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Abstract

Title: The Green’s Function Method for Solutions of Fourth Order Nonlinear Boundary

Value Problem.

This thesis has demonstrated that Green’s functions have a wide range of applications

with regard to boundary value problems. In particular, existence and uniqueness of so-

lutions of a large class of fourth order boundary value problems has been established. In

fact, given any fourth order ODE with homogeneous boundary conditions, as long as the

corresponding Green’s function exists and f satisfies an appropriate Lipschitz condition,

Theorem 2.1 guarantees such a solution under equally mild conditions. Similarly, Theo-

rem 2.2 also guarantees such a solution under equally mild conditions. These theorems

are contrasted with classical ODE existence theorems in that they get around the use of

classical convergence analysis by assuming the existence of the Green’s function. Banach

techniques are still used, but the existence of the Green’s function is the primary tool

in showing existence and uniqueness. This requires, of course, that the Green’s function

exists for particular problem, but the examples in Section 4 show that this s usually not

a severe restriction.

However, as mild as the restrictions seem to be, one should pay particular detail to the

range of values on the Lipschitz constant(s). The Lipschitz constants corresponding to f

must satisfy an inequality involving bounds on integrals of G and its derivatives, which,

if G is badly behaved, may be a severe restriction. The examples of Section 4 illustrate

these ideas. For example, Theorems 4.1-4.2 are specific cases in which Theorem 2.2 is

applicable.
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Section 1: Introduction and Preliminaries

Introduction

Fourth order differential equations are models for bending or deformation of elastic beams

in equilibrium state, whose two ends are simply supported and therefore have important

applications in engineering and physical science. The solutions of fourth order boundary

value problems are the subject of this work. In particular, the focus will be on applications

of the corresponding Green’s functions and the resulting qualitative properties of the

solutions. After establishing the basic definitions, the first step is to guarantee that

solutions to the equations in questions do, in fact, exist and are unique. Thus, a sequence

of general uniqueness and existence theorems for fourth order differential equations with

homogeneous boundary conditions is established. Next, an extensive collection of Green’s

functions is derived, many of which are used later on to illustrate various applications.

Finally, specific existence and uniqueness theorems are proved by applying many of the

previous results. We follow the method of [1] for 2th order equations and that of [4] for

3th order equations.

Preliminary Definition and Theorem

This section will introduce the basic definitions, theorems, and conclusions that will be

used throughout.

Definition 1.1 (Norms and Normed Space). Let X be a vector space(=linear space)

over the field C of complex scalars. Then X is a normed linear space if for every f P X
there is a real number ‖f‖, called the norm of f, such that:

(a) ‖f‖ ¥ 0,

(b) ‖f‖ � 0 if and only if f � 0

(c) ‖cf‖ � |c|‖f‖ for every scalar c, and

(d) ‖f � g‖ ¤ ‖f‖� ‖g‖.

Definition 1.2 (Convergent and Cauchy Sequence). Let X be a normed space,

1



and lettfnunPN be a sequence of elements of X.

(a) tfnunPN converges to f P X if lim
nÑ8

‖f � fn‖ � 0, i.e., if

@ ε ¡ 0 , DN ¡ 0, @n ¥ N, ‖f � fn‖   ε.

In this case, we write lim
nÑ8

fn � f .

(b) tfnunPN is Cauchy if

@ ε ¡ 0 , DN ¡ 0, @n,m ¥ N, ‖fm � fn‖   ε.

Definition 1.3 (Banach Space). A Banach Space, (X, } � }) is a complete normed linear

space. Let B � Cra, bs with the supreme norm, denoted by } � }8. Then B is a Banach

space. It will be beneficial, however, to use a variation of this norm on some subspace of

B. An example of such a space that will be used frequently is given by the following.

Theorem 1.1. Let w in Cp1qra, bs be a fixed function such that wpaq � w1paq � wpbq �
w1pbq � 0 and wpxq ¡ 0 for a   x   b. Let

B� � tu P B : |upxq| ¤ Cwpxq for some C � Cpuq ¡ 0u.

For u P B�, define

‖u‖� � sup
a x b

|upxq|
wpxq .

Then } � }� is a norm on B� and pB�, } � }�q is a Banach space.

Proof. It is easy to see that B� is a subspace of B. By the definition of B�, u(a)=u(b)=0

for any u P B�. Moreover, if ‖upxq‖� � 0,then

|upxq|
wpxq ¤ sup

a x b

|upxq|
wpxq � 0 ùñ upxq � 0.

The triangle inequality and the fact that scalars can be factored out of } � }� follow easily
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from the definition. Thus, } � }� is a norm on B�. Now, it must be shown that B� is

complete. Let tunu8n�1 be a Cauchy sequence in pB�, } � }�q. LetM � supa¤x¤bwpxq. Let
ε ¡ 0 be given. There exists an N P N such that for any n,m ¥ N, ‖un � um‖�   ε

M
.

If n, m ¥ N , then for a   x   b we have 1 ¤ M
wpxq

, so that

|unpxq � umpxq| ¤ sup
a x b

M |unpxq � umpxq|
wpxq � M‖un � um‖�   ε.

Thus, |unpxq � umpxq| ¤ ε @x P ra, bs ùñ ‖un � um‖8   ε @n,m ¥ N . Since

ε ¡ 0 is arbitrary, tunu is a Cauchy sequence in B, showing that a Cauchy sequence in

B� is also Cauchy in B. B is complete, implying that there exists a u P Cra, bs such that

un Ñ u in pB, } � }q.
Choose an x P pa, bq. Since un Ñ u in } � }8, there exists an N P N such that

n ¥ N ùñ ‖un � u‖8   wpxq. For any n ¥ N ,

|unpxq � upxq| ¤ sup
a¤x¤b

|unpxq � upxq| � ‖un � u‖8   wpxq.

which, along with the reverse triangle inequality, implies

|upxq|
wpxq   |unpxq|

wpxq � 1 ¤ sup
a x b

|unpxq|
wpxq � 1 � ‖un‖� � 1.

So, |upxq|
wpxq

  ‖un‖� � 1. Since Cauchy sequences are bounded there exists a constant

K ¡ 0 such that ‖un‖� ¤ K. Hence,

sup
a x b

|unpxq|
wpxq ¤ K � 1 ùñ ‖u‖� ¤ K � 1   8 ùñ u P B�.

Finally, for ε ¡ 0, there exists an N P C such that for n,m ¥ N and for all x P pa, bq,

|unpxq � umpxq|
wpxq ¤ ‖un � um‖�   ε.

Let mÑ 8 in the previous inequality. Then for n ¥ N and @x, it follows that
|unpxq � upxq|

wpxq ¤ ε.

Thus, ‖un � u‖� ¤ ε for n ¥ N , showing that un Ñ u in pB�, } � }�q. �
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Theorem 1.1 can be generalized for a non-identically zero function w P Cra, bs such that

wpxq ¥ 0 on ra, bs. Let Bw � B� in Theorem 1.1. A norm on Bw can be defined by

‖u‖� � supxPSw

|upxq|
wpxq

where Sw � tx : wpxq � 0u. The preceding proof applies without

change to show that Bw is complete under } � }�. Typically in the following applications,

however, wpxq ¡ 0 on a   x   b.

The Contraction Mapping Principle which we study in the present section applies in

many function spaces. In particular,it implies the initial value problem for differential

equations, under mild hypotheses, has a unique solution.

Contraction Mapping Theorem. Let T : B Ñ B be a continuous map from the

Banach space, B , into itself such that for all u, v P B,

‖T puq � T pvq‖ ¤ θ‖u � v‖

for some fixed θ P p0, 1q. Then T has a unique fixed point u0, i.e., T pu0q � u0 and

T puq � u if and only if u � u0.

The Contraction Mapping Theorem is an important tool in proving existence and unique-

ness of solutions to ordinary differential equations, as will be seen later.

The following is some basic material from the theory of ordinary differential equations

and boundary value problems. The definitions and the proofs of Theorem 1.2 and 1.3 are

given in Walter([Wa],Ch.6). For notational purposes, arbitrary differential operators will

be denoted by D.

Definition 1.4. The linear fourth order separated boundary value problem is defined as

pDuqpxq :� pppxqu2pxqq2 � qpxqupxq � gpxq, x P ra, bs, (1.1)

with linearly independent separated boundary conditions

R1u : � α1upaq � α2u
1paq � α3ppaqu2paq � α4ppu2q1paq � η1,

R2u : � β1upaq � β2u
1paq � β3ppaqu2paq � β4ppu2q1paq � η2,

R3u : � γ1upbq � γ2u
1pbq � γ3ppbqu2pbq � γ4ppu2q1pbq � η3, (1.2)

R4u : � ξ1upbq � ξ2u
1pbq � ξ3ppbqu2pbq � ξ4ppu2q1pbq � η4.
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assuming that p P Cp2qra, bs and q, g P Cp0qra, bs are real-valued functions, that ppxq ¡ 0

in [a,b], and that αi, βi, γi, ξi, ηi, i � 1, 2, 3, 4 are real constants. The corresponding

homogeneous boundary value problem is given by

Du � 0 on ra, bs, (1.3)

R1u � R2u � R3u � R4u � 0. (1.4)

Theorem 1.2. Let u1pxq, u2pxq, u3pxq, u4pxq be a fundamental system of solutions to the

homogeneous differential equation Du � 0. The inhomogeneous boundary value problem,

(1.1), with boundary conditions, (1.2), is uniquely solvable if and only if the homogeneous

problem, (1.3), (1.4), has only the zero solution u � 0. The latter is true if and only if

the determinant of

rRiujs4i,j�1 is nonzero.

Moreover, the determinant condition does not depend on the choice of fundamental sys-

tem.

Consequently, it is sufficient to solve (1.1) with the homogeneous boundary conditions,

(1.4), instead of (1.1), (1.2). To illustrate this, suppose a function,wpxq in Cp2qra, bs can
be found that satisfies (1.2). If v satisfies Dv � gpxq � Dw and (1.4), then u � v � w

satisfies Du � Dv � Dw � gpxq and (1.2). Finding such a function, w, is not typically

a problem and, in fact, w can be chosen to be a polynomial as in the examples given

later.

Theorem 1.3. Assume p P Cp2qra, bs, q, g P Cp0qra, bs are real valued functions, and

ppxq ¡ 0 in ra, bs. If the homogeneous boundary value problem

Du � 0 on ra, bs, R1u � R2u � R3u � R4u � 0, (1.5)

has only the trivial solution(i.e., if the determinant given in Theorem 1.2 is nonzero) then

the Green’s function for this boundary value problem exists and is unique.

The solution of the "semihomogeneous" boundary value problem

Du � gpxq on ra, bs, R1u � R2u � R3u � R4u � 0 (1.6)

which is unique by Theorem 1.2, is given by

upxq �
» b
a

Gpx, sqgpsqds. (1.7)

5



The focus of this work will be on fourth order ordinary differential equations,

yp4q � fpx, ypxq, y1pxq, y2pxq, y3pxqq,

satisfying a Lipschitz conditions of the form

|fpx, upxq, u1pxq, u2pxq, u3pxqq � fpx, vpxq, v1pxq, v2pxq, v3pxqq| ¤

L|upxq � vpxq| � K|u1pxq � v1pxq| � M |u2pxq � v2pxq| � N |u3pxq � v3pxq|, (1.8)

where K, L, M and N are fixed positive constants. At a later point, these constants

will be replaced by functions h(x), k(x), r(x) and s(x), giving a more general Lipschitz

condition.

Theorems 1.2 and 1.3 have extensions for differential system of arbitrary order. In partic-

ular, if D is a linear operator of order n, then the nonhomogeneous problem Du � gpxq
with n linearly independent boundary conditions has a unique solution if and only if the

corresponding homogeneous problem has only the zero solution. In this case, the solu-

tion of the nonhomogeneous problem has the representation (1.7), although the Green’s

function is in general not symmetric. By symmetry we mean Gpx, sq � Gps, xq for all

x, s P ra, bs.
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Section 2: Existence and Uniqueness

The following two theorems will form the foundation for what is to come. The remainder

of this work will consist of applications of the following existence and uniqueness theorems.

The proofs are generalizations of the corresponding second order theorems, which are

proved in Bailey,([1], Ch.3).

Consider the fourth order differential equation

up4qpxq � fpx, upxq, u1pxq, u2pxq, u3pxqq (1.9)

with linearly independent boundary conditions

R1u : � α1upaq � α2u
1paq � α3u

2paq � α4u
3paq � 0

R2u : � β1upaq � β2u
1paq � β3u

2paq � β4u
3paq � 0

R3u : � γ1upbq � γ2u
1pbq � γ3u

2pbq � γ4u
3pbq � 0 (1.10)

R4u : � ξ1upbq � ξ2u
1pbq � ξ3u

2pbq � ξ4u
3pbq � 0.

A test for linear independence is given by Coddington ([3]) to be

rank

�
������

α1 α2 α3 α4 0 0 0 0

β1 β2 β3 β4 0 0 0 0

0 0 0 0 γ1 γ2 γ3 γ4

0 0 0 0 ξ1 ξ2 ξ3 ξ4

�
�����

� 4. (1.11)

The boundary conditions space, denoted by S, consists of all u in Cp4qra, bs that satisfy the

boundary conditions. Various norms will be assigned throughout to make S a subspace of

a Banach space. The following theorem is proved for fourth order equations, though

the conclusion holds for other order equations as well.

Theorem 1.4. Suppose f : R2 Ñ R is continuous and satisfy

|fpx, u2q � fpx, u1q| ¤ hpxq|u2 � u1|

7



for some nonnegative continuous function h. Suppose the Green’s function G for the

boundary value problem up4qpxq � gpxq and p2.2q exists. Define the operator,

T : Cra, bs Ñ S � Cra, bs,by

pTuqpxq �
» b
a

Gpx, sqfps, upsqqds.

Suppose w is a fixed nontrivial element of Cra, bs with wpxq ¥ 0. Suppose also T :

Bw Ñ Bw where the Banach space Bw is described in the remarks following Theorem

1.1.

a) If the Green’s function, G, is of constant sign, and

max
xPSw

�
zpxq
wpxq

�
  1,

where z is defined by zpxq � ³b
a
|Gpx, sq|hpsqwpsqds and Sw � tx P ra, bs : wpxq �

0u, then p2.1q, p2.2q has a unique solution. Further z satisfies zp4qpxq � psign Gqhpxqwpxq
with boundary conditions p2.2q.
b) If G is possibly not of constant sign and

max
xPSw

�
1

wpxq
» b
a

|Gpx, sq|hpsqwpsqds
�
  1,

then p2.1q, p2.2q has a unique solution.

8



Proof. (a) Consider the case where G is negative (the proof for positive G is similar).

Let ‖u‖� � supa x b
|upxq|
wpxq

denote the norm that was defined in Theorem 1.1, but with

the maximum taken over Sw. Then

|pTuqpxq � pTvqpxq| � |
» b
a

Gpx, sqrfps, upsqq � fps, vpsqqsds|

¤
» b
a

|Gpx, sq||upsq � vpsq|hpsqds

¤
» b
a

‖u � v‖�|Gpx, sq|hpsqwpsqds

� ‖u � v‖�zpxq.

From the definition of zpxq and the fact that G is a Green’s function, it follows that

zp4qpxq � �hpxqwpxq with boundary conditions (2.2). Now for x P Sw

|pTuqpxq � pTvqpxq|
wpxq ¤ zpxq‖u � v‖�

wpxq .

This implies

‖Tu � Tv‖� ¤ ‖u � v‖� max
xPSw

zpxq
wpxq ,

where maxxPsw

zpxq
wpxq

  1 by hypothesis, proving that T is a contraction on Bw which

yields a unique fixed point that is the solution of (2.1), (2.2). This proves part (a).

(b) If G is possibly not of one sign, then for x P Sw,

|pTuqpxq � pTvqpxq|
wpxq ¤ ‖u � v‖� 1

wpxq
» b
a

|Gpx, sq|hpsqwpsqds.

Thus,

‖Tu � Tv‖� ¤ ‖u � v‖� max
xPSw

1
wpxq

» b
a

|Gpx, sq|hpsqwpsqds.

The maximum is less than 1 by hypothesis, so T is a contraction, which yields a unique

fixed point that is a solution of (2.1), (2.2). �

9



Two cases of Theorem 2.1 are needed because if G is of constant sign, the function zpxq
is much easier to compute by solving the differential equation zp4qpxq � sign(G)hpxqwpxq.
One of the obstacles that can arise in applying Theorem 2.1 is confirming the hypothesis

that T maps Bw into Bw. In many cases, wpxq � 1, in which case Bw � Cra, bs
and T : Bw Ñ Bw clearly holds. In general, though, for w having zeros in ra, bs,
the properties of the corresponding Green’s function must be used to establish that this

hypothesis holds.

Example of calculating a function h(x).

Consider a function of the two variables fpx, yq � x2y sinpexq on r0, 1s.
By the Mean Value Theorem, for all x, y P R (say y1   y2q), we have a number ξ P py1, y2q
such that

|fpx, y2q � fpx, y1q| � Bf
By
����
y�ξ

|y2 � y1|.

So, hpxq � max|Bf
By

| on 1 ¤ x ¤ 1� p�8,8q ñ hpxq � fy � x2 sinpexq ¤ x2

It will be beneficial, particularly for the examples and applications that will be presented

later, to state the analog of Theorem 2.1 for more general fourth order equations.

In Chapter 4, examples will be given showing how the function w may be chosen and

how the existence of solutions depends on this choice.

Theorem 1.5. Let f : ra, bs � R5 Ñ R satisfy General Lipschitz Condition p1.8q.
Suppose the Green’s function Gpx, sq, a ¤ x, s ¤ b exists for boundary value problem

up4qpxq � gpxq and p2.2q. Suppose further that there exist constants M1, M2, M3, M4,

such that for all x P ra, bs
» b
a

|Gpx, sq|ds ¤ M1,

» b
a

|Gxpx, sq|ds ¤ M2,

» b
a

|Gxxpx, sq|ds ¤ M3,

» b
a

|Gxxxpx, sq|ds ¤ M4.

Assume also that LM1 � KM2 �MM3 � NM4   1. Then there exists a unique solution

to the boundary value problem

yp4qpxq � fpx, ypxq, y1pxq, y2pxq, y3pxqq, x P ra, bs,

with boundary conditions p2.2q.

10



Proof. Let ‖u‖3 :� maxa¤x¤brL|upxq| � K|u1pxq| � M |u2pxq| � N |u3pxq|s be the norm

on Cp3qra, bs so that Cp3qra, bs is a Banach space. Define the operator T : Cp3qra, bs Ñ
Cp4qra, bs by

y � Ty �
» b
a

Gpx, sqfps, ypsq, y1psq, y2psq, y3psqqds.

To see that T does, indeed, map into Cp4qra, bs, note first that the differentiability of G

allows differentiation under integral sign. Hence,

pTuq1pxq �
» b
a

Gxpx, sqfps, upsq, u1psq, u2psq, u3psqqds,

pTuq2pxq �
» b
a

Gxxpx, sqfps, upsq, u1psq, u2psq, u3psqqds,

pTuq3pxq �
» b
a

Gxxxpx, sqfps, upsq, u1psq, u2psq, u3psqqds,

and the fact that the Green’s function exists gives

pTuqp4qpxq � fps, upsq, u1psq, u2psq, u3psqq.

Now it must be shown that T is a contraction map.

|Tupxq � Tvpxq| ¤
» b
a

|Gpx, sq||fps, upsq, u1psq, u2psq, u3psqq � fps, vpsq, v1psq, v2psq, v3psqq|ds

¤
» b
a

|Gpx, sq|rL|upsq � vpsq| � K|u1psq � v1psq|

�M |u2psq � v2psq| � N |u3psq � v3psq|sds

¤ ‖u � v‖3

» b
a

|Gpx, sq|ds

¤ ‖u � v‖3M1.

Similarly,

|pTuq1pxq � pTvq1pxq| ¤ ‖u � v‖3

» b
a

|Gxpx, sq|ds ¤ ‖u � v‖3M2,

|pTuq2pxq � pTvq2pxq| ¤ ‖u � v‖3

» b
a

|Gxxpx, sq|ds ¤ ‖u � v‖3M3,

and

|pTuq3pxq � pTvq3pxq| ¤ ‖u � v‖3

» b
a

|Gxxxpx, sq|ds ¤ ‖u � v‖3M4.

11



Since x is arbitrary in the previous inequalities, it follows by multiplying the four inequal-

ities by L, K, M, N respectively that

‖Tu � Tv‖3 ¤ ‖u � v‖3pLM1 � KM2 � MM3 � NM4q.

By hypothesis, LM1 � KM2 �MM3 � NM4 is less than 1. Therefore, T is a contraction

from the complete space, Cp3qra, bs into itself. Consequently, it has unique fixed point, u,

which is the desired solution. �

Example of calculating constants L,K,M,N.

Consider a function fpx, u, u1, u2, u3q � exu � cospu1q � 10u2 � xu3 on r0, 1s � R4.

By the Mean Value Theorem

Bf
Bu � ex ¤ e � L.

| BfBu1 | � |� sinpu1q| ¤ 1 � K.

| BfBu2 | � |�10| � 10 � M.

Bf
Bu3 � x ¤ 1 � N.

Now that existence and uniqueness of solutions have been established, the next step is to

derive the corresponding Green’s functions.
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Section 3: Green’s Functions and First

Eigenvalues

This section presents the derivation of Green’s function for fourth order boundary

value problems. This facilitates the transition into the last part of the chapter, where

the relation between these Green’s functions and the eigenvalues of the corresponding

differential equations is illustrated through some examples. Also in this section, the

general interval, [a,b], will be replaced by r0, as for a ¡ 0.

Example 3.1. Consider the following boundary value problem

up4qpxq � gpxq (1.12)

with boundary conditions

up0q � u1p0q � upaq � u1paq � 0. (1.13)

We can rewrite the inhomogeneous problem (3.1) as:

Drus � up4qpxq � gpxq, for 0 ¤ x ¤ a,

subject to the homogeneous boundary conditions

B1rus � up0q � 0, B2rus � u1p0q � 0, B3rus � upaq � 0 and B4rus � u1paq � 0.

The Green’s function Gpx, sq is defined as the solution to

Gxxxxpx, sq � δpx� sq subject to Gp0, sq � Gxp0, sq � 0 and Gpa, sq � Gxpa, sq � 0,

where δ is the Dirac delta function.

We can represent the solution to the above inhomogeneous problem as an integral involv-

ing the Green’s function. To show that

upxq �
» a

0
Gpx, sqgpsqds

13



is the solution, we apply the differential operator to the integral. (Assuming that the

integral is uniformly convergent.)

D

� » a
0
Gpx, sqgpsqds

�
�
» a

0
DrGpx, sqsgpsqds

�
» a

0
δpx � sqgpsqds

� gpsq

The integral also satisfies the boundary conditions for i � 1, 2, 3, 4.

Bi

� » a
0
Gpx, sqgpsqds

�
�
» a

0
BirGpx, sqsgpsqds

�
» a

0
p0qgpsqds

� 0

One of the advantage of using Green’s function is that once you find the Green’s function

for a differential operator and certain homogeneous boundary conditions,

DrGs � δpx � sq, B1rGs � B2rGs � B3rGs � B4rGs � 0.

you can write the solution for any inhomogeneity g(x), i.e.,

Drf s � gpxq, B1rus � B2rus � B3rus � B4rus � 0.

Before calculating Gpx, sq, let’s see what general conditions it must satisfy for any arbi-

trary boundary conditions.

(1). For each x and s , Gpx, sq satisfies Gxxxx � 0 except when x � s.

(2). G satisfies the boundary conditions Gp0, sq � Gxp0, sq �
� Gpa, sq � Gxpa, sq � 0.

(3). G(x,s) must be continuous at all x, as well as its derivatives up to 2th order.

Gps�, sq � Gps�, sq � 0, Gxps�, sq � Gxps�, sq � 0,

and Gxxps�, sq � Gxxps�, sq � 0.

(4). At x � s, the 3th derivative of G must have a jump discontinuity of magnitude

-1 in order that the 3th term match the delta function, i.e.,

Gxxxps�, sq � Gxxxps�, sq � 1.

14



Now, knowing the properties of the Green’s function we can construct such a func-

tion. It is not hard to see that linear independent solutions for the DE (3.1) are

1, x, x2, x3 and 1, a � x,

pa � xq2, pa � xq3. Thus,the Green’s function, Gpx, sq, satisfies the condition (1) above

if

Gpx, sq �

$'&
'%
A1 � A2x � A3x

2 � A4x
3, if 0 ¤ x ¤ s ¤ a

B1 � B2pa � xq � B3pa � xq2 � B4pa � xq3 if 0 ¤ s   x ¤ a

(1.14)

where A1, A2, A3, A4 and B1, B2, B3, B4 are functions of s. Knowing that the Green’s

functionGpx, sq satisfies the BVP with homogeneous BCs by the condition (2) we have

A1 � A2 � B1 � B2 � 0.

We deduce that the Green’s function for the problem is

Gpx, sq �

$'&
'%
A3x

2 � A4x
3, if 0 ¤ x ¤ s ¤ a

B3pa � xq2 � B4pa � xq3 if 0 ¤ s   x ¤ a
(1.15)

The continuity conditions (3) yield the following equations
$''''&
''''%

B3pa � sq2 � B4pa � sq3 � A3s
2 � A4s

3

�2B3pa � sq � 3B4pa � sq2 � 2A3 � 3A4s
2

2B3 � 6B4pa � sq � 2A3 � 6A4s

(1.16)

And the jump condition (4) gives us the equation

� 6B4 � 6A4 � 1. (1.17)

We can find the coefficients A3, A4, B3, B4 solving equations (3.5) and equation (3.6)

simultaneously using Maple.

A3 � spa2 � 2as � s2q
2a2 , A4 � �2as3 � 3as2 � a3

6a3 ,

B3 � �s
2ps � aq

2a2 , and B4 � s2p2s � 3aq
6a3 .
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And finally, substituting the found coefficients into equation (3.4) we arrive to the ex-

pression of a Green’s function

Gpx, sq �

$'&
'%
x2ps � aq2p3as � 2sx � xaq{6a3, if 0 ¤ x ¤ s ¤ a

�s2pa � xq2pas � 2sx � 3xaq{6a3, if 0 ¤ s   x ¤ a
(1.18)

The Green’s function for the Example 3.1 turned out to be symmetric, i.e., Gpx, sq �
Gps, xq. It is also nonnegative as may be verified by calculus to show that

fspxq :� 3as � 2sx � ax ¥ 0 on 0 ¤ x ¤ s.

Example 3.2. Consider the following boundary value problem

up4qpxq � gpxq

with boundary conditions

up0q � u1p0q � u1paq � u3paq � 0.

Starting again with the general expression of a Green’s function for the homogeneous 4th

order differential equation.

Gpx, sq �

$'&
'%
A1 � A2x � A3x

2 � A4x
3, if 0 ¤ x ¤ s ¤ a

B1 � B2pa � xq � B3pa � xq2 � B4pa � xq3 if 0 ¤ s   x ¤ a

(1.19)

Applying boundary conditions we find that

A1 � A2 � B2 � B4 � 0.

This reduces the expression for a Green’s function to the following

Gpx, sq �

$'&
'%
A3x

2 � A4x
3, if 0 ¤ x ¤ s ¤ a

B1 � B3pa � xq2, if 0 ¤ s   x ¤ a
(1.20)

The continuity conditions yield the following equations
$''''&
''''%

A3s
2 � A4s

3 � B1 � B3pa � sq2

2A3s � 3A4s
2 � �2B3pa � sq

2A3 � 6A4s � 2B3.

(1.21)
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And the jump condition gives us the equation

� 6A4 � 1. (1.22)

Again, we can find the coefficients A3, A4, B1, B3 solving equations (3.10) and equation

(3.11) simultaneously using Maple.

A3 � �sps � 2aq
4a , A4 � �1

6 , B1 � �1
6s

3 � 1
4s

2 and B3 � � s
2

4a.

And substituting the found coefficients into equations (3.9) we arrive at the expression

of the Green’s function

Gpx, sq �

$'&
'%
�s2p2as � 6ax � 3x2q{12a, if 0 ¤ s   x ¤ a

�x2p3s2 � 6as � 2axq{12a, if 0 ¤ x ¤ s ¤ a
(1.23)

The Green’s function for the Example 3.2 turned out to be symmetric and nonnegative

as well, i.e., Gpx, sq � Gps, xq.

Example 3.3. Consider the following boundary value problem

up4qpxq � gpxq

with boundary conditions

up0q � u1p0q � u2paq � u3paq � 0.

Following the same procedure as in examples (3.1) and (3.2) we find the Green’s function

to be

Gpx, sq �

$'&
'%
x2p3s � xq{6, if 0 ¤ x ¤ s ¤ a

�s2ps � 3xq{6, if 0 ¤ s   x ¤ a
(1.24)

The Green’s function for the Example 3.3 turned out to be symmetric and nonnegative

as well, i.e., Gpx, sq � Gps, xq.

Example 3.4. Consider the following boundary value problem

up4qpxq � gpxq

with boundary conditions

up0q � u2p0q � upaq � u2paq � 0.
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In this case of homogeneous boundary conditions the Green’s function is

Gpx, sq �

$'&
'%
xps � aqps2 � 2as � x2q{6a, if 0 ¤ x ¤ s ¤ a

spa � xqps2 � 2ax � x2q{6a, if 0 ¤ s   x ¤ a
(1.25)

And the Green’s function possesses the symmetry property as well as in all previous

examples, i.e.,

Gpx, sq � Gps, xq.
The Green’s functions in given examples could have been derived for a � 1. We can

show that it gives us a general case.

The general form of the Green’s function for 4th order nonlinear differential equations

yp4q � gpxq with some homogeneous boundary conditions is ypxq � ³a
0 Gapx, sqgpsqds.

We rescale the variable ypxq so that

ỹpξq � ypaξq, 0 ¤ ξ ¤ 1, x � aξ, τ � s

a
,

then

ỹp4qqξq � a4yp4qpaξq � a4gpxq � a4gpaξq.

Therefore

ỹpξq �
» 1

0
G1pξ, τqa4gpaτqdτ.

Consequently

ypxq �
» a

0
G1pξ, s

a
qa4gpsqds

a
�
» a

0
G1px

a
,
s

a
qa3gpsqds.

We can see the relationship between the Green’s function Gapx, sq and rescaled one

G1pxa , saq is:
Gapx, sq � G1px

a
,
s

a
qa3. (1.26)

The last part of this section will focus on the eigenvalues associated with the Green’s

functions that we just found. Let us find the eigenvalues associated with

Du � up4qpxq � fpx, upxq, u1pxq, u2pxq, u3pxqq
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with homogeneous boundary conditions, where f satisfies the conditions of the Theorem

(2.1). An eigenvalue of the operator, D, is a constant λ such that Du � λhpxqupxq
for some some nontrivial u satisfying the given boundary conditions. Later we apply

our knowledge to the special case where fpx, upxq, u1pxq, u2pxq, u3pxqq � λupxq. The

corresponding eigenvalue problem is

up4qpxq � λupxq. (1.27)

with appropriate boundary conditions. Substituting erx for u, we find that the charac-

teristic equation is

r4 � λ � pr2 �
?
λqpr2 �

?
λq � 0. (1.28)

Therefore the roots are r � �λ1{4, �iλ1{4. This means that the linear space of solutions

of Eq. (3.16) is spanned by

erx, e�rx, eirx, and e�irx.

Since

cosprxq � eirx � e�irx

2 and sinprxq � eirx � e�irx

2i
we may also change basis and use instead the real-valued functions

erx, e�rx, cosprxq, and sinprxq.

And the general solution of Eq. (3.16) is

upxq � c1e
rx � c2e

�rx � c3 cosprxq � c4 sinprxq. (1.29)

Since

coshprxq � erx � e�rx

2 and sinhprxq � erx � e�rx

2
we may convert the above general solution of Eq. (3.16) to the following

upxq � c1 coshprxq � c2 sinhprxq � c3 cosprxq � c4 sinprxq. (1.30)

Finding the 1st derivative of upxq we obtain

u1pxq � rrc1 sinhprxq � c2 coshprxq � c3 sinprxq � c4 cosprxqs. (1.31)

It is convenient to rescale the variables in the following examples so that

ũpsq � upasq � upxq, x � as, and 0 ¤ s ¤ 1.
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Therefore, letting λ0paq be the first positive eigenvalue,

ũp4qpsq � a4up4qpasq � a4up4qpxq � a4λ0paqupxq � a4λ0paqũpsq � λ0p1qũpsq.

We can see the relationship between the first positive eigenvalue λ0paq and rescaled one

λ0p1q is:
λ0paq � λ0p1q

a4 . (1.32)

Example 3.5. This example corresponds to Example 3.1.

up4qpxq � λupxq

up0q � u1p0q � up1q � u1p1q � 0. (1.33)

We now find the first eigenvalue for this example using (3.19). If we impose the boundary

conditions

up0q � u1p0q � 0 we find that

c3 � � c1, and c4 � � c2.

which reduces the equations of a general solution upxq and its 1st derivative to the fol-

lowing two equations

upxq � c1rcoshprxq � cosprxqs � c2rsinhprxq � sinprxqs

u1pxq � rc1rsinhprxq � sinprxqs � rc2rcoshprxq � cosprxqs
(1.34)

And if we impose the boundary conditions up1q � u1p1q � 0 we come down with the

system of equations written in the matrix form
�
� coshprq � cosprq sinhprq � sinprq

sinhprq � sinprq coshprq � cosprq

�
��

�
� c1

c2

�
� �

�
� 0

0

�
�

(1.35)

From the basic theory of system of linear algebraic equations, compatibility requires the

vanishing of the determinant of the matrix, i.e.,

pcoshprq � cosprqq2 � psinh2prq � sin2prqq � 0.
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which is equivalent to coshprq cosprq � 1. Using numerical methods Maple finds the

smallest possible r to be 4.7300. And since r4 � λ, the smallest possible positive

eigenvalue for the Eq.(3.22) is equal to 500.56390.

Example 3.6. This example corresponds to Example 3.2.

up4qpxq � λupxq

up0q � u1p0q � u1p1q � u3p1q � 0. (1.36)

Again we start with the general solution of Eq. (3.16)and its 1th derivative expressed in

terms of hyperbolic and trigonometric functions.

upxq � c1 sinhprxq � c2 coshprxq � c3 cosprxq � c4 sinprxq (1.37)

u1pxq � rrc1 sinhprxq � c2 coshprxq � c3 sinprxq � c4 cosprxqs. (1.38)

If we impose the boundary conditions up0q � u1p0q � 0 we find that

c1 � � c4, and c2 � � c3.

Applying the boundary condition u1p1q � 0 to the Eq.(3.26) we obtain

rrc1 coshprq � c2 sinhprq � c3 sinprq � c4 cosprqs � 0.

The 3th derivative of upxq is

u3pxq � r3rc1 coshprxq � c2 sinhprxq � c3 sinprxq � c4 cosprxqs. (1.39)

Applying the boundary condition u3p1q � 0 to the Eq.(3.28) we obtain

r3rc1 coshprq � c2 sinhprq � c3 sinprq � c4 cosprqs � 0. (1.40)

Knowing that c1 � � c4, and c2 � � c3 yields the system of equations of the 1th and

3th derivative of the general solution in the matrix form
�
� sinhprq � sinprq coshprq � cosprq

sinhprq � sinprq coshprq � cosprq

�
��

�
� c1

c2

�
� �

�
� 0

0

�
�

(1.41)

The determinant of the above matrix must to be equal to zero in order for the system of

algebraic equations to have a nontrivial solution, i.e.,

sinhprq cosprq � sinprq coshprq � 0.
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Using numerical methods Maple finds the smallest possible r to be 2.3650. And since

r4 � λ, the smallest possible positive eigenvalue for the Eq.(3.25) is equal to 31.2852.

Example 3.7. This example corresponds to Example 3.3.

up4qpxq � λupxq

up0q � u1p0q � u2p1q � u3p1q � 0. (1.42)

As previously we start with the general solution of Eq. (3.16)and its 1th derivative

expressed in terms of hyperbolic and trigonometric functions.

upxq � c1 sinhprxq � c2 coshprxq � c3 cosprxq � c4 sinprxq (1.43)

u1pxq � rrc1 sinhprxq � c2 coshprxq � c3 sinprxq � c4 cosprxqs. (1.44)

If we impose the boundary conditions up0q � u1p0q � 0 we find that

c1 � � c4, and c2 � � c3.

The 2th derivative of upxq is

u2pxq � r2rc1 sinhprxq � c2 coshprxq � c3 cosprxq � c4 sinprxqs. (1.45)

And the 3th derivative of upxq is

u3pxq � r3rc1 coshprxq � c2 sinhprxq � c3 sinprxq � c4 cosprxqs. (1.46)

Applying the boundary condition u2p1q � 0 to the Eq.(3.34) we obtain

r2rc1 sinhprq � c2 coshprq � c3 cosprq � c4 sinprqs � 0. (1.47)

Applying the boundary condition u3p1q � 0 to the Eq.(3.33) we obtain

r3rc1 coshprq � c2 sinhprq � c3 sinprq � c4 cosprqs � 0. (1.48)

Knowing that c1 � � c4, and c2 � � c3 yields the system of equations of the 2th and

3th derivative of the general solution in the matrix form
�
� coshprq � cosprq sinhprq � sinprq

sinhprq � sinprq coshprq � cosprq

�
��

�
� c1

c2

�
� �

�
� 0

0

�
� .

(1.49)
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The determinant of the above matrix should be zero, i.e.,

coshprq cosprq � 1 � 0.

Using numerical methods Maple finds the smallest possible r to be 1.8751. And since

r4 � λ, the smallest possible positive eigenvalue for the Eq.(3.31) is equal to 12.3623.

Example 3.8. This example corresponds to Example 3.4.

up4qpxq � λupxq

up0q � u2p0q � up1q � u2p1q � 0. (1.50)

We start with the general solution of Eq. (3.15)and its 2th derivative expressed in terms

of hyperbolic and trigonometric functions.

upxq � c1 sinhprxq � c2 coshprxq � c3 cosprxq � c4 sinprxq (1.51)

u2pxq � �r2r�c1 sinhprxq � c2 coshprxq � c3 cosprxq � c4 sinprxqs. (1.52)

Applying the boundary condition up0q � 0 to the Eq.(3.40) we obtain

c2 � c3 � 0. (1.53)

Applying the boundary condition u2p0q � 0 to the Eq.(3.39) we obtain

� c2 � c3 � 0. (1.54)

It is obvious that c2 � c3 � 0. Substituting the found coefficients into equations (3.40)

and applying the boundary condition up1q � 0 renders the following

c1 sinhprq � c4 sinprq � 0.

Substituting the found coefficients into equations (3.41) and applying the boundary con-

dition u2p1q � 0 gives us the following

c1 sinhprq � c4 sinprq � 0.

The last two equations can be written in the matrix form as following
�
� sinhprq sinprq

sinhprq � sinprq

�
��

�
� c1

c4

�
� �

�
� 0

0

�
� (1.55)
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Again, the determinant of the above matrix should be zero,i.e.,

2 sinhprq sinprq � 0.

It is evident that the smallest possible r to be π. And since r4 � λ, the smallest possible

positive eigenvalue for the Eq.(3.37) is equal to π4 � 97.4091.
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Section 4: Applications to Boundary Value

Problems
In this section, various aspects of the preceding material will be applied to boundary

value problems, with the specific goal of illustrating the theorems in Section 2. In partic-

ular, with respect to finding the first positive eigenvalue, better bounds on the Lipschitz

constant L will be obtained.

Application of Theorem 2.1.
We rescale the variables z, w for the equation zp4qpxq � Lwpxq in the following examples

so that

z̃psq � zpasq, w̃psq � wpasq, and L̃ :� a4L.

Therefore

z̃4qpsq � a4zp4qpasq � a4Lwpxq � a4Lw̃psq � L̃w̃psq,

and writing

max
0 ¤x¤a

zpxq
wpxq � MpaqL, and max

0¤s¤1

z̃psq
w̃psq � Mp1qa4L,

we can establish the relationship between bound constantMpaq and rescaled oneMp1q.

Since zpxq
wpxq �

z̃psq
w̃psq we can conclude that MpaqL � Mp1qa4L and Mpaq �Mp1qa4.

Example 4.1.1. This example corresponds to Example 3.1.

Du � up4qpxq � fpx, upxqq, where f satisfies |fpx, u1pxq � fpx, u2pxqq| ¤ L|u1pxq �
u2pxq| on r0, 1s (where hpxq � L in Theorem 2.1) with boundary conditions up0q �
u1p0q � up1q � u1p1q � 0, choose a polynomial, w, of degree 4 satisfying the boundary

conditions. Denote w by

wpxq � a0 � a1x � a2x
2 � a3x

3 � a4x
4.

Then

w1pxq � a1 � 2a2x � 3a3x
2 � 4a4x

3.

Imposing the boundary conditions wp0q � w1p0q � 0 yields

a0 � a1 � 0.
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Knowing that a0 � a1 � 0 and taking a4 � 1 simplifies the equation for wpxq and

w1pxq.

wpxq � a2x
2 � a3x

3 � x4 (1.56)

w1pxq � 2a2x � 3a3x
2 � 4x3 (1.57)

And consequently the boundary conditions

wp1q � a2 � a3 � 1 � 0 (1.58)

w1p1q � 2a2 � 3a3 � 4 � 0. (1.59)

Solving simultaneously equations (4.3) and (4.4) for a2 and a3 yields

a2 � 1 and a3 � �2.

Therefore, wpxq � x2 � 2x3 � x4 � x2px � 1q2, and zp4qpxq � Lpx2 � 2x3 � x4q.
Integrating yields

z1pxq � 1
60Lx

5 � 1
60Lx

6 � 1
210Lx

7 � 1
2C3x

2 � C2x � C1,

zpxq � 1
360Lx

6 � 1
420Lx

7 � 1
1680Lx

8 � 1
6C3x

3 � 1
2C2x

2 � C1x � C0.

Applying the boundary conditions zp0q � z1p0q � 0 reveals C0 � C1 � 0. There-

fore,

z1pxq � 1
60Lx

5 � 1
60Lx

6 � 1
210Lx

7 � 1
2C3x

2 � C2x, (1.60)

zpxq � 1
360Lx

6 � 1
420Lx

7 � 1
1680Lx

8 � 1
6C3x

3 � 1
2C2x

2. (1.61)

Applying the boundary conditions zp1q � z1p1q � 0 gives us the following couple of

equations:

z1p1q � 1
210L � 1

2C3 � C2 � 0, (1.62)

zp1q � 1
1008L � 1

6C3 � 1
2C2 � 0. (1.63)

Solving simultaneously equations (4.7) and (4.8) for C2 and C3 yields

C2 � 1
280L, and C3 � � 1

60L.
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Knowing all the coefficients we arrive at the expression for zpxq.

zpxq � 1
5040Lx

2p3x4 � 6x3 � x2 � 4x � 9qpx � 1q2. (1.64)

We finally can find the quotient zpxq
wpxq

:

zpxq
wpxq �

1
5040p3x

4 � 6x3 � x2 � 4x � 9qL.

Finding max0¤x¤1
zpxq
wpxq

by Maple shows that the maximum is 163L
80640 and less than one for

L   80640
163 � 494.7239.

It is necessary to show that T maps Bw into Bw in order to apply Theorem 2.1. The

Green’s function calculated in Example 3.1. is positive and simplifies for a � 1 to

Gpx, sq �

$'&
'%
x2ps � 1q2p3s � 2sx � xq{6, if 0 ¤ x ¤ s ¤ 1

�s2p1 � xq2ps � 2sx � 3xq{6, if 0 ¤ s   x ¤ 1

Thus,

Tupxq �
» 1

0
Gpx, sqfps, upsqqds

�
» x

0

��s2p1 � xq2qps � 2sx � 3xq
6

�
fps, upsqqds�

�
» 1

x

�
x2ps � 1q2qp3s � 2sx � xq

6

�
fps, upsqqds.

Since G(x,s) is positive and |s � 2sx � 3x| ¤ 6, then

|Tupxq| ¤
» x

0

�����s
2p1 � xq2qps � 2sx � 3xq

6

���� |fps, upsqq|ds�
�
» 1

x

����x
2ps � 1q2qp3s � 2sx � xq

6

���� |fps, upsqq|ds ¤
¤ x2p1 � xq2

» x
0

|fps, upsqq|ds � x2px � 1q2
» 1

x

|fps, upsqq|ds.

Thus, since wpxq � x2p1 � xq2,
����Tupxqwpxq

���� ¤
» 1

0
|fps, upsqqds| � Cpuq.
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Now the hypotheses of Theorem 2.1. are satisfied. Comparing the bound L   494.7239

to the optimal bound, L   500.56390, obtained in Example 3.5 shows that the function

w as a polynomial is a good estimate of the eigenfunction. If w is chosen to be more

similar to the eigenfunction, a better bound on L could be achieved.

Example 4.1.2. This example corresponds to Example 3.2.

Du � up4qpxq � fpx, upxqq, where f satisfies |fpx, u1pxq � fpx, u2pxqq| ¤ L|u1pxq �
u2pxq| on r0, 1s with boundary conditions up0q � u1p0q � u1p1q � u3p1q � 0, choose a

polynomial, w, of degree 4 satisfying the boundary conditions.

wpxq � a0 � a1x � a2x
2 � a3x

3 � a4x
4. (1.65)

Then

w1pxq � a1 � 2a2x � 3a3x
2 � 4a4x

3, (1.66)

w2pxq � 2a2 � 6a3x � 12a4x
2, (1.67)

w3pxq � 6a3 � 24a4x (1.68)

Imposing the boundary conditions wp0q � w1p0q � 0 yields

a0 � a1 � 0.

Knowing that a0 � a1 � 0 and taking a4 � 1 simplifies the equation for wpxq and

w1pxq.

wpxq � a2x
2 � a3x

3 � x4, (1.69)

w1pxq � 2a2x � 3a3x
2 � 4x3, (1.70)

w3pxq � 6a3 � 24x. (1.71)

And consequently

w1p1q � 2a2 � 3a3 � 4, (1.72)

w3p1q � 6a3 � 24. (1.73)

Solving simultaneously Eq.(4.17) and Eq.(4.18) for a2 and a3 reveals that

a2 � 4 and a3 � �4.
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Therefore, wpxq � 4x2 � 4x3 � x4 � x2px � 2q2, and zp4qpxq � Lp4x2 � 4x3 � x4q.
Integrating yields

z3pxq � 1
5Lx

5 � Lx4 � 4
3Lx

3 � C3, (1.74)

z1pxq � 1
210Lx

7 � 1
30Lx

6 � 1
15Lx

5 � 1
2C3x

2 � C2x � C1, (1.75)

zpxq � 1
1680Lx

8 � 1
210Lx

7 � 1
90Lx

6 � 1
6C3x

3 � 1
2C2x

2 � C0. (1.76)

Applying the boundary conditions zp0q � z1p0q � 0 reveals C0 � C1 � 0. There-

fore,

z1pxq � 1
210Lx

7 � 1
30Lx

6 � 1
15Lx

5 � 1
2C3x

2 � C2x, (1.77)

zpxq � 1
1680Lx

8 � 1
210Lx

7 � 1
90Lx

6 � 1
6C3x

3 � 1
2C2x

2. (1.78)

Applying the boundary conditions z1p1q � z3p1q � 0 gives us a couple equations:

z1p1q � 1
105L � 1

2C3 � C2 � 0, (1.79)

z3p1q � 8
15L � C3 � 0. (1.80)

Solving simultaneously equations (4.24) and (4.25) for C2 and C3 yields

C2 � 2
35L, and C3 � � 8

15L.

Knowing all the coefficients we arrive at the expression for zpxq.

zpxq � 1
5040Lx

2p3x4 � 12x3 � 4x2 � 32x � 144qpx � 2q2. (1.81)

We finally can find the quotient zpxq
wpxq

:

zpxq
wpxq �

1
5040p3x

4 � 12x3 � 4x2 � 32x � 144qL.

Finding max0¤x¤1
zpxq
wpxq

by Maple shows that the maximum is 163L
5040 and less than one for

L   5040
163 � 30.9202.

Next we show that T maps Bw into Bw in order to apply Theorem 2.1. The Green’s

function calculated in Example 3.1. is positive and simplifies for a � 1 to

Gpx, sq �

$'&
'%
�s2p2s � 6x � 3x2q{12, if 0 ¤ x ¤ s ¤ 1

�x2p3s2 � 6s � 2xq{12, if 0 ¤ s   x ¤ 1
(1.82)
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Thus,

Tupxq �
» 1

0
Gpx, sqfps, upsqqds

�
» x

0

��x2p3s2 � 6s � 2xq
12

�
fps, upsqqds�

�
» 1

x

��s2p2s � 6x � 3x2q
12

�
fps, upsqqds.

Since G(x,s) is positive and |3s2 � 6s � 2x| ¤ 11, then

|Tupxq| ¤
» x

0

�����x
2p3s2 � 6s � 2xq

12

���� |fps, upsqq|ds�
�
» 1

x

�����s
2p2s � 6x � 3x2q

12

���� |fps, upsqq|ds ¤
¤ 11x2

12

» x
0

|fps, upsqq|ds � 11x2

12

» 1

x

|fps, upsqq|ds.

Thus, since wpxq � x2px � 2q2 and px � 2q2 ¥ 1,
����Tupxqwpxq

���� ¤ 11
12

» 1

0
|fps, upsqqds| � Cpuq.

Now the hypotheses of Theorem 2.1. are satisfied. Comparing the bound L   30.9202

to the optimal bound, L   31.2852, obtained in Example 3.6 shows that the function w

as a polynomial is a very good estimate of the eigenfunction.

Example 4.1.3. This example corresponds to Example 3.3.

Du � up4qpxq � fpx, upxqq, where f satisfies |fpx, u1pxq � fpx, u2pxqq| ¤ L|u1pxq �
u2pxq| on r0, 1s with boundary conditions up0q � u1p0q � u2p1q � u3p1q � 0, choose a

polynomial, w, of degree 4 satisfying the boundary conditions.

wpxq � a0 � a1x � a2x
2 � a3x

3 � a4x
4. (1.83)

Then

w1pxq � a1 � 2a2x � 3a3x
2 � 4a4x

3, (1.84)

w2pxq � 2a2 � 6a3x � 12a4x
2, (1.85)

w3pxq � 6a3 � 24a4x (1.86)

Imposing the boundary conditions wp0q � w1p0q � 0 yields

a0 � a1 � 0.
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Knowing that a0 � a1 � 0 and taking a4 � 1 simplifies the equation for w1pxq, w2pxq and w3pxq.

w1pxq � 2a2x � 3a3x
2 � 4x3, (1.87)

w2pxq � 2a2 � 6a3x � 12x2, (1.88)

w3pxq � 6a3 � 24x. (1.89)

And consequently

w2p1q � 2a2 � 6a3 � 12, (1.90)

w3p1q � 6a3 � 24. (1.91)

Solving simultaneously Eq.(4.35) and Eq.(4.36) for a2 and a3 reveals that

a2 � 6 and a3 � �4.

Therefore, wpxq � x4 � 4x3 � 6x2 � x2px2 � 4x � 6q, and zp4qpxq � Lpx4 � 4x3 �
6x2q. Integrating yields

z3pxq � 1
5Lx

5 � Lx4 � 2Lx3 � C3, (1.92)

z2pxq � 1
30Lx

6 � 1
5Lx

4 � 1
2Lx

4 � C3x � C2, (1.93)

z1pxq � 1
210Lx

7 � 1
30Lx

6 � 1
10Lx

5 � 1
2C3x

2 � C2x � C1, (1.94)

zpxq � 1
1680Lx

8 � 1
210Lx

7 � 1
60Lx

6 � 1
6C3x

3 � 1
2C2x

2 � C1x � C0. (1.95)

Applying the boundary conditions zp0q � z1p0q � 0 reveals C0 � C1 � 0. There-

fore,

z1pxq � 1
210Lx

7 � 1
30Lx

6 � 1
10Lx

5 � 1
2C3x

2 � C2x, (1.96)

zpxq � 1
1680Lx

8 � 1
210Lx

7 � 1
60Lx

6 � 1
6C3x

3 � 1
2C2x

2. (1.97)

Applying the boundary conditions zp1q � z3p1q � 0 gives us a couple equations:

z2p1q � 1
3L � C3 � C2 � 0, (1.98)

z3p1q � 6
5L � C3 � 0. (1.99)

Solving simultaneously equations (4.43) and (4.44) for C2 and C3 yields

C2 � 13
15L, and C3 � �6

5L.
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Knowing all the coefficients we arrive at the expression for zpxq.

zpxq � 1
1680Lx

2px6 � 8x5 � 28x4 � 336x � 728q. (1.100)

We finally can find the quotient zpxq
wpxq

:

zpxq
wpxq �

Lpx6 � 8x5 � 28x4 � 336x � 728q
1680p6 � 4x � x2q .

Finding max0¤x¤1
zpxq
wpxq

by Maple shows that the maximum is 59L
720 and less than one for

L   720
59 � 12.20338.

Next we show that T maps Bw into Bw in order to apply Theorem 2.1. The Green’s

function calculated in Example 3.3. is positive and equal to

Gpx, sq �

$'&
'%
x2p3s � xq{6, if 0 ¤ x ¤ s ¤ a

�s2ps � 3xq{6, if 0 ¤ s   x ¤ a
(1.101)

Thus,

Tupxq �
» 1

0
Gpx, sqfps, upsqqds

�
» x

0

��s2ps � 3xq
6

�
fps, upsqqds�

�
» 1

x

�
x2p�x � 3sq

6

�
fps, upsqqds.

Since G(x,s) is positive and |�x � 3s| ¤ 4, then

|Tupxq| ¤
» x

0

����s
2p3x � sq

6

���� |fps, upsqq|ds�
�
» 1

x

����x
2p3s � xq

6

���� |fps, upsqq|ds ¤
¤ 4x2

6

» x
0

|fps, upsqq|ds � 4x2

6

» 1

x

|fps, upsqq|ds.

Thus, since wpxq � x2p6 � 4x � x2q and |6 � 4x � x2| ¥ 3,
����Tupxqwpxq

���� ¤ 2
9

» 1

0
|fps, upsqqds| � Cpuq.
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Now the hypotheses of Theorem 2.1. are satisfied. Comparing the bound L   12.20338

to the optimal bound, L   12.3623, obtained in Example 3.7 shows that the function w

as a polynomial is a good estimate of the eigenfunction.

Example 4.1.4. This example corresponds to Example 3.4.

Du � up4qpxq � fpx, upxqq, where f satisfies |fpx, u1pxq � fpx, u2pxqq| ¤ L|u1pxq �
u2pxq| on r0, 1s with boundary conditions up0q � u2p0q � up1q � u2p1q � 0, choose a

polynomial, w, of degree 4 satisfying the boundary conditions.

wpxq � a0 � a1x � a2x
2 � a3x

3 � a4x
4. (1.102)

Then

w2pxq � 2a2 � 6a3x � 12a4x
2. (1.103)

Imposing the boundary conditions wp0q � w2p0q � 0 yields

a0 � a2 � 0.

Knowing that a0 � a2 � 0 and taking a4 � 1 simplifies the equation for wpxq and

w2pxq.

wpxq � a1x � a3x
3 � x4, (1.104)

w2pxq � 6a3x � 12x2. (1.105)

And consequently

wp1q � a1 � a3 � 1, (1.106)

w2p1q � 6a3 � 12. (1.107)

Solving simultaneously Eq.(4.51) and Eq.(4.52) for a1 and a3 reveals that

a1 � 1 and a3 � �2.

Therefore, wpxq � x4 � 2x3 � x � xpx � 1qpx2 � x � 1q, and zp4qpxq � Lpx4 �
2x3 � xq. Integrating yields

z2pxq � 1
30Lx

6 � 1
10Lx

5 � 1
6Lx

3 � C3x � C2, (1.108)

zpxq � 1
1680Lx

8 � 1
420Lx

7 � 1
120Lx

5 � 1
6C3x

3 � 1
2C2x

2 � C1x � C0. (1.109)
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Applying the boundary conditions zp0q � z2p0q � 0 reveals C0 � C2 � 0. There-

fore,

z2pxq � 1
30Lx

6 � 1
10Lx

5 � 1
6Lx

3 � C3x, (1.110)

zpxq � 1
1680Lx

8 � 1
420Lx

7 � 1
120Lx

5 � 1
6C3x

3 � C1x. (1.111)

Applying the boundary conditions zp1q � z2p1q � 0 gives us a couple equations:

zp1q � L

1680 � L

420 � L

120 � 1
6C3 � C1 � 11

1680L � 1
6C3 � C1 � 0, (1.112)

z2p1q � 1
10L � C3 � 0. (1.113)

Solving simultaneously equations (4.57) and (4.58) for C1 and C3 yields

C1 � 17
1680L, and C3 � � 1

10L.

Knowing all the coefficients we arrive at the expression for zpxq.

zpxq � L

1680xpx � 1qpx6 � 3x5 � 3x4 � 11x3 � 11x2 � 17x � 17q. (1.114)

We finally can find the quotient zpxq
wpxq

:

zpxq
wpxq � �Lpx

6 � 3x5 � 3x4 � 11x3 � 11x2 � 17x � 17q
1680px2 � x � 1q .

Finding max0¤x¤1
zpxq
wpxq

by Maple shows that the maximum is 277L
26880 and less than one for

L   26880
277 � 97.03971.

Next we show that T maps Bw into Bw in order to apply Theorem 2.1. The Green’s

function calculated in Example 3.3. is positive and simplifies for a � 1 to

Gpx, sq �

$'&
'%
xps � 1qps2 � 2s � x2q{6, if 0 ¤ x ¤ s ¤ 1

sp1 � xqps2 � 2s � x2q{6, if 0 ¤ s   x ¤ 1
(1.115)

Thus,

Tupxq �
» 1

0
Gpx, sqfps, upsqqds

�
» x

0

�
sp1 � xqps2 � 2s � x2q

6

�
fps, upsqqds�

�
» 1

x

�
xps � 1qps2 � 2s � x2q

6

�
fps, upsqqds.

34



Since G(x,s) is positive and |s2 � 2s � x2| ¤ 2, then

|Tupxq| ¤
» x

0

����sp1 � xqps2 � 2s � x2q
6

���� |fps, upsqq|ds�
�
» 1

x

����xps � 1qps2 � 2s � x2q
6

���� |fps, upsqq|ds ¤
¤ xpx � 1q

3

» x
0

|fps, upsqq|ds � xpx � 1q
3

» 1

x

|fps, upsqq|ds.

Thus, since wpxq � xpx � 1qpx2 � x � 1q and |x2 � x � 1| ¥ 1,
����Tupxqwpxq

���� ¤ 1
3

» 1

0
|fps, upsqqds| � Cpuq.

Now the hypotheses of Theorem 2.1. are satisfied. Comparing the bound L   97.03971

to the optimal bound, L   97.4091, obtained in Example 3.8 shows that the function w

as a polynomial is a very good estimate of the eigenfunction.

Example 4.1.4.a This example corresponds to Example 3.4. with the polynomial wpxq
chosen to be 1 for simplicity.

Du � up4qpxq � fpx, upxqq, where f satisfies |fpx, u1pxq � fpx, u2pxqq| ¤ L|u1pxq �
u2pxq| on r0, 1s with boundary conditions up0q � u2p0q � up1q � u2p1q � 0.

We start with the general form of the 4th order nonlinear differential equations

zp4qpxq � L.

Integrating yields

z2pxq � 1
2Lx

2 � C3x � C2, (1.116)

zpxq � 1
24Lx

4 � 1
6C3x

3 � 1
2C2x

2 � C1x � C0. (1.117)

Applying the boundary conditions zp0q � z2p0q � 0 reveals C0 � C2 � 0. There-

fore,

z2pxq � 1
2Lx

2 � C3x, (1.118)

zpxq � 1
24Lx

4 � 1
6C3x

3 � C1x. (1.119)
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Applying the boundary conditions zp1q � z2p1q � 0 gives us a couple equations:

1
2L � C3 � 0, (1.120)

1
24Lx

4 � 1
6C3 � C1 � 0. (1.121)

Solving simultaneously equations (4.63) and (4.64) for C1 and C3 yields

C1 � 1
24L, and C3 � �1

2L.

Knowing all the coefficients we arrive at the expression for zpxq.

zpxq � L

24xpx � 1qpx2 � x � 1q. (1.122)

Finding max0¤x¤1 zpxq by Maple shows that the maximum is 5
384L and less than one for

L   384
5 � 76.80.

Comparing the new found bound L   76.80 to the optimal bound, L   97.4091,

obtained in Example 3.8 shows that the function wpxq � 1 as a polynomial is a poor

estimate of the eigenfunction.

Application of Theorem 2.2.
The Green’s function for Lu � up4qpxq with the boundary conditions up0q � u1p0q �

u1p1q � u3p1q � 0 was found in Section 3, Example 3.2 is

Gpx, sq �

$'&
'%
�s2p2s � 6x � 3x2q{12, if 0 ¤ s   x ¤ 1

�x2p3s2 � 6s � 2xq{12, if 0 ¤ x ¤ s ¤ 1
(1.123)

Notice that the Green’s function is positive. To calculate M1, consider
» 1

0
|Gpx, sq|ds �

» 1

0
Gpx, sqds �

» x
0

�s2p2s � 6x � 3x2q
12 ds �

» 1

x

�x2p3s2 � 6s � 2xq
12 ds �

� � 1
24x

4p2x � 3q � 1
12x

2px � 1qpx2 � 2q � 1
24x

2px � 2q2.

A maximum occurs at x � 1. Thus
³1

0|Gpx, sq|ds ¤ 1
24 implying M1 � 1

24 . The 1th

derivative of Gpx, sq is

Gxpx, sq �

$'&
'%

1
2s

2p1 � xq, if 0 ¤ s   x ¤ 1

�1
2xps2 � 2s � xq, if 0 ¤ x ¤ s ¤ 1
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To calculate M2,we make an estimates as Gxpx, sq is not of constant sign.
» 1

0
|Gxpx, sq|ds �

» x
0

|12s
2p1 � xq|ds �

» 1

x

|�1
2xps

2 � 2s � xq|ds ¤

¤
» x

0

1
2s

2p1 � xqds �
» 1

x

x

2 ps
2 � 2s � xqds ¤

¤ �1
6px � 1qx3 � 1

6xpx � 1qpx2 � 7x � 4q ¤ �1
6xpx � 1qp2x2 � 7x � 4q.

A maximum occurs at the point x � 0.6222. Thus
³1

0|Gxpx, sq|ds ¤ 0.3577 implying

M2 � 0.3577.

The 2th derivative of Gpx, sq is

Gxxpx, sq �

$'&
'%
�1

2s
2, if 0 ¤ s   x ¤ 1

�1
2s

2 � s � x if 0 ¤ x ¤ s ¤ 1

Next, to calculate M3,
» 1

0
|Gxxpx, sq|ds �

» x
0

|�1
2s

2|ds �
» 1

x

|�1
2s

2 � s � x|ds �

¤
» x

0

1
2s

2ds �
» 1

x

p12s
2 � s � xqds ¤

¤ 1
6x

3 � 1
6x

3 � 1
2x

2 � x � 2
3 � 1

2x
2 � x � 2

3 .

A maximum occurs at x � 0. Thus,
» 1

0
|Gxxpx, sq|ds ¤ 2

3 implying M3 � 2
3 .

Next, to calculate M4, note that Gxxx vanishes for 0 ¤ s   x ¤ 1 is equal to �1

otherwise. Thus,
» 1

0
|Gxxxpx, sq|ds �

» 1

x

|�1|ds.
» 1

0
|Gxxxpx, sq|ds � 1 � x ùñ M4 � 1.

We have proved the following Theorem 4.1 using Theorem 2.2.

Theorem 4.1. Let f : r0, 1s � R5 Ñ R satisfy (1.8).

Assume
L

24 � p0.3577qK � 2
3M � N   1.
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Then the boundary value problem

yp4qpxq � fpx, ypxq, y1pxq, y2pxq, y3pxqq

with boundary conditions

yp0q � y1p0q � y1p1q � y3p1q � 0

has a unique solution.

The Green’s function for Lu � up4qpxq with the boundary conditions up0q � u1p0q �
u2p1q � u3p1q � 0 was found in Section 3, Example 3.3 is

Gpx, sq �

$'&
'%
x2p3s � xq{6, if 0 ¤ x ¤ s ¤ 1

�s2ps � 3xq{6, if 0 ¤ s   x ¤ 1

Notice that the Green’s function is positive. To calculate M1, consider
» 1

0
|Gpx, sq|ds �

» 1

0
Gpx, sqds �

» x
0

�s2ps � 3xq
6 ds �

» 1

x

x2p3s � xq
6 ds �

� 1
8x

4 � 1
12x

2px � 3qpx � 1q � 1
24x

2px2 � 4x � 6q.

A maximum occurs at x � 1. Thus
³1

0|Gpx, sq|ds ¤ 1
8 implying M1 � 1

8 .

The 1th derivative of Gpx, sq is positive as well.

Gxpx, sq �

$'&
'%
sx � 1

2x
2, if 0 ¤ x ¤ s ¤ 1

1
2s

2, if 0 ¤ s   x ¤ 1

To calculate M2,consider
» 1

0
|Gxpx, sq|ds �

» 1

0
Gxpx, sqds �

» x
0

1
2s

2ds �
» 1

x

pxs � 1
2x

2qds �

� 1
6x

3 � 1
2xpx � 1q � 1

6xpx
2 � 3x � 3q.

A maximum occurs at x � 1. Thus
³1

0|Gpx, sq|ds ¤ 1
6 implying M2 � 1

6 .

The 2th derivative is also positive

Gxxpx, sq �

$'&
'%
s � x if 0 ¤ x ¤ s ¤ 1

0, if 0 ¤ s   x ¤ 1
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To calculate M3, note that Gxx vanishes for 0 ¤ s ¤ x ¤ 1. Thus,
» 1

0
|Gxxpx, sq|ds �

» 1

0
Gxxpx, sqds �

» 1

x

ps � xqds � 1
2px � 1q2.

A maximum occurs at x � 0. Thus M3 � 1
2 . The 3th derivative is

Gxxxpx, sq �

$'&
'%
�1, if 0 ¤ x ¤ s ¤ 1

0, if 0 ¤ s   x ¤ 1

To calculate M4, consider
» 1

0
|Gxxxpx, sq|ds �

» 1

0
�Gxxxpx, sqds �

» 1

x

1ds � 1 � x.

Thus M4 � 1.

Using Theorem 2.2., we have proved the following

Theorem 4.2. Let f : r0, 1s � R5 Ñ R satisfies (1.8).

Assume
L

8 � K

6 � M

2 � N   1.

Then the boundary value problem

yp4qpxq � fpx, ypxq, y1pxq, y2pxq, y3pxqq

with boundary conditions

yp0q � y1p0q � y2p1q � y3p1q � 0

has a unique solution.
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Numerical examples
Consider the problem yp4qpxq � 10x � 300ypxq with non-homogeneous boundary con-

ditions yp0q � y1p0q � y1p1q � 0, yp1q � 5.

The bound on the Lipschitz constant, L , for the homogeneous boundary value prob-

lem was found in Example 4.1.1 and is equal to 494.7239. Now let us compute the

Lipschitz constant for our specific example. The right hand side is fpx, yq � 10x �
300ypxq on r0, 1s � R. The Lipschitz constant by the Mean Value Theorem is

Bf
By � 300 � L.

So, L � 300   494.7239. Since Theorem 2.1 requires homogeneous boundary conditions,

it cannot be applied directly to this example. Define w to be a polynomial satisfying the

same boundary conditions as above. We find wpxq � 2x3 � x4 � 5. Set zpxq �
ypxq � wpxq. Moveover,

zp4qpxq � yp4qpxq�wp4qpxq � 10x� 300ypxq� 24 � p10x� 24q� 300pzpxq�wpxqq � f̃px, zpxqq.

so z satisfies an ODE with the same Lipschitz constant. Also note that

zp0q � z1p0q � zp1q � z1p1q � 0.

Thus, Theorem 2.1 can be applied directly to the ODE zp4qpxq � f̃px, zpxqq with the

homogeneous boundary conditions. As long as L   494.7239, Theorem 2.1 and Example

4.1.1 give a unique solution z, satisfying the non-homogeneous boundary conditions,

which in turn, gives a unique solution to the non-homogeneous problem, y. An illustration

of this unique solution is given in Figure 1. The graph was obtained using numerical

methods for boundary value problem by Maple.

Next, consider the non-homogeneous boundary value problem

yp4qpxq � 3x2 � 10 cospypxqq

with boundary conditions yp0q � y1p0q � y2p1q � y3p1q � 0. The bound on the Lips-

chitz constant, L , for the homogeneous boundary value problem was found in Example

4.1.3 and is equal to 12.2. Now let us compute the Lipschitz constant for our specific

example. The non-homogeneous term fpx, yq � 3x2 � 10 cospypxqq on r0, 1s�R. The

Lipschitz constant by the Mean Value Theorem is

max
0 x 1

|BfBy | � max
0 x 1

|10 sinpypxqq| ¤ 10 � L.
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Figure 1: Solution to
yp4qpxq � 10x � 300ypxq with yp0q � y1p0q � y1p1q � 0 and yp1q � 5

So, L � 10   12.2. The solution curve was obtained using numerical methods for

boundary value problem by Maple and given in Figure 2.

Figure 2: Solution to
yp4qpxq � 3x2 � 10 cos ypxq with yp0q � y1p0q � y2p1q � y3p1q � 0

Next non-homogeneous boundary value problem is

yp4qpxq � 50psinpypxqq � 1q � 40ypxq

with boundary conditions yp0q � y2p0q � yp1q � y2p1q � 0. The bound on the

Lipschitz constant, L , for the non-homogeneous boundary value problem was found

in Example 4.1.4 and is equal to 97.03. Now let us compute the Lipschitz constant

for our specific example. The nonhomogeneous term fpx, yq � 50 sinpypxqq � 50 �
40xptq on r0, 1s � R. The Lipschitz constant by the Mean Value Theorem is

max
0 x 1

|BfBy | � max
0 x 1

|50 cospypxqq � 40| ¤ 90 � L.
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The solution curve was obtained using numerical methods for boundary value problem

by Maple given in Figure 3. The last non-homogeneous boundary value problem is

Figure 3: Solution to
yp4qpxq � 50psinpypxqq � 1q � 40ypxq with yp0q � y2p0q � yp1q � y2p1q � 0

yp4qpxq � �2|ypxq| � 3 cos y1pxq � 0.2y2pxq

with boundary conditions yp0q � y1p0q � y2p1q � y3p1q � 0. This is an illustration of

Theorem 4.2 with a � 1 and

fpx, ypxq, y1pxq, y2pxq, y3pxqq � �2|ypxq| � 3 cos y1pxq � 0.2y2pxq.

It is necessary to choose K, L, M and N so that f satisfies the Lipschitz condition given

in the theorem
L

8 � K

6 � M

2 � N   1.

Since f does not depend on y3, N can be chosen to be 0. By the Mean Value Theo-

rem

|BfBy | � | BBy � 2py2q 1
2 | � |21

2py
2q� 1

2 p2yq| � | 2y?
y2 | � 2 � L.

| BfBy1 | � |sinpy1q| ¤ 3 � K.

| BfBy2 | � 0.2 � M.

So, L
8 � K

6 � M
2 � N � 2

8 � 3
6 � 0.2 � 0.95   1. Therefore, the boundary value

problem has a unique solution.

The solution curve was obtained using numerical methods for boundary value problem

by Maple given in Figure 4.
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Figure 4: Solution to
yp4qpxq � �2|ypxq| � 3 cos y1pxq � 0.2y2pxq with yp0q � y1p0q � y2p1q � y3p1q � 0

43



References

44



[1] Bailey,P., Shampine,L., and Waltman,P. Nonlinear Two-Point Boundary-Value Problema, Ch.3,

Academic Press. New York.1997.

[2] Boyce, William E., DiPrima, Richard C. Elementary Differential Equations and Boundary Value

Problems, Third Edition, Ch. 1. John Wiley and Sons. New York. 1997.

[3] Coddington, E. and Levinson, N. Theory of Ordinary Differential Equations, McGraw-Hill.WaWaWa

New York. 1995.

[4] Morrison, Shannon M., Applibation of the Green’s Functions for Solutions of Third Order Nonlinear

Boundary Value Problems. Masrer’s Thesis, University of Tennessee, 2007.

[5] Walter, Wolfgang. Ordinary Differential Equations, Ch. 6, Springer. New York. 1998.

45



Vita

Olga Aleksandrovna Teterina was born in Retchitsa, Belorussia. After graduating High

School in 1970, she entered Mechanical Institute in Leningrad, USSA and graduated

with the Bachelor Degree in Radio Engineering in 1980. During graduated with the

Bachelor Degree in Radio Engineering in 1980. During the following years, she was

employed as an Engineer and Designer at she following years, she was employed as an

Engineer and Designer at Izhevsk Productive Company, Motozavod. Upon moving to

USA she entered the Graduate School at the University of Tennessee to pursue a degree

in Mathematics. Olga graduated with a Master of Science degree in Applied Mathematics

in August 2013.

46


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2013

	The Green's Function Method for Solutions of Fourth Order Nonlinear Boundary Value Problem.
	Olga A. Teterina
	Recommended Citation


	Section 1: Introduction and Preliminaries
	Introduction
	Preliminary Definition and Theorem

	Section 2: Existence and Uniqueness
	Section 3: Green's Functions and First* Eigenvalues
	Section 4: Applications to Boundary Value* Problems
	Application of Theorem 2.1.
	Application of Theorem 2.2.
	Numerical examples

	References
	Vita

