
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

8-2003

Fractal Images Generated by Newton's Method." Fractal Images Generated by Newton's Method."

Jennifer Corte
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Corte, Jennifer, "Fractal Images Generated by Newton's Method.". " Master's Thesis, University of
Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/1920

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=trace.tennessee.edu%2Futk_gradthes%2F1920&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Jennifer Corte entitled "Fractal Images Generated

by Newton's Method."." I have examined the final electronic copy of this thesis for form and

content and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Mathematics.

Jerry Dwyer, Major Professor

We have read this thesis and recommend its acceptance:

G. Samuel Jordan, Suzanne Lenhart

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Jennifer Corte entitled

“Fractal Images Generated by Newton’s Method.” I have examined

the final electronic copy of this thesis for form and content and rec-

ommend that it be accepted in partial fulfillment of the requirements

for the degree of Master of Science, with a major in Mathematics.

Jerry Dwyer

Major Professor

We have read this thesis

and recommend its acceptance:

G. Samuel Jordan

Suzanne Lenhart

Accepted for the Council:

Dr. Anne Mayhew

Vice Provost and Dean of

Graduate Studies

(Original signatures are on file with official student records.)

Fractal Images Generated by Newton’s

Method

A Thesis

Presented for the

Masters of Science Degree

The University of Tennessee, Knoxville

Jennifer Corte

August 2003

Acknowledgments

I thank Dr. Dwyer for serving as my major professor and for his

help in completing this thesis. I thank Dr. Jordan and Dr. Lenhart

for serving on my committee, for making valuable suggestions and

for being excellent teachers. I especially thank my parents for their

support and belief in me. Many people in the Math department

have encouraged and helped me including, but not limited to: Jason

Howard, Pam Armentrout, Mike Saum, and John Iskra.

ii

Abstract

We investigate the behavior of Newton’s Method for finding roots

applied to complex-valued functions of complex variables. This re-

quires an analysis of iteration of rational functions. The fractal

nature of Newton’s Method in the complex plane gives us intricate

and beautiful images. By investigating select functions we attempt

to generalize a pattern of behavior.

iii

Contents

1 Some Basic Ideas in Complex Analysis 1

2 Complex Dynamical Systems 4

1 Orbits . 4

2 Fixed Points and Cycles 9

3 Julia Sets . 10

4 Newton’s Method . 11

3 Matlab Code 14

4 Iteration of Rational Functions 17

1 The Fixed Point at Infinity 17

2 Newton’s Method Applied to the Family of Functions

f(z) =
azn − b

czn − d
. 20

2.1 The n = 1 Case 21

2.2 The n = 2 Case 23

iv

2.3 The n = 3 Case 29

5 Compositions of Functions 34

6 Closing Remarks 43

Bibliography 45

Appendix 48

1 Code . 49

2 Input Arguments . 56

3 Coding Newton’s Method 57

4 Plotting the Figures 58

Vita 60

v

List of Figures

1.1 The Mapping w = z2 2

2.1 Convergent Orbit for g(x) = x3 6

2.2 Divergent Orbit for g(x) = x3 6

2.3 A 2-cycle for x2 − 1 8

2.4 Newton’s Method for g(x) = 1
4(e

x − 1) 12

2.5 Newton’s Method for f(z) = z2 + 1 12

4.1 f(z) = z−1
z+i

. 22

4.2 f(z) = 3z+6−9i
2z+4+i

. 22

4.3 f(z) = 2z−10−6i
z−9−3i

. 23

4.4 f(z) = z2−4
z2−1 . 24

4.5 f(z) = z2+4
z2+9 . 25

4.6 f(z) = z2−4
z2+1 . 25

4.7 f(z) = 3z2+5i
z2−30i

. 27

4.8 f(z) = z2+8i
z2−9.6+5.12i

. 27

4.9 f(z) = z2+8i
z2−12+16i

. 28

vi

4.10 f(z) = z3−8
z3−125 . 29

4.11 f(z) = z3−8
z3+125 . 30

4.12 f(z) = z3−1
z3+125i

. 32

4.13 f(z) = z3−125
z3−8

. 32

4.14 f(z) = z3+125
z3−8

. 33

5.1 f(z) = log(z2 − 1) . 35

5.2 f(z) = sin(log(z)) . 37

5.3 Zoomed in picture for f(z) = sin(log(z)) 39

5.4 Zoomed out picture for f(z) = sin(z
1

3) 39

5.5 f(z) = sin(z
1

3) . 40

5.6 Zoomed in picture for f(z) = sin(z
1

3) 40

5.7 f(z) = sin(πez) . 42

5.8 f(z) = sin(log(sin(z))) 42

vii

Chapter 1

Some Basic Ideas in Complex

Analysis

Complex-valued functions of the complex variable z = x + iy assign

to each z in the domain exactly one complex number w = f(z). The

function f(z) = f(x + iy) can be split into its real and imaginary

parts, or f(x + iy) = u(x, y) + iv(x, y), where u and v are each real-

valued functions. A function f(z) can be viewed as a mapping from

its domain in the complex plane onto its range in another copy of

the complex plane. For example, consider the function f(z) = z2 =

x2 − y2 + i2xy. The left side of Figure 1.1 shows a portion of the

domain of f . The right side shows the image of the horizontal and

vertical lines of the domain under the mapping w = f(z) = z2.

Complex-valued functions of complex variables are usually sim-

ply referred to as complex functions. Only complex functions which

1

0

1
2
3
4
5
6
7
8
9
10
11
12

–9 –8 –7 –6 –5 –4 –3 –2 –1 1 2 3 4
0

1

2

3

1 2

w = z 2

Figure 1.1: The Mapping w = z2

exhibit certain characteristics will be considered here. First the func-

tions must be differentiable at most points in the complex plane.

Definition 1 Suppose a complex function f is defined at a point z0

and at all points close to z0 in the complex plane. Then f is differ-

entiable at z0 if limz→z0

f(z)−f(z0)
z−z0

exists and is finite. In that case

the limit is denoted by f ′(z0).

A stronger condition is that the functions be analytic at most

points in the complex plane.

Definition 2 A complex function is analytic at a point z0 if there

is an ε > 0 such that f
′

(z) exists for all z in the ε-neighborhood of

z0, i.e., for all z with |z−z0| < ε. A funtion that is analytic at every

point in a region R is called analytic on R.

2

An even stronger condition than analytic at most points is that

the functions be entire.

Definition 3 A complex function is called entire if it is analytic

on the whole complex plane.

Most functions considered in this paper are analytic at all but a

finite number of points.

We will be using a numerical method, Newton’s Method, to de-

termine the roots, or zeros, of the complex functions and to plot

colored images.

Definition 4 The complex number r is a zero (or root) of the

function f(z) if it is a solution to the equation f(r) = 0.

Several of the functions investigated have singularities which re-

sult in rather interesting images.

Definition 5 A point α is called a singular point (or singular-

ity) of f if f is not analytic at α. The singular point α is called

isolated if, in addition, there is some neighborhood of α throughout

which f is analytic except at the point itself.

Definition 6 If z = a is an isolated singularity of f and if limz→a|f(z)| =

∞, then a is a pole of f .

3

Chapter 2

Complex Dynamical Systems

Many aspects of dynamical systems can be visualized very nicely

when only dealing with the reals and real-valued functions. This

visualization is much more difficult, if not impossible, when dealing

with complex functions. Although this paper focuses on complex

dynamics, an introduction to real dynamics is conducive to under-

standing the concepts involved in both the real and the complex

cases. In the following sections, concepts and definitions will be

demonstrated using real dynamics where applicable.

1 Orbits

A sequence {zk} can be generated from a function f(z) and a single

complex value z0 by iteration. Starting with z0 = z0, the sequence of

iterates is generated as follows: z1 = f(z0), z2 = f(z1), z3 = f(z2),

4

The points {zk}∞k=0 are the iterates of f generated by z0. This set

of iterates is also called the orbit of z0 generated by f . The starting

value z0 is often called the initial seed, or just the seed. f(z) = z.

The behavior of these orbits as k → ∞ leads to very interesting

dynamics.

If the orbits are bounded they may never converge. If they do

converge, they may converge either to a single functional value (a z

for which f(z) = z called a fixed point) or to a repeating periodic

cycle of values. Otherwise they diverge to ∞.

To illustrate these orbits, consider the real function g(x) = x3.

The fixed points occur where g(x) = x, therefore the points −1, 0,

and 1 are the fixed points. Whether orbits converge to or diverge

from these points depends on the initial seed value. Figure 2.1 shows

that the orbit of a seed x0, with 0 < x0 < 1, will converge to the

fixed point (0, 0). We therefore call the point x = 0 an attracting

fixed point.

However, if the seed is x0 such that 1 < x0, as in Figure 2.2, then

the orbit diverges from the fixed point (1, 1). In this case x = 1 is

called a repelling fixed point.

Consider the family of quadratic functions of the form f(z) =

z2 + c. For c = 2 and z0 = 1 + i, the sequence of iterates is:

z0 = 1 + i,

5

y=x

1−1

y

x
x3

x2

x1

4 0x x

Figure 2.1: Convergent Orbit for g(x) = x3

1

y=x
y

x

x

0

x

Figure 2.2: Divergent Orbit for g(x) = x3

6

z1 = (1 + i)2 + 2 = 2 + 2i,

z2 = (2 + 2i)2 + 2 = 2 + 8i,

z3 = (2 + 8i)2 + 2 = −58 + 32i,

z4 = (−58 + 32i)2 + 2 = 2342− 3712i, ...

which is a diverging sequence.

For c = −1
4 and z0 = 0, however, the beginning of the sequence

of iterates (to four decimals) is

z0 = 0

z1 = 0.25

z2 = 0.3125

z3 = 0.3477

z4 = 0.3709

which converges to the fixed point z = 0.5.

For c = −1 and z0 = 1, the iterates converge to a 2-cycle: z0 =

1, z1 = 0, z2 = −1, z3 = 0, z4 = −1, When the orbits converge to

a periodic cycle, the cycle is called an n-cycle, where n is the number

of distinct values in the cycle.

This 2-cycle can be visualized in the real case with g(x) = x2 − 1

and a seed of x0 = 1. Just as with the complex function above,

the sequence of iterates immediately converges to the 2-cycle with

x1 = 0, x2 = −1 as the two points in the cycle (see Figure 2.3).

7

–1

0

1

2

3

–2 –1 1 2
x

y=x

andx2 x4

1 andx x

x0

3

x

y

Figure 2.3: A 2-cycle for x2 − 1

8

2 Fixed Points and Cycles

Definition 7 The orbit of z0 is periodic of period n, if zn = z0

and z0 6= zi for 0 < i < n. Such an orbit is called an n-cycle and

the points in the cycle are called periodic points. A point z0 is called

preperiodic if for k > 0, the kth iterate of z0 is equal to a periodic

point in an n-cycle, but z0 itself is not a point in that cycle.

Fixed points and n-cycles can be attracting, repelling or neutral.

A fixed point is attracting if there is a disk around the point such

that a seed inside the disc leads to iterates that converge to the fixed

point. A fixed point is repelling if no matter how close the seed is

to the fixed point, iterates of that seed will diverge from the fixed

point.

Definition 8 If z0 is a fixed point of an analytic function, f , then

the number λ = f ′(z0) is called the multiplier of f at z0. The fixed

point is classified dependent on λ as follows:

i) attracting if |λ| < 1,

ii) superattracting if λ = 0,

iii) repelling if |λ| > 1,

iv) neutral if |λ| = 1.

9

3 Julia Sets

Some interesting objects have arisen simply from the study of several

families of functions, most notably the quadratic family of functions

Pc(z) = z2 + c. One such group of objects is composed of Julia sets.

Definition 9 Let f : C → C be analytic. Let K(f) be the set of

all seeds whose orbits are bounded. The Julia set of f , J(f), is the

boundary of K(f).

The filled Julia set of f is the union of J(f) and K(f).

For example, consider the mapping P0(z) = z2. For all z0 with

|z0| ≤ 1, the orbits either stay on the unit circle, or converge to 0,

i.e. are bounded. For |z0| > 1, the orbits diverge. Therefore, K(P0)

is the closed unit disc, D1(0), and the Julia set, J(P0), is the unit

circle C1(0).

For both Julia sets and filled Julia sets, seeds in each of the sets

will have orbits which remain in that set. The pictures presented in

this paper are images of filled Julia sets for the various functions we

examine.

10

4 Newton’s Method

Newton’s Method is an algorithm for finding the roots or zeros of a

function f(z). The algorithm uses successive iteration of the function

N(z) = z − f(z)

f
′(z)

Convergence to a root using Newton’s Method can therefore be

thought of as convergence to a fixed point of N(z).

Although we can not graphically represent how Newton’s Method

works for complex functions, one can get an idea by looking at the

method for real functions. Consider the real-valued function g(x) =

1
4
(ex−1) with root x = 0. We will let x0 = 1 be our initial guess at the

root x = 0. In order to determine the next point, Newton’s Method

follows down the line tangent to g at the point (x0, f(x0)) until it

reaches the x axis. The point where the tangent line intersects the

x axis is the next approximation. This process is repeated until the

iterates either converge to the root of g or diverge. The iterates to

four decimal places are x0 = 1, x1 = 0.3679, x2 = 0.0601, x3 =

0.0018, x4 = 0.0000,... which are clearly converging to the root.

Figure 2.4 illustrates Newton’s Method for a real valued function

converging to a root at x = 0.

To visualize the convergence of Newton’s Method for complex

functions, see Figure 2.5. The first few iterates of N(z) for the

11

x

y

0xx1x2x3

4x

Figure 2.4: Newton’s Method for g(x) = 1
4(e

x − 1)

and

−0.6

0.2

0.4

0.6

0.8

1

1.2

1.4

−0.2

−0.2−0.4−0.8 0.2 0.4 0.6 0.8

y

z3
z4

z0

z1

z2

6z5 z

x

Figure 2.5: Newton’s Method for f(z) = z2 + 1

12

function f(z) = z2 +1 with initial z0 = −0.5+0.1i are plotted. The

orbit of z0 = −0.5 + 0.1i converges to the root z = i.

13

Chapter 3

Matlab Code

The purpose of our Matlab code is to create a visual representation of

regions of the complex plane which converge to the roots of complex

functions under iterations of Newton’s Method. The code allows

the user to choose the coloring scheme for this visual representation.

The first argument determines what type of coloring scheme will be

used in the figure. An input value of 0 results in coloring each point

according to which root its orbit converges; an input of 1 results

in coloring according to rate of convergence; and an input of 2 will

result in both color schemes, each in a different figure.

The code takes either user-input or default window boundaries

and creates a matrix grid of complex values filling the window. The

meshsize or dimension of this grid can also be either an input or

default. The default window boundaries are from −1.5 to 1.5 on

14

both the real and imaginary axes. The default meshsize is 100,

which creates a 100 by 100 grid of points in the window. The user

must also enter the function and its derivative into the code before

running it. The matrix initially created is essentially a grid of points

which will be seed values for iterations of Newton’s method.

The code performs iterations of the method on each seed in the

grid. Those seeds which diverge are discarded while those which

converge are stored into an output matrix. The orbit of a seed is

determined to converge if the distance between the current point

in the orbit and the previous point in the orbit is less than the

programmed radius of convergence, R. Three matrices are simulta-

neously updated throughout this process. The original seed values

which converge are stored in one matrix, the values that they con-

verge to (i.e., the roots) are stored in a second output matrix, and

the number of iterations it took for each point to converge is stored

in the third matrix. Once the computations of Newton’s Method

have finished, the output matrix of converged-to values (roots) is

sorted to sift out the distinct roots. If values in the output matrix

are within a set tolerence of each other, they are considered equal.

This sorting process results in a matrix of distinct roots.

In order to color according to the roots, seed values which con-

verged to the distinct roots are plotted assigning a different color

15

for each root. The seeds which did not converge are not plotted, so

they remain white in the figure. To color according to the rates of

convergence, Matlab’s pink colormap is used. Roots which converge

the quickest are colored a dark pink/brown, while roots that take

the longest to converge are colored a very pale shade of the same

color.

Examples of functions and their corresponding figures will be pre-

sented in this paper. To avoid repetitive wording, the meshsize of

each function can be assumed to be 500 unless otherwise mentioned.

The x and y boundaries will not be written in the text as these

may be seen by looking at the axes of each figure. Please note that

the axes in the figure are box axes which means that they do not

intersect at the origin. Many, but not all, of the functions will have

images of both color schemes.

This code is written using Matlab Student Version 5.3. Some

changes may need to be made for it to run properly on other versions

of Matlab. Please refer to the appendix for more details about the

code and about improvements that were made in its efficiency.

16

Chapter 4

Iteration of Rational Functions

1 The Fixed Point at Infinity

Let r(z) =
p(z)

q(z)
where p(z) = anz

n + an−1z
n−1 + ... + a0 and q(z) =

bmzm + bm−1z
m−1 + ... + b0 are coprime polynomials, that is, they

have no common zeros. Newton’s Method applied to this rational

function is itself iteration of the rational function

N(z) = z − r(z)

r′(z)
= z − p(z)q(z)

q(z)p′(z) − p(z)q′(z)
.

The zeros of r are the fixed points of N . Since we are interested in

the zeros of r(z), it is important to investigate the fixed points of

N(z). Of particular interest is whether or not the fixed points of

N are attracting, repelling or neutral. If they are attracting, then

Newton’s Method will converge to the roots of r(z). Again, this

classification is determined by the value of the multiplier, which we

17

have already defined for the finite fixed point z0 as f ′(z0), or in this

case, N ′(z0).

Some functions have ∞ as a fixed point. For example, let f(z) =

z + 1. Clearly f(∞) = ∞ making ∞ a fixed point of f . The

multiplier at ∞, however is not f ′(∞) = limz→∞f ′(z). The multi-

plier of a fixed point, z0, of an arbitrary rational function R(z) =
αkz

k + αk−1z
k−1 + ... + α0

βjzj + βj−1zj−1 + ... + β0
, written m(R, z0) is

(1) m(R, z0) =















R′(z0), if z0 6= ∞
1

R′(z0)
, if z0 = ∞

where

(2) R′(∞) =















αk

βj

, if k = j + 1

∞, if k > j + 1

Newton’s Method on the rational function r is iteration of the

function N(z) = z− r(z)

r′(z)
which is a rational function itself when in

reduced form. Assuming the leading terms do not cancel, the degree

of the numerator of N is m+n while the degree of the denominator

of N is m+n−1. Therefore, we have the case where the multiplier at

∞, m(N,∞), is equal to the leading coefficient of the denominator

divided by the leading coefficient of the numerator. We will keep

track of the leading coefficients in the numerator and denominator

18

of N(z) in order to determine this ratio. Recall that p(z) = anz
n +

an−1z
n−1 + . . . + a0 and q(z) = bmzm + bm−1z

m−1 + . . . + b0.

N(z) = z − p(z)q(z)

q(z)p′(z) − p(z)q′(z)
(3)

= z − anz
nbmzm + . . .

bmzmannzn−1 + . . . − anznbmmzm−1 + . . .

= z − anbmzn+m + . . .

anbmzn+m−1(n − m) + . . .

=
z[(n − m)zn+m−1 + . . .] − (zn+m + . . .

(n − m)zn+m−1 + . . .

=
(n − m)zn+m + . . .− zn+m − . . .

(n − m)zn+m−1 + . . .

=
(n − m − 1)zn+m + . . .

(n − m)zn+m−1 + . . .

From Equations 1, 2 and 3 we see that m(N,∞) = n−m
n−m−1, which

is greater than one for n > m and less than one for n < m. This

means that if ∞ is a fixed point of N , then it is repelling for n > m

and attracting for n < m. Again, this is assuming the leading terms

in N do not cancel.

Simple calculation shows that N ′(z) =
r(z)r′′(z)

[r′(z)]2
. It follows that

the simple roots of r are superattracting, since N ′(z) = 0 at those

simple roots of r. So for any rational function Newton’s Method will

converge rapidly to its simple roots. As a matter of fact, in all ex-

amples of rational functions considered in this paper, the maximum

19

number of iterations needed for convergence is less than 50. For the

examples in this paper, the roots of each function are shown in the

legends of the figures, rounded to two decimal places.

2 Newton’s Method Applied to the Family of Functions

f(z) =
azn − b

czn − d

The first functions to be investigated are the family of functions

f(z) = azn−b
czn−d

, where a, b, c, and d are complex constants. When

Newton’s Method is applied to this special family of functions, how-

ever, its leading terms always cancel. In these cases,

N(z) = z − (azn − b)(czn − d)

(bc − ad)nzn−1
,

so that the degree of the numerator is 2n while the degree of the

denominator is n − 1 . Thus the degree of the numerator always is

greater than one more than the degree of the denominator. Since

2n > (n − 1) + 1 for all n ≥ 1, we have the case where N ′(∞) =

∞ and, hence, m(N,∞) = 1
∞ = 0. Since m(N,∞) = 0, ∞ is a

superattracting fixed point of N . Infinity is a fixed point of Newton’s

Method on many of the functions in this paper; however, since it

is not a root of the functions, we do not plot points whose orbits

converge to it and those points remain white in the figures.

Since ∞ is a superattracting fixed point for these functions, New-

20

ton’s Method will only converge to the roots of f when starting rel-

atively close to those roots.

2.1 The n = 1 Case

We will start with the simplest case of n=1 and see if any generaliza-

tions can be made about the pictures generated by the code for this

case. Given the function f(z) = z−1
z+i

, the code produces Figure 4.1.

The root zo = 1 is at the center of the disk while the pole, z = −i is

at the very edge of the disk.

For f(z) = 3z+6−9i
2z+4+i

, the code produces Figure 4.2. The root z0 =

−2 + 3i is at the center of the disk, and the pole, z = −2 + 1
2i is at

the edge.

Given f(z) = 2z−10−6i
z−9−3i

, the code produces Figure 4.3. Again, the

root z0 = 5+3i is at the center of the disk with the pole, z = 9+3i,

at the edge.

Functions of this type with varying constants always seem to re-

sult in the same image. The image is that of a disk centered at the

single root of f(z) which is z = b
a
. The radius of the disk is equal

to the distance between the function’s root and its pole, z = d
c
.

Therefore, we arrive at the following conjecture:

Conjecture: For any function of the form f(z) =
az − b

cz − d
, Newton’s

Method converges to the root z = b
a

for all z0 in the disk centered

21

−0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5 1.00−0.00i

Figure 4.1: f(z) = z−1
z+i

−6 −5 −4 −3 −2 −1 0 1 2
−1

0

1

2

3

4

5

6

7
−2.00+3.00i

−6 −5 −4 −3 −2 −1 0 1 2
−1

0

1

2

3

4

5

6

7

Figure 4.2: f(z) = 3z+6−9i
2z+4+i

22

1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

6

7
5.00+3.00i

1 2 3 4 5 6 7 8 9
−1

0

1

2

3

4

5

6

7

Figure 4.3: f(z) = 2z−10−6i
z−9−3i

at the root with radius r = | b
a
− d

c
|. For all z0 outside this disk,

Newton’s Method does not converge.

2.2 The n = 2 Case

Now consider the case of n=2 where f(z) = az2+b
cz2+d

. One might ex-

pect the pictures to look like those for n = 1, except with one disk

centered around each of the two roots. This outcome is not quite

what results from running the code, however. The first function we

look at is f(z) = z2−4
z2−1. The zeros are at ±2, while the poles are

at ±1. We see in Figure 4.4 that there are two round-shaped re-

gions with the roots contained in the regions, but the shapes are

not perfectly circular, and the roots are not in the exact center of

the regions. Also, these two regions are not the only colored regions

23

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5
−2.00−0.00i
2.00−0.00i

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.4: f(z) = z2−4
z2−1

present. Some complicated regions are clustered around the main

regions. Note that the poles of the function are on the inner edges of

these main regions, and that both the zeros and the poles lie along

the real axis.

The picture for the function f(z) = z2+4
z2+9 with roots and poles

on the imaginary axis is shown in Figure 4.5. Unlike Figure 4.4,

however, the poles are further away from the origin than the roots.

If f had been inverted, i.e. z2+9
z2+4

, we would have a picture that looked

much like Figure 4.4, but rotated 90 degrees.

Figure 4.6 is the picture for the function f(z) = z2−4
z2+9. The roots

24

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4 −0.00−2.00i
−0.00+2.00i

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

Figure 4.5: f(z) = z2+4
z2+9

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2 −2.00−0.00i
2.00−0.00i

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

Figure 4.6: f(z) = z2−4
z2+1

25

of this function are also ±2, but the poles, ±i, lie on the imaginary

axis. In this case, the two major regions meet at the poles.

A function whose roots and poles have both real and imaginary

nonzero parts is f(z) = 3z2+5i
z2−30i

, for which the picture is shown in Fig-

ure 4.7. The roots of f are 0.91−0.91i and −0.91+0.91i with poles

3.87+ 3.87i and −3.87− 3.87i, rounded to two decimal places. Like

our previous example, the roots and poles lie along perpendicular

lines. In this case, however, those lines are the y = x line and the

y = −x line rather than the real and imaginary axes. We see that

the shape of Figure 4.7 is remarkably like that of Figure 4.6, only

rotated 45 degrees.

So far we have tried functions which have the poles and roots on

the same line and functions which have them on perpendicular lines.

The function f(z) = z2+8i
z2−9.6+5.12i

, for which the picture is shown in

Figure 4.8, has roots 2−2i and −2+2i which lie on the line y = −x

with poles 3.2− 0.8i and −3.2 + 0.8i which lie on the line y = − 1
4y.

This figure is not symmetrical in shape about a line the way the

other examples have been. It has a rotational symmetry about the

origin.

Figure 4.9 is for another function, f(z) = z2+8i
z2−12+16i

, whose roots

and poles lie on different lines that are not perpendicular.

26

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8 0.91−0.91i
−0.91+0.91i

Figure 4.7: f(z) = 3z2+5i
z2−30i

−5 0 5
−6

−4

−2

0

2

4

6
2.00−2.00i
−2.00+2.00i

Figure 4.8: f(z) = z2+8i
z2−9.6+5.12i

27

−5 0 5

−6

−4

−2

0

2

4

6

2.00−2.00i
−2.00+2.00i

Figure 4.9: f(z) = z2+8i
z2−12+16i

28

2.3 The n = 3 Case

Much of what is observed in the n = 2 case also applies to the n = 3

case, and indeed, to n > 3. We will first look at functions with roots

that are closer to the origin than the poles.

Figure 4.10 is for the function f(z) = z3−8
z3−125

. This function has a

root at 2 and a pole at 5, which both lie along the same ray ema-

nating from the origin. The function’s other two roots and poles do

likewise. We see that there are very rounded major regions around

each of the three roots. In between and around each of these ma-

jor regions is an area with much complexity. Again, the poles are

located on the very outer edges of the major regions.

−8 −6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

8
−1.00−1.73i
−1.00+1.73i
2.00−0.00i

Figure 4.10: f(z) = z3−8
z3−125

29

The function f(z) = z3−8
z3+125, Figure 4.11, also has roots that are

closer than the poles to the origin. Unlike our previous example,

however, the poles lie along rays that bisect the angles formed by

the rays on which the roots lie. This is analagous to the functions

in Figures 4.6 and 4.7. Just like in those n = 2 cases, the major

regions are separated by complex regions which straightly follow

along the rays going to the poles. A small perturbation of a seed

in the complex regions of these figures can result in a drastically

different orbit that is likely to converge to a different root.

−6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
−1.00−1.73i
−1.00+1.73i
2.00−0.00i

Figure 4.11: f(z) = z3−8
z3+125

30

For the next example we use f(z) = z3−1
z3+125i

, Figure 4.12. This

function has poles that are on different rays than its roots, however,

the rays do not bisect each other’s angles, so we will call them skew.

As can be seen in the figure, the complex area separating the major

regions follows a path starting near the origin and ending at the

poles. Unlike our previous example, straight paths are not made.

In this case it begins to follow a path perpendicularly bisecting the

roots, but it then curves until it meets the poles.

Now we will consider functions that have roots which are further

from the origin than are their poles. Figure 4.13 shows f(z) = z3−125
z3−8 ,

which has zeros and poles both on the same rays. One of the roots

is z0 = 5, which is farther from the origin than the pole, z = 2, on

the same ray. The resulting image is much like Figure 4.4 for the

n = 2 case, with three main regions rather than two.

Let us consider a function with poles that lie along the bisectors

of the angles formed by the rays on which the zeros lie. The function

f(z) = z3+125
z3−8

shown in Figure 4.14 satisfies these conditions and also

has roots which are farther from the origin than its poles. As one

might begin to expect, we see an image much like Figure 4.6, but

with three regions instead of two.

31

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

−0.50+0.87i
−0.50−0.87i
1.00+0.00i

Figure 4.12: f(z) = z3−1
z3+125i

−6 −4 −2 0 2 4 6 8 10

−8

−6

−4

−2

0

2

4

6

8
−2.50−4.33i
−2.50+4.33i
5.00−0.00i

Figure 4.13: f(z) = z3−125
z3−8

32

−8 −6 −4 −2 0 2 4
−8

−6

−4

−2

0

2

4

6

8
2.50−4.33i
2.50+4.33i
−5.00−0.00i

Figure 4.14: f(z) = z3+125
z3−8

For the family of functions f(z) = azn−b
czn−d

and n > 3, the images

follow the same pattern established here. One can think of n as the

number of ’petals’ in each image. Notice that seeds which are not

very close to an area described by the roots and poles do not have

orbits that converge to the roots. This behavior occurs because, as

we mentioned at the beginning of the section, ∞ is a superattracting

fixed point of Newton’s Method for this family of functions.

33

Chapter 5

Compositions of Functions

Figure 5.1 illustrates the composite function f(z) = log(z2 − 1),

which has two roots at z = ±
√

2. If p(z) is a polynomial of degree

n, then functions of the form f(z) = log(p(z)) have n roots which

are the solutions to the polynomial equation p(z) = 1.

Before looking at the composite function f(z) = sin(log(z)), con-

sider the simpler function f(z) = sin(z). When this function is used

in the code, it produces a very scattered picture with no distinct

regions. This occurs because seeds converge to a very large number

of the infinite roots of sin(z), however this convergence apears to

be quite chaotic. The roots of sin(z) are the integer multiples of π

which are each the same distance from its neighbors. It seems that

each root is competing with its neighbors for the orbits of seeds to

converge to it.

34

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4
−1.41−0.00i
1.41−0.00i

−8 −6 −4 −2 0 2 4 6 8
−4

−3

−2

−1

0

1

2

3

4

Figure 5.1: f(z) = log(z2 − 1)

35

Figure 5.2 illustrates that f(z) = sin(log(z)) gives much more

orderly and distinct regions of convergence than does f(z) = sin(z).

Notice that at (0, 0) Figure 5.2 appears to have what may be a

tiny replica of itself. In order to determine this, the code is run

again using a window which zooms in on the area. Indeed the very

same shape appears in the figure with yet again a small apparent

replica of itself at (0, 0). Zooming out from the original window also

produces the same image.

Using a finer and finer grid of points (larger meshsize) on this

function results in finding more and more roots, which are not all

plotted due to limitations of the code (see Appendix). The reason for

this is that the roots are the solutions to the equation sin(log(z)) =

0, which are z = (eπ)n. There are infinitly many roots, and as

n becomes more negative the roots approach 0. Since there is an

infinite number of roots near zero, a finer mesh means more of these

small roots will be ’caught’ in the mesh. The reason this function

has regions of convergence that are more orderly than f(z) = sin(z)

may be that starting from zero, each successive positive root is larger

than its predecessor by the factor of eπ. So as we move away from

the roots near zero, the large roots are spread further and further

away from each other effectively ’reducing competition’ among the

roots.

36

−2 −1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3 0.04−0.00i
1.00−0.00i
23.14−0.00i
535.49−0.00i
12391.65−0.00i

−3 −2 −1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

Figure 5.2: f(z) = sin(log(z))

37

Another interesting area appears in the original figure around the

value (2, 0). To better see this region, we again zoom in producing

Figure 5.3 which is a smaller mirror image of the original.

Another function with orderly regions of convergence is f(z) =

sin(z
1

3) seen in Figure 5.4. The roots of this function are z = (nπ)3.

Like the roots of f(z) = sin(log(z)), the roots of f(z) = sin(z
1

3) get

farther apart as we move away from the origin. Surprisingly, as can

be seen from Figure 5.4, none of the negative roots are converged

to.

The scale of the image is very large, and as one zooms out even

further, it appears that these nested regions continue indefinitely

although we run out of colors to use in the plot. Unlike the previous

example, there is not an infinite number of roots at zero, so this

nested shape eventually ends upon zooming in (see Figure 5.5).

What we see upon zooming in on the single root at the origin

is shown in Figure 5.6. This new pattern continues under repeated

zooming in until reaching the limit of Matlab’s accuracy of 16 sig-

nificant decimal digits.

Several other composite trigonometric functions that have in-

finitly many roots demonstrate ineresting dynamics, such as sin(log(sin(z))),

sin(πez) and sin(log(zez)). Unfortunately it is difficult to plot the

seeds according to which root is converged to. How does one color

38

2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
0.00−0.00i
0.04−0.00i
1.00−0.00i
23.14−0.00i
535.49−0.00i
12391.65−0.00i

2.05 2.1 2.15 2.2 2.25
−0.1

−0.05

0

0.05

0.1

Figure 5.3: Zoomed in picture for f(z) = sin(log(z))

−5 −4 −3 −2 −1 0 1 2

x 10
4

−1

−0.5

0

0.5

1

x 10
4

31.01−0.00i
248.05−0.00i
837.17−0.00i
1984.40−0.00i
3875.78−0.00i
6697.36−0.00i
10635.15−0.00i
15875.21−0.00i
22603.58−0.00i
31006.28−0.00i
41269.35−0.00i
53578.85−0.00i
68120.79−0.00i
85081.22−0.00i
104646.18+0.00i
127001.71−0.00i
152333.84−0.00i
248050.21−0.00i

−5 −4 −3 −2 −1 0

x 10
4

−1

−0.5

0

0.5

1

x 10
4

Figure 5.4: Zoomed out picture for f(z) = sin(z
1

3)

39

−300 −200 −100 0 100 200

−150

−100

−50

0

50

100

150

31.01−0.00i
248.05−0.00i
837.17−0.00i
1984.40−0.00i
3875.78−0.00i
6697.36−0.00i
10635.15−0.00i
15875.21−0.00i
22603.58−0.00i

Figure 5.5: f(z) = sin(z
1

3)

−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

31.01−0.00i
248.05−0.00i
837.17−0.00i
1984.40−0.00i
3875.78−0.00i
6697.36+0.00i
10635.15−0.00i
22603.58−0.00i

Figure 5.6: Zoomed in picture for f(z) = sin(z
1

3)

40

regions using infinitely many different colors? Trying to plot these

functions using the first coloring scheme is not very fruitful. Only

a few convergent seeds are actually plotted resulting in a scattered

and mostly white image. It is possible to create nice figures by

plotting according to the rate of convergence. Unfortunately this

approach gives limited feedback as one can not tell what the orbits

are converging to. Figures 5.7 and 5.8 are rate of convergence plots

for sin(πez) and sin(log(sin(z))), respectively.

41

−2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 5.7: f(z) = sin(πez)

−10 −5 0 5 10

−10

−5

0

5

10

Figure 5.8: f(z) = sin(log(sin(z)))

42

Chapter 6

Closing Remarks

The behavior of functions of the type f(z) = azn−b
czn−d

and of a few

composite functions is investigated in this paper. The major regions

of convergence of Newton’s Method to the roots of the functions have

been shown to be somewhat predictable given the type of function,

the nature of its roots, and in some cases its poles.

The images produced by our Matlab code for the function f(z)

are filled Julia sets for the function N(z) = z− f(z)

f ′(z)
. The maximum

number of iterations is never reached for the functions investigated

here. Therefore, for all of our examples the orbits of the seeds either

converge to a root or diverge to infinity, but they do not remain

bounded without converging to a root. Hence, the code is plotting

all of the seeds in the window that have bounded orbits, which is by

definition a filled Julia set.

43

This paper has dealt with applying Newton’s Method to a specific

type of rational function where the degrees of the numerator and

denominator are the same. Investigation of other types of rational

functions would be quite interesting and may possibly lead to furthur

generalizations. Recall that keeping track of the leading terms of N

gives us

N(z) =
(n − m − 1)zn+m + . . .

(n − m)zn+m−1 + . . .
.

Of special interest, therefore, is the case where n = m + 1. In such

cases, the coefficient of the leading term in the numerator of N is

zero making the degree of the numerator and denominator of N the

same and eliminating ∞ as a fixed point of N . Other cases which

would be interesting to explore are the cases where n < m and

n > m + 1.

44

Bibliography

45

Bibliography

[1] Alan F. Beardon. Iteration of Rational Functions . Springer-

Verlag, 1991.

[2] Paul Blanchard. The Dynamics of Newton’s Method. Proceedings

of Symposia in Applied Mathematics, 49:139, 1994.

[3] Bodil Branner. The Mandelbrot Set. Proceedings of Symposia in

Applied Mathematics, 39:75, 1989.

[4] Anne M. Burns. Plotting the Escape - An Animation of Parabolic

Bifurcations in the Mandelbrot Set. Mathematics Magazine,

75:104, 2002.

[5] Ruel V. Churchill, James W. Brown, and Roger F. Verhey. Com-

plex Variables and Applications. Mcgraw-Hill Book Company,

1948.

[6] Robert L. Devaney. The Dynamics of Simple Maps. Proceedings

of Symposia in Applied Mathematics, 39:1, 1989.

46

[7] Desmond J. Higham and Nicholas J. Higham. Matlab Guide .

SIAM, 2000.

[8] Linda Keen. Julia Sets. Proceedings of Symposia in Applied

Mathematics, 39:57, 1989.

[9] John H. Mathews and Russell W. Howell. Complex Analysis for

Mathematics and Engineering. Jones and Bartlett Publishers,

2001.

47

Appendix

48

1 Code

% Call in one of the following ways:

% compNewt; to use default values

% compNewt(Routine);

% compNewt(Routine,M);

% compNewt(Routine,M,a,b,c,d);

% unspecified values will take on default values

function [dr] = compNewt(Route,M,a,b,c,d)

if (nargin =0 & nargin =1 & nargin =2 & nargin =6)

’Error in number of input arguments’

return

end

if (nargin < 3)

a = -1.5; b = 1.5;

c = -1.5; d = 1.5;

end

if (nargin < 2)

M=100;

end

if (nargin < 1)

Route = 0;

49

end

if (Route∼=0 & Route∼=1 & Route∼=2)

’The first input must be 0, 1, or 2’

return

end

if M < 2

’The second input must be greater than 1’

return

end

R = .0000001;

Nit = 500;

TOL = 1.e-8;

ct = 0;

ba = b - a;

dc = d - c;

xi = a + ba*[0:(M-1)]/(M-1);

yj = c + dc*[0:(M-1)]/(M-1);

[X,Y] = meshgrid(xi,yj);

Z0 = X+i*Y;

Z = Z0;

NZ0=reshape(Z0,1,(M2̂));

NZ = NZ0;

50

Zout = [];

Zloc = [];

Znit = [];

for n = 1:Nit % Iteration of Newton’s Method

Iterate = [];

[f,df] = newtf(NZ);

ind = find(abs(df) < TOL);

NZ(ind)=[]; NZ0(ind)=[];

f(ind)=[]; df(ind)=[];

Zold = NZ;

NZ = NZ - f./df;

ind = find(abs(NZ-Zold) < R);

Zout = [Zout, NZ(ind)];

Zloc = [Zloc, NZ0(ind)];

Iterate([1:(M+1)2̂]) = n;

Znit = [Znit, Iterate(ind)];

NZ(ind) = []; NZ0(ind)=[];

end

dr=[]; B=[]; C=[];

B=sort(Zout);

dr=B(1);

sB = size(B);

51

for i = 2:sB(2) % Searches through Zout to find

ct=0; % the distinct roots, placing

sdr=size(dr); % them in dr.

for j = 1:sdr(2)

if (abs(B(i)-dr(j)) < .001)

ct=ct+1;

end

end

if ct==0

dr = [dr,B(i)];

end

end

switch Route

case 0 % colors figure according to the root

converged to.

picture = firstplot(dr,sdr,Zloc,Zout)

case 1 % Colors figure according to rate of

convergence

picture = secondplot(Znit,Zloc)

case 2 % Does both figure plots.

firstpicture = firstplot(dr,sdr,Zloc,Zout)

secondpicture = secondplot(Znit,Zloc)

52

end

% Subfunction function picture = firstplot(dr,sdr,Zloc,Zout)

picture = ’plot color-coded by root’;

figure(1);

hold on

if sdr(2) > 0

z1 = Zloc(find(abs(Zout-dr(1)) < .001));

plot(z1,’r.’);

end

if sdr(2) > 1

z2 = Zloc(find(abs(Zout-dr(2)) < .001));

plot(z2,’y.’);

end

if sdr(2) > 2

z3 = Zloc(find(abs(Zout-dr(3)) < .001));

plot(z3,’b.’);

end

if sdr(2) > 3

z4 = Zloc(find(abs(Zout-dr(4))<.001));

plot(z4,’g.’);

end

if sdr(2) > 4

53

z5 = Zloc(find(abs(Zout-dr(5)) < .001));

plot(z5,’c.’);

end

if sdr(2) > 5

z6 = Zloc(find(abs(Zout-dr(6)) < .001));

plot(z6,’m.’);

end

if sdr(2) > 6

z7 = Zloc(find(abs(Zout-dr(7)) < .001));

plot(z7,’k.’);

end

hold off

h=findobj;

get(h,’type’);

set(h(3),’DataAspectRatio’,[1 1 1]); % Forces scale of

% the figure’s axes

% to be the same.

drleg=dr.’;

leg = num2str(drleg,’%0.2f’);

legend(leg,0); % Creates legend of roots

% rounded to 2 dec pts.

hold off

54

sh=size(h);

for m = 4:sh(1)

set(h(m),’Marker’,’.’,’MarkerSize’,3)

end

% Subfunction

function picture = secondplot(Znit,Zloc)

picture = ’plot color-coded by rate of convergence’;

figure(2);

hold on

inc=[0];

put=[];

minit=Znit(1);

maxit=Znit(end);

ni=min((maxit-minit),20)

for i=1:ni

put=minit+round((maxit-minit)/ni*i);

inc = [inc, put];

put=[];

end

mymap=pink(ni); % Creates colormap of appropriate size.

for i=1:ni

p = Zloc(find(Znit > inc(i) & Znit < (inc(i+1)+1)));

55

scatter(real(p),imag(p),35,mymap(i,:),’.’)

end

h=findobj;

get(h,’type’);

set(h(3),’DataAspectRatio’,[1 1 1]);

function [f,df] = newtf(z)

%———— given z, finds f(z) & f’(z)

f = z.3̂-1;

df = 3*z.2̂;

2 Input Arguments

The user may input zero, one, two or six arguments when calling

the function compNewt. An error message will appear and there

is a break in the code if the user inputs the incorrect number of

arguments. The first argument, Route, must take on a value of 0, 1,

or 2, which determines what type of plot is performed. The second

argument, M, determines the number of points that will be in the

rectangular window of interest. This window is determined by the

next 4 arguments, a, b, c, and d. The values a and b determine the

real-axis boundaries in the complex plane while c and d determine

the imaginary-axis boundaries. If the user enters an incorrect value

56

for either Route or M, an error message will appear and there is a

break in the code.

3 Coding Newton’s Method

Some parameters which are built in to the code, but which can

be changed are R, Nit, and TOL. For the examples in this paper,

R=1× 10−8, Nit=500, and TOL=1× 10−8. R is used to determine

whether or not Newton’s Method has converged. The current iter-

ate of Newton’s Method is determined to converge if it is within a

distance of R from the previous iterate of Newton’s Method. The

maximum number of iterations of Newton’s Method that will be

perfomed is Nit. This is to prevent the for loop which performs

Newton’s Method from running indefinitely. The value of TOL is

a tolerance which is used to ’throw out’ seed values which result in

division by zero in Newton’s Method. If the derivative of the func-

tion, df, is less than than TOL, i.e., close to zero, then Newton’s

method will diverge. These points are removed from the output ma-

trix, so they will not be plotted. Those seeds whose orbits converge

are stored in the output matrix, Zout, and the number of iterations

it took the orbit to converge is stored in the matrix Znit.

The first matrix of seeds produced by the code is an M by M

57

square matrix. In order to perform the arithmetic operations of

Newton’s Method in Matlab, the matrix needs to be in vector form.

In the first version of the code, this was done with two nested for

loops which placed the elements of the square matrix one by one

into a 1 by M2 vector matrix. It was later discovered that instead

of element by element, this could be done column by column, which

very significantly increased the efficiency of the code. The discovery

of the built-in Matlab function, reshape, completely eliminated the

need of for loops to do the job and significantly increased efficiency

once again.

4 Plotting the Figures

The output matrix, Zout, is sorted and searched to find the distinct

roots to which orbits have converged. These are stored in the matrix

dr.

The first plot subfunction uses the size of dr in if statements to

determine which plots to do. If the size of dr is > 0, then the seeds

which converged to the first element in dr are plotted. If the size of

dr is > 1, then the seeds which converged to the second element in

dr are plotted. This continues until we run out of colors. A problem

with this approach is that if there are more than seven roots, only

58

the first seven are plotted.

The second plot subfunction creates a colormap whose size is

determined to be the minimum of either (maxit-minit) or the number

20. The number (maxit-minit) is the largest number of iterations

needed minus the least number of iterations needed for convergence.

This will be the number of shades of the colormap (in this case

pink) that will be plotted. Then in each pass of a for loop, scatter

is used to plot the seeds which converged within a certain number

of iterations.

Scatter is not ideal for this type of plot. It creates a separate

object in Matlab for each and every point that is plotted. This

approach uses a very large amount of memory which causes the

code to run slowly.

59

Vita

Jennifer Joan Corte was born on October 16, 1975 in Lubbock,

Texas. She grew up in Buffalo, NY, graduating from Nichols School

in May 1993. She received a Bachelor of Arts degree with a double

major in Mathematics and Psychology from Tusculum College in

May 1998. In August 2003 she will receive a Master of Science

degree in Mathematics from the University of Tennessee, Knoxville.

60

	Fractal Images Generated by Newton's Method."
	Recommended Citation

	tmp.1379710558.pdf.cXPkN

