed and removed with the synchronization (SYNC) filter of the SR830 

lock-in amplifier. Sixty Hz noise from voltage induced by environmental electrical 

devices was of concern and minimized with a filtering regime time constant of 300 ms. 

Gaussian noise, characterized by a random spread of noise around a frequency, was also 

documented and removed using the same filtering time constant and the maximum 

rolloff, 24 dB/octave. Analog to digital (A/D) noise was demonstrated in unfiltered data 

at each scanning frequency and marked the lowermost limit of noise. Since it could not 

be removed from the data, it was documented for each scanning frequency level and 

considered in the data analysis performed in Part 3. 

  

I. Introduction 
 

This part focuses on the analysis and optimization of the ECIS system, with 

respect to noise found in the environment and subsequently observed in data. In order to 

produce accurate cellular resistance parameters that represent the endothelial monolayer 

barrier function, all sources of noise must be minimized first on the uncovered or naked 

electrode measurements. This ensures that no additional error is introduced to the system 
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by the addition of a dynamic biological material. The optimization of data acquisition 

(DAQ) is accomplished by careful recognition, examination, and minimization of noise 

sources. This has not been explored in any previous studies based on the ECIS system. 

Noise is defined by the Concise Oxford Dictionary as “irregular fluctuations 

accompanying a transmitted signal but not relevant to it.” [30]  A system such as ECIS, 

that involves the application of electricity, will have some definite sources of noise to 

contend with in an electrically wired environment. To date, there have not been any 

studies involving ECIS that have also involved a look at the noise that the electrodes are 

recording. The system was created in 1984 and has been used since then in dozens of 

peer referenced journal articles without much question as to the validity of the 

measurements this system is making. 

Giaever and Keese believed that there was not any “problem” with noise in their 

system merely from the observation over time of formalin frozen cells. [8] The constant 

behavior to their plot, the smoothness of the data, suggested to them that there were no 

sources of noise in the ECIS system. This is in no way a scientific categorizing or 

defining of system noise. Since there were in fact saturation artifacts in some of this data, 

the opposite is true. Some sort of noise created those artifacts. Therefore, the ECIS 

system must be analyzed for noise sources that in the data and possibly affect the stability 

of the cellular impedance parameters that are being solved for. 

The remainder of this part deals with an introduction to the theory and methods 

that define the measurement system for ECIS. A discussion of common noise sources is 

given so that they may be identified in the data. The electrical model of the ECIS system 

and recording system are introduced. Examples of specific noise sources documented in 
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the ECIS system are shown and methods are applied to minimize the noise prevalent in 

our system. Filtering must be used to minimize any remaining noise sources. Examples 

from raw data and analyzed data are used to demonstrate the minimization process. 

Conclusions about the minimization of DAQ noise and therefore DAQ error are drawn 

from experimental results and demonstrate the optimization of the ECIS DAQ system. 

 

II. Theory 
 
A. DIGITAL SIGNAL PROCESSING 
 

Digital Signal Processing, or DSP, is the process of transferring analog data 

information to digital information. Digital Signal Processing involves the “representation 

of signals by sequences of numbers or symbols,” thus enabling one to process the 

sequence. [31] This allows an experimenter to make a better assemblance of the data 

towards the determination of some desired data characteristic (in our case, specific 

parameters of endothelial monolayer impedance). This process is integral to the 

implementation of DAQ and subsequent computer processing of this project’s 

experimental data. It is therefore very important for all sources of noise in the 

experimental system to be found, characterized, and reduced as much as possible through 

the use of filtering in order that the DAQ process be optimized. 

Optimization of a system is not a singularly defined point to be reached. There is 

a trade-off in the amount of analog data that is lost to the amount of noise that can be 

filtered out. A sampling of data is performed by an acquisition system at specific time 

intervals. The subsequent data values are then compiled into a signal. The sampling rate 

of the system defines the response time and the resolution of the data signal. If the 
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sampling is performed too slowly, the data lacks resolution. There is not enough data in 

the signal to accurately represent the analog signal. 

Effects such as aliasing can occur if the sampling rate is too slow. In this case, a 

periodic digital signal will appear to have a period other than that of its analog 

counterpart, because the sampling will only detect part of the signal and represent it at 

intervals that do not correctly recreate the signal. Therefore, not only does a low sampling 

rate distort the data, it can completely misrepresent it in an aliasing case. To prevent this 

from happening, the Nyquist frequency [32] is defined as the sampling rate and only 

signals with a frequency of half the Nyquist frequency can be correctly sampled. 

If the sampling rate is too high, too much of the true data is stored. The essential 

information of the signal is not compromised, but the amount of data can cause problems 

with large file sizes and cumbersome digital signal processing. In the hypothetical case of 

an infinitesimal sampling interval, the digital signal is exactly the analog signal, however 

it is infinite in size and therefore impossible to analyze. 

 

B. COMMON SOURCES OF NOISE 
 

An important consideration in the distortion of a data signal is noise. One of the 

most common is harmonic distortion. [33] The appearance of signals at multiples of a 

reference frequency characterizes harmonic noise. These multiple frequencies are caused 

by the current source passing through non-linear circuitry or ground loops between a 

source and detector. A 60 Hz noise source is caused by the electric fields from the 

alternating current (AC) sources in the surrounding environment. These AC sources 

induce voltage into the loops of the voltage recording device, causing distortion. 
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A noise source can often be caused by a combination of many different 

“processes,” giving it a Gaussian distribution of frequency around a source signal. [34] 

Gaussian noise is the noise characterized by a random scatter of noise around a signal. 

White noise is a form of Gaussian noise and is defined as the culmination of noise of all 

frequencies, where components are made up of all frequencies in equal amounts and 

random phases. [34] It draws its name from a parallel to the way in which white light 

works, since white light is the presence of all the colors of the spectrum. Shot noise, 

another form of Gaussian noise, results from statistical fluctuations in current due to 

charge quantization. The noise is caused by the non-uniform flow of electrons as they 

arrive and are emitted and at random times from a current source. [35] 

Analog to digital (A/D) noise is characterized by a block-like structure in the 

profile of a signal. This is due to the discretization of the analog signal into a digital 

signal. The digital signal contains A/D noise when the digital amplification is too large 

and forces the information to skip from one discrete level to another too quickly, creating 

a block-like appearance. By defining common sources of noise in the system, these noise 

sources can be minimized and effectively eliminated from the signal, providing an 

optimized signal that better represents the true data signal being recorded. 

 

C. REMOVING NOISE THROUGH DATA FILTERING 
 

The filtering of a data signal is performed to remove unwanted and erroneous data 

in that signal. Since noise is often at frequencies other than that of the desired signal, its 

removal can be accomplished by applying algorithms to the data that attenuate 

frequencies in the signal that are some “distance” away from a desired frequency. This 
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algorithm is called a filter. The filter succeeds in the minimization of noise by applying a 

function that maintains the magnitude of a desired frequency and increasingly minimizes 

those with increasingly different frequencies. A low pass filter passes the lower 

frequency components of a signal and attenuates the higher frequencies. A high pass filter 

passes the high frequencies and minimizes the lower frequencies around the desired 

frequency. Since the data we will be recording is induced by a known signal, we will 

want to keep the signal and minimize the noise around it. We will need to use a low pass 

filter.  

There are two components to a filter, the time constant and the slope. The notion 

of time constant arises from the fact that the actual output is supposed to be a constant 

value over the interval it is sampled. [33] When noise is present, this is definitely not the 

case. By increasing the time over which a filter is applied, the output becomes steadier 

with a more accurate representation of the signal. The frequency attenuation varies 

inversely with the time constant; the longer the time constant, the closer the frequency of 

noise attenuated. The drawback and why we do not always use infinitely long time 

constants is a result of changes in the input signal that takes many time constants to be 

reflected at the output. Too long a time constant will delay the effect of a DSP signal, 

because it takes approximately 4 to 5 time constants for a filter to settle to its final value 

(i.e. maximum filtering). Therefore, filtering time constants must generally be of a small 

enough time scale to be effective in measuring real-time changes in a measured signal. 

The slope, or roll off, of a filter refers to the amount of attenuation in signal with 

respect to distance away from a specified frequency. The larger the roll off, the quicker it 

minimizes the noise around a frequency. The smaller the roll off, the longer it takes for 
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full filtering to occur and the less it attenuates the frequencies that are closest to a 

specified frequency. The largest possible roll off can lead to filter instability and 

oscillation, but can be carefully selected by knowing the frequencies and the 

corresponding amplitudes of the interfering signals around it. 

 

III. Experimental Methods and Procedure 
 
A. THE ECIS CIRCUIT 
 

Cellular monolayer impedance values are calculated from voltage measurements, 

Vc, obtained from the PSD of an SR830 lock-in amplifier. Figure A-3 shows a general 

circuit diagram for the ECIS instrumentation. The voltage source resistance, Rs, is 50 Ω 

and the input resistance, Rv, and capacitance, Cv, of the phase sensitive detector are 10 

MΩ and 25 pF respectively.  Parasitic lead resistances and capacitances are associated 

with the source, Rps & Cps, and phase sensitive detector, Rpv & Cpv.  Typical values for 

the parasitic resistance and capacitance are 1 kΩ and 0.19 nF, respectively. A 1 MΩ 

resistor, Rcc, is connected in series with the AC voltage source to stabilize the current 

through the electrode, creating a current clamp. The electrode resistance, Rc, and 

capacitance, Cc, are functions of frequency.  

For calculation purposes, the resistors and capacitors may be more easily 

approximated as impedances, containing the real and imaginary terms of resistance. The 

voltage source impedance is Zs and the input impedance of the phase sensitive detector is 

Zv. Parasitic lead impedances are associated with the source, Zps, and phase sensitive 

detector, Zpv. A resistor with impedance, Zcc, is connected in series with the AC voltage 

source to stabilize the current through the electrode. If in the circuit, the source 
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impedance, Zs, is very small, the voltmeter impedance, Zv, is very large, and the parasitic 

capacitance of the voltage leads, Zpv, is very large then the electrical impedance of the 

electrode is  
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−
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.          ( 2.1) 

When Zcc is much smaller than Zc, then Vc << Vs, and we get 
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for the electrode impedance. This simplifies the circuit diagram to the case in Figure A-4. 

Therefore, given a voltage measurement, the electrode impedance can be estimated as  
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under the constant current clamp assumption, a 1 V source, Vs, and a 1 MΩ resistor, Zcc, 

and as 
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under the voltage divider assumption. Assuming a 1 V source, there will be a 1 µA 

current through the electrode. We will use the later method for the analysis of our voltage 

readings, because it better calculates the impedance when it is at the level of magnitude 

of that of the 1 MΩ resistor. 
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B. LOCK-IN AMPLIFIER & PHASE SENSITIVE DETECTION 
 

The SR830 uses a process known as lock-in amplification, wherein a very small 

voltage signal can be singled out from noise signals that are many times larger. As 

described by Stanford Research Systems [33], this is accomplished by “locking-in” the 

frequency and phase of the generated reference to the detection of the resulting signal by 

a phase sensitive detection process. The SR830 multiplies the detected signal, Vsig, by the 

lock-in reference signal, VL, producing two sign waves, one at the sum, (ωR + ωL),  and 

one at the difference frequency, (ωR – ωL), 

( )[ ] ( )[ ]refsigLRLsigrefsigLRLsigpsd tVVtVVV θθϖϖθθϖϖ +++−−+−= cos2
1cos2

1
. ( 2.5) 

Since the frequencies of the two waves are the same, (ωR = ωL) only the phase shift will 

remain in the first wave. After filtering out the harmonic produced in the second signal 

with a low pass filter, only a direct current (DC) signal, independent of time, from the 

PSD 

[ ]refsigLsigpsd VVV θθ −= cos2
1

        ( 2.6) 
remains. Because of the nature of PSD, noise sources at differing frequencies are 

removed by filtering and only noise at the lock-in frequency remain in the signal. This 

noise is assumed to be much smaller than that of the original noise signal, and the careful 

choice of sampling frequency will allow the experimenter to avoid frequencies known to 

contain the greatest noise signals (i.e. 60 and 120 Hz). 

The explanation above demonstrates the PSD for the real component of the signal. 

This will give us the voltage data that we can transform into the real component of 

impedance, resistance. As for the imaginary component of the signal detected by PSD, 
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the signal is multiplied by another lock-in signal that is 90° out of phase of the real 

signal. The trigonometric simplification results in a quadrature reading and the imaginary 

component of the voltage,  

[ ]refsigLsigpsd VVV θθ −= sin2
1

,        ( 2.7) 
that will be transformed into the reactive component of the impedance. 

 

C. FOURIER TRANSFORMS AND SPECTRAL ANALYSIS 
 

For a better understanding and observation of the noise sources that occur in our 

system, the digital signal of the voltage may be transferred into the frequency domain. 

The voltage signal sampled from the SR830 is in the time domain. [36] The voltage is a 

“representation” of the amplitudes of the true voltage signal at the discrete intervals of 

time from which it had been sampled. An algorithm known as the fast Fourier transform 

(FFT) is utilized by a computer to transform the sampled signal from the time domain 

into the frequency domain. The FFT is an algorithm based on the Fourier transform but 

numerically faster with the processing power of a computer, due to the lack of having to 

calculate intermediate results.  

A plot showing the square of the magnitude obtained for each frequency from the 

FFT is called a power spectrum. Since the power is the square of the magnitude, it is 

always a real and positive number. Any phase information in the signal is lost in the 

power spectrum, which converts the 90° out of phase complex signal to a real power 

spectrum. Thankfully, the PSD has already sorted out real and imaginary voltage signals 

for us so that spectral analysis can be done individually.  
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You can use the power spectrum in applications where phase information is not 

necessary (for example, to calculate the harmonic power in a signal). You can 

apply a sinusoidal input to a nonlinear system and see the power in the harmonics 

at the system output. [36] 

This is exactly what we are going to use our spectral analysis for, to see the power in the 

harmonics (and additionally the various other noise sources) at the output. 

 

IV. Results and Discussion 
 
A. FREQUENCY DEPENDANT MINIMALLY FILTERED INSTRUMENTAL 
NOISE 
 

Now that we have the tools to be able to identify and minimize the noise, we need 

to find it in our system. The voltage signal for the naked electrodes (i.e. those that do not 

contain cell culture, only cell media and a fibronectin coating that will be described in 

Part 4) was recorded at four logarithmically evenly spaced lock-in frequency levels per 

decade, ranging from 10 Hz to 100 kHz, which is in excess of the typical frequency range 

of cellular effect. In all, 17 frequencies were recorded per scan in order to span a large 

spectrum of possible frequency related cellular impedance behavior, which is something 

that the commercially available system does not do. The lowest filtering time constant 

(10 µsec), the lowest roll off (6 dB/octave), and the fastest sampling rate (512 Hz) of the 

SR830 were chosen as sampling parameters for the baseline “raw” voltage signal. This 

protocol allows for the maximum amount of noise to be acquired with the highest time 

resolution to the data.  
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Figure A-5 shows the resistive (real impedance component) and reactive 

(imaginary impedance component) signals, calculated from the measured voltage, as a 

function of frequency. The point for each frequency level represents the average of 1024 

data points taken over a time period of 2 seconds with the 512 Hz sampling rate. Figure 

A-6 shows the square root determinate of the covariance matrix of the resistive and 

reactive measurements as a function of frequency using the above DAQ protocol. The 

square root of the determinant of the covariance matrix will be a good approximation of 

the correlated error between the real and imaginary signals in the system. It is in units of 

Ω2, meaning that it can be thought of as the area of the correlated data spread of the two 

signals. The larger the square root determinate, the less correlation there is between the 

real and imaginary data and the more error in the measurements. The smaller the square 

root determinate, the more correlation there is between the data and the less error in the 

system. 

The data point time sequence and power spectrum at individual frequency levels 

reveal several sources of instrument noise. Only frequencies from 1 to 256 Hz can be 

detected without aliasing when a sampling rate of 512 Hz is used over a time period of 1 

second. This is due to the limitation of the Nyquist frequency. We will initially use the 

resistance time sequence and power spectrum as an example. The average resistance has 

been subtracted from the resistance values over the 1 second time period before spectral 

analysis in order to better observe the spectra. Following PSD with the lowest amount of 

filtering, several forms of noise are present in the power spectrum. In Figure A-7, the 

resistance data point time sequence and power spectrum are given for a naked electrode 

at the 10 Hz frequency level. At 10 Hz, several frequency components in multiples of 10 
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Hz are present with a predominant peak at 20 Hz, representing harmonic distortion. This 

is also surrounded by what appears to be random Gaussian noise, characterized by 

random peaks throughout the spectrum. 

Figure A-8 illustrates the time and the frequency sequences at the 1 kHz 

frequency level. The interference seen in the power spectrum is harder to discern at 

reference frequencies higher than the sampling rate, because it gets folded back to lower 

frequencies in range of the Nyquist frequency. A strong 50 Hz component is caused by 

the 1 kHz reference frequency.  This is actually a 48 Hz peak due to a difference signal 

from the PSD sampling fourth harmonic (2048 Hz) and the lock-in frequency second 

harmonic (2 kHz). There is also a gradual roll-off from the aliasing and spectral folding 

of higher frequency harmonics. 

At 100 kHz, (Figure A-9) the interference appears to consist of random Gaussian 

noise. The PSD process of the SR830 eliminates most of the “white” power spectrum 

noise sources, since they are far away from the lock-in frequency. However, harmonic, 

60 Hz, and Gaussian noise sources presumably still remain in the output. More 

aggressive filtering regimes must be implemented that attack each of these noise sources 

that are closer to the reference frequency. 

 

B. HARMONIC DISTORTION FOLLOWING PHASE SENSITIVE DETECTION 
 

The range in which harmonic distortion is prevalent is exacerbated by the sum 

and difference behavior of PSD. Even if the input signal were to be free of noise, the PSD 

output always contains a component at twice the measuring frequency corresponding to 

the sum or difference of the signal frequency and reference. The amplitude of this signal 
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equals or exceeds the desired DC output depending upon the phase. Figure A-10 shows 

the power spectra for a 100 Hz measurement. The 100 Hz level is a good place to begin 

more aggressive filtering, because it contains a large amount of harmonic and 60 Hz 

noise. Its proximity to 60 Hz and its harmonic distortion at multiples of 100 will allow for 

a better separation of the two sources than an analysis at the 56.6 Hz level, which will 

have too much interference due to its extreme proximity to 60 Hz, and at higher 

frequency levels where the effects are folded back into the Nyquist frequency range. 

Without synchronization filtering (SYNC filtering by the SR830), spectral peaks show up 

at 100 and 200 Hz, the reference frequency and its second harmonic. Figure A-11 shows 

the result of adding SYNC filtering. The spectral peaks present at 40 and 160 Hz are 

produced by the sum and difference of a 60 Hz noise component following phase 

sensitive detection and SYNC filtering. The harmonic components of the 100 Hz 

reference signal have been removed from the spectrum. 

The SYNC filter was used in all subsequent measurements to avoid having to use 

long filter time constants at low frequencies to remove the harmonic noise. When the 

SYNC filter is on, the PSD is followed by 2 stages of low pass filtering, the SYNC filter, 

then 2 more stages of low pass filtering (the same low pass filters that are used 

throughout the rest of the frequency scan). [33] Similarly, the results of the SYNC filter 

greatly decreased the determinate square root of the impedance covariance below 200 Hz. 

(Figure A-12) 
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C. FILTERING SIXTY HERTZ NOISE AND ALIASING 
 

Two possible interfering inputs are from stray magnetic fields and capacitively 

coupled noise. Interfering 60 Hz and 120 Hz inputs are common sources of experimental 

noise induced in the loops by environmental AC magnetic fields. The desired and the 

interfering voltages are in series, so both components appear at the input to the lock in 

amplifier. Also, the difference between the capacitively coupled displacement currents 

flowing through each lead and the electrode to ground causes an interfering voltage to 

appear across the electrode. Following PSD and SYNC filtering the 60 Hz and 120 Hz 

interfering signal components appear as sum and difference frequencies with respect to 

the measuring frequency. The power spectrum peaks for the sum and difference of the 60 

Hz noise from a reference signal of 100 Hz can be observed in Figure A-11. As 

increasingly more aggressive time constants were used in the DAQ, the 60 Hz noise 

began to be minimized. With a 300 ms time constant, the 60 Hz noise was minimized and 

aliased into the level of random fluctuations in the power spectrum. The aliasing and 

spectral folding of 60 Hz and higher frequency harmonic noise are what cause the power 

spectrum to slope asymptotically over the power spectrum.   

 

D. FILTERING GAUSSIAN NOISE 
 

 The random fluctuations in the power spectrum represent Gaussian noise. They 

are spread over the entire spectrum, but do not pose as much interference to the signal as 

other noise sources with larger power spectra (i.e. Harmonic and 60 Hz noise). With 

more aggressive filtering (SYNC, 300 ms, and 24 dB/octave) an aliasing of the 60 Hz and 

Gaussian noise appears in the spectral analysis of the data and the random fluctuations 
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caused by Gaussian noise are minimized substantially from Figure A-13  to Figure A-

14. 

 

E. A/D NOISE 
 

A/D noise can be seen when we return to the time sequence of the signal in 

Figure A-15. After SYNC, 300 ms, and 24 dB/octave filtering, A/D noise serves as the 

lower limit of possible error in the sampled data, because the DSP process creates it in 

the first place. The A/D noise level is directly dependent on the discretization size set by 

the SR830. The SR830 has 16 bit resolution or 216 discretized intervals of recording 

resolution per sensitivity setting. The size of those discrete intervals and correspondingly 

the size of the A/D error depends on the sensitivity setting of the SR830 and not the 

reference frequency of the measurement. (Table 1) The sensitivity ranges used in a full 

frequency scan range from 500 mV at the largest down to 5 mV at the smallest end, with 

A/D errors of approximately 30 Ω at the largest down to .2 Ω at the smallest end. To 

further limit the A/D noise, the dynamic reserve (the ratio of the largest tolerable noise 

signal to the full scale signal) [33] of the SR830 can be left at a low reserve. From the 

power spectrum of our data, which has all been sampled at a low noise reserve, the noise 

sources that are not initially removed by the PSD can successfully be filtered out. There 

is no need to use a larger reserve on the SR830 to prevent the overload of the system 

from noise. 

In fact, when the DAQ system is not in danger of overloading the sensitivity 

range, a high dynamic reserve, coupled with a large front-end amplification of a signal 

will actually increase the output noise in the A/D converter. The noise in the lock-in 
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Table 1. A/D error estimates from sensitivity settings 

Naked Electrode Frequency Sweep (Scale by 1,000,000) 
Frequency 
(Hz) 

Sensitivity 
(mV) 

Time 
Constant 
(ms) 

Roll Off 
(dB) 

Reserve A/D 
Interval 
Error 
(Ω) 

10 1000 300 12 Low Noise 61.0300 
10 500 300 12 Low Noise 30.5170 
10 200 300 12 Low Noise 7.6290 
10 100 300 12 Low Noise 3.8147 
10 50 300 12 Low Noise 1.9073 
10 20 300 12 Low Noise 0.9536 
10 10 300 12 Low Noise 0.4768 
10 5 300 12 Low Noise 0.2384 
10 2 300 12 Low Noise 0.1192 
10 1 300 12 Low Noise 0.0596 
316 200 300 12 Low Noise 7.6291 
1,000 100 300 12 Low Noise 3.8147 

 

 

amplification of the SR830 may become detectable at high reserve. [33] To prevent this, 

a low dynamic reserve, especially at small sensitivity ranges which translate to large gain, 

will decrease the output noise, which becomes detectable as A/D noise. 

 
 
V. Conclusions 
 

The DAQ of impedance signals from the ECIS electrode will inherently have 

some noise input. The PSD process initially removes most of this noise, since the noise is 

relegated to the same frequency at which lock-in frequency has been set, or at least very 

close to that frequency. The outlying frequency noise signals are removed with a low-

pass filter. However, the noise that remains after this process is the most difficult to 

remove, because it has not been removed in the first place. It is close enough to the signal 
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that a broad sweeping filter did not reduce it in magnitude, and because it is so close to 

the reference frequency it interferes more with the detection of the signal at the recorder. 

The solution: more filtering. 

Harmonic and Gaussian noise sources were demonstrated in unfiltered data 

following PSD. (Figure A-7, Figure A-8, Figure A-9, and Figure A-10) Using a power 

spectral analysis to isolate and identify noise, increased filtering could be systematically 

applied to the system to sequentially minimize or very nearly eliminate the noise. 

Synchronous filtering was found to remove harmonic noise below 200 Hz in lieu of 

applying a long time constant to the low pass filter (Figure A-11), which would in effect 

decrease the time resolution of the DAQ system to sudden signal changes. The result of 

SYNC filter was to greatly decrease the error of impedance averages below 200 Hz. 

(Figure A-12) The results of the SYNC filter can also be illustrated in Figure A-16, 

where the determinant square root for increasing time constants (LEFT) and increasing 

roll off (RIGHT) is greatly minimized in the operating range of the SYNC filter. 

Following SYNC filtering, 60 Hz noise was revealed in the system. (Figure A-11) 

Increasing the time constant of filtering decreased the 60 Hz noise to the level of random 

Gaussian noise in the signal. (Figure A-13) After minimizing random Gaussian noise by 

as much as possible with the largest filter roll off (24 dB/octave) (Figure A-14) A/D 

noise was concluded to be the lowermost limit to the level of system noise remaining. 

(Figure A-15) It could not be removed from the system, just minimized by limiting 

dynamic reserve. It was therefore documented for each scanning frequency level. (Table 

1) 
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From a careful analysis of noise sources and a quantification of the amplitude of 

noise that is introduced into the ECIS system, it was found that the optimal sampling 

parameters were a SYNC filter for removing low frequency harmonic noise, a 300 ms 

time constant for 60 Hz noise, and the maximum 24 dB/octave roll off for filtering 

Gaussian noise around the signal information. A low noise reserve, considering that the 

signal was actually very low noise, further insured the minimization of overall system 

noise, most specifically A/D. 

This filtering regime resulted in an overall smooth power spectrum for the 

impedance signal. (Figure A-14) Aliasing of higher frequency harmonics and 60 Hz 

noise creates the sloping arc to the power spectrum. For the time domain, this translates 

to a slight drift in the lower reference frequency recordings. (Figure A-15) Figure A-17 

represents the frequency scans before (in white) and after (in orange) filtering. The 

optimally filtered data has dropped resistance and added impedance in the lower 

frequencies, due to drift, and gained some resistance in the mid-range frequencies, an 

effect of minimizing the noise. The square root determinate was also greatly reduced by 

filtering. (Figure A-18) Additionally, an interim of 2.2 seconds between each frequency 

scan allowed for equilibration of the filter, considering that 5 time constants would 

require 1.5 seconds, between reference frequency shifts. 

In conclusion, the ECIS DAQ system protocol for system noise minimization 

samples 1024 points of a real and imaginary voltage signal resulting from a lock-in 

reference frequency for 2 seconds with a SYNC, 300 ms, and 24 dB/octave low-pass 

filter with a low noise reserve. The SR830 then waits 2.2 seconds to step up the 
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frequency a quarter of a decade and begin sampling again. In all, 17 different frequencies 

are sampled from 10 Hz to 100 kHz for a full frequency scan of a single electrode.
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PART 3: EXPERIMENTAL CELLULAR IMPEDANCE 
MEASUREMENTS
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Abstract 
 

This part deals with the process of preparing cell culture and electrodes for ECIS 

and the subsequent data obtained from cell attachment, micromotion, and further 

experimentation concerning drug reaction and other stimuli. Since the formulation of 

ECIS was intended for the measurement of cellular impedance, the cell and nuances 

associated with applying it to a non-physiologic environment, namely the ECIS electrode, 

are of interest to a thesis that is aimed at optimizing the ECIS system. Further system 

errors applying to the preparation and fabrication of the electrodes, as well as those 

related to the seeding of the cells, are documented and minimized. The protocol for 

inoculating the ECIS electrode array is explained in the methods section. A section on the 

analysis of the endothelial monolayer impedance data is included in this part as a 

demonstration of the application of the theoretical model to the formulation of the 

quantitative resistance variables, α, resistance per unit area underneath the cells and 

between the electrode surface, and Rb, the resistance between the cells. It has been 

concluded that the cellular impedance data has been minimized of erroneous noise 

sources and that the greatest cellular effect to normalized resistance data is at the 3.16 - 

5.62 kHz frequency levels. Time dependent frequency scans also reveal that the peak of 

cellular impedance occurs within a matter of hours to the initial cell attachment, 

restricting the use of ECIS to acute response studies of endothelial monolayer function. 

 

I. Introduction 
 

Electrical analysis of biological materials has been around since the turn of last 

century. A novel application of adapting some of this technology to cellular monolayers 
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was implemented by Giaever and Keese nearly 20 years ago with their Electrical Cell-

Substrate Impedance Sensing (ECIS) system. Further adapting this system to endothelial 

monolayers is of great importance because of their direct link to physiologic stimuli in 

biotransport. Electrical Cell-Substrate Impedance Sensing allows for real-time data of 

cellular impedance to be acquired, specifically allowing for a biosensory system that is 

capable of detecting the effect of whatever stimuli are placed into the cells’ environment. 

In the case of endothelial cells, the stimuli that affects them and their response to the 

stimuli is physiologically very important to overall body response. 

Endothelium forms the lining of blood vessels, the kidneys, intestines, and 

anywhere else where physiologic diffusion or filtration occurs. [37] It is made up of 

simple squamous epithelium, that is a single layer of thin flat cells. It has a free surface, 

meaning that one side of the layer is not in direct contact with other cells. The cells are 

tightly bound to each other, creating what is known as a tight junction. This allows for the 

epithelia to protect underlying tissues, act as a barrier preventing movement of substances 

through the layer (the endothelial barrier function), permit the passage of some 

substances allowing food and nutrient exchange at its interface, secrete substances 

oftentimes eliciting an inflammatory or immune response, and finally absorb substances, 

as in the case of the kidneys and intestine where vitamins and ions are absorbed through 

the epithelia. The epithelium that is classified as endothelium is typically the body’s first 

contact with stimuli [38] and its reaction to medical conditions of inflammation [19],[39], 

disease [40], and body response are of immense importance to understanding the 

physiology of numerous conditions, ranging from heart, lung, and renal disease, to 

intestinal disease and more. Furthermore, the resistance of the endothelial monolayer is 
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composed of tight junction resistance and lateral intercellular resistance (to be discussed 

later) [41], meaning that the resistance is partly a function of tight junction, and therefore 

permeability or barrier function of the endothelium. It is for this reason that ECIS of the 

endothelial monolayer is important to the better understanding of its barrier function in 

response to stimuli. 

In the remainder of this part, the Giaever/Keese ECIS model for cell impedance is 

defined and discussed. The discussion provides insight into the workings of ECIS and an 

examination of the assumptions made for the model. The culmination of the model is the 

formulation of the two resistance variables, α and Rb, which serve as the summation of 

the physical impedance quantities of the endothelial monolayer. There is actually a third 

constant, Cm, the capacitance of the cell membrane that Giaever and Keese chose to 

arbitrarily set to a constant. 

Porcine pulmonary artery endothelial cells (PPAEC) were chosen to serve as the 

parallel physiologic model for human endothelium in the ECIS studies. Their isolation 

and preparation was performed internally by the laboratory. This was done to insure that 

the cell culture used in the ECIS experiments was viable and directly applicable to the 

ECIS experiments. The protocol for cell culture involved the use of commercially 

available cell media solution to which vitamins and antibiotics were added to ensure the 

sterility and continuity of the cell tissue for multiple passaging and experimentation. 

 Attachment and confluence scans were initially performed using ECIS to validate 

the proper protocol for obtaining cell impedance data. Once the attachment was 

confirmed, further time dependent studies were performed in order to obtain the 
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longevity of ECIS measurements. Finally, monolayer barrier function’s relationship to 

stimuli was determined using chemical agents. 

Analysis of the optimized acquired data was performed in the LabVIEW 

programming environment, as it offered a more flexible software package than that 

provided by the current commercially available ECIS setup. The Levenberg-Marquardt 

Method, an iterative nonlinear least-squares minimization of the chi-square function for 

fitting the real and imaginary average impedance values calculated from the data 

acquisition, allows for the quantitative resistance values, α and Rb, and the membrance 

capacitance, Cm, to be calculated using a computer. 

A summary of the experimental results of PPAEC seeded electrode scans using 

ECIS and subsequent variations of stimuli added to the culture environment is given in 

the results section. In addition, quantitative resistance values from the Giaever and Keese 

model are calculated in tabular form for comparison to the various studies. Conclusions 

are drawn as to the efficacy of the optimized DAQ and analysis system for observing the 

endothelial monolayer barrier function impedances. 

 
 
II. ECIS Theory 
 

Giaever and Keese realized that cell/electrode geometry was integral to the 

formulation of their circuit model.[8] This can be seen in Figure A-19. Vn is the voltage 

of the electrode and Vm is the voltage of the media just outside the cell layer. h is the 

height of the space between the bottom of the cell and the electrode. The variable r 

represents the variable to be differentiated for the spatial voltage and current equations 

and rc, the radius of the assumed circular disk shaped cell. The resistivity of the cell 
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media is ρ, Zn(v) the specific impedance of the electrode/electrolyte interface and can be 

measured directly from a cell free electrode (as in Part 2), and Zm(v) is the specific 

membrane impedance of the cells, which is set by an assumed capacitance, Cm=1 µF by 

Giaever and Keese. We will actually solve for Cm, in contrast to assuming an arbitrary 

value, by iterative solution in our analysis package. 

The resistance of the cell media, referred to as the electrolyte, is in series with the 

impedance of the electrode. However, it is limited by the aperture or the size of the 

electrode. The constrictive resistance is then ρ/2d that of a circular disk, [42] where d is 

the diameter of the electrode. The resistance for the electrode/electrolyte interface is 

proportional to inverse area, 4/πd2. This resistance can be made sufficiently large by 

decreasing the size of the electrode aperture to dominate the resistance of the cell media 

since media resistance is only proportional to 1/d. Therefore the resistance of the 

electrode/electrolyte is dominant and the cell fluctuations can be observed in the data. 

Giaver and Keese then introduce voltages, 
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incorporating the electrical flow and potential of the geometry of the system into the 

model, as well as a relationship for the specific membrane impedance, 

)2/(2/ mm CiZ π−= ,         ( 3.5) 

where Cm is the arbitrary 1 µF capacitance of a single cell membrane. 

These are then combined into the solution, 
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These equations can be solved using Bessel functions. Then solving for the inverse of the 

cell covered electrode’s specific impedance, Zc,  
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where 0I and 1I  are modified Bessel functions of the first kind, order 0 and 1, Giaever 

and Keese have defined the much sought after Rb and α, the only two independent 

parameters of the model and therefore the values that define the impedance function of 

the cell layer. Where α, the resistance per unit area between the cell and the electrode, is 

found in the relationship 
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      ( 3.9) 
and Rb is the resistance between the cells. Additionally, Cm may be solved from these 

equations, when not assuming it is 1 µF. 
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So, in order to obtain these two values, the specific impedance of the cell covered 

electrode, Zc, is found by recording the electrode with an applied voltage current over a 

range of frequencies. The system has been previously scanned at different frequencies 

with only fibronectin on the electrode and cell media in the culture dish. This will give 

the value for the constrictive impedance on the media/electrode impedance, Zn, the naked 

electrode impedance that is to be subtracted from the value of the cell-laden electrode, Zc, 

in order to obtain the true cellular impedance of the cells. In our case, we will normalize 

the two, to demonstrate the relative impedance effect of the monolayer. 

 

III. Experimental Methods and Procedure 
 
A. ENDOTHELIAL CELL ISOLATION AND PREPARATION 
 

Pulmonary endothelial cells were isolated from porcine pulmonary arteries, 

obtained from a local slaughterhouse, to serve as the actualization of the cellular 

component for the Giaever/Keese model. After resecting a couple of inches of a 

pulmonary artery, each end was clamped using a hemostat, the artery was quickly dipped 

in 70% ethanol, and then rinsed thoroughly with M199, a cell media solution from 

GibcoBRL. The arteries were then transferred back to our laboratory in M199 containing 

penicillin (100 U/mL) and streptomycin (100 µg/mL) (GibcoBRL). Each artery was 

longitudinally dissected with sterile scissors and the intimal layer of endothelial cells 

carefully scraped from the luminal surface using a sterile scalpel, then transferred to a 35 

mm Petri dish by gently tapping the scalpel blade on the dish surface. The 35 mm tissue 

culture dish contained 2 mL of conditioned M199. All cells were cultured using a 

conditioned M199 solution containing penicillin and streptomycin, supplemented with L-
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glutamine (GibcoBRL), BME amino acids (Sigma), BME vitamins (Sigma) and fetal 

bovine serum, commonly known as FBS (Hyclone). After 4 hours in a water jacketed 

incubator at physiologic conditions (37°C and a 5% CO2 medical air mixture), the media 

from the 35 mm culture dishes was removed and replaced with 2 mL of fresh conditioned 

media. The culture was maintained in the incubator until the endothelial cells neared 

confluence after approximately 7 to 10 days. They were then passaged into 60 mm tissue 

culture dishes when near confluence. 

Passaging was performed using 0.05% trypsin to remove the PPAEC monolayer 

from the 35 mm dish. The trypsin/cell suspension was transferred to a 10 mL centrifuge 

tube and spun down to pellet the PPAEC. The trypsin was then drawn off and replaced 

with conditioned M199 and the cells were ready to be added to the 60 mm dish. They 

were immediately returned to the incubator. Approximately 1 week later, when the 

endothelial cells in the 60 mm dishes had reached confluence, each dish was passaged 

into one 100 mm tissue culture dish, using the aforementioned technique. The endothelial 

cells were then passaged once a week at a ratio of 1:3, 1:4, or 1:5, depending on the time 

necessary for culture to reach confluence. Cell lines were not passaged beyond passage 

12, to limit the contamination of the culture with slower growing smooth muscle cells 

and to maintain a young, healthy endothelial tissue culture. Porcine pulmonary artery 

endothelial cells between passages four and eight were used for this study. Cultures were 

identified as endothelial cells by their characteristic uniform morphology, uptake of 

acetylated LDL, and by indirect immunofluorescent staining for Factor VIII. All 

procedures in the lab that involved removing the cells from the incubator were performed 
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under a sterile fume hood and using sterile lab techniques to prevent infection of the 

culture. 

 

B. ECIS ELECTRODE ARRAY PREPARATION AND IMPEDANCE 
MEASUREMENT PROTOCOL 
 

The DAQ of PPAEC was performed using the system noise minimization 

protocol determined in Part 2. The ECIS DAQ system protocol for system noise 

minimization samples 1024 points of a real and imaginary voltage signal resulting from a 

lock-in reference frequency for 2 seconds with a SYNC, 300 ms, and 24 dB/octave low-

pass filter with a low noise reserve. The SR830 then waits 2.2 seconds to step up the 

frequency a quarter of a decade and begin sampling again. In all, 17 different frequencies 

are sampled for a single frequency scan, ranging from 10 Hz to 100 kHz. 

Several five well arrays of ECIS electrodes, model 5W1E, were obtained from 

Applied BioPhysics. (Figure A-20) The array consists of gold film electrodes insulated 

by a photoresist film and mounted on a .025 mm thick clear Lexan polycarbonate 

substrate. [43] The gold layer and photoresist are clear enough to allow for the 

observation of cells using an inverted microscope. Each electrode has a 250 µm diameter 

exposed area, on which about 50 PPAEC can attach. On top of the 5 electrodes, 5 circular 

rings appeared to have been glued with cyanoacrylate to seal the volume well for cell 

culture. Each well holds approximately 500 µL. 

An initial naked electrode measurement is taken of each electrode array, without 

cells, to serve as the control or reference for cellular impedance. The gold electrode 

surfaces were coated with fibronectin (BD Biosciences), a protein used to anchor the 
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PPAEC to the gold, using a 100 µg/mL solution that was prepared by thawing a frozen 50 

µl aliquot of fibronectin. A volume of 450 µL of sterilized phosphate buffered saline, or 

PBS, containing Ca ++ and Mg ++, was then added and gently mixed with the fibronectin. 

This was added to each of the 5 wells to allow the fibronectin to adsorb to the surface for 

30 minutes. The remaining PBS was pipetted from each of the wells and replaced with 

450 µL of conditioned M199. Each of the 5 electrodes on the array was then sampled 

with the SR830 and recorded on a computer to serve as the naked electrode scan. The 

array was now ready to be inoculated with cells. 

The PPAEC were trypsinized using 0.05% trypsin and counted using a 

hemocytometer at which cells counts of 30, 34, 41, and 35 were obtained in each of four 

quadrants, yielding an average of 3.5 million cells in the entire 100 mm dish. The cells 

were then spun down and the trypsin was drawn off, after which 10 mL of conditioned 

M199 was added to the centrifuge tube.  From this cell solution, 500 µL were added to 

each of the 5 wells, maintaining a seeding density of approximately 105 cells/cm2 in each 

well. The inoculated electrode array was then placed back into the incubator for DAQ to 

begin. The DAQ system performed continuous frequency scans of the array for a 24 hour 

period while the PPAEC attached and spread over the seeded surfaces. Pictures of each 

well were taken at the time of cell seeding (Figure A-21) as well as the following 

morning after the endothelial cells had formed a confluent layer (Figure A-22). The 

entire surface of the wells was examined carefully for endothelial cell confluence and 

cobblestone morphology. 

Once the PPAEC had successfully attached to the electrode/fibronectin substrate 

and reached confluence, impedance testing of the PPAEC with various added stimuli 
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could be justifiably performed to provide accurate barrier function estimates. When 

cellular impedance effect had dropped, signaling the death of the culture, or the 

application of stimuli ceased, the array was discarded. New electrode arrays were used 

for each experiment, necessitating the requirement for individual naked electrode scans of 

each electrode, due to the variability in manufacturing and quality of the electrodes. 

 

C. NUMERICAL METHODS AND PROCEDURES 
 

The data obtained from cellular measurements was analyzed to solve for α and 

Rb.. This was handled by LabVIEW virtual instrument (VI) programs that have been 

programmed to perform the following analysis. The model, defined by Giaever and 

Keese and discussed previously in the part, that is to be fitted in this study is of the form, 

( )ax;cc ZZ = ,          ( 3.10) 

where the measured electrode impedance value, Zc, has both real (ℜ) and imaginary (ℑ) 

components, and the terms x and a are the frequency and parameters α, Rb, and Cm, 

respectively, that define the impedance for a frequency scan. [44] In our experimental 

system we assume that the noise at different data sampling frequencies is independent but 

that the real and imaginary noise components at a given frequency can have different 

amplitudes and can be correlated; through a covariance matrix. The chi square, χ2, merit 

function in this case is 
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where Ξj is the covariance matrix of the jth data point. The matrix Ξj for the jth data point 

is obtained by repeatedly sampling the data at the jth frequency and using the real and 

imaginary values to calculate the sample covariance matrix. That is, 
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If we write the real and imaginary disturbance terms as 

( )
( )






−ℑ
−ℜ

=








∆
∆

=∆
ccj

ccj
j

j
j

ZZ
ZZ

Z
Z

Z
2

1

.       ( 3.15) 

The χ2 function becomes  
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The gradient of χ2 with respect to the set of parameters, a = {α, Rb, Cm}, which will be 

zero at the χ2 minimum, gives the best estimation of the parameters and has components 
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or 
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Taking an addition partial derivative gives 
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If the second order partial derivatives are ignored, considering they will be small or 

approximately zero compared to the first order derivatives, the Hessian matrix of the χ2 

function reduces to 
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For numerical computation, it is convenient to remove the factors of 2 by defining 
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In the case of nonlinear dependence on the set of unknown parameters, the minimization 

of the merit function cannot be done directly and iterations are needed. The Levenberg-

Marquardt method, the standard routine for nonlinear least-squares minimization, must be 

used to analyze the gradient and Hessian. This is performed in a separate LabVIEW VI 

for output into the analysis VI and an interpolated curve from the calculated α, Rb, Cm 

that will closely resemble the original normalized impedance vs. frequency curve. 
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IV. Results and Discussion 
 
A. IMPEDANCE DATA 
 

The impedance vs. frequency curves for a typical electrode can be seen in Figure 

A-23. The curves for the naked (shown in white) and cell covered (red) real and 

imaginary impedances observed over a frequency are on the top, and on the bottom, the 

normalized versions. The normalized curves (covered impedance to naked impedance) 

demonstrate the magnitude that the PPAEC monolayer impedance has on top of the 

impedance of the naked electrode alone. The largest cellular effect can be seen at the 5.62 

kHz frequency level, although it has also been seen at the 3.16 kHz level, and is 

approximately 6 times the effective resistance of the naked electrode at that level. Even 

with the difference of cell type (Giaever and Keese used WI-38 fibroblasts) and 

equipment, the general shape of the curves found in our study matches that of the results 

found by Giaever and Keese in their 1991 study [8]; a good thing, since we have to fit 

their model to our data. The square root determinate for the covariance matrix of the real 

and imaginary variances can be seen in Figure A-24.  The A/D noise level is the base 

level for all noise in the system. Its inclusion in the plot demonstrates the frequency range 

where actual noise in the signal is overcome by the limiting A/D noise generated by the 

SR830, above 10 kHz. Thankfully, this is above the level were the greatest cellular effect 

takes place. 

In order to complete the ECIS model, the calculated parameters, α, Rb, and Cm, 

were used to fit a curve (in green) to the recorded frequency scans of a single electrode. 

(Figure A-25) In the normalized curves, the curve calculated from the arbitrary starting 

parameters for α, Rb, and Cm input into the Marquardt analysis for both the real and 
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imaginary channel is also given (in yellow), showing the improvement of the 

interpolation with iteration. These starting values may be any arbitrary value and will not 

affect the result of the fit, only the amount of time it takes to reach a suitable fit. This is in 

contrast to the Giaever/Keese analysis where Cm was arbitrarily set to 1 µF as previously 

stated. The parameters for this electrode and the rest of its neighbors on the array are as 

follows. (Table 2) The reduced chi square, the normalized “goodness of fit,” is quite low 

for all of the fits, excluding that of wells 1 and 2. However, the fit for the curve well 1, 

the well with the largest reduced chi square, is still quite acceptable. (Figure A-26) The 

stability of the model depends on many different factors in impedance curves (shape, 

magnitude, time, etc.). Even with wells on the same array, the parameters for the fit vary; 

α, from .9 to 5.4, Rb, from 3.3 to 9. Only Cm remains relatively constant, from 1.6 to 1.9. 

Time dependent scans at a single frequency level could also be compiled from the 

analysis program to better observe the attach (Figure A-27) and micromotion (Figure A-

28) of the PPAEC monolayer. The frequency level chosen for this study was 5.62 kHz, as 

it represented the largest cellular effect in the frequency scans of all 5 wells. The 

attachment of the PPAEC to the fibronectin results in the increase in impedance, 

 

Table 2. α, Rb, and Cm parameters with the reduced χ2 of the fit for a 5 well array. 

Well α 
(Ω 1/2·cm2) 

Rb 
(Ω·cm2) 

Cm 
(µF/cm2) 

Reduced χ2 
(unitless) 

1 0.991160 9.035666 1.667611 6.183709677 
2 3.913890 7.483377 1.684545 5.059806452 
3 5.391472 3.808105 1.628483 1.585580645 
4 1.700680 6.625979 1.906022 1.052032258 
5 3.775439 3.343787 1.767128 0.137032258 
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demonstrated in the plot. The variation in the data for both the attach and micromotion 

plots cannot be caused by noise (since steps were taken to minimize it well below the 

level of these changes), but by the changing morphology of the PPAEC in the monolayer. 

[8] This is supported by the time study involving the use of cytochalasin. (Figure A-29) 

Cytochalasin D (Sigma), a known actin and contractile microfilament inhibiting agent, 

was administered to each well. [45] From the 30 mL stock, 40 µL of cytochalasin was 

added to 360 µL of M199 containing 10 mg/mL bovine serum albumin, or BSA, and 

served to bring the experimental run to an end, whereby the micromotion of the PPAEC 

monolayer was halted. The fluctuations in impedance over time at the 5.62 kHz level 

disappear altogether, because the cells have been “frozen” in place. This is a curve of 

normalized impedance vs. time, meaning that when it moves towards unity there is no 

difference between the naked and cytochalasinated cell covered measurements. 

In addition to a single frequency time plot, a 3 dimensional surface plot of an 

entire frequency scan over the entire time period of a study can be compiled. (Figure A-

30) While not as effective for observing micromotion, this analysis allows for a better 

understanding of the effective time period for studying the PPAEC by the relative cellular 

effect, because it is relative to the maximum ridge of the normalized resistance vs. 

frequency vs. time surface. 

In addition to data for the PPAEC monolayer under normal conditions, various 

stimuli were added to the culture. Cytochalasin (discussed previously), nocodozole (a 

microtubule disrupter) [46],[47], and acrylamide (also a microtubule disrupter) [48],[49] 

were three chemicals added to stimulate cellular response. For the nocodazole (Sigma) 

treatment, a 2 mM dimethylsulfoxide (DMSO) stock solution was prepared by adding 
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16.595 mL DMSO to 10 mg nocodozole; to be stored as 100 µL aliquots in a freezer. At 

the time of testing, a 20 µM stock solution was prepared by adding 100 µL of the 2 mM 

DMSO stock solution to 9.9 mL of M199. A final concentration of 2 µM in the ECIS 

well was obtained by adding 40 µL to 360 µL M199 in the well. Acrylamide (Sigma) was 

prepared in an initial 400 mM stock solution by adding 4 mM acrylamide to 10 mL 

conditioned M199. One mL of 400 mM stock was diluted out to a 40 mM stock by 

adding 1 mL of 400 mM stock to 9 mL of conditioned M199. A final concentration of 4 

mM was obtained by diluting the solution another 10 fold by adding 40 mL to 360 mL 

conditioned M199 in the well. 

As in the case of cytochalasin, the result of adding these two chemicals was very 

much the same. (Figure A-31) The normalized impedance went to one some time after 

administering the drugs to the cell culture. However, the effect of the nocodozole was 

only temporary, and the cells returned to normal within a matter of hours. The acrylamide 

seemingly has a more permanent effect. The response rate for acrylamide was also much 

faster than that of the cytochalasin. 

The cellular resistance parameters α, Rb, and Cm were calculated for each 

electrode before and after treatment. Their values are presented below in Table 3. There 

appears to be no clear relationship between the parameters and the ceasing of 

micromotion. There is no linear trend in any of the 3 parameters to define the cellular 

response. With the nocodozole treatment, the parameters should have remained relatively 

unchanged, since the drug’s effect to the culture was transient and impedance levels 

returned to normal. The reduced chi square values for the parameter fits may explain 

some of the problem. They are rather erratic from one row to the next. The nocodozole  
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Table 3. α, Rb, and Cm before and after drug studies. 

Chemical 
Stimuli 

Time 
 

α 
(Ω 1/2·cm2) 

Rb 
(Ω·cm2) 

Cm 
(µF/cm2) 

Reduced χ2 
(unitless) 

Cytochalasin Before 0.991160 9.035666 1.667611 6.183709677
 After 4.970295 0.828805 3.027519 3.568032258

Nocodozole Before 0.378575 2.711654 1.162044 43.70967742
 After 0.412652 0.990456 1.237872 4.061741935

Acrylamide Before 6.643628 2.104086 1.388202 0.062354839
 After 4.325187 4.837655 1.697501 10.99245161

 

 

before reduced chi square is 43 and the acrylamide before only .06, an excellent fit. Such 

a low chi square for the acrylamide is probably just a chance occurrence of the data to fit 

the model. Again, the failure of the fit is dependent on many different factors. 

Unfortunately, the altering of the cell culture by chemical means does not explain the 

large reduced chi square for the well before treatment with nocodozole. 

 

B. ELECTRODE PROBLEMS 
 

During the process of preparing and running these experiments, various problems 

with the system occurred that affected the quality of data we were taking. Besides the 

obvious complications of setting up a DAQ system from the ground up, problems with 

electrical contacts and connections were the most common. Contamination of the delicate 

gold leaf circuitry of the electrode arrays was one of the first problems we encountered. 

Fingerprints on the gold leaf introduced noise to the lower frequency scans and distorted 

the overall shape of impedance plots. To avoid this type of contamination, gloves were 

worn at all times during the handling of the electrode arrays and all of the procedures 

involving the arrays in which it was feasible to do so were performed under the sterile 
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fume hood. Although electrode arrays were supposed to be shipped sterile from the 

manufacturer, contamination of the electrode arrays from manufacturing processes was 

found to be of concern to the proper functioning of the system. (Figure A-32) The 

impedance vs. frequency curves would have an atypical shape that could only be 

attributed to contamination. A careful visual examination of “faulty” electrodes proved to 

be all that was necessary to prevent their inclusion in experimental runs. The 

contamination introduced into the “faulty” arrays could not be removed from the 

electrode surfaces. Any attempt to do so resulted in further damage to the gold surface of 

the contacts. 

Further manufacturing defects resulted in a propensity for the wells to leak during 

experiments. The process by which the wells are secured to the plate containing the 

contacts appears to be merely a hand glued joint. The inconsistency in the seal of the 

wells to liquid results in the leaking of most of the contents of one or more of the wells of 

an electrode array onto the contacts of adjacent properly functioning electrodes. The 

array must be removed from the incubator and wiped of the cell media spill with a 

Kimwipe. This results in further damage to intact electrodes because of the roughening of 

the gold contact by the cleaning process. 

Another problem developed with the leads being used to connect the electrode 

array to the SR830. The data acquired with these leads also resulted in the distortion of 

data, with an extreme negative outlier in the frequency scan data signal for the reactance, 

occurring around 3 kHz. This was of great concern to the validity of the results, as the 

greatest cellular impedance effect occurs in the resistance curve around this frequency 

level. Upon removal of the faulty leads and replacement with different leads that had 
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different alligator clips, the erroneous dip in the reactance was removed as well. One 

explanation for the error induced by the faulty leads is a junction potential created by the 

connection between dissimilar metals. 

 
V. Conclusions 
 

The quantification of PPAEC monolayer impedance involves a complex system 

of DAQ and an even more complicated system of analysis. From the formulation of ECIS 

by Giaever and Keese, the curve of cellular impedance vs. frequency was found to have a 

best fit interpolation dependent on two constants innate to the monolayer, α and Rb. 

Where α is the resistance per unit area underneath the cells and between the substrate. Rb 

is the resistance between the individual cells. With an improvement upon the ECIS 

analysis, a third innate cellular constant was also solved for, Cm, the capacitance per unit 

area of the monolayer. (Table 2) The solution of these parameters was accomplished by a 

non-linear least squares minimization called the Levenburg-Marquardt Method. 

Unfortunately, the parameters are so dependent on the stability of the model of a very 

robust cell culture that it is difficult to make qualitative observations about cellular 

response with them. The best indicator for the response of the PPAEC to stimuli remains 

the general impedance of the system. 

The software package for analysis of raw voltage data, in addition to solving for 

the quantitative resistance values α and Rb and the membrane capacitance Cm, was quite 

flexible for the further analysis. The LabVIEW programming environment allowed us to 

characterize our 1024 sampled impedance values for each frequency level in virtually 

every way imaginable. The best quantitative indicator for the success of the minimization 
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of noise in the solution involves the square root of the determinant of the covariance 

matrix for the real and imaginary impedance averages over an entire frequency scan. 

(Figure A-24) 

For a time dependent study of the barrier function/impedance/micromotion of the 

monolayer, the frequency scans iterated over the course of several hours could be 

repositioned onto the time axis. Although not included in the results, the 3.16 kHz 

frequency level was also a normalized resistance maximum for some of the results, 

indicating a drift in the system most likely caused by the dynamic cellular environment. 

The frequency level that demonstrated the highest cellular impedance response in these 

results was 5.62 kHz, the peak of the normalized impedance curve for all wells (Figure 

A-23) and was the most often used frequency level for time study. (Figure A-28, Figure 

A-29, Figure A-31) However, depending on the time and time resolution (because a full 

frequency scan takes more time than a single frequency scan) needed for a study, other 

surrounding frequencies, if not all, are of importance to the impedance measurements of 

the monolayer. All the full frequency scans for a study can be stacked side-by-side to 

form an impedance/frequency/time surface. (Figure A-30) This gives the observer a 

better general sense of the behavior of the monolayer in the frequency and time domain 

simultaneously. 

In summation, the noise minimized, DAQ optimized ECIS system that we 

compiled was successful in correctly recording and extensively analyzing the impedance 

of a PPAEC monolayer subjected to various experimental conditions, of great importance 

to the responsible utilization of ECIS for scientific research.
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PART 4: APPLICATION OF ECIS TO VIBRATION INDUCED 
ENDOTHELIAL RESPONSE
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Abstract 
 

A condition known as “white-finger” or hand-arm vibration syndrome (HAVS) is 

prevalent in workers who use vibrating work tools for extended periods of time and is a 

result of restricted blood flow to the tissues undergoing vibration. It is believed that 

HAVS is an effect of an acute inflammatory response to vibration that has become a 

permanent factor in the affected tissue. It is the purpose of this part to determine the acute 

cellular response, if any, of a modified regiment of vibration on the porcine pulmonary 

artery endothelial cell (PPAEC) monolayer. This is a new area of study that has not 

previously been an area of focus for the Electrical Cell-Substrate Impedance Sensing 

(ECIS) system, which will be used for monitoring the PPAEC. The protocol for vibration 

was developed for this study through the use of international standards for measuring 

long-term induced vibration and its damage to tissue. Although the results of the study 

were indeterminate as to the endothelial monolayer barrier function when induced to 

vibration, it was concluded that the acceleration exposure dose, which was incorrectly 

calculated from the international standards, was not enough to induce an acute 

inflammatory response from our endothelial monolayer. The study also provides insights 

into the implementation of parallel multiple-array data acquisition and the time resolution 

tradeoff. 

 

I. Introduction 
 

Vibration can create disturbances in circulation, neurological conduction, and 

musculoskeletal control in the hands and arms of workers who use vibrating tools 

everyday for several years. Studies also suggest that there is a “linear relationship” 
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between level and time of exposure to the time of onset and severity of HAVS. [50] 

Standards such as BS6842 [51], BS7482 [52], ISO5349 [53], ISO8041 [54], and 

ISO10819 [55] to name a few, are dedicated solely to measuring, characterizing, and 

limiting hand-transmitted vibration in the workplace. While the procedures for measuring 

the transmitted vibration are well documented, little is known about the physiological 

cause of resulting degenerative diseases. 

A condition known as hand-arm vibration syndrome (HAVS) is prevalent in 

workers who use vibrating work tools for extended periods of time and is a result of 

restricted blood flow to the tissues undergoing vibration. It is believed that HAVS is an 

effect of a progressive peripheral neural and vascular change in the affected tissue. [50] 

Vibration directly affects the nerves, creating a tingling, numbing sensation in the fingers 

and hands. Over time, these effects lead to a permanent reduction in sensation. Carpal-

tunnel, the compression of the median nerve in the hand, which is often caused by a 

repetitive pinching of the nerve from improper hand posture, is also attributed to 

vibration damage in addition to the pressure applied to a hand tool. [53] 

The vascular change (vasoconstriction, the natural body response to cold) occurs 

when the smooth muscle sheaths around blood vessels contract to limit the blood volume 

in the outer extremities. One hypothesis for the development of HAVS is that this 

reaction becomes exaggerated when exacerbated by vibration, resulting in the loss of 

blood flow to tissue, further damaging the tissue. [53] Over time, more serious conditions 

arise such as ulcers and gangrene. The loss of blood flow also results in a loss of 

sensation and ultimately control of the hand tool that is causing the detrimental vibration, 

further increasing the danger of the situation. Since the ECIS system has been optimized 
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for the study of endothelial barrier function, the vascular component of HAVS can be 

directly measured; assuming a response can be initiated. 

In addition to neural and vascular changes, musculoskeletal damage occurs from 

detrimental vibration exposure. [50] Cysts, vacuoles, and ossification have an increased 

occurrence in the hands and arms of workers who operate low-frequency vibrating tools 

(< 50 Hz). [53] Tendonitis and a weakness and loss of grip also suggest an effect on the 

muscle tissue in hands and arms that is not necessarily a complication caused by 

neurological inflammation, but of the ergonomic stress of the vibration. 

In many of these situations, the physiologic stimuli behind these effects are 

unknown. [56] The cellular response of affected tissue to induced vibration is a mystery. 

There are three pathological changes in the affected tissue: a thickening of the muscular 

layers of artery walls, a demyelinating of peripheral neural pathways with increased 

number of fibroblasts, and increased amounts of connective tissue, causing peripheral 

vascular neural fibrosis. [57] Additional factors, such as poor circulation resulting from 

tobacco use or other vasoconstricting substances contribute to the prevalence of HAVS. 

[53] Hand-arm vibration syndrome can take years to reveal symptoms and even then, its 

prevalence in workers varies (from 0 to 100%). 

Little or no scientific studies have been able to bring this unpredictable 

degenerative behavior to light. Standards have been set to limit the exposure to vibration. 

Epidemiologic studies of the extent of HAVS in workers have been performed using cold 

water immersion to elicit the blanching effect [58],[59], but few studies have been made 

into the physiologic origin of the white finger effect. In a handful of papers on HAVS, 

damaged endothelium has been found to release chemicals, but the true cause of the 
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response has merely been to assume that shearing and mechanical stress cause damage to 

the tissue. [60], [61] A better understanding of the pathophysiologic response to HAVS 

holds the possibility of further reducing the occurrence of this complex syndrome. [62] It 

is the purpose of this part to better determine the acute cellular response, if any, of 

vibration on the PPAEC through the use of the ECIS system. 

 

II. Theory & Methods 
 

There are three components to acceleration exposure dose: acceleration, 

frequency, and time. The magnitude of acceleration is often given in terms of gravity (G), 

where G is the acceleration due to gravity: 9.81 m/s2. Acceleration of a mass induces a 

force upon that mass. The frequency represents the number of oscillations in the 

orientation of that force per second, since the acceleration can be assumed to be an 

oscillating wave (sine, square, or otherwise). The amount of time of vibration exposure 

completes the set of parameters that defines acceleration exposure dose. 

Many differing and complex methods for measuring the acceleration exposure 

dose have been used in studies of HAVS. [63],[64],[65] However, applying the ECIS 

system to a vibration source drastically limits the complexity of the spatial variables. 

Instead of the triaxial basicentric coordinate system commonly used for HAVS grip 

measurements, the coordinate system can be simplified to a simple single axis linear 

measurement. This is accomplished by placing the 5 well ECIS array directly on top of a 

vibratory “shaker.” (Figure A-33) Then the vibration is transferred directly normal to the 

plane of the ECIS array electrodes and hence, the endothelial monolayer cultured on their 

surface. 
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In order to submit the cell culture to an acceleration exposure dose that is 

equivalent to the dose seen in longer time period studies, a transformation from the 

typical 8 hour daily vibration exposure must be made to a time period better suited to the 

PPAEC culture which must be removed from the incubator for the duration of the 

vibration. The time period for vibration exposure to the PPAEC will be limited to 

approximately 30 minutes, so that the PPAEC will not also be affected by the 

temperature drop and air mixture change while external to the incubator. The relationship 

between the 8 hour vibration exposure, A(8), and the 30 minute vibration exposure, a(.5), 

is, 

o

i

T
TaA )5(.)8( =

,         ( 4.1) 
 
where Ti is the time of the vibration exposure (.5 hours) and To is the typical 8 hour time 

period. The ISO 5349 frequency-weighting curve (Figure A-34) will be used to 

determine the frequency that will deliver the highest weighting factor, and therefore the 

greatest amount of detrimental vibration to the tissue. The frequency-weighted 

acceleration can be calculated as, 

( )2aWaw ⋅= ,         ( 4.2) 
 
where W is the weighting factor and a is the unweighted acceleration. The greatest 

weighting factor, 1, will be around the 15 Hz level. In the studies organized in the 

National Institute for Occupational Safety and Health (NIOSH) epidemiologic survey 

from 1997, the acceleration levels for workers were typically 5 to 36 m/s2. [66] A good 

midrange acceleration from these values is approximately 15 m/s2 or about 1.5 G. 
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Therefore, the acceleration exposure dose given to the PPAEC will be 1.5 G at 15 Hz for 

30 mins a day, to approximate a typical dose for vibration tool workers. 

 

III. Experimental Results and Discussion 
 
A. INITIAL ACCELERATION EXPOSURE DOSE STUDY 
 

A run of two experiments was done to determine the effects, if any, of applied 

vibration on the PPAEC culture monolayer in a 5 well ECIS array. For the first run, the 

cells were passaged with the method discussed in Part 3 into the two 5 well ECIS arrays; 

the first array to serve as the acceleration dosed PPAEC and the second as the unvibrated 

control. The arrays were connected to a SCXI switching mechanism to allow for 

successive iterative DAQ of all 10 wells. The switching mechanism was added to the 

DAQ system to discretize the interim between the successive frequency scans of 

individual wells and allow for a wider parallel DAQ. The first array was intact with 5 

fully functioning wells. The control array, due in part to a wiring problem with the SCXI 

switching mechanism, has data on only 1 of its wells, well 7. However, all of the control 

wells were seeded with cells. The arrays stood in the incubator for a period of 18 hours to 

measure cell attachment. 

The second array stood untouched outside of the incubator in the fume hood for 

the 30 minute time period in which the other array was shaken. The first array was 

shaken for 30 minutes under 1.5 G’s at 15 Hz. This was done with the attachment of the 

array to the shaker with three screws through a modified 100 mm Petri dish to prevent 

rotation in any direction. Parafilm was applied to the tops of all five wells to create a seal 

between the top of the well and the top of the modified Petri dish; thus preventing 
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spillage of the contents of the wells. Once vibration was complete, both arrays were fed 

with fresh conditioned M199 and returned to the incubator for another scan. The second 

round of scanning was stopped after 18 hours. The first array was then shaken again for a 

period of 30 minutes and the control array left in the fume hood. Both arrays were 

returned to the incubator for more scanning. The third round of scanning began on the 

arrays was stopped the next day. All noticeable cell impedance was gone and the arrays 

were discarded. 

A typical result of the preliminary experiment can be seen in Figure A-35 where 

the naked and covered resistance and normalized resistance are compared from initial 

scan, after the first session of vibration, and after the second and final session of 

vibration. The results of the shaken well can further be compared to the control well in 

Figure A-36. From the resistance data seen between the two wells, there is no apparent 

difference between the well that was shaken and the control. The slight drop in 

normalized resistance over the three scans is caused by the diminishing health of the 

PPAEC monolayer of time. This is typical of monolayer impedances over a period of a 

few days. However, the control in this experiment appears to be faulty and not 

representative of a normally functioning electrode (the large normalized resistance hump 

in the lower frequencies). 

A further time study of the shaken well (Figure A-37) reveals plateaus between 

the three scans that are more likely caused by the refreshing of cell media than by a 

vibration induced response. Additionally, a 3 dimensional surface from the full frequency 

range scans over time reveal that the plateau effect is actually a slight jump up in 

resistance. (Figure A-38) Perhaps this is caused by the addition of cell media to the 
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culture before returning the arrays to the incubator. The α, Rb, and Cm parameters were 

also calculated for comparison of the shaken and control wells at simultaneous scans. 

(Table 4) As evidenced by the parameters, the control well is faulty. The capacitance of 

the monolayer becomes increasingly large over time and there is a spike in Rb at the end 

of the run. The model was unable to fit the odd shape of the normalized resistance curve. 

The parameters for the shaken well appear to be much better. Unfortunately, the 

Marquardt analysis did not iterate for the third scan, giving an incorrect set of parameters. 

For the first two scans though, it appears that the acceleration dose has left the culture 

unaffected. Furthermore, since normalized resistance did not drastically change in the 

time study between the shakes, it can be assumed that the acceleration exposure dose did 

not significantly affect the PPAEC, which would most likely cause a drop in the 

normalized resistance. Due to the failure in the control array, the results of the initial 

experiment cannot be assumed as conclusive and another attempt to elicit a HAVS 

response in the PPAEC will be attempted. 

 

 

 

Table 4. α, Rb, and Cm parameters for the initial acceleration exposure dose study 

Well Scan 
 

α 
(Ω 1/2·cm2)

Rb 
(Ω·cm2) 

Cm 
(µF/cm2) 

 Reduced χ2 
(unitless) 

Shaken Covered  (14) 6.370240 1.198577 1.890094 3.436580645
 Shake 1 (0) 7.561077 0.136316 2.039865 2.598806452
 Shake 2 (0) 4.000000 2.000000 1.000000 9.959806452

Control 14 12.571775 0.000189 3.781357 7.097451613
 0 13.474427 0.023806 15.149149 5.963677419
 0 0.473666 53.742328 31.984908 69 

 



 65

B. SECOND ACCELERATION EXPOSURE DOSE STUDY 
 

Frequency scans were initiated on two more 5 well ECIS arrays. The first array 

served as a variable for vibration study on cell-coated electrodes (wells 1-4), the second 

(containing only one working electrode due to the SCXI) as a control (well 5). The arrays 

were seeded with PPAEC and allowed to reach confluence overnight. The first array was 

then shaken for a period of 30 minutes the following morning, while the second array 

remained unshaken, though in the fume hood. The arrays were then filled with fresh 

media and returned to the incubator for more scans. 

A typical result of the second acceleration exposure dose experiment can be seen 

in Figure A-39 where normalized data of the resistance for the well 1 confluent scan 

(Cell Covered) is compared to the scan after the acceleration exposure dose (Shaken). 

The results of well 1 compared to those of the control well, well 5 in Figure A-40 show 

very little difference between the PPAEC that were shaken and those that were not. 

Again, the slow drop in normalized resistance is likely caused by the length of time 

between the scans and not a drastic change in the PPAEC as would likely be evidenced if 

the acceleration exposure dose had affected the culture. The time dependent relationship 

for normalized resistance can be illustrated in Figure A-41. The time study is given for 

the shaken well (TOP) and unshaken control well (BOTTOM). There is no plateau effect 

between the two scans as in the initial experiment, indicating that there was no effect 

from the acceleration exposure dose to the shaken well. Additionally, a 3-D plot of the 

entire frequency scan over time is given in Figure A-42; further demonstrating the 

continuity between confluent and shaken data. The α, Rb, and Cm parameters were also 

calculated for this study to compare the shaken and control wells at simultaneous scans. 
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(Table 5) The results of the parameter fits are again inconclusive as to a vibration 

induced cellular response. Both wells show an increase in α, a decrease in Rb, and an 

increase in Cm, but the magnitudes for these changes are all different. All of the fits are 

extremely good, excluding the final fit for the control well, but again, no clear cellular 

effect can be seen from the parameters, deleterious or otherwise. However, it can be 

concluded from the time studies that there was no adverse effect resulting from the 

vibration on the shaken well. A second time, the acceleration exposure dose has not 

elicited a cellular response. 

 

V. Conclusions 
 

HAVS is a debilitating condition known to affect many workers who continually 

use vibrating power tools. Many studies on the epidemiologic factors of HAVS have been 

made, and there are many methods for measuring and numerous standards limiting the 

acceleration exposure dose. However, little of the pathophysiologic origins of HAVS is 

known. It was the purpose of these studies to induce HAVS in the PPAEC monolayer 

seeded on ECIS electrodes to better understand the pathophysiologic response of 

endothelial tissue to vibration. 

 

Table 5. α, Rb, and Cm parameters for the second acceleration exposure dose study 

Well Scan 
 

α 
(Ω 1/2·cm2)

Rb 
(Ω·cm2) 

Cm 
(µF/cm2) 

Reduced χ2 
(unitless) 

Shaken Covered  (5) 9.578743 0.494185 1.759107 2.711516129
 Shaken (0) 11.005859 0.001692 17.041833 1.180064516

Control 5 10.640809 0.018096 2.600414 0.60916129 
 0 10.993167 0.000045 8.815284 12.46770968
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A typical result of the preliminary experiment can be seen in Figure A-35 where 

the naked and covered resistance and normalized resistance are compared from initial 

scan, after the first session of vibration, and after the second and final session of 

vibration. The results the shaken well can further be compared to the control well in 

Figure A-36. From the resistance data seen between the two wells, there is no apparent 

difference between the well that was shaken and the control. The slight drop in 

normalized resistance over the three scans is caused by the diminishing health of the 

PPAEC monolayer of time. However, the control in this experiment appears to be faulty 

and not representative of a normally functioning electrode (the large normalized 

resistance hump in the lower frequencies). A further time study of the shaken well 

(Figure A-37, Figure A-38) reveals jumps between the three scans. Perhaps this is 

caused by the addition of cell media to the culture before returning the arrays to the 

incubator. The α, Rb, and Cm parameters were also calculated for comparison of the 

shaken and control wells at simultaneous scans. (Table 4) As evidenced by the 

parameters, the control well is faulty. The capacitance of the monolayer is obviously not 

accurate. It is much too large. The parameters cannot be considered as indicative of the 

PPAEC. However, since normalized resistance has not drastically changed between the 

shakes, it can be assumed that the acceleration exposure dose did not significantly affect 

the PPAEC. Additionally, due to the failure in the control array, the results of the initial 

experiment cannot be assumed as conclusive.  

A typical result of the second acceleration exposure dose experiment can be seen 

in Figure A-39 where normalized data of the resistance for the shaken well confluent 

scan is compared to the scan after the acceleration exposure dose. The results of the 
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shaken well (Figure A-39) compared to those of the control well in Figure A-40 show 

very little difference between the PPAEC that were shaken and those that were not. 

Again, the slow drop in normalized resistance is likely caused by the length of time 

between the scans and not a drastic change in the PPAEC as would likely be evidenced if 

the acceleration exposure dose had affected the culture. The time dependent relationship 

for normalized resistance can be illustrated in Figure A-41 and Figure A-42. In Figure 

A-41 the time study is given for the shaken well (TOP) and unshaken control well 

(BOTTOM). There is no plateau effect between the two scans as in the initial experiment, 

indicating that there was no effect from the acceleration exposure dose to the shaken 

well. Figure A-42 further demonstrates the continuity between confluent and shaken 

data. The α, Rb, and Cm parameters were also calculated for this study to compare the 

shaken and control wells at simultaneous scans. (Table 5) As evidenced by the 

parameters, the control well is faulty. The capacitance of the monolayer becomes 

increasingly larger over time and there is a spike in Rb at the end of the run. The model 

was unable to fit the odd shape of the normalized resistance curve. The parameters for the 

shaken well appear to be much better. Unfortunately, the Marquardt analysis did not 

iterate for the third scan, giving an incorrect set of parameters. For the first two scans 

though, it appears that the acceleration dose has left the culture unaffected. Furthermore, 

since normalized resistance did not drastically change in the time study between the 

shakes, it can be assumed that the acceleration exposure dose did not significantly affect 

the PPAEC, which would most likely cause a drop in the normalized resistance. 

Although the results of the study were indeterminate as to the endothelial 

monolayer barrier function when induced to vibration, it was concluded that the protocols 
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for inducing long-term tissue damage with vibration were not enough to induce an acute 

inflammatory response in our endothelial monolayer; most likely because of a mistake 

made in the transformation of the acceleration values given in the NIOSH review [66] to 

an equivalent acceleration exposure dose for this experiment. These accelerations were 

probably acceleration exposure doses for an 8 hour period and not general magnitude 

values. Since a 30 minute time period was used for these experiments, the 8 hour 

acceleration exposure dose would have transferred to a much larger magnitude 

acceleration over the 30 minutes. Using Eq. 4.1, the acceleration exposure dose that 

should have been applied to the PPAEC monolayer would be 60 m/s2 or approximately 6 

G for 30 minutes a day. Further experimentation into vibration response with an 

accurately calculated acceleration exposure dose or even a higher acceleration dose may 

prove to induce the acute inflammatory response desired for inducing HAVS. 

Additionally, equipment failure in the electrical switching mechanism controlled by 

LabVIEW limited the number of control electrodes in both studies to one. In the first 

study, the control electrode appeared to be faulty, due the to inconsistent normalized 

resistance curve at the completion of the experiment. (Figure A-36) 

These studies also provide some insight into the implementation of parallel 

multiple-array data acquisition and the time resolution tradeoff. With software controlled 

switching of the SR830 current clamp to each of the electrodes on an ECIS array, the 

number of electrodes that can feasibly be scanned is greatly increased. Similarly, the time 

between frequency scans on an electrode is an interval equal to the magnitude of the time 

it takes to scan the total number of other electrodes in the experiment. In cellular attach 

studies, the initial attachment occurs within a period of 4 to 5 hours, and the time to reach 
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confluence is approximately 18 hours. This means that the culture will be the most robust 

about 18 hours after seeding and will begin to lose normalized resistance slowly over the 

course of the next few days. The observation of time dependent interactions with ECIS 

requires that the number of parallel electrode arrays be minimized for maximum time 

resolution in each electrode frequency scan.
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PART 5: CONCLUSIONS
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I. Introduction 
 

The purpose of this master’s thesis was to present a definitive study of the ECIS 

system and make improvements to its application to the assessment of the endothelial 

monolayer barrier function. This was accomplished through the identification of errors in 

measurement of electrical voltage data such as noise sources and corrections to the circuit 

model theory used to formulate the analysis of the electrical impedance data. Parts were 

organized into inclusive subjects that might serve as a stand-alone entity focused on a 

specific area of the ECIS system. The introduction part served as a general survey into 

the history of electrical cell measurement and a further look into the application of that 

technology to the endothelial monolayer barrier function. The pioneering work by 

Giaever and Keese as well as the numerous scientific studies involving ECIS was briefly 

discussed. Cellular impedance system noise was identified in the discussion of the second 

part and filtering regimes to minimize that noise were implemented into the DAQ of the 

ECIS system. Cellular impedance experimental data was taken for the third part and the 

process of cell culture and electrode preparation for the process were included in the 

methods section of that part as an example of the many areas for improvement to the 

protocols and setup of the ECIS system. The analysis model and software package for the 

cellular impedance data was also included and improvements made to the system. In Part 

4, the optimized DAQ system for ECIS was applied to the study of HAVS, a syndrome 

affecting many workers who use vibrating tools. A pathological study of induced HAVS 

was attempted using the ECIS system. In summation, a systematic approach was made to 

improve the problems of ECIS, necessitated by the lack of any such optimization of the 
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system by its originators and contributors over the years and further applied to a new area 

of research. 

 

II. Part Conclusions 
 

In Part 2, it was found that harmonic, 60 Hz, Gaussian, and A/D noise sources all 

appeared in the unfiltered data of a naked ECIS electrode following PSD. (Figure A-7, 

Figure A-8, Figure A-9, and Figure A-10) Using a power spectral analysis to isolate and 

identify noise, increased filtering could be systematically applied to the system to 

sequentially minimize or very nearly eliminate the noise. Synchronous filtering was 

found to remove harmonic noise below 200 Hz in lieu of applying a long time constant to 

the low pass filter (Figure A-11), which would in effect decrease the time resolution of 

the DAQ system to sudden signal changes. The result of SYNC filter was to greatly 

decrease the error of impedance averages below 200 Hz. (Figure A-12) The results of the 

SYNC filter can also be illustrated in Figure A-16, where the determinant square root for 

increasing time constants (LEFT) and increasing roll off (RIGHT) is greatly minimized in 

the operating range of the SYNC filter. Following SYNC filtering, 60 Hz noise was 

revealed in the system. (Figure A-11) Increasing the time constant of filtering decreased 

the 60 Hz noise to the level of random Gaussian noise in the signal.(Figure A-13) After 

minimizing random Gaussian noise by as much as possible with the largest filter roll off 

(24 dB/octave) (Figure A-14) A/D noise was concluded to be the lowermost limit to the 

level of system noise remaining. (Figure A-15) It could not be removed from the system, 

just minimized by limiting dynamic reserve. It was therefore documented for each 

scanning frequency level. (Table 1) 
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From a careful analysis of noise sources and a quantification of the amplitude of 

noise that is introduced into the ECIS system, it was found that the optimal sampling 

parameters were a SYNC filter for removing low frequency harmonic noise, a 300 ms 

time constant for 60 Hz noise, and the maximum 24 dB/octave roll off for filtering 

Gaussian noise around the signal information. A low noise reserve, considering that the 

signal was actually very low noise, further insured the minimization of overall system 

noise, most specifically A/D. This filtering regime resulted in an overall smooth power 

spectrum for the impedance signal. (Figure A-14) Aliasing of higher frequency 

harmonics and 60 Hz noise creates the sloping arc to the power spectrum. For the time 

domain, this translates to a slight drift in the lower reference frequency recordings. 

(Figure A-15) Figure A-17 represents the frequency scans before (in white) and after (in 

orange) filtering. The optimally filtered data has dropped resistance and added impedance 

in the lower frequencies, due to drift, and gained some resistance in the mid-range 

frequencies, an effect of minimizing the noise. The square root determinate was also 

greatly reduced by filtering. (Figure A-18) Additionally, an interim of 2.2 seconds 

between each frequency scan allowed for equilibration of the filter, considering that 5 

time constants would require 1.5 seconds, between reference frequency shifts. 

In Part 3, the cell was added to the optimized DAQ system. The quantification of 

PPAEC monolayer impedance involves a complex system of DAQ and an even more 

complicated system of analysis. From the formulation of ECIS by Giaever and Keese, the 

curve of cellular impedance vs. frequency was found to have a best fit interpolation 

dependent on two constants innate to the monolayer, α and Rb. Where α is the resistance 

per unit area underneath the cells and between the substrate. Rb is the resistance between 
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the individual cells. With an improvement upon the ECIS analysis, a third innate cellular 

constant was also solved for, Cm, the capacitance per unit area of the monolayer. (Table 

2) The solution of these parameters was accomplished by a non-linear least squares 

minimization called the Levenburg-Marquardt Method.  

The software package for analysis of raw voltage data, in addition to solving for 

the quantitative resistance values α and Rb and the membrane capacitance Cm, was quite 

flexible for the further analysis. The LabVIEW programming environment allowed us to 

characterize our 1024 sampled impedance values for each frequency level in virtually 

every way imaginable. For a time dependent study of the barrier 

function/impedance/micromotion of the monolayer, the frequency scans iterated over the 

course of several hours could be repositioned onto the time axis. Although not included 

in the results, the 3.16 kHz frequency level was also a normalized resistance maximum 

for some of the results, indicating a drift in the system most likely caused by the dynamic 

cellular environment. The frequency level that demonstrated the highest cellular 

impedance response in these results was 5.62 kHz, the peak of the normalized impedance 

curve for all wells (Figure A-23) and was the most often used frequency level for time 

study. (Figure A-28, Figure A-29, Figure A-31) However, depending on the time and 

time resolution (because a full frequency scan takes more time than a single frequency 

scan) needed for a study, other surrounding frequencies, if not all, are of importance to 

the impedance measurements of the monolayer. All the full frequency scans for a study 

can be stacked side-by-side to form an impedance/frequency/time surface. (Figure A-30) 

This gives the observer a better general sense of the behavior of the monolayer in the 

frequency and time domain simultaneously. 
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In Part 4, HAVS, a debilitating condition known to affect many workers who 

continually use vibrating power tools, is studied with ECIS. It was the purpose of these 

studies to induce HAVS in the PPAEC monolayer seeded on ECIS electrodes to better 

understand the pathophysiologic response of endothelial tissue to vibration. 

Two studies were made into the acceleration exposure dose and laboratory 

induced HAVS. A typical result of the preliminary experiment can be seen in Figure A-

35 where the naked and covered resistance and normalized resistance are compared from 

initial scan, after the first session of vibration, and after the second and final session of 

vibration. The results of the shaken well can further be compared to the control well in 

Figure A-36. From the resistance data seen between the two wells, there is no apparent 

difference between the well that was shaken and the control. The slight drop in 

normalized resistance over the three scans is caused by the diminishing health of the 

PPAEC monolayer of time. However, the control in this experiment appears to be faulty 

and not representative of a normally functioning electrode (the large normalized 

resistance hump in the lower frequencies). A further time study of the shaken well 

(Figure A-37, Figure A-38) reveals jumps between the three scans. Perhaps this is 

caused by the addition of cell media to the culture before returning the arrays to the 

incubator. The α, Rb, and Cm parameters were also calculated for comparison of the 

shaken and control wells at simultaneous scans. (Table 4) As evidenced by the 

parameters, the control well is faulty. The capacitance of the monolayer becomes 

increasingly larger over time and there is a spike in Rb at the end of the run. The model 

was unable to fit the odd shape of the normalized resistance curve. The parameters for the 

shaken well appear to be much better. Unfortunately, the Marquardt analysis did not 
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iterate for the third scan, giving an incorrect set of parameters. For the first two scans 

though, it appears that the acceleration dose has left the culture unaffected. Furthermore, 

since normalized resistance did not drastically change in the time study between the 

shakes, it can be assumed that the acceleration exposure dose did not significantly affect 

the PPAEC, which would most likely cause a drop in the normalized resistance. Due to 

the failure in the control array, the results of the initial experiment were inconclusive and 

another attempt to elicit a HAVS response in the PPAEC was attempted. 

A typical result of the second acceleration exposure dose experiment can be seen 

in Figure A-39 where normalized data of the resistance for the shaken well confluent 

scan is compared to the scan after the acceleration exposure dose. The results of the 

shaken well (Figure A-39) compared to those of the control well in Figure A-40 show 

very little difference between the PPAEC that were shaken and those that were not. 

Again, the slow drop in normalized resistance is likely caused by the length of time 

between the scans and not a drastic change in the PPAEC as would likely be evidenced if 

the acceleration exposure dose had affected the culture. The time dependent relationship 

for normalized resistance can be illustrated in Figure A-41 and Figure A-42. In Figure 

A-41, the time study is given for the shaken well (TOP) and unshaken control well 

(BOTTOM). There is no plateau effect between the two scans as in the initial experiment, 

indicating that there was no effect from the acceleration exposure dose to the shaken 

well. Figure A-42 further demonstrates the continuity between confluent and shaken 

data. The α, Rb, and Cm parameters were also calculated for this study to compare the 

shaken and control wells at simultaneous scans. (Table 5) The results of the parameter 

fits are again inconclusive as to a vibration induced cellular response. However, it can be 
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concluded from the time studies that there was no adverse effect to the vibration on the 

shaken well. The acceleration exposure dose has not elicited a cellular response. 

Although the results of the study were indeterminate as to the endothelial 

monolayer barrier function when induced to vibration, it was concluded that the protocols 

for inducing long-term tissue damage with vibration were not enough to induce an acute 

inflammatory response in our endothelial monolayer. There was a mistake made in the 

transformation of the acceleration values given in the NIOSH review [66], presumably 

for the 8 hour period, to the 30 minute time period used in these experiments. Using 

equation 4.1, the acceleration exposure dose that should have been applied to the PPAEC 

monolayer would be 60 m/s2 or approximately 6 G for 30 minutes a day. Further 

experimentation into vibration response with an accurately calculated acceleration 

exposure dose or even a higher acceleration dose may prove to induce the acute 

inflammatory response desired for inducing HAVS. Additionally, equipment failure in 

the electrical switching mechanism controlled by LabVIEW limited the number of 

control electrodes in both studies to one. In the first study, the control electrode appeared 

to be faulty, due the to inconsistent normalized resistance curve at the completion of the 

experiment. (Figure A-36) 

The acceleration exposure dose studies also provided some insight into the 

implementation of parallel multiple-array data acquisition and the time resolution 

tradeoff. With software controlled switching of the SR830 current clamp to each of the 

electrodes on an ECIS array, the number of electrodes that can feasibly be scanned is 

greatly increased. Similarly, the time between frequency scans on an electrode is an 

interval equal to the magnitude of the time it takes to scan the total number of other 
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electrodes in the experiment. In cellular attach studies, the initial attachment occurs 

within a period of 4 to 5 hours, and the time to reach confluence is approximately 18 

hours. This means that the culture will be the most robust about 18 hours after seeding 

and will begin to lose normalized resistance slowly over the course of the next few days. 

The observation of time dependent interactions with ECIS requires that the number of 

parallel electrode arrays be minimized for maximum time resolution in each electrode 

frequency scan. 

 

III. Thesis Conclusions 
 

The purpose of this Masters thesis was to present a definitive study of the ECIS 

system and make improvements to its assessment of the endothelial monolayer barrier 

function. This was accomplished through the identification of errors in measurement of 

electrical voltage data such as noise sources and an improvement to the theoretical model 

used to formulate the analysis of the electrical impedance data. Environmental and 

random noise sources were minimized through a systematic observation of spectral peaks 

of individual frequency scans and the application of filtering to the DAQ. The software 

package for analysis of raw voltage data was successful in solving for the quantitative 

resistance values, α and Rb and the membrane capacitance Cm, instead of assuming a 

fixed membrane capacitance for all of the wells as Giaever and Keese had. The software 

package is also more flexible than that provided commercially, and allows for a 

researcher to set every recording variable ranging from settings on the lock-in amplifier 

to the GPIB card. The optimized system was then used on a study of acute inflammation 

and the endothelial monolayer barrier function response to vibration. Although the results 
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of the study were indeterminate as to the endothelial monolayer barrier function when 

induced to vibration, it was concluded that the acceleration exposure dose, incorrectly 

calculated from the international standards, was not enough to induce an acute 

inflammatory response from our endothelial monolayer. The study also provides incites 

into the implementation of parallel multiple-array data acquisition and the time resolution 

tradeoff. In summation, the noise minimized, DAQ optimized ECIS system that we 

compiled was successful in correctly recording and extensively analyzing the impedance 

of a PPAEC monolayer subjected to various experimental conditions, of great importance 

to the responsible utilization of ECIS for scientific research. 
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Figure A-1. Three traditional methods for measuring cellular electrical activity. For 
intracellular recordings the micropipette can be inserted through the membrane to 
directly measure the intracellular potential. Secondly, for the whole cell patch the 
micropipette can be brought into contact with the cell and a light suction applied, 
forming a tight seal and adding the ability to monitor membrane impedance. For 
extracellular recordings a micropipette or microwire is positioned in close proximity 
to the cell. Adapted from [1]. 

Cell 

Substrate 

Cell 

V V V 

Cell

Extracellular
Solution 

Voltage 
Recorder 

Intracellular 
Method 

Cell Patch
Method 

Extracellular 
Method 



 89

 
 

Figure A-2. Cross-section of a planar microelectrode, comprised of a substrate, a 
conductor to form the circuit, and an insulating layer, removed in the areas to 
define the electrode. Cells are cultured directly on the electrode surface in a 
contained volume well. 
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Figure A-3. A general circuit diagram for the ECIS instrumentation.   The voltage 
source resistance, Rs, is 50 Ω and the input resistance, Rv, and capacitance, Cv, of 
the phase sensitive detector are 10 MΩ and 25 pF respectively.  Parasitic lead 
resistances and capacitances are associated with the source, Rps & Cps, and phase 
sensitive detector, Rpv & Cpv.  Typical values for the parasitic resistance and 
capacitance are 1 kΩ and 0.19 nF Respectively. A 1 MΩ resistor, Rcc, is connected 
in series with the AC voltage source to stabilize the current through the electrode.  
The electrode resistance, Rc, and capacitance, Cc, are functions of frequency.
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Figure A-4. Simplified circuit diagram for cellular impedance measurements. A 
1MΩ resistor, Zcc, in series with a 1 V voltage source, Vs, provides a 1 µA current 
clamp on the electrode, with impedance Zc, to be measured.

 

Vs 
(1v) 

+ 
- 

Zcc

1MΩ 

 Vc ~ Zc 



 92

 
 

Figure A-5. Minimally filtered (10 µsec, 6 dB/octave) resistive and reactive average 
measurements of a naked gold electrode containing only cell culture media as a 
function of frequency. 

 
 
 

 
 

Figure A-6. Square root determinate of the covariance matrix of resistive and 
reactive measurements, minimally filtered (10 µsec, 6 dB/octave), of a naked 
electrode as a function of frequency. Demonstrating that the relative error to 
averaged measurements tends to decrease as a function of frequency. 
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Figure A-7. 10 Hz resistance data point time sequence and power spectrum, 
minimally filtered (10 µsec, 6 dB/octave), of a naked electrode. The interference can 
be seen in the spectral analysis and consists of harmonic noise at 20 Hz and other 
multiples of 10, surrounded by random Gaussian noise. 

 
 
 

 
 

Figure A-8. 1 kHz resistance data point time sequence and power spectrum, 
minimally filtered (10 µsec, 6 dB/octave), of a naked electrode. The interference can 
be seen in the spectral analysis and consists of harmonic noise following phase 
sensitive detection. A strong 48 Hz component is caused by the 1 kHz reference 
frequency, due to difference signal from the PSD sampling fourth harmonic and the 
lock-in frequency second harmonic. There is also a gradual roll-off from the aliasing 
and spectral folding of higher frequency harmonics.
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Figure A-9. 100 kHz resistance data point time sequence and power spectrum, 
minimally filtered (10 µsec, 6 dB/octave), of a naked electrode. The interference can 
be seen in the spectral analysis and consists of many different interfering peaks, 
many of which are caused by the spectral folding and aliasing of higher harmonics, 
giving the appearance of random Gaussian noise.  

 

 
 

 
 

Figure A-10. Harmonic noise represented in the power spectra of a minimally 
filtered (10 µsec, 6 dB/octave) 100 Hz impedance measurement of a naked gold 
electrode. Harmonic noise sources appear at 100 and 200 Hz.
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Figure A-11. 60 Hz noise in the power spectra of a minimally filtered (10 µsec, 6 
dB/octave) 100 Hz impedance measurement of a naked gold electrode following 
SYNC filtering.  The harmonic noise peaks have been removed to reveal addition 
and subtraction peaks resulting from 60 Hz noise. 

 
 
 

 
 

Figure A-12. Square root determinate of the covariance of the resistive and reactive 
measurements, minimally filtered (10 µsec, and 6 dB/octave), of a naked electrode as 
a function of frequency. Using synchronous filtering (in orange) shows a much 
different pattern in the errors than those without SYNC filtering (in white). 
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Figure A-13. Removal of 60 Hz noise in the power spectra with a 300 ms time 
constant (SYNC, 6 dB/octave) in a 100 Hz reference frequency impedance 
measurement of a naked gold electrode. 

 
 

 
 

Figure A-14. Gaussian noise minimization and aliasing of 60 Hz and Harmonic noise 
in the power spectra of impedance data of a naked electrode at the 100 Hz reference 
frequency level with SYNC, 300 ms, and 24 dB/octave filtering.[BDC23] Notice that 
the overall magnitude of the spectra has dramatically decreased (10k to 1k) from 
Figure A-11 and Figure A-13.
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Figure A-15. A/D Noise in real and imaginary time sequences at a reference 
frequency of 100 Hz using SYNC, 300 ms, and 24 dB/octave filtering. A small 
amount of drift is present and evidence of A/D noise can be seen in the time 
sequence data. 

 
 
 

 
 

Figure A-16. SYNC filter effect on the determinant square root of the covariance 
matrix for impedance averages over a full frequency scan, specifically at frequencies 
< 200 Hz., as a function of time constant with 6 dB roll off (LEFT) and roll off filter 
with a 10 µs time constant (RIGHT) that are represented by the series of colored 
lines. Below 200 Hz, the SYNC filter drastically reduces error. Zero values occur 
from A/D noise. 
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Figure A-17. Minimally (in white) and optimally (in orange) filtered resistive and 
reactive average measurements of a naked gold electrode [BDC25]as a function of 
frequency. The optimally filtered data has dropped resistance and added impedance 
in the lower frequencies and gained some resistance in the mid-range frequencies, 
an effect of drift and minimizing the noise. 

 
 
 

 
 

Figure A-18. Square root determinate of minimally (in white) and optimally (in 
orange) filtered data. A/D levels (in green) have been included to demonstrate the 
area where they become important ( > 10 kHz). The square root determinate has 
dropped by 2 orders of magnitude, signifying a major loss of error in our 
measurements.
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Figure A-19. Diagram of the cell-substrate geometry, introducing spatial electrical 
equations. Adapted from [8] 
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Figure A-20. ECIS 5 well array, 5W1E, purchased from Applied Biosciences. 
Consisting of gold film electrodes insulated by a photoresist film and mounted on a 
.025 mm thick clear Lexan polycarbonate substrate that is clear enough to allow for 
the observation of cells using an inverted microscope. Each electrode has a 250 µm 
diameter exposed area and each well holds approximately 500 µL. 
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Figure A-21. Electrode just after cell seeding, magnified 20X. The exposed electrode 
surface, the light area, is initially free of PPAEC. The random shaped objects out of 
the plane of focus are PPAEC that have not yet attached to the electrode and 
stretched out to form their characteristic cobblestone morphology. 
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Figure A-22. Electrode at confluence 24 hours after seeding, magnified 20X. The 
exposed electrode surface, the light area, is confluent with PPAEC, which now have 
a cobblestone appearance. 
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Figure A-23. Naked and Cell Covered Real and Imaginary impedances (TOP) 
Normalized Real and Imaginary impedances (BOTTOM). The normalized curves 
demonstrate the magnitude that the PPAEC monolayer impedance has on top of 
that of just the naked electrode. The largest cellular effect can be seen in the 
resistance at the 5.62 kHz frequency level, approximately 6 times the effective 
impedance of the naked electrode at that level.
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Figure A-24. Square-root determinant vs. frequency, exemplifying the noise of the 
system. The A/D noise level is included as a basis for the size of the relative noise 
component. A/D noise becomes important at the 10 kHz level and above. 
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Figure A-25. Impedance curves, raw and normalized, with interpolated curves from 
the calculated α, Rb, & Cm parameters, in green. In the normalized curves, the 
curve calculated from the arbitrary starting parameters input into the Marquardt 
analysis is also given, in yellow, showing the improvement of the interpolation with 
iteration.
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Figure A-26. Impedance curves, raw and normalized, with interpolated curves from 
the calculated α, Rb, & Cm parameters, in green for well 1, which had a large 
reduced chi-square value. In the normalized curves, the curve calculated from the 
arbitrary starting parameters input into the Marquardt analysis is also given, in 
yellow. The small amount of deviation of the fitted curve, in green, from the 
normalized resistance, in red, represents the large chi-square term. This is still a 
very good fit to the data. 
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Figure A-27. Time study of PPAEC attachment to the electrode at the 5.62 kHz 
level. Impedance levels increase as the cells attach and reach confluence, with the 
greatest level typically seen in the real channel. 
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Figure A-28. Time study of micromotion at the 5.62 kHz frequency level. 
Fluctuations in the impedance represent the changing shape of the PPAEC.
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Figure A-29. Time study of the ceasing of micromotion due to addition of 
cytochalasin-D, an actin and contractile microfilament inhibiting chemical. The 
fluctuations in the normalized impedance vs. time curve at the 5.62 kHz level move 
towards unity, meaning that there is no difference between the naked and 
cytochalasinated cell covered measurements. 



 109

 
 

Figure A-30. 3-D surface plot of a full frequency scan of resistance over time. This 
analysis allows for a better understanding of the effective time period for studying 
the PPAEC by the relative cellular effect, because it is relative the maximum ridge 
of the normalized resistance vs. frequency vs. time surface. Even after 16 hours, the 
relative magnitude of the PPAEC normalized impedance has noticeably dropped. 
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Figure A-31. Time study of the affect of nocodozole, a microtubule disruptor, and 
acrylamide, an actin disruptor, on micromotion. The normalized resistance drops 
immediately upon the administration of nocodozole and reaches a minimum at 2 
hours. However, the PPAEC return to normal after about 10 hours and retain a 
normal micromotion. The acrylamide seemingly has a more permanent effect. The 
response rate for acrylamide was also faster than that of the cytochalasin (Figure A-
29), reaching unity approximately 3 hours before the cytochalasin.
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Figure A-32. ECIS array with gold leaf contamination. Contamination of the 
electrode arrays from manufacturing processes and finger prints was found to 
introduce error into the system. 
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Figure A-33. Shaker used to induce vibration in the PPAEC monolayers contained 
in the 5 well ECIS array.
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Figure A-34. ISO 5349 frequency-weighting curve for hand-transmitted vibration. 
The frequency that will deliver the highest weighting factor, 1, will be around the 15 
Hz level. [53]
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Figure A-35. Shaken well preliminary acceleration exposure dose study normalized resistances at confluence (Cell Covered), 
following the first round of vibration (Shake 1), and following the second round of vibration (Shake 2). The slight drop in 
normalized resistance over the three scans is caused by the diminishing health of the PPAEC monolayer over time, typical of 
monolayer impedances over a period of a few days. There does not appear to be a response to the cells from vibration. 
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Figure A-36. Control well preliminary acceleration exposure dose study normalized resistances at confluence (Cell Covered), 
following the first placement in the fume hood (Shake 1), and following the second placement in the fume hood (Shake 2). 
There is no apparent difference between the well that was shaken (Figure A-35) and the control. However, the control appears 
to be faulty and not representative of a normally functioning electrode (the large normalized resistance hump in the lower 
frequencies).
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Figure A-37. Time study of primary acceleration exposure dose to the shaken well. The plateau effect between the three scans 
is mostly likely indicative of the refreshing of cell media, and not a vibration induced response. 
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Figure A-38. 3-D surface plot of the normalized resistance frequency scans vs. time of the primary acceleration exposure dose 
study shaken well. The difference between each scan indicates an increase of resistance, probably caused by the addition of cell 
media.
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Figure A-39. Shaken well second acceleration exposure dose study normalized 
resistances at confluence (Cell Covered), following a round of vibration (Shaken). 
Again, the slight drop in normalized resistance between the two scans is caused by 
the diminishing health of the PPAEC monolayer over time. This is typical of 
monolayer impedances over a period of a few days. There does not appear to be a 
response to the cells from vibration. 
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Figure A-40. Control well second acceleration exposure dose study normalized 
resistances at confluence (Cell Covered), following the placement in the fume hood 
(Shaken). There is no apparent difference between the well that was shaken (Figure 
A-39) and the control. The control electrode appears to be functioning properly this 
time. 
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Figure A-41. Time study of second acceleration exposure dose study for the shaken 
well (TOP) and unshaken control well (BOTTOM). There is no plateau effect 
between the two scans as in the initial experiment, indicating that there was no 
effect from the acceleration exposure dose to the shaken well.
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Figure A-42. 3-D surface plot of the normalized resistance frequency scans vs. time of the second acceleration exposure dose 
study shaken well. There appears to be no difference between the scans, indicating no cellular response.
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