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Abstract 

Developments in automotive (particularly hybrid electric vehicles), aerospace, and 

energy production industries over the recent years have led to expanding research interest in 

integrated circuit (IC) design toward high-temperature applications.  A high-voltage, high-

temperature SOI process allows for circuit design to expand into these extreme environment 

applications.  Nearly all electronic devices require a reliable supply voltage capable of operating 

under various input voltages and load currents.  These input voltages and load currents can be 

either DC or time-varying signals.  In this work, a stable supply voltage for embedded circuit 

functions is generated on chip via a voltage regulator circuit producing a stable 5-V output 

voltage.  Although applications of this voltage regulator are not limited to gate driver circuits, 

this regulator was developed to meet the demands of a gate driver IC.  The voltage regulator 

must provide reliable output voltage over an input range from 10 V to 30 V, a temperature range 

of −50 ºC to 200 ºC, and output loads from 0 mA to 200 mA.  Additionally, low power stand-by 

operation is provided to help reduce heat generation and thus lower operating junction 

temperature.  This regulator is based on the LM723 Zener reference voltage regulator which 

allows stable performance over temperature (provided proper design of the temperature 

compensation scheme).  This circuit topology and the SOI silicon process allow for reliable 

operation under all application demands.  The designed voltage regulator has been successfully 

tested from −50 ºC to 200 ºC while demonstrating an output voltage variation of less than 25 mV 

under the full range of input voltage.  Line regulation tests from 10 V to 35 V show a 3.7-ppm/V 

supply sensitivity.  With the use of a high-temperature ceramic output capacitor, a 5-nsec edge, 0 

to 220 mA, 1-µsec pulse width load current induced only a 55 mV drop in regulator output 

voltage.  In the targeted application, load current pulse widths will be much shorter, thereby 

improving the load transient performance.  Full temperature and input voltage range tests reveal 

the no-load supply current draw is within 330 µA while still providing an excess of 200 mA of 

load current upon demand. 
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1. Introduction 

1.1 – Motivation  

Research centered around hybrid-electric vehicles continues to expand as the need to reduce 

dependence on fossil fuels increases.  The electric motors in these vehicles show drastic 

increases in automotive fuel efficiency when compared to standard combustion engines.  The 

extreme environment presented by these hybrid-electric engines can produce temperatures 

approaching 200 °C [1].  Of the many electrical components required in the implementation of 

these vehicles, high power DC-DC converters and DC-AC inverters are the cornerstone of 

generating drive-capable energy from battery power [1].  These energy converters require large 

drive currents to efficiently operate.  The gate driver is a device that provides transient currents 

to the gates of these power devices [2].  Central to the implementation of the gate driver is the 

need for a stable voltage supply for its switching circuits [2].  Load current and input voltage 

variations create a demand for a voltage regulator capable of operating effectively over a variety 

of conditions.  Current high-temperature voltage regulators capable of this operation do not yet 

effectively meet the demands of the gate driver circuits, which has led to the development of a 

LM-723 Zener reference-based voltage regulator in a high-temperature, high-voltage silicon-on-

insulator (SOI) process (a commercially-available 0.8 micron SOI, BJT-CMOS-DMOS (BCD) 

process).  In addition to the automotive application, the designed high-temperature voltage 

regulator has a wide range of potential applications which include aerospace and energy 

production industries. The uniqueness of this design stems from the wide operating temperature 

and wide input voltage range. 

1.2 – Thesis Organization 

This thesis illustrates the design process for the implemented voltage regulator.  The details of 

the LM723 voltage regulator (on which this design is based) are examined as well as design steps 

of the voltage regulator developed for the specific application.  Simulation verification of the 

post-extraction design illustrates the design concepts in practice.  Post-fabrication functionality 

testing over the entire range of operating conditions demonstrates properly functioning design 
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implementation.  A design review highlights the performance capabilities of the voltage 

regulator while exploring potential design improvements. 

2. Background and Literature Review 

2.1 – Voltage Regulator Background 

The general term “voltage regulator” simply describes a device that maintains a constant output 

voltage level regardless of outside influence (input voltage, load condition, temperature) [3].  

Linear voltage regulator topologies (non-switching technology) are broken down into two main 

categories: series and shunt regulators.  In general, series regulators provide better temperature 

performance than shunt regulators; the wide operating temperature for this voltage regulator 

project directs the choice of regulator topology to employ a series configuration [3].  The series 

regulator also allows for a greater input voltage to output voltage differential than the shunt 

regulator, and therefore, proves to be the obvious choice for the high input voltage used in this 

system [3].  The main components used in a series regulator consist of a reference voltage 

generator and an operational amplifier [4].   Figure 2.1 illustrates the implementation of a 

reference voltage generator and an operational amplifier to form a series voltage regulator.  

Resistors R1 and R2 are used to set the output voltage in relation to the reference voltage.  The 

output voltage (VOUT) is related to the reference voltage (VREF) through the non-inverting, ideal 

op-amp equation (Equation 2.1) [4]. 

   (Equation 2.1) 

In general, the reference voltage in series voltage regulators can be generated from several 

circuits including bandgap voltage references and Zener voltage references [4].  To allow VOUT to 

provide a stable, reliable output voltage, the op-amp used in the series voltage regulator must 

possess the typical qualities of a well-designed op-amp.  Low op-amp drift and offset voltage are 

essential qualities for an op-amp to accurately regulate VOUT according to Equation 2.1 [5].  The 

negative feedback loop (with attentive op-amp design) imposes a high impedance node at the 

input of the op-amp.  Large op-amp input impedance is essential in minimizing loading effects 

presented on the reference generator.   
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Figure 2.1 – Series Voltage Regulator 

Similarly, the output of the op-amp must present a low impedance node.  As with any op-amp, 

lowering output impedance increases op-amp current drive capability.  Current drive capability is 

essential in any voltage regulator design due to the use of these circuits as voltage sources for 

variable load currents [4].  Equations 2.2 and 2.3 illustrate op-amp input impedance and output 

impedance, respectively. 

   (Equation 2.2) 

   (Equation 2.3)          where    

In Equations 2.2 and 2.3, AOL is the mid-band, open-loop gain of the op-amp, and T0 is the mid-

band loop transmission.  Similarly, ri and ro are the mid-band, open-loop input and output 

resistances, respectively.  As with most op-amp circuits, a large loop transmission allows 

negative feedback to drastically improve the performance of the op-amp.  Exploring the 

relationship between VOUT and ROUT reveals that ROUT is a function VOUT as shown in Equation 

2.4 (assuming AOL, VREF, and ro are constant) [4]. 

    (Equation 2.4) 

Change in output current can be related to change in output voltage by Equation 2.5 [4]. 

     (Equation 2.5) 
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Combining Equation 2.4 and Equation 2.5, illustrates the relationship between output voltage 

and output current (Equation 2.6). 

    (Equation 2.6) 

Equation 2.6 allows for load regulation calculations of a series regulator.  A large open-loop gain 

improves load regulation and is essential in developing a voltage regulator capable providing an 

accurate voltage source under variable loads.  Line regulation for a given series regulator is 

dependent on the reference generator circuit and will be examined in following sections [4]. 

2.2 – LM723 Voltage Regulator Topology 

See reference [4] regarding section 2.2 discussion.  The LM723 is a linear, series voltage 

regulator, which utilizes Zener diodes for reference voltage generation.  This design utilizes BJT 

transistors throughout the topology.  To better understand the LM723 design, each circuit section 

is examined at the transistor level. 

2.2.1 – LM723 Reference Generator Circuit 

The circuit used to generate the reference voltage in the LM723 regulator design is shown in 

Figure 2.2. The current sink I1 is generated using a base-emitter referenced current source.  The 

Zener diode D1 induces a relatively constant Zener breakdown voltage across R1, Q1, and R2 of 

approximately 6.2 V.  The bias current through Q1 is set by sizing resistors R1 and R2 according 

to Equation 2.7. 

     (Equation 2.7) 

Therefore, the magnitude of IC1 is approximately equal to 5.6 V divided by the total resistance in 

series with Q1.  The main advantage of this current biasing scheme is the independence of the 

generated bias current to input voltage.  Current IC2 is mirrored from Q1 according to Equation 

2.8 (assuming VEB matching between devices). 

    (Equation 2.8) 
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Figure 2.2 – LM723 Reference Voltage Generator Circuit 

The current IC2 establishes the operating current for the voltage reference circuit composed of 

Q3-Q5.  IC5 is forced to match IC2 through the negative feedback loop.  The current through D2 is 

set by resistor R6 according to Equation 2.9 (assuming negligible base currents). 

    (Equation 2.9) 

The reference voltage, VREF, is then equal to the sum of the Zener breakdown voltage of D2 and 

VBE5 (about 6.8 V).  Q3 and Q4 form a Darlington pair to boost the loop gain, lowering the 

impedance at the reference voltage node.  Reducing the impedance at the reference voltage node 

increases the drive capability of the reference generator circuit.  Resistor R4 acts as a current 

limiter to protect the reference generator circuit from short circuit damage.  R5 and C1 form a 

high frequency compensation network to reduce the bandwidth around the loop, which prevents 

oscillations in the feedback loop.  The negative feedback loop provides output tracking and 
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allows changes at the reference voltage node to be referred to the current through D2; this 

feedback action corrects changes in reference voltage due to loading effects. 

2.2.2 – LM723 Operational Amplifier Circuit 

Following the voltage reference generator in the LM723 design, the operational amplifier sets 

and regulates the output voltage as a function of the reference voltage.  Figure 2.3 shows the 

operational amplifier used in the LM723 design. This op-amp is a simple, two-stage feedback 

amplifier.  A differential input pair (Q11, Q12) provides the gain stage for the op-amp, while the 

Darlington pair, common-collector stage (Q13, Q14) provides the low output impedance stage.  

VBIAS in Figure 2.3 is generated from the base voltage of the current reference transistor (Q1) in 

the reference generator circuit.  Resistors R7 and R8 set the ratios between the reference current 

through Q1 and the biasing currents used in the op-amp circuit.  Currents IC6, IC7, and IC8 match 

as long as R7 = R8 and the emitter areas of Q6 and Q7 are equal. 

 

Figure 2.3 – LM723 Operational Amplifier Circuit 
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Q10 is set to have twice the emitter area of Q8, and R11 is sized at half the value of R9.  This 

device sizing sets IC10 to be twice the magnitude of IC8.  Setting the bias currents to these values 

allows IC11 to equal IC12.  Q9 provides current gain to minimize current mismatch due to base 

currents.  This technique allows for better current matching and therefore, reduces offset error at 

the op-amp output.  The load placed at VOUT determines the current flowing through the 

Darlington pair Q14 and Q13. R12 provides a constant current path through Q13, so the output 

voltage will always be regulated.  Capacitor C2 provides dominant pole compensation for the op-

amp in the form of Miller capacitance.  The induced pole reduces the bandwidth and improves 

stability.  The AC equivalent circuit for the op-amp in Figure 2.3 is shown in Figure 2.4.  RLEQ12 

is calculated from Equation 2.10 and represents the load seen by Q12. 

   (Equation 2.10) 

The output impedance of the gain transistor, Q12, is calculated assuming gm11 = gm12 through 

matching. 

   (Equation 2.11) 

Using Equations 2.10 and 2.11, the open-loop gain is derived as demonstrated in Equation 2.12. 

    (Equation 2.12) 

The output resistance for the op-amp is determined by the impedance looking into the emitter of 

the Darlington pair.   

 

Figure 2.4 – LM723 Operational Amplifier Circuit – AC Equivalent 
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Equation 2.13 shows the calculation of this impedance (assuming R12 >> rπ14). 

    (Equation 2.13) 

Using Equations 2.12 and 2.13 in Equation 2.6 reveals the load regulation of the LM723 

topology voltage regulator.  Typical values for load regulation are on the order of 0.01-0.04 %; 

in other words, a 50-mA change in load current for a nominal 5-V output voltage results in an 

output voltage change of only 1-4 mV.  The low output impedance of the op-amp allows the 

LM723 to exhibit this impressive resistance to loading conditions.  The Miller compensation 

capacitor C2 sets the dominant pole and allows a 2-pole loop transmission approximation to be 

used (Equation 2.14). 

   (Equation 2.14) 

The single high-gain stage allows for pole splitting which ensures stability.  The higher order 

poles and zeros are neglected, as they occur at frequencies much high than the unity gain 

frequency (fun) of the op-amp. 

2.3 – LM723 Design Review 

The LM723 is a well designed, reliable voltage regulator that has been in industrial use for many 

years [6].  Several LM723 design features must be considered to ensure the designed voltage 

regulator meets the demand of the gate driver circuits.  First, the LM723 is designed to withstand 

temperatures up to 125 ºC [6].  While its performance will most likely not degrade for 

temperatures marginally exceeding the rated operating temperature, the use of the gate driver 

voltage regulator in environments approaching 200 ºC imposes significant strain on the classic 

LM723 design.  In addition to the temperature requirements, the gate driver voltage regulator is 

subject to input voltage (VDDH − VSSH) changes ranging from 10-30 V [2].  While the LM723 

performs well under varying input voltage, the input conditions the gate driver project presents 

would result in an output voltage variation of 50-80 mV [6].  While this output voltage change 

may be acceptable for some applications, the design can be improved to perform more 

consistently over input voltage changes.  Perhaps the most significant challenge to the LM723 

design in the gate driver application is the transient load current imposed by the switching 
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circuits it is required to power.  Essentially, the gate driver circuit impose large, switched-

capacitor loads [2].  A slow voltage regulator response to a sudden load current demand results 

in a large deviation in regulator output voltage.  Deviations in regulator output voltage can cause 

instability and gate driver error [2].  The transient current response of the classic LM723 design 

is not sufficient to supply the gate driver during a transient load [6].  Additionally, the required 

operating temperature of the gate driver project leads to an increased concern of on-chip heat 

generation.  Also, the low β and gm values (especially for the PNP devices) in the commercially-

available, 0.8-micron process significantly reduce the attainable DC loop gain [5].  In summary, 

the LM723 provides a strong example for the design of the gate driver voltage regulator, but 

several significant design modifications are needed to ensure successful on-chip implementation. 

3. Voltage Regulator Design and Simulation 

3.1 – Voltage Regulator Design 

The voltage regulator designed for the gate driver project consists of four stages: pre-regulator 

circuit, reference generator circuit, operational amplifier circuit, and output stage.  The pre-

regulator is supplied by VDDH (10.0 V to 30.0 V) and outputs the pre-regulator voltage, VPRE.  

The reference generator closely resembles the topology seen in Chapter 2, but several design 

alterations are implemented to improve regulator performance for the gate driver application.  

The generated reference voltage (VREF) is the most critical voltage for establishing a constant 

regulator output voltage (VDD).  The operational amplifier is based on the design described 

Chapter 2 but with several significant design modifications to the LM723 design.  The output of 

the operational amplifier is designated as VDD’.  The feedback signal from the voltage regulator 

output is input to the differential pair in the operational amplifier.  The output stage of the 

voltage regulator is technically part of the operational amplifier, but the drastic changes from the 

topology seen in Chapter 2 warrant special consideration for this stage.  The output stage 

receives the VDD’ signal from the operational amplifier.  The output of this stage (and output of 

the overall voltage regulator) is designated as the output voltage, VDD.  The block diagram in 

Figure 3.1 illustrates the 4-stage voltage regulator topology as a fully-functional unit with 

important signals labeled.. 
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Figure 3.1 – 4-Stage Voltage Regulator Topology 

3.1.1 – Pre-Regulator 

The VDDH input voltage supplied to the gate driver chip varies from 10 - 30 V; however, the 

commercially-available, 0.8-micron process offers BJT devices with an open-base, collector-

emitter breakdown voltage of 15 V.  To implement the BJT based LM723 design, a pre-regulator 

circuit is implemented to limit the voltage supplied to the remaining regulator stages.  A Zener 

shunt regulator is used as a crude voltage regulator to generate VPRE.  Using this concept, the 

design of a pre-regulator is realized as seen in Figure 3.2.  A threshold referenced current source 

(M1-M6, R1) generates the bias current for the pre-regulator circuit. This current is set by the 

threshold of M1 and the resistor R1 as illustrated in Equation 3.1 [4]. 

    (Equation 3.1) 

This reference current, ID2, is mirrored through the cascode current mirror, M3-M6, creating ID1.  

M1SU-M9SU provide start-up  for the current source to prevent the stable zero-current state [7].  

M7-M10 mirror ID2 so that ID11 = ID12 = ID1.  M13, M14 are set to 10x the width of M11, M12, so 

that ID13, ID14 are 10x the generated bias current.   M11-M14 are arranged in a wide-swing 

cascode configuration to allow VPRE to swing very close to VDDH [7].  In the wide-swing cascode 

configuration, M12 is set to 5x the length of M11 [7].  Equations 3.2a and 3.2b illustrate the 

required voltage difference between VDDH and VPRE for M13 and M14 to remain “on” [7]. 
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Figure 3.2 – Pre-Regulator Circuit 

   (Equation 3.2a, typical cascode) 

        (Equation 3.2b, wide-swing cascode) 

When compared to a wide-swing cascode, a typical cascode configuration requires an additional 

threshold voltage to remain turned “on”.  The additional voltage swing generated by the use of 

the wide-swing cascode is required for low VDDH voltages because the regulator circuits require a 

supply voltage of at least 8.5 V (set to 9.5 V to account for model inaccuracy, process variation, 

and mismatch).  The current source (M13, M14) shunts current into the Zener diode, NMOS and 

PNP series configuration (Q1, Q2, M15, D1).  The breakdown voltage of D1 in the 
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commercially-available, 0.8-micron process is about 6.2 V.  Q1, Q2, and M15 add two VEB, one 

VTHN, and one VDS,SAT to the generated pre-regulated voltage as shown in Equation 3.3. 

   (Equation 3.3)  

The series configuration of Q1, Q2, M15, and D1 provides the temperature-compensated voltage 

VPRE.  The high VDDH voltage (up to 30 V) requires high-breakdown voltage devices to be used 

for the cascode devices.  The remaining devices, however, do not have a large, induced drain-

source voltage and are implemented using standard devices which provide better matching.  

Table 3.1 summarizes the devices used in the pre-regulator design. 

Table 3.1 – Pre-Regulator Device Specifications 

Device Device Type Device Property 

M1 Low-Voltage PMOS  

M2, M11 45-V P-Channel LDMOS  

M12 45-V P-Channel LDMOS  

M13, M14 45-V P-Channel LDMOS  

M3, M5, M7, M9 45-V N-Channel LDMOS  

M4, M6, M8, M10 Low-Voltage NMOS  

M15 Low-Voltage NMOS  

M1SU-M7SU Low-Voltage PMOS  

M8SU 45-V N-Channel LDMOS  

M9SU Low-Voltage NMOS  

R1 Poly2 50 kΩ 

D1 Zener 6.2 V 
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Using the devices in Table 3.1 and the device properties from the commercially-available, 0.8-

micron process documentation, the nominal bias currents are set as follows: ID4 = ID6 = ID8 = ID10 

= ID9SU = 20 µA, ID13 = 200 µA.  ID13 is mainly sourced to supply the remaining voltage regulator 

stages; however, 20-40 µA of current remains to bias D1, Q1, Q2, and M15.  VPRE is established 

at 9.5 V, but varies slightly with changes in current draw from the remaining stages, temperature, 

and process variations. 

3.1.2 – Reference Generator 

The reference generator circuit (Figure 3.3) used in the voltage regulator design is powered from 

the pre-regulator circuit described in Section 3.1.1.  In the reference generator circuit, current 

bias is generated by the base-emitter referenced current source composed of Q3-Q6 and R2 while 

Q1SU-Q5SU and M16-M17 provide start-up [4].  Q7 sinks the bias current through the parallel 

combination of D2 and Q8. 

 

Figure 3.3 – Reference Generator Circuit 
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D2 establishes a reference voltage drop across R3-R5 and Q8, resulting in a bias current in Q8 

governed by Equation 3.4 [4]. 

     (Equation 3.4) 

R3 and R4 possess complementary temperature coefficients and are used compensate the 

temperature dependence of VEB8.  The bias current through Q8 is mirrored throughout the 

reference generator and op-amp circuits.  As seen in the LM723 discussion, Q10 provides current 

bias through D3.  D3 in series with R8 and R10 establish the temperature-compensated reference 

voltage VREF.  R8 is sized to provide additional compensation to the inherent temperature 

compensation of D3.  The Darlington pair in the LM723 reference generator is removed because 

a VDDH of 10 V does not allow enough headroom between the reference voltage to the pre-

regulator voltage.  Loading effects on the output of the reference generator are carefully 

considered due to the removal of the Darlington pair common collector stage [8].  Table 3.2 

summarizes the devices used in the reference generator circuit.  These device sizes imply a bias 

current through Q3-Q6 of about 10 µA based on Equation 3.5 and the technology parameters 

given in the commercially-available, 0.8-micron process documentation. 

     (Equation 3.5) 

The bias current through Q7 is set 2x the current through Q5-Q6 by doubling the emitter area of 

Q7.  The current through Q8 is established at about 10 µA.  R10 establishes a bias current 

through D3 of approximately 10 µA (Equation 3.6). 

     (Equation 3.6) 

The temperature-dependent reference voltage is described by Equation 3.7. 

    (Equation 3.7) 

Substituting Equation 3.6 into Equation 3.7 yields Equation 3.8.  The first-order temperature 

coefficients are estimated by taking the first derivative of Equation 3.8. 
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Table 3.2 – Reference Generator Device Specifications 

Device Device Type Device Property 

M16 45-V N-Channel LDMOS  

M17 Low-Voltage NMOS  

Q1SU-Q5SU Lateral PNP 
1x  

(unit transistor) 

Q3-Q4, Q8-Q9 Lateral PNP 4x 

Q5-Q6, Q11 Lateral NPN 4x 

Q7, Q10 Lateral NPN 8x 

D2, D3 Zener 8x 

R1SU Poly2 110 kΩ 

R2 Poly2 68 kΩ 

R3, R6 Poly2 2 kΩ 

R4 Poly2 380 kΩ 

R5 PWell 170 kΩ 

R7 N+ 160 Ω 

R8 Poly2 18 kΩ 

R9 Poly2 32 kΩ 

R10 Poly2 42 kΩ 

C1 MOSCAP 4 pF 

 

    (Equation 3.8) 

Equation 3.9 defines the first-order temperature coefficient of the reference voltage as a function 

of device temperature coefficients. 

    (Equation 3.9) 
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R8, R10 temperature coefficients cancel yielding Equation 3.10, where the nominal resistor 

values (R8o, R10o) are chosen to minimize the reference voltage temperature coefficients.   

     (Equation 3.10) 

Equation 3.10 serves as a first order approximation; therefore, second order temperature effects 

are still present in the generated reference voltage [5].  Using the devices shown in Table 3.2 and 

device information provided with the commercially-available, 0.8-micron process PDK, a 

nominal reference voltage of ~7.3 V is established by the reference generator.  Using Equation 

3.10, the R8/R10 ratio is set to 0.4 based on a VD3,BD temperature coefficient of 2.8 mV/ºC and a 

VBE temperature coefficient of −2 mV/ºC [5]. 

3.1.3 – Operational Amplifier 

In order to properly regulate the output voltage under a load condition, the reference voltage is 

fed to an error amplifier [4].  To combat the inherently low β values for the BJT devices (~ 50 for 

NPN, ~ 10 for PNP at room temperature) this amplifier is composed of three stages as opposed 

to the two used in the LM723 topology.  This topology provides a high DC gain, which reduces 

offset error and improves regulation [8].  Because the op-amp for this regulator has narrow 

bandwidth requirements (due to use of an external output capacitor), the compensation scheme 

reduces the bandwidth quite low to accommodate phase margin concerns (the affects of this 

compensation scheme on transient response are addressed in later sections).  Reducing the 

bandwidth of the feedback loop allows the three-stage amplifier to remain stable [8].  Figure 3.4 

shows the implemented three-stage operational amplifier.  The compensation node has moved 

from the differential pair (as in the LM723) to the common-emitter stage.  Another modification 

to the operational amplifier is that the reference voltage is resistively divided before being fed to 

the operational amplifier input.  The 7.3-V reference voltage used to generate VDD must be 

resistively divided to approximately 5 V, which requires the operational amplifier to operate in 

unity gain.  Figure 3.4 demonstrates this configuration with the feedback resistor RF used to 

reduce mismatch offset related to the input bias currents.  All bias currents in the op-amp are set 

to IC8 (of the reference generator) except for IC16 and IC22 which are double IC8. 
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Figure 3.4 – Operational Amplifier Circuit 

IC16 is doubled to provide current bias for Q17 and Q18, while IC22 is doubled to increase the 

drive capability of the common collector stage.  QD and R16 are added to allow Q13 to remain 

in forward-active mode by pulling the emitter voltage of Q20 down from the pre-regulator 

voltage rail.  The resistance seen in the emitter of Q20 (R16 and reD) is sized to allow Q20 to 

remain the dominant gain stage.  The DC loop transmission is found to be approximately 85 dB 

using Equation 3.11 (Adiff ~ 25 dB, ACE ~ 60 dB using defined device values). 

      (Equation 3.11) 

The Miller capacitor C2 provides loop stability by pole splitting [7].  The pole created at the 

common-emitter stage (Q20) is compensated to take advantage of the 60 dB gain at that stage.  

The expression for the loop transmission can be seen in Equation 3.12.  Assuming C2 dominates 

parasitic capacitances, 1 in Equation 3.12 is established by the gain of the common emitter 

stage, C2, and the equivalent load seen by Q17. 
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  (Equation 3.12) 

Similarly, 2 is established by the capacitance at the base of Q18 and the equivalent resistance at 

the base of Q18.  Both poles in the two-pole approximation are subject to the Miller effect.  The 

gain of the common-emitter amplifier is set to dominate the gain of the differential input pair, 

which allows pole-splitting to ensure stability.   

    (Equation 3.13a) 

    (Equation 3.13b) 

The resulting phase margin is over 70° which allows for stable operation.  Table 3.3 lists the 

devices used in the operational amplifier circuit. This simple op-amp design provides stable 

voltage regulation over the full range of operating conditions.   

Table 3.3 – Operational Amplifier Device Specifications 

Device Device Type Device Property 

Q12-Q13, Q20 Lateral PNP 4x 

Q14-Q15,Q17-19, QD Lateral NPN 4x 

Q16, Q21-Q22 Lateral NPN 8x 

R11-R13, R16-R17 Poly2 2 kΩ 

R14 Poly2 58 kΩ 

R15, R18 Poly2 1 kΩ 

RA Poly2 200 kΩ 

RB Poly2 440 kΩ 

RF Poly2 140 kΩ 

C2 MOSCAP 100 pF 
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3.1.4 – Output Stage 

In addition to the common-collector stage at the output of the op-amp, an output device capable 

of driving large currents and regulating large input/output voltage differentials is required at the 

last stage of the voltage regulator.  To prevent load current from being drawn from the pre-

regulator (increasing the no load supply current), this pass device draws its current directly from 

the input voltage (VDDH).  The insufficient open-base collector-emitter breakdown voltage of the 

BJT devices necessitates the use of a high-voltage NMOS device for the output device. The 

schematic for the output stage is depicted in Figure 3.5.   Q23 provides a small bias current to 

allow M18 to regulate the output voltage under no load conditions.  Using an NMOS transistor as 

the pass device allows the load current to be drawn from VDDH, but the “on” resistance associated 

with this device degrades the load regulation this voltage regulator could potentially demonstrate 

[5].  Due to the high drain voltage imposed on M18, this device is always saturated; and 

therefore, the output voltage is a function of the load current [8].  To decrease this effect as much 

as possible, the width of M18 is set quite large.  Table 3.4 lists the devices used in the output 

stage of the voltage regulator design. 

 

Figure 3.5 – Output Stage 
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Table 3.4 – Output Stage Device Specifications 

Device Device Type Device Property 

M18 45-V N-Channel LDMOS  

Q23 Lateral NPN 4x 

R19 Poly2 2 kΩ 

 

3.2 – Voltage Regulator Simulation 

3.2.1 – Operational Amplifier 

For the operation amplifier loop transmission simulation, VDD’ is connected directly to VDD, 

which allows the op-amp performance to be isolated.  Loop transmission simulations for the 

operational amplifier closely match the predicted loop transmission as evident in Figure 3.6.  The 

simulated DC loop gain of the op-amp is over 86 dB.  The op-amp loop transmission is 

dominated by a two-pole response (f1 ~ 10 Hz, f2 ~ 500 kHz) with a gain-bandwidth product of 

about 200 kHz.  Some higher order effects are visible but occur well past fun and have minimal 

effect on the op-amp operation.  Stable op-amp operation is ensured due to the ample phase and 

gain margins (P.M. ~ 72, G.M. ~ 10 dB).  The operational amplifier provides stable operation, 

low offset, and accurate regulation due to the high gain and phase margin.  The transient 

response of the operational amplifier is limited due to the low bandwidth of the design.  The use 

of an external output capacitor reduces the bandwidth requirement of the voltage regulator by 

providing charge storage to respond to a load transient.  The settling time of the regulated output 

voltage will be slow, but the total deviation from nominal VDD will be minimal.  The load 

transients presented by the gate driver have very narrow pulse widths, and therefore, the total 

charge required during a transient will be small.  A relatively small output capacitor can supply 

the charge required during these events effectively reducing the load presented to the voltage 

regulator.  Using this design, the operational amplifier is able to exhibit high DC gain while 

remaining stable for all operating conditions. 



21 
 

 

Figure 3.6 – Operational Amplifier Loop Transmission 

3.2.2 – Input Voltage Start-Up 

Voltage regulator start-up occurs when the Zener diode, D3, reaches its breakdown voltage, and 

the reference voltage is properly regulated.  This start-up voltage is one of the fundamental limits 

of the LM723 topology.  Historically, silicon Zener diodes with a breakdown voltage of about 

5.6 V have been shown to offer minimized temperature coefficients (the voltaget at which the 

Zener effect and the avalanche effect cancel).  In the commercially-available 0.8 micron process, 

a 6.3 V Zener diode is available.  In order for the designed voltage regulator to start-up, Equation 

3.14 must be satisfied (R7 is negligible).   

      (Equation 3.14) 

The input voltage must be greater than the sum of the breakdown voltage of the Zener diode and 

all voltage drops in series with the Zener diode.  Typically, the LM723 topology has a higher 

start-up voltage than other series linear regulator designs.  The large start-up voltage of LM723-

based voltage regulator designs is a significant design trade-off that must be considered.  For the 

gate driver project, input voltages are always above 10 V allowing the use of the LM723 

topology.  Input start-up simulation shows a start-up voltage around 8.3 V (Figure 3.7).   
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Figure 3.7 – Simulated Voltage Regulator Start-Up 

3.2.3 – Line Regulation 

Line regulation is a very important consideration for any voltage regulator design due to the 

variability of input voltages.  Line regulation is simulated at room temperature for both the no 

load condition and a 10-mA load condition over a VDDH range of 10 V – 35 V.  Figures 3.8 - 3.11 

illustrate line sweep simulation results for VDD, VPRE, VREF, and IREG, respectively. As Figure 3.8 

demonstrates, the line regulation of VDD is extremely small for either load condition; the inherent 

supply rejection of the LM723 topology and the use a pre-regulator circuit account for this 

simulated line regulation.  This line regulation (on the order of ppb/V) far exceeds any 

foreseeable application demand.  Adding a 10-mA load current to the output of the voltage 

regulator induces a slight increase in the input sensitivity of VDD most likely arising from the 

“on” resistance of the pass device.  Figure 3.9 shows the pre-regulator voltage in response to the 

input voltage sweep.  The line regulation of VPRE is not on the order of VDD (an expected result), 

but the pre-regulator still regulates VDDH on the order of ppm/V.  Loading the voltage regulator 

exhibits virtually no change in the line regulation of VPRE.  The observed proportionality of VPRE 

to VDDH is related to channel length modulation of the MOSFET devices used in the pre-regulator 

circuit.  Figure 3.10 examines the reference voltage as a function of input voltage.  The reference 
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voltage (ideally independent of input voltage) is found to have a very small, proportional 

relationship to input voltage (ppb/V).  This proportionality comes from the relationship of Zener 

breakdown voltage Zener diode current.  Generating both the reference voltage and bias current 

with Zener diodes (as is done in this voltage regulator topology) reduces this effect.  This, 

seemingly simple concept of the LM723 topology, allows for very predictable reference voltages 

to be generated over a wide range of input voltages.  The line regulation of the output voltage, 

VDD, is limited by the line regulation of VREF, so design choices in the reference generator circuit 

are carefully considered in the overall voltage regulator design.  Generating a reference voltage 

with a line regulation on the order of ppb/V is the main reason that the output voltage 

demonstrates extreme resistance to input variation.  Load current variation reveals virtually no 

change in the line regulation of VREF (due to the low output impedance of the op-amp).  The 

regulator bias current generated from the Zener reference current source is indirectly related to 

input voltage (through VPRE) due to the Early effect (Figure 3.11), but the coefficient of this 

relationship is on the order of pA/V and has little effect on regulator performance.  Load current 

variation has no discernable effect on IREG line sensitivity. 

 

             Figure 3.8 – Simulated VDD Line Regulation 
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Figure 3.9 – Simulated VPRE Line Regulation 

 

 

Figure 3.10 – Simulated VREF Line Regulation 
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Figure 3.11 – Simulated IREG Line Regulation 

3.2.4 – Load Regulation 

Load regulation is another critical parameter on which voltage regulators are evaluated.  The 

ability to supply a wide range of load currents without a minimal change in output voltage allows 

the voltage regulator to be implemented in a myriad of applications.  Some circuits (especially 

analog circuits) have very strict supply voltage constraints and demand the ability to draw 

current linearly with virtually no change in supply voltage.  Digital circuits (such as the circuits 

in the gate driver application) are less sensitive to changes in supply voltage but impose very fast 

load transients on the voltage regulator.  Analog and digital circuits present their own unique 

challenges when design voltage supplies for these circuits.  This voltage regulator is designed to 

accommodate both types of electronic devices.  DC load regulation simulations are performed at 

room temperature for input voltages of 10 V, 20 V, and 30 V.  Figures 3.12 - 3.16 display load 

sweep simulation results for VDD, VPRE, VREF, IPRE, and IREG, respectively.  Over a load current 

range of 0 to 10 mA, VDD is found to vary only a few µV/mA for all VDDH voltages (Figure 3.12).  

The complementary dependence of VDD on load current is due to the “on” resistance of the pass 

device, but this coefficient is quite small and allows for undisturbed performance over a wide 
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range of load currents.  This load current vs. VDD relationship is linear, and can be extrapolated 

for load currents exceeding 200 mA.  For all input voltages, VPRE has an inverse, linear 

proportionality to VDDH (Figure 3.13).  This relationship results from the increasing ID13 current 

required by the regulator circuits.  The complementary relationship between VDDH and VREF 

(Figure 3.14) arises from the Early effect imposed on the regulator devices from the pre-

regulator voltage load sensitivity.  However, VREF is nearly independent of load current through 

the use of an operational amplifier in the LM723 topology.  The operational amplifier prevents 

loading effects from being referred to the reference voltage node.  No measurable correlation 

between IPRE and load current is discernable for any VDDH voltage (Figure 3.15).  This result is 

expected as IPRE is generated using a threshold referenced current source.  The Early effect on the 

BJT devices (as mentioned in reference to VREF load regulation results) results in a 

complementary relationship between IREG and load current (Figure 3.16).  Overall, the voltage 

regulator shows excellent load regulation at each stage of the design.  The load current can be 

increased up to 300 mA without risk of circuit damage. 

 

 

Figure 3.12 – Simulated VDD Load Regulation 
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Figure 3.13 – Simulated VPRE Load Regulation 

 

 

Figure 3.14 – Simulated VREF Load Regulation 
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Figure 3.15 – Simulated IPRE Load Regulation 

 

 

Figure 3.16 – Simulated IREG Load Regulation 
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3.2.5 – Temperature Characteristic 

One of the main initiatives in developing this gate driver project is the requirement for all circuits 

to operate up to 200 °C.  Current LM723 designs offer temperature ratings up to 125 °C, which 

is substantially less than the environment imposed by hybrid electric engines.  This voltage 

regulator design is simulated over a wide temperature range (−50 °C to 200 °C) to ensure all 

environmental conditions have been examined.  Figures 3.17 - 3.22 demonstrate temperature 

sweep simulation results for VDD, VPRE, VREF, IPRE, IREG, and ISUPPLY, respectively.  As Figure 3.17 

illustrates, VDD varies less than 7 mV over the full 250 °C temperature range (regardless of 

changes in VDDH or load current).  The Zener reference topology along with the additional 

temperature compensation described in section 3.1.2 allow for the small temperature dependence 

observed.  The temperature compensation resistor R8 in Figure 3.3 takes advantage of 

temperature coefficient of the current through D3 by providing a voltage drop with a temperature 

coefficient complementary to that of the Zener diode breakdown voltage.  In addition to the 

small temperature dependence of VDD, the consistency of the temperature characteristic of VDD 

for all VDDH voltages and load currents allows for predictable operation in nearly any application.  

The temperature characteristic of VPRE shows a significant dependence on VDDH while load 

condition has an insignificant effect.  VDDH variation demonstrates an alteration of the 

temperature characteristic for VDDH values close to VPRE.  For VDDH voltages greater than ~11 V, 

the supply voltage has an insignificant effect on temperature characteristic.  The combination of 

the temperature coefficients of VPRE and VDS,SAT of the p-channel LDMOS devices M13 and M14 

result in the observed temperature curves (Figure 3.18).  Just as was the case with VDD, the 

temperature characteristic of VREF illustrates virtually no dependence on VDDH or load current 

(see Figure 3.19).  VREF exhibits only a 17 mV variation over the full 250 °C simulation.  Figure 

3.20 reveals that VDDH and load current have an insignificant effect on temperature characteristics 

for IPRE.  This bias current varies about 5 µA over the full temperature sweep.  This variation is 

due to the temperature dependence of VTH and the temperature dependence of the resistivity of 

the poly2 layer.  Changes in pre-regulator bias current do not affect the remaining regulator 

stages as long as the current demand of the regulator circuits on the pre-regulator does not 

exceed ID13.  In the event that regulator current demand exceeds the current available from M13-

M14, D1 will not have a bias current to establish VPRE.  Under this condition, the regulator 

circuits would be subject to unpredictable line voltages and circuit operation would be erratic.  
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To avoid this potential pitfall, ID13,14 is set well above the worst case current draw of the 

regulator circuit.  The regulator bias current temperature characteristic also exhibits little 

variability with VDDH and load current changes (Figure 3.21).  The IREG temperature coefficient is 

a result of the temperature dependence of VBE, poly2 resistivity, and p-well resistivity.  The 

temperature coefficient of IREG is actually advantageous, as the IREG curve cancels the inherent 

temperature curve of the Zener diode.  This complementary behavior illustrates the advantage of 

using Zener diodes to establish both the bias currents and reference voltage.  The supply current 

draw visible in Figure 3.22 is the summation of the bias currents of all four voltage regulator 

stages.  The maximum supply current draw is 324 µA at 100 °C, for a 30-V input.  The voltage 

regulator is designed so that ISUPPLY is parabolic with respect to temperature.  The parabolic 

temperature characteristic results in the lowest possible variability in current draw over 

temperature.  The power requirements of this voltage regulator are, therefore, very predictable.  

Figure 3.22 also shows that supply current is proportional to supply voltage.  For a load 

condition, total supply current is the direct sum of the no load supply current and the load 

current. 

 

Figure 3.17 – Simulated VDD Temperature Characteristic 
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Figure 3.18 – Simulated VPRE Temperature Characteristic 

 

 

Figure 3.19 – Simulated VREF Temperature Characteristic 
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Figure 3.20 – Simulated IPRE Temperature Characteristic 

 

 

Figure 3.21 – Simulated IREG Temperature Characteristic 
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Figure 3.22 – Simulated ISUPPLY Temperature Characteristic 

3.2.6 – Load Transient 

Figures 3.23-3.25 are the simultaion results of the voltage regulator in response to a 220-mA 

load transient at −50 °C, 25 °C, 200 °C, respectively.  VDDH is set to 20 V, and an output 

capacitor of 3.8 µF is used as a charge storage device.  VDD and VPRE drop linearly during the 

220-mA current draw as the load capacitor discharges and current demands on VDD increase.  In 

the gate driver application, the transient loads have a much shorter pulse width than 

demonstrated in these simulations (several orders of magnitude shorter).  The shorter pulse 

widths remove the linear drop of VDD and VPRE seen in these simulations.  VREF exhibits extreme 

resistance to load transients, which is consequential to the use of the operational amplifier 

(essentially a buffer).  Throughout the load transient, the regulator is able to restrict the output 

voltage to within 99.6 % of nominal VDD.  The load transient effect on VDD is nearly independent 

of temperature.  The load transient effect on VPRE is pronounced at the extreme ends of the 

temperature range; however, the worst-case effect is still limited to under a mV total 

displacement.  The response observed on VREF to a load transient increases with temperature; the 

worst case for the load transient reponse of VREF is under 100-µV total displacement. 
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Figure 3.23 – Simulated −50 °C Load Transient 
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Figure 3.24 – Simulated 25 °C Load Transient 
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Figure 3.25 – Simulated 200 °C Load Transient 
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3.2.7 – Line Transient 

Figures 3.26-3.28 examine the simulated voltage regulator response to a line transient of 5 Vp-p at 

−50 °C, 25 °C, 200 °C respectively.  In this simulation, VDDH switches between 20 V and 25 V 

with fast edges as demonstrated in the figures.  The line transisent simulation reveals small 

transient pulses in both the pre-regulator voltage and the reference voltage at both rising and 

falling edges of a line transient.  The amplitude of these pulses is greatest in the first stage of the 

circuit and is attenuated throughout the remaining voltage regulator stages.  VDD exhibits no 

suceptibility to a falling edge line transient (due to the class-A output stage) and shows only a 

modest change in output voltage in response to a rising edge transient.  The amplitudes of VDD 

during a line transient are inversely proportional to temperature.  VDD is regulated to within 99.97 

% of nominal VDD even under the worst case (−50 °C) line transient.  VPRE exhibits a significant 

line transient response (on the order of Vp-p) with a complementary relationship to temperature.  

This result is expected, as VPRE is directly connected to VDDH.  The resistance to line transients in 

the remaining voltage regulator stages is attributeable in part to the resistance to line transients 

found in VPRE.   The line transient response of VREF is directly related to the response of VPRE.  An 

attenuated effect of VPRE is visble in VREF, resulting in a similar temperature dependence.  The 

ability of the voltage regulator to perform well in the presence of line transients allows the 

voltage regulator to be implemented in applications where reliable power supplies may not be 

avaliable (almost any embedded application).  Reducing the restrictions on supply voltage 

required by a regulator widens the potential applications for the voltage regulator, and therefore, 

improves the marketability of the voltage regulator. 
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Figure 3.26 – Simulated −50 °C Line Transient 
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Figure 3.27 – Simulated 25 °C Line Transient 
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Figure 3.28 – Simulated 200 °C Line Transient 
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4. Post-Fabrication Verification 

4.1 – Voltage Regulator Testing Set-Up 

The voltage regulator layout in Figure 4.1 segregates each circuit stage in the voltage regulator 

design.  Device matching is impossible for all BJT, LDMOS, and MOSCAP devices due to the 

non-self aligned nature in this SOI-process.  The overall layout is compact which minimizes chip 

area and process variation.  Figure 4.2 shows the fabricated chip in contrast to the layout image.  

The total device area for the voltage regulator design is less than 0.5 mm
2
.  A large portion of 

this chip area is used for on-chip capacitors.  This capacitor area can be greatly reduced to 

accommodate smaller die areas in future fabrications.  High-voltage ESD for pins exceeding 5 V 

is implemented using a gate-source connected, high-voltage LDMOS.  Low voltage ESD for pins 

within 5 V is implemented using standard Zener diode ESD pads. Measurement data is obtained 

through a printed-circuit board (PCB) test set-up, using high-temperature components.  Figure 

4.3 shows the complete test board.  The 4-layer PCB is fabricated with polyimide dielectric, 

immersion gold contact finish, and PSR-9000 FXT solder resist for optimal high-temperature 

performance.   

Figure 4.1 – Voltage Regulator Layout 
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Figure 4.2 – Voltage Regulator Post-Fabrication 

 

 

Figure 4.3 – Voltage Regulator Test Board 



43 
 

High-temperature, Teflon-insulated, gold-plated SMA connectors are used to route signals to and 

from the test board.  Power is supplied via banana plugs and high-temperature, Teflon wire.  On-

board capacitance is provided by NPO ceramic capacitors, which provide a stable capacitance 

over temperature.  This test board is designed to support independent or collaborative testing of 

the voltage regulator and the under voltage lock out circuits (a sub-circuit on the gate driver 

project).  The DC testing (input start-up, line regulation, load regulation, and temperature testing) 

is performed using Labview 8.5-controlled Hewlett-Packard E3631A power supplies, Agilent 

34401A multimeters, and Keithley 2400 ammeters.  During each iteration of a test, the Labview 

code sets the independent variable for the specific test (load current or supply voltage), measures 

each instrument, writes the data to arrays, and increments the independent variable.  After the 

final iteration, the arrays of each measurement are compiled and written to a text file.   

4.2 – Input Voltage Start-Up 

Figure 4.4 illustrates the voltage regulator performance during start-up. Results similar to 

simulations are observed, as the voltage regulator is functional for VDDH voltages greater than 8.3 

V.  This result is consistent with predicted and simulated start-up values.  The 8.3 V start-up 

voltage verifies voltage regulator functionality for a VDDH voltage of 10 V (the lower limit).   

 

Figure 4.4 – Measured Voltage Regulator Start-Up 
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4.3 – Line Regulation 

The designed voltage regulator is functional on a VDDH range of 8.3 V to 35+ V.  Figures 4.5-4.8 

reveal the voltage regulator response to a VDDH voltage sweep under no load and 10-mA load 

conditions. As seen in simulation results, VDD possesses a proportional relationship with VDDH for 

both loading conditions.  Comparing measured results to simulations, a significant decrease in 

calculated line regulation is observable; however, noise limits the measurable resolution of VDD 

to well above the order of ppb found in simulation results.  The actual line regulation for the 

voltage regulator is not accurately measureable using the equipment described in section 4.1.  

The relationship between VDD and VDDH is emphasized with a 10-mA load present, but still well 

within design constraints.  As predicted in simulations, the “on” resistance of the pass transistor 

causes VDD line sensitivity, but self-heating of the voltage regulator under a load condition 

increases this effect.   Noise renders accurate readings of VPRE difficult (Figure 4.6), but the 

general trend of VPRE as a function of VDDH is visible as a proportional relationship (due to 

channel length modulation).  Self-heating of the voltage regulator under a load condition affects 

VPRE in a manner similar to VDD.  The measured line regulation of VPRE matches the simulated 

line regulation fairly well with only small, constant deviations.  VREF is almost independent of 

supply voltage under the no load condition; however, an inversely proportional relationship is 

demonstrated during a DC load condition (Figure 4.7).  Self-heating is again responsible for the 

decrease in line regulation VREF shows in the presence of a load.  VREF still exhibits a line 

regulation on the order of ppm/V, and has minimal effect on the voltage regulator operation.  The 

simulated vs. measured results of VDD, VPRE, and VREF correlate well, which implies a robust 

design.  IREG exhibits similar line regulation characteristics to VREF during an input voltage sweep 

(Figure 4.8).  The regulator bias current is essentially independent of VDDH under a no load 

condition, but the bias current increases proportionally to supply voltage in the presence of a DC 

load due to self-heating.  As with VREF, the small line sensitivity of IREG will have a negligible 

effect on the voltage regulator performance.  Overall, the voltage regulator demonstrates 

remarkable line regulation (for both no load and DC load current) at all circuit stages. 
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Figure 4.5 – Measured VDD Line Regulation 

 

 

Figure 4.6 – Measured VPRE Line Regulation 
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 Figure 4.7 – Measured VREF Line Regulation 

 

 

Figure 4.8 – Measured IREG Line Regulation 
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4.4 – Load Regulation 

The gate driver specifications for this voltage regulator require only about 250-µA DC current 

capability; however, the output is subject to transient load currents of 200 mA.  To ensure 

reliable operation, the voltage regulator is capable of safely supplying over 300 mA of DC 

current.  For testing purposes, the load regulation measurements are only performed to 10 mA, 

which is well below the capability of the regulator but well above the design requirements.  

Figures 4.9-4.13 illustrate the voltage regulator response to the load current sweep for 10-V, 20-

V, and 30-V input voltages.  In Figure 4.9, VDD displays a linear relationship to load current 

indicating a linearly decaying RDS of the pass transistor.  This resistance is inversely proportional 

to load current and induces a small voltage drop, which reduces the overall output voltage.  VDD 

decays as load current increases at the rate much higher than simulations predicted.  This rate of 

change decreases very slightly as VDDH increases.  The discrepancy between measured and 

simulated load regulation most likely arises from model inaccuracies of the high-voltage NMOS 

device (used as the pass device).  The annular gate used in these devices is difficult to accurately 

model for simulation.  The RDS resistance can be decreased by increasing the width of the pass 

device, or by increasing gate overdrive.  For this project, the DC current requirements do not 

require a strict DC load regulation; the measured load regulation is acceptable for most 

applications.  A small, proportional relationship between VPRE and load current is illustrated in 

Figure 4.10.  This relationship is predominantly due to the effects described in simulation results, 

but self-heating as load current increases also contributes to the observed response.  VREF (Figure 

4.11) possesses an extreme resistance to load current which is consistent with simulation results.  

The observable effects of VDDH on the load regulation of VREF (Figure 4.11) stem from increased 

power dissipation at higher VDDH voltages.  Figure 4.12 reveals a linear relationship between pre-

regulator bias current and load current.  In this case, the heat generated from load current lowers 

the threshold voltage of the NMOS devices in the threshold referenced current source of the pre-

regulator and increases the generated bias current.  Figure 4.13 examines the relationship 

between the regulator bias current and load current which is found to be similar to the 

relationship found in the pre-regulator bias current.  Neglecting self-heating, measured load 

regulation results match simulated load regulation results at all voltage regulator stages, save 

VDD.  Overall, the regulator performs well under a wide range of load conditions. 
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Figure 4.9 – Measured VDD Load Regulation 

 

 

Figure 4.10 – Measured VPRE Load Regulation 
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Figure 4.11 – Measured VREF Load Regulation 

 

 

Figure 4.12 – Measured IPRE Load Regulation 
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Figure 4.13 – Measured IREG Load Regulation 

4.5 – Temperature Characteristic 

The voltage regulator is tested in a Delta Design 9023 Environments Chamber over a 

temperature range of −50 ºC to 200 ºC with a sample taken every 25 ºC.   Figures 4.14-4.19 show 

the temperature characteristics of VDD, VPRE, VREF, IPRE, IREG, and ISUPPLY with 10-V, 20-V and 

30-V input voltages and no load and 10-mA load conditions.  Under no load, the output voltage 

exhibits a nearly uniform, parabolic relationship to temperature while varying only a few mV 

over the 250 ºC range (Figure 4.14).  Supply voltage variation from 10-30 V reveals no 

discernable effect on the temperature characteristic of VDD.  Under a 10-mA load condition, a 

similar parabolic relationship is observable but with a less uniform correlation.  The effects of 

temperature on RDS cause an increased drop in VDD as temperature increases.  This effect is due 

to the proportional relationship of RDS to temperature.  In spite of the temperature effect on RDS, 

the total variation of VDD over a 250 ºC temperature sweep remains modest for either load 

condition.  Supply voltage variation effects on VDD with a 10-mA load display an inverse 

relationship to temperature; however, the effect is small.  VPRE relationship to temperature is 

demonstrated in Figure 4.15.  The temperature coefficients of MOSFET threshold voltages and 
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poly2 resistivity combine to form this temperature dependence.  A load condition results in a 

very small decrease in pre-regulator voltage, which is consistent across temperature.  The 

proximity effect as VDDH approaches VPRE observed in simulations presents in measurement 

results as well.  The temperature characteristic exhibited in Figure 4.15 differs from the 

simulation results due to modeling inaccuracies (likely the high-voltage LDMOS devices).  At all 

temperatures, supply conditions, and load conditions the pre-regulator voltage remains well 

above the turn-on voltage required by the regulator circuits.  Figure 4.16 reveals a decaying 

reference voltage in response to increasing temperature.  The magnitude of the simulated VREF 

temperature coefficient differs from the temperature characteristic found in measurement results.  

Once again, model inaccuracies are the most probable cause of the discrepancy.  Load condition 

and supply voltage have minimal effects on VREF temperature characteristic.  Despite deviation 

from simulated results, VREF is well-bounded over temperature and will allow for accurate 

voltage regulation.  IPRE and IREG (Figures 4.16 and 4.17, respectively) respond to temperature 

changes as predicted by the simulations.  The voltage regulator provides an overall temperature 

characteristic that out performs most comparable commercially-available voltage regulators. 

 

Figure 4.14 – Measured VDD Temperature Characteristic 
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Figure 4.15 – Measured VPRE Temperature Characteristic 

 

 

Figure 4.16 – Measured VREF Temperature Characteristic 
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Figure 4.17 – Measured IPRE Temperature Characteristic 

 

 

Figure 4.18 – Measured IREG Temperature Characteristic 
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Figure 4.19 – Measured ISUPPLY Temperature Characteristic 

4.6 – Load Transient 

Load transient tests are performed at −50 °C, 25 °C, and 200 °C with a supply voltage of 20 V.  

The test set-up for the load transient tests can be seen in Figure 4.20.  The load current is 

obtained by measuring the voltage across the 5-Ω resistor and using Ohm’s law.  The switching 

signal vpulse is sourced using an Agilent 33250A waveform generator.  An Aglient 54624A 

oscilloscope is used to capture the various signals.  Using the pulse signal described, the load 

current generated exhibits a 70-nsec rise time and a 60-nsec fall time.  These transient times are 

limited by the speed of the 2N3904 current sink device.  As in load transient simulations, a 

ceramic NP0 load capacitor of 3.8 µF is used as a charge storage device.  Parasitic inductance 

and resistance present in the signal path from the signal routing on chip to the instruments inputs 

degrade the measureable transient response.  Signals probed at different points along the signal 

path displayed drastic differences in transient response.  The transient data obtained best 

represents the actual transient response; however, improved data may be attainable with 

packaging, PCB board, and test set-up modifications. 
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Figure 4.20 – Load Transient Test Set-Up 

The results of the load transient test for −50 °C, 25 °C, and 200 °C are illustrated in Figures 4.21-

4.23, respectively.  For all temperatures, the total displacement of VDD is about 50 mV during the 

load transient.  The peak-to-peak VDD load transient response decreases as temperature increases 

(consistent with simulation).  VDD settles to its nominal value within 2.5 µsec.  This observed 

settling time decreases with temperature.  Small ripple voltages are visible on VPRE and VREF at 

the edges of the transient load.  These ripple voltages are on the order of a few mVp-p and have 

settling times of a few µsec as exhibited in the respective figures.  These disturbances settle 

relatively quickly and do not cause voltage regulator stability issues.  The transient load is 

coupled through various devices within the voltage regulator, but the main coupling path is 

through the NMOS pass device.  The large width of this device implies large parasitic 

capacitances, which couple AC signals through the voltage regulator.  These effects are not 

detrimental to the voltage regulator performance and are expected in reaction to such a large load 

transient.  Subtle changes in the load transient responses of VPRE and VREF can be seen for 

different temperatures.  The measured load transient results differ slightly from the simulation 

results due to model inaccuracies (mainly the high-voltage LDMOS devices).  In spite of this 

short coming, the voltage regulator performs admirably in the presence of a load transient. 
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Figure 4.21 – Measured −50 °C Load Transient 
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Figure 4.22 – Measured 25 °C Load Transient 
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Figure 4.23 – Measured 200 °C Load Transient 
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4.7 – Line Transient 

Measured line transient testing is performed using a DC voltage source in series with an AC 

pulse generator (Figure 4.24).  An Agilent 33250A is used to provide the pulse voltage, while an 

Aglient 54624A oscilloscope is used to capture the various signals.  The pulse voltage (vpulse) is 

displayed in Figure 4.25.  The pulse voltage is set to 5 Vp-p with a 5-nsec rise time.  This test 

condition greatly exceeds input voltage transients encountered in the gate driver application.  

This transient supply voltage injects high frequency signals (the edges of the pulse signal) into 

the voltage regulator.  These high frequency signals are coupled through various parasitic 

capacitors throughout the voltage regulator and are examined at each node in the voltage 

regulator.  The pre-regulator greatly attenuates the line transient imposed on the subsequent 

voltage regulator circuits (another advantage to implementing the voltage regulator with a pre-

regulator circuit).  The output capacitor also attenuates the propagated transient signal.  As with 

the load transient test, the accuracy of the measured line transient responses is limited by the 

parasitic inductance and resistance presented at various points along the signal path.   

 

Figure 4.24 – Line Transient Test Set-Up 
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Figure 4.25 – vpulse Line Transient Signal 

The voltage regulator line transient responses can be observed in Figures 4.26-4.28.  VDD varies 

less than 1 mV during a rising edge transient and does not respond to a falling edge transient 

(consistent with simulation results).  The observed displacement in VDD increases with 

temperature but remains quite low even for a large line transient.  VREF shows a transient 

response at both rising and falling edges of the line transient, but the rising edge response is more 

pronounced.  This transient response in VREF exhibits narrow pulse widths due to the feedback 

loop in the reference generator circuit.  The amplitude of the VREF transient response has a 

parabolic relationship as function of temperature, but only minor differences arise at different 

temperatures.  VPRE responds to line transients with a proportional voltage step followed by an 

exponential decay back to the nominal voltage level.  The amplitudes and settling times of VPRE 

transient response is proportional to temperature. The exponential decay found in VPRE is 

attributed to the parasitic capacitances of the two large current source PMOS devices (M13 and 

M14).  The pre-regulator greatly improves the voltage regulators ability to reject line transients.  

Even large line transients do not pose a significant threat to voltage regulator performance as 

long as the line voltage remains within the input voltage range of the voltage regulator.  

Measurement results correlate well to simulation results with only small amplitude and time 

constant variations.  
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Figure 4.26 – Measured −50 °C Line Transient 
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Figure 4.27 – Measured 25 °C Line Transient 
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Figure 4.28 – Measured 200 °C Line Transient 
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5. Conclusion 

5.1 – Thesis Summary 

All of the design challenges associated with the high-voltage, high-temperature gate driver 

project are met by modifying the existing LM723 design.  The LM723 is a well-designed, well-

tested topology that serves as a strong base for voltage regulator design.  The commercially-

available, 0.8-micron SOI process greatly enhances the robustness of the design, but the trench 

isolation of individual devices produces its own unique design challenges (mainly device 

matching).  Device modeling inaccuracies in this process result in simulation vs. measurement 

discrepancies.  By over-designing the voltage regulator, these discrepancies did not significantly 

detract from the voltage regulator functionality.  Overall, the designed voltage regulator performs 

well over all specified operating conditions.  The most pronounced inaccuracy of the voltage 

regulator is the nominal 70-mV deviation from simulated VDD voltage.  Offset voltage imposed 

by the inability to match trench isolated devices contributes to this offset.  Also, BJT base 

currents can result in offset as these currents induce voltage drops on the input and feedback 

voltages of the op-amp differential pair.  In spite of these model inconsistencies, the overall 

performance of the voltage regulator meets or exceeds the demands of gate driver and many 

other high-temperature applications.  The temperature performance of the designed voltage 

regulator exceeds that of other LM723 based designs.  Also, largely due to the implementation of 

the pre-regulator, the line rejection of the designed voltage regulator (both DC and transient 

conditions) greatly exceeds most commercial voltage regulators.  Load regulation is adequate for 

most applications (up to 200 mA) but can be improved in future designs. 

5.2 – Future Work 

Future design revisions of this voltage regulator will take advantage of the model information 

discovered in testing this regulator design and testing of individual devices.  One potential 

modification to this votlage regulator is implementing a BJT-based output stage as opposed to 

the current LDMOS output stage.  The BJT output stage could significantly improve the load 

regulation and temperature performance.  To successfully implement the BJT output stage, the 

closed-base breakdown voltages of the BJT devices will need to be tested to unsure long term 

reliability.  Modifying the output stage could also result in increased load current capabilities 
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which would expand the applications of this voltage regulator.  An effort will also be made to 

remove the need for an external output capacitor.  Increasing the bandwidth (at the expense of 

DC gain) and modifying compensation techniques could potentially reduce the need for an 

output capacitor.  Temperature compensation may also be modified as device testing improves 

simulation accuracy.  Due to the limited pin count available and the high demand for pins in this 

gate driver generation, test points for the voltage regulator are limited.  Additional voltage 

regulator information would be available if future design were capable of allocating more pins 

for the voltage regulator circuit.   
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