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Abstract 

 This thesis presents low power design of a 916MHz Gilbert cell mixer and a Class-A 

power amplifier for the Bioluminescent Bioreporter Integrated Circuit (BBIC) transmitter.  

 There has been increased use in the man-made sensors that can operate in environments 

unsuitable for humans and at locations remote from the observer. One such sensor is the 

bioluminescent bioreporter integrated circuit (BBIC). Bioluminescent bioreporters are the 

bacteria that are genetically engineered in order to achieve bioluminescence when in contact with 

a target substance. The BBIC has bioreporters placed on a single CMOS integrated circuit (IC) 

that detects the bioluminescence, performs the signal processing and finally transmits the senor 

data. The wireless transmission allows for remote sensing by eliminating the need of costly 

cabling to communicate with the sensor.  

 The wireless data transmission is performed by the transmitter system. The digital data 

stream generated by the signal processing circuitry of the BBIC is ASK modulated for 

transmission. The direct conversion transmitter used in this design includes a PLL, a mixer and a 

power amplifier. The PLL is used to generate a 916MHz frequency signal. This signal is mixed 

with the digital data signal generated from the signal processing circuitry of the BBIC. A double-

balanced Gilbert cell is used to perform the mixing operation. The mixer output is applied to a 

power amplifier that provides amplification of the RF output power. The Gilbert cell mixer and 

the power amplifier have been implemented in 90nm CMOS process available through MOSIS. 
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CHAPTER 1 

Introduction 

    
  There is an absolute need of human sensing for human interaction in the day-to-day life.  

We humans probably use and re-use all the five of our senses countless number of times each 

and every day. However there is a need for the sensing systems which are more accurate, 

versatile, and selective than a human being could ever be. This resulted in the development of 

man-made sensors that can make measurements of mechanical, electrical, thermal, and chemical 

quantities. These man-made sensors can operate in environments unsuitable for humans and at 

locations remote from the observer.   

1.1 Biosensors 
 A sensor application in which a group of remote sensors are placed throughout an area to 

be monitored is termed as distributed sensing. One class of sensors that could be helpful in 

distributed sensing is biosensors. A biosensor combines a biological sensing component with an 

analytical measuring element to detect, record, and transmit information regarding a 

physiological change or the presence of various biological materials or chemicals in the 

environment. In technical terms, a biosensor is a probe that integrates a biological component 

with an electronic component to yield a measurable signal [Bolton]. Biosensors are used for 

monitoring changes in the environmental conditions. They come in variety of sizes and shapes 

and can be used for detection and measurement of concentrations of specific bacteria or 

hazardous chemicals. 
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1.2 Whole-Cell Biosensors 
 The biological component of the biosensor is used to recognize an analyte and 

subsequently activate a signal that is being detected with a transducer. Immobilized 

macromolecules such as enzymes or antibodies are used as biological components.  Living 

microorganisms or sections of organs or tissues are also used as biological components.  

Biosensor in which an intact living cell is used as the biological component is called a whole-cell 

biosensors. The whole-cell biosensors are considered to be well suited for environmental sensing 

as they can be made small enough to be used in the field, and are capable of continuous 

monitoring.  

 In recent years, there have been increased research and development efforts that have 

been directed towards the development of new real-time monitoring, insitu sensors devices that 

can be easily deployed in multiple strategic locations for environmental monitoring. These 

integrated sensors are small and inexpensive and are expected to be monitoring diverse physical 

environments. There has also been advancement in developing various types of chemical and 

biological agent sensors, such as bioluminescent bioreporter integrated circuit (BBIC) system 

developed at the University of Tennessee [Islam]. 

1.3 Bioluminescent Bioreporter 
 Bioluminescence is the light produced by a chemical reaction in an organism. For this 

chemical reaction to occur at least two chemicals are required; a substrate and a luciferase. The 

oxidation of the substrate is catalyzed by the luciferase. The oxidation results in light and an 

inactive oxidized product [Bolton]. The reaction is illustrated in Figure 1.1. 

 Bioreporters essentially contain two genetic elements, a promoter gene and a reporter 

gene. When the target agent is present in the cell’s environment then the promoter gene is turned 

on (transcribed). In normal bacteria the promoter gene is linked to the other genes that are then 

likewise turned on and then translated into proteins that help the cell in either adapting or 

combating to the agent that the cell has been exposed. In case of a bioreporter, these genes are 

removed and replaced by the reporter genes. As a result, turning on the promoter gene now 
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causes the reporter gene to be turned on. The promoter/reporter gene complex is transcribed into 

messenger RNA (mRNA) and then translated into a reporter protein which is responsible for the 

generation of a detectable signal. Therefore the generation of a signal indicates that the 

bioreporter has detected a particular target agent in its environment.  

 Bioluminescent bioreporters are the bacteria that are genetically engineered in order to 

achieve bioluminescence when in contact with the target substance.  These genetically 

engineered bioreporters can detect and quantify particular chemical agents in soil, air, or water 

by giving off a measurable bioluminescent signal that is proportional to the concentration of the 

target substance. The bioluminescent bioreporter gene emits a blue-green light (490-nm) which 

can be measured rapidly. The amount of light emitted depends upon the level of expression of 

the reporter gene, and thus upon the exposure level to the inducing pollutant.  

1.4 Bioluminescent Bioreporter Integrated Circuit 
  The technique used to sense bioluminescence in order to detect the presence and 

concentration of a specific substance is termed as luminometry. The typical measurement of 

luminescence of a particular bioluminescent bioreporter is done using bench-top luminometers, 

which use photomultiplier tubes, microchannel plates, or film as detection devices [Bolton]. 

Although these devices are extremely sensitive they are unfortunately bound to the laboratory 

because of the cost, size and fragility. Environmental sensing applications that need a large 

number of distributed measurements are not well served by the present technology. Thus the 

need for rugged and inexpensive luminometers that can operate in environments outside the 

laboratory arises.  

  The concept of the bioluminescent bioreporter integrated circuit (BBIC) is 

depicted in Figure 1.2 shown below. The bioreporters are placed on a single CMOS integrated 

circuit (IC) that detects the bioluminescence, executes the signal processing and transmits the 

senor data. The IC can be assorted into two segments, the microluminometer which includes the 

integrated photo detection and signal processing, and the transmitter which performs the wireless 

data transmission. The BBIC is unique in the following two ways – first, it uses a rugged 
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inexpensive packaging that can be used in many remote applications outside the laboratory for 

detecting the luminescence of the bioreporters ; second, it combines all the facets of the system 

into one single small element. The close proximity of the bioreporters to the sensing element 

wipes out the need for complex instruments to channel the light from the bioreporters to the 

lumninometer.  The wireless transmission allows for remote sensing by eliminating the need of 

costly cabling to communicate with the sensor. The BBIC is a low power, highly sensitive and 

inexpensive standalone sensor.    

 

 

 

 

 

 

Figure 1.1 Bioluminescence chemical reaction [Bolton] 
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Figure 1.2 Conceptual BBIC system showing the immobilized bioreporters inserted between a 

porous layer and the integrated circuit with a photodetector [Islam] 

 

1.5 Microluminometer System 
 The microluminometer is composed of photo detection and signal processing as shown in 

Figure 1.3. The sensor information, that is, the concentration of the targeted substance is 

proportional to the intensity of light from the bioreporters. This light is converted by the 

photodetector into an analog electrical signal. This analog electrical signal is converted into a 

digital pulse stream by the signal processing circuitry as the light intensity must be eventually 

processed digitally. Thus the microluminometer performs two signal conversions – optical to 

analog current, and analog current to digital pulse stream.   
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1.5.1 Photo Detection 

1.5.1.1 Photodiode Operation  

  A basic p-n junction can be used to convert light into electrical current. When a photon 

of sufficient energy strikes a semiconductor, the electrons in the valence band absorb the energy 

of the photons and move to the conduction band if the photon energy exceeds the bandgap 

energy (Eg). A typical value for Eg in silicon is 1.125 eV. As a result mobile electron and 

positively charged hole are created. These newly generated carriers contribute to a detectable 

photocurrent if they cross the p-n junction. The depletion region of the basic p-n junction has a 

built-in electric field present due to the bound ions resident there. If the carriers are generated in 

this depletion region then they are swept from the junction by the built-in field of the depletion 

region. Thus the carriers accelerate towards the contacts of the diode by the electric field. A 

majority of these carriers contribute to the total generated photocurrent. Carriers generated at a 

distance greater than a diffusion length from the depletion region have a less probability of 

becoming a part of the total photocurrent [Bolton]. These electrons generally recombine with 

holes before they reach the contacts and hence they do not add up to the photocurrent.  The 

effectiveness of the photodetector in converting the light to a detectable electrical current is 

given by its quantum efficiency.  

1.5.1.2 Integrated Photo Detection in CMOS 

 In a standard CMOS IC process three types of photodiodes are available. These 

photodiodes are formed by the junctions between p-diffusion/n-well, n-diffusion/p-substrate, and 

n-well/p-substrate, as shown in Figure 1.4.  The p- and n-diffusion regions are highly doped and 

generally used as the sources/drains of transistors. The p-diffusion/n-well diode is a reasonable 

choice for detecting the 490nm light generated by the bioreporters as it has a shallow junction 

depth, but cannot be zero biased resulting in leakage current issues. The n-well/p-substrate diode 

has a deeper junction depth though it can be zero biased for low leakage.  The n-diffusion/p-

substrate diode can be zero biased and it also has a shallow junction depth, making it a good 

choice for integration in the BBIC platform. 
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 A test chip incorporating the three types of photodetectors was fabricated and evaluated 

in previous work [Bolton].  It was observed from this work that the collection efficiencies for p-

diffusion/n-well and n-diffusion/p-substrate diodes were very poor. However, a measured 

quantum efficiency of 66% at 490nm was observed for the n-well/p-substrate diode. It also 

provided low leakage current of approximately 70fA for a 1 V reverse bias for a bottom junction 

area of 8,600  µm2 [Bolton].  As a result of these tests, the n-well/p-substrate diodes were chosen 

for use in the BBIC. This detector has an array of small, square n-well electrodes in the p-

substrate. This method of arraying small sections decreases the junction area of the total detector 

which in turn reduces the detector capacitance and leakage currents.  

 

 

 

Figure 1.3 Basic microluminometer system operation [Bolton] 
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Figure 1.4 Available CMOS photodetectors [Bolton] 

 

1.5.2 Signal Processing Circuitry 

 The central component of the BBIC is the signal-processing system which is shown in 

Figure. 1.5. It aims at conversion of the current from the photodiode into a digital signal, the 

frequency of which is proportional to the concentration of the pollutants. Its operation can be 

described as follows. During the beginning of the integration process the switches S1 and S2 are 

closed.  This causes the bias on the detector to be set at “ground” and the bias on the output of 

the integrator to be set at 0.5V. The current from the photodetector is integrated by the integrator 

for a time Tint that is determined by the voltage Vref to the comparator.  Whenever the integrator 

output reaches Vref , the comparator fires. The output of the comparator is used for clocking the 

one-shot circuitry that produces a pulse of time period Treset that resets the switches S1 and S2.  

The one shot generates a pulse width that guarantees the complete reset of the switches. The 

output of the one-shot circuitry is used to clock a D flip-flop that is configured as a toggle flip-

flop to produce a digital signal whose frequency is given by 
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 Whenever a higher concentration of pollutants is sensed by the bioreporter, light of 

higher intensity is produced thus increasing the photodetector current.  The higher current 

implies a lower integration period decreasing the output frequency. The reverse can be 

considered for a lower concentration.  

 It is necessary for the BBIC to be capable of sensing very low concentration of 

environmental pollutants for which the photodiode and the signal processing circuitry play an 

important role. The minimum detectable signal (MDS) for the system is a significant 

specification as it defines the low-end sensitivity of the system. It is inversely proportional to the 

square root of the total integration time, Tint. Thus a measurement system can be considered to be 

sensitive to low levels of light if it is capable of long integration time [Islam].  

 

 

 

Figure 1.5 Block diagram of the signal processing system [Islam] 
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1.6 Transmitter 
 The wireless data transmission is performed by this transmitter system. This integrated 

wireless transmitter allows for remote sensing without the need for costly cabling to 

communicate with the sensor. The digital data stream generated by the signal processing 

circuitry is ASK modulated for transmission. As the BBIC requires low power consumption and 

only short range communication this simple modulation technique has be chosen.  

 The direct conversion transmitter used in this design includes a PLL, a mixer and a power 

amplifier. The PLL is used to generate a 916MHz frequency signal. This signal is mixed with the 

digital data signal generated from the signal processing circuitry. A doubly balanced Gilbert cell 

is used to perform the mixing operation. The mixer output is applied to a power amplifier that 

provides amplification of the RF output power. 

 This thesis describes the Gilbert cell mixer and the power amplifier circuits designed for 

the BBIC transmitter system. An insight into the various modulation techniques, transmitter 

architectures and power amplifiers has been provided in the following chapters. 
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CHAPTER 2 

Modulation Techniques 
 

2.1 Introduction 
 The Bioluminescent bioreporters integrated circuits (BBICs) consist of the 

bioluminescent bioreporters, photodiodes and signal processing circuitry. The bioreporters upon 

exposure to the analyte produce bioluminescence. This light is converted to into a measurable 

analog electrical signal by the photodiodes. The signal processing circuitry is used to convert the 

analog electrical signal into a digital pulse stream. A transmitter can be used to send this digital 

data to a central node for further data collection.  

In order to transmit the digital data it is necessary to modulate the incoming data onto a 

carrier wave. Modulation is defined as a process that causes a shift in the range of frequencies in 

a signal [Lathi].In order to describe modulation it is necessary to define two types of signals: 

baseband signal and bandpass signal.  A “baseband” signal is defined as the one whose spectral 

magnitude is nonzero for the frequencies in the vicinity of ω = 0 and negligible elsewhere 

[Figure 2.1a], for example the signal generated by a microphone or a video camera. A 

“bandpass” signal is a waveform whose spectral magnitude is nonzero for frequencies in a band 

around a “carrier” frequency ωc and negligible outside this band [Figure 2.1b] [Razavi] [Couch].  

 

Figure 2.1a Baseband signal [Razavi] 
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Figure 2.1b Bandpass signal [Razavi] 

In general the term “baseband” is used to designate the band of frequencies of the signal 

delivered by the input source. In telephony, the audio band of 0 to 3.5 kHz represents the 

baseband. In television, the baseband is the video band occupying 0 to 4.3 MHz. For digital data 

using signaling at a rate of Rb pulses per second the baseband is 0 to Rb Hz. In baseband 

communication, the baseband signal is transmitted without any shift in the range of frequencies, 

that is, without modulation. But long-haul communications over the radio link requires 

modulation. By performing modulation a baseband signal is converted to its bandpass 

counterpart. In other words modulation will  cause the baseband signal with bandwidth B to 

occupy a different bandwidth when converted to a bandpass waveform. This communication 

which uses the modulation to shift the frequency spectrum of the signal is known as carrier 

communication [Lathi].  

The carrier wave is generally considered to be a pure sinusoidal signal, !! t .  It is called 

as a carrier wave as it carries the information signal from the transmitter to the receiver.  

                                                       !!(t) =   A  cos  (!!t  + θ  )            (2.1) 

The baseband signal (information signal or modulating signal), ! t   will be used for 

varying or modulating one of the parameters of the carrier signal, !! t .  From the Eq. 2.1 we can 

find that carrier wave has three parameters that can be varied; the amplitude, A; the angular 

frequency, ωc; and the phase, θ. Using the baseband signal to vary the amplitude, the frequency, 

or the phase leads to amplitude modulation, frequency modulation, or phase modulation 

respectively.   
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The modulated signal or bandpass signal can be expressed as,  

   !! ! =   !"  {  ! ! !!!!!  }        (2.2a) 

where, Re {.} denotes the real part of {.}, ! !  is called the complex envelope of !!(t), and !! is 

the associated carrier frequency, ωc = 2πfc. The other equivalent representations are given as, 

   !!(t) =   A(t)  cos  [  ω!t  +   θ(t)]         (2.2b) 

and                !! t = ! t cosω!t−   ! t sinω!t        (2.2c) 

where    ! ! = ! ! + !" ! = ! ! !!∠!(!) ≡ ! ! !!!(!)      (2.3) 

   ! ! = !" !(!) ≡ ! ! cos θ(!)      (2.4a) 

   ! ! = !" !(!) ≡ ! ! sin θ(!)       (2.4b) 

       ! ! ≜ |! ! | ≡ !! !   +   !!(!)      (2.5a) 

   θ ! ≜ ∠! ! =    tan!! !(!)
!(!)

                 (2.5b) 

where, ! ! , ! ! ,  ! ! ,  ! ! , and θ !  are all baseband waveforms [Couch]. 

  Here a carrier wave !!(t) is considered and its amplitude or phase is varied to perform 

modulation. In the Eq. 2.2b the argument ωct + θ(t) is called the “total phase” and θ(t) the 

“excess phase”. The instantaneous frequency is defined as the derivative of the phase: ωc + dθ/dt 

is the “total frequency” and dθ/dt is the “excess frequency” or the “frequency deviation” 

[Razavi].  

The inverse of the modulation process is called demodulation or detection. The aim of 

demodulation is to uniquely recover the information signal from the modulated carrier wave. If 

the information signal f(t) cannot be reproduced accurately at the receiver then modulating it for 

effective transmission is not of much use. Thus, as shown in Figure 2.2, a simple communication 
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system consists of a modulator/transmitter, a channel (e.g., air or coaxial cable), and a 

receiver/detector [Razavi].  

2.2 Modulation Techniques 
Depending on the baseband signal, the modulation can be either analog modulation or 

digital modulation. In the case of the BBIC since the data is a digital pulse stream digital 

modulation techniques are considered. 

In digital “RF” systems, a digital baseband signal is used for modulating the carrier signal 

using some type of generalized modulation techniques. The power spectral density (PSD) for a 

bandpass signal fm(t) is given by, 

   !!! ! = !
!
    [  !! ! − !!   + !! −! − !!   ]          (2.6) 

where,  !!   is the carrier frequency and !!(!) is the PSD of the complex envelope [Couch]. 

 The bandpass digital communication systems can be divided into two main categories; 

binary digital systems and multilevel digital systems. In this thesis the most common binary 

bandpass signaling techniques will be considered. These are explained below and illustrated in 

Figure 2.3. 

Amplitude-Shift Keying (ASK): It consists of varying the amplitude of the carrier signal. One 

such case is on-off keying (OOK). It consists of keying (switching) a carrier sinusoidal which is 

turned on and turned off with a unipolar binary signal. Morse code radio transmission is an 

example of this technique. 

Binary-Phase Shift Keying (BPSK): It consists of shifting the phase of a sinusoidal carrier 0o 

or 180o with a unipolar binary signal.  

Frequency-Shift Keying (FSK): It consists of shifting the frequency of a sinusoidal carrier from 

a mark frequency (corresponding, for example, to sending a binary 1) to a space frequency 

(corresponding to sending a binary 0) according to the baseband digital signal [Couch].  
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Figure 2.2 A simple communication system [Razavi] 

 

 

 

Figure 2.3 Bandpass digitally modulated signals [Couch] 
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2.2.1 Amplitude-Shift Keying (ASK) 

 The ASK signal can be represented as shown below, 

       !!(t)   =   A!  !(t)  cos  ω!t          (2.7) 

where, ! t  is a unipolar baseband digital signal. The complex envelope for ASK is ! t =

A!! t  and the PSD of this complex envelope is proportional to that for the unipolar signal. It is 

given by, 

                                                    !! ! = !!!

!
   ! ! + !!

!"# !"!!
!"!!

!
  for OOK          (2.8) 

where, !(t)  has a peak value of 2 so that !!(t)   has an average normalized power of Ac
2 / 2.  

The PSD for the corresponding ASK signal can be obtained by substituting Eq. 2.8 into 

Eq. 2.6. The result for positive frequencies is shown in Figure. 2.4. The bit rate is given by R = 

1/ Tb. It can be observed that the null-to-null bandwidth is 2R. Therefore the transmission 

bandwidth of the OOK signal can be given as BT = 2B where B is the baseband bandwidth 

[Couch]. 

 

Figure 2.4 PSD of bandpass digital signal for OOK [Couch] 
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2.2.2 Binary-Phase Shift keying (BPSK) 

 The BPSK signal is represented as shown below, 

               !!(t)   =   A!  cos     ω!t+ !!! t         (2.9)   

where, !(t) is a polar based baseband digital signal with peak values of ±1.  Eq. 2.9 can be 

expanded to obtain, 

                                !! t = A!  cos D!! t   cosω!t− A!  sin D!! t   sinω!t                 (2.10) 

 Considering that  cos !  and sin  (!) are even and odd functions of x, respectively, and 

!(t) has values of  ±1 the above Eq. 2.10 can be reduced to,  

                                !! t = A!  cosD!   cosω!t− A!  sinD! !(t)  sinω!t                 (2.11) 

 The first term in the Eq.2.11 is called the pilot carrier term and the second term is called 

the data term. The level of the pilot carrier term is set by the value of D!  (the peak 

deviation  ∆! = !!). If D! is small then the amplitude of the pilot carrier term is relatively large 

compared to the data term. Thus there will be very little power in the data term which contains 

the source information. To maximize the signaling efficiency the power in the data term needs to 

be maximized. This can be achieved by setting∆! = 90°. Then the BPSK signal becomes,  

                                                          !! t = A!  !(t)  sinω!t                               (2.12) 

 The complex envelope for this signal is ! t = !A!! t  and the PSD for the complex 

envelope is,  

                                                       !! ! = !!!  !!
!"# !"!!
!"!!

!
        (2.13) 

 !! t  has an average normalized power of  Ac
2 / 2.  The PSD for the BPSK signal can be 

found by substituting Eq.2.13 into Eq.2.6. The result spectrum is shown in Figure 2.5. The null-

to-null bandwidth is 2R [Couch]. 
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Figure 2.5 PSD of bandpass digital signal for BPSK [Couch]  

 

2.2.3 Frequency-Shift Keying (FSK) 

 FSK signal can be generated by switching the transmitter output line between two 

different oscillators as shown in Figure. 2.6a. As this generates an output waveform that is 

discontinuous at the switching times it is called discontinuous-phase FSK. This can be 

represented by,  

!! ! = !! cos !!! + !! ,      for  !  in  the  time  interval  when  a  binary  1  is  sent
!! cos !!! + !! ,      for  !  in  the  time  interval  when  a  binary  0  is  sent                (2.14) 

Where, f1 is called the mark (binary 1) frequency and f2 is called the space (binary 0) frequency.  

 The continuous-phase FSK signal can be generated by feeding the data signal into a 

frequency modulator, as shown in Figure. 2.6b. The resultant signal can be represented by, 
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   !! ! =   !!   !"# !!! + !! ! !   !"!
!!      (2.15a)  

or    !! ! = !" !(!)!!!!!                    (2.15b) 

where,                    ! ! =   !!!!"(!)       (2.15c) 

   ! ! = !! ! !   !"!
!!                 (2.15d)                                     

 The spectra of the FSK signals are difficult to evaluate since the complex envelope,  ! ! , 

is a nonlinear function of !(t)[Couch].  

 

 

Figure 2.6a Discontinuous-phase FSK [Couch] 

 

 

Figure 2.6b Continuous-phase FSK [Couch] 
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  CHAPTER 3 

Transmitter System 

3.1 Introduction 
 This chapter initially discusses the various types of transmitter architectures. Then it will 

examine in detail the Gilbert cell mixer. The various types of power amplifiers are explained 

followed by the discussion of the power amplifier design.    

3.2 Transmitter Architectures 
 In general, three types of common transmitter architectures are available; super 

heterodyne, low IF, and direct conversion. Each of these architectures has its own inherent 

strengths and weaknesses. We will investigate the architectures in the following section. 

3.2.1 Super Heterodyne Transmitter 

  The super heterodyne architecture is sketched in Figure 3.1. The digital baseband signals 

are passed through the DACs to generate the appropriate I and Q analog baseband signals. These 

signals are then passed through the low pass filters to reject any high frequency aliasing caused 

by the DACs. In the example considered here the filtered I and Q signals are passed on to 

quadrature up-converting mixers running with LO signals at 1.28GHz. They are combined and a 

single side-band modulated signal is generated at IF (1.28 GHz). The signal is then passed 

through a band pass filter in order to reduce the spurious signals and to reject any residual DAC 

aliasing that may have not been completely rejected by the digital and analog baseband filters. 

The filtered IF signal is then passed through a RF mixer to generate the RF signal at 4.9 to 5.805 

GHz depending on the LO frequency. Before passing the signal through a power amplifier, 

depending on the application another stage of filtering may be applied. The multiple up-

conversions result in the use of multiple filters in this architecture. Every time a mixing action 

takes place one needs to be aware of any image components that may be created. 
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Figure 3.1 Block diagram of super heterodyne 802.11a transmitter [Arya] 

 

 The super heterodyne transmitter has a good performance, can achieve very good 

quadrature balance, can reject extraneous spurs due to extended filtering, and is reasonably low 

power. On the other hand, this architecture is comparatively large and expensive, has many 

discrete components and is not suitable for multimode applications due to the narrow band nature 

of the IF filter [Arya].  

 

3.2.2 Low IF Transmitter 

 The low IF transmitter works similar to a direct conversion transmitter but it requires full 

image reject mixers. It has a complex architecture and is seldom used for WLAN applications. 

This architecture is more popular for narrowband signals. When the low IF architecture is being 

used, the first stage of up-conversion is to be performed on digital domain so that high degree of 

image rejection can be maintained.  
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3.2.3 Direct Conversion Transmitter 

 An example for this architecture is shown in Figure 3.2. The baseband signals I and Q are 

passed through the DACs and then through low pass filters to reject any high frequency aliasing 

caused by the DACs. The filtered signals are then applied to quadrature up-converting mixers. 

Then the resultant signals are combined and applied to a power amplifier.  

 This architecture eliminates the IF bandpass filter and the requirements for image 

filtering and thus offers the lowest overall cost. This architecture provides the highest degree of 

integration. It can be made to offer high performance and low power consumption. These 

advantages resulted in choosing this architecture for the BBIC transmitter.  

 Transmitters generate the modulated signal from the modulating signal !(t) at the carrier 

frequency fc. As already mentioned in the previous section the modulated signal can be 

represented by {Eq. 2.2a, Eq.2.2b, Eq. 2.2c},  

     !! ! =   !"  {  ! ! !!!!!  }  

or,                     !!(t) =   A(t)  cos  [  ω!t  +   θ(t)]          

and                       !! t = ! t cosω!t−   ! t sinω!t     

 

 

Figure 3.2 Block diagram of direct-conversion transmitter [Arya] 
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 The above two equations can be used to represent the following generalized transmitters 

using the direct conversion architecture. Eq. 2.2b represents a generalized transmitter using the 

AM-PM generation technique as shown in Figure. 3.3a. A(t) and θ(t) are generated from !(t) by 

the baseband signal processing circuit. Nonlinear analog circuits or a digital computer 

incorporating the A and θ algorithms can be used to implement the signal processing. ADC and 

DAC are needed in the implementation using a digital computer. As indicated in Figure. 3.3a the 

remainder of the AM-PM canonical form requires RF circuits. 

 Figure 3.3b represents the generalized transmitter using the quadrature generation 

technique. In-phase and quadrature-phase processing is used in this technique. By using analog 

hardware or digital hardware with software the baseband signal processing may be implemented.  

As indicated in Figure 3.3b the remainder of the canonical form requires RF circuits [Couch].  

 

 

 

Figure 3.3a Generalized transmitter using the AM-PM generation technique [Couch]  
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Figure 3.3b Generalized transmitter using the quadrature generation technique [Couch] 

 

 The amplitude shift keying is known to be the simplest modulation technique used in data 

communications. It is not a good choice for long transmission distances as it is not robust enough 

to prevent the effect of noise during data transmission over long distances. As BBIC requires 

only short range communication this simple modulation technique has been chosen. Then the 

AM-PM generation technique showed in Figure 3.3a can be replaced by a more simpler and 

general transmitter structure as shown in Figure 3.4. 

 This structure of direct conversion transmitter is made up of a phase locked loop (PLL), a 

mixer, a power amplifier and an antenna. In Figure 3.4 the data input represents the signal 

coming out of the signal processing circuitry of the BBIC. This signal is mixed with the 916MHz 

signal generated by the PLL.  

  The block diagram of the PLL is shown in Figure 3.5. It includes a crystal frequency 

reference, a phase/frequency detector, a loop filter, a voltage controlled oscillator and a 

frequency divider (divided by 256). The phase/frequency detector is used for comparing the 

phase/frequency difference between the clock signal coming out of the frequency divider and the 
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frequency reference. Then the charge pump will generate a control voltage for the VCO 

according to the phase/frequency difference. The loop filter is used to remove the high frequency 

components of the control voltage and provide a relatively stable one to adjust the frequency of 

the VCO. The signal frequency from the VCO is divided by 256 by the frequency divider. The 

PLL has a feedback loop and this makes the output frequency of the VCO stable [Zhang]. This 

stable frequency is important for the RF transmission and is the input to the mixer. The mixer is 

an important component of the transmitter and is of primary interest for this work. It is used for 

multiplying the data signal coming out of the signal processing circuitry of the BBIC with the 

916MHz frequency signal generated by the PLL. [Zhang]  

 

 

Figure 3.4 Block diagram for a transmitter system [Zhang] 

 

 

Figure 3.5 Block diagram for phase locked loop (PLL) [Zhang] 
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3.3 Mixer 

 The word “mixer” is used to represent both linear and non-linear circuits. The basic linear 

mixer behaves as a summer circuit.  The linear mixer circuit and its schematic are shown in 

Figure 3.6. Some kind of combiner is needed and as shown, in this case a resistor network is 

used as a combiner. No interaction occurs between the two input signals F1 and F2. Both the 

signals will share the same pathway at the output, but otherwise do not affect each other. This is 

similar to the action that one expects of a microphone or other audio mixers [Carr].  The output 

of the summer is observed on a spectrum analyzer (Figure 3.7) and only the spikes are observed 

representing the two frequencies and nothing else other than noise.  

 The non-linear mixer and its schematic are shown in Figure 3.8.  While the linear mixer 

acts as a summer the non-linear mixer behaves as a multiplier. In this case the non-linear element 

used is a simple diode. The mixing action takes place when the non-linear device exhibits 

impedance changes over cyclic excursions of the input signals.  

 The presence of the non-linear element in the signal path results in the generation of a 

number of new frequencies. If only a single frequency is present, then one can still expect to see 

its harmonics; for example, F1 and nF1 where n is an integer.  When more than one frequency is 

present then a number of product frequencies are generated. The output spectrum for a non-linear 

mixer is,  

                                                             ±!! = !!! ± !!!                                                     (3.1) 

where,  Fo is the output frequency for a specific (m,n) pair, F1 and F2 are the applied frequencies, 

and m and n are integers or zero (0, 1, 2, 3…)  

  A unique set of frequencies are generated for each (m, n) ordered pair. These newly 

generated frequencies are termed as mixer products or intermodulation products. The output 

observed on the spectrum analyzer is shown in Figure 3.9.  Along with the original signals F1 

and F2, an array of the mixer products arrayed at frequencies away from F1 and F2 are present. 
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Figure 3.6 Linear combiner (adder) circuit and symbol [Carr] 

 

 

Figure 3.7 Spectrum of adder output [Carr] 
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Figure 3.8 Diode mixer circuit and symbol [Carr] 

 

 

Figure 3.9 Spectrum of mixer output [Carr] 
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 From the Eq 3.1 it can be implied that a number of frequency products are generated of 

which not all are useful for any specific purpose. Then why does one need to use a mixer? The 

main purpose of using a mixer is to translate the frequency and in the process transfer the 

modulation of the original signal.  For example, when an AM signal is received, and then 

translated to a different frequency in the receiver, the modulation characteristics should be 

essentially undistorted for the AM signal at the new frequency. 

  Thus a mixer is used for translating the signal spectrum from one frequency to another. 

In other words a mixer is needed to perform frequency translation. The typical symbol of the 

mixer is shown in Figure 3.10.  

 Ideally a mixer should multiply the RF and LO signals to produce the IF signal. It should 

therefore translate the input spectrum from one frequency to another without any distortion and 

degradation in noise performance. Most of these requirements can be met by considering the 

perfect multiplication of two signals as illustrated in the Eq 3.2 below,  

                  !!   cos!!! !!   cos!!! =    !!!!
!

cos !! + !! ! + cos !! − !! !             (3.2) 

 From the above equation it can be observed that the output which is the product of the 

two input frequencies consists of the sum and difference frequencies. No other frequency terms 

than these two are generated and any unwanted signals can be easily removed by filtering.  

 This mixing is generally achieved by applying the two signals to a non-linear device as 

mentioned already in the above discussion and as shown in Figure 3.11.  The non-linearity can 

be expressed in the form of Taylor series as in the Eq 3.3 [Jeremy].  

       !!"# = !! +   ! !! ! + ! !! ! ! +   ! !! ! ! +⋯                            (3.3) 

 where, !! = !! + !! 
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Figure 3.10 Typical symbol for a mixer [Jeremy] 

 

 

 

 

 

 

Figure 3.11 Mixing using a non-linear device [Jeremy]  
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Considering the squared term, 

                                              ! !! + !! ! = ! !!! + 2!!!! + !!!                                            (3.4) 

 It can immediately be observed that the squared term includes a product term and 

therefore this can be used for the mixing process. 

 One of the approaches for classifying mixers is whether or not they are unbalanced, 

single balanced or double balanced. 

Unbalanced mixers: 

 Here both RF and LO signals appear in the output spectrum. They may have poor LO-RF 

and RF-LO port isolation. Their main attraction is the low cost.  

 

Single balanced mixers: 

 Here either LO or RF is suppressed in the output spectrum.  They also suppress the even-

order LO harmonics (2LO, 4LO, 6LO, etc.). High LO-RF isolation is supplied. But external 

filtering must supply LO-IF isolation. 

 

Double balanced mixers: 

 In this scheme both LO and RF signals are suppressed in the output spectrum. It even 

suppresses the even order LO and RF harmonics (2LO, 2RF, 4LO, 4RF, etc.) and high port to 

port isolation is supplied.  
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3.3.1 Gilbert Cell Mixer 

 The Gilbert cell mixer is shown in Figure 3.12. It commutates the RF signals in current 

instead of in voltage. The transistor M3 acts as a transconductor and converts the input RF 

voltage into a current that is passed to the transistors M1 and M2. Then the differential pair of 

transistors M1 and M2 commutate the current to the complementary IF outputs for each LO 

period. As a large swing is not needed between the gates of the differential pair to commutate the 

current, the requirement of the LO drive gets largely reduced.  

 There is no direct path from LO to RF and hence better isolation between LO and RF is 

provided. However, there is still LO leakage into the IF port through the parasitic capacitance 

present between the gate and the drain of the differential pair transistors. This problem can be 

solved by using a double balanced Gilbert cell mixer which couples differential LO signals into 

the same IF output. 

  A double balanced Gilbert cell mixer is shown in Figure 3.13. The transistors M3 and M6 

form the differential pair transconductance that converts the RF input voltage into a current. This 

current is then commutated by the switching action of the transistors M1 – M2 and M4 – M5. It can 

be seen from Figure 3.13 that each side of the IF output is connected with two transistors with 

180o phased LO signals so that the LO leakage from the two transistors cancels each other. That 

is, the LO feed through from the transistor M1 will be canceled by that from M5, and any feed 

through from M4 will be canceled by that from M2.Therefore, only the mixed products of RF and 

LO will be observed at the IF outputs [Ding]. 
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Figure 3.12 Gilbert cell mixer [Ding] 

 

Figure 3.13 Double balanced Gilbert cell mixer [Ding]  
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3.3.2 Mixer Analysis and Design 

 The double balanced Gilbert cell mixer used in the design of the transmitter is shown in 

Figure 3.14. Several design issues must be taken under consideration when designing the Gilbert 

cell as an up-conversion mixer. The main problem associated with an up-conversion Gilbert cell 

mixer is the mixer being loaded with PMOS active loads. As the PMOS devices have a lower 

unity current gain frequency compared to the NMOS devices, the PMOS load devices will limit 

the maximum operating frequency of the mixer [Sullivan]. The PMOS active loads can be 

replaced with resistors R1 and R2 as shown in Figure 3.14. This adds gain without the frequency 

limiting effects of the PMOS devices.  

  The transistors M7 and M8 form the RF input differential pair. The RF signal is applied 

to these transistors which perform the voltage to current conversion. For proper operation of the 

circuit signals considerably less than the 1dB compression point are used. The transistors M7 and 

M8 are biased to operate in subthreshold region. The drain current in the subthreshold region is 

dominated by the diffusion mechanism and so it has an exponential dependence on the gate 

voltage resulting in a higher gm to IDS ratio. Since this is a low power design it is appropriate to 

have the transistors operating in subthreshold region as such circuits have a reduced DC power 

dissipation [Lee].  

  The digital sensor data of the BBIC is directly up converted to 916MHz to transmit as an 

ASK message. The digital data is applied to transistors M3-M6 which act as switches. The 

‘local+’ input of the mixer i.e., the transistors M3 and M6, is tied to VDD. The digital data from 

BBIC is applied to ‘local-‘input of the mixer i.e., to the transistors M4 and M5. These transistors 

form the multiplication function, multiplying the RF signal current from the transistors M7 and 

M8 with the digital data LO signal applied across the transistors M3-M6 which provide the 

switching function. 

 The load resistors R1 and R2 form the current to voltage transformation providing the 

differential output IF signals. 



	  	  
	  

35	  
	  

 The circuit operation for performing ASK modulation can be explained as follows. The 

output voltage at the load resistor R1 depends on the sum of the currents from the transistors M3 

and M5. The transistor M3 is always ON as it is tied to VDD.  The digital pulse is applied to 

transistor M5. When the input to the transistor M5 is low it is turned OFF. So the current at the 

output node is entirely from the transistor M3 as M5 is OFF. This is converted to a voltage by the 

load resistor R1 and results in some output voltage. Now considering the case when the input to 

transistor M5 is high, then both the transistors M3 and M5 will be ON. Both these transistors will 

conduct current but the currents are complimentary in nature resulting in a zero output voltage. 

Thus with the applied digital pulse an ASK modulated output can be obtained.    

 A simple model of the mixer when operating as an ASK modulator is the load resistors 

connected directly to the drains of the RF transistors M7 and M8. Then the circuit is a standard 

differential amplifier with a voltage gain of gmRL.  This model, although simple, is not 

considered to be correct due to the abrupt switching of the transistors M3-M6. The actual voltage 

gain of the mixer is given by,  

                                                            !! = !!!!
!
!

                                                              (3.5) 

where, Av is the mixer voltage gain, gm  is the transconductance of the differential pair M7 and 

M8, and RL is the effective load resistance. The above equation can be considered to be a good 

approximation when the square wave local oscillator voltage driving the transistors M3-M6 is 

large compared to the (Vgs-Vt) of the switching transistors M3-M6. The above equation is the 

product of the differential voltage gain of the input RF transistors M7-M8 and the frequency 

translated first harmonic of the modulating square wave [Rudell][Arnott]. 

 The RF buffer circuit consisting of the transistors M1-M2 and M10-M11 is a simple 

differential source follower amplifier. The reason for using a common source amplifier 

configuration is its simplicity in implementation, and the circuit also provides a wide band match 

to the balun transformer [Arnott]. 
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 The primary design technique to combat any offsets associated with the differential pairs 

in the mixer is to use the common centroid geometry for layout of devices in order to minimize 

the device mismatch due to process variations. Thus to offset any process variations, the 

transistors M7, M8, M3, M4, and M5, M6  are laid out using  a common centroid layout technique.  

 

Figure 3.14 Double balanced Gilbert cell mixer 
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3.3.3 Mixer Bias Circuit 

 The mixer bias circuit is used to bias the transistors M7 and M8 in subthreshold region. 

The bias circuit is shown in Figure 3.15.  It is a simple differential amplifier having a DC 

feedback loop. It helps to mirror the applied off chip voltage at Vdc to the capacitively coupled 

RF inputs. Figure 3.16 shows the plot where Vdc was swept from 0 to 1.2V and the 

corresponding output was observed. It is clear from the plot that the circuit helps to mirror the 

applied input voltage. This bias circuit is used to mirror the externally applied 0.7V DC bias 

level to the mixer RF inputs. The bias circuit is biased to have a current around 40µA which does 

not increase the power dissipation of the mixer significantly.   

 Consider Figure 3.17 as shown below. It has three plots with Vdc swept from 0 to 1.2V. 

The x-axis represents Vdc. The y-axis of the first plot represents Vgs voltage of the RF input 

transistor M7. It can be seen from the plot that Vgs is around 400mV for a Vdc of 0.7V. This is 

below the threshold voltage and hence the transistor is in subthreshold region. The y-axis of the 

second plot represents the drain current of M7 transistor which is around 78 µA for a Vdc of 0.7V. 

The y-axis of the third plot represents the transconductance of M7 transistor which is around 192 

µA/V for a Vdc of 0.7V.  

 

Figure 3.15 Mixer bias circuit  
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Figure 3.16 Plot showing that the mixer bias circuit mirrors the applied off chip voltage Vdc  

 

 

Figure 3.17 Plot showing Vgs , drain current and transconductance of RF input transistor M7 with 

the mixer bias voltage Vdc being swept between 0 and 1.2V 
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3.4 Power Amplifier 
 Power amplifier is used for the amplification of the small input RF power to a large 

output RF power. In this work power amplifier can be considered as an amplifier which has been 

optimized in terms of its ability to deliver power to a load in an efficient manner. 

3.4.1 Efficiency and Gain 

 The important power amplifier performance metrics are efficiency and gain. Efficiency 

describes how well an amplifier can convert DC input power to RF output power. This is 

referred to as the DC-to-RF power conversion efficiency.  More often this is referred to as the 

drain efficiency. Drain efficiency can be defined mathematically as the ratio of the average RF 

output power to the DC input power. 

                                                                !" = ! =    !!"#,!"
!!",!"

                                                      (3.6) 

  Gain refers to how well an amplifier can convert input RF power to output RF output 

power. Power gain can be defined as the ratio of the average RF output power to the average RF 

input power. 

                                                                  ! = !!"#,!"
!!",!"

                                                               (3.7)       

3.4.2 Power Added Efficiency 

 The quantity that characterizes an amplifier’s power gain and drain efficiency is known 

as the power added efficiency (PAE). It is defined as the RF output power minus the RF input 

power divided by the DC supply power. 

                                                       !"# = !!"#,!"!!!",!"
!!",!"

                                                          (3.8) 

 It can also be re-written as, 

                                                            !"# = !"  (1− !
!
)                                                       (3.9) 
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 From the Eq. 3.9 it can be clearly seen that PAE depends on power gain and drain 

efficiency.  As the power gain becomes very large, the PAE approaches the drain efficiency. 

3.4.3 Gain Compression 

 The amplifier’s deviation from its ideal linear gain curve refers to gain compression. 1-

dB gain compression point is generally used for the characterization of the amplifiers. The 1-dB 

compression point can be defined as the point of the input-output transfer characteristics where 

the actual gain is 1-dB below the ideal liner gain. It represents an arbitrary upper limit of the 

input signal for which the amplifier approximates the linear operation. This condition is shown in 

Figure. 3.18. 

3.4.4 Total Harmonic Distortion 

 Total harmonic distortion (THD) is a very common method used for characterizing an 

amplifier’s non-linearity. If the input to the amplifier is a single tone, a cosine wave signal 

cos(ω0t), then the output will be: 

                              !!"# = !! + !! cos !!! + !! cos !!! ! + !! cos !!! ! +   ….           (3.10) 

 Since raising a cosine of frequency ω0 to a power n will create a harmonic at a frequency 

nω0 plus other spectral components, therefore, the degree of non-linearity of an amplifier can be 

characterized by the analyzing the spectral components in the output signal, when the input is 

driven by a clean sine wave.  This test is the basis for the measurement of THD. The THD is 

given as, 

                                                         !"# = !!!"#$%&'()!!!"#$%&'#(%)
!!"#$%&'#(%)

                                                         

(3.11) 

where, ∑PHarmonics is the total signal power and PFundamental is the total fundamental signal power.  
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Figure 3.18 Pout vs. Pin plot for a generic linear amplifier [Terry] 

3.5 Current Source Power Amplifiers 
 An amplifying device is said to be a current source power amplifier when it operates only 

in saturation and in cut-off. A circuit topology that can be used to realize any current source 

power amplifier is shown in Figure. 3.19. The important current and voltage waveforms 

associated with the amplifier are also shown in Figure. 3.19. Common source configuration is 

used as it yields the highest efficiency of all the common amplifier configurations. The drain bias 

is provided to the amplifier by using an RF choke.  The RF choke acts as a nearly ideal DC 

current source. It dissipates only nominal power and can withstand positive and negative 

voltages. Finally the output signal is AC-coupled into a resonant tank which is used to reduce the 

harmonics present in the output signal. The conduction angle is given as, 

    !"#$%!&'"#  ∠ = 360°   !!"
!!"

                                                  (3.12) 

where, TON is the time during which the active device conducts current, and TRF is the period of 

the RF cycle.  The conduction angle can be increased or decreased by simply increasing or 

decreasing the average and/or the peak value of the input signal.  For this case the conduction 

angle is 360o, as evident from the transistor current waveforms. The inductor LDC will have 

ideally a zero voltage drop. Therefore an AC signal on the drain must have a mean value of Vdd. 

The final output voltage has no DC offset due to the presence of the blocking capacitor. 
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Figure 3.19 Basic topology for a current source power amplifier [Terry] 

 

3.5.1 Class A Power Amplifier 

 The term Class A power amplifier can be used interchangeably with the term linear 

amplifier. In reality, Class A power amplifier is the one in which the transistor conducts current 

for the entire 360o of the input cycle, and is not necessarily linear. However Class A power 

amplifier exhibits non-linearities because it has to sustain a large current and voltage swing. The 

transistor current and voltage waveforms are shown in Figure 3.20. 

 The maximum efficiency will occur when the drain voltage swings from 0 to 2Vdd. The 

input power is given by, 

                                                              !!",!" = !!!!!! =
!!!
!

!!
                                                 (3.13)  

The output power is given by,              

                                                                  !!"#,!" =
!!!
!

!!!
                                                            (3.14) 
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Finally the drain efficiency can be calculated as, 

     !" =   
!!!
!

!!!
!!!
!

!!

= !
!
                                                         (3.15) 

3.5.2 Class B Power Amplifier 

 The main drawback of Class A amplifier is that the active device dissipates significant 

power compared to the peak RF output power. The active device can be biased such that it 

conducts current for less than a full RF cycle so that the power dissipation can be reduced. In 

other words one can drive the device into cutoff for some portion of the RF cycle. The Class B 

power amplifier is biased to conduct current for only one-half of the RF cycle.  The harmonics 

are reduced using the tank circuit loading the amplifier. The current and voltage waveforms are 

shown in Figure 3.21. It can be seen that the drain current is only half of a sine wave.  

 The DC bias current can be found as the average value over one RF cycle of one half of a 

sine wave,  

                                         !!! =
!
!!

sin !!
!!
. ! !" =  

!!
!
!

!
!
!!!
!!

                                                  (3.16) 

and the drain efficiency can be calculated as, 

                                                !" =   
!!!
!

!!!

! !!!
!

!"!

= !
!
≅ 0.785                                               (3.17)  
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Figure 3.20 Class-A amplifier waveforms [Terry] 

 

Figure 3.21 Class-B amplifier waveforms [Terry] 
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3.5.3 Class A-B Power Amplifier 

 Class B power amplifier trades efficiency for linearity. However it is desirable to have an 

amplifier with better efficiency than the Class A amplifier, and better linearity than the Class B 

amplifier. These specifications are met by Class A-B amplifier.  The conduction angle for this is 

somewhere between 180o and 360o.  The efficiency lies between 0.5 and 0.785. The waveforms 

are shown in Figure 3.22. The conduction is halfway in between Class A mode and Class B 

mode. 

 

3.5.4 Class C Power Amplifier 

 The previously discussed amplifiers can be used as linear amplifiers. But in applications 

where efficiency is a priority Class C amplifier can be used. It has a conduction angle less than 

180o and can achieve efficiencies greater than Class B amplifier. The transistor waveforms are 

shown in Figure 3.23. 

 The theoretical maximum efficiency is a function of the conduction angle and is given 

by, 

                                                       !!"# =
!!!!"#!!

! !"#$!!"#$!
                                                       (3.18) 

The efficiency can be increased arbitrarily towards unity. The parameter y is equal to the 

conduction angle expressed as a percentage of the RF period. 
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Figure 3.22 Class-AB amplifier waveforms [Terry] 

	  

Figure 3.23 Class-C amplifier waveforms [Terry] 
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3.6 Power Amplifier Design 
 The power amplifier considered in this BBIC design is a Class A power amplifier. 

Although the efficiency is less compared to other amplifiers this amplifier was chosen for its 

simplicity. As it is a Class A amplifier it operates for the entire 360° of the input cycle. The 

output signal will also have the entire 360° phase like the input signal. 

 The schematic of the power amplifier is shown in Figure 3.24. N0 and N1 transistors 

provide the two stage amplification. The gate voltages of N0 and N1 are biased to about 1V and 

the transistors operate in saturation region. The second harmonic distortion in the output signal 

will be reduced by L2 and C2 which offer very high impedance to any second harmonic currents.   

 

 

 

 

Figure 3.24 Power amplifier 
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CHAPTER 4 

Simulation and Test Results 

4.1 Mixer Simulation Results 
 The mixer has been simulated using Cadence Spectre. As a first step the DC analysis was 

performed to make sure the transistors were biased in the correct region of operation. Then a       

-20 dBm differential sinusoidal signal of 916 MHz has been applied to a balun. The balun was 

used to convert the single ended unbalanced input to differential balanced signals that were 

applied to the gates of the RF input transistors. Although the digital BBIC data signal is around 1 

kHz, a much higher frequency of 10 MHz has been used to expedite the simulation. A 10 MHz 

square wave with amplitude varying between 0 and 1.2 V has been applied to the ‘local-‘input of 

the mixer. The ‘local+’ input of the mixer has been connected to VDD of 1.2V. A bias voltage of 

0.7V for the mixer bias circuit has been applied to the Vdc input. Figure 4.1 shows the test bench 

setup for the mixer simulation.  

The following simulations were performed and the results are shown below. 

1. The transient analysis has been performed and the resultant output was observed to be 

ASK modulated. The ASK modulated output is shown in Figure 4.2. 

2. The mixer’s power gain and voltage gain were simulated. A power gain of 7.31dB was 

obtained and the voltage gain was measured to be 0.15V/V at an output harmonic of 926 

MHz. The power gain and the voltage gain are shown in Figure 4.3 and Figure 4.4, 

respectively. 

3. The 1-dB compression point was measured along with the average power consumption. 

Figure 4.5 shows the input referred 1-dB compression point which is observed to be 

around   -10dBm at the output frequency of 926 MHz. The input referred IP3 value of -

657mdBm was obtained by performing a two tone analysis and is shown in Figure 4.6. 

The average power consumption was 14.1mW.  
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Figure 4.1 Test bench setup for the simulation of mixer 

 

Figure 4.2 ASK modulated output obtained by performing transient analysis on the mixer 
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Figure 4.3 Power gain of the mixer 

 

 

Figure 4.4 Voltage gain of the mixer 
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Figure 4.5 1-dB Compression point of the mixer 

 

	  

Figure 4.6 IP3 value of the mixer 
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4.2 Power Amplifier Simulation Results 
 The power amplifier test bench is shown in Figure 4.7. A -20dBm sinusoidal signal of 

916MHz is applied at the input port. A power gain of 24dB was obtained as shown in Figure 4.8. 

Figure 4.9 shows the voltage gain which is 2.24V/V. The input and output referred 1-dB 

compression points of -26dBm and -12dBm were observed as shown in Figure 4.10. The input 

and the output referred IP3 values are shown in Figure 4.11. A significant power consumption of 

300mW was observed as it is a Class A power amplifier. 

 

 

 

Figure 4.7 Test bench setup for simulation of power amplifier 
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Figure 4.8 Power gain of the power amplifier 

	  

Figure 4.9 Voltage gain of the power amplifier 
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Figure 4.10 1-dB compression point of the power amplifier 

 

	  

Figure 4.11 IP3 curves of power amplifier 
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4.3 Complete Circuit Simulation Results 
 The complete circuit containing the mixer followed by the power amplifier was 

simulated. The test bench is shown in Figure 4.12. A -20dBm sinusoidal signal of 916MHz was 

applied to a balun. The balanced differential output from the balun was connected to the RF 

inputs of the circuit. The digital BBIC data signal of 10 MHz square wave with amplitude 

varying between 0 and 1.2 V has been applied to the ‘local-‘input of the circuit. The ‘local+’ 

input of the circuit has been connected to a VDD of 1.2V. A bias voltage of 0.7V for the mixer 

bias circuit has been applied to the Vdc input. The circuit’s differential output was coupled to a 

balun. 

The following simulations were performed and the results are shown below:  

1. The transient analysis was performed on the circuit and the amplified ASK modulated 

signal is shown in Figure 4.13. 

2.  The power gain and voltage gain were simulated. A power gain of 19.67 dB was 

obtained for the output harmonic of 926 MHz and is shown in Figure 4.14. A voltage 

gain of 0.6364 V/V was obtained for the output harmonic of 926 MHz and is shown in 

Figure 4.15. 

3. The input referred 1-dB compression point of -22dBm for the output harmonic of 926 

MHz was observed as shown in Figure 4.16.The input referred IP3 value of -11dBm was 

obtained by performing a two tone analysis and is shown in Figure 4.17. The average power 

dissipation of 600mW was observed. 
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Figure 4.12 Test bench setup for the simulation of the complete circuit  

 

Figure 4.13 The amplified ASK modulated signal obtained by performing transient analysis 
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Figure 4.14 Power gain of the complete circuit 

 

 

 

Figure 4.15 Voltage gain of the complete circuit 
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Figure 4.16 1-dB Compression point of the complete circuit 

 

 

	  

Figure 4.17 IP3 value of the complete circuit 
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4.4 Input Matching Network 
 The input matching network was designed and included on the test board. The quality of 

the input matching network was measured with the scattering parameter measurements. The L-

type input matching network was used to match the circuit’s input impedance to the source 

impedance of 50Ω. The load impedance of the circuit was almost equal to the 50Ω and hence an 

output matching network was not used. The input scattering parameter S11 was -6.76dB and the 

output scattering parameter S22 was -22dB at 916MHz. They are shown in Figure 4.18. 

 

 

Figure 4.18 S-parameters of the input matching network 
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4.5 Layout of the Complete Circuit With I/O Pads 
The total area of the circuit was found to be around 2.4 mm2.  

 

 

Figure 4.19 Layout of the complete circuit with the I/O pads 
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4.6 Post Fabrication Testing  

 4.6.1 Microphotograph of the Fabricated Chip 

 The microphotograph of the fabricated chip is shown in Figure 4.20. 

 

 

Figure 4.20 Microphotograph of the fabricated chip 
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4.6.2 Prototype Test Board  

 The prototype test board was designed to allow access to RF input/output, baseband 

digital input, mixer bias voltage and other power supply inputs. The PCB is constructed from 

FR4 material using a two-layer board. A surface mount balun was used to convert the single 

ended RF input to differential inputs and the differential outputs to single ended output. The RF 

inputs were conjugate matched to the mixer’s differential inputs by a L-type matching network. 

The prototype test board is shown in Figure 4.21. 

 

Figure 4.21 The prototype test printed circuit board 
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4.6.2 Test Setup 

 The complete test setup is shown in Figure 4.22. A RF generator was used to generate the 

-20 dBm 916MHz signal (Figure 4.23). A function generator was used to generate the 10MHz 

digital square wave signal with amplitude varying between 0 and 1.2 V (Figure 4.24). The output 

was seen on a spectrum analyzer and a digital oscilloscope. The other power supply connections 

are shown in Figure 4.24. 

 

 

Figure 4.22 The complete test setup 
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Figure 4.23 Test setup showing the input from the RF generator 

 

Figure 4.24 Test setup showing the inputs from the function generator and power supply units  
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4.6.3 Test Results and Analysis 

 The test results obtained from the above test setup are presented in this section. Figure 

4.25 shows the power spectrum of the output. The output has also been viewed on a digital 

oscilloscope and is shown in Figure 4.26 

 

Figure 4.25 Output observed on a spectrum analyzer 

 

Figure 4.26 Output observed on a digital oscilloscope 

X-axis:  
900MHz – 950MHz 

X-axis: 100 ns/div  
Y-axis: 10 mV/div  
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 Unfortunately, the output obtained was not as expected. It was seen from the spectrum 

analyzer that a noticeable power in the output was obtained only at 916 Mhz and not for the 

mixed products at 906 MHz and 926 MHz. However from the digital oscilloscope it was 

observed that mixing was taking place with a shift in the amplitude, but a significant change in 

the amplitude of the output was not observed. It can be seen that the amplitude of the output is 

not zero when digital “0” is being transmitted.  By careful observation it was noticed that the 

carrier signal of 916 MHz is predominant throughout the output signal. Further debugging was 

done to find out the reason for the input carrier of 916 MHz being coupled to the output when 

digital “0” was being transmitted. 

 It was learnt during the debugging that the simulation results presented earlier did not 

include the I/O pads. The complete circuit was then simulated along with the I/O pads. The 

schematic including the I/O pads, balun and the matching network is shown below in Figure 

4.27. It was observed form the simulation that the power supply head room changed due to the 

used of I/O pads. The I/O pads had a series resistance of around 290Ω which was responsible for 

the voltage drop. The current values at the VDD pad and the GND pad were observed to be 

around 2 mA and 545 µA, respectively. This resulted in the VDD and GND values to change to 

590 mV and 155 mV respectively (Figure 4.28).With these VDD and GND values to the core 

circuit the resultant voltage at the output node “out+” decreased and  is shown in Figure 4.29.  

 

Figure 4.27 Schematic of the complete circuit with I/O pads, balun and matching network 
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Figure 4.28 Graph showing the changed VDD and GND values 

	  

Figure 4.29 Transient response of the complete circuit with the I/O pads 
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Quasi-periodic steady state (QPSS) analysis was also performed to observe the power 

values of the mixed output products. The simulation result is shown in Figure 4.30. It was 

observed that the mixed products obtained were attenuated with the change in the VDD and GND 

values.  The mixer circuit simulation without the I/O pads where gain was obtained is also shown 

in Figure 4.31. 

 From both the transient and QPSS analyses it could be concluded that the simulation with 

the I/O pads results in the mixed output, but with attenuation. However, it was also observed that 

these simulation results do not have the RF input of 916 MHz being coupled to the output when 

digital “0” is being transmitted, as it was seen in the testing. Thus the debugging was continued 

to find out the reason for the coupling in the output.  

 

 

Figure 4.30 Quasi periodic steady state response of the complete circuit with I/O pads 
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Figure 4.31 Quasi periodic steady state response of the mixer circuit without I/O pads 

 

 During testing it was noticed that the RF input of 916 MHz was coupling significantly to 

the output even when the other inputs and power supply were not given to the chip. To check on 

this the simulation was done only with the RF input and without supplying power and the other 

inputs. The simulation did not result in any significant coupling at the output node and is shown 

in Figure 4.32.  

 The testing was further continued by supplying only the RF input to the printed circuit 

board at different frequencies and the output was observed. The results are provided in the table 

4.1 below. From these results it can be concluded that at high frequencies significant capacitive 

coupling of the RF input to the output is taking place even in the absence of power supply and 

other inputs. 
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Figure 4.32 Simulation performed only with the RF input 

Table 4.1: Printed circuit board tested at different frequencies  

Frequency ( MHz) RF input  (dBm) Output at “out+” (dBm) 

100 -38 -64 

500 -24 -48 

700 -18 -49 

900 -19 -39 

916 -21 -36 

1000 -18 -40 

2000 -14 -39 

3000 -10 -44 

5000 -7 -52 

7000 -7 -43 
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 The significant capacitive coupling of the RF input to the output node in the absence of 

other inputs and power supply should be a PCB design issue. On critical review of the PCB 

design it was learnt that all the connections made were correct but the top copper pour was left 

floating unlike the bottom copper pour which was grounded. This floating top copper is 

responsible for the capacitive coupling of the RF input to the output. 

 It can be observed from the Table 4.1 that at 916 MHz, an input of -20 dBm results in an 

output of -36 dBm through capacitive coupling. This coupling is observed to be more significant 

than the outputs obtained through the QPSS analysis in Figure 4.30. Hence the mixed output 

products are being surpassed by the direct RF capacitive coupling. Therefore the test results 

observed on the digital oscilloscope had RF carrier even when digital “0” was being transmitted 

though the mixing was taking place.   
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Chapter 5 

Conclusion 

5.1 Conclusion 
 The purpose of this thesis was to have a first on-chip transmitter for the BBIC.  A low 

power double balanced Gilbert cell mixer and a Class A power amplifier have been designed for 

the BBIC transmitter. Reasonable gain and linearity were achieved by the Gilbert cell mixer. 

Having the transconductor transistors of the Gilbert cell mixer operate in the subthreshold region 

the power consumption was also reduced. However the Class A power amplifier performance in 

terms of linearity was poor. The simulation results were encouraging.  

5.2 Future Work 
 Though the simulation results were encouraging, it was learnt from the testing that I/O 

pads used in the layout resulted in an attenuated output. Moreover the floating top copper pour of 

the PCB design resulted in capacitive coupling of the RF input to the output. Therefore it is 

required to redesign the PCB with the top copper pour grounded and have the layout of the chip 

with I/O pads that do not use a series resistance to obtain the expected results.  

   The performance of the Class A power amplifier can be improved in terms of linearity by 

using linearization techniques. Also the Class A power amplifier has a poor performance in 

terms of efficiency. So a more efficient power amplifier can also be considered for the 

transmitter.  

 A Phase locked loop (PLL) needs to be developed for the transmitter system. It is 

required to generate the 916 MHz carrier signal. If the PLL is developed then we can have the 

entire transmitter for the BBIC on chip. Finally an interface to the antenna needs to be 

developed. 
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