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Abstract 

 
Alkaline phosphatase inhibition by metal chelators has been studied using 

capillary electrophoresis.  The enzyme-inhibition assays were performed by 

electrophoretically mixing enzyme and inhibitor zones in a substrate filled 

capillary.  Enzyme inhibition could be seen as a decrease in product formation as 

detected using laser-induced fluorescence. The enzyme-inhibition assays were 

adapted so they could be performed using a commercial CE system.  Use of a 

commercial system is desirable for these assays due to ease of use and system 

features such as autosamplers and capillary and sample cooling.  This technique 

could prove useful for pharmaceutical industries as a screening tool for new drug 

therapies.       

Six metal chelators were studied as enzyme inhibitors using CE enzyme-

inhibition assays.  EDTA inhibition assays performed previously on a laboratory 

constructed CE system were compared to those using a commercial system.  The 

assays performed on the commercial system showed irreversible inhibition at 

concentrations of 1.0 mM or less and activation at 2.0 mM.  The opposite trend 

was seen with the laboratory constructed system.  One hypothesis to explain this 

discrepancy is that two different water sources contained different concentrations 

of metal contaminants.  The two water sources were used due to equipment failure 

making one source unavailable.  The common metal chelators EGTA, NTA, and 

1,10-phenanthroline all exhibited reversible inhibition of alkaline phosphatase at 

concentrations of 0.08 to 2.0 mM.  Crown ethers, which are not commonly used 

as enzyme inhibitors, were also studied.  12-crown-4 and 18-crown-6 both 

reversibly inhibited alkaline phosphatase at concentrations of 0.08 to 0.3 mM.  

The reversible inhibition exhibited by the various chelators examined (excluding 

EDTA) could be due to a time dependent mechanism in which Zn2+, which is 

required by ALP, is slowly removed, rendering the enzyme inactive.  

Alkaline phosphatase inhibition was also studied using on-column reagent 

addition.  The enzyme was added on-column, through a gap reactor and mixed 
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with the fluorescent enzyme substrate, Attophos, and zones of inhibitor.  

Theophylline, a reversible noncompetitive inhibitor, and sodium vanadate, a 

reversible competitive inhibitor were used.  Enzyme inhibition could be easily 

seen as a decrease in product formation detected by laser-induced fluorescence.    
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Chapter 1 

 

Introduction 

 

1.1 Enzyme Assays 
Enzymes are biological catalysts that are essential in the biochemical reactions that 

sustain life in virtually all known species.1, 2  Accordingly, enzyme assays are one of the 

most common procedures in biochemistry, molecular biology, and diagnosis of disease.1  

Enzymes in biological fluids are not usually measured by mass since they are found in 

low concentrations and samples often contain large amounts of other proteins.  Therefore, 

enzymes are frequently identified and measured by their catalytic activity.1, 3, 4  In an 

enzyme assay, the rate at which an enzyme catalyzes the conversion of a substrate into 

product provides information about the enzyme activity and the reaction kinetics.  An 

enzyme-catalyzed reaction occurs within a pocket on the enzyme known as the active 

site.  A substrate will bind to the active site and be acted upon by the enzyme.  The 

surface of the active site is lined with amino acid residues whose functional groups bind 

the substrate and catalyze product formation.1  There are many factors that may affect the 

reaction rate such as the need for cofactors, temperature, buffers, pH, and enzyme 

stability.1, 2 

Enzymatic catalysis can be described as the reaction of an enzyme (E) and a 

substrate (S) to form an intermediate enzyme-substrate complex (ES), which then breaks 

down to product (P) and free enzyme.1, 2, 5-7  At any time in an enzyme catalyzed reaction, 

the enzyme must exist in one of two forms, as free enzyme (E) or the ES complex.  At 

low substrate concentrations most of the enzyme is found in the free form.  The reaction 

rate would be proportional to [S] because the equilibrium is pushed toward ES formation 

as [S] increases.1  At high substrate concentrations it is assumed that all of the enzyme 

present is in the ES intermediate form.  The enzyme is saturated with substrate so that the 

free enzyme concentration is negligible compared to the substrate concentration.1, 5, 6  

Further increases in [S] have no effect on the reaction rate.  It is at this point that the 
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reaction has achieved a steady state in which [ES] remains constant over time.  It is here 

that the initial rate (V0) of the catalyzed reaction reaches a maximum (Vmax).1 

Enzyme assays are performed by monitoring product formation or substrate 

depletion.2  The reaction mixture is created by adding to the reaction vessel all the 

required components; substrate, enzyme, buffer, and cofactors or coenzymes.  The 

reaction is initiated by adding either enzyme or substrate to the mixture.  There are two 

methods for following the reaction after initiation.  Continuous measurements may be 

made or a sampling scheme can be created.  The continuous method follows the reaction 

for a set period of time with continuous measurements being made to determine the rate.  

With the sampling method, samples are removed from the reaction mixture at set time 

intervals and separate measurements are taken from each aliquot.  The progress of the 

reaction can be monitored using several different methods, but photometric and 

radiometric assays are the most common.2   

Photometric assays are based on changes in the optical properties of the system that 

arise from the chemical transformations that occur during the conversion of substrate to 

product.2  Absorbance detection has been frequently used to monitor assays and requires 

only a simple spectrophotometer.  Fluorescence can also be used to detect product 

formation.  However, components may need to be labeled with fluorophores since few 

substances are naturally fluorescent.  Most photometric assays are performed using the 

continuous method.2 

Radiometric enzyme assays are based on the conversion of radio-labelled substrates 

to radio-labelled products.2  These assays are performed using the sampling method.  

Samples are removed at time intervals and the radioactivity of the product is measured.  

For these assays to be successful a suitably labeled substrate of known specific activity is 

needed.2          

The kinetics of enzymatic reactions under these conditions can be described 

mathematically using the Michaelis-Menten equation1, 2, 5, 6: 

 

V0  =  ( Vmax [S] ) / ( Km + [S] )                        (1a) 
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E + S  ↔  ES  ↔  E + P 
1 k k 2

k -1 k -2
 

 

Figure 1.1.  General enzyme assay reaction scheme 
 

where Km is the Michaelis-Menten constant.  The basic hypothesis behind this treatment 

is that the rate-limiting step in the enzymatic reaction is the breakdown of ES complex to 

product and free enzyme.1  It is assumed that no reverse reaction between E + P occurs 

due to a negligible concentration of P initially.1  Therefore, the reaction rate V0 is defined 

by the following rate limiting step: 

 

V0  =  k2 [ES]                                                  (1b) 

  

The Michaelis-Menten constant is equal to  

 

Km = ( k -1 + k 2 ) / k1                                        (1c) 

 

where the k values are rate constants for each step in the reaction scheme shown in Figure 

1.1.  Km is equivalent to the substrate concentration at which V0 is one-half Vmax.  Km is 

not an actual dissociation constant of the enzyme substrate complex; however, it reflects 

the stability of the complex and has practical value.1  The value of Km can be determined 

experimentally by plotting V0 versus [S] which results in a hyperbolic curve that is 

known as a Michaelis-Menten plot as shown in Figure 1.2.1  It is more common to use the 

Lineweaver-Burk plot to determine Km, which can be obtained by taking the reciprocal of 

both sides of the Michaelis-Menten equation1, 2, 5, 6: 

 

1 / V0  =  1 / Vmax + ( Km / Vmax) / [S]               (1d) 
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Figure 1.2. General Michaelis-Menten plot 
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In a Lineweaver-Burk plot, 1/V0  is plotted versus 1/[S] at varying substrate 

concentrations.  This yields a linear relationship from which Km and Vmax may be 

determined directly where –1/Km  

is the abscissa intercept, 1/Vmax is the ordinate intercept, and Km/Vmax is the slope of the 

line (Figure 1.3).1, 2, 5, 6   

 
 1.2  Electrophoretically Mediated Microanalysis (EMMA) 

Due to the biological importance of enzymes, assay methods should be specific, 

sensitive, rapid, simple, quantitative and unaffected by side reactions or complicated 

biological matrices.8  Enzyme assays, in general, have three major required steps; mixing 

of reagents to initiate the reaction, progress of the reaction that may include a time period 

of incubation to allow product to accumulate, and detection of the reaction product.7, 8    

Capillary electrophoresis (CE) is a powerful analytical separation technique whose 

small dimensions are well suited for the steps required to perform enzyme assays.8  CE 

has several advantages over other enzyme assay formats.  CE provides fast analysis times 

and requires only  

small amounts of material.8-10  CE also has the ability to efficiently separate and quantify 

substrates and products that may be similar in structure.8, 10  Several sensitive detection 

methods may be used in conjunction with CE such as UV-Vis spectrophotometry, laser-

induced fluorescence detection (LIF), electrochemical detection (EC), and mass 

spectrometry.8, 10     

CE enzyme assays may be classified in three different categories.  In pre-column 

assays, the enzymatic reaction occurs before separation of substrate and product by CE.  

This type of assay requires larger sample volumes and relevant kinetic information may 

be missed since the reaction begins in the sample container rather than on-column.  In on-

column assays, the enzymatic reaction occurs in the capillary, followed by CE separation.  

In post-column assays, the enzymatic reaction occurs post CE separation.6, 8  In the post-

column approach, the CE instrument may need to be modified in order to incorporate the 

sampling step and additional sample handling is needed.  On-column, or on-line, enzyme 

assays are particularly useful since they tend to circumvent some of the problems  

 5
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1/[S] 

= 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3.  General Lineweaver-Burk plot 
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associated with traditional enzyme assays.  All processes needed for the reaction occur 

inside the capillary, therefore the volume of the assay is in the nanoliter range, mixing is 

achieved rapidly, and band broadening is minimized.7-9 

Originally, CE was used only as a separation technique in enzyme assays.9, 11  In 

these assays, the enzyme reaction occurred outside the capillary in a separate reaction 

vessel much like a traditional assay.  After an incubation period, the mixture was injected 

into the capillary and the species were separated and detected.9, 11  CE enzyme assays 

have many advantages over traditional assays.  Depletion of substrate and formation of 

product can be monitored simultaneously.  Only a small volume of sample is required, 

and the analysis is fast.  There is also no need for radiolabeled components.  High 

sensitivity and resolution can be achieved with quantitation possible.11   These assays do 

have several disadvantages as well.  The sample is still mixed outside of the capillary as 

with traditional assays.  There is a lag time between the start of the reaction and the start 

of the analysis.  For some kinetic studies, the reaction must be stopped during this period 

by adding a reagent or changing solution conditions such as cooling the mixture.11  Even 

though CE only requires nL volumes for analysis, a larger amount of starting material is 

still needed to carry out the reaction.  Adsorption of biological components to the 

capillary walls is also a problem leading to an inaccurate analysis.  

Bao and Regnier7 described the first on-line CE enzyme assays in 1992 using the 

enzyme glucose-6-phosphate dehydrogenase.  The authors later termed the method 

electrophoretically mediated microanalysis or EMMA.  EMMA utilizes the differences in 

electrophoretic mobilities of enzyme, substrate, and product.  There are various modes of 

EMMA based on zone engagement, sample introduction, etc.; however, there are two 

basic formats that exist for mixing of reaction components, continuous engagement and 

transient engagement.6, 8, 9, 11-13  The basic schemes for both are shown in Figure 1.4.   

In continuous engagement EMMA, the capillary is filled with running buffer, 

which typically contains an enzyme substrate at a saturating concentration.  A plug of 

enzyme is introduced into the capillary by an electrokinetic or pressure injection.  Upon 

application of a potential, the enzyme continuously mixes with substrate as it moves 

through the capillary, and product formation occurs until the enzyme exits the capillary.   
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Continuous-engagement EMMA 

 

 

 E  P Substrate-Filled Capillary 

A zone of enzyme is injected onto a substrate-filled capillary.  Product forms 

continuously as the enzyme migrates through the capillary to the detector. 

 

Transient-engagement EMMA 

 

 
 S E  
Enzyme and substrate are injected onto the capillary as separate zones. 

 

 

 

 ES
Enzyme and substrate electrophoretically mix and form product. 

 

S P E  

 

 

 

The zones are electrophoretically separated and detected. 

 

 

 

 
 
 
 

Figure 1.4.  Schemes for the two types of EMMA 
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The product accumulates and appears as a flat plateau at the detector.7, 9  When the 

electrophoretic mobility of the ES complex is greater than that of the product, the first 

product detected will be that which was formed as the enzyme migrates past the detector 

(Figure 1.5).  The product at point A is due to the enzyme that was introduced at the inlet.  

This point has a peak shape on top of the plateau as a result of product that was formed 

after the enzyme was injected but before the potential was reapplied.  If the 

electrophoretic mobility of the product is greater than that of the ES complex the 

electropherogram will be reversed (Figure 1.5).7, 9   

In transient engagement EMMA, or the plug-plug format, small plugs of enzyme 

and substrate are injected separately into a capillary filled with buffer.  When a potential 

is applied the zones are electrophoretically mixed due to a difference in mobility.  The  

 reagent with the slowest electrophoretic mobility is injected first.  When the faster 

moving reagent is injected, it will overtake the slower zone, and the reaction occurs.  

Product will be formed and separated from the reagents and later will be detected 

downstream.  The electropherogram will appear as a conventional CE separation 

experiment, and there will be no plateau as seen in the continuous engagement format 

(Figure 1.5).8, 9   

Various enzymes have been studied using EMMA.  The enzyme lactate 

dehydrogenase (LDH) has been studied using various substrates with both UV and EC 

detection.8, 14  Regeher and Regnier15 studied the enzymatic formation of H2O2 by 

glucose oxidase and galactose oxidase.  Catalase was studied by detecting the 

consumption of H2O2.  All three assays utilized the chemiluminescent reaction of H2O2 

and luminol for detection.  Jin et al.16 also studied glucose oxidase using capillary 

electrophoresis with laser-induced fluorescence detection (CE-LIF).  Conversion of 

adenosine diphosphate to adenosine triphosphate by creatine kinase was studied using 

UV detection.  Gomez et al.8 used EMMA with UV detection to study dual enzyme 

systems utilizing hexokinase (HK) and apyrase in the conversion of adenine triphosphate 

(ATP) to adenine diphosphate (ADP) and adenosine monophosphate (AMP) in the 

presence of glucose.  Xu et al.6 used EMMA to perform a Michaelis-Menten analysis of 

ALP by CE-UV.  EMMA has also been used for a range of enzyme kinetics studies,  
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Continuous-engagement EMMA 
 
 

A (A) 

A 
(B) 

 

 

 

 

 

 

 

 

 

 

Theoretical electropherograms for continuous-engagement EMMA.  (A)  The 

electrophoretic mobility of the ES complex is greater than that of the product.  (B)  The 

electrophoretic mobility of the product is greater than that of the ES complex.  

 

 

 

Transient-engagement EMMA 

 
 

 

 

 

 

Theoretical electropherogram for transient-engagement EMMA. 

 
 

Figure 1.5.  Model electropherograms for the two types of EMMA 
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particularly for determining Km values and the extent of inhibition by various compounds 

(Ki) values.  Several reviews have been written discussing the broad spectrum of 

enzymes that have been assayed using EMMA.8, 9, 11 

Both types of EMMA may be run in zero potential mode where no electrophoretic 

separation occurs.  The enzyme and substrate will stay mixed in one zone and product 

will accumulate.  Upon application of the potential, the product will be swept to the 

detector.  When the continuous engagement format is run in zero potential mode, the 

product plateau will have an extra peak corresponding to the product accumulation.  Zero 

potential mode is more difficult in the transient engagement format because the potential 

must be stopped at exactly the moment that the two zones merge.  This mode of EMMA 

is very useful when using dilute enzyme solutions as it enhances the sensitivity of the 

assay.9, 11  Saevels et al.5 used zero potential EMMA to determine the inhibition constant 

for erythro-9-(2-hydroxy-3-nonyl)adenine, which is a competitive inhibitor of adenosine 

deaminase (ADA).  The Yeung group separated and detected isoenzymes of LDH from 

single human erythrocytes using CE-LIF to monitor the product from the reaction 

between lactate and NAD+.17  Craig et al.18 were able to use the technique combined with 

CE-LIF to measure the reaction rate of a single alkaline phosphatase (ALP) molecule 

using AttoPhos, a fluorogenic substrate.    

 

1.3 Enzyme Inhibition  
Enzyme inhibitors are molecules or ions that either slow down or stop enzyme 

catalysis by preventing the formation of the ES complex or preventing it’s breakdown to 

E + P (Figure 1.6).1, 14  Enzyme inhibitors are important compounds that serve as control 

mechanisms in biological systems.14  Therefore, most clinical drug therapy is based on 

the inhibition of specific enzymes.  Analysis of enzyme reactions has been fundamental 

to the modern design of many pharmaceuticals.  Enzyme inhibitors have served as drugs 

to treat cancer, hypertension, and   arthritis among other conditions.12  Enzyme inhibition 

studies can provide valuable insight into the mechanisms of enzyme activity and have 

defined some important metabolic pathways.1, 8   
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Competitive Inhibition 
 

E + S  ↔  ES  ↔ E + P 

                                   + 

                                   I 

                                       Ki    

                                  EI      
 

Noncompetitive Inhibition 
 

E + S ↔ ES ↔ E + P 

                                                       +              + 

                                          I               I 

                                              Ki               Ki 

                                        EI + S ↔ ESI 

 
Uncompetitive Inhibition 
 

E + S ↔ ES ↔ E + P 

+ 

I 
                    Ki

         ESI 
 

Figure 1.6.  Three types of reversible inhibition 
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There are two main classes of enzyme inhibitors, reversible and irreversible.  The 

distinguishing characteristic for all reversible inhibitors is that when the inhibitor 

concentration drops, enzyme activity is resumed.  These inhibitors usually bind to the 

enzyme by non-covalent bonds, and the inhibitor maintains a reversible equilibrium with 

the enzyme.1, 14  Reversible inhibitors can be classified as competitive, noncompetitive, or 

uncompetitive.1, 5, 14  A competitive inhibitor often resembles the size and shape of the 

substrate and competes with that substrate for the enzyme’s binding sites or active sites.1, 

5, 14  The inhibitor occupies the active site, forming an EI complex and thus preventing 

substrate from binding to the enzyme.1  Competitive inhibition can be described using a 

form of the Michaelis-Menten equation1, 3-5, 14, 19   

 

V0 = ( Vmax [S] ) / ( [S] + Km ( 1 + [I] / Ki))                 (1e) 

 

where  

Ki = [E] [I] / [EI]                                                            (1f) 

 

Ki represents the inhibition constant for the dissociation of the EI complex. Since the 

inhibition is competitive, increasing substrate concentration can reverse the effect of the 

inhibitor.  When  [S] exceeds [I], binding of the substrate to the enzyme active site is far 

more probable than inhibitor binding.  The enzyme will then exhibit a typical Vmax.  The 

apparent Km, or the [S] at which V0 is equivalent to one half Vmax, will increase in the 

presence of inhibitor.1, 3-5, 14, 19 

Noncompetitive inhibitors can bind to both the enzyme itself and the ES complex.  

Inhibition is caused by binding of the inhibitor to a site on the enzyme other than the 

active site.1, 5, 14  Substrate binding to the enzyme is unaltered, but an ESI complex is 

created that cannot form product. Noncompetitive inhibition can also be characterized 

using a form of the Michaelis-Menten equation1, 3-5, 14, 19: 
 

V0 = Vmax [S] / Km ( ( 1 + [I]/Ki ) + [S] ( 1 + [I]/Ki ) )      (1g) 
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Since substrate binding to the enzyme is unaltered for this inhibition type, increasing [S] 

concentration will not influence the effect of the inhibitor.  Therefore, the Km value will 

not be altered.1  ESI complexes are formed, but they are unable to progress to product 

because the effect of a noncompetitive inhibitor is to reduce the concentration of ES 

complex that can create product.  This will cause a decrease in Vmax.1   

Uncompetitive inhibitors bind only to the ES complex itself.1, 14  In the presence 

of an uncompetitive inhibitor the Michaelis-Menten equation becomes1, 3, 4, 14, 19: 

 

V0 = Vmax [S] / Km + [S] ( 1 + [I]/Ki )                                 (1h) 

 

Since the inhibitor binds only ES, Vmax is decreased and will not be reversed by the 

addition of more substrate.  Km is also decreased.  In practice, uncompetitive inhibition 

only occurs with enzymes having two or more substrates.1  Lineweaver-Burk plots of all 

three types of inhibition can be seen in Figure 1.7. 

Irreversible inhibitors do not allow enzyme activity to resume even after the 

concentration of inhibitor is decreased.  They are characterized by covalent bond 

formation with the enzyme active site and time-dependent inactivation.4  Irreversible 

inhibitors are further classified as either active site-directed,  also known as affinity 

labels, or mechanism based, which are also known as kcat inhibitors or suicide inhibitors.3, 

4, 20-24 

  Active site-directed inhibitors have been used extensively to identify functional 

groups contained in the enzyme active site.22  These inhibitors are structural analogs of 

the normal enzyme substrate that possess a chemically reactive group.  20-22, 24  The 

similarity of the inhibitor to the substrate allows it to bind to the active site of the 

enzyme.  The functional group can then cause modification of the active site, rendering 

the enzyme inactive.  Affinity labeling contains two distinct steps, selective binding to 

the active site and covalent bond formation.24  Inhibitors bind to an enzyme before 

formation of the covalent enzyme-inhibitor complex which is represented by the 

following:3 
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Figure 1.7.  Lineweaver-Burk plots for reversible inhibition 
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E + I   ↔   EI  →  E-I                               (1i) 
1 2k k 

k -1
 

It is assumed that the initial binding of the inhibitor to the enzyme is not interrupted by 

the formation of the covalent bond because this bond formation is relatively slow.3, 4, 24  

Using this assumption, a kinetic treatment was determined by Kitz and Wilson in 1962.3  

The rate of formation of the inhibited enzyme is given by: 

 

dx/dt = k 2 e / (1 + Ki/i )                                 (1j) 

 

where x is the concentration of the E-I complex and Ki is the inhibitor dissociation 

constant previously mentioned in equation 1f.  Integration of the equation gives: 

 

k’t = ln e – ln (e-x)                                            (1k) 

where 

 

k’ = k +2 / (1 + Ki/i )                                           (1l) 

 

As already mentioned, this inhibition is time-dependent with a first order rate constant.  

Graphing ln (e-x) versus time (t) will give a hyperbolic dependence on the concentration 

of inhibitor.3, 21, 24  A plot of the reciprocal form of equation 1l3, 25: 

 

1 / k’ = (((Ki / k 2) (1/i)) + 1/ k 2)                                     (1m) 

 

will give values for both Ki and k 2 as shown in Figure 1.8.  One other important 

characteristic of these inhibitors is protection against inactivation will occur in the 

presence of substrate.3, 4, 22-25  Since the first step in this type of inhibition is formation of 

a bond to the active site, the presence of substrate would slow down this process due to 

the displacement of inhibitor by substrate3, 24, 25.  Substrate protection can be described by 

the following: 
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Figure 1.8.  Kinetics of irreversible inhibitors.  (A) Semi-logarithmic 
    plot of reaction rate at various inhibitor concentrations.  (B) Plot  
  of the reciprocal of the first-order rate constant. 
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E + I  ↔  EI  →  E-I                                             (1n) 
k +1 k +2

k -1                                    + 
                                    S 
                                     k k -3
                                   ES 

+3

and the value of k’ will change. 

 

k’ = k 2 / (1 + Ki/i ) (1 + s/Ks)                     (1o) 

 

Ks = k –3 / k +3                                              (1p) 

 

A plot of the reciprocal of equation 1o (1/k’ vs. 1/i) will give values of the rate constants 

Ks, Ki, and K+2. 

As previously mentioned, active site-directed inhibitors have been extremely 

valuable in identifying the functional groups contained at enzyme active sites and 

providing mechanistic details about the catalytic process.22, 24  More importantly, these 

inhibitors can be used for drug design once a target enzyme has been selected.  Since the 

inhibition is irreversible, the drugs are less susceptible to displacement by normal 

metabolites found in the body and can be very effective treatments.4  However, it is rare 

to find one of these inhibitors that is selective enough to be used in multi-component 

systems.  The active functional groups are present on the molecule before reaching the 

target enzyme, and the possibility that they may react nonspecifically is great.3, 20-22, 24 
 Mechanism based inhibitors utilize an enzyme’s normal reaction mechanism to 

inactivate the enzyme.1  These inhibitors are relatively inert molecules that resemble the 

natural enzyme substrate and therefore will react with the enzyme’s active site.  Once the 

molecule binds in the active site, a functional group contained within the active site will 

modify the inhibitor.  It is converted into a compound which reacts with the enzyme 

leading to inactivation.1, 4, 20-24, 26  The initial encounter between the enzyme and inhibitor 

is indistinguishable from that of enzyme and substrate.  By reacting with the “faux” 

substrate, the enzyme brings about its own inactivation and consequently, these inhibitors 

are known as suicide inhibitors.23  The success of mechanism based inhibitors is  
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dependent on three basic factors.20, 24, 26  First, the molecule must be relatively inert to 

maintain specificity for the target enzyme.  Second, the molecule must resemble the 

natural substrate of the enzyme.  The fewer chemical modifications the inhibitor must 

undergo, the more effective an inhibitor it will be.  This is key for the specificity of the 

inhibitor for the enzyme.  If an inhibitor is structurally simple, many enzymes will use it 

as a substrate and it is less likely to be specific.  Lastly, the inhibitor must be converted 

into a chemically reactive substance.  The reactive molecule must be formed within 

bonding distance to an active site functional group capable of reacting with it.  The 

dissociation rate of the enzyme inhibitor complex must also be relatively slow.  Rapid 

dissociation would preclude a reaction with an active site functional group. 

The scheme for mechanism-based inhibition is as follows4: 

 

E + I  ↔  EI  →  EI*  →  E – I                                 (1q) 
k1 k2 k3

k-1

 

where the enzyme inhibitor complex (EI) becomes an activated species (EI*) that 

produces the inhibited species. Steady-state kinetics cannot distinguish between active 

site-directed and mechanism based inhibition, so the mathematical treatment is the same 

for both with the constants k’ and Ki slightly more complex for mechanism based 

inhibition3, 4 with  

 

 k’ = ((k 2 k 3) (k 2 + k 3))/ (1 + Ki/i )                        (1r) 

where 

Ki = ((k -1 k 3) + (k 2 k 3)) / ((k 1) (k 2 + k 3))          (1s) 

 

A plot of the reciprocal of equation 1s will give the values of the rate constants Ki, k’, 

and k2 as stated previously for active site-directed inhibitors (Figure 1.8).  Protection 

against inactivation in the presence of  substrate is also a characteristic of these 

inhibitors.3, 4  The kinetic treatment is the same as that for active site-directed inhibitors.  

Mechanism based inhibitors are particularly useful for in-vivo applications since 

they are chemically inert until they reach the active site of the enzyme for which they are 
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specific.22-24, 26  This minimizes the possibility of nonspecific reactions in the body, which 

is an important consideration in drug design.    

 

1.4 Enzyme Inhibition Assays 
Capillary electrophoresis has been used to evaluate the effects of inhibitors on 

enzyme activity.  Saevels et al.5 used transient engagement EMMA to study the 

deamination of adenosine to inosine by adenosine deaminase (ADA).  In these 

experiments, the buffer contained a competitive inhibitor of ADA, erythro-9-(2-hydroxy-

3-nonyl)adenine.  Enzyme and substrate were injected as separate plugs in the inhibitor 

filled capillary.  When the two plugs were fully mixed, the potential was turned off for 5 

min to allow product buildup.  Product was detected by CE-UV.  Lineweaver-Burk plots 

were used to determine Ki.   

Whisnant et al.12 developed a method for studying inhibition of ALP using CE-

LIF.  The capillary was filled with running buffer containing the fluorogenic substrate 

AttoPhos. Theophylline, a competitive inhibitor of ALP, and enzyme were injected as 

separate zones into the column.  This experimental design is considered a combination of 

transient and continuous-engagement EMMA.  The zones migrated through the capillary 

at constant potential and product was formed continuously.  When the inhibitor and 

enzyme zones electrophoretically mixed, product formation decreased.  The inhibition 

could be seen on an electropherogram as a negative peak on the product plateau.  The Ki 

value was calculated using the Michaelis-Menten treatment.  In a related series of studies, 

using the same variation of EMMA, the group studied reversible and irreversible 

inhibition and activation of ALP.27  Reversible inhibitors included theophylline, sodium 

vanadate, and sodium arsenate.  EDTA was found to be an irreversible inhibitor at 

concentrations of 1 mM and higher and an activator at concentrations from 20 to 400 µM.  

The Ki values for the reversible inhibitors were determined by Michaelis-Menten 

treatment and were within the ranges reported in the literature.  Using this technique, 

reversible and irreversible inhibition and activation can all be easily distinguished upon 

visual inspection of the electropherograms.   
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Glatz et al.14 used a combination of EMMA and a partial filling technique to study 

the inhibition of rhodanese by 2-oxoglutarate.  Rhodanese catalyzes the conversion of 

thiosulfate into thiocyanate using cyanide as a co-substrate.  In this method, part of the 

capillary is filled with the appropriate buffer for the enzymatic reaction and the rest is 

filled with the optimal background electrolyte for the separation of the substrate and 

product.  The inhibition constants were determined for 2-oxoglutarate with respect to 

both thiosulfate and cyanide.  The type of inhibition was also determined.  2-oxoglutarate 

was found to be a competitive inhibitor with respect to cyanide and an uncompetitive 

inhibitor with respect to thiosulfate.   

EMMA has also been used in conjunction with microchips to study enzyme 

inhibition.  The inhibition of β-galactosidase by phenylethyl-β-D-thiogalactoside was 

studied using continuous-engagement EMMA on a microchip with LIF detection.28  

Substrate, buffer, enzyme, and inhibitor were all held in separate reservoirs on the 

microchip and mixed electrophoretically.  Substrate and buffer were first mixed in a 

channel, and enzyme and inhibitor were mixed with the resultant running buffer solution.  

The Ki of phenylethyl-β-D-thiogalactoside was determined.  The inhibition of protein 

kinase A by H-89, a competitive inhibitor, was studied using a microchip.29  The inhibitor 

was first diluted on the chip and mixed with enzyme and substrate. Plugs of this sample 

mixture were injected into a separate channel for separation and detection.  

Acetylcholinesterase inhibition has also been studied using this method.30  Enzyme was 

continuously pumped through the chip and substrate was mixed in with this stream.  

Inhibitor zones were injected before mixing with substrate.  The non-fluorescent product 

was derivatized on-column after the reaction for LIF detection.   Inhibition could be 

distinguished by a decrease in fluorescence and a Ki value was determined for the 

competitive inhibitor, tarcine.   

 

1.5 Alkaline Phosphatase 

Alkaline phosphatase (ALP) is an enzyme found in a wide majority of living organisms 

and is prevalent in tissues that have an absorptive or transport function such as intestine, kidney, 

placenta, and liver.31  ALP nonspecifically hydrolyzes phosphate esters to produce an alcohol 
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and an inorganic phosphate at alkaline pH.18, 32-35  ALP is classified as a zinc metalloprotein 

because zinc is required for activity of the enzyme.12, 18, 31, 33-35  It is an enzyme that contains 4 

mol of zinc ions per mol of ALP.  Though the exact structure of ALP is still under investigation, 

it is generally accepted that it is homodimeric in nature with each active site containing a 

phosphorylatable serine and three metal binding sites, two for zinc and one for magnesium.33   

While the exact role of metals in enzymes is not fully understood, in general, divalent 

metal ions tend to increase the structural stability of the active conformation of an enzyme or 

take part in the catalytic process itself.33  The structure of ALP varies between species and other 

divalent metals have been found in addition to zinc and magnesium.  Micrococcus sodonensis 

ALP has been found to require calcium to be active.35  Another form found in yeast requires iron 

while B. subtilis ALP seems to need cobalt.35  The focus of the remainder of this discussion will 

be on mammalian ALP, which requires zinc and magnesium only. 

A general mechanism of the dephosphorylation of substrates by alkaline phosphatase has 

been proposed.18, 31, 34, 35           

  

EH + R-OP  ↔  EH’R-OP  ↔  EH*’R-OP  →  EP + ROH                             (1t) 
k 1 k 2 k 3

k -1
                             ↓  k 

k -2
4slow

                            EH + P 

                                                                                   

EH is free enzyme, R-OP is the substrate, EH’R-OP is the enzyme substrate complex, 

EH*’R-OP is the activated enzyme substrate complex, EP is the phosphorylated enzyme, 

ROH is the alcohol and P is the inorganic phosphate.18  In the first step, free enzyme 

binds to a phosphomonoester substrate to form the enzyme substrate complex.18, 34, 35  

The second step is the catalytic reaction, where a nucleophilic attack on the phosphate 

group of the substrate causes formation of a phosphoryl enzyme intermediate.18, 34  

Hydrolysis transforms the covalent intermediate into a noncovalent enzyme phosphate 

complex that decomposes into the reaction product and free enzyme.31, 34    

The ALP active site is open to the surface of the enzyme and is found in a pocket 

formed from the ends of a number of helices and sheets.33  Magnesium does not seem to 

participate in the catalysis reaction itself but instead stabilizes the structure of the 
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enzyme.  A serine residue found in the active site is phosphorylated in the reaction.31, 33, 35  

One of the zinc ions interacts with the serine in order to stabilize the residue for 

nucleophilic attack on the phosphate portion of the substrate.  The second zinc ion binds 

to the substrate, neutralizing the negatively charged phosphate and exposing the 

phosphorus atom to nucleophilic attack.  This model of the mechanism at the active site 

matches well with what is known about other hydrolytic enzymes.31, 33, 35       

While this mechanism is widely accepted, it is not known whether or not both 

subunits of the dimer function identically.  There has been evidence to support theories of 

both negative cooperativity and independence.31, 35  Negative cooperativity is the case in 

which only one dimer actively functions.31, 35  It has been suggested that once a molecule 

of substrate binds to one active site, the other active site becomes incapable of 

functioning due to conformational changes in the subunit.31  There is also a body of 

evidence supporting the independence of the subunits.35  Molecular hybrids were created 

consisting of a wild-type subunit and an inactive mutant subunit.  The observed activity 

of the hybrid indicated that the subunits acted independently based on the idea that the 

activity of the hybrid should be the mean of the activities of the two subunits.  If the 

situation were based on negative cooperativity , the activity would be considerably less.35  

More studies are needed before a consensus can be reached on this issue.   

 

1.6 Enzyme Inhibition by Metal Chelators 
Metal ions, particularly transition metals, have empty orbitals and are capable of 

accepting electron pairs.36  Therefore, metal ions are Lewis acids and accept electron 

pairs from electron-donating ligands that are Lewis bases.  A ligand that attaches to 

metals through only one atom is called a monodentate.  Most transition metals can bind to 

six ligand atoms.  A ligand that attaches to a metal ion through more than one atom to 

form a five or six membered ring is called multidentate or chelating agent.36, 37  The 

chelate effect is the ability of multidentate ligands to form more stable metal complexes 

than those formed by monodentates.37  This effect can be understood by looking at the 

thermodynamics of the reaction based on the equation for standard free energy change36, 

37: 
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∆G = ∆H - T∆S                                             (1u) 

 

 Two processes that drive a chemical reaction are decreasing enthalpy, which is a 

negative ∆H value (release of heat), and increasing entropy, which is a positive ∆S value 

(more disorder in a system).  A reaction is thermodynamically favorable if ∆G < 0.  More 

order is created when metals complex with monodentates than multidentates.  The 

enthalpy change for both is approximately the same.  The change in entropy then 

becomes the most important factor in the chelate effect.37 

Ethylenediaminetetraacetic acid, or EDTA as it is commonly known, is one of the 

most widely used chelators.36-38  EDTA has six potential binding sites for metal ions, four 

carboxyl groups and two amino groups.38  It is a hexadentate ligand.  EDTA combines 

with metal ions in a 1:1 ratio regardless of the charge on the cation.37, 38  In general the 

reaction of EDTA with a metal ion can be described as37, 38: 

 

Mn+  +  Y4-  ↔  MY(n-4)+                                        (1v) 

 

EDTA forms very stable complexes with metals due to the complexing sites within the 

molecule that give rise to a cagelike structure, which surrounds the cation and prevents 

side reactions.38  Due to this structural stability, EDTA is used widely as a preservative in 

foods and biological samples.  It is often added to mayonnaise, salad dressings, and oils 

to prevent oxidation of fats.  It is also used to protect stored blood from oxidizing and is 

an important reagent for blood banks, hospitals, and crime labs.38   

 Treatment of enzymes with chelators removes metal atoms essential for enzyme 

activity and thus leads to the formation of a metal-free inactive apoenzyme.33, 35  EDTA is 

frequently used with ALP to create the apoenzyme for kinetic studies.  The effect of 

chelators on enzymes is dependent on several factors including concentrations of chelator 

and enzyme, time interval of treatment, pH, and enzyme source.35  Enzymes from 

different organisms respond differently to EDTA treatment.   
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It is generally accepted that EDTA reacts with an enzyme by removing Zn2+, but 

the exact mechanism is not fully known.  Zhang et al. used green crab ALP from the 

species Scylla serrata to study the reaction kinetics of inactivation by EDTA.39, 40  A 

reaction scheme was determined which includes conformational changes of the enzyme 

and a loss of the zinc ions contained in the active site.  The first step is a fast and 

reversible formation of a complex between ALP, more specifically Zn2+ contained in 

ALP, and EDTA.  In the second step, the complex irreversibly changes from a strained, 

active state to a conformationally stable inactive state.  This is the rate-limiting step and 

represents the inactivation reaction rate Ki.  In the final step, Zn2+ is removed from the 

active site of the enzyme and a free Zn2+- EDTA  complex is formed.  This study 

correlates with another study done by Bortolato et al. which used Fourier transform 

infrared spectroscopy (FTIR) to probe the structure of the apoenzyme of bovine intestinal 

mucosa ALP.33  The findings suggest that the zinc ions in ALP are also necessary for 

stabilization of the secondary and tertiary structures of the enzyme.  The removal of the 

metal ions induced conformation changes that could correspond to disappearance of α-

helices and formation of an unordered structure.  While these are two of the most recent 

studies of EDTA induced inactivation, there are still some concerns with adopting this as 

a general mechanism.  Most important is the fact that these studies were performed on 

only two species of organisms.  Many more studies are needed including a wide range of 

organisms before a consensus on the general mechanism of EDTA inactivation can be 

reached.        
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Chapter 2 
 

Analysis of Alkaline Phosphatase Inhibition by Metal Chelators Using 

Capillary Electrophoresis 

 

 

2.1 Introduction 
 Enzyme inhibition by metal chelators was studied using an automated capillary 

electrophoresis system and alkaline phosphatase as the model enzyme.  As was 

previously discussed, metal chelators are thought to bind to a metalloenzyme’s active site 

and remove metals essential for enzyme activity, thus inhibiting the enzyme.35, 39, 40  

Therefore, metal chelators could serve as useful clinical compounds for drug therapy 

based on the inhibition of certain enzymes.   

 The exact mechanism of enzyme inhibition by metal chelators has been widely 

debated.35, 39-44  EDTA is one of the most commonly used chelators and has been 

extensively studied36-38; however, in order to expand the knowledge base for these types 

of assays, other classes of metal chelators need to be studied.    EDTA inhibition had 

previously been studied in our laboratory using a laboratory constructed CE-LIF system 

and this work provided a starting point for this series of experiments.27  It was found that 

irreversible inhibition of alkaline phosphatase occurred at concentrations of 1.0 mM 

EDTA or higher.  Activation of alkaline phosphatase was observed at concentrations of 

20 to 400 µM EDTA.  Few studies in the literature give a clear and consistent picture of 

the mechanism of EDTA inhibition.  This is due in part to the use of various forms of 

enzyme, purity and preparation methods.35  In order to obtain information about the 

overall inhibition mechanism a series of inhibitors should be used with the same form and 

purity of enzyme.  Chelators with structures different from EDTA can help to determine 

if the inhibition is specific to that particular structure or is due to a more generic chelator 

form.  Chelators with varying affinities for zinc ions should also be included to develop 

an understanding of how their ability to complex affects the mechanism.  One would 
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assume that a chelator with a higher affinity would be a more potent inhibitor.  A 

description of the inhibition trends based on structure and affinity for zinc should give a 

more concrete representation of the mechanism of enzyme inhibition by metal chelators.  

The studies presented here include a range of metal chelators.  Structures of the inhibitors 

used in this study can be seen in Figure 2.1.  

To expand the utility of these enzyme inhibition studies, we have also 

demonstrated the use of an automated CE system in conjunction with these assays.  

Conventional enzyme assays can be performed in a microtitre plate quickly and in 

parallel.  However, they are limited by the amount of material required for an assay.  The 

most effective way to reduce the amount of material needed for an assay is to reduce the 

concentration and allow longer incubation periods for product buildup or reduce the total 

volume of the assay.  CE is a technique well suited to performing enzyme assays because 

it only requires nL size samples.8-10  CE enzyme-inhibition assays also provide more 

information about an assay compared to traditional methods.  CE allows the progress of 

the entire assay to be monitored.  The activity of the enzyme can be measured before, 

during and after interaction with the inhibitor.  With traditional assays, only the activity 

of the enzyme during interaction with the inhibitor is observed.  The type of inhibition 

(reversible or irreversible) or activation can be readily distinguished by visual inspection 

of electropherograms.  Other kinetic parameters that can be obtained from an 

electropherogram include velocities of ES complex, product and inhibitor, the time at 

which the enzyme and inhibitor interact, and the location in the capillary where the 

interaction occurs. 

  CE enzyme assays have proved to be very advantageous in reducing the amount 

of material needed to the nL scale; however, laboratory constructed CE instruments still 

have several disadvantages.  Optical components may be difficult to align initially and 

generally need to be realigned on a day-to-day basis.  Experiments must be performed in 

a darkened area to prevent ambient light from reaching the detector.  Software design and 

coupling to the system may also prove complicated.  Assays performed this way may also 

be time consuming since each solution, (enzyme, inhibitor, etc.) is manually injected and 
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each run must be started by a technician.  This laboratory constructed system would not 

be practical on an industrial scale where hundreds to thousands of assays must be 

performed on a short time scale. 

Several commercial CE systems are available.  These feature easy to use software 

systems with data analysis packages, capillary and sample cooling features and 

autosamplers with high sample capacity.45-47  Most of these instruments come with a 

variety of detectors that may be interchanged and can also be coupled to other systems 

such as MS.  Automated capillary arrays, which can analyze hundreds of samples 

simultaneously, are also commercially available.  These automated systems could be 

valuable to the pharmaceutical and biotechnology industries by permitting large scale 

screening of compounds for inhibitory effects in order to create new drug therapies.46   
 

2.2 Experimental 
2.2.1 Reagents 

 AttoPhos ([2,2’-bibenzothiazol]-6-hydroxy-benzathiazole phosphate) was 

purchased from Promega (Madison, WI).  Calf intestinal alkaline phosphatase (EC 

3.1.3.1) was supplied by ICN Biomedicals (Aurora, OH).  DEA (diethanolamine), 

Theophylline (99%), EGTA ([ethylenebis(oxyethylenenitrilo)]tetraacetic acid), 1,10-

phenanthroline (99%), NTA (nitrilotriacetic acid) (99%), 12-Crown-4, and 18-Crown-6 

were obtained from Acros (Pittsburgh, PA).  Disodium EDTA was purchased from Fisher 

Scientific (Norcross, GA).  All solutions were prepared in distilled, deionized water 

bought from VWR (West Chester, PA). 

 

2.2.2 CE-LIF Instrumentation and Experimental Conditions 

 A Beckman Coulter P/ACE™ MDQ Capillary Electrophoresis System (Fullerton, 

CA) was used in this study.  The instrument was equipped with a LIF detector module to 

allow for CE-LIF detection.  The 457.9 nm line of a Melles Griot 43 Series argon ion 

laser was used for excitation.  A 475 nm long pass filter from Edmund Optics 

(Barrington, NJ) and a 560 ± 10 nm bandpass filter from Andover (Salem, NH) were 
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used as emission filters.  The power of the laser beam coupled to the instrument was 

approximately 3 mW.  Fused silica capillaries with a 50 µm i.d. and 220 µm o.d. were 

used.  The capillary total length was 60 cm and the length to the detection window, from 

which the polyimide coating was removed using a low flame, was 50 cm.  Both the 

sample chamber and capillary cartridge temperatures were held constant at 25 °C.  32 

Karat™ Software version 5.0 from Beckman Coulter (Fullerton, CA) was used for data 

acquisition and analysis.  

 The running buffer consisted of 50 mM DEA at pH 9.5 and 0.10 mM AttoPhos, a 

fluorogenic alkaline phosphatase substrate.  The enzyme solution contained 0.18 nM 

alkaline phosphatase and 50 mM DEA buffer at pH 9.5.  Running buffer and enzyme 

solution were prepared fresh daily.  The inhibitor solutions contained 50 mM DEA 

buffer, 0.10 mM AttoPhos and inhibitor at selected concentrations.  All injections were 

performed by pressure at 0.5 psi.  The applied electric field for all separations was 310 

V/cm.  A 50 mM DEA rinse buffer was used to wash the electrode and capillary in order 

to prevent cross contamination of enzyme and inhibitor solutions.  This was done by a 1.0 

s injection of rinse buffer at 0.1 psi in order to immerse the electrode and capillary in the 

solution without injecting a large amount of material.   

 

2.3 Results and Discussion 
2.3.1 On-Column Assay of Alkaline Phosphatase 

 Alkaline phosphatase is a metalloenzyme that is found in most living organisms.31  

Therefore, ALP is a relatively cheap, widely available enzyme to use for kinetic studies.  

It has been used in conjunction with the EMMA technique to study the catalyzed reaction 

between ALP and several substrates, including p-aminophenylphosphate and p-

nitrophenylphosphate.39, 40, 43, 44  Here, ALP was used to study the catalyzed reaction that 

occurs with the substrate AttoPhos.  This assay serves as a control for comparison of 

enzyme-inhibition assays using metal chelators. 

 These assays were first performed on a laboratory constructed CE system.27  

Briefly, the 457.9 nm line of an argon ion laser was focused onto the capillary using a 

fused-silica plano convex lens.  Fluorescence was collected at 90° to the laser by a 20 X 
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microscope objective and was filtered by both a 560 ± 10 nm bandpass filter and 1 mm 

diameter aperature.  Fluorescence was detected using a PMT.  The laser power at the 

capillary was 35 mW.  The capillary was thermostatted at 40° C by enclosing it from 

injection end to detection window in Teflon tubing and flowing heated N2 gas through the 

tubing.  The thermostatting prevented fluctuations in the reaction rate due to temperature 

changes down the length of the capillary.  The temperature of N2 was previously 

optimized for maximum enzyme activity.  These assays were performed by injecting a 3 s 

zone of 0.18 nM ALP at 17.8 kV into a capillary containing 0.10 mM AttoPhos, a 

fluorogenic substrate.  Then a constant potential of 17.8 kV (310 V/cm) was applied.  

Product formation was continuous as the ALP-AttoPhos complex migrated through the 

buffer filled capillary and was detected using LIF.  The fluorescence signal is indicative 

of the reaction rate of the system.  The results of an ALP enzyme assay (commercial 

system) are shown in Figure 2.2.  The fluorescent product accumulates and appears as a 

flat plateau.  The small peak at point A on the plateau results from product formation that 

occurs after the enzyme has been injected, but before the separation potential is applied.  

It is a zero field incubation phenomenon.7  This artifact is observed at the end of the 

product plateau, which is the opposite of where it might be expected.  Since the mobility 

of the ALP-AttoPhos complex is greater than that of the fluorescent product, the ES 

complex will migrate to the detector faster.  The first product detected is product that is 

produced at the end of the experiment as the ES complex migrates past the detector.  The 

product produced when the enzyme is first injected into the capillary, or the peak, will be 

detected last.  Therefore, all the electropherograms presented will be reversed in time.12  

Relative standard deviation (RSD) values were used as a measure of reproducibility of 

enzyme activity and thus, system reliability.  RSD values for the ALP assays on the 

laboratory constructed system were 2% or less.       

 These assays were then performed on a commercial automated CE system.  There 

are a few differences between the laboratory constructed and commercial systems.  The 

commercial system was equipped with both electrokinetic and pressure injection 

capability.  It also was equipped with capillary and sample chamber thermostatting.  The 
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Figure 2.2. Electropherogram of an alkaline phosphatase assay 

performed in a commercial CE system.  A zone of 0.18 nM                  
ALP was injected for 3 s at 0.5 psi into a capillary filled  
with 0.10 mM AttoPhos and 50 mM DEA at pH 9.5.  The 
applied electric field was 310 V/cm.  Capillary length to the 
detector was 50 cm.  
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457.9 nm line of an argon ion laser was used; however, the laser was coupled to the 

instrument via an optical fiber.  The laser beam was focused through a plano-convex lens 

onto the tip of the optical fiber, which was held in a freestanding coupler.  This optical 

fiber was plugged directly into the instrument.  A second optical fiber located in the 

instrument directed the beam onto the capillary.  The laser power at the capillary was 3 

mW.  Several changes were also made in the way the assay was performed. A 3.0 s zone 

of 0.18 nm ALP was injected at 0.5 psi.  The applied electric field remained the same at 

310 V/cm.  Both the capillary and samples were held at a constant 25° C in order to 

prevent fluctuations in the reaction rate due to temperature changes.  The 

electropherograms from the automated system appear the same as the electropherograms 

from the laboratory constructed system.  The results may be interpreted the same way.  In 

moving these assays to the automated CE system, RSD values were used as a measure of 

the success of the technique in the new system.  All trials had RSD values of less than 

2%, which is the same precision obtained from the laboratory constructed system.  It was 

concluded that the on-column CE enzyme assay works well in a commercial automated 

CE system and that the use of this system could be extended to enzyme-inhibition assays.  

The commercial system offered several advantages over the laboratory constructed 

system as well.  The signal-to-noise ratio appears better with the automated system.  The 

system itself is less complicated to operate since all individual parts are enclosed within 

the instrument.  There is no need for alignment or a dark room.  Also, all injections are 

performed by the system.  The user may simply program a sequence to run a large 

number of samples without having to monitor the process continuously or perform 

manual injections.                     

 

2.3.2 On-Column Enzyme-Inhibition Assay of Alkaline Phosphatase and Theophylline 

 Theophylline is a reversible, noncompetitive inhibitor of ALP.  It is a clinically 

important compound that has been used as a bronchodilator, respiratory stimulant, and 

anti-inflammatory drug.12  Theophylline is a very potent inhibitor of ALP and its 

inhibition effects have been studied extensively.  For these reasons, it has been used as a 

model system for developing on-column enzyme-inhibition assays.   
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 Just as with the laboratory constructed on-column ALP assays, the theophylline 

inhibition assays were used as a control for this study.  Experiments were performed on 

both the laboratory constructed CE system and the commercial automated CE system for 

comparison.  In the laboratory constructed system,12  a 4 s zone of 100 µM theophylline 

was injected at 17.8 kV.  A constant potential of 17.8 kV was applied for 20 s.  Next, a 3 

s zone of  0.18 nm ALP was injected at 17.8 kV.  A separation potential of 17.8 kV (310 

V/cm) was applied.  The analogous experiment in the automated system consisted of a 5 s 

injection of 100 µM theophylline at 0.5 psi followed by application of a constant 

potential of 18.6 kV for 30 s.  Next,  a 3 s zone of 0.18 nm ALP was injected at 0.5 psi.  

A separation potential of 18.6 kV was reapplied for the duration of the assay.  The 

electropherograms from both systems were interpreted in the same manner and can be 

seen in Figures 2.3 and 2.4 for comparison.  In the electropherogram for the commercial 

system, there appears to be a second smaller inhibition peak.  It is believed to be an 

impurity in the inhibitor solution and has previously been seen with the laboratory 

constructed system.    

 Theophylline was injected first because the ALP-AttoPhos complex has a greater 

mobility than the inhibitor.  In order to achieve enzyme inhibition in any system, the 

zones of enzyme and inhibitor must electrophoretically mix.  Therefore, the injection 

order depends upon the mobility of the components.  Experiments may initially be 

performed to determine which component has a greater mobility.  If an inhibitor is 

injected first and no inhibition occurs, then a corresponding experiment in which enzyme 

is injected first must be performed.   

Once both components have been injected in the correct order, the zones will 

migrate through the capillary under applied potential.  Product forms continuously until 

the zones of inhibitor and ES complex electrophoretically mix.  When this occurs, 

product formation decreases and can be seen as a dip in the product plateau on the 

electropherogram.  Once the zones of inhibitor and ES complex move away from each 

other, the enzyme returns to its original level of activity.  This indicates that theophylline 

is a reversible inhibitor.   
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Figure 2.3. Electropherogram of an enzyme-inhibition assay with 
  theophylline in a laboratory constructed CE system.  A 4 s zone of  

 100 µM theophylline was injected at 17.8 kV into a                     
 capillary filled with 0.10 mM AttoPhos and 50 mM DEA 
 at pH 9.5.  A 3 s zone of 0.18 nM ALP was injected after applying 
 a potential of 17.8 kV for 20 s.  The applied electric field was 310 
 V/cm.  The capillary length to the detector was 42.8 cm.12 
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Figure 2.4. Electropherogram of an enzyme-inhibition assay with  
 theophylline in a commercial CE system.  A 4 s zone of  

                     100 µM theophylline was injected at 0.5 psi into a capillary 
                     filled with 0.10 mM AttoPhos and 50 mM DEA at pH 9.5. 
                     A 3 s zone of 0.18 nM ALP at 0.5 psi was injected after 
                     applying a potential of 17.8 kV for 30 s.  The applied 
                     electric field was 310 V/cm.  The capillary length to 
   the detector was 50 cm. 
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The reproducibility of theophylline measurements using the laboratory 

constructed instrument was 4%.12  The assay was then transferred to a commercial 

automated CE system.  The reproducibility of the assay on the new system was 5%.  The 

assay showed similar reproducibility with both instruments, therefore the automated CE 

system was used for the metal chelator inhibition studies.  

 

2.3.3 On-Column Enzyme-Inhibition Assay of Alkaline Phosphatase and EDTA 

       ALP inhibition by EDTA has been a widely studied and widely debated topic.  

Results of inhibition experiments vary extensively in the literature.  Conyers et al.41 used 

human ALP from bone, intestine, and placenta.  At EDTA concentrations of 10-5 to 10-3 

M, ALP underwent a loss of activity to the same extent regardless of concentration.  At 

concentrations of 10-3 M EDTA and above, bone and intestinal ALP exhibited lower 

activity with increasing concentration.  Placental ALP showed an increase of activity 

with increasing EDTA concentration.  The authors noted that the first effect could be due 

to an activator in solution being removed.  At high concentrations, the EDTA could 

remove the proposed activators and chelate the Zn2+ required by ALP rendering it 

inactive.  Ensinger et al.42 showed that calf intestinal ALP was completely inactivated by 

0.01 to 1 M EDTA.  Fortuna et al.44 found that EDTA irreversibly inhibited bovine fetal 

ALP.  Inactivation studies on green crab ALP showed a time dependent deactivation from 

1 to 50 mM EDTA.40  Activation has been reported for Gastrothylax crumenifer and 

Cotylophoron orientale ALP at 1.0 mM EDTA48 and for Ascaris suum ALP at 10 mM 

EDTA.49  All of these studies are based on traditional enzyme assay formats.  Inhibitor 

was allowed to incubate with the enzyme for a set time period before measurements were 

made.  One study was performed on immobilized bovine intestinal mucosa ALP.50  The 

ALP was immobilized on controlled pore glass (CPG) and placed in a flow-injection 

system.  It was found that EDTA inhibition was reversible by merely passing buffer 

through the system.  The ALP in all of these experiments came from various sources and 

many were in crude preparations.  All used different detection methods and various 

incubation periods.  A direct comparison of the results would be difficult based on these 
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differences.  A clear, concise explanation of the method of EDTA inhibition is still 

lacking. 

 The first EDTA inhibition studies in our lab (work by Whisnant)27were performed 

on the laboratory constructed CE system described in section 2.3.1.  In these experiments, 

EDTA at the chosen concentration was injected first for 55.0 s at 17.8 kV.  Then, a 

constant potential of 17.8 kV was applied for 180 s.  Next, a 3.0 s zone of 0.18 nM ALP 

was injected at 17.8 kV.  A separation potential of 17.8 kV was applied.  When 

performing the assay in the commercial system, several experimental conditions were 

changed.  First, a 10 s zone of EDTA was injected at 0.5 psi.  Then, a constant potential 

of 18.6 kV was applied for 36 s.  Next, a 3.0 s zone of ALP was injected at 0.5 psi.  A 

separation potential of 18.6 kV was then applied.  The separation time of 36 s differs 

from the 55 s used in the laboratory constructed system assays.  The difference in the 

optimal value for these times is possibly due to the use of pressure injection for 10 s 

instead of electrokinetic injection of EDTA for 55 s.  Electrokinetic injections were used 

in the laboratory constructed system, while pressure injections were used with the 

commercial system.  

To quantify the extent of inhibition, the ratio of enzyme activity before and after 

reaction with EDTA was measured over a range of concentrations.  This value is known 

as fractional activity and is calculated as follows27: 

 

fractional activity = (I1 – I0) / (I2 – I0)                (2a) 

 

where I1 is the activity of ALP after interacting with EDTA, I2 is the activity of ALP 

before interacting with EDTA, and I0 is the baseline fluorescence.  A graph of fractional 

activity versus EDTA concentration is shown in Figure 2.5.   

The data from the assays performed on the laboratory constructed system, showed 

that ALP was irreversibly inhibited at EDTA concentrations of 1.0 mM or higher.27  

During the assay, product formation decreased as the zones of enzyme-substrate complex 

and inhibitor mixed.  When the zones separated, the enzyme did not return to its original 

activity, which indicated that the enzyme had been irreversibly inhibited.  The same  
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Figure 2.5. Plot of Fractional Activity versus EDTA concentration. 
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experiment performed with EDTA concentrations of less than 1.0 mM caused activation 

of the enzyme rather than irreversible inhibition.  RSD values for these experiments are 

1.4 and 2.9% for 1.0 and 2.0 mM respectively, and 5.8 and 1.7% for 0.04 and 0.2 mM.  

As the concentration of EDTA increased, the average fractional activity of ALP 

decreased.  The data from the assays performed on the commercial CE system show the 

opposite pattern.  As the concentration of EDTA increased, the average fractional activity 

of ALP also increased.  Concentrations of 0.04, 0.2, and 1 mM EDTA inactivated ALP 

while 2 mM EDTA caused activation. Electropherograms are shown in Figures 2.6 and 

2.7.  The two sets of assays were performed at different temperatures.  The laboratory 

constructed system was held at 40 °C while the commercial system was set at 25 °C.  

This fact could explain some of the differences seen between the two data sets.  It is 

noted that the optimum temperature for ALP is around 38 °C.32  Performing assays at a 

less than optimum temperature could possibly change the way the enzyme interacts with 

the inhibitor or the extent to which it is inhibited.  One other possible explanation for the 

discrepancies is the composition of the solutions.  For the first set of experiments, all of 

the solutions were prepared in ultrapure water (>18 MΩcm, Barnstead E-pure System, 

Dubuque, IA).  Due to a problem with the water system, solutions for the second set of 

experiments were prepared in distilled, deionized water bought from VWR (West 

Chester, PA).  It has been suggested in the literature that solutions could contain 

contaminants, often free metal ions, that would cause a decrease or increase in enzyme 

activity.31  In theory, metal chelators would first remove these contaminants before 

affecting the enzyme itself.  It could be possible that one of these sets of solutions 

contained such ions and this effect is being seen here.  

 

2.3.4 On-Column Enzyme-Inhibition Assays of Alkaline Phosphatase by Various 

        Metal Chelators 

  In order to better understand the mechanism of enzyme inhibition by metal 

chelators, a range of chelators have been studied using CE enzyme-inhibition assays with 

LIF detection.  While EDTA has been thoroughly studied, many of the results found in 

the literature are conflicting,27, 40-42, 44, 48 as were the results in our  
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Figure 2.6. Electropherogram of an enzyme-inhibition assay 
            with 0.04 mM EDTA.  A 10 s zone of EDTA was 
                     injected at 0.5 psi into a capillary filled with 0.10 
                     mM AttoPhos and 50 mM DEA at pH 9.5.  A 3 s 
                     zone of 0.18 nM ALP at 0.5 psi was injected after applying 

a potential of 17.8 kV for 36 s.  The 
applied electric field was 310 V/cm.  The capillary  

                     length to the detector was 50 cm. 
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Figure 2.7. Electropherogram of an enzyme-inhibition assay 
            with 2 mM EDTA.  A 10 s zone of EDTA was injected 
                      at 0.5 psi into a capillary filled with 0.10 mM 
                      AttoPhos and 50 mM DEA at pH 9.5.  A 3 s zone of  
                      0.18 nM ALP at 0.5 psi was injected after applying a 

  potential of 17.8 kV for 36 s.  The applied electric 
                       field was 310 V/cm.  The capillary length to the detector 
    was 50 cm. 
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own studies.  Many of the chelators included have not been extensively studied nor used 

with the CE enzyme-inhibition assay format.   

 One way to evaluate the properties of metal chelators is by looking at the first 

stability constants for metal-ligand complexes.  First stability constants are basically a 

measure of how tightly the metal is bound by a ligand.51  In general, the stability constant 

of a metal complex can be defined as: 

 

K = [ML] / [M] [L]                                  (2b) 

 

where K is the stability constant, [M] is the concentration of metal ion, and [L] is the 

concentration of ligand present.  The concentration of M is dependent on the stability 

constant of the complex and the free concentration of the ligand, which is dependent on 

pK and pH values.  Low stability constants (less than 1) mean that the metal-ligand 

complex readily dissociates.  High stability constants mean that only a small amount, if 

any, of the metal-ligand complex will dissociate into metal ions and ligands.  Based on 

this idea of stability constants, it is hypothesized that the higher the stability constant of 

the ligand-Zn2+ complex, the greater the extent of inhibition in alkaline phosphatase.  

First stability constants for the chelators used in the study are shown in Table 1.51 

The metal chelator [ethylenebis(oxy-ethylenenitrilo)]tetraacetic acid, or EGTA, is 

structurally similar to EDTA and has a first stability constant close to the value of EDTA 

(Table 1).  Very few enzyme inhibition studies have been performed using EGTA; 

however, it was found that chondrocytic ALP was irreversible inhibited by 1.0 mM 

EGTA when incubated for 15 min.44  No studies have reported using EGTA in a CE 

enzyme-inhibition assay.   

Studies were performed on the commercial CE system.  First, a 10 s zone of 

EGTA was injected at 0.5 psi.  A constant potential of 18.6 kV was applied for 36 s.  

Next, a 3.0 s plug of 0.18 nm ALP was injected at 0.5 psi.  A separation potential of 18.6 

kV was reapplied.  Data for these assays were analyzed in the same manner as the EDTA 

data.  An electropherogram can be seen in Figure 2.8.  It was found that EGTA at low 

concentrations inhibited ALP.  A plot of fractional activity versus inhibitor concentration  
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Table 1. First Stability Constants for Various Inhibitors51 

 

 Chelator Zinc Magnesium 

EDTA 16.5 8.7 
EGTA 14.5 5.21 
NTA 10.67 5.46 
1,10-phenanthroline 6.36 1.2 
12-Crown-4 NA NA 
18-Crown-6 NA NA 
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Figure 2.8. Electropherogram of an enzyme-inhibition assay with 2  

  mM EGTA.  A 10 s zone of EGTA was injected at 0.5 psi 
              into a capillary filled with 0.10 mM AttoPhos and 50 mM 
              DEA at pH 9.5.  A 3 s zone of 0.18 nM ALP at 0.5 psi 
              was injected after applying a potential of 17.8 kV for 36 s.  The 

    applied electric field was 310 V/cm.  The 
    capillary length to the detector was 50 cm. 
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can be seen in Figure 2.9.  As the concentration of EGTA increased from 0.08 to 0.3 mM, 

fractional activity decreased.  However, there was a significant increase in fractional 

activity at a 1.0 mM concentration.  As the concentration was increased to 2.0 mM, 

fractional activity decreased again.  One interesting observation is that at the low  
concentrations, EGTA appeared to be a reversible inhibitor.  However at a 2.0 mM 

concentration, the first two trials showed reversible behavior and the last two show 

irreversible behavior.  Irreversible behavior can be seen in Figure 2.10.  Due to the 

similarities in structure and first stability constants between EGTA and EDTA, it would 

be expected that these two chelators would affect ALP in the same manner.  However, 

the results followed no apparent pattern. The difference in inhibition type, irreversible for 

EDTA and reversible for EGTA is interesting. 

The chelator 1,10-phenanthroline had the lowest first stability constant of any 

studied (Table 1).  Studies using this chelator have found that inhibition occurs only at  

relatively high concentrations, with one study quoting that concentrations of up to 1 mM 

had no effect on placental ALP41, while another stated that concentrations of less that 0.5 

mM had no effect on calf intestinal ALP.42  The consensus among the studies is that a 

relatively long incubation period is needed before any inhibition effects are seen.  Once 

again, no studies were found using this chelator with CE enzyme-inhibition assays. 

The assay was performed exactly as described for the previous chelators.  An 

electropherogram is presented in Figure 2.11 and a plot of fractional activity versus 

inhibitor concentration can be seen in Figure 2.9.  Once again, reversible inhibition was 

observed.  As seen in the plot, activity increases sharply from 0.08 to 0.3 mM and 

continues until reaching a concentration of 2.0 mM, where a decrease in activity occurs.    

Nitrilotriacetic acid, or NTA, is another commonly used metal chelator.35  It has 

rarely been used as an enzyme inhibitor and no reports were found using it in conjunction 

with CE enzyme-inhibition assays.  The assay was performed in the exact manner as 

described for EGTA.  An electropherogram is showen in Figure 2.12.  It was once again 

found that this chelator showed a reversible inactivation and greatly inhibited ALP at 

relatively low concentrations.  A plot of fractional activity versus inhibitor concentration 

is presented in Figure 2.13.   
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Figure 2.9. Plot of Fractional Activity versus Inhibitor Concentration 
              for EDTA, EGTA, and 1,10-phenanthroline 
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Figure 2.10. Electropherogram showing irreversible behavior of 2 mM 

  EGTA.  Experimental conditions are the same as in Figure 2.8. 
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Figure 2.11. Electropherogram of an enzyme-inhibition assay with 1 

mM 1,10-phenanthroline. A 10 s zone of  
          1,10-phenanthroline was injected at 0.5 psi into a capillary 
          filled with 0.10 mM AttoPhos and 50 mM 
          DEA at pH 9.5.  A 3 s zone of 0.18 nM ALP at 0.5 psi 
          Was injected after applying a potential of 17.8 kV for 36 s.  The 

applied electric field was 310 V/cm.  The capillary  
 length to the detector was 50 cm. 
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Figure 2.12. Electropherogram of an enzyme-inhibition assay with 0.3  

mM NTA . A 10 s zone of NTA was injected at 0.5 psi 
          into a capillary filled with 0.10 mM AttoPhos and 50 mM 
          DEA at pH 9.5.  A 3 s zone of 0.18 nM ALP at 0.5 psi 
          was injected after applying a potential of 17.8 kV for 36 s.  The 

applied electric field was 310 V/cm.  The capillary  
 length to the detector was 50 cm. 
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Figure 2.13. Plot of Fractional Activity versus Inhibitor Concentration 
for NTA, 12-Crown-4, and 18-Crown-6 
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Fractional activity of ALP was low at a NTA concentration of 0.08 mM.  The fractional 

activity increased at 0.3 mM.  Above 0.3 mM, the activity decreased with increasing 

concentration.  Due to the high stability constant for the metal-ligand complex (Table 1), 

it would be expected that high concentrations of the chelator would inhibit to a greater 

extent than low concentrations.  However, this trend was not observed.   

Crown ethers were studied to determine their effect on ALP.  Crown ethers, while 

complexing with metals, are not considered chelators and have not been previously used 

for inhibition studies.  Crown ethers are macrocyclic compounds that possess electron-

rich interior cavities and can complex with metals of compatible dimensions through 

dipole-dipole or ion-dipole interactions.52  The radius of the cation compared to the 

effective radius of the cavity of the crown ether is the most important consideration in 

metal complexing ability.53  However, there is little experimental data to elucidate the 

exact mechanism and no reliable stability constants have been published.   

Two crown ethers, 12-crown-4 and 18-crown-6 were chosen for these studies.  

Zn2+ has a radius of 0.74 Å.53  The effective radii of crown ethers are hard to estimate, 

but accepted values are 0.72 Å for 12-crown-4 and 1.45 Å for 18-crown-6.53  These 

assays were performed as previously described for the other inhibitors.  A plot of 

fractional activity versus inhibitor concentration for both compounds can be seen in 

Figure 2.13.   

 Both crown ethers showed reversible inhibition behavior.  Data for the assay 

performed using 12-crown-4 showed a decrease in fractional activity from 0.08 to 0.3 

mM.  However, from 0.3 to 2.0 mM activity increased with increasing concentration.  

Compared to all the other inhibitors in the study, 12-crown-4 showed the least extent of 

inhibition overall.  This could be explained by the fact that the radius of Zn2+ is 

approximately the same as the effective radius of the interior cavity of the molecule so 

that complexation may be weak.  An electropherogram is shown in Figure 2.14.   

The data for the 18-crown-6 assays showed that fractional activity increased with 

concentration.  This crown ether seemed to be more effective at inhibiting ALP overall 

than the 12-crown-4, which could be due to the larger effective radius of the cavity.  The 

Zn2+ “fits” the larger cavity better. An electropherogram can be seen in Figure 2.15. 
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Figure 2.14. Electropherogram of an enzyme-inhibition assay with 0.3  

mM 12-Crown-4. A 10 s zone of 12-Crown-4 was injected 
             at 0.5 psi  into a capillary filled With 0.10 mM AttoPhos 
             and 50 mM  DEA at pH 9.5.  A 3 s zone of 0.18 nM ALP at 
             0.5 psi was injected after applying a potential of 17.8 kV for 36 s. 

  The applied electric field was 310 V/cm.  The  
  capillary length to the detector was 50 cm. 
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 Figure 2.15. Electropherogram of an enzyme-inhibition 
assay with 1mM 18-Crown-6. A 10 s zone of 18-Crown-6 was 
injected at 0.5 psi into a capillary filled with 0.10mM AttoPho and 
50 mM DEA at pH 9.5.  A 3 s zone of 0.18 nM ALP at 0.5 psi was 
injected after applying a potential of 17.8 kV for 36 s.  The 
applied electric field was 310 V/cm.  The capillary length to the 
detector was 50 cm. 
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The data for 18-crown-6 followed the same trend as EDTA.  As previously discussed, 

some type of metal contaminants could be present in solution causing an initial decrease 

in enzyme activity.35  Due to the larger cavity radius, 18-crown-6 could potentially 

complex with many metal ions, removing the inhibitor and restoring some of the activity 

of the enzyme.        

The results of the experiments for metal chelators were not consistent between 

EDTA and the other inhibitors studied.  Many references in the literature describe metal 

chelator inhibition as irreversible; however, most of these studies focus on EDTA and 

while other chelators have been used, detailed studies have not been performed.39-42, 44  

Another difference between the studies presented here and those found in the literature is 

the type and time scale of the assays.  Most of the previous studies were performed by 

traditional methods with samples incubated for a fixed time period before measurement.  

In these CE assays, no pre-incubation of the sample occurs.   Ensinger et al.42 reported 

that EDTA inhibition was reversible at pH 8.0 and was independent of concentration.  

However, at pH 9.8, 1 mM EDTA showed irreversible inactivation.  Conyers et al.41 

reported that EDTA inhibition was reversible when assays were performed without pre-

incubation of the samples.  When samples were pre-incubated, EDTA showed a time-

dependent, slow inactivation, which was irreversible.  Both authors hypothesized that the 

results could be due to EDTA binding to the Zn2+, and slowly inducing a conformational 

change in the structure and removing the metal over time.  More recent studies by Zhang 

et al.39 and Chen et al.40 also present the same theory of EDTA inhibition.  Inhibition 

appears reversible on a short time scale and irreversible over a longer time period.  Both 

of these studies suggest a three step mechanism.  The first is a rapid reversible binding of 

EDTA and the enzyme.  The second step is the rate limiting step in which the enzyme 

changes from a strained active site to a more conformationally stable inactive state.  In 

the third step, metal ions are removed from the active site to form an EDTA-Zn2+ 

complex.  The inhibition is then irreversible.  In the studies presented here, no incubation 

of the samples occurred.  Therefore, the time scale for the reactions is very short.  EDTA 

still shows irreversible behavior even with the shorter time scale.  The other chelators  
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presented do show reversible inhibition on the short time scale, and so follow the theory 

discussed above.  Studies with sample incubation should be performed in order to 

determine if these chelators really follow the inhibition pattern laid out in the theory.         
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Chapter 3 

 

Conclusions and Future Work 

 

3.1 Conclusions 
 Alkaline phosphatase inhibition by metal chelators has been studied using 

capillary electrophoresis.  The enzyme-inhibition assays were performed by 

electrophoretically mixing enzyme and inhibitor zones in a substrate filled capillary.  

Enzyme inhibition could be seen as a decrease in product formation as detected using 

LIF.  A range of metal chelators was studied and, using this approach, inhibition could 

easily be identified upon visual inspection of electropherograms and comparison to 

control electropherograms.  

 Basic CE enzyme assays were performed using calf intestinal alkaline 

phosphatase and AttoPhos, a fluorogenic substrate.  These assays were first performed in 

a laboratory constructed CE system12, 27 as a control and then moved to a commercial, 

automated CE system.  RSD values were used as a measure of reproducibility of the 

enzyme assay and thus, system reliability.  The results obtained with both systems had 

RSD values of less than 2%.  Theophylline, a noncompetitive, reversible inhibitor was 

also studied as a control.  Assays were performed on both the laboratory constructed12, 27 

and commercial CE system with RSD values of 4 and 5%, respectively.  Since equivalent 

data was obtained, the automated CE was used for the CE enzyme-inhibition assays.  

Both systems give the same type and quality of data; however, there are several 

advantages to performing the assays on a commercial system.  These systems feature 

user-friendly software systems with data analysis packages, capillary and sample cooling 

features and autosamplers.45-47  Most of these instruments have interchangeable detectors 

and can be coupled to other systems so different detection schemes may be used for the 

best possible sample analysis.  Automated capillary array instruments are also available, 

which can analyze hundreds of samples simultaneously.  These systems will make CE 

enzyme and enzyme-inhibition assays a very valuable tool for the pharmaceutical and 
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biotechnology industries.  The technique that has been reported would be valuable for 

large scale screening of compounds for inhibitory effects in order to discover new drug 

therapies.      

 EDTA was the first metal chelator studied using CE enzyme-inhibition assays.  

When performed on a laboratory constructed system, activation of the enzyme was seen 

at low EDTA concentrations (20 to 400 µM), while irreversible inhibition was observed 

at high EDTA concentrations (1.0 mM or higher).27  When performed on the commercial 

system, the opposite trend was seen.  As the concentration of EDTA was increased, 

fractional activity increased as well.  Activation of the enzyme was observed with 2.0 

mM EDTA.  No other chelator showed activation of the enzyme.   

 EGTA is a metal chelator with similar structure and binding properties to EDTA.  

Both are tetraacetic acids, and they have affinity constants for Zn2+ of 14.5 and 16.5, 

respectively.  However, a common trend in enzyme inhibition was not seen.  EGTA 

inhibition was reversible except for two trials at 2.0 mM, which showed irreversibility.  

At concentrations of 0.08 to 0.3 mM, fractional activity decreased.  There was a 

significant jump in enzyme activity at 1.0 mM EGTA, yet as concentration was increased 

to 2.0 mM activity once again decreased.  NTA is another metal chelator similar to 

EDTA.  It is a triacetic acid (EDTA being a tetraacetic acid) with an affinity constant for 

Zn2+ of 10.45.  NTA inhibition was also reversible.  For NTA, fractional activity 

increased from 0.08 to 0.3 mM.  Above 0.3 mM, the activity decreased with increasing 

concentration.  1,10-phenanthroline is another metal chelator, with properties different 

from those of EDTA.  It has a cyclic structure, unlike EDTA, with an affinity constant of 

only 6.36 for Zn2+.  With the chelator 1,10-phenanthroline, activity increased sharply 

from 0.08 to 0.3 mM and continued until reaching a concentration of 2.0 mM, where 

activity decreased.  Reversible inhibition was seen with 1,10-phenanthroline.   

 Crown ethers, which complex with metals but have but have not been reported in 

the literature as enzyme inhibition, were also studied.  Inhibition for both crown ethers 

was reversible. For 12-crown-4, there was a decrease in fractional activity from 0.08 to 

0.3 mM.  However, from 0.3 to 2.0 mM activity increased with increasing concentration 

of inhibitor.  Compared to all the other inhibitors in the study, 12-crown-4 had the least 
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pronounced inhibition effect.  This could be explained by the fact that the effective radius 

of the inner cavity of 12-crown-4 is comparable to the radius of Zn2+ molecule so it is 

possible that Zn2+ is not being removed effectively from the enzyme due to size 

restraints. Therefore, complexation may be relatively weak.  For 18-crown-6, fractional 

activity increased with concentration, making it the only inhibitor to follow the EDTA 

pattern.  This crown ether seemed to be more effective at inhibiting ALP overall than the 

12-crown-4, which could be due to the larger effective radius of the cavity of 18-crown-6.   

 There was no apparent, overall pattern for inhibition by the metal chelators.  A 

full explanation for the data is not possible at this point.  However, there is a possible 

explanation for the discrepancies between the EDTA data from the laboratory constructed 

system and the commercial system.  The assays in the laboratory constructed system were 

performed at 40 °C.  In the commercial system, the assays were performed at 25 °C.  The 

difference could affect how the enzyme interacts with the inhibitor and the extent of 

inhibition.  There was also a difference in the composition of the solutions.  For the first 

set of experiments, all of the solutions were prepared in ultrapure water.27  The ultrapure 

water was not available for the second set of experiments due to water system equipment 

problems. Therefore, solutions for the second set of experiments were prepared in 

distilled, deionized water.  Solutions could contain a range of contaminants, often free 

metal ions, that would cause a decrease or increase in enzyme activity.35  In theory, metal 

chelators would first remove these contaminants before acting upon the enzyme itself.  

This effect could be occurring here.   

One other interesting discrepancy in the data is that EDTA inhibition appears to 

be irreversible while the other chelators show reversible behavior.  The reversible 

behavior can be explained by the fact that enzyme inhibition by metal chelators could 

occur in three steps, the first being a reversible and fast formation of a complex between 

chelator and ALP.  The second step is a slow change from a strained, active complex to a 

conformationally stable inactive complex.  This is the rate-limiting step.  The final step is 

removal of the Zn2+ from the enzyme, rendering it irreversibly inactive.  This theory has 

been discussed in the literature previously.39, 40 
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 Even though a clear explanation of the data for enzyme inhibition using various 

metal chelators could not be reached, the utility of these enzyme assays has been 

expanded through the use of a commercial, automated CE system.  While conventional 

enzyme assays can be performed in a microtitre plate quickly and in parallel, they are 

limited by the amount of material required.  CE is well suited for enzyme assays because 

only nL size samples are needed.  CE enzyme-inhibition assays also give different 

information about an enzyme-catalyzed reaction as compared to traditional methods.  CE 

allows the activity of the enzyme to be measured before, during, and after interaction 

with the inhibitor.  Also, the type of inhibition or activation may be readily distinguished 

upon visual inspection of the electropherogram.  Other kinetic parameters such as 

component velocities, time of enzyme and inhibitor interaction, and where in the 

capillary the interaction occurs can be determined from electropherograms. 

 

3.2 Future Studies 
 Future studies should include a more in-depth investigation of EDTA inhibition in 

an effort to resolve the conflicting results in this thesis and the work by Whisnant and 

Gilman.27  Microtitre plate studies (traditional enzyme assays) could be performed to 

gather more information about the kinetics of EDTA enzyme inhibition.  Assays should 

be performed on the laboratory constructed and commercial systems holding the 

temperature the same for both to see the effects of temperature on inhibition.  Repeating 

the experiments on the laboratory constructed and commercial CE systems using the 

same water source for making solutions would also determine if contaminants are causing 

the difference in results between systems.  The issue of reversibility should also be 

studied since most of the metal chelators in the study, with the exception of EDTA, 

showed reversible inhibition on the short time scale. Incubation experiments should be 

performed to determine whether or not this changes to irreversible behavior on a longer 

time scale, as suggested by the theory of Zhang et al.39  Optimization of the enzyme-

inhibition assays on the commercial CE system is also needed.  Factors such as capillary 

and sample temperatures, rinsing procedures, and solution composition can be adjusted 

for the best possible analysis.   
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 In order to deduce the mechanism of enzyme inhibition by metal chelators, more 

studies are needed including a wider range of these chelators.  N,N,N’,N’-tetrakis(2-

pyridylmethyl)ethylenediamine (TPEN) and a variety of crown ethers are some 

possibilities.  Since activation was seen for some of the trials presented here, activators of 

alkaline phosphatase should also be studied.  Both reactivation, which occurs through the 

interaction of a known activator with the enzyme after treatment with a metal chelator, 

and activation on its own should be looked at since this could lend new information to the 

mechanism of enzyme inhibition.  Sodium cyanide and cysteine are some possibilities for 

future studies as these have been described as possible activators in the literature.35   
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Appendix 

 

Study of Alkaline Phosphatase Inhibition by CE-LIF Utilizing On-

Column Reagent Addition 

 

Introduction 
 Capillary electrophoresis is a technique well suited to performing enzyme and 

enzyme-inhibition assays due to its relatively simple instrumentation, fast analysis times, 

and the small amount of enzyme required.8, 9  Often, enzyme assays are performed by 

pre-mixing enzyme, substrate, and inhibitor prior to injection into the capillary where 

separation and detection will occur.   When assays are performed in this manner, the 

reaction begins in the sample vessel rather than on-column, where detection occurs.  This 

could result in the loss of valuable information about initial reaction rates.  One way to 

circumvent this problem is to use on-column reagent addition.  On-column reagent 

addition allows a reagent to be injected directly into the capillary without having to pre-

mix the solutions.  The entire reaction then takes place within the capillary.  On-column 

reagent addition could also be used as a screening tool for enzyme inhibitors.  A mixture 

of inhibitors can be injected into the capillary and separated prior to reaction with an 

enzyme, which is added on-column.  An electropherogram would show an inhibition 

peak for each inhibitor present.    

 On-column reagent addition has played a major role in the development of CE as 

a versatile separation technique.54  The first use of on-column reagent addition was 

postcolumn derivitization for fluorescence detection.55  The technique has now been used 

with chemiluminescence, electrochemical, and bioaffinity detection as well as for enzyme 

assays and electroosmotic flow monitoring.54  Several designs exist for on-column 

reagent addition with CE.54  A coaxial reactor is one of the most common designs and 

consists of a separation capillary that is inserted into a reaction capillary.  The reagent is 

introduced into the reaction capillary by pressure or applied potential.  Free solution 
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reactors are buffer reservoirs at the detection end of the capillary where the reaction and 

detection both take place.  Sheath flow cuvettes were initially designed to prevent scatter 

in fluorescence detection but have also been used for the purpose of on-column reagent 

addition.   

 A gap reactor is another design for on-column reagent addition and was used in 

the experiments described here.  A gap reactor is a simple and effective design for on-

column reagent addition.54, 56, 57  Reagents are added through a small gap between two 

capillaries.  This gap is typically between 3 to 100 µm.  Reagents are typically introduced 

through the gap by diffusion or differential flow.  Flow in the reaction capillary is 

generated by either an applied potential or pressure difference in the gap reservoir and the 

end of the capillary.  Separated components migrate across the gap from the separation 

capillary into the reaction capillary.  A typical gap reactor can be seen in Figure A.1.   

 The performance of gap reactors is strongly dependent upon the alignment of the 

two capillaries and the distance between them.  Gap reactors have generally been created 

by cleaving a single capillary that has been secured to a surface.54  This requires manual 

cutting under a microscope, which can make controlling the size of the gap difficult.   For 

the experiments described here, laser ablation was used to create the gap reactors, which 

allowed more control over the gap size and simplified the process.  No manual cutting 

was required.   

 Enzyme and enzyme inhibition assays were performed using a gap reactor for on-

column reagent addition.  Several reversible inhibitors of alkaline phosphatase were 

studied. Inhibitor solutions can be pre-mixed and separated prior to development of the 

assay.  This technique could be used as a tool to screen mixtures for enzyme inhibitors.   

 

Experimental 
Reagents 

 AttoPhos ([2,2’-bibenzothiazol]-6-hydroxy-benzathiazole phosphate) was 

purchased from Promega (Madison, WI).  Calf intestinal alkaline phosphatase (EC 

3.1.3.1) was supplied by ICN Biomedicals (Aurora, OH).  DEA (diethanolamine), 

sodium vanadate, and Theophylline (99%) were obtained from Acros (Pittsburgh, PA).   
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Figure A.1. Photograph of a 12.9 µm gap created using laser ablation.   
 The gap was created using 400 pulses at 15 Hz and 13.5 mJ/pulse.  
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All solutions were prepared in ultrapure water (>18 MΩcm, Barnstead E-pure System, 

Dubuque, IA). 

 

Laser Ablation Instrumentation and Experimental Conditions 

 A 50 µm i.d. / 200 µm o.d. fused silica capillary supplied by SGE (Austin, TX) 

was glued to a microscope slide using 5 Minute Epoxy (ITWDevcon; Danvers, MA).  A 

mount was used that was designed to position the capillary at a reproducible distance 

(~950 µm) from the microscope slide.  The microscope slide was then positioned on a 

translation stage from Newport (Irvine, CA).  A plano convex lens with a focal length of 

100 mm (Edmund; Barrington, NJ) was used to focus the beam from a laser pointer (λ = 

650 nm; Quarton Inc; His-Chih, Taipei Hsien, Taiwan) onto the capillary.  The laser 

pointer was mounted on a translation stage in order to be moved in the same direction as 

the laser beam.  The second harmonic of a Nd:YAG laser (λ = 523 nm; Continuum; Santa 

Clara, CA) was focused onto the capillary using a fused silica cylindrical lens (Melles 

Griot; Carlsbad, CA) for ablation.  The set up can be seen in Figure A.2.  After 

construction of the gap, a reagent reservoir was formed by gluing a polyethylene vial lid 

with 5 Minute Epoxy.  A reagent hole was added using a hot metal wire to melt the 

polyethylene.  A schematic of a gap reactor may be seen in Figure A.3.  The gaps were 

then examined using a video trinocular head zoom microscope (Edmund), and the image 

collected using a CCD camera (Panasonic).  The image was captured using VIDCAP 32 

software (Microsoft) and analyzed using Scion software (Scion Corp.; Fredrick, MD). 

 

CE-LIF Instrumentation and Experimental Conditions 

 The CE-LIF instrument was constructed in house.  The 457.9 nm line of an argon 

ion laser (Melles Griot; Carlsbad, CA) was focused onto the capillary using a fused-silica 

plano convex lens (Optosigma; Santa Ana, CA).  The laser power at the capillary was 35 

mW.  Fluorescence was collected at 90° to the laser beam by a 20 X microscope 

objective (Edmund; Barrington, NJ) and was filtered by both a 560 ± 10 nm bandpass  
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Figure A.2. Setup of the Nd:YAG pulsed laser ablation system. 
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Figure A.3. Schematic of a gap reactor 
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filter (Oriel; Stratford, CT) and 1 mm diameter aperature (Oriel).  Fluorescence was 

detected using a PMT (Hamamatsu; Bridgewater, NJ) at 750 V.  The PMT output was  

filtered using a low-pass filter at 50 Hz, then sent to an analog-to-digital board (National 

Instruments; Austin, TX).  A LABVIEW program (National Instruments) was used for 

data acquisition and Excel (Microsoft) and Peakfit (SPSS Inc.; Chicago, IL) were used 

for data analysis.  Fused silica capillaries with a 50 µm i.d. and 220 µm o.d. were used, 

from which the polyimide coating was removed using a low flame.   

 The running buffer consisted of 50 mM DEA at pH 9.5 and 0.10 mM AttoPhos, a 

fluorogenic alkaline phosphatase substrate.  The enzyme solution contained 0.18 nM 

alkaline phosphatase and 50 mM DEA buffer at pH 9.5.  Running buffer and enzyme 

solution were prepared fresh daily.  The inhibitor solutions contained 50 mM DEA 

buffer, 0.10 mM AttoPhos and inhibitor at selected concentrations.  The applied electric 

field for all separations was 310 V/cm.  Injections were performed electrokinetically at 

17.5 kV.   

 

UV Instrumentation 

 A Beckman Coulter P/ACE™ MDQ Capillary Electrophoresis System (Fullerton, 

CA) was used in this study.  The instrument was equipped with a UV detector module 

and all measurements were made at 214 nm.  Fused silica capillary with an i.d. of 52 µm 

and o.d. of 366 µm was used.      

 

Results and Discussion 
 Enzyme and enzyme inhibition assays were performed using a gap reactor for on-

column reagent addition.  On-column reagent addition allows enzyme assays to be 

performed without pre-mixing enzyme, inhibitor, and substrate.  When these solutions are 

pre-mixed, the reaction begins in the sample chamber rather than the column where 

detection occurs.  Important kinetic details, such as initial reaction rates, may be missed.  

On-column reagent addition may also be used to facilitate separation of inhibitor 

mixtures.  Inhibitors may be pre-mixed and injected onto the column where the 

components are separated.  The enzyme is added on-column where the assay develops.  
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Each inhibitor would have a representative inhibition peak on the electropherogram.  

Several clinically important reversible inhibitors of alkaline phosphatase were studied.  

Theophylline is a reversible, noncompetitive inhibitor that has been used as a 

bronchodilator, respiratory stimulant, and anti-inflammatory drug.12  Sodium vanadate  is 

a reversible, competitive inhibitor that has been used for treatment of diabetes.27   

The basic enzyme assay was performed first.  This assay serves as a control for 

assurance that the gap reactor itself is not interfering with the kinetics of the reaction.  

The assay was performed by first filling the gap reservoir with running buffer.  This 

essentially creates a system much like a regular CE assay (described in Chapter 2) since 

no additional reagents are being added.  A 3.0 s plug of ALP was injected, followed by an 

applied separation potential.  An electropherogram can be seen in Figure A.4.  There is 

one noticeable difference in the electropherogram from this system and the one from the 

regular CE enzyme assay without on-column reagent addition.  The plateau in Figure A.4 

has a noticeable dip, which appears like an inhibition dip.  This system was not 

thermostated and the dip is due to changes in the temperatures of various regions of the 

capillary, which change the reaction rate as the enzyme moves down the column.  An 

enzyme-inhibition assay was also performed in this manner for another control.  A 4.0 s 

plug of 100 µM theophylline was injected followed by application of a constant potential 

for 25 s.  Then, a 3.0 s plug of ALP was injected and the constant potential reapplied.   

The inhibition can be seen upon visual inspection of the electropherogram as a well-

defined dip in the plateau (Figure A.5).  The shape of the plateau remains the same as that 

for the regular assay so it was determined that the gap reactor does not affect the kinetics 

of the reaction. 

 The on-column enzyme-inhibition assay was performed by first filling the 

gap reservoir (~1 mL) with 0.18 nM ALP.  A 4.0 s zone of 100 µM theophylline was 

injected.  The potential was reapplied. When the potential was first applied, ALP from 

the reservoir diffused in from the gap as a steady stream and mixed with running buffer, 

which contained the fluorogenic substrate.  This caused a rise in the fluorescence level of 

the background.  When the potential was turned off in order to inject the theophylline,  
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Figure A.4. A control electropherogram of ALP.  The gap 

reservoir contained 50 mM DEA and 0.10 mM AttoPhos at 
pH 9.5.  A 3 s zone of 0.18 nM ALP was injected at 17.5 kV.    
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Figure A.5. A control electropherogram of ALP inhibition with 

theophylline. The gap reservoir contained 50 mM DEA and 0.10 
mM AttoPhos at pH 9.5.  A 4 s zone of 100 µM theophylline was 
injected at 17.5 kV.  A 3 s zone of 0.18 nM ALP injected at 17.5 
kV followed. 
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ALP from the reservoir interacted with the substrate at zero potential, and a plug 

of product was formed.  When the potential was reapplied, this small product plug 

moved down the capillary, along with the inhibition peak, to the detector.  The potential 

could also be left off for a set time period (1 to 3 min) to allow product to buildup inside 

the capillary.  An electropherogram with theophylline inhibition can be seen in Figure 

A.6.  When the potential was first applied, a steady stream of ALP reacted with the 

substrate to form product and caused a rise in the background fluorescence (point A in 

Figure A.6).  When the potential was turned off for the theophylline injection, ALP 

reacted with substrate at zero potential, and a small plug of product was formed (point B).  

The potential was then reapplied for 25 s in order for the theophylline zone to interact 

with the ALP.  The potential was then turned off for a set time period to allow zero field 

incubation.  ALP from the reservoir once again bled in and formed another small product 

plug (point C).  The potential was then reapplied and the components were swept to the 

detector.  The inhibition peak can be seen as a negative dip in the high fluorescence 

background (point D).  The same assay was also performed using 75 µM sodium 

vanadate and can be seen in Figure A.7.   

 One reason on-column reagent addition is desired for CE is to improve the ability 

to separate mixtures.  For enzyme-inhibition assays, mixtures of compounds could be 

separated and screened for inhibitory effects using this technique.  Therefore, an assay 

was performed using a mixture of 75 µM sodium vanadate and 100 µM theophylline.  

However, no separation occurred.  If the electropherograms for each of the compounds 

are compared, it can be seen that each inhibitor dip is in the same place on the 

electropherogram.  The mobilities of the inhibitors must be the same. In order to change 

the mobility of one of the inhibitors, the pH conditions of the assay were changed.  UV 

data was collected on a commercial CE system.  Mesityl oxide was used a neutral 

marker.  The pH was originally 9.5, which is the reported optimum for alkaline 

phosphatase activity.  The mesityl oxide peak can be seen at around 300 s.  The 

theophylline and sodium vanadate peaks come off after the neutral marker indicating that 

both are negatively charged.  The assays were repeated using buffer at pHs ranging from 
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Figure A.6. Electropherogram of ALP inhibition by theophylline using 
on-column reagent addition.  Gap reservoir contained 0.18 nM 

   ALP.  A 4 s zone of theophylline was injected at 17.5 kV.  (A) 
   High level of background fluorescence (B) Small product plug 
   (C) Small product plug (D) Inhibition peak 
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Figure A.7. Electropherogram of ALP inhibition with sodium vanadate. 
          Gap reservoir contained 0.18 nM ALP.  A 4 s zone of sodium 
          vanadate was injected at 17.5 kV.   
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8.0 to 9.0.  However, separation never occurred at any pH.  Buffers with a pH less than 

8.0 were not considered in order to maintain a high level of enzyme activity (optimum pH 

9.5).      

 

Conclusions and Future Work 
Conclusions 

     On-column reagent addition was used successfully in conjunction with enzyme-

inhibition assays.  Theophylline, a reversible, noncompetitive ALP inhibitor, and sodium 

vanadate, a reversible, competitive ALP inhibitor, were both shown to cause inhibition of 

ALP.  It would be desirable to use CE with on-column reagent addition to separate 

mixtures of compounds and screen for inhibitory effects in order to design drug therapies.  

A mixture of theophylline and sodium vanadate was used for demonstration, however 

separation of the two was never observed.  To change the mobility of one of the 

compounds, various pH buffers were used with the assay and UV data collected.  

Separation was never achieved at any pH from 8.0 to 9.0. 

   

Future Work 

 Separation of inhibitors is desired for this study, therefore optimization of 

separation conditions should continue.  Thermostatting of the current system should also 

be performed in order to avoid temperature fluctuations in regions of the capillary which 

affect the reaction rate and can show up as negative peaks in the electropherogram.  A 

temperature controlled assay could also be studied.  The sample could be pre-mixed at a 

low temperature in order to slow down the kinetics and prevent the reaction from 

occurring until it is injected onto the column, where the solution temperature increases 

and the reaction occurs.  This is one way to prevent the reaction from happening until in 

the column, which is essentially what on-column reagent addition accomplishes.  A 

microchip format is one other possible way to study enzyme assays using this idea.  

Different channels of the chip would contain the separate components (enzyme, inhibitor, 

and substrate) until small plugs of each were mixed in a separate channel.                
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