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ABSTRACT 

In recent years, crown fires have raged through mixed-conifer forests in the American 

Southwest that historically experienced frequent, low-severity wildfires. Land management 

agencies now wish to restore wildfires to their historical range of variability, but this requires 

information on fire regimes before Euro-American disturbance took place. We characterized the 

historical fire regime of a high elevation, mixed-conifer forest in the Magdalena Mountains, 

New Mexico. This research evaluated the different climate drivers, represented by the Palmer 

Drought Severity Index (PDSI), the El Niño-Southern Oscillation (ENSO), the Pacific Decadal 

Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO), that influence the 

occurrence of wildfire. To characterize the fire regime we developed fire frequency statistics 

and evaluated the seasonality of wildfire events across the period of 1630 to 1890. To test short-

term (interannual) variations in climate and their influence on wildfire occurrence we relied on 

Superposed Epoch Analysis (SEA). To test the relationship between wildfire events and long-

term climate oscillations (decadal to multidecadal), we used Bivariate Event Analysis (BEA). 

BEA was used to test whether fire events and climate events operate synchronously, 

asynchronously, or independently of each other. We found that fire frequency ranged from 7 to 

8 years from 1630 to 1890, and fires primarily occurred in the early portion of the growing 

season (late spring to early summer). Fires ceased after 1890 with only two recorded fire events 

in 1906 and 1953. Based on SEA of PDSI, ENSO, and PDO, conditions 2 to 3 years before a fire 

event were wetter than average, while in the year prior to, and in the year of a fire event, 

conditions were drier than average. BEA revealed an asynchronous relationship with extreme 
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wildfire years and El Niño events, while all other relationships between wildfire events and 

positive and negative phases of ENSO, PDO, and AMO were independent. We conclude that 

interannual climate variability is the main driver of the frequent, low-severity wildfire regime in 

the mixed-conifer forests of the Magdalena Mountains, while long-term (multidecadal) climate 

trends do not appear to influence the occurrence of wildfires.  
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CHAPTER ONE  

INTRODUCTION AND QUESTIONS 

In the American Southwest, wildfires are considered a natural part of ponderosa pine 

(Pinus ponderosa Douglas ex C. Lawson) forests, initiating low density, uneven-aged forest 

stands (Madany and West 1983; Covington and Moore 1994). For much of the 20th century, 

however, wildfires were considered destructive and unnatural events, which led to fires being 

purposely excluded from the landscape by forest managers. Evidence indicates that this 

decrease in wildfires caused fuels to accumulate, thus leading to higher severity and more 

spatially-extensive fire events (Cooper 1960; Covington and Moore 1994; Grissino-Mayer et al. 

2004). Research has since challenged this idea by reconstructing past fire regimes and 

confirming that wildfires were frequent prior to Euro-American settlement (Swetnam 1983; 

Swetnam 1990; Grissino-Mayer et al. 1994; Grissino-Mayer 1995). Land managers now aim to 

reintroduce frequent, low-severity wildfires into ponderosa pine forests, returning fire to its 

historical range of variability. To understand the natural fire regime, research is needed on both 

the historical frequency of wildfire and the driving mechanisms of wildfire occurrence.   

The American Southwest is an ideal region to study past fire regimes and the influence 

climate has on wildfires. In ponderosa pine forests, low-severity fires were common prior to 

Euro-American settlement (Swetnam 1983; Baisan and Swetnam 1990; Swetnam 1990; Touchan 

and Swetnam 1995). These frequent, low-severity fires mainly reduced surface fuels while 

rarely killing mature trees. Euro-American settlement initially decreased the frequency of 

wildfires through the introduction of livestock grazing that removed fuel biomass, and through 
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active fire suppression (Grissino-Mayer et al. 1994; Touchan et al. 1995; Grissino-Mayer et al. 

2004). Fire suppression efforts began in the 1930s by land management agencies. This fire 

exclusion promoted seedling establishment, causing an increase in stand densities, and 

increased the depth of the needle and brush layer. Exclusion also lowered canopy base heights 

causing an overall increase in crown fire potential in current Southwestern forests (Brown 2010). 

Understanding the influence climate has on wildfire occurrence is necessary when 

evaluating the presettlement fire regime and for better understanding the likelihood of future 

fires. Precipitation changes the landscape characteristics by increasing the amount of vegetative 

growth, thus increasing the amount of fuel available for a fire to burn and spread (Brown 2010). 

The most important climate pattern conducive for wildfires in the American Southwest is a wet 

year(s) followed by a dry year(s) (Westerling and Swetnam 2003; Grissino-Mayer et al. 2004). 

This wet/dry-lagging pattern allows fuel to accumulate in a wet year(s), and then desiccate in a 

subsequent dry year, allowing combustion to occur at a lower temperature which allows for 

easy ignition and spread (Grissino-Mayer and Swetnam 2000; Westerling and Swetnam 2003; 

Brown 2006). Knowledge on these climate patterns or wet/dry-lagging sequences allows for fire 

frequency to be more easily modeled and managed for wildfire risk assessment.  

Seasonal precipitation in the American Southwest is characterized by an arid late spring 

and foresummer, with monsoonal rains occurring in early July and August (Swetnam and 

Betancourt 2010). During the arid foresummer, fuels are dry. Convective storms common to the 

monsoon season generate lightning, causing the potential for the maximum area burned to 

occur in June (Westerling et al. 2006; Swetnam and Betancourt 2010). Later in summer, moisture 
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levels increase from monsoonal rainfall, resulting in a decrease in the potential for area burned. 

This annual variability of climate in the Southwest is linked to shifts in upper air westerlies and 

short-term climate oscillations, such as those causing drought, influencing the occurrence and 

severity of wildfire (Westerling et al. 2006; Swetnam and Betancourt 2010). An important short-

term oscillation in the American Southwest is the El Niño-Southern Oscillation (ENSO), with a 

positive (El Niño) phase associated with wetter conditions and reduced wildfire activity, and a 

negative (La Niña) phase associated with a drier climate and increased wildfire activity.  

Research on fire regimes and the associated climate drivers is important for predicting 

when and where fuel management would be most effective to reduce the risk of large fire. 

Baisan and Swetnam (1990) conducted fire-climate research in the mixed-conifer forests of the 

Rincon Mountains in Southern Arizona.  Based on their research they found that the forests 

were dominated by early season surface fires with a mean fire interval of 9.9 years from 1748 to 

1886. Two years prior to these frequent surface fire events, the mean July precipitation was 

higher than average, increasing the production of fine fuels. During subsequent dry years, fire 

was more likely to occur. Grissino-Mayer et al. (2004) reported similar fire-climate interactions 

in the southern San Juan Mountains of Colorado. Fires were frequent prior to 1880 with a fire 

interval of 6 to 10 years. They found a relationship between climate and fire not only at the 

annual scale, but also at the interannual to multidecadal scale, driven by interactions between 

precipitation, ENSO, and the Pacific Decadal Oscillation (PDO). They hypothesized that cold 

ocean waters off the western coast of North America (negative PDO) decreased temperatures in 
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the Southwest and thus reduced fire occurrence. ENSO also influences wildfire occurrence by 

altering monsoonal rainfall at the interannual scale.  

Traditionally, research has put an emphasis on the short-term climatic effects on fire 

occurrence, while more recent studies have focused on analyzing the effects of longer-term 

climatic mechanisms on wildfires (Westerling and Swetnam 2003; Grissino-Mayer et al. 2004; 

Kitzberger et al. 2007; Schoennagel et al. 2007; Stahle et al. 2009; Rother and Grissino-Mayer 2014). 

To better understand fire occurrence, the influence of both interannual and multidecadal 

climate variability on wildfires needs to be evaluated. Our study is a site-specific reconstruction 

of fire history that will provide data needed to test the relationship between wildfire and 

longer-term climate oscillations. Data derived from our reconstructions can advance our 

knowledge of climate-fire interactions at multiple temporal and spatial scales including the 

local scale (Magdalena Mountains), the regional scale (New Mexico), and the broad scale 

(Southwest), and can be incorporated in land management efforts by the USDA Forest Service. 

The Magdalena Mountains have seen little human activity and have been overlooked in 

fire reconstruction research, possibly for their small size, but the mountain range has high 

potential for research in climate-fire interactions. No accounts of logging have been recorded in 

the Magdalena Mountains, leaving forests in good conditions to study wildfire (Basham 2011). 

Mining was the main human disturbance beginning around 1866–1867 (Basham 2011), but 

mining only affected the western slopes of the mountain range at lower elevations where 

piñyon-juniper forests dominate.  In 1963, the Water Canyon Road was constructed, extending 

from the northern portion of the mountains up to South Baldy, the highest peak in the 
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Magdalena Mountains (Westpfahl et al. 2000). Active fire suppression officially began in the 

mountain range in the 1930s.  

 

1.1 Research Questions 

The purpose of this research is to reconstruct the history of wildfires in the Magdalena 

Mountains and investigate both short-term and long-term climate mechanisms that may have 

contributed to fire activity in the past. A detailed fire history can provide vital information and 

baseline data on the frequency of wildfires prior to human interaction for researchers and 

wildlife officials. Evaluating the relationship between fire and climate is essential to understand 

why fires occurred when they did and the mechanisms that cause fires to be low-severity or 

high-severity. The following three questions were addressed in this thesis:   

 What is the historic wildfire regime for high elevation, mixed conifer forests in 

the Magdalena Mountains?  

 What is the relationship between wildfire occurrence and short-term (annual to 

interannual) climate patterns? 

 Is there a relationship between historic wildfire activity and long-term 

(multidecadal) climate oscillations?  
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CHAPTER TWO 

 LITERATURE REVIEW 

2.1 Fire History in the American Southwest 

Fire is an important part of ponderosa pine (Pinus ponderosa Douglas ex C. Lawson) 

forests of the American Southwest, where low-severity fires contribute to low tree density and 

uneven-aged forest stands (Madany and West 1983; Covington and Moore 1994). Research in 

the Southwest has shown that fire is a natural disturbance and occurred frequently prior to 1900. 

Examples of fire-free intervals in the Southwest include 6.1 years in the Rincon Mountains of 

south-central Arizona (Baisan and Swetnam 1990), 4.2 years in the Pinaleño Mountains in 

Arizona (Grissino-Mayer et al. 1994), and 4 to 8 years in the Gila Wilderness in New Mexico 

(Swetnam 1983). Periodic and low-severity fires reduce the fuel loadings on the forest floor and 

raise the general canopy level, reducing the potential for high severity crown fires (Covington 

and Moore 1994; Touchan et al. 1995). However, Euro-American settlement after about 1880 has 

led to fewer fire events (Swetnam 1983; Grissino-Mayer et al. 2004; Huffman et al. 2008), 

changing the structure of ponderosa pine forests in the American Southwest.  

 The main Native American tribe in west-central New Mexico was the Apaches, who 

controlled the Magdalena-Datil region from the seventeenth century until they were subjugated 

by U.S. troops in the Apache Wars in the late nineteenth century (Opler 1983; Seklecki et al. 

1996). The presence of Native Americans specifically in the Magdalena Mountains is not well 

documented; however, the Apaches were present in the area and possibly used the Magdalena 

Mountains either as a settlement or a pass through and a hiding ground (Opler 1983). 
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Understanding Native American presence in a mountain range is important because they 

historically used fire as a means of hunting, agriculture, and warfare (Cooper 1960; Swetnam 

1983; Touchan et al. 1995; Swetnam and Baisan 2003).   

 Euro-American settlement caused a decrease in fire activity for several reasons. Roads 

and trails were built, breaking up fuel continuity, causing a decrease in the ability of fire to 

spread across the landscape (Covington and Moore 1994; Touchan et al. 1995). The removal of 

Native Americans from the area caused their landscape burning practices to cease (Swetnam 

1983; Swetnam and Baisan 2003). Livestock was introduced early to the landscape with Euro-

American colonization. Livestock impacted the landscape through grazing which removed fine 

fuels from the forest floor (Touchan et al. 1995). The most important influence on fire activity, 

however, was the introduction of fire suppression practices. A principal assignment of early 

foresters was to exclude fire from the landscape at all costs (Cooper 1960). Fires were seen as 

destructive to vegetation, and with increasing human populations, fires destroyed homes and 

even turned deadly. Anthropogenic influences on the landscape led to an increase in younger 

and smaller trees that were able to grow and survive in the absence of fire. Cooper (1960) 

observed that the presettlement (before 1880) ponderosa pine forests in the Southwest had a tree 

density of about 40% because of the numerous fires that swept through the forests. After 1880, 

tree density in montane regions increased, causing present-day stands to be susceptible to 

crown fires, experience low tree vigor, and be more prone to mortality from drought, insects, 

and diseases (Covington and Moore 1994). Ponderosa pine forests now have higher tree 

densities because of increased growth of shade intolerant species and an increase in the overall 
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brush-needle layer on the surface, all of which increase the risk of crown fires (Covington and 

Moore 1994; Ireland et al. 2012).  

 Many different hypotheses have been offered to explain why fire occurrence decreased 

in the late 19th century. Two of these hypotheses are a change to less favorable climate 

conditions, or the pyroclimatic hypothesis (Biondi et al. 2011), and changes in land use due to 

the arrival of Euro-Americans that resulted in a cessation of frequent fires. Fulé et al. (2012) 

evaluated the pyroclimatic hypothesis by testing the change in fire frequency between two 

different sites, one in Southern Arizona, and the other in Northern Mexico. This research 

compared fire history from Mesa de las Guacamayas in northwestern Chihuahua with fire 

history data from the Chiricahua Mountains in southeastern Arizona (Seklecki et al. 1996). Both 

areas have similar fire histories and are located in similar high-elevational forests. These sites 

were further chosen to test the pyroclimatic hypothesis based on their differing land use 

histories, yet comparable climate regimes. Fulé et al. (2012) found that Mesa de las Guacamayas 

had no Euro-American interference and retained fire-climate links through the 1900s. The 

Chiricahua Mountains in Arizona, however, experienced significant effects from Euro-

American settlement, overriding important climate driven wildfires. Fulé et al. (2012) 

determined that human-caused livestock grazing, logging, and fire suppression drastically 

altered the surface fire regimes beginning in the late 19th century, thus rejecting the 

pyroclimatic hypothesis put forth by Biondi et al. (2011).  

Swetnam and Baisan (2003) summarized fire history research in the Mogollon 

Mountains in New Mexico and in the Santa Catalina Mountains in Arizona, specifically 
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focusing on fire effects of human occupation in the late 19th and early 20th centuries. They were 

able to show that a high association existed between the introduction of livestock, land use 

changes, and fire suppression on the landscape with the decrease in fire occurrence. Permanent 

roads, irrigation for livestock, and livestock grazing were initial causes of the fire disruption. 

Herbivory by sheep and cattle removed fine fuels necessary for fire spread, while the building 

of roads broke up fuel continuity. This disruption began between 1870 and 1900, but fire 

suppression efforts were not adopted by the federal government until the early 1900s (Cooper 

1960; Covington and Moore 1994). Infrequent, high-intensity fires are now more common 

(Cooper 1960; Baisan and Swetnam 1990; Touchan et al. 1995; Grissino-Mayer and Swetnam 

1997; Swetnam and Baisan 2003).  

Huffman et al. (2008) analyzed the fire history of piñyon-juniper and ponderosa pine 

ecotones in the Tusayan Ranger District of the Kaibab National Forest in Arizona, and in the 

Canjilon Ranger District on the Carson National Forest in New Mexico. The goal of their 

research was to evaluate the fire regimes of piñyon-juniper ecosystems at ecotonal boundaries 

with ponderosa pine forests in the Southwest. More specifically they wanted to determine 

whether historical fires at these ecotones were mainly infrequent and stand replacing, or if fires 

were frequent and nonlethal. They found that fire scars were more abundant than expected in 

the ponderosa pine dominated forest, compared to the piñyon-juniper dominated ecosystem. 

Fire-scar analysis revealed that surface fires were frequent in the ponderosa pine dominated 

forests with a Weibull Median Interval (WMI) of 7.2–7.4 years in Tusayan and a WMI of 11.1 

years in Canjilon. No scars were found at lower elevations or within the piñyon-juniper 
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dominated areas, suggesting that historical fires did not spread from ponderosa pine stands 

into the piñyon-juniper woodlands. Further fire history analysis showed that at both of these 

sites there was no significant temporal change in the fire regime between pre-and post-

settlement periods, although the post-settlement fires were likely the result of human activity.  

Heinlein et al. (2005) reconstructed the historical and contemporary fire regime for 

ponderosa pine-mixed conifer forests in the San Francisco Peaks in northern Arizona. Using 

fire-scar analysis, they evaluated the fire regime, how fire patterns have changed since fire 

exclusion, and how the current forest composition compares with the pre-fire exclusion forest 

structure. Two sites were chosen, one with a north-east aspect, and the other with a south-west 

aspect. The sites were further chosen on the basis that the forests have increased in shade-

tolerant and fire-intolerant tree species in the absence of recent, twentieth century fires. They 

found that this increase in shade-tolerant species has amplified the risk of high severity crown 

fires that are considered atypical for mixed-conifer forests. The pre- 1900s mean fire interval for 

both sites ranged from 5.2 to 5.4 years (east side and west side of the study site, respectively). 

The seasonal distribution of past wildfires showed that fires generally occurred in the summer 

months, with some fires occurring in the late spring, which corresponds to the dry period of the 

season. Their results showed a disruption in the fire regime beginning in the late 1800s, and 

they concluded that the cessation of frequent, low-severity fires can be attributed to the 

initiation of livestock grazing in the area, resulting in a disruption in the fuel continuity.  
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2.2 Climate of the American Southwest 

The American Southwest is characterized by low annual rainfall, clear skies, and a warm 

climate (Swetnam and Betancourt 1990). The precipitation is a bimodal with most precipitation 

occurring in the summer months from thunderstorms associated with the North American 

Summer Monsoon (Andrade and Sellers 1988; Swetnam 1990; Sheppard et al. 2002). The climate 

system of the American Southwest is considered complex owing to variable topography, 

proximity to the Pacific Ocean, and location between the mid-latitude and subtropical 

atmospheric circulation regimes. Precipitation is strongly influenced by mountains that cause 

dry conditions on leeward slopes and wet conditions on windward slopes. However, in general, 

montane regions are wetter and valleys tend to be warmer and drier (D’Arrigo and Jacoby 1991; 

Sheppard et al. 2002). The Southwest is also strongly influenced by shifts in sea surface 

temperatures in the tropical and extratropical Pacific Ocean. These shifts result in changes in 

moisture transport into the Southwest and occur at interannual (El Niño-Southern Oscillation) 

and interdecadal time scales (Pacific Decadal Oscillation).  

 

2.2.1 El Niño-Southern Oscillation  

 The El Niño-Southern Oscillation (ENSO) has two phases: a positive (warm) phase 

called El Niño, and a negative (cold) phase termed La Niña. ENSO oscillates between these 

phases at a periodicity of 2–10 years (Ropelewski and Halpert 1987). This oscillation occurs 

primarily in the eastern tropical Pacific Ocean with the strongest changes along the western 

coast of South America. The primary change that occurs during ENSO is a fluctuation in sea-
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level pressure, which influences sea surface temperatures (SST), tradewinds, and the 

development of storms (Rasmusson and Wallace 1983). A way to quantify the development and 

intensity of ENSO events is to calculate the Southern Oscillation Index (SOI), which is the 

difference between pressure at Tahiti in the eastern Pacific and Darwin, Australia in the western 

Pacific (Rasmusson and Wallace 1983; Ropelewski and Halpert 1987; Ropelewski and Jones 

1987).  

An El Niño event is associated with warmer than average water that forms across the 

eastern and central tropical Pacific, and lower than average sea-level pressure in the eastern 

Pacific (Rasmussen and Wallace 1983; Sheppard et al. 2002). Warm waters cause the tradewinds 

to weaken, resulting in stronger subtropical westerlies. The stronger westerly winds associated 

with an El Niño phase bring tropical storms into the Southwest, resulting in more moisture 

(Swetnam and Betancourt 2010). The midlatitude storm track over North America also shifts, 

moving southward, and sometimes splits into two branches (Swetnam and Betancourt 2010). As 

a result of these perturbations, a “tropospheric wavetrain” moves out from the equator to 

regions of higher latitudes, affecting the subtropical jet and associated moisture transport 

(Sheppard et al. 2002).  Storms that travel in the lower branch may pick up moisture from the 

lower latitudes of the eastern Pacific resulting in wet winters in the American Southwest, 

causing an increase in plant growth (Rasmussen and Wallace 1983; D’Arrigo and Jacoby 1991; 

Sheppard et al. 2002).  

La Niña has the opposite effect, with a decrease in SSTs and no shifting of the active 

center of atmospheric convection from the western equatorial Pacific (Andrade and Sellers 1988; 
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Sheppard et al. 2002). During La Niña events, the tradewinds strengthen and colder than 

average ocean waters extend into the eastern tropical Pacific. This climate anomaly hinders 

rainfall and results in warmer and drier winter conditions in the Southwest (Gutzler et al. 2002; 

Sheppard et al. 2002). Drought in the Southwest predominately occurs during La Niña phases, 

with stronger events (colder SSTs) associated with more extreme drought years.  

 

2.2.2 Pacific Decadal Oscillation 

 The Pacific Decadal Oscillation (PDO) is an extratropical (northern Pacific) variation in 

SSTs with a periodicity of 20–40 years. A positive (warm) phase PDO occurs when SSTs tend to 

be cool in the central Pacific with anomalously warm SSTs along the west coast of North 

America (Mantua and Hare 2002; Sheppard et al. 2002). From November to March, sea-level 

pressure (SLP) is low along the west coast of North America, enhancing counterclockwise 

winds (Mantua and Hare 2002). A positive phase brings winds and moisture from the Pacific to 

the American Southwest and coincides with wet periods, with the strongest atmospheric 

episodes of PDO corresponding with unusually low sea-level pressure. A cool phase PDO 

occurs when SSTs are warm in the central Pacific and cool along the west coast of North 

America (Mantua and Hare 2002; MacDonald and Case 2005). During a cool phase, November 

to March SLP is high in the North Pacific, creating clockwise winds and drier than average 

conditions in the American Southwest (MacDonald and Case 2005).  

 MacDonald and Case (2005) studied the variability of the Pacific Decadal Oscillation and 

its influence on climate in western North America using tree rings from limber pine (Pinus 
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flexilis E. James) in California and Alberta. The goal of their research was to create a 

reconstruction of PDO and assess the long-term variability in the strength and periodicity of 

PDO. They found that from about AD 900–1300, a strong negative PDO state was persistent, 

corresponding to a period of dry conditions in the southwestern United States. For roughly the 

past 200 years PDO has had a persistent periodicity of about 20 to 40 years, oscillating between 

a negative to a positive phase. More recently, a positive PDO regime was dominant between 

1977 and 1997 and is currently moving to a negative phase. MacDonald and Case (2005) showed 

that PDO variability over large time scales is uncertain and that testing for the persistence or 

dominance of a particular phase of PDO is a concern in predicting future climate variability in 

the Southwest. PDO variability has not been stable, and could cause concern when trying to 

predict when a certain phase would dominate. In western North America positive phases of 

PDO are similar to El Niño events, causing increased moisture in the Southwest. The same is 

true for negative PDO and La Niña events, which result in drier than average conditions. 

Knowing when certain phases of PDO will be dominant can provide insight into when drought 

might occur in the Southwest. MacDonald and Case (2005) argue for caution to be taken when 

evaluating the multidecadal behavior of PDO in the 21st century.  

 

2.2.3 Atlantic Multidecadal Oscillation  

 The Atlantic Multidecadal Oscillation (AMO) is a low-frequency change in SST that 

occurs in the Atlantic Ocean from 0–70 °N. AMO switches from a warm to cool phase at 50–80 

year periods (Gray et al. 2004; Schoennagel et al. 2007). Atlantic SSTs may affect atmospheric 
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forcing by altering evaporation, precipitation, and ocean-atmospheric heat exchanges (Gray et al. 

2004). McCabe et al. (2004) showed that different periods of drought in the American Southwest 

can be identified with different periods of sea surface temperature anomalies in the North 

Atlantic basin. Warm phases, or warm Atlantic sea surface temperatures, occurred during 1860–

1880 and 1930–1960, while cool phases occurred during 1905–1925 and 1970–1990. Two of the 

most severe droughts of the 20th century occurred during positive values of the AMO between 

1930 and 1960: the Dust Bowl of the 1930s and the 1950s drought. The drought in the 1950s was 

also associated with a negative PDO phase, greatly impacting the Southwest, while the 1930s 

drought was associated with a positive PDO phase, sparring most of the Southwest. Since 1995 

AMO has been positive and has mirrored the positive phase of 1930 to 1960, creating concerns 

for the possibility of severe drought.  

 

2.3.4 ENSO, PDO, and AMO Interactions  

 The three climate oscillations (ENSO, PDO, and AMO) often interact, with one phase 

intensifying effects of another during times of synchrony. The longer-term PDO intensifies 

ENSO conditions when the positive and negative phases of the two coincide (McCabe et al. 

2004). The intensity of the PDO also likely depends on phases of ENSO, with a growing ENSO 

influencing PDO the following winter/spring (Newman et al. 2003; Westerling and Swetnam 

2003). An El Niño phase (warm SSTs in the eastern tropical Pacific) and a positive PDO phase 

(with warm SSTs along the west coast of North America) are associated with wet winters over 

New Mexico in both instrumental data and reconstructed data (Enfield et al. 2001; Stahle et al. 
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2009).  The opposite association exists for dry conditions in New Mexico (La Niña and a 

negative PDO) (Gutzler et al. 2002; Stahle et al. 2009). When a La Niña phase and a negative 

PDO are in synchrony and persist for long durations, the American Southwest experiences a 

strong decrease in soil moisture and water availability (Morehouse et al. 2006; Kitzberger et al. 

2007).  

 Multidecadal drought in the Southwest can be attributed to synchrony or asynchrony 

with PDO and AMO. McCabe et al. (2004) examined the relationships between AMO, PDO, and 

drought frequency in the United States. Approximately half of the spatial and temporal 

variance on multidecadal drought frequency can be explained by PDO and AMO. They were 

able to show that drought is more frequent in the American Southwest during a negative PDO 

phase and a positive AMO phase. Long-term variability in climate can be dominated by a single 

mode of sea surface temperature variability, and can further be strengthened when certain 

phases of PDO and AMO are in synchrony. Research from western Colorado (Schoennagel et al. 

2007) showed similar results, that drought conditions are more extreme during periods of 

combined positive AMO, negative PDO, and negative ENSO, leading to higher severity and 

extent of wildfires.  

 

2.3 Climate-Fire Interactions  

Research that investigates climate-fire relationships is important for evaluating how 

climate affected fire regimes in the past and how climate might impact fire in the future. The 

synchronous nature of climate phases and their associated influence on fire frequency also 

needs to be studied further in the Southwest. With increasing temperatures and associated 
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changes in precipitation patterns, climate-fire research becomes even more important for land 

management agencies in the coming years (Brown 2006; Margolis and Balmat 2009; Ireland et al. 

2012). Climate is the greatest influence on wildfire activity, and wildfires are expected to 

increase in the western U.S. in response to the projected increase in droughts in the 21st century 

(Brown 2006; Westerling et al. 2006). Climate influences the moisture content of soil and 

vegetation which in turn influences wildfire activity. Evidence of regional and broad scale 

synchrony or asynchrony between climate and wildfire is needed in the American Southwest to 

properly address the projected change in drought. This can be accomplished by investigating 

the interacting relationships between ENSO, PDO, and AMO and their influences on wildfire 

occurrence.  

In the Southwest, research has shown that large fire years are significantly drier on an 

annual to interannual scale, whereas smaller fires, on average, occur in wetter years (Swetnam 

1990). Precipitation two years prior to a fire is generally greater, particularly during the spring 

and early summer months, with wet years promoting fuel production on the forest floor (Baisan 

and Swetnam 1990; Grissino-Mayer and Swetnam 2000; Grissino-Mayer et al. 2004). More fuel 

build-up on the landscape in wet years leads to larger fires in drought years, because the 

vegetation that grew in the wet years creates fuel to burn in a later fire (Swetnam and 

Betancourt 1990). Conditions usually one year prior to and during the fire year are on average 

drier. Drought conditions during the fire year, dries the vegetation creating optimum conditions 

for fire ignition (Brown 2006).  For large-scale fires, drought several years before a fire is usually 

more severe because fuel accumulates in the few years of wet conditions prior to the fire 
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(Swetnam 1990; Collins et al. 2006). Frequent, low-severity fires on the landscape consume fuel 

on the forest floor that would accumulate in the absence of fire (Swetnam 1990). Low-severity, 

frequent fires keep fuel accumulation at a minimum.  

 El Niño-Southern Oscillation (ENSO) events can be positively associated with increased 

growth in trees and other moisture-sensitive plants (Ropelewski and Halpert 1986; Swetnam 

and Betancourt 1990). During an El Niño phase, southwestern forests often experience increased 

growth because of the associated increase in precipitation. La Niña causes a decrease in 

precipitation, drying out vegetation and resulting in fuel conditions conducive for fire 

occurrence and spread. The wet-dry events often coincide with specific El Niño-La Niña 

(ENSO) events that affect seasonal rainfall patterns through oceanic-atmospheric 

teleconnections (Sheppard et al. 2002; Swetnam and Baisan 2003; Swetnam and Betancourt 2010). 

La Niña events are associated with large fires in the Southwest, while El Niño events are 

associated with years of low fire frequency in the Southwest (Swetnam 1990; Swetnam and 

Betancourt 1998).  Kitzberger et al. (2007) found that in northwestern New Mexico, the 

production of fine fuels that carry forest fires (such as grass, needles, and low-lying shrubs) is 

increased in the wet years preceding a fire, which is often associated with an El Niño phase. Fire 

is more likely to occur in the Southwest when these warm (El Niño) phases are followed by La 

Niña events and the associated drought conditions.   

When different climate phases are in synchrony associated changes in precipitation and 

storm tracks influence fire occurrence. A warm-phase PDO can reduce fire occurrence because 

of associated higher temperatures in the northeastern Pacific. Higher temperatures in the 
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northeastern Pacific increase convectional uplift causing storms that can travel to the Southwest, 

increasing precipitation and vegetation moisture and decreasing fire occurrence (Sheppard et al. 

2002; Stahle et al. 2009). When both PDO and ENSO are in a cool phase, a delay in summer 

monsoon rainfall occurs, causing fire occurrence to increase in the latter part of the growing 

season (McCabe et al. 2004; Collins et al. 2006, Kitzberger et al. 2007). A delay in the summer 

monsoon can lower moisture content of fuel especially during the summer months, and 

increases the likelihood of fire ignition and spread.  

Margolis and Balmat (2009) reconstructed the fire history for the ponderosa pine 

dominated forests in the Santa Fe Municipal Watershed, New Mexico. The purpose of their 

research was to reconstruct the fire history and evaluate the fire-climate relationships in the 

Santa Fe River Watershed to provide data to guide forest management. They found the WMI 

from 1550 to 1880 to be 3.8 years (all fires) and 8 years (10% scarred). The wet/dry-lagging 

pattern commonly observed in the Southwest was present in this ponderosa pine dominated 

forest. Increases in moisture were observed 2 to 3 years prior to a fire event and were associated 

with El Niño events. Decreases in moisture, or drought conditions, occurred during the fire year 

and were associated with La Niña events. This relationship results in an increase in fine fuels 

during wet years which carry fire and burn in subsequent dry years. They also tested the 

influence PDO might have on wildfire, but they did not find a relationship. Since Euro-

American settlement in the late 1800s, forest structure and composition changed resulting in an 

increase in fire intolerant and shade tolerant species, such as white fir (Abies concolor (Gord. & 

Glend.) Lindl. ex Hildebr.) and quaking aspen (Populus tremuloides Michx.). Historically, 
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frequent fires were responsible for white fir and quaking aspen mortality, however, because of 

fire exclusion these trees survived to occupy a dominate canopy position. This growth in fire-

intolerant species increases the possibility for fires to reach the canopy, thus causing crown fires. 

Margolis and Balmat (2009) suggested that restoring or treating fuels in the Santa Fe Municipal 

Watershed would reduce the risk of crown fires in the area.  

Ireland et al. (2012) investigated the influence of top-down and bottom-up controls on 

historical wildfire activity at Mount Dellenbaugh in northwestern Arizona. If fire dates were 

synchronous across the study area then this would indicate possible top-down controls, such as 

climate regulating fire activity and spread. If fire dates were asynchronous then this would 

suggest that bottom-up controls, such as discontinuous fuels or ignition sources, were the more 

important influence on the historical fire regime. Ireland et al. (2012) found that bottom-up 

controls such as fuel productivity and continuity influence fire at finer spatial scales, while top-

down drivers of wildfires, such as climate, synchronize fire across broad regions. Climate 

oscillations such as ENSO, PDO, and AMO influence wildfire synchrony at larger spatial scales 

by effecting regional moisture and temperature patterns. They found that in the ponderosa pine 

forest, dry conditions occurred in the year of the fire and wet conditions occurred in the years 

preceding the fire. Flatley et al. (2011) determined that during dry years fires burned 

irrespective of the topographic setting, while in wetter years fires were restricted to the most 

xeric settings, emphasizing the conclusions from Ireland et al. (2012) in which bottom-up 

controls strongly influenced fire occurrence at fine spatial scales.  
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Collins et al. (2006) evaluated the influence of AMO and PDO phases on interannual 

relationships between climate and wildfire-burned area in the Interior West to improve the 

ability to predict burned area for a particular fire season. Both ENSO and PDO have been 

shown to influence moisture availability by altering precipitation and temperature patterns, and 

thus influence fuel moisture and quantity. AMO has been shown to modulate the strength of 

ENSO and PDO-related precipitation. They found that short term fuel accumulation is critical in 

leading to an increase in wildfire extent, which is driven by changes in PDSI. The strength of 

PDSI is somewhat reliant on AMO, ENSO, and PDO phases, affecting the moisture availability 

and burned area across the Interior West. They were further able to show that a warm-phase 

AMO corresponds to periods in which moisture availability is strongly tied to burned area.  

Kitzberger et al. (2007) analyzed wildfire chronologies from 238 sites across western 

North America and independent reconstructions of sea surface temperatures, to examine the 

relationship of multicentury patterns of climate and fire synchrony. Through the use of rotated 

principal component analysis, they were able to show that widespread synchronous wildfires 

are most likely driven by longer-term climate mechanisms such as ENSO, PDO, and AMO. 

They further determined that since ca. 1550, wildfires across the West were most commonly 

synchronous during positive phases of AMO. The severity of drought-induced wildfires was 

the strongest during positive AMO events, combined with negative PDO and La Niña phases. 

These relationships suggest that different modes of sea surface temperatures result in changes 

in atmospheric processes in the American Southwest. The relationship between continental 

scale drought and sea surface temperatures can help explain the interannual to multidecadal 
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variability in wildfire occurrence. Kitzberger et al. (2007) concluded that a positive phase AMO 

would bring future long-term drought throughout the Southwest, which could result in 

increased widespread, synchronous wildfires.  
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CHAPTER THREE 

 Climate Drivers of Wildfire Activity in the Magdalena Mountains of  

New Mexico, U.S.A. 

 

This chapter is intended for publication in the journal Forest Ecology and Management. 

The research topic was originally developed by me and my advisor and second author, Dr. 

Henri Grissino-Mayer. The use of “we” throughout the text refers to me and Dr. Grissino-Mayer, 

who assisted with project development, site selection, field collection, and text editing. My 

contributions to this chapter include field collection, processing and dating of samples, data 

analysis, interpretation and graphic displays of results, and writing the manuscript.  

 

3.1 Introduction 

The American Southwest is an area strongly influenced by oceanic-atmospheric 

processes of the subtropics and the central Pacific (Kitzberger et al. 2007). Changes in sea surface 

temperatures of the Pacific Ocean across multiple time scales influence the variability of 

moisture in the troposphere, resulting in a near global shift in precipitation patterns (Sheppard 

et al. 2002). These changes occur at high-frequency interannual time scales, such as the El Niño-

Southern Oscillation (ENSO), and at low-frequency multidecadal time scales, such as the Pacific 

Decadal Oscillation (PDO). The Southwest is also influenced by changes in sea surface 

temperatures in the Atlantic Ocean, such as the Atlantic Multidecadal Oscillation (AMO). The 

ENSO has a period of variation of approximately 2–10 years (Rasmussen and Wallace 1983; 

Cook et al. 2008), the PDO has a 20–40 year periodicity (Mantua and Hare 2002; D’Arrigo and 

Wilson 2006), and the AMO has a periodicity of 50–80 years (Gray et al. 2004). ENSO has two 

phases, a negative phase termed La Niña, which is associated with drought in the Southwest, 

and a positive phase called El Niño, which is associated with wetter conditions in the Southwest. 
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PDO has positive and negative phases as well and influences Southwestern climate in much the 

same way as ENSO (Sheppard et al. 2002; McCabe et al. 2004; D’Arrigo and Wilson 2006; 

Kitzberger et al. 2007). AMO has a positive phase, associated with warm waters in the North 

Atlantic Ocean causing drought conditions in the Southwest, and a negative phase with cool 

ocean waters in the Atlantic and associated wet conditions in the Southwest (McCabe et al. 2004; 

Kitzberger et al. 2007).  

Extensive research on relationships between high-frequency climate patterns and fire 

activity has been conducted in the American Southwest (Dieterich and Swetnam 1984; Baisan 

and Swetnam 1990; Swetnam 1990; Grissino-Mayer et al. 1994; Grissino-Mayer et al. 2004). For 

example, wetter than average conditions correspond with El Niño phases, while drier 

conditions occur during La Niña years (Andrade and Sellers 1988; D’Arrigo and Jacoby 1991; 

Westerling and Swetnam 2003). These ENSO driven changes in climate can help explain the 

annual to interannual variability in wildfire occurrence in ponderosa pine forests of the 

Southwest. Above average antecedent moisture is important for wildfires because it increases 

fine fuels necessary for surface fires to ignite and spread. Drought in the year before a fire event 

and in the year of the fire event desiccates fuels for burning. Research in the Southwest has 

found this relationship when evaluating historic wildfire regimes prior to Euro-American 

settlement. However, this wet/dry-lagging pattern is no longer the predominate mode in 

driving wildfires because of human-caused alterations to the environment. Since this disruption 

of frequent fires, fuels have built up on the landscape. When a strong wet/dry pattern does 

occur, wildfire risk is even greater because of the increase in fine fuels, generating concern for 
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the occurrence of widespread and possibly more intense crown fires (Westerling and Swetnam 

2003; Brown 2006).  

The long-term climate variability of the American Southwest can influence the 

occurrence and severity of wildfires, with some years more prone to fire than others due to the 

variability in ocean-atmosphere oscillations, in particular certain phase combinations of positive 

and negative ENSO, PDO, and AMO cycles (Kitzberger et al. 2007). Our research investigated 

the short-term influences of variations in climate using Superposed Epoch Analysis (SEA) 

(Baisan and Swetnam 1990; Grissino-Mayer 1995; Touchan and Swetnam 1995), and the possible 

influence of longer term, low-frequency fluctuations in climate using Bivariate Event Analysis 

(BEA) (Gavin 2010). The relationships between wildfire, the Palmer Drought Severity Index 

(PDSI), ENSO, PDO, and AMO will be evaluated using SEA and BEA, methods used to test the 

relationship between fire occurrence and a certain climate variable. We used these analyses to 

test how the contingent state of sea surface temperatures in both the Pacific and the Atlantic 

Oceans may influence drought-induced wildfire in the American Southwest.   

Fire scars embedded within tree rings can be absolutely dated to exact calendar years, 

and used to determine the historical range of wildfire activity (Swetnam 1983; Dieterich and 

Swetnam 1984; Swetnam 1990). Using these dates, researchers can calculate several measures of 

central tendency (such as the mean fire interval and the Weibull Median Interval) that provide 

important measures of fire activity (Grissino-Mayer et al. 1994). Such metrics on fire regimes are 

necessary for management of ecosystems because they show how fire once operated across the 

landscape before human alterations occurred. Once the history of fire activity has been 
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developed, it can be compared with reconstructed climate data (such as precipitation, drought, 

and sea surface temperatures) to provide further information about how fire fluctuated on 

interannual to interdecadal time scales in possible response to changing climate. Knowledge on 

these relationships could be important for fire management because it can provide insights into 

whether a year may be more prone to wildfire occurrence.  

Our research was conducted in the Magdalena Mountains of the Cibola National Forest 

in west-central New Mexico.  The mountain range is fairly untouched by human activity, with 

no recorded logging, making it a good site to study the historic fire regime. The population of 

the threatened Mexican spotted owl (Strix occidentalis lucida Xantus de Vesey) amplifies the need 

for research on the historical range of wildfire activity. This species of owl greatly relies on the 

ponderosa pine ecosystem, which is at risk of crown fires because of fuel build up from fire 

exclusion practices (Ganey et al. 1999).  

The purpose of our research is to investigate climate-wildfire interactions for a site in the 

American Southwest over a broad range of temporal scales.  In this study, we addressed the 

three research questions. (1) What is the historic wildfire regime for high elevation, mixed 

conifer forests in the Magdalena Mountains, in particular the frequency and the variability in 

the seasonality of wildfires? (2) What is the relationship between wildfire occurrence and short-

term (annual to interannual) climate patterns? (3) Does a relationship exist between historic 

wildfire activity and long-term (multidecadal) climate oscillations, such as the El Niño-Southern 

Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation?  
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3.2 Study Site 

The Magdalena Mountains are located in west-central New Mexico in the Cibola 

National Forest. The mountains run north-south for approximately 28 km and represent the 

third highest range in southern New Mexico (Basham 2011), with the highest point being South 

Baldy at 3300 m (all elevations are reported as meters above sea level). The mountain range 

provides important recreational activities, such as hiking, camping, and bird watching, but also 

supports an important ecological habitat for the Mexican spotted owl, a threatened species 

(Ganey et al. 1999). The owls inhabit primarily the upper elevational regions, above 2400 m, 

living in cavities excavated in dead standing trees (“snags”). The Magdalena Ranger District 

monitors and tracks the movements of the owl population, designating particular areas as 

Protected Activity Centers.  

Annual temperature ranges from an average monthly low of 4 °C in January to an 

average monthly high of 20 °C in August and annual precipitation averages 320 mm with most 

of the precipitation occurring in July and August (NCDC 2014). This summer precipitation 

generally occurs as intense thunderstorms, which is a part of the summer monsoon and often 

accounts for over half of the annual moisture. An increase in late summer rainfall from the 

monsoon decreases wildfire activity, while moderate temperatures characterize the fall season 

with drying vegetation from October through November (Basham 2011).  

Vegetation of the Magdalena Mountains transitions with increasing elevations from 

interior chaparral at the lowest elevations, to piñyon-juniper woodland, montane mixed conifer 

forest, subalpine conifer forest, and subalpine grassland at the highest elevations (Elmore 1976). 
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The mountains represent the northeastern limit of interior chaparral of New Mexico and are 

unique in having both interior chaparral and subalpine conifer forest on the same mountain 

range (Elmore 1976; Basham 2011). The piñyon-juniper belt begins at approximately 1980 m and 

consists of one-seed juniper (Juniperus monosperma (Engelm.) Sarg.), Rocky Mountain juniper 

(Juniperus scopulorum Sarg.), alligator juniper (Juniperus deppeana Steud.), and Colorado piñyon 

(Pinus edulis Engelm.) (Elmore 1976). Between 1980 and 2400 m the forest grades into 

predominantly ponderosa pine, mountain mahogany (Cercocarpus montanus Raf.), and Gambel 

oak (Quercus gambelii Nutt.). Higher elevations of the mountains above 2400 m support a mixed-

conifer overstory that consists of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), white fir 

(Abies concolor (Gord. & Glend.) Lindl.), southwestern white pine (Pinus strobiformis Engelm.), 

and ponderosa pine (Pinus ponderosa Douglas ex C. Lawson).  

Ponderosa pine forests are capable of supporting a diverse understory of grasses and 

shrubs (Allen et al. 2002). The understory vegetation is important because it contributes to the 

ignition, severity, and extent of wildfires. The primary understory species consist of sagebrush 

(Artemisia tridentata Nutt.), New Mexican locust (Robinia neomexicana A. Gray), and shrub forms 

of Gambel oak and mountain mahogany. The mesic, northeast-facing slope has a larger amount 

of shrubs than the drier, south-facing slope. Both slopes, however, had a thick needle layer, 

increasing the risk for fire ignition and spread.  

The Apaches occupied the Magdalena-Datil region until they were subjugated by U.S. 

troops in 1886. They often used fire as a means of hunting, agriculture, and warfare (Opler 1983; 

Seklecki et al. 1996). Euro-Americans came to the mountain range around 1866 to 1867 and 
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began mining on the western side of the range, continuing until the 1930s (Basham 2011). Water 

Canyon Road was constructed in 1963 extending from the lowest elevations on the north side of 

the mountains up to South Baldy Peak (Westpfhal et al. 2000). The current main research focus 

of the mountains is tracking and observing lightning storms as well as studying astronomy. The 

Langmuir Research Site located on South Baldy Peak was founded in 1963, and was built and is 

currently operated by the New Mexico Institute of Mining and Technology (Westpfhal et al. 

2000; Klinglesmith III. et al.  2004).  

 

3.3 Methods 

3.3.1 Field Methods 

Within the mixed-conifer forest (2500 to 3000 m elevation), we chose a site along a 

prominent ridge for sampling (Figure 3.1), and divided this large site into three smaller plots 

based on aspect and elevation. Plot 1 was along the northeast-facing side of the slope, Plot 2 was 

along the south-facing slope, and Plot 3 had the same aspect as Plot 2, but was lower in 

elevation. We chose these plots because they were located just outside of Protected Activity 

Centers for the Mexican spotted owl, were dominated by two conifer species (ponderosa pine 

and southwestern white pine, both known to be excellent recorders of fire events), and had 

relatively steep slopes, a site characteristic known to facilitate scarring of pines by fire. We first 

located stumps, logs, snags, remnant, and living trees with visible fire scars and differentiated 

these scars from other wounds (such as those caused by a lightning strike) to ensure they were 

caused by fire. When a tree is scarred from fire, it will leave a characteristic wound called a  
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Figure 3.1: (A) Google Earth photo of site showing where the samples 

were obtained (outlined in red), (b) location of the site within the 

Magdalena Mountains, and (c) location of the Magdalena Mountains 

within New Mexico.  

A. 

B. 

C. 
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“catface,” that occurs when repeated fires kill the active cambium layer and the tree 

subsequently grows over the wound (Figure 3.2a).  Once a fire-scarred tree was found, we 

flagged the tree with tape (Figure 3.2b), recorded its coordinates with a GPS, took photographs 

of the tree and the surrounding environment, and recorded notes describing the sample and the 

surrounding landscape. Only southwestern white pine and ponderosa pine were sampled, 

because they scar readily and are resistant to decay. Such a targeted sampling approach has 

been statistically validated and ensures that the fire record is both long and complete (Van 

Horne and Fulé 2006), compared to other sampling methods based on random sampling or 

grid-point sampling.  

We collected 69 cross sections from the three plots using a chain saw from the flagged 

fire-scarred pine logs, stumps, snags, remnants, and living trees. To sample a living tree, a non-

lethal method of fire-scar extraction was used, where only a small section was taken from the 

tree (Figure 3.3a). When sampling dead trees, logs, and stumps, we took either a partial or a 

whole cross section. (Figure 3.3b) We then labeled the samples with the appropriate site name 

and sample number, marked each fire scar (Figure 3.4), and then carefully wrapped the sample 

in plastic wrap for transport back to the Laboratory of Tree-Ring Science.  

3.3.2 Laboratory Methods 

 In the laboratory, we mounted each sample on ply-board with wood glue for 

stabilization and used a band saw to remove uneven chainsaw cuts. In certain cases, multiple 

cuts were taken with the bandsaw because some scars may show up better on different portions  
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 Figure 3.2:  (A) Close up of a fire-scarred tree with multiple scars. 

(B) Example of a fire-scarred snag that has been flagged for 

sampling.  

A. 

B. 
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 Figure 3.3: (A) A partial cross section taken from a living tree. (B) Use of a 

chain saw to extract a cross section from a short snag.  

A. 

B. 



34 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Example of a partial cross section with the site name and number 

added and each fire scar labeled with an arrow.  
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of the wood sample. We then surfaced each fire-scarred sample with progressively smaller grit 

sandpaper, using a belt sander and starting with ANSI 40 grit, then moving through 80, 100, 150, 

220, and 320 grit, and then finished with 400 grit (Orvis and Grissino-Mayer 2002). When 

necessary, samples were hand-sanded with 1200 grit until the wood cells were clearly visible 

under 10x magnification.  

 For each fire-scarred sample, we drew a line through the clearest rings extending from 

the pith to the outer portion of the wood.  We then measured each ring to the nearest 0.001 mm 

using a Velmex measuring system coupled with Measure J2X software. For samples taken from 

living trees, the outer ring (last ring) formed in 2013 and these were crossdated against the 

master southwestern white pine chronology developed by Grissino-Mayer et al. (1997).  We 

used COFECHA to confirm that we assigned correct calendar years to all tree rings (Holmes 

1983; Grissino-Mayer 2001). COFECHA is a computer program widely used to aid in the 

crossdating process and relies on segmented times series analysis. The program calculates 

numerous correlation coefficients to determine if ring-width patterns match between the sample 

and the chronology. Segments with correlation values that fall below a pre-designated critical 

threshold (r = 0.37, p > 0.01) are flagged as problematic and must be re-examined. Once dating 

was confirmed, we combined the measurements with those used to create the master 

chronology.  

For samples taken from dead trees, we measured the series beginning with year “1” 

(innermost complete ring) from the pith out to the outer portion of the wood. We then 

crossdated the “floating” series with the master chronology to find a systematic dating 
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adjustment. For undated “floating” series, COFECHA will suggest a shift that will place the 

series in its appropriate place in time. When shifts for all tested segments were statistical 

significant (r > 0.37, p < 0.01), the sample was considered appropriately placed in time. Using 

both visual and statistical crossdating, we then assigned the exact calendar year to each ring. 

We next analyzed the fire scars under a microscope, and all visible fire scars and injuries were 

dated (Figure 3.5). Rings with a large resin pocket, or rings that showed increased resin ducts, 

were noted because some trees will show indirect evidence of fires other than having a fire scar. 

Death dates were also carefully analyzed because synchronous outer ring dates could suggest 

mortality from a fire event.  

Recorder years were determined based on the structure and the condition of the outer 

surface of the fire-scarred sample. Recorder years provide an accurate representation of fire 

occurrence by not including years where fire information is possibly missing (Grissino-Mayer 

1995). A tree becomes a recorder of fire only after the first fire scar and if the fire-edge was not 

burned out from subsequent fires. If a sample was burned causing later fire events to be missing, 

these years were considered to be non-recording years and were not used for further statistical 

analysis. The designation of non-recorder years and recorder years is important for determining 

the sample size in any given year. For example, non-recorder years are not included in the 

sample size for fire frequency analysis because no information on fire is available from tree 

rings in those years (Grissino-Mayer 1995). 

The position of each scar tip within an individual tree ring was carefully noted for 

analysis of seasonality (Table 3.1). Evaluating the seasonality of a fire is important for studying  
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possible changes of the season when past fire occurred. Fire scars within the early portion of the 

earlywood occur after the tree breaks dormancy until about late May. Scars positioned in the 

middle of the earlywood generally indicate fires occurred between late May and early July, 

while late earlywood scars suggest fires that generally occurred from late July to August (Baisan 

and Swetnam 1990; Grissino-Mayer 1995). Fire scars located directly in the latewood suggest 

fires that occurred in the latter part of the growing season, usually in late August to October, 

near when the tree stops growing. Fires that occurred in the dormant season are considered to 

represent spring fires in the Southwest (Baisan and Swetnam 1990). In certain cases, a fire scar 

season could not be determined because the tree rings were too heavily decayed or distorted to 

identify the exact placement of the scar tip. 

Figure 3.5: Close up of a fire-scarred sample with the years 

labeled in which each fire occurred (1684, 1707, and 1736).  
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Table 3.1: Characteristics used to determine the seasonality of each fire scar within the tree 

ring. 

 
Season Identifying Characteristics 
Dormant season fire (D) Scar tip occurs between the latewood of the 

previous ring and the earlywood of the 

subsequent ring1. 
Early season fire (E) Scar tip occurs in the first one-third portion 

of the earlywood. 
Middle season fire (M) Scar tip occurs in the middle one-third 

portion of the earlywood. 
Late season fire (L) Scar tip occurs in the last one-third portion 

of the earlywood. 
End of growing season fire (A) Scar tip occurs in the latewood. 

Unknown fire event (U) Fire scar is present, but distortion or decay 

prevents seasonal assignment. 
1
Dormant scars may have formed either in early spring or late summer/fall. Because the exact 

seasonality of these scars cannot be determined, we followed convention and assumed that these 
scars formed as the result of a spring fire (Swetnam and Baisan 1990; Grissino-Mayer et al. 2004). 
 

3.3.3 Analytical Methods 

3.3.3.1 Climate Variables   

Four climate indices were compared with fire occurrence: PDSI, ENSO, PDO, and AMO. 

PDSI is a measure of the duration and intensity of drought, based on precipitation and 

temperature. It uses a 0 value to indicate normal conditions, while drought is depicted with 

negative numbers ranging from –1 to –6 and wet spells range from 1 to 6 (Palmer 1965; Cook et 

al. 2004). ENSO is a tropical fluctuation in sea surface temperature and pressure in the Pacific 

Ocean and has a period of variation of approximately 2–10 years (Rasmussen and Wallace 1983; 

Cook et al. 2008). A positive phase of ENSO is referred to as El Niño, and occurs when sea 

surface temperatures rise in the eastern equatorial Pacific. El Niño is associated with increased 
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moisture in the Southwest. A negative phase of ENSO is referred to as La Niña, and occurs 

when sea surface temperatures drop in the eastern equatorial Pacific. La Niña years result in 

drier than average conditions in the Southwest (Sheppard et al. 2002). PDO has a 20–40 year 

periodicity and has two phases, a positive and negative phase, corresponding to either warmer 

than average sea surface temperatures along the west coast of North American (positive), or 

cooler than average sea surface temperatures (negative) (Mantua and Hare 2002; D’Arrigo and 

Wilson 2006). The effects of PDO on climate in the Southwest resemble those of ENSO but are 

less intense and longer lived (MacDonald and Case 2005).  

AMO has a periodicity of 50–80 years and is calculated using a 10-year moving average. 

To avoid autocorrelation that results from using a moving average, we used sea surface 

temperature anomaly (SSTA) data on which the AMO is based (Kaplan 1998). AMO has a 

positive and negative phase as well, corresponding to either warmer or cooler than average 

Atlantic Ocean temperatures, respectively (Gray et al. 2004). Warmer than average Atlantic sea 

surface temperatures result in drought conditions in the Southwest, while cooler sea surface 

temperatures are associated with increased moisture (McCabe et al. 2004; Kitzberger et al. 2007). 

AMO has been shown to modulate the strength of ENSO and PDO-related precipitation 

(Enfield et al. 2001; Collins et al. 2006). This modulation effect warrants an exploration of how 

the phases of AMO affect other climate-fire relationships.  
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3.3.3.2 Fire History 

After the tree rings on all samples were dated and each fire scar and wound was 

assigned both a calendar year and a season, the data were entered into FHX2 (Grissino-Mayer 

2001). All records were also kept in Excel including: (1) sample identification, (2) species, (3) 

geographic coordinates, (4) inner and outer year, (5) number of fire scars, and (6) the dates and 

season of each fire year. We used FHX2 to analyze fire seasonality and fire frequency, and 

created a fire-history chart in the program FHAES (Fire History Analysis and Exploration 

System) that depicts the master fire chronology for the three sites. These charts allow for visual 

examination of past wildfire occurrence (Grissino-Mayer 2001; Fulé et al. 2003).  

Fire frequency was characterized using both the Mean Fire Interval (MFI) and the 

Weibull Median Interval (WMI). Each statistic is used to determine central tendency in the 

statistical distribution of fire interval data and assist in evaluating past fire regimes. The MFI 

(average number of years between fires), standard deviation, and the variance were determined 

for the period from 1630 to 1890. The WMI was also calculated because it is unresponsive to 

outliers and often is a better representation of central tendency for skewed data. Two fire-

scarred classes were analyzed for both of the fire interval statistics: (1) all scarred and (2) 25% 

and greater scarred (considered large fire events). For the 25% scarred class, the minimum 

number of samples scarred in a particular year was two (Swetnam and Baisan 2003; Grissino-

Mayer et al. 2004).  

 To analyze seasonality of fire activity across our study site, early season fire events were 

classified as dormant (D) and early (E) fire scars. Late season fire events were classified as 
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middle (M), late (L), or latewood (A) (Table 3.1). To determine the dominant season in which 

past fires occurred, we compared the percentage of early- versus late-season scars for the period 

of analysis.  We then assessed changes in seasonality at finer temporal scales to determine if the 

dominant season of fire occurrence changed throughout the analysis period of 1630 to 1890.  

3.3.3.3 Short-term Climate Drivers  

 We used SEA to evaluate how short-term climate influenced past wildfires. SEA takes all 

fire years, stacks them on top of each other, and then calculates the mean climate conditions 

before a fire event (1–6 years), during the fire event (year 0), and 2 years after the fire event. We 

tested both fire-scarred classes (all and 25%) and used reconstructed data for the PDSI, ENSO, 

PDO, and AMO (Table 3.2) for this analysis. Bootstrapping was performed using 1000 Monte 

Carlo simulations of climate data to determine the 95%, 99% and 99.9% confidence intervals.   

3.3.3.4 Long-term Climate Drivers 

 To test the relationship between long-term climate oscillations and wildfire activity we 

used K1D software (Gavin 2010), which uses Bivariate Event Analysis to detect whether two or 

more event types are synchronous or asynchronous across multidecadal times scales. BEA is a 

temporal modification of spatial point pattern analysis for one-dimensional data. Rather than 

testing the spatial arrangement of points separated by distance in space, BEA tests for the 

temporal arrangement of events separated by distance in time (Gavin et al. 2006; Sherriff and 

Veblen 2008). BEA provides the ability to test temporal relationships between wildfire events 

and climate events associated with different climate oscillations. This type of statistical analysis 
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Table 3.2: Climate data used for statistical analyses. 
  
Climate Variable Source Details 
Precipitation Grissino-Mayer et al. 1997 1,373 year reconstruction of 

precipitation for the 

Magdalena Mountains 
Palmer Drought Severity Index Cook et al. 2004a Reconstructed drought from 

a gridded network. Average 

of data from Gridpoints 119 

and 120. 
El Niño-Southern Oscillation 
  

Cook et al. 2008a Reconstruction of Niño 3.4 

index based on tree-ring 

data.  
Pacific Decadal Oscillation D’Arrigo and Wilson 2006a Reconstruction of PDO 

index from tree-ring data. 
Atlantic Multidecadal 

Oscillation 
Gray et al. 2004a SST anomaly data on which 

AMO is based. 

      

cannot be conducted with SEA because climate oscillations often have strong autocorrelation 

and because SEA relies on establishing significance based on blocks of specific years. Further, 

BEA is appropriate because extreme climate events are tested rather than time series data (such 

as used with SEA). The number of fire events (F) during and following climate events (C) were 

counted and scaled for different lags t, using a minor modification of the bivariate K function: 

  (  )( )= 
 

    
∑ ∑  

  
   

  
   [(     ]     (       ) 

where t is time (years), T is the length of the record, nc and nF are the number of climate and fire 

events, Cj and Fi are times of climate events j and fire events i, and the identity function I counts 

the number of fire events during and following extreme climate years. To remove time 
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dependence from the K-function, the L-function was calculated by:    ( )      ( )     (Gavin 

et al. 2006; Sherriff and Veblen 2008; Hallett and Anderson 2010).  

BEA is performed by having the K1D software read a text file with the fire and climate 

data. One column has a list of all the extreme climate events and the next column has a list of 

the fire events (either all and 50% scarred class). The Bivariate-Forward Selection was chosen, 

based on the assumption that a fire event follows a climate event, and then the K-function and 

the L-function was calculated by the software. Confidence intervals were developed at the 90% 

level using 1000 Monte Carlo simulations. These simulations were based on randomizing the 

extreme climate years. If the L-hat value falls below the lower 90% envelope, then the events are 

asynchronous. If the L-value falls above the upper 90% envelope, then the events are 

synchronous. If the values fall between the two, the events are independent (Gavin et al. 2006; 

Sherriff and Veblen 2008).  

Extreme climate events of ENSO, PDO, and AMO were needed for this BEA. These 

events were calculated in R by computing the upper and lower percentiles of the data. Several 

different percentile values were calculated and tested (5%, 12%, 15%, and 20%) and we chose 

the 25th percentile to use in the analysis because it allowed us to test more climate events 

against fire events by providing the 65 highest or lowest annual values for each of the climate 

indices. Previous research has defined extreme climate events using stricter filters, such as 1 

standard deviation (Rother and Grissino-Mayer 2014) or the 12th percentile (Schoennagel et al. 

2007).  Our analysis allowed us to test the synchrony between fire events and climate events 

using a more lenient filter while also being able to compare our filtering method to the methods 
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used in previous research. The extreme climate events were calculated by finding the most 

positive or negative 25th percentile value of AMO, PDO, and ENSO and then extracting the 

years with values below the 25% value and all values above the 75% value. Climate indices 

values that fell below the 25% value were classified as extreme negative (cool) phases of AMO, 

PDO, and ENSO. Values that fell above the 75% value were classified as extreme positive 

(warm) phases of each of the climate indices.  

 

3.4 Results 

3.4.1 Fire History 

 The final tree-ring chronology for the Magdalena Mountains extended 588 years from 

1426 to 2013, and the fire history dates ranged from 1448 to 1953 (Figure 3.6). The period of 

reliability is 1630 to 1890 because the chronology has a low sample depth prior to 1630 and after 

1890. The master chronology contained 68 of the 69 samples collected (1 sample was not 

included because it could not be absolutely dated), and each sample had an average of five fire 

scars. Two samples recorded 15 fire events (MG1 009 and MG1 016). Examples of extreme fire 

years (based on the percentage of recording trees scarred) were 1665 (100%), 1717 (87%), 1773 

(91%), 1851 (91%), and 1870 (76%). Fires were frequent prior to 1890 with a Mean Fire Interval 

(MFI) of 7.5 years for all fire events, and 8.2 years for fires that scarred 25% or more of the 

samples (Table 3.3). The Weibull Median Interval (WMI) was similar with intervals of 7.1 and 

7.9 years for all fire years and for the 25% fire scarred class, respectively. The fire interval of 7 to  
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Figure 3.6: Fire history plot for the Magdalena Mountains (1426–2013). Dashed portions of 

each horizontal line indicate non-recorder years while solid lines indicate recorder years. 

Long, vertical tic-marks indicate a year when the sample recorded a fire. Shorter, hollow tic-

marks indicate other injuries that may or may not be fire-related. 
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8 years compares favorably with the results from other fire history research in the Southwest 

with fire intervals ranging from 3 to 12 years (Swetnam 1983; Grissino-Mayer et al. 1994; 

Touchan and Swenam 1995; Grissino-Mayer et al. 2004).  

 For all fire events, the shortest fire-free interval was 2 years (1702–1704), and the longest 

fire-free interval was 21 years (1752–1773). For fires that scarred 25% or more of the samples, the 

shortest fire-free interval was 3 years (1694–1697), while the longest interval was 21 years (1752–

1773) (Table 3.3). The Lower Exceedance Interval, which delimits unusually short intervals for 

fire occurrence (Grissino-Mayer 2001), ranged from 3.1 to 3.7 years, while the Upper Exceedance 

Interval, which delimits unusually long intervals, ranged from 12.2 to 13 years across both 

percent-scarred classes. The Maximum Hazard Interval, the fire interval associated with the 

longest period the study site can go without burning, ranged from 17.2 to 18.1 years for both 

scarred classes. The early season of growth (late spring to early summer) had the highest 

percentage (63%) of fire occurrence, while 37% of fire events occurred in the middle portion of 

the growing season (Table 3.4).  

3.4.2 Short-term Climate Drivers 

 SEA revealed statistically significant relationships between several climate variables and 

wildfire during the period 1630–1890. During the year prior to and during the fire event PDSI 

values were strongly negative, indicating extreme drought (Figure 3.7a), while three years prior 

to the fire event PDSI was barely insignificant at the 95% confidence interval. Drought in the 

year before and in the year of the fire likely dried out fuels after increased precipitation several  
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Table 3.3: Fire history statistics for period of analysis (1630–1890). Results include 

statistics for all fires and fires that scarred 25% of the samples (minimum of 2 trees 

scarred). 
  
  All 25% 
Mean Fire Interval 7.47 8.19 
Median Fire Interval 6.50 7.00 
Weibull Median Interval 7.05 7.85 
Weibull Modal Interval 5.98 7.01 
Standard Deviation 4.07 4.09 
Coefficient of Variation 0.54 0.50 
Skewness 1.33 1.21 
Kurtosis 1.87 1.23 
Minimum Fire Interval 2 3 
Maximum Fire Interval 21 21 
Lower Exceedance Interval 3.09 3.68 
Upper Exceedance Interval 12.23 13.01 
Maximum Hazard Interval 18.08 17.72 

 

 

Table 3.4: Results of the seasonal analyses of wildfire events from 1630 to 1890. 

Season* Number Percentage 
D Fires 3 1.2 
E Fires 157 61.8 
M Fires 77 30.3 
L Fires 17 6.7 
A Fires 0 0.0 
U Fires 82 24.4 
DE Fires 160 63.0 
MLA Fires 94 37.0 
    * See Table 3.1 for notation 
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Figure 3.7: Results from the SEA showing the relationship between fire occurrence and 

(A) the Palmer Drought Severity Index (PDSI), and (B) the El Niño-Southern Oscillation 

(ENSO) for the period1630–1890. Shaded black bars indicate statistically significant 

years.  
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years prior. Two years prior to the fire event, ENSO values were significantly positive (Figure 

3.7b). Positive values of ENSO indicate El Niño conditions preceded fire events, increasing 

precipitation and thus increasing fuel accumulation.  In the year of the fire event, ENSO 

conditions were significantly negative (Figure 3.7b). Negative values of ENSO indicate La Niña 

conditions in the year of a fire event, corresponding to drought in the Southwest. La Niña 

conditions dries out the fuel that accumulated during the previous El Niña phase, and fires are 

able to ignite and spread. In the six years before the fire event PDO was positive (Figure 3.8a). 

These results are barely insignificant at the 95% confidence interval, however, the pattern of a 

climate index before a fire events is key to understanding how PDO might influence wildfire 

activity. In the year of the fire, PDO conditions were significantly negative, indicating that 

drought-induced wildfires are influenced by a cool (negative) phase PDO (Figure 3.8a). No 

significant relationship was found between wildfire activity and the Atlantic sea surface 

temperature anomaly (Figure 3.8b).  

3.4.3 Long-term Climate Drivers 

 Negative phases of ENSO, PDO, and AMO showed no relationship with wildfire events 

(Figure 3.9). Fire events in the 50 percent scarred class were asynchronous with extreme positive 

phases of ENSO (Figure 3.10b). All other relationships between extreme positive phase events of 

ENSO, PDO, AMO and both fire scarred classes showed independence (Figure 3.10). We also 

tested all of the possible two-way phase combinations of the extreme climate years of ENSO, 

PDO, and AMO and tested their relationship with large wildfire events (50% scarred). All two- 
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Figure 3.8: Results from the SEA showing the relationship between wildfire occurrence 

and (A) the Pacific Decadal Oscillation (PDO), and (B) the Atlantic sea surface 

temperature anomaly (SSTA) for the period 1630–1890. Shaded black bars indicate 

statistically significant years.  
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Figure 3.9: Results from the Bivariate Event Analysis testing negative phases of ENSO, 

PDO and Atlantic SSTA withall fires and fires in the 50 % scarred class. Dashed lines 

are the 90% confidence envelopes and the solid black lines are the Lhat values. 
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Figure 3.10: Results from the Bivariate Event Analysis testing positive phases of ENSO, 

PDO and Atlantic SSTA with all fires and fires in the 50 % scarred class. Dashed lines 

are the 90% confidence envelopes and the solid black lines are the Lhat values.  
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way phase combinations showed independence with wildfire events (Figures 3.11, 3.12, and 

3.13).  

 

3.5 Discussion 

 The fire history of the Magdalena Mountains, New Mexico, was developed by analyzing 

fire scarred trees, stumps, snags, logs, and remnant wood, which allowed us to evaluate the 

historical range of wildfire activity. These data provide new information on the specific years in 

which fire occurred, the variability of fire events over time, and the seasons in which fires were 

most common in the past. This new information on wildfire activity also allowed us to evaluate 

the different mechanisms that influence fire occurrence. This research identified statistically 

significant annual and interannual relationships between wildfires and climate in west-central 

New Mexico. We found that interannual climate variability is the main driver of wildfire 

activity in this mixed-conifer forest in the Magdalena Mountains, while longer-term 

(multidecadal) climate trends do not appear to influence the occurrence of wildfires.  

3.5.1 Fire History in the Magdalena Mountains 

 In the mixed-conifer forest of the Magdalena Mountains, fires were frequent and low in 

severity from 1630 to 1890 with an interval of 7 to 7.5 years. Trees that have multiple fire scars 

indicate a low-severity fire regime because fires are not severe enough to kill the majority of the 

trees. Low-severity fires generally burn only surface fuels and scar trees, killing the active 

cambium layer, and after which the tree begins to grow over the wound in subsequent years 

(Arno and Allison-Bunnell 2002). The surface fuel layer in these low-severity forests are  
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Figure 3.11: Results from the Bivariate Event Analysis testing two-way phase 

combinations of extreme El Niño-Southern Oscillation years and extreme climate years of 

the Pacific Decadal Oscillation with large wildfire years (50% scarred class). Dashed lines 

are the 90% confidence envelopes and the solid black lines are the Lhat values. 
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Figure 3.12: Results from the Bivariate Event Analysis testing two-way phase 

combinations of extreme El Niño-Southern Oscillation years and extreme climate years 

of the Atlantic sea surface temperature anomaly (SSTA) with large wildfire years (50% 

scarred class). Dashed lines are the 90% confidence envelopes and the solid black lines 

are the Lhat values. 
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Figure 3.13: Results from the Bivariate Event Analysis testing two-way phase 

combinations of extreme Pacific Decadal Oscillation years and extreme climate years of 

the Atlantic sea surface temperature anomaly (SSTA) with large wildfire years (50% 

scarred class). Dashed lines are the 90% confidence envelopes and the solid black lines 

are the Lhat values. 
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dominated by grasses and pine needles which dry easily and promote the spread of frequent 

surface fires (Arno and Allison-Bunnell 2002). Fire scarred trees were common in this forest and 

the structure of this forest suggests an uneven-aged forest where higher severity fires were 

uncommon. Therefore, we did not perform an age-structure analysis, which tests for pulses of 

tree establishment that would indicate higher-severity fires.  

 The Maximum Hazard Interval (MHI) of 18 years can be interpreted as the maximum 

time this forest can go without burning. This value is comparable to the MHI for sites in both 

New Mexico (Grissino-Mayer 1999) and southern Colorado (Grissino-Mayer et al. 2004) that are 

classified as low-severity fire regimes. In contrast, the vegetation composition, forest structure, 

and fuel complex of the 20th and 21st centuries promote wildfires of moderate to high severity. 

These fires burn hotter, longer, and are more extensive than historic fires, often killing both 

young and mature trees (Cooper 1960; Covington and Moore 1994; Allen et al. 1998; 

Schoennagel et al. 2004). Changes in wildfire regimes across the Southwest occurred in the late 

1800s and can be attributed to fire suppression, livestock grazing, logging, and forest 

fragmentation. Results from our research reflect this change in the fire regime with a cessation 

of fire beginning after 1890 at our study site. Only two fire events were recorded after 1890 

(1906 and 1953), suggesting that Euro-American arrival in the Magdalena Mountains in the late 

1800s caused significant changes to the forests and altered the fire regime. These findings are 

consistent with results of similar studies conducted in the American Southwest (Swetnam 1983; 

Swetnam and Baisan 1990; Grissino-Mayer et al. 2004; Heinlein et al. 2005; Huffman et al. 2008; 
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Margolis and Balmat 2009; Rother and Grissino-Mayer 2014), with the fire intervals in 

ponderosa pine and mixed-conifer forests ranging from 3 to 30 years.  

 Fires occurred primarily early in the growing season (late spring to early summer), 

while almost no fires occurred in the latter part of the growing season. This seasonal 

distribution of wildfires is expected for the Southwest because of the dry spring and 

foresummer which can be associated dry lightning storms (Heinlien et al. 2005; Westerling et al. 

2006; Swetnam and Betancourt 2010). These spring and early summer convective storms 

increase the potential for fires to ignite and spread because of the high temperatures, low 

atmospheric moisture, and dry fuels. Beginning in mid-to late summer (usually by July), the 

monsoon season begins with rainstorms moving into New Mexico, increasing the moisture 

levels of fuels (Sheppard et al. 2002; Westerling et al. 2006). Therefore, fire risk is the highest in 

the late spring to early summer and then decreases in mid-to late summer when the monsoon 

season begins and moisture increases.  

3.5.2 Effects of Climate on Fire Occurrence 

  From 1630 to 1890, interannual climate variability influenced the occurrence of wildfire 

in the Magdalena Mountains. Drought conditions occurred in the year before the fire and 

during the year of the fire event. Drought conditions lead to lower combustion temperatures of 

fuel, increasing both the potential for fuels to ignite and for fires to spread (Grissino-Mayer and 

Swetnam 2000; Westerling and Swetnam 2003; Brown 2006). Wetter than average conditions 

occurred three years before a fire event, although this year was barely insignificant at the 95% 

confidence interval. Such wet conditions can prime future fires by increasing growth of grasses 
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that can later serve as fine fuels for a fire event. Fires are more likely to occur during a year of 

significant drought conditions, preceded by one or more years of wetter than average 

conditions. These results are comparable to other research in the Southwest, which evaluated 

the relationship between PDSI and fire events. In the Rincon Mountain Wilderness of Arizona, 

fire years were preceded by wetter than average conditions, while during the fire year PDSI was 

near average (Swetnam and Baisan 1990). Margolis and Balmat (2009) also found similar results 

in both ponderosa pine and mixed-conifer forests of the Santa Fe Municipal Watershed, New 

Mexico. They found that in the year of a fire drought is a major driver of wildfire activity, and is 

especially significant in the mixed-conifer forests.  

 The interannual climate variation of El Niño and La Niña is important when predicting 

wildfire occurrence. Our results indicate that the sea surface temperatures in the eastern tropical 

Pacific Ocean are significantly warmer than normal (positive ENSO or a warm El Niño phase) 

in the years prior to a fire event, increasing the production of fine fuels (Baisan and Swetnam 

1990; Swetnam and Betancourt 1998; Grissino-Mayer and Swetnam 2000; Sherriff and Veblen 

2008). In contrast, sea surface temperatures during the year of a fire event are significantly 

cooler (negative ENSO or a cool La Niña phase). La Niña years coincide with drought periods 

that cause fuels to dry out, increasing the risk for wildfires (Baisan and Swetnam 1990; Swetnam 

and Betancourt 1998; Grissino-Mayer and Swetnam 2000; Sherriff and Veblen 2008). Fires are 

most likely to occur during a La Niña phase after a few years of an El Niño phase. This wet/dry 

pattern suggests increased moisture leads to an increase in fine fuels, followed by a year when 

conditions are drier than average, leading to an increase in fire risk. This is due to the 
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accumulation of fuel that dries up and becomes an ignition source for fires and also increases 

the potential for wildfires to spread.  

 Fires are more likely to occur during a year when sea surface temperatures are 

significantly cooler than average along the west coast of North America (negative PDO phase). 

The fire year is preceded by warmer than average sea surface temperatures (positive PDO) 

along the west coast of North America, but this was barely insignificant at the 95% confidence 

interval. This overall pattern of PDO influence is important to note and should include years 

that are barely insignificant because a temporal pattern in the climate oscillation can emerge. 

PDO phases have been found to modulate ENSO conditions (Gershunov and Barnett 1998). 

When a negative PDO phase lines up with a La Niña phase, then drought conditions in the 

Southwest intensify, causing the increased chance of wildfire occurrence. This link between 

wildfire and this wet/dry pattern in climate has been found at other sites across the American 

Southwest (Westerling and Swetnam 2003; Collins et al. 2006; Margolis and Balmat 2009; Ireland 

et al. 2012; Rother and Grissino-Mayer 2014), with above moisture typically two to three years 

prior to a fire event and drought conditions occurring in the year of a fire event.  

 We also tested whether wildfire events are synchronous with extreme climate phases of 

ENSO, PDO, and AMO at long time scales using BEA. We found relationships between wildfire 

occurrence (all fires and 50% scarred) and extreme climate phases were independent, except we 

found an asynchronous relationship between 50% fires and positive ENSO (El Niño) phases 

across multiple time scales. These results suggest that climate patterns that operate at longer 

time scales do not influence the occurrence of wildfires in this high elevation, mixed-conifer 
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forest in the Magdalena Mountains. The asynchronous relationship that was found between 

extreme El Niño phases and large wildfire years could possibly suggest that large fires do not 

occur during extreme El Niño phases. During these extreme phases moisture increases, 

especially winter and spring moisture, thus decreasing the potential for fires to ignite and 

spread.  

 Rother and Grissino-Mayer (2014) found similar results in the ponderosa pine forests of 

the Zuni Mountains, New Mexico. They found that interannual variability of PDSI and ENSO 

were strong drivers of wildfire, with wetter conditions one to two years prior to a widespread 

fire event and drought during the fire year. This research also included BEA, testing for 

synchrony between large wildfire events and the extreme phases of ENSO, PDO, and AMO 

from 1700 to 1880. Their results confirm ours, with wildfire and long-term trends in climate 

showing independent relationships. Rother and Grissino-Mayer (2014) analyzed extreme 

climate years defined using a 1 standard deviation threshold, while our research defined the 

extreme events based on percentiles (25%), providing more extreme events to test against fire 

years. The differences in the approach of defining extreme events, and yet finding similar 

results, shows the strength of our results and the results Rother and Grissino-Mayer (2014) 

found in northwestern New Mexico.  

 Previous research by Schoennagel et al. (2007) evaluated the relationship between 

multidecadal trends in climate and wildfire occurrence using BEA for subalpine forests in 

western Colorado. They found significant relationships between long-term climate oscillations 

and wildfire activity, and determined that wildfires are driven by multidecadal patterns in 
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climate. However, differences exist between our research and the research in Schoennagel et al. 

(2007), including forest type, location within the continental Unites States, and the fire regime 

(high-severity). While our research does not contradict their results, we were unable to show a 

similar relationship using the same methodology between long-term (multidecadal) trends in 

climate and the occurrence of wildfires in the mixed-conifer forests of western New Mexico.  

  We conclude that annual to interannual climate variability is the main driver of wildfire 

activity in this mixed-conifer forest in the Magdalena Mountains, while long-term 

(multidecadal) climate trends do not appear to influence the occurrence of wildfires. Fires are 

driven by the amount and moisture level of fuels. In this fuel limited forest, short-term climate 

variability is more critical because annual and interannual changes in moisture vastly influence 

the amount of fuel available to ignite and burn. These high-frequency changes in climate drive 

the frequent, low-severity fires in the Magdalena Mountains. PDSI, ENSO, and PDO are all 

important drivers of wildfire at interannual scales, and therefore the phase occurrence of each 

climate index should be carefully monitored to manage wildfire activity in the Magdalena 

Mountains.  
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CHAPTER FOUR 

SUMMARY AND CONCLUSIONS 

4.1 Major Conclusions 

As a result of century-long fire suppression, current vegetation conditions in the 

Southwest are potentially highly flammable, causing a fire environment prone to catastrophic 

wildfire. Changes in fire regimes in the twentieth and twenty-first centuries have fueled large, 

stand-replacing crown fires in southwestern mixed-conifer forests (Cooper 1960; Covington and 

Moore 1994; Allen et al. 1998; Schoennagel et al. 2004). Historically, frequent, low-severity fires 

would consume surface fuels and maintain gaps in vertical fuel continuity, preventing fires 

from moving to the crowns. The fire history for our study site was characterized by frequent, 

low-severity fires prior to 1890, followed by a cessation of fires during the twentieth and 

twenty-first centuries. Wildfires are mostly driven by short-term annual to interannual 

variations in climate with the Palmer Drought Severity Index (PDSI), the El Niño-Southern 

Oscillation (ENSO), and the Pacific Decadal Oscillation (PDO) as the main drivers. Pre-1890 

fires in the Magdalena Mountains in New Mexico occurred in years of severe drought with 

above average precipitation in years prior to a fire event.  

4.1.1 What is the historic wildfire regime for high elevation, mixed conifer forests in the Magdalena 

Mountains?  

 Wildfires were frequent prior to 1890 with a Mean Fire Interval of 7.5 years and a 

Weibull Median Interval of 7 years. The MFI for widespread fires, or fires that scarred 25% or 

more of the samples, was 8.2 years and the Weibull Median Interval was 7.9 years. Fire-free 
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intervals ranged anywhere from 2 to 21 years across the entire site from 1630 to 1890. 

Historically, the maximum interval this forest could go without a fire was about 18 years. 

Results from this research suggest that fires prior to Euro-American settlement were frequent 

and low in severity, killing the brush layer and scarring trees. Wildfires almost completely 

ceased after 1890 with only two recorded fire events (1906 and 1953). Fire exclusion can be 

attributed to the arrival of Euro-Americans to the Southwest in the late 1800s, with early 

disruption of the landscape beginning with livestock grazing. By1930, forest rangers began to 

actively suppress wildfires in the Magdalena Mountains. Similar historic fire regimes have been 

found in other areas of the American Southwest, with fire intervals ranging from 4 to 11 years 

(Swetnam 1983; Swetnam and Baisan 1990; Grissino-Mayer et al. 2004; Heinlien et al. 2005; 

Huffman et al. 2008).  

 Fire events between 1630 and 1890 primarily occurred in the early portion of the 

growing season (late spring to early summer), while few fires occurred in the latter portion of 

the growing season (mid-to late summer). During late spring through early summer, the 

Southwest experiences dry lightning, producing storms causing high fire risk. During this time 

fuels are dry, increasing the chance of ignition from lightning. Later in the growing season 

(mid- to late summer), the monsoon season begins, increasing moisture levels of fuels and 

decreasing the risk of wildfire.  
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4.1.2 What is the relationship between wildfire occurrence and short-term (annual to interannual) 

climate patterns? 

 Interannual climate variability significantly influenced the occurrence of wildfires in the 

mixed-conifer forest of the Magdalena Mountains. Superposed Epoch Analysis revealed a 

wet/dry-lagging pattern with climate indices characterized by PDSI, ENSO, and PDO. PDSI 

conditions indicated drought occurred in the year before a fire event and in the year of a fire 

event. El Niño occurred two years prior to a fire event, while La Niña occurred during the year 

of a fire event. In the Southwest, an El Niño phase is associated with warmer eastern tropical 

Pacific sea surface temperatures which cause an increase in moisture in the Southwest, while a 

La Niña phase is associated with cooler eastern tropical Pacific temperatures which cause an 

increase in drought conditions. This El Niño/La Niña sequence or wet/dry-lagging pattern 

influences the amount and moisture levels of fuel. During an El Niño phase, fuel accumulation 

increases, and the fuels then dry in a following La Niña phase. PDO showed a cool phase in the 

year of a fire event, preceded by a PDO warm phase. Wildfires are more likely to occur during a 

year of extreme drought and during a negative PDO phase and a La Niña phase. 

 In this mixed-conifer forest, above average antecedent moisture was important for 

wildfires because it increased fine fuels necessary for surface fires to spread. Drought in the 

year before a fire event and in the year of the fire event desiccated fuels for burning. Similar 

patterns were found in the Rincon Mountain Wilderness (Baisan and Swetnam 1990), El 

Malpais National Monument (Grissino-Mayer and Swetnam 1997), and the San Juan Mountains 

(Grissino-Mayer et al. 2004). Westerling and Swetnam (2003) suggested that larger fires occurred 
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in association with an El Niño-La Niña sequence, often following a major shift from positive to 

negative PDO. On an annual scale, fires are associated with anomalously dry conditions. These 

patterns are consistent with prior moisture that promotes fuel accumulation, followed by 

drought that promotes fuel flammability. This relationship was essential for frequent, low-

severity fires in the mixed-conifer forests of the Magdalena Mountains. The wet/dry-lagging 

pattern promoted frequent surface fires that are necessary to keep fine fuel loads at a minimum 

and keep the density of trees sparse.  

4.1.3 Is there a relationship between historic wildfire activity and long-term (multidecadal) climate 

oscillations?  

 We found that wildfire events were independent of long-term fluctuations in climate, 

suggesting that low-frequency variations in ocean temperatures do not influence the occurrence 

of wildfires in the mixed-conifer forest of the Magdalena Mountains. However, one 

asynchronous relationship was found between large wildfire events (50% scarred class) and 

extreme positive years of the El Niño-Southern Oscillation (El Niño). This relationship likely 

reflects our previous results that suggest large wildfires do not occur in years of extreme El 

Niño phases. Large wildfire risk is less when ocean temperatures in the eastern tropical Pacific 

Ocean are anomalously warm. We also tested the relationship between wildfire and pairwise 

combinations of extreme climate phases, but found no statistically significant relationships. 

4.2 Future Research 

 Our fire history research was site specific and a more detailed study of fire history, with 

sites throughout the mountain range, would greatly improve this research. An in-depth fire 
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history study that also examines tree establishment dates would provide stronger information 

on the occurrence of large wildfires as well as give insight to fire severity and extent. The fire 

record could potentially be extended further back in time with the collecting of more samples, 

especially taking advantage of the remnant fire scars left across the forest floor.  

Extending the fire chronology would increase the analyses period and would be useful 

when testing the influence climate has on wildfire occurrence. The longer the fire chronology, 

the more fire events can be tested against climate events. This is particularly pertinent because 

AMO has a cycle of 40–80 years. With a longer fire chronology, the low-frequency patterns 

would stand out and more cycles could be tested. The pairwise interactions between climate 

indices also need to be further evaluated. This can be done by testing specific times when these 

combinations match up, and testing the combinations against fire occurrence. More knowledge 

on how the sea surface temperatures in the Atlantic basin interact with SSTs in the Pacific 

would greatly assist in understanding the teleconnections and how drought-induced fires are 

caused.  
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APPENDIX 1 

 

Sample Information for the Master Fire Chronology, Magdalena Mountains, New Mexico. 
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Sample information for master fire chronology 

  

Site Number of 

Samples 

Number of 

Fire Scars 

Chronology 

Length (yr) 

Fire Scars Per Tree 

        Min. Max. Mean 

MG1 27 184 487 2 15 6.8 

MG2 28 119 587 1 13 4.1 

MG3 13 43 381 1 9 3.3 

TOTAL 68 346 -- -- -- -- 
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APPENDIX 2 

 

Years of fires that scarred all samples in the Magdalena Mountains, New Mexico.  
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Years of fires that scarred all samples for the period of analysis (1630–

1890) 

 

Year Ratio of the number of scarred 

samples to the total number of 

recording samples 

Percent scarred (%) 

1632 3:3 100 

1643 2:3 67 

1649 5:5 100 

1665 17:17 100 

1672 5:10 50 

1680 2:8 25 

1684 13:17 76 

1689 4:10 40 

1694 4:10 40 

1697 3:9 33 

1702 2:7 29 

1707 9:15 60 

1717 20:23 87 

1724 10:17 59 

1735 14:19 74 

1742 9:17 53 

1748 17:24 71 

1752 5:13 38 

1773 29:32 91 

1786 18:22 82 

1790 3:10 30 

1795 3:9 33 

1805 6:11 55 

1812 5:11 45 

1824 19:24 79 

1851 30:33 91 

1859 6:20 30 

1870 22:29 76 

1880 8:24 33 

1886 14:24 54 
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APPENDIX 3 

 

Graphic depicting (A) years with large fires occurrence (25% scarred), represented by + 

symbols,  (B) reconstructed PDSI, (C) ENSO, (D) PDO, and (E) Atlantic sea surface 

temperature anomaly (SSTA), are shown for the analysis period of 1630 to 1890.  
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APPENDIX 4 

Fire history data for Magdalena Mountains 

Summary statistics from FHX2 from each fire scarred sample. Includes series identification, 

innermost ring date, outermost ring date, length of sample, number of recorder years, year of 

fire scar, season of fire scar, total number of fire scars, sample mean fire interval, and average 

number of years per fire for each individual sample. 
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Sample: 1 Code: MG1001 

 Inner Ring: 1646 

 Outer Ring: 1922 

 Length of sample: 277 

 Number of recorder years in sample: 6 

 Information on Fire History:  

    1665   E 

    1684   M    FI = 19 

    1724   E    FI = 40 

    1748   E    FI = 24 

    1851   M    FI = 103 

    1906   U    FI = 55 

 Total number of fire scars: 6 

 Total number of all indicators: 6 

 Average number years per fire: 1.0 

 Sample mean fire interval: 48.2 

  

Sample: 2 Code: MG1002 

 Pith Ring: 1628 

 Length of sample: 159 

 Number of recorder years in sample: 6 

Information on Fire History:  

    1646   U 

    1665   M    FI = 19 

    1717   M    FI = 52 

    1748   E    FI = 31 

    1773   U    FI = 25 

    1786   U    FI = 13 

 Total number of fire scars: 6 

 Total number of all indicators: 6 

 Average number years per fire: 1.0 

 Sample mean fire interval: 28.0 

  

Sample: 3 Code: MG1003 

 Inner Ring: 1823 

 Outer Ring: 1934 

 Length of sample: 112 

 Number of recorder years in sample: 36 

 Information on Fire History:  

    1851   E 

    1886   U    FI = 35 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 18.0 

 Sample mean fire interval: 35.0 

 

 

Sample: 4 Code: MG1004 

 Pith Ring: 1826 

 Outer Ring: 1923 

 Length of sample: 98 

 Number of recorder years in sample: 73 

 Information on Fire History:   

    1851   E 

    1870   E    FI = 19 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 36.5 

 Sample mean fire interval: 19.0 

  

Sample: 5 Code: MG1005 

 Inner Ring: 1526 

 Length of sample: 261 

 Number of recorder years in sample: 5 

 Information on Fire History:  

    1632   M 

    1649   M    FI = 17 

    1665   M    FI = 16 

    1680   E    FI = 15 

    1786   U    FI = 106 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 1.0 

 Sample mean fire interval: 38.5 

  

Sample: 6 Code: MG1006 

 Inner Ring: 1649 

 Length of sample: 232 

 Number of recorder years in sample: 9 

Information on Fire History:  

    1717   E 

    1735   U    FI = 18 

    1748   E    FI = 13 

    1773   E    FI = 25 

    1786   M    FI = 13 

    1824   E    FI = 38 

    1838   u 

    1851   U    FI = 27 

    1870   U    FI = 19 

    1880   U    FI = 10 

 Total number of fire scars: 9 

 Total number of all indicators: 10 

 Average number years per fire: 1.0 

 Sample mean fire interval: 20.4 
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Sample: 7 Code: MG1007 

 Pith Ring: 1656 

 Length of sample: 225 

 Number of recorder years in sample: 8 

Information on Fire History:  

    1735   E 

    1748   E    FI = 13 

    1773   E    FI = 25 

    1786   M    FI = 13 

    1824   U    FI = 38 

    1851   M    FI = 27 

    1870   M    FI = 19 

    1880   U    FI = 10 

 Total number of fire scars: 8 

 Total number of all indicators: 8 

 Average number years per fire: 1.0 

 Sample mean fire interval: 20.7 

  

Sample: 8 Code: MG1008 

 Inner Ring: 1627 

 Length of sample: 169 

 Number of recorder years in sample: 10 

Information on Fire History:  

    1649   L 

    1697   L    FI = 48 

    1707   U    FI = 10 

    1717   U    FI = 10 

    1724   M    FI = 7 

    1735   M    FI = 11 

    1742   E    FI = 7 

    1748   E    FI = 6 

    1773   U    FI = 25 

    1795   U    FI = 22 

 Total number of fire scars: 10 

 Total number of all indicators: 10 

 Average number years per fire: 1.0 

 Sample mean fire interval: 16.2 

  

 

 

 

 

 

 

 

 

 

Sample: 9 Code: MG1009 

 Pith Ring: 1624 

 Bark Ring: 1980 

 Length of sample: 357 

 Number of recorder years in sample: 15 

Information on Fire History:  

    1665   U 

    1684   E    FI = 19 

    1694   E    FI = 10 

    1704   M    FI = 10 

    1717   E    FI = 13 

    1724   L    FI = 7 

    1735   E    FI = 11 

    1758   L    FI = 23 

    1773   M    FI = 15 

    1805   E    FI = 32 

    1835   U    FI = 30 

    1838   M    FI = 3 

    1851   U    FI = 13 

    1870   E    FI = 19 

    1886   U    FI = 16 

 Total number of fire scars: 15 

 Total number of all indicators: 15 

 Average number years per fire: 1.0 

 Sample mean fire interval: 15.8 

  

Sample: 10 Code: MG1010 

 Pith Ring: 1648 

 Length of sample: 165 

 Number of recorder years in sample: 81 

Information on Fire History:  

    1707   E 

    1724   M    FI = 17 

    1773   M    FI = 49 

    1786   U    FI = 13 

    1812   U    FI = 26 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 16.2 

 Sample mean fire interval: 26.2 
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Sample: 11 Code: MG1011 

 Pith Ring: 1641 

 Length of sample: 146 

 Number of recorder years in sample: 4 

Information on Fire History:  

    1707   E 

    1742   M    FI = 35 

    1773   U    FI = 31 

    1786   U    FI = 13 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 1.0 

 Sample mean fire interval: 26.3 

  

 

Sample: 12 Code: MG1012 

 Inner Ring: 1697 

 Bark Ring: 2013 

 Length of sample: 317 

 Number of recorder years in sample: 191 

Information on Fire History:  

    1786   E 

    1824   E    FI = 38 

    1851   E    FI = 27 

    1870   E    FI = 19 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 47.8 

 Sample mean fire interval: 28.0 

 

Sample: 13 Code: MG1013 

 Pith Ring: 1797 

 Bark Ring: 2013 

 Length of sample: 217 

 Number of recorder years in sample: 190 

Information on Fire History:  

    1824   M 

    1851   E    FI = 27 

    1870   E    FI = 19 

    1880   E    FI = 10 

    1886   L    FI = 6 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 38.0 

 Sample mean fire interval: 15.5 

  

 

Sample: 14 Code: MG1014 

 Pith Ring: 1632 

 Outer Ring: 1892 

 Length of sample: 261 

 Number of recorder years in sample: 24 

Information on Fire History:  

    1665   M 

    1684   E    FI = 19 

    1748   M    FI = 64 

    1786   U    FI = 38 

    1805   E    FI = 19 

    1819   U    FI = 14 

 Total number of fire scars: 6 

 Total number of all indicators: 6 

 Average number years per fire: 4.0 

 Sample mean fire interval: 30.8 

  

Sample: 15 Code: MG1015 

 Inner Ring: 1747 

 Outer Ring: 1877 

 Length of sample: 131 

 Number of recorder years in sample: 4 

Information on Fire History:  

    1773   E 

    1786   U    FI = 13 

    1824   E    FI = 38 

    1859   E    FI = 35 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 1.0 

 Sample mean fire interval: 28.7 
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Sample: 16 Code: MG1016 

 Pith Ring: 1642 

 Outer Ring: 1967 

 Length of sample: 326 

 Number of recorder years in sample: 99 

Information on Fire History:  

    1773   E 

    1786   M    FI = 13 

    1795   E    FI = 9 

    1805   E    FI = 10 

    1812   E    FI = 7 

    1819   E    FI = 7 

    1824   E    FI = 5 

    1829   E    FI = 5 

    1835   M    FI = 6 

    1838   E    FI = 3 

    1851   U    FI = 13 

    1859   E    FI = 8 

    1870   M    FI = 11 

    1906   U    FI = 36 

 Total number of fire scars: 14 

 Total number of all indicators: 14 

 Average number years per fire: 7.1 

 Sample mean fire interval: 10.2 

  

Sample: 17 Code: MG1017 

 Pith Ring: 1547 

 Outer Ring: 1808 

 Length of sample: 262 

 Number of recorder years in sample: 12 

Information on Fire History:  

    1573   E 

    1632   D    FI = 59 

    1649   U    FI = 17 

    1672   E    FI = 23 

    1684   E    FI = 12 

    1697   D    FI = 13 

    1717   E    FI = 20 

    1724   U    FI = 7 

    1742   M    FI = 18 

    1752   M    FI = 10 

    1773   M    FI = 21 

    1795   U    FI = 22 

 Total number of fire scars: 12 

 Total number of all indicators: 12 

 Average number years per fire: 1.0 

 Sample mean fire interval: 20.2 

Sample: 18 Code: MG1018 

 Inner Ring: 1684 

 Outer Ring: 1919 

 Length of sample: 236 

 Number of recorder years in sample: 49 

Information on Fire History:  

    1742   L 

    1748   E    FI = 6 

    1773   M    FI = 25 

    1786   M    FI = 13 

    1824   E    FI = 38 

    1847   u 

    1851   E    FI = 27 

    1865   u 

    1870   M    FI = 19 

    1880   E    FI = 10 

 Total number of fire scars: 8 

 Total number of all indicators: 10 

 Average number years per fire: 6.1 

 Sample mean fire interval: 19.7 

 

Sample: 19 Code: MG1019 

 Inner Ring: 1702 

 Length of sample: 150 

 Number of recorder years in sample: 79 

Information on Fire History:  

    1773   M 

    1786   L    FI = 13 

    1824   U    FI = 38 

    1851   U    FI = 27 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 19.8 

 Sample mean fire interval: 26.0 
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Sample: 20 Code: MG1020 

 Inner Ring: 1680 

 Bark Ring: 2013 

 Length of sample: 334 

 Number of recorder years in sample: 147 

Information on Fire History:  

    1748   E 

    1773   E    FI = 25 

    1786   E    FI = 13 

    1870   E    FI = 84 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 36.8 

 Sample mean fire interval: 40.7 

  

Sample: 21 Code: MG1021 

 Inner Ring: 1681 

 Bark Ring: 2013 

 Length of sample: 333 

 Number of recorder years in sample: 145 

Information on Fire History:  

    1707   L 

    1717   E    FI = 10 

    1724   M    FI = 7 

    1735   E    FI = 11 

    1742   E    FI = 7 

    1748   E    FI = 6 

    1773   E    FI = 25 

    1786   E    FI = 13 

    1824   M    FI = 38 

    1851   M    FI = 27 

    1870   E    FI = 19 

    1880   E    FI = 10 

 Total number of fire scars: 12 

 Total number of all indicators: 12 

 Average number years per fire: 12.1 

 Sample mean fire interval: 15.7 

 

 

 

 

 

 

 

 

 

 

Sample: 22 Code: MG1022 

 Inner Ring: 1680 

 Length of sample: 140 

 Number of recorder years in sample: 5 

Information on Fire History:  

    1704   E 

    1742   E    FI = 38 

    1773   E    FI = 31 

    1786   M    FI = 13 

    1819   U    FI = 33 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 1.0 

 Sample mean fire interval: 28.8 

  

Sample: 23 Code: MG1023 

 Inner Ring: 1574 

 Length of sample: 297 

 Number of recorder years in sample: 6 

Information on Fire History:  

    1748   E 

    1773   M    FI = 25 

    1786   M    FI = 13 

    1824   M    FI = 38 

    1851   M    FI = 27 

    1870   U    FI = 19 

 Total number of fire scars: 6 

 Total number of all indicators: 6 

 Average number years per fire: 1.0 

 Sample mean fire interval: 24.4 
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Sample: 24 Code: MG1024 

 Inner Ring: 1683 

 Length of sample: 66 

 Number of recorder years in sample: 9 

Information on Fire History:  

    1684   M 

    1689   E    FI = 5 

    1694   L    FI = 5 

    1707   E    FI = 13 

    1717   E    FI = 10 

    1724   L    FI = 7 

    1735   E    FI = 11 

    1748   U    FI = 13 

 Total number of fire scars: 8 

 Total number of all indicators: 8 

 Average number years per fire: 1.1 

 Sample mean fire interval: 9.1 

 

Sample: 25 Code: MG1025 

 Inner Ring: 1642 

 Length of sample: 197 

 Number of recorder years in sample: 11 

Information on Fire History:  

    1665   M 

    1672   M    FI = 7 

    1684   E    FI = 12 

    1707   U    FI = 23 

    1717   E    FI = 10 

    1735   M    FI = 18 

    1752   M    FI = 17 

    1773   E    FI = 21 

    1786   U    FI = 13 

    1812   U    FI = 26 

    1838   U    FI = 26 

 Total number of fire scars: 11 

 Total number of all indicators: 11 

 Average number years per fire: 1.0 

 Sample mean fire interval: 17.3 

  

 

 

 

 

 

 

 

 

Sample: 26 Code: MG1027 

 Inner Ring: 1655 

 Length of sample: 170 

 Number of recorder years in sample: 5 

Information on Fire History:  

    1694   U 

    1717   E    FI = 23 

    1735   M    FI = 18 

    1773   U    FI = 38 

    1824   U    FI = 51 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 1.0 

 Sample mean fire interval: 32.5 

  

Sample: 27 Code: MG1028 

 Inner Ring: 1645 

 Length of sample: 161 

 Number of recorder years in sample: 8 

Information on Fire History:  

    1707   E 

    1717   E    FI = 10 

    1742   E    FI = 25 

    1747   E    FI = 5 

    1768   M    FI = 21 

    1773   M    FI = 5 

    1805   U    FI = 32 

 Total number of fire scars: 7 

 Total number of all indicators: 7 

 Average number years per fire: 1.1 

 Sample mean fire interval: 16.3 
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Sample: 28 Code: MG2002 

 Inner Ring: 1655 

 Length of sample: 299 

 Number of recorder years in sample: 289 

Information on Fire History:  

    1665   E 

    1684   E    FI = 19 

    1696   D    FI = 12 

    1707   E    FI = 11 

    1717   E    FI = 10 

    1735   E    FI = 18 

    1748   E    FI = 13 

    1752   E    FI = 4 

    1773   E    FI = 21 

    1786   E    FI = 13 

    1851   E    FI = 65 

    1953   U    FI = 102 

 Total number of fire scars: 12 

 Total number of all indicators: 12 

 Average number years per fire: 24.1 

 Sample mean fire interval: 26.2 

 

Sample: 29 Code: MG2003 

 Inner Ring: 1640 

 Length of sample: 267 

 Number of recorder years in sample: 12 

Information on Fire History:  

    1672   E 

    1680   E    FI = 8 

    1689   U    FI = 9 

    1707   U    FI = 18 

    1717   U    FI = 10 

    1724   E    FI = 7 

    1735   E    FI = 11 

    1742   m 

    1748   U    FI = 13 

    1752   E    FI = 4 

    1773   U    FI = 21 

    1851   U    FI = 78 

    1906   U    FI = 55 

 Total number of fire scars: 12 

 Total number of all indicators: 13 

 Average number years per fire: 1.0 

 Sample mean fire interval: 21.3 

  

 

 

Sample: 30 Code: MG2004 

 Inner Ring: 1655 

 Outer Ring: 1789 

 Length of sample: 135 

 Number of recorder years in sample: 2 

Information on Fire History:  

    1717   E 

    1735   M    FI = 18 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 1.0 

 Sample mean fire interval: 18.0 

  

Sample: 31 Code: MG2005 

 Inner Ring: 1567 

 Length of sample: 123 

 Number of recorder years in sample: 58 

Information on Fire History:  

    1632   E 

    1649   M    FI = 17 

    1665   L    FI = 16 

    1689   U    FI = 24 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 14.5 

 Sample mean fire interval: 19.0 

  

Sample: 32 Code: MG2006 

 Pith Ring: 1650 

 Length of sample: 202 

 Number of recorder years in sample: 78 

Information on Fire History:  

    1748   E 

    1773   M    FI = 25 

    1824   M    FI = 51 

    1851   U    FI = 27 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 19.5 

 Sample mean fire interval: 34.3 
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Sample: 33 Code: MG2007 

 Pith Ring: 1708 

 Length of sample: 144 

 Number of recorder years in sample: 4 

Information on Fire History:  

    1773   M 

    1790   E    FI = 17 

    1824   L    FI = 34 

    1851   U    FI = 27 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 1.0 

 Sample mean fire interval: 26.0 

  

Sample: 34 Code: MG2008 

 Inner Ring: 1750 

 Length of sample: 157 

 Number of recorder years in sample: 5 

Information on Fire History:  

    1824   L 

    1859   M    FI = 35 

    1865   E    FI = 6 

    1886   U    FI = 21 

    1906   U    FI = 20 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 1.0 

 Sample mean fire interval: 20.5 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample: 35 Code: MG2009 

 Pith Ring: 1625 

 Bark Ring: 1948 

 Length of sample: 324 

 Number of recorder years in sample: 297 

Information on Fire History:  

    1652   E 

    1665   E    FI = 13 

    1672   E    FI = 7 

    1711   M    FI = 39 

    1717   E    FI = 6 

    1735   U    FI = 18 

    1805   E    FI = 70 

    1851   M    FI = 46 

    1870   E    FI = 19 

    1886   M    FI = 16 

 Total number of fire scars: 10 

 Total number of all indicators: 10 

 Average number years per fire: 29.7 

 Sample mean fire interval: 26.0 

  

Sample: 36 Code: MG2010 

 Pith Ring: 1623 

 Length of sample: 216 

 Number of recorder years in sample: 6 

Information on Fire History:  

    1643   E 

    1665   E    FI = 22 

    1684   E    FI = 19 

    1717   M    FI = 33 

    1773   E    FI = 56 

    1838   U    FI = 65 

 Total number of fire scars: 6 

 Total number of all indicators: 6 

 Average number years per fire: 1.0 

 Sample mean fire interval: 39.0 
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Sample: 37 Code: MG2011 

 Pith Ring: 1631 

 Bark Ring: 1994 

 Length of sample: 364 

 Number of recorder years in sample: 293 

Information on Fire History:  

    1702   U 

    1851   M    FI = 149 

    1886   E    FI = 35 

 Total number of fire scars: 3 

 Total number of all indicators: 3 

 Average number years per fire: 97.7 

 Sample mean fire interval: 92.0 

  

Sample: 38 Code: MG2012 

 Pith Ring: 1627 

 Length of sample: 190 

 Number of recorder years in sample: 69 

Information on Fire History:  

    1649   M 

    1665   E    FI = 16 

    1672   E    FI = 7 

    1684   M    FI = 12 

    1702   M    FI = 18 

    1717   E    FI = 15 

    1748   E    FI = 31 

    1816   U    FI = 68 

 Total number of fire scars: 8 

 Total number of all indicators: 8 

 Average number years per fire: 8.6 

 Sample mean fire interval: 23.9 

 

Sample: 39 Code: MG2013 

 Inner Ring: 1426 

 Outer Ring: 1591 

 Length of sample: 166 

 Number of recorder years in sample: 3 

Information on Fire History:  

    1448   U 

    1481   M    FI = 33 

    1527   U    FI = 46 

 Total number of fire scars: 3 

 Total number of all indicators: 3 

 Average number years per fire: 1.0 

 Sample mean fire interval: 39.5 

  

 

Sample: 40 Code: MG2014 

 Inner Ring: 1646 

 Length of sample: 97 

 Number of recorder years in sample: 6 

Information on Fire History:  

    1649   e 

    1665   M 

    1684   U    FI = 19 

    1699   M    FI = 15 

    1717   U    FI = 18 

    1724   U    FI = 7 

    1742   U    FI = 18 

 Total number of fire scars: 6 

 Total number of all indicators: 7 

 Average number years per fire: 1.0 

 Sample mean fire interval: 15.4 

Sample: 41 Code: MG2015 

 Inner Ring: 1790 

 Bark Ring: 2013 

 Length of sample: 224 

 Number of recorder years in sample: 144 

Information on Fire History:  

    1870   E 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 144.0 

 Sample mean fire interval:  NA  

  

Sample: 42 Code: MG2016 

 Pith Ring: 1624 

 Length of sample: 228 

 Number of recorder years in sample: 58 

Information on Fire History:  

    1717   E 

    1773   E    FI = 56 

    1851   U    FI = 78 

 Total number of fire scars: 3 

 Total number of all indicators: 3 

 Average number years per fire: 19.3 

 Sample mean fire interval: 67.0 

  

 

 

 

 

 

 



94 

 

Sample: 43 Code: MG2017 

 Inner Ring: 1723 

 Outer Ring: 1940 

 Length of sample: 218 

 Number of recorder years in sample: 7 

Information on Fire History:  

    1790   U 

    1805   E    FI = 15 

    1812   U    FI = 7 

    1824   U    FI = 12 

    1838   U    FI = 14 

    1851   E    FI = 13 

    1859   E    FI = 8 

 Total number of fire scars: 7 

 Total number of all indicators: 7 

 Average number years per fire: 1.0 

 Sample mean fire interval: 11.5 

  

Sample: 44 Code: MG2018 

 Pith Ring: 1820 

 Outer Ring: 1948 

 Length of sample: 129 

 Number of recorder years in sample: 36 

Information on Fire History:  

    1851   M 

    1870   E    FI = 19 

    1886   L    FI = 16 

 Total number of fire scars: 3 

 Total number of all indicators: 3 

 Average number years per fire: 12.0 

 Sample mean fire interval: 17.5 

  

Sample: 45 Code: MG2019 

 Pith Ring: 1818 

 Length of sample: 69 

 Number of recorder years in sample: 31 

Information on Fire History:  

    1851   E 

    1870   E    FI = 19 

    1880   M    FI = 10 

    1886   U    FI = 6 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 7.8 

 Sample mean fire interval: 11.7 

  

 

Sample: 46 Code: MG2020 

 Pith Ring: 1862 

 Length of sample: 45 

 Number of recorder years in sample: 2 

Information on Fire History:  

    1886   E 

    1906   U    FI = 20 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 1.0 

 Sample mean fire interval: 20.0 

  

Sample: 47 Code: MG2021 

 Pith Ring: 1806 

 Outer Ring: 1876 

 Length of sample: 71 

 Number of recorder years in sample: 53 

Information on Fire History:  

    1824   M 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 53.0 

 Sample mean fire interval:  NA  

  

Sample: 48 Code: MG2022 

 Inner Ring: 1735 

 Outer Ring: 1910 

 Length of sample: 176 

 Number of recorder years in sample: 1 

Information on Fire History:  

    1870   E 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 1.0 

 Sample mean fire interval:  NA  
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Sample: 49 Code: MG2023 

 Pith Ring: 1820 

 Length of sample: 61 

 Number of recorder years in sample: 57 

Information on Fire History:  

    1824   U 

    1851   E    FI = 27 

    1859   L    FI = 8 

    1870   E    FI = 11 

    1880   U    FI = 10 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 11.4 

 Sample mean fire interval: 14.0 

  

Sample: 50 Code: MG2024 

 Inner Ring: 1521 

 Outer Ring: 1890 

 Length of sample: 370 

 Number of recorder years in sample: 134 

Information on Fire History:  

    1665   M 

    1717   U    FI = 52 

    1782   U    FI = 65 

    1790   E    FI = 8 

    1812   E    FI = 22 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 26.8 

 Sample mean fire interval: 36.8 

  

Sample: 51 Code: MG2025 

 Pith Ring: 1805 

 Bark Ring: 1986 

 Length of sample: 182 

 Number of recorder years in sample: 136 

Information on Fire History:  

    1851   E 

    1865   E    FI = 14 

    1870   E    FI = 5 

    1953   U    FI = 83 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 34.0 

 Sample mean fire interval: 34.0 

  

 

Sample: 52 Code: MG2026 

 Inner Ring: 1631 

 Length of sample: 140 

 Number of recorder years in sample: 106 

Information on Fire History:  

    1665   E 

    1770   U    FI = 105 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 53.0 

 Sample mean fire interval: 105.0 

  

Sample: 53 Code: MG2027 

 Inner Ring: 1676 

 Length of sample: 149 

 Number of recorder years in sample: 5 

Information on Fire History:  

    1697   M 

    1724   M    FI = 27 

    1748   E    FI = 24 

    1773   E    FI = 25 

    1824   U    FI = 51 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 1.0 

 Sample mean fire interval: 31.8 

  

Sample: 54 Code: MG2028 

 Inner Ring: 1819 

 Bark Ring: 2013 

 Length of sample: 195 

 Number of recorder years in sample: 144 

Information on Fire History:  

    1870   E 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 144.0 

 Sample mean fire interval:  NA  
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Sample: 55 Code: MG2029 

 Inner Ring: 1764 

 Outer Ring: 1958 

 Length of sample: 195 

 Number of recorder years in sample: 2 

Information on Fire History:  

    1782   u 

    1851   U 

    1886   E    FI = 35 

 Total number of fire scars: 2 

 Total number of all indicators: 3 

 Average number years per fire: 1.0 

 Sample mean fire interval: 35.0 

  

Sample: 56 Code: MG3001 

 Inner Ring: 1845 

 Outer Ring: 1935 

 Length of sample: 91 

 Number of recorder years in sample: 78 

Information on Fire History:  

    1851   U 

    1859   E    FI = 8 

    1870   E    FI = 11 

    1886   M    FI = 16 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 19.5 

 Sample mean fire interval: 11.7 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 57        Code: MG3002 

 Inner Ring: 1649 

 Outer Ring: 1886 

 Length of sample: 237 

 Number of recorder years in sample: 9 

 Information on Fire History:  

    1724   E 

   1742   E   FI = 18 

   1776   U  FI = 34 

   1786   E   FI = 10 

   1805   U  FI = 19 

   1851   U  FI = 46 

   1859   E  = 8 

    1870   M = 11 

    1886   U = 15 

 Total number of fire scars: 9 

 Total number of all indicators: 9 

 Average number years per fire: 26.3 

 Sample mean fire interval : 20.1   

 

Sample: 58 Code: MG3004 

 Inner Ring: 1632 

 Outer Ring: 1763 

 Length of sample: 132 

 Number of recorder years in sample: 5 

Information on Fire History:  

    1643   E 

    1648   L    FI = 5 

    1665   E    FI = 17 

    1684   E    FI = 19 

    1694   E    FI = 10 

 Total number of fire scars: 5 

 Total number of all indicators: 5 

 Average number years per fire: 1.0 

 Sample mean fire interval: 12.8 
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Sample: 59 Code: MG3005 

 Pith Ring: 1660 

 Length of sample: 221 

 Number of recorder years in sample: 4 

Information on Fire History:  

    1665   E 

    1773   E    FI = 108 

    1870   U    FI = 97 

    1880   U    FI = 10 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 1.0 

 Sample mean fire interval: 71.7 

  

Sample: 60 Code: MG3006 

 Inner Ring: 1639 

 Length of sample: 51 

 Number of recorder years in sample: 2 

Information on Fire History:  

    1665   E 

    1689   U    FI = 24 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 1.0 

 Sample mean fire interval: 24.0 

  

Sample: 61 Code: MG3007 

 Pith Ring: 1808 

 Bark Ring: 1905 

 Length of sample: 98 

 Number of recorder years in sample: 55 

Information on Fire History:  

    1851   E 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 55.0 

 Sample mean fire interval:  NA  

  

 

 

 

 

 

 

 

 

 

Sample: 62 Code: MG3008 

 Inner Ring: 1766 

 Bark Ring: 2013 

 Length of sample: 248 

 Number of recorder years in sample: 146 

Information on Fire History:  

    1806   E 

    1851   U    FI = 45 

    1870   E    FI = 19 

    1886   E    FI = 16 

 Total number of fire scars: 4 

 Total number of all indicators: 4 

 Average number years per fire: 36.5 

 Sample mean fire interval: 26.7 

  

Sample: 63 Code: MG3009 

 Pith Ring: 1650 

 Outer Ring: 1790 

 Length of sample: 141 

 Number of recorder years in sample: 1 

Information on Fire History:  

    1773   U 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 1.0 

 Sample mean fire interval:  NA  

  

Sample: 64 Code: MG3011 

 Inner Ring: 1749 

 Bark Ring: 2013 

 Length of sample: 265 

 Number of recorder years in sample: 190 

Information on Fire History:  

    1824   U 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 190.0 

 Sample mean fire interval:  NA  
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Sample: 65 Code: MG3012 

 Pith Ring: 1650 

 Outer Ring: 1761 

 Length of sample: 112 

 Number of recorder years in sample: 78 

Information on Fire History:  

    1684   M 

    1717   E    FI = 33 

    1735   E    FI = 18 

 Total number of fire scars: 3 

 Total number of all indicators: 3 

 Average number years per fire: 26.0 

 Sample mean fire interval: 25.5 

  

Sample: 66 Code: MG3013 

 Pith Ring: 1684 

 Length of sample: 168 

 Number of recorder years in sample: 111 

Information on Fire History:  

    1735   M 

    1742   M    FI = 7 

    1752   M    FI = 10 

    1755   L    FI = 3 

    1757   M    FI = 2 

    1851   U    FI = 94 

 Total number of fire scars: 6 

 Total number of all indicators: 6 

 Average number years per fire: 18.5 

 Sample mean fire interval: 23.2 

 

Sample: 67 Code: MG3014 

 Inner Ring: 1639 

 Outer Ring: 1918 

 Length of sample: 280 

 Number of recorder years in sample: 1 

Information on Fire History:  

    1773   M 

 Total number of fire scars: 1 

 Total number of all indicators: 1 

 Average number years per fire: 1.0 

 Sample mean fire interval:  NA  

 

Sample: 68 Code: MG3015 

 Pith Ring: 1639 

 Bark Ring: 2000 

 Length of sample: 362 

 Number of recorder years in sample: 2 

Information on Fire History:  

    1684   E 

    1886   E    FI = 202 

 Total number of fire scars: 2 

 Total number of all indicators: 2 

 Average number years per fire: 1.0 

 Sample mean fire interval: 202.0 
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