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Abstract 

 

Data obtained during the April 26, 2000 MirEx experiment is used to 

infer the chemical mechanisms responsible for ultraviolet radiation observed to 

emanate from Russian spacecraft exhaust plumes in low Earth orbit.  The 

principle objective of this experiment was to use the Mir Space Station 

instruments to study the plume collisional processes occurring in the rarified 

atmosphere of the far-field; at distances greater than one kilometer away from 

the spacecraft.  This was accomplished by observing the automated Progress 

cargo ship as the auxiliary engines were being retrofired in a ram-burn 

configuration at 330 kilometers in altitude above Earth.  The primary emitters, 

observed within the 240 nm to 360 nm operating region of the instruments, 

were the molecular transitions of OH (A 2Σ+ � X 2Π), occurring at 306 nm, and 

NH (A 3Π � X 3Σ−), occurring at 336 nm.   

Proposed reactions for forming the excited-state OH and NH molecules 

begin with the ambient gases present in the upper thermosphere.  The collision 

pair for the atmospheric species is postulated to be gaseous water, which is 

expelled as a product of rocket engine combustion.  It is concluded that the 

most likely atmospheric species are atomic oxygen and nitrogen.  The 

activation energy for both reactions is the same; that energy required to break 

an O-H bond in the water.  The inclusion of the atmospheric wind velocity 

contribution to the collision velocity is proven to provide sufficient energy for 

each of the proposed reactions to proceed.  
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1 Introduction 

 In 1994, the Russian Space Agency publicly released ultraviolet imagery 

of the plume emissions of a shuttle spacecraft retro-firing in the vicinity of the 

Mir Space Station.  Dialogs ensued between scientists at the Central Research 

Institute for Machine Building, or TsNIIMASH (TsN),1  the Russian center for 

aerospace thermodynamics and space mission analysis, and Arnold Engineering 

Development Center (AEDC), an American aerospace simulation, testing, and 

evaluation center.  Collaboration, in conjunction with the United States Air 

Force Research Laboratory (AFRL), was proposed to conduct scientific space 

experiments using the research equipment readily available onboard Mir. 

 A comprehensive examination of the Mir Space Station, its service 

spacecraft, and the program to study the exhaust plumes of those spacecraft is 

presented in Chapter 1.  Chapter  2 outlines the operating environment of the 

spacecraft and the observation scenario for this experiment.  Chapter 3 

describes the instrumentation available on Mir for observation of plumes.  

Chapter 4 examines the spectroscopic data while Chapter 5 examines the 

imagery data generated on April 26, 2000.  Chapter 6 presents several chemical 

mechanisms as sources for the spectral and image data collected.  Finally, 

Chapter 7 discusses the viability of the proposed mechanisms and offers ideas 

for continuing research using this data set. 

 In this first chapter, an overview of the United States (US) sponsored 

program for experimentation onboard the Mir Space Station is given.  Section 

1.1 presents a brief history of the Russian Space Station.  In Section 1.2, 

initiation of a joint effort between the US and Russia for experimentation in 

low Earth orbit is explained.  Section 1.3 describes the Russian spacecraft used 

to both service the Space Station and as the objects of observation for this 

experiment.  Section 1.4 summarizes the conclusion of this collaborative 

effort.   
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1.1 Mir 

On March 15, 1986 the Mir Space Station began manned operations.  Mir, 

or Мир in Russian, was designed by the S. P. Korolev Rocket & Space 

Corporation Energia, and modularly developed with the participation of over 

200 Soviet organizations.2  It replaced the Salyut space stations, a series of 

orbital modules which were operated throughout the 1970s and 1980s by the 

Soviets.  The station’s Core module was launched by the Proton launch vehicle 

at an inclination of 51.6 degrees on February 20, 1986.  This inclination avoided 

flying through Chinese air-space to deposit the module into low Earth orbit 

(LEO).  Five orbital components followed; which, when docked with the Core, 

comprised the Mir Space Station, which is depicted in figure 1.    

The Core module, which measured 15 x 4.15 meters, was the living 

quarters for the cosmonauts.  Weighing 20,000 kilograms (kg), it provided the 

life support, power generation and thermal control for the completed station.3  

Launched on  March 31, 1987, Квант, or Kvant in English, was the astrophysical 

research module.  Weighing 11,000 kg, Kvant contained the Roentgen 

astrophysics observatory, along with Pulsar x-ray telescopes, a gamma ray 

detector and the Glazar UV telescope.  Measuring 5.8 x 4.15 meters, this 

module also had the 14 meter long Sofora mast structure mounted to its 

exterior.  The 20,000 kg Kvant-2 was launched on November 26, 1989.  It 

contained the crew shower facility and the airlock used by Cosmonauts for 

extra-vehicular activities, and measured 12 x 4.4 meters. 

 The next Mir module, Кристалл, or Krystall, was launched on May 31, 

1990.  At 12 x 4.4 meters, it housed the Earth observation instruments and was 

used to develop biological and semiconductor material technologies in space.   

It was followed on May 20, 1995 by the 19,640 kg Спектр, or Spektr, the 

remote sensing geophysical research module.  Measuring 12 x 4.35 meters, 

Spektr included the externally mounted apparatus for experiments outside of 

Mir.  The 19,700 kg remote sensing module Природа, or Priroda, was launched 

on April 23, 1996.  This 12 x 4.35 meter module contained a synthetic aperture 
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Figure 1. Modules of the Mir Space Station.
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radar, active and passive radiometers, and optical scanners.   Priroda also 

carried visible and infrared spectrometers for measuring atmospheric 

concentrations of aerosols and ozone.  When completed, the Mir Space Station 

measured 27 meters high, 32 meters long, and 30 meters wide. 

 The mission of the Space Station was scientific and applied research, 

over an expected operational lifetime of five years.  Mir was replenished by 

two models of service vehicles; the manned transport Союз, or Soyuz, provided 

crew rotations and the automated Прогресс, or Progress, provided cargo 

transport.  With a permanent crew and reliable logistical support, Mir provided 

an unmatched opportunity to conduct observations of Earth and its neighbors, 

as well as studies of basic physical phenomenon in space.  Fifty five scientific 

programs, of both Russian and international origin, were fulfilled utilizing Mir.   

 

1.2 MirEx 

Ultraviolet (UV) and infrared (IR) glow had been previously observed 

emanating from US shuttle craft.4,5  The source of this glow was postulated to 

be collisions of monatomic oxygen in the Earth’s upper atmosphere with the 

effluent plume molecules.  In-situ radiometric measurements were taken on 

the shuttle itself, of its own engines.  This provided data in the near-field 

region; that region within meters of the engines, where the exhaust gases 

freely expand into space.  However, no information about the extended profile 

of the plume, in the far-field region where the expanding exhaust gases 

interact with the ambient atmosphere, was gathered.  By using Mir as the 

observation platform, valuable information about exhaust plumes in the far-

field, many kilometers away from the spacecraft, would be gathered. 

In 1997, a joint scientific program began that was named in Russia 

Relaxation, to study the physical process responsible for radiation.  The United 

States collaboration with this program was called MirEx.  This program had four 

primary goals: the studies of atmospheric science, re-entry physics, electric 

propulsion systems and atmosphere-plume interaction.  The fourth goal 
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resulted in the research of which this research is a small part.  This project was 

designed to investigate spacecraft rocket exhaust plumes and their radiative 

behavior in the space.  With funding provided by the US Air Force Office of 

Scientific Research and planning completed by AEDC and AFRL, three years of 

experimentation began.   

Far-field plume UV images observed by Mir during the initial 1997 MirEx 

experiment could not be adequately described by existing kinetic equation 

solutions.  Therefore, plume spectral radiation equipment supplied by the US 

was transported to Mir.  The Russian cosmonauts collected data from Soyuz-TM 

and Progress-M spacecraft plumes as the replenishment vehicles arrived and 

departed from the Space Station.  These initial opportunistic collections of 

exhaust plume data led to dedicated spacecraft maneuvers designed to gather 

valuable data which could provide insight into modeling of the chemical and 

physical processes in the rarified atmosphere.   

 

1.3 Service Spacecraft 

The successful engineering of the Russian spacecraft supply vehicles is 

demonstrated by their continued use in servicing the International Space 

Station.  These vehicles are launched from Earth using a Soyuz SL-4 rocket from 

the Baikonur Cosmodrome in Kazakhstan.  The cargo spacecraft, model 

Progress-M, is of the same design as the passenger spacecraft, model Soyuz-

TM.  Both vehicles weigh 7,100 kg and measure approximately 8 x 2 meters.6  

They are equipped with autonomous navigation systems for automatic docking 

with the Space Station.   

The Soyuz-TM vehicle can deliver two or three passengers to the Space 

Station in about three days.  Designed for a round trip, Soyuz-TM could remain 

docked to Mir for only 200 days before requiring a return to Earth for servicing.  

Progress-M is an expendable vehicle and therefore requires no servicing.  It 

uses a 10.6 meter long solar array to charge the power supply system batteries, 

which allows it to be used for extended flights or to remain on station.  While 
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docked to the Space Station, its engines were used to alter or maintain the 

station's orbit.  It was also loaded with waste materials over the course of its 

six month stay.   As a replacement spacecraft neared Mir, Progress-M 

separated to de-orbit and make a destructive re-entry into the atmosphere.  

Each spacecraft has two identical onboard propulsion systems which use 

the same fuel and oxidizer.  Primary propulsion is provided by a single engine, 

called a Progress Main Engine (PME) for simplicity.  Maneuvering is provided by 

several paired thrusters that are scaled down versions of the PME.  These 

thrusters comprise the Attitude Control System (ACS).   Both engine 

configurations provide excellent sources of exhaust plume flow for monitoring.  

 

1.4 Program Conclusion 

 The Mir Space Station was brought back to Earth after fifteen years of 

LEO service on March 23, 2001.  By this point in its history, it had survived 

three times its expected lifespan, making 86,331 orbits of the earth.  During 

this time, Mir had 104 space visitors from 12 countries and completed over 

31,000 experiments.7  The MirEx program ceased with the controlled de-orbit 

burn that brought the Mir Space Station crashing down into the Pacific Ocean.  

However, processing of the final MirEx experimental data, which observed the 

Space Station departure of a Progress-M spacecraft on April 26, 2000, 

(hereafter referred to simply as Progress) continues.   

Dr. George Karabadzhak of TsN has been pursuing confirmation of 

molecular collision models of rocket exhaust flows in LEO with this data 

set.8,9,10  He has also collaborated with Dr. Sergey Gimelshein, of the 

Computational Aerodynamics Lab Institute of Theoretical and Applied 

Mechanics, in Novosibirsk, Russia and Dr. Deborah Levin, an Associate Professor 

of Aerospace Engineering at Pennsylvania State University.  This group has used 

the April 2000 data to extend existing plume models using the Direct Simulated 

Monte Carlo (DSMC) method.11,12  Additionally, a team of chemists from Johns 

Hopkins University has used this data set for geometric modeling of molecular 
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potential energy surfaces. 13  These results are expected to be applied to 

estimations of reaction cross sections. 

This last data set from the MirEx program has been delivered to the 

Advanced Missile Signature Center at AEDC for processing and final archive.  

Research presented will use the April 26, 2000 data to examine proposed 

mechanisms for the generation of excited-state OH and NH molecules.  

Further, the thermospheric operating environment and the importance of 

atmospheric mixing will be addressed when considering potential reactant 

collisions in spacecraft exhaust plumes.
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2 Experiment 

After de-docking from the Mir Space Station following the completion of 

a replenishment mission, the cargo ship Progress underwent dedicated flight 

maneuvers for observation by instruments onboard Mir.  Approximately three 

and a half hours of tabulated flight data were collected during this experiment.  

Only the ten minute portion that occurred while Progress operated entirely in 

decelerating impulse, using its eight identical ACS motors, is utilized here.   

In this chapter, the environment of low Earth orbit, in which Mir 

operated and this experiment occurs, is reviewed.  Section 2.1 presents the 

flight geometry of the Progress spacecraft.  In Section 2.2, the operation of the 

nine liquid rocket engines of Progress are described.  Section 2.3 presents an 

overview of the atmosphere and the computer software program used in this 

experiment to model it. 

 

2.1 Observation Method 

The Mir Space Station occupied a LEO orbit at approximately 330 

kilometers (km) in altitude; within the quasi-static temperature portion of the 

thermosphere’s upper region.  After de-docking, Progress decelerated from 

Mir’s orbital velocity of 7,416 meters per second (m/s) to 7,326 m/s, while 

descending in altitude.  Note that the velocity values given here are calculated 

to include the correction factor for the atmosphere’s co-rotation with Earth, so 

that all velocities are relative to a stationary atmosphere.   The flight 

geometry, presented in figure 2, was such that the main axis of Progress was 

maintained parallel to its velocity vector.  Although limited by the viewing 

port, Progress was observed tail-on as much as was possible.  This required 

frequent manual repositioning of the imager by Mir cosmonauts in order to 

keep Progress in the center of the frame.  Examination of telemetry data 

indicated that deviations from this flight geometry during the time under 

examination were within one degree from this viewing angle.  



 9 

 

Figure 2.      Viewing geometry and labeled parameters of experiment. 
 
 

Figure 3 summarizes a portion of the telemetry data collected.  In figure 

3(a), the gradual increase in the slant range between the Mir and Progress is 

indicated by the change of altitudes.  In figure 3(b), the time dependence of 

the aspect angle between the viewing port of the Space Station and the 

location of Progress is depicted.  With total plume size on the order of 

kilometers, a slow change of viewing angle over time is imperative for retrieval 

of useful data from the instruments.    

 

2.2 Engine Description 

The liquid-fueled rocket engines of the Progress-M spacecraft each 

consist of an injector, a combustion chamber and a nozzle.  In the walls of the 

combustion chamber are many small jets through which the injector forces the 

propellants.  The jets allow the separated fuel and oxidizer to emerge as 

impinging vapor streams into the high pressure, high temperature chamber.  It 

is necessary for the injected liquid oxidizer to vaporize and then mix with the 

vaporized fuel prior to combustion to ensure a complete reaction. 14  The 

nozzle, while exhausting the combustion products into space, converts the 

thermal/chemical energy of combustion into the kinetic energy necessary  
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Figure 3.      Summary of telemetry data.   
         (a) Mir and Progress altitude over time.   
         (b) Change in aspect angle over time. 

 
 
to propel the vehicle. 

After de-docking from Mir, Progress moved away from the Space Station 

using its centrally positioned PME.  This engine had a nominal thrust of 3,100 

newtons (N), or 700 pounds of force (lbf).  To maneuver for a proper viewing 

angle from Mir, Progress used controlled firings of pairs of ACS engines.  Each 

of the eight ACS maneuvering engines had a nominal thrust of 135 N (30 lbf).  

The ACS engines were tilted at a twenty degree angle toward the main axis of 

the craft.  These engines were arranged in four pairs along the outside edge of 

the bottom of the vehicle, with each pair located ninety degrees from the last.  

A graphical representation of the engine layout is found in figure 4.  

The liquid hypergolic propellant used by Progress consisted of 

unsymmetric dimethylhydrazine (UDMH) for fuel and dinitrogen tetroxide 

(N2O4) for the oxidizer.  The mixture ratio of oxidizer to fuel was 1.84 by 

weight.  The nominal flow rate through each of the eight nozzles was 0.046 

kg/s for the first nine minutes of burn.  This was followed by fifty seconds of 

burn in a fuel-rich condition. The nominal flow rate was resumed for one  
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Figure 4. Engine configuration of Progress spacecraft. 
 
 

minute, and then the ACS motors were turned off as Progress began its 

destructive re-entry. 

 

2.3 Orbital Conditions 

Earth’s atmosphere is divided into several distinct regions.  The field of 

meteorology is concerned with processes in the lower atmosphere; specifically,  

in the troposphere and stratosphere regions.  The field of aeronomy is 

concerned with processes in the upper atmosphere: specifically, in the 

mesosphere, thermosphere, ionosphere, and exosphere regions.  The focus of 

this experiment lies within the realms of aeronomy.  It examines ultraviolet 

radiation from spacecraft exhaust plumes which occurred in the thermosphere 

and ionosphere regions.  Figure 5 provides the graphical distinctions between 

the various levels of the atmosphere, as well as the temperature and estimated 

electron and major species densities at those altitudes. 
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Figure 5. Earth’s atmospheric regions and estimated species 

densities. 
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The thermosphere has a steep vertical temperature gradient in its lower 

region, but, in its upper region the temperature is independent of altitude.  

This region is characterized by low pressures and high temperatures.  The 

temperature of the upper thermosphere is attributable to high energy 

ultraviolet light and x-rays being absorbed by the rarified gas present.15  At this 

altitude, there are approximately 108 to 109 molecules per cubic centimeter, 

with the dominant species (representing 80-95%) being atomic oxygen. 

At this altitude, energetic photons can heat the neutral gas molecules 

and cause ionization.  This produces the region of the atmosphere known as the 

ionosphere.  In the ionosphere there are two distinct electron density bands.  

The E-band has a largely neutral particle density that is mostly in 

photochemical equilibrium.  The dominant ion species are O2
+ and NO+, which 

quickly combine with the neutral particles when sunlight is removed.  In the F-

band, the dominant ion species is O+, which is not in photochemical 

equilibrium.  Plasma transport from other atmospheric regions causes 

recombination of atomic oxygen ions to be highly inefficient, so they retain 

their ionization after the sun has passed.16  Vertical mixing in this region, often 

referred to as atmospheric wind, is the result of ionized atoms and electrons 

which are subject to geomagnetic forces and solar radiation.  Data for this 

study was collected at night, in the peak of the F-band region, to rule out solar 

effects as sources of excited-state molecules. 

Chemical reactions and interactions in the upper atmosphere are 

difficult to simulate in a laboratory environment because the mean free paths 

are much greater than the apparatus dimensions.  Additionally, attempts to 

view these processes in-situ by Earth-based test equipment are impeded by 

scattering from clouds and interference from the ionosphere.  Remote sensing, 

such as that made possible by the use of satellites, is much more versatile.  

However, local observations, such as those possible from a space station, offer 

the greatest range of useful data. 17 

The plume composition is reasonably known due to the nature of the 
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rocket combustion (as discussed in Chapter 6).  However, composition of the 

local atmosphere is subject to variations from solar activity and the 12-year 

solar cycle, as well as day-to-night variations.  For this reason, these dynamic 

variables, along with the neutral temperature and atomic and molecular 

densities in the upper atmosphere, were calculated using the MSIS-E-90 (Mass-

Spectrometer-Incoherent-Scatter) model.18  Using satellites equipped with mass 

spectrometers, it has been possible to measure atmospheric parameters in-situ 

since the early 1970s.  This data has been supplemented by thermospheric 

temperature data collected by ground-based incoherent scatter radars to 

produce the MSIS modeling tool.  This version of the model utilizes historical 

measurements from flight data, ground facilities and seven satellites to 

extrapolate orbital conditions.   

The MSIS model can estimate the temperature, mass density, and 

number density of individual species present in the atmosphere for one 

particular date, time, altitude, latitude and longitude.  No actual 

measurements of temperature or gas density were taken during this 

experiment.  Table 1 presents a sample listing of the MSIS modeled 

atmospheric parameters in one region of the space through which Progress 

traveled during observation by Mir.  For a complete picture of the operating 

environment of Progress, the MSIS data would have to be correlated to the 

spacecraft flight plan.  This sample is for the date April 26, 2000, at the hour 

of 19.5 universal time (UT), geographical latitude of 31 degrees and 

geographical longitude of 43 degrees. 
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Table 1.  Sample of MSIS modeled characteristics for major species. 

Altitude          Number  Densities   Mass  Density Temperature 

 (km)                (g*cm-3)        (K) 

  O (cm-3) N2 (cm
-3) O2 (cm

-3)     

320 6.99E+08 1.19E+08 3.65E+06 2.47E-14 1094.7 

322 6.78E+08 1.12E+08 3.43E+06 2.38E-14 1094.9 

324 6.57E+08 1.06E+08 3.22E+06 2.30E-14 1095.2 

326 6.37E+08 1.01E+08 3.03E+06 2.21E-14 1095.4 

328 6.17E+08 9.53E+07 2.84E+06 2.13E-14 1095.6 

330 5.98E+08 9.03E+07 2.67E+06 2.06E-14 1095.8 

332 5.80E+08 8.55E+07 2.51E+06 1.99E-14 1096 

334 5.62E+08 8.09E+07 2.36E+06 1.92E-14 1096.2 
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3 Test Equipment 

In the last half of the 1990s, the launch cost to place one kilogram of 

test equipment into orbit was approximately $20,000.19   For this reason, it was 

obvious that utilizing the equipment already in orbit would be very economical.  

Over the course of the three years that MirEx was in operation, the US 

government spent a total of only $560,000 on the program.  This is an 

astoundingly small amount of money to spend for the ability to conduct 

experiments in space. 

This chapter examines the instruments used to fulfill the MirEx program.  

Section 3.1 follows the change of conditions onboard Mir.  In Section 3.2, an 

overview of the test equipment co-alignment is given.  Section 3.2.1 gives a 

description of the spectrometer purchased for MirEx by AEDC, while Section 

3.2.2 describes the imager provided by TsN.  Section 3.3 demonstrates the 

difficulties in returning the test data to analysts on Earth. 

 

3.1 Original Plan   

A complete review of the eleven tons of research equipment onboard 

Mir resulted in the selection of three basic instruments for use in the MirEx 

program.  Those instruments were a UV imager, an ISTOK IR spectrometer, and 

a BRIZ vacuum ultraviolet/ultraviolet (VUV/UV) spectrometer.  The imager was 

located in the Core module and controlled by cosmonauts.  The BRIZ 

spectrometer was located externally on Spektr, while the ISTOK IR 

spectrometer was located externally on Priroda.  Both spectrometers were 

operated by telemetry up-linked programs from Mission Control Center via an 

onboard control unit. 

 On June 25, 1997, a Progress spacecraft (number M-34) collided with 

Spektr  while attempting to dock with Kvant-1.  The collision damaged solar 

panels and punctured the hull of Spektr, causing it to depressurize.  The Spektr 

module was sealed off to preserve the integrity of the rest of the station.  The 
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IR spectrometer positioning mechanism was damaged, as well as the VUV/UV 

spectrometer.  This mishap caused a re-evaluation of the MirEx program goals.  

It was determined that experimentation would continue on Mir, with study 

focused on plume behavior in the ultraviolet region of the spectrum, using 

other instruments from the Core module. 

 

3.2 April 26, 2000 Instrumentation  

The UV imager, developed for Mir by TsN with the assistance of Lebedev 

Physical Institute,20 was undamaged in the collision.  A replacement, however, 

was needed for the UV spectrometer.  AEDC purchased two ultraviolet-near 

infrared (UV-NIR) spectrometers.  After calibration of both instruments, one 

unit was placed in a ground-training facility for familiarization by cosmonauts, 

while the other was sent up to Mir in February of 1998 on a Progress mission.   

The fiber-optic focusing lens of the spectrometer was rigidly fixed to the 

imager in order to co-align the field of view (FOV) of both instruments.  The 

imager had a 3-axis gimbaling mount which provided rigid mounting to the 

frame of a quartz viewing port in either Priroda or Core.  For this experiment, 

window number 9, located in the Core module, was used.  Figure 6 shows this 

co-alignment, with the inner ring drawn to represent the spectrometer 2.6 

degree circular FOV and the outer ring representing the imager 9.8 degree 

circular FOV.  This unprocessed image clearly shows the exhaust plume of 

Progress in the center of the frame.  Also visible in the raw image are the time-

stamp, in the lower right corner, as well as numerous stars and bad pixels 

throughout the image.   

Both instruments were manually operated by Mir cosmonauts based upon 

direction from scientists at Mission Control Center in Russia.  Image data was 

captured on BetaCamSP Professional videotapes in standard analog format 

using a commercially-available Sony 8mm camcorder.  The imager acquired 

data was constrained by the camcorder frame rate of 25 frames-per-second to 

a temporal resolution of 0.04 seconds. 
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Figure 6. Sample of raw video obtained April 26, 2000.  The   
          white circle indicates the spectrometer FOV. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 



 19 

3.2.1 UV-NIR Spectrometer 

The OceanOptics S2000 model (UV-NIR) spectrometer weighed less than 

a pound.  It had a 600 micrometer entrance aperture with a 5 mm ultraviolet-

grade focusing lens.  It was connected via a fiber-optic cable to a high-speed 

A/D card in a Toshiba Satellite Notebook computer for control of data 

acquisition.  The basic characteristics of the spectrometer are summarized in 

table 2. 

 

3.2.2 UV imager 

The UV imager consisted of a radiation detector interfaced by a relay 

lens and an image intensifier.  The input was captured by a quartz F/1 aperture 

telescope with a permanently attached broad-band color glass UV filter that 

was mounted to the interior side of the viewing port.  Additionally, three 

narrow-band interference filters were installed on the telescope by 

cosmonauts.  While the broad-band filter provided off-band blocking of visible 

and near-ultraviolet radiation, the narrow-band filters provided specific 

waveband selection in the mid-ultraviolet region.   

The UV image intensifier had circular geometry and used a solar-blind 

cesium telluride (Cs2Te) photocathode to effectively block the visible radiation.   

 

Table 2.  Specifications of the OceanOptics S2000 spectrometer. 

Specifications Range 

Wavelength region, nm 178-878 

Number of channels 2048 

Digitization level, bits 12 

Spectral resolution, nm 8-10 

Angular Field of View, µrad 45375 

Minimum sampling time, sec per 
spectrum 

~ 0.02 

Dynamic range, single sample ~ 500 
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The intensifier output was viewed by a standard rectangular charge coupled 

device (CCD) detector.  This is the reason that the illumination occupies a 

circular region in the center of figure 6.  The basic characteristics of the 

imager are summarized in table 3. 

 

3.3 Data Handling 

The initial video feed and digital spectrometer data were sent by 

telemetry link to Russian analysts on Earth.  This allowed preliminary analysis 

on the data to begin while awaiting the return of the original videos to Earth 

with the next crew change.  It was found, however, that the telemetry 

introduced a significant amount of noise to the imager data.21, 22  Because the 

spectrometer data was already in digital form, it was qualitatively unchanged 

by the telemetric transmission.  The images used here were obtained from 

copies made of the original video tapes.  The tapes were returned to Earth, via 

the spacecraft Soyuz (number TM-30) on June 13, 2000, with the departure of 

the final crew to man the Mir Space Station.   

 

 

Table 3.  The UV imager general characteristics. 

Specification Range 

Operating wavelength region, nm 200 - 360 

Wide band color UV filter, nm 240 - 360 

Interference filters centers, nm 260, 284, 315 

Telescope effective diameter, mm 55 

Telescope focal length, mm 78 

Field of view, degrees 9.8 

Angular resolution, µrad ~1308 

Maximum sensitivity, W/cm2 per count ~ 2×10-17 
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4  Spectral Data 

This chapter takes a closer look at the data collected by the UV-NIR 

spectrometer.  Section 4.1 follows the progression of processing of the raw 

spectroscopic data.  In Section 4.2, the spectral data is extracted from the raw 

data in order to determine the primary emitters present in the plume.  

 

4.1 Processing 

During the April 26, 2000 event, the OceanOptics spectrometer collected 

330 data samples in approximately 2.5 second intervals.  This research 

considered only the ten minutes that coincided with the ram-burn of Progress 

ACS engines for analysis.   These data samples represent the intensity at each 

of the discrete 2,048 wavelengths, between 178.4 nm to 878.4 nm, monitored 

by the spectrometer.  In-flight calibration of the spectral response of the 

spectrometer was performed using the Moon as the radiation source.    

Computation of the modeled spectra was accomplished by convolution of 

the Moon albedo with the solar spectrum.  This process took into consideration 

the date and time of the collection to determine the phase of the Moon and 

the solar radiation it received.  The spectrometer was found to be most 

sensitive to visible light, with deviations of up to 15% from the laboratory 

calibrated response values occurring in the wavelength region from 680 nm to 

800 nm.  However, in the 240 nm to 360 nm region considered here, deviations 

were less than 5%.  Spectrometer response values can be found in their entirety 

in reference 9.   

The raw spectrometer data was received at AEDC as an ASCII text file in 

units of counts.  For a first look at the data, it was imported into an Excel file 

for manipulation.  Due to the weak signal present, this effort produced little in 

the way of usable results.  The next attempt to visually represent the data was 

made utilizing the computer program Matlab, a comprehensive mathematical 

software tools package.23  A  three dimensional surface plot was used to 
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represent the raw data, with interpretive shading that indicated minimum 

count values in blue and maximum count values in red.  This unprocessed 

surface plot is shown in figure 7(a).  This graphic makes it evident that there 

were numerous saturated channels within the visible light wavelengths of the 

spectrum throughout the collection interval.  Additionally, the spurious peaks 

across all wavelengths give indication of a significant amount of random noise 

being present. 

For comparison to the imager data, the raw spectra within the 

wavelength region of 240 nm to 360 nm, which is contained within the red box 

of figure 7(a), was extracted from the complete surface plot for analysis.  The 

extracted UV region of raw data was automatically rescaled by Matlab, and is 

shown in figure 7(b).  The maximum counts for this spectral region have now 

become the red band.  At this point, there appear to be two peaks, closely 

spaced in wavelength, separated by approximately 20 nm from a less intense 

peak signal.  Efforts were initiated to reduce noise and extract intelligence 

from this spectra, in order to determine the radiating species present. 

 

4.2 Data Analysis 

The initial assumption was made that the number of photons at each of 

the discrete wavelengths detected by the spectrometer is indicative of the 

concentration of emitters present.  However, the detected signal strength of 

the individual samples was too weak to draw quantitative conclusions about the 

particular wavelengths observed.  Various methods and repeated unsuccessful 

attempts were made to extract usable data from the raw spectra.  The goal 

was to duplicate for the 240 nm to 360 nm region the signal processing efforts 

described by Karabadzhak in reference 9.  His processing began with averaging 

of samples over 30-40 second intervals and then integrating over 10-12 nm 

bandwidths.  The signal-to-noise ratio was to be improved by background 

subtraction followed by FFT-smoothing procedures.   

Unfortunately, when this process was performed on the AEDC dataset, a 
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 (a) Raw complete spectra 
 

 
 (b) Raw spectra from the boxed region above  

 
  
Figure 7. Surface plot of raw spectrometer data.   

   (a) Wavelength region from 178.4 nm to 878.4 nm 
   (b) Wavelength region from 240 nm to 360 nm 
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usable spectrum could not be produced.  This is demonstrated by the sample of 

processing performed on the entire spectrum that is shown in figure 8.  Here it 

is seen in figure 8(a) that the sample averaging and integration technique 

produced distinct peaks in the spectrum while magnifying the significant noise.  

Subsequent smoothing removed the distinguishing features from the spectrum, 

as is shown in figure 8(b).  Repeated attempts produced no better results. 

Using the described method, Karabadzhak was able to recover usable 

qualitative spectrometer data in the 300 nm to 775 nm range only.  The 

composite spectrum, seen in figure 9, shows the primary emitters detected in 

the Progress exhaust plume within this wavelength region.  The in-flight 

calibrated response is applied to the spectrum, thus the intensities of the 

emitters given are absolute values.    The peaks indicating the radiation of  

OH (A 2Σ+
�X 2Π) at 306-315 nm, and NH (A 3Π � X 3Σ−) at 335-336 nm also fall 

within the operating region of the UV imager, where further separation of the 

data can occur.   

 
 

 
 
 

 
(a) Sample averaged   (b) Smoothed 

  
 
 

 
Figure 8. Processed and smoothed spectrum. 

(a) Results of sample averaging 
(b) Results of smoothing 
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Figure 9.      Composite spectrum derived from spectrometer data.  
 *Taken directly from Reference 9. 
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5 Imaging Data 

This chapter takes a closer look at the data collected by the UV imager.  

Section 5.1 follows the progression of processing of the visual data.  Section 5.2 

presents the calibration process performed by Russian scientist using data 

gathered by cosmonauts prior to beginning this experiment.  In Section 5.3, 

analysis is given of the data retrieved during image processing.  

 

5.1 Image Processing 

A DC30+ commercial video board was used by TsN to provide an 8-bit 

level digitization of the Video8/PAL data.  Over 21,000 frames of 768-by-576 

pixel, gray-scale bitmap images were collected during this experiment.  For 

ease of manipulation, these files were first converted into Standard Archive 

Format (SAF).  SAF is a file-format program designed by the Advanced Missile 

Signature Center (AMSC) at AEDC for easy image data extraction.  The SAF files 

were then made into movies of the entire test.  Image registration of the 

individual frames, with time-stamp removal, was attempted using three Matlab 

methods: co-adding sequential SAF images, transform of bitmap images, and 

use of a locally developed graphical user interface (GUI) tool.  A visual 

comparison of the first two methods is shown in figure 10. 

Co-adding of SAF frames was accomplished through several tools found 

in the SAF Toolbox group of routines written by AMSC software engineers 

specifically for use with Matlab.  Because SAF added blocks of ASCII formatted 

characteristic data about the image, a special routine was used, called 

DVRead, which ignored these lines of information.  The frames were then 

stacked directly upon each other, with the resultant image seen in figure 10(a).   

This tool was very convenient because it could be used on standard format 

files.  However, the stacking of images needed to be confined to a small series 

of frames, in which relatively little motion of the target occurred, in order to 

minimize the size of saturated areas caused by bad pixels.   
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Figure 10.     Example of the results of two image registration methods.   
            (a)  Consecutive addition of 200 individual images.   

          (b)  Transformation of 200 individual images. 
 

The transform function was part of the Imaging Processing Toolbox group 

of routines available in Matlab.  The bitmap images were imported to the 

workspace and an anchor frame, in which Progress had a centralized position 

relative to the rest of the frames, was selected.  Several reference points were 

selected from this frame using the cpselect command.  Using the cp2tform, and 

the linear conformal format commands, the processor searched the target 

frame for the reference points.  The result was a series of new images, each 

stacked on the anchor frame with the reference points coinciding.  These 

images were then registered with the imtransform command.  While effective 

for keeping the frames aligned, this tool tended to blur the image, as is evident 

in figure 10(b). 

The last image registration method used was a GUI developed by the 

AMSC under the direction of Dr. Bob Reed.  A snapshot of the stages in the 

processing of the plume image is presented in figure 11.  The GUI used a 

combination of the above methods to produce registered images of long series 

of SAF files.  In transforming the files, this routine used the location of Progress 
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 Figure 11.     Gray-scale image processing progression.   
   (a) GUI generated registered raw image compiled from 200  
    individual frames. 

                    (b) Median filtered registered image at 256-by-256 pixel  
   size. 

          (c) Processed registered image at 256-by-256 pixel size.   
          (d) Plume image cropped to 150-by-150 pixel size. 
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as the anchor in each frame.  The image shown occurred at 155 seconds after 

initial ACS engine firing. 

The file series were each converted to a single 256-by-256 pixel image, 

with additional data files generated for the tracked motion of Progress and 

compiled characteristic information.  Correction of bad pixels was 

accomplished using a nearest neighbor replacement.  A mask matrix composed 

of stars and uncorrectable bad pixels was next constructed.  This mask was 

then multiplied by the GUI generated image matrix to produce a raw, 

registered image.  Further image processing was accomplished using standard 

Matlab routines; including median, image and convolution filtering.  

Because of the versatility and accuracy of the GUI it became the primary 

tool used to register the raw image frames.  To enhance the details of the 

plume, the GUI generated figures were converted to pseudo-color images.  As 

can be seen in figure 12, the plume boundaries are now clearly visible, where 

relative intensity increases from the blue to red regions.  As the ACS engines 

fire (from left to right in the image), the most intense region of the plume is 

observed to trail to the right.  Additionally, the direction (from right to left in 

the image) of the significantly slower atmospheric wind becomes evident with 

the plume dispersion in the opposite direction of the exhausted combustion 

products.  Note also, that the actual physical location of Progress is to the left 

of the observed plume field. 

 

5.2 Calibration 

This imager was used throughout the years of the MirEx program.  This 

allowed calibration over a variety of radiance levels using numerous stars; with 

particular attention paid to single pixel and integral point source responses.  

The imager angular resolution was found by analyzing images of point sources 

located at infinity.  In this experiment, those point sources were stars in the 

Pyxis and Puppis constellations.  The single pixel angular dimension was found 

to be 342 µrads at both the center of the image and at the edge.  This 
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 Figure 12.    Pseudo-color image processing progression.   
         (a)  GUI generated registered raw image compiled from 200  

                              individual frames.   
         (b)  Median filtered registered image at 256-by-256 pixel 
          size.   
         (c)  Processed registered image at 256-by-256 pixel size.   

   (d)  Plume image cropped to 150-by-150 pixel size. 
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 represents the minimum picture element fixed by digitization of the video 

signal.  For a non-saturating point source response, the imager angular 

resolution measured approximately 0.08 degrees at full-width, half-maximum. 

To measure the uniformity of response of the imager FOV, cosmonauts 

took a series of images of a single star.  In each image, the star appeared in a 

different place in the picture.  A decrease in response was detected at the 

edge of the FOV only.  Additionally, the imager absolute response is strongly 

dependent upon the Mir window transparency.  Changes in both the absolute 

sensitivity and the relative spectral sensitivity are possibly due to attenuation 

of radiation passing through the window.  A change in the absolute 

transparency of the window was found, attributable to time and wear, which 

necessitated a correction of the imager response curve.  The window/imager 

system absolute response value was calculated by Karabadzhak (Ref. 9) to be 

4.8x1016 counts per W/cm2 by using the observed star irradiances.  Figure 13 is 

a graph of the calculated absolute spectral response for the April 26, 2000 data 

collection. 
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Figure 13. Absolute response of the imager/window system. 
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5.3 Image Analysis 

The cropped frame of the GUI-registered composite image measured 

150-by-150 pixels.  This corresponded to an effective imager FOV of  

2.88 degrees during this time.  An image radial profile of the cropped frame 

was calculated using a Matlab interp2 command-based subroutine.  To visualize 

the radial profile of the near-field plume at various points throughout the 

entire ACS engine firing, the Matlab data was imported into Microsoft Excel in 

order to construct a graph.  The plot seen in figure 14, shows the radial 

development of the total radiant intensity of the plume at four different times 

during the experiment.  As expected, the plume radiates more intensely early 

into the firing, and becomes more diffuse and less intense as firing continues.  

Here the expanse of plume covered by a single pixel width at each time 

snapshot is shown in the displacement of the starting integral from zero. 

Considering the imager preferential sensitivity to the  

OH (A 2Σ+
�X 2Π) emission wavelength, the goal of this observation turned to  

 

  

 Figure 14.     Snapshot of radial integral behavior at various distances. 
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separating out the NH (A 3Π � X 3Σ−) contribution from the input data.  At 

approximately 157 seconds into engine firing, cosmonauts manually installed  

onto the imager lens the third of three narrow-band filters available.  At a 

band-pass of 315 nm (±9 nm), the filter effectively blocked the contribution of 

NH (A 3Π � X 3Σ−) to the imager received signal.  Because the filter covered 

only the imager’s input lens, it left the spectrometer signal unimpeded.  Figure 

15 offers a visual comparison of the processed GUI registered images taken 

directly before and directly after the installation of the narrow-band filter, 

using the same scaling.   

Comparison of the images in figure 15 makes several key points 

apparent.  First, the most intense portion of the original UV radiation detected 

by the imager within the ACS exhaust plume resulted from NH (A 3Π � X 3Σ−) 

transitions.  Second, the OH transitions occurred at a significant distance from 

the rocket.  Considering the radiative lifetimes of the excited molecules, 0.69 

microseconds for OH (A 2Σ+) and 0.43 microseconds for NH (A 3Π), it has been 

assumed that each species will transition to their respective lower energy 

species at the same point in space at which they radiate.24  Thus, the image 

processed after the filter was installed appears to confirm that the NH  

(A 3Π �X 3Σ−) radiation occurred closer to the spacecraft than the OH  

(A 2Σ+
�X 2Π) radiation. 
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 Figure 15.     Processed plume images.   
          (a)  Before 315 nm narrow-band filter installation.   
          (b)  After 315 nm narrow-band filter installation. 
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6 Excitation Mechanisms 

 Chemiluminescence is the release of energy, in the form of light, which 

occurs as an electronically excited molecule relaxes to the ground state.  

Unlike phosphorescence or fluorescence, chemiluminescence does not require 

the excited molecule to first absorb light energy to reach the excited state.  

The energy required to put the molecule into an excited state originates in a 

chemical reaction.  The observed radiation in this experiment was a result of 

the chemical reactions that occurred when the combustion gases produced by 

the Progress ACS engines collided with the ambient species present in the 

atmosphere.  These collisions then produced electronically excited OH and NH 

molecules which spontaneously returned to their ground state through the 

emission of radiation.  

In this chapter, several potential chemical mechanisms for the observed 

radiation are discussed.  Section 6.1 looks at the exhaust plume effluents in 

order to propose sources for the OH (Section 6.1.1) and NH (Section 6.1.2) 

excited-state molecules.  Section 6.2 develops values for the energy available 

via collision (Section 6.2.1) and the energy necessary (Section 6.2.2) for each 

reaction to proceed.  Section 6.3 presents the chemical kinetics of this 

experiment through equation development (Section 6.3.1) and collisional cross 

section considerations (Section 6.3.2), to propose a model for the collected 

MirEx data. 

 

6.1 Proposed Mechanisms 

To determine the amount of each product expected at the LEO 

conditions modeled by MSIS-90, another software package is used.  Numerical 

Analysis of Real Jets (NARJ) is a tool used for simulating combustion products 

from chemical propulsion engines.25  It incorporates numerous Fortran 

programs for laminar and turbulent mixing, phase change kinetics, and 

physical/chemical dynamics of reactions.   
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When a stoichiometric mixture of the oxidizer dinitrogen tetroxide and 

the fuel UDMH completely react they produce the gaseous products of nitrogen, 

water vapor and carbon dioxide according to equation 1.26 

(CH3)2N-NH2 (l) + 
2

3
N2O4 (l) → 5 N2 (g) + 4 H2O(g) + 2 CO2(g)  (1) 

By dividing the oxidizer molecular weight of 138 grams per mole, by the 

molecular weight of 60.09 grams per mole of the UDMH, the oxidizer to fuel 

(O/F) ratio of the stoichiometric mixture is found to be 2.3.  Progress, 

however, used an (O/F) ratio of 1.84 (by weight) to produce the maximum 

thrust.  Thus the product ratios of the above equation no longer apply.   

To correctly calculate the reaction of UDMH fuel in a single Progress ACS 

engine at this O/F ratio, the NARJ program was used.  The NARJ generated 

characteristics of this reaction, occurring at the nozzle of a single ACS engine, 

are a flow velocity of 2818 m/s, and gas density of 2.69x10-3 kg/m3 per second, 

pressure of 637.6 Pa, and temperature of 591.4 K.  The NARJ generated 

products of the chemical reaction in equation 1 are listed in table 4. 

 

Table 4.  NARJ calculated values of major exhaust constituents. 

EFFLUENT SPECIES MOLE FRACTION 

H2O 0.293 

N2 0.267 

N 5.4x10-8 

NO 3.4x10-4 

CO 0.193 

H2 0.188 

H 8.5x10-3 

CO2 0.049 

O2 2.7x10-5 

OH 2.8x10-5 

O 1.4x10-5 
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6.1.1 OH 

With water as the major constituent of the plume exhaust, as indicated 

in table 4, its collision with the ambient atmosphere is a likely source for the 

excited state hydroxyl (OH (A 2Σ+)) molecules.  Equation 2 presents the 

hypothesis suggested by Karabadzhak, et al, for the generation of OH (A 2Σ+) 

from the gaseous reaction of water and atomic oxygen.27  

O (3P)   +   H2O    �   OH (A 2Σ+)   +   OH (X 2Π)    (2) 

This is an endothermic process.  The reaction threshold is the energy required 

to break one of the O-H bonds in the water molecule.  The value of this 

threshold is 4.8 eV.28   

 

6.1.2 NH 

A source for the NH (A 3Π) molecules cannot be found in a single 

collision model with any of the species listed in table 4 and atomic oxygen.  

Reaction modeling, such as that used in the NARJ code, assumes that a 

complete reaction occurs in the combustion chamber of an engine.  However, 

in test cell measurements of rocket exhaust plumes, the presence of unburned 

fuel has been indicated. 29  Thus the hypothesis suggested for NH (A 3Π) 

formation in the exhaust plume by Viereck, et al, is the presence of unburned 

fuel components reacting directly with the ambient atmosphere.30  

 Neither the specific chemical composition of the unburned fuel 

fragments, nor the amount present in the plume, is conclusively known.  

However, an accepted generalized global chemical process is presented in 

equation 3.4,10,17,29 

O (3P)   +   UDMH    �   NH (A 3Π)  +  products    (3) 

This reaction has been extensively studied, with no definitive conclusion 

agreed upon.31,32  Therefore, this work will consider two different mechanisms 

for the generation of excited-state NH.  These reactions involve the ambient 

atmospheric atomic and molecular nitrogen with the gaseous water exhaust 
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product, as in equations 4 and 5. 

N   +   H2O   �   NH (A 3Π)   +   OH (X)     (4) 

 N2   +   H2O   �   NH (A 3Π)   +   OH (X)  + N    (5) 

Table 5 returns to the MSIS-90 derived atmospheric constituents seen in 

Chapter 2.  Like table 1, this sample is taken on the same date, at the same 

time, altitude, and geographic location.  Table 5, however, is a sample of the 

MSIS calculated minor atmospheric constituents present.  While the atomic 

nitrogen density is 100 times less than that of the major species of atomic 

oxygen and molecular nitrogen found in table 1, there is still a significant 

amount of the element present to react.  Therefore, the reaction proposed in 

equation 4 warrants consideration. 

 

6.2 Energetics 

It has been confirmed that the OH and NH emission radiant intensities 

from exhaust plumes are dependent upon the ram angle of the engine 

firing.11,24  Maximum intensities have occurred when the exhaust effluents 

exited the nozzle at a 180 degree angle to the atmospheric wind.  Radiant 

intensity for both species have been observed to decrease as the angle 

decreased; becoming undetectable at 90 degrees.  This dependence on the 

cosine of the collision angle between reactants indicates that a significant 

energy threshold must be overcome to form either radiating species.  It must 

be noted that the NH emission intensity is also dependent upon the liquid 

rocket fuel used. 31,32   The strongest observed radiations from NH (A 3Π �       

X 3Σ−) have occurred with UDMH fuel at full-ram conditions. 

Progress had an average velocity of 7,382 m/s in low Earth orbit.  In 

addition, the average plume exit velocity from the nozzle was 2,818 m/s.  This 

produced an average relative velocity of 10,200 m/s for the exhaust plume 

constituents.   The ambient atmosphere was carried along by the atmospheric  

wind.  The atmospheric wind is a dynamic flow of gas which can travel at 
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 Table 5.  Sample of MSIS modeled densities of minor species.17 

Altitude   NUMBER DENSITIES   

km He/cm-3 Ar/cm-3 H/cm-3 N/cm-3 

320 6.29E+06 7.27E+03 1.31E+05 6.69E+06 

322 6.23E+06 6.62E+03 1.31E+05 6.46E+06 

324 6.17E+06 6.03E+03 1.30E+05 6.24E+06 

326 6.12E+06 5.49E+03 1.30E+05 6.03E+06 

328 6.06E+06 5.00E+03 1.30E+05 5.82E+06 

330 6.00E+06 4.55E+03 1.30E+05 5.62E+06 

332 5.95E+06 4.14E+03 1.29E+05 5.43E+06 

334 5.89E+06 3.77E+03 1.29E+05 5.25E+06 

 
 **Model is for the date April 26, 2000, hour 19.5 UT, geographical 

latitude of 31 degrees and geographical longitude of 43 degrees. 

 

velocities from 200 to 900 m/s in the thermosphere and ionosphere.33  No 

information is available about the velocity of the atmospheric wind for the 

time-frame of this experiment.  Therefore, an average atmospheric wind 

velocity of 550 m/s will be used to develop the energy availability values. 

 

6.2.1 Energy Available 

The minimum energy produced in the OH reaction of equation 2, by the 

collision of atomic oxygen (of mass 2.66x10-26 kg) with gaseous water (of mass 

2.99x10-26 kg) from the exhaust plume, is shown in equation 6 to be 

eVvvE OHOCM 07.5)(
2

1 2

][][ 2
=−=

rr
µ .      (6) 

Here the reduced mass is given by  

kg
mm OHO

261

][][

10407.1)
11

(

2

−− ×=+=µ ,     (7) 

and the respective velocities are given by 
s

km
v O 55.0][ =
r

 and 
s

km
v OH 2.10][ 2

=
r

. 
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Because the engines were retrofired against the atmospheric wind, 

these velocities are additive. 

 The proposed NH reactions, of equation 4 with atomic nitrogen (of mass 

2.33x10-26 kg), and equation 5 with molecular nitrogen (of mass 4.66x10-26 kg), 

colliding at 
s

km
v 55.0=
r

 with the gaseous water produces the average available 

energies found in equations 8 and 9 respectively. 

eVvvE OHNCM 72.4)(
2

1 2

][][ 2
=−=

rr
µ       (8) 

eVvvE OHNCM 57.6)(
2

1 2

][][ 22
=−=

rr
µ       (9) 

 

6.2.2 Energy Required to Excite 

For these reactions to occur, the colliding molecules must be properly 

oriented for the product molecule bonds to be formed.  Additionally, the 

collision pair must impact with sufficient energy to overcome the activation 

energy required for the reaction to proceed.34  The energy required to proceed 

begins with the bond dissociation.  This is the energy required to break  

bonds in the reactants and make the constituent atoms available for formation 

of the products.  Following this, the atoms expend bond energy to reassemble 

into the products.  Table 6 summarizes the energies of the reactions being 

considered.   

 

6.3 Kinetics 

In addition to the study of the collision theory of reactions, chemical 

kinetics is also concerned with the rate of reactions.  The rate of a reaction 

refers to the change in concentration of either the products or reactants over 

the duration of their interaction.  Here a generic mathematical method to  

calculate the decrease in concentration of the reactant species is outlined.  

Consideration of values for several variables introduced in this calculation 
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Table 6.  Proposed reactions and their associated energies.35 

      Available Energy 

Proposed Reaction 
Dissociation 
Energy 

Bond 
Energy 

Without 
Wind 

With 
Wind 

O (3P) + H2O � OH (A 2Σ+) + OH (X 2Π) 4.8 eV 4.05 eV 4.57 eV 5.07 eV 
N + H2O � NH (A 3Π) + OH (X 2Π)  4.8 eV 3.69 eV 4.25 eV 4.72 eV 

N2 +  H2O �  NH (A 3Π) + OH (X) + N 11.97 eV 3.69 eV 5.91 eV 6.57 eV 

 

 

allows the equations to be fully utilized in the next chapter to determine a key 

characteristic of the reactions generating the radiating OH and NH species. 

 

6.3.1 Chemical Kinetics 

The generic formulation of a one-step rate equation begins with the 

molecular equation for the formation of the emitting species,36 denoted by C*  

DCBA
k +→+ ∗1         (10) 

QCC radk +→∗         (11) 

where Q  is the number of emissions.  The rate of emission is: 

[ ]*
Ck

dt

dQ
rad= ,        (12) 

where the brackets indicate number density and the rate constant of the 

radiating reaction is 

 
rad

radk
τ

1
= .         (13) 

The differential equation for [ ]*C  is  

 ])[(]][[
][ *

1

*

CkBAk
dt

Cd
rad−−−= .      (14) 

where the reaction rate constant has dimensions of 
s

m
3

 and may be expressed 

as 

 
[ ] 1

1

1

τB
k = .         (15) 
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It can be assumed that the time constant, 1τ , of the atmospheric species, 

denoted by the letter B, is a constant since [B] is not significantly depleted by 

reactions with A.  If the time constant, radτ , associated with reaction rate 

constant for the emitting species is much greater than 1τ , 

[ ]
0

*

=
dt

Cd
         (16) 

and 

[ ] [ ][ ]BA
k

k
C

rad

1=∗ .        (17) 

The total intensity equation then becomes  

 [ ][ ] [ ][ ] [ ]

1

1
1

τ

A
BAkBA

k

k
k

dt

dQ

rad

rad === .     (18) 

The differential equation for [ ]A  is 

 
[ ] [ ][ ]BAk
dt

Ad
1−= .        (19) 

Using the Laplace transform equation37 

 L [ ] stf =′ )( L [ ] )0()( ftf − ,       (20) 

in conjunction with the identity [ ]Bkk 1=  and the initial conditions, equation 19 

becomes 

 
[ ]

][)(][ 0 Ak
dt

Ad
As −=− ,       (21) 

or,  

 

[ ]

ks

dt

Ad

A
+

=
0)(

][ .        (22) 

Taking the inverse Laplace transform of equation 22 gives the concentration of 

species [A] as 

 
[ ]

)exp()(][ 0 kt
dt

Ad
A −= .       (23) 

or, in terms of the time constant, 
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 [ ] [ ]
)exp()(

1

0
τ

t

dt

Ad
A −= .       (24) 

Insertion of this value into equation 18 gives 

 
[ ]

)exp()(
1

1

0

1 ττ

t

dt

Ad

dt

dQ
−=        (25) 

Integration of this equation over time gives the total radiant intensity resulting 

from a one-step change in concentration of the species producing the 

radiation.   

 
[ ]

))exp(1()(
1

01
τ

t

dt

Ad
Q −−=        (26) 

Further manipulation along these lines would produce the total radiant 

intensity equation for a two-step change in concentration as well.38 

  
[ ]

]}

)exp()exp(

[)exp(1{)(
21

21

1

2

02
ττ

ττ
τ

τ −

−−−
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tt
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dt

Ad
Q    (27) 

 

6.3.2 Collision Cross Section 

The rate coefficients for the observed collisional excitation processes in 

this experiment have not been measured.  However, the temperature-

dependent rate coefficient of the Arrhenius form has been modeled for the 

hydroxyl reaction.39   This estimate has proven to lead to an over-prediction of 

the OH (A 2Σ+
�X 2Π) radiance.22  Noting the relationship of equation 15, recent 

efforts on the hydroxyl reaction have turned to determination of the collision 

cross section.9 

In the reactant concentration equations above, the one-step time 

constant is defined as: 

1

11 ])[( −= Bvrelστ .        (28) 

The sigma term is the total hard-sphere cross section for BA + collisions at the 

relative atmosphere/plume velocity.  The bracketed term is the local density 

of the atmospheric species.  The simplest way to model two colliding molecules 
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is to assume that they are hard spheres.40  If they experience an elastic 

collision, in which the total kinetic energy remains unchanged, the molecules 

do not react.  If the molecules experience an inelastic collision, in which the 

kinetic energy changes, they may react.  To react, the molecules need 

sufficient energy to overcome the activation threshold energy.  

 Variable hard-sphere models have been calculated by Kofsky, et al.41  

For the collision partners of gaseous water and atomic oxygen, the inelastic 

cross section of 6.2 Å2 is proposed.  The cross section proposed by Kofsky for 

the collision partners of molecular nitrogen and gaseous water is 14 Å2.  

Karabadzhak, in reference 9, proposes a cross section of 20 Å2 for the atomic 

oxygen and water reaction, but offers no estimates for a molecular nitrogen 

collision with water.  No reference was found which considered the reaction of 

atomic nitrogen with gaseous water in the exhaust plume. 

 

6.3.3 Model for MirEx data 

It must be pointed out that the number density of [A], the plume 

effluent component, in equation 19 is a dynamic quantity.  It is the product of 

the elapsed time, the mole fraction of the species under examination, a , and 

the total number of molecules entering the plume per second, TN , divided by 

the total volume of the plume at that time 

max

][
tt

T

V

taN
A

<

= .         (29) 

The NARJ model provides the values for a  and TN .  However, the dynamic 

quantity in equation 29 is the volume of the plume.  To arrive at a solution for 

equations 26 and 27, a value for 0)
][

(
dt

Ad
 must be found.   

As previously stated, the imager had a field of view of 9.8 degrees.  This can be 

visualized as looking at the plume through the narrow end of a cone.  This is 

geometrically portrayed in figure 16, where the paraboloid represents the 

initial shape of the plume, with the spacecraft engine at the apex.  The  
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 Figure 16.     Plume expansion within FOV cone. 

 

height of the cone gives the separation distance between Mir and Progress, 

while the cone itself represents the angular FOV encompassed by the imager.  

At the start of the ACS engines firing the exhaust plume filled just a small 

portion of that cone.  As Progress traveled away from Mir, the volume of space 

enclosed by the cone increased uniformly in size.  The exhaust plume, on the 

other hand, expanded non-uniformly.   

The telemetry data for Progress, including altitude, longitude, latitude, 

slant range, change in velocity, and change in position, was collected in ten 

second intervals by Mir.  From this data, it is known that Progress started its 

ACS engines at a slant range of 28.412 km from the Space Station.  Therefore, 

the imager FOV initially covered a radius of 

mm

rad

r 2430)28412(

3.57

8.9
)

2

1
( ==

o

o

.     (30) 

This formula allowed a conversion to be made from the pixel width of the 

plume image to a plume radius in meters of the first frame after the ACS 

engines fired.   
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Returning to the individual SAF files, the area of the FOV occupied by 

the plume was measured in pixels.  The first two seconds after engine firing 

began, or 50 frames, were examined.  The measured expansion of the plume 

radius, given in meters, is seen figure 17.  From this figure, in the first ½ 

second of engine firing the plume demonstrates a linear, minimal expansion.  

However, the plume dramatically expands following this period of slow growth 

to rapidly exceed the imager FOV radius in approximately 3 seconds.
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 Figure 17.     Plume radius expansion. 
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7 Discussion 

   Curve fitting can be used with the plume radiant intensity growth and 

the reaction rate equations to indicate whether the observed 

chemiluminescent behavior is most likely the result of a one-step or two-step 

reaction.  The utility of the curve fitting method is enhanced by the use of the 

volume term, which represents the expanding volume of plume effluents within 

the conical imager FOV. 

 In this chapter the results of this experiment are discussed.  Section 7.1 

uses the chemical kinetics equations developed in the last chapter to 

determine the number of steps in the reaction responsible for forming the 

excited-state molecules.  In Section 7.2, the reactants which meet the energy 

and reaction step criteria are discussed.  Section 7.3 suggests the further utility 

of the Progress data collected on April 26, 2000. 

 

7.1 Intensity Growth of the Progress Plume 

Using the value calculated for the initial plume volume, as well as the 

NARJ modeled plume density, and estimates for the collision cross section, 

equations 26 and 27 can be solved and plotted.  These expected values for 

radiant intensity give a means for graphical comparison between the chemical 

kinetics models for one and two-step reactions and the radiance observed by 

the imager.  Cross-frame integration of the radiance from the images during 

the first seconds after the engines started shows the development of the plume 

radiant intensity.  As is seen in figure 18, the plume intensity development 

curve (in blue) rises asymptotically from zero to bend over and approach the 

steady-state radiant intensity, as limited by the imager FOV.   

The radiant intensity versus time is strongly dependent on the plume 

radius expansion, as seen in figure 17.  However, for the initial ½ second of 

engines firing, when the expansion rate is relatively linear and the radius has 

not grown significantly, the induction behavior of figure 18 is more closely  
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 Figure 18.     Comparison of plume intensity development. 

 

matched by the one-step reaction model (in red) than the two-step model (in 

green).  It is noteworthy that the theoretical curves representing the reaction 

models do not include a factor for the atmospheric wind contribution.  It is 

expected that closer agreement with the one-step model will be found when 

the effect of the wind is included in the model. 

The imager observed the wavelengths from 240 nm to 360 nm.  

Therefore, this induction curve represents the overall behavior in that band-

pass region and encompasses both OH and NH bands.  If the radiators within 

the band-pass of the imager were the results of both one and two-step 

reactions, the resultant plume development curve would be expected to lie 

between these two regions.  Instead, the exponential change in the overall 

radiant intensity observed as the ACS engines start up more closely resembles 

the single-step reaction model, albeit with a different time constant.   

 

7.2 Reactants Summary 

For unburned fuel fragment collisions with atomic oxygen to be the 

source of the NH(A), as proposed in equation 3, several reaction steps would be 
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required.  Similarly, as table 6 indicates, there is not enough energy present in 

the collision of the gaseous water exhaust product with the ambient molecular 

nitrogen for that reaction to produce the excited-state NH.  Therefore, the 

participation of another atomic ambient atmospheric species with the exhaust 

plume water is a plausible alternative to the complex molecular collision 

models.  Additionally, at the quantities of atomic nitrogen and oxygen present, 

as indicated by the MSIS model, there is a large statistical probability of 

collisions between these species and the spacecraft combustion products.       

In the significant literature written on the topic of collisional excitation 

observed in spacecraft exhaust plumes, the behavior is attributed mainly to 

multi-step reactions of atomic oxygen with unburned fuel fragments. 

Simple reactions between atomic species and exhaust effluents have been 

largely disregarded due to a lack of sufficient activation energy.  Furthermore, 

the contribution of the atmospheric wind has not been considered.  The 

conclusion reached here is that combining the velocity of the atmospheric wind 

with the exhaust exit velocity in the energy calculations allows consideration of 

the simple binary reactions of equations 2 and 4 as one-step reaction sources 

for the excited-state OH and NH molecules. 

 

7.3 Closing Remarks 

 Other avenues of investigation are possible with this data.  Opportunistic 

data collections by the International Space Station of both Russian spacecraft 

and US Space Shuttles are on-going.  Comparison of the April 2000 data set, 

along with previous MirEx mission data sets, with more recent collections 

would allow for a wider scope of analysis of Russian spacecraft plumes.  

Additionally, the differences in engine configurations and fuels used between 

US and Russian space vehicles are well known.  Contrasts in the thermospheric 

plume characteristics of these vehicles may valuable insight into the operating 

environment. 

Next, further image analysis of the frames during which the first two 
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narrow-band filters were installed, one with a band-pass of 260 nm and the 

other with a band-pass of 284 nm, could provide information about processes in 

a UV region virtually unexploited in the current literature.  Finally, the image 

data includes an observation of the Earth-limb crossing the FOV.  This 

occurrence is also captured in the spectrometer data.  While noise is certainly 

an issue with the spectrometer, the data shows the fascinating ebb and flow of 

photon saturation going through the wavelength scale.  Analysis of the imager 

and spectrometer data during this event will confirm that, far from being 

exhausted, much is still to be learned from the MirEx data products. 
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