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ABSTRACT 

This research demonstrates the use of Light Detection and Ranging (LIDAR) for detailed 

measurement of volume change and erosional and depositional processes within a small gully 

and assessing the impact of digital elevation model (DEM) resolution on these measurements. 

The study site is an active gully in Meeman-Shelby Forest State Park in Tennessee, USA. DEMs 

were derived from an airborne LIDAR survey and multiple terrestrial LIDAR scans. DEM 

differences were used to quantify gross volumes of erosion and deposition within the gully over 

a three year period and a 49 day period. Analysis of the airborne LIDAR point cloud indicated 

that approximately 10,000 m
3
 of material eroded from the bluff since the gully was formed 

between 1969 and 1973. A total volume of 615.8 m
3 

of material was discharged from the gully 

between January 2012 (the airborne LIDAR survey) and December 2014 (the first terrestrial 

LIDAR survey). The surveys using the terrestrial laser scanner generated two 2 cm DEMs 

representing the gully terrain change during a short period of 49 days between December 2014 

and February 2015. The comparison of these two DEMs indicates an estimated 2.1 m
3
 of 

material was imported into the gully bottom with 11.5 m
3
 of gross erosion and 13.6 m

3
 of gross 

deposition. The same analysis performed at reduced data resolutions helped identify a turning 

point in the trends of erosion and deposition estimates at 0.18 m and 0.24 m resolutions, 

respectively, indicating that higher data densities of the LIDAR point data did not substantially 

improve the results. The two turning points represent the critical resolutions at which the 

accuracy of erosion and deposition measurements begin to deteriorate. This study demonstrates 

that high accuracy and density of point cloud data collected using LIDAR are capable to detect 

and quantify short term changes in dynamic gully systems. This study also suggests an optimum 

point density between 10 and 30 points per square meter to maximize efficiency of data 
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collection and processing. The analyses described in this thesis serve as a starting point for 

further monitoring development of the pool gully at very fine scales.  
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CHAPTER ONE 

Introduction 

 Rapid development in the accessibility, coverage, and resolution of topographic data is 

improving the quality of research across a range of earth science disciplines, especially in 

quantifying earth surface processes. Topographic data is typically stored as a digital elevation 

model (DEM), representing the distribution of elevations in a raster. Two widely used DEM 

datasets are the Shuttle Radar Topography Mission (SRTM) (U.S. Geological Survey, 2006) 

DEM and the 3D Elevation Program (3DEP), formerly the National Elevation Dataset (NED) 

(http://nationalmap.gov/3DEP/index.html). The SRTM now offers nearly global-coverage (60° S 

to 60° N) DEMs of 30 m resolutions. The 3DEP DEMs are available as 1 and 1/3 arc-second, 

approximately 30 m and 10 m resolution, respectively, for the contiguous United States. Both 

SRTM and NED DEMs are invaluable resources for studying landscape processes related to 

climate, hydrology, ecology, and other disciplines (Farr et al., 2007; Gesch et al., 2014). 

However, these DEMs are not suitable for fine scale analyses (Heritage et al., 2009). 

Improvements in surveying technology continue to address the need for high resolution elevation 

data and provide updated resources for higher resolution terrain analysis. 

 LIDAR (Light Detection and Ranging) is a comparatively new technique to generate high 

resolution elevation data. Airborne laser scanning (ALS) data is typically collected and curated 

by commercial surveyors with refined data acquisition and processing procedures. Commercial 

ALS has become an established industry with growing private and public investment (Hohenthal 

et al., 2011) and a history of scientific applications (Notebaert et al., 2008). For example, Lohani 

et al. (2001) demonstrated a technique for extracting tidal basin features and deriving 
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geomorphological parameters, such as slope, curvature, and drainage density, from ALS data 

sets. Landslide inventory and characterization using ALS data was shown to be more efficient 

than conventional techniques when applied to a large landslide complex in Christchurch, New 

Zealand (McKean and Roering, 2004). ALS has also been applied in archaeological research to 

map shallow earthworks in lowland river valleys in England (Challis, 2006).  

Terrestrial laser scanning (TLS) is common in construction and manufacturing industries, 

and is increasingly used in earth science research (Baltsavias, 1999; Heritage and Hetherington, 

2007). However, the field and post-processing procedures specific to the use of TLS in earth 

science applications are still not well-defined (Heritage and Hetherington, 2007). Surveying 

companies utilize proprietary techniques that are not always suitable for earth science 

applications. Poor planning and execution of a terrestrial LIDAR survey can yield unusable data 

(Heritage and Hetherington, 2007). For example, improper documentation of control points and 

other parameters may result in datasets that cannot be fully co-registered and/or georeferenced. 

Because the field and processing methods of terrestrial LIDAR data are highly variable for 

different applications (Baltsavias, 1999), one aim of this thesis work is to establish a reliable 

procedure to study morphological change within a small gully using the TLS. 

Despite the significant impacts of gully erosion on the landscape in recent history, few 

studies have focused on gullying in the Mississippi Loess soils of southwest Tennessee 

(Barnhardt, 1988). In this area, population boom in the early 1900s initiated a period of rapid 

deforestation to bolster a burgeoning hardwood industry. The transition from forest to farmland 

was detrimental to landscape stability and exacerbated by unregulated farming practices 

(Barnhardt, 1988; Barnhardt, 1989). At the peak of this agricultural activity, over 50% of the 

land within the park was actively farmed (Bennett, 1928). Federal officials purchased 54 km
2
 of 
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land in Millington, Tennessee in 1935 to establish a public recreation area that later became the 

Meeman-Shelby Forest State Park (MSFSP; 35.3436°N, 90.0604°W). Remediation efforts were 

implemented with the goal of controlling topsoil erosion and gullying as well as preventing 

initiation of new gullies.  

This study aims to investigate the following objectives: 

 Estimate the total volume displaced from the gully since its initial development between 

1969 and 1973. 

 Derive high-resolution DEMs representing the gully and surrounding terrain to estimate 

volumetric and topographic changes. 

 Examine morphological changes within the gully between January 2012 (ALS) and 

December 2014 (TLS1) and between December 2014 and February 2015 (TLS2) by 

quantifying volumes of erosion and deposition from DEMs. 

 Examine the relationship between the resolution of LIDAR-derived DEMs and resulting 

volume measurements by performing the volumetric analysis of TLS1 and TLS2 at 

successively coarser resolutions.  

This study will help test the following hypotheses:  

1) Topographic change in the pool gully during the 49 day period can be detected and 

quantified using TLS. 

2) An optimal point data resolution exists for monitoring the pool gully using TLS. 
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CHAPTER TWO 

Literature Review 

2.1 Gully morphology 

Gullies are steep-sided linear channels that develop on hillslopes and expand through 

repeated flash flooding (Morgan, 1979; Bocco, 1991). Unlike ravines, the definition of a gully 

does not depend on the persistent presence of water. Gullies are usually referred as to have a 

minimum width of 0.3 meters and range from 0.5 to 30 meters in depth (Hudson, 1981). Some 

gullies begin as rills, smaller channels carved by surface runoff that may be formed during a 

single rainfall event and subsequently filled during another (Bull and Kirkby, 1997; Knighton, 

1998). Steep sides and low width/depth ratios differentiate gullies from the smooth, parabolic 

cross-sectional profiles of stable channels (Knighton, 1998).   

Surface flow is the most common driver of gully formation, but they are also initiated by 

landslides and piping (Morgan, 1996). Gully development in depressions left behind by 

landslides is common in wet climates where incising and undercutting begins rapidly with 

subsequent storms (Vittorini, 1972). Gullies initiated by piping, or tunnel erosion, is frequent in 

areas with loamy surface layers and high clay content at lower depths. Removal of vegetation by 

grazing or other activities causes hardening of the upper surface layer and diminished moisture 

retention resulting in accumulation between the two hardened upper layer and low-permeability, 

high clay-content lower layer (Downes, 1946). Eventual breaching of subsurface flows induces 

collapse of the upper soil layer, creating an initial gully depression (Zhu, 2003). 

Gully development is not restricted to existing channels as they may be formed in areas 

without a drainage history (Ireland et al., 1939). Initial incising begins when the ability of a 
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landscape to resist erosion is compromised by prolonged runoff. Intermittent periods of rapid 

expansion and stabilization are common characteristics of both naturally-formed and human-

induced gullies (Imeson and Kwaad, 1980). Observation of these periods has led to varied gully 

types and development stages (Bocco, 1991).  

Gullies are often classified as ephemeral or permanent (Bull and Kirkby, 1997; Poesen et 

al., 2002). Ephemeral gullies are routinely infilled, leaving behind depressions that will 

ultimately promote the development of new gullies (Bull and Kirkby, 1997). Permanent gullies 

experience more pronounced erosion than deposition, leading to gradual enlargement, and are 

easily identifiable even in the absence of flowing water (Bull and Kirkby, 1997). In general, 

permanent gullies are formed on abandoned fields or rangelands and ephemeral gullies on 

excessively cultivated land (Poesen et al., 2002). 

 Two further gully classes were proposed by Leopold and Miller (1956): continuous and 

discontinuous gullies. Discontinuous gullies contain stretches of bedding with gentler slopes than 

the rest of the gully channel, causing a series of small fans to develop and allowing gullies to be 

subdivided into reaches. Continuous gullies have a more uniformed slope (Bocco, 1991; Leopold 

and Miller, 1956). Ireland et al. (1939) observed gullies exhibiting characteristics of 

discontinuous gullies at their southern Piedmont region study sites. They noted a pattern by 

which an initial channel cut is followed by downward incision into a weaker soil horizons and 

development of steep head and side walls that migrate headward through undercutting (Ireland et 

al., 1939; Bocco, 1991). The gullies subsequently undergo a stage of readjustment as weathering 

and mass wasting deposits at the base of the head and side walls, resulting in more smooth, 

gradual slopes. A level of equilibrium is achieved during the final stage as vegetation holds and 

stabilizes the terrain (Ireland et al., 1939).  
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 Heede (1976) discussed gully behavior in the context of predicting formation and growth, 

hypothesizing that discontinuous gullies are simply in an earlier state of the gully formation. This 

claim is substantiated by the frequent presence of knick points within the channel of mature and 

continuous gullies that demarcate the previous extents of the various gully reaches (Ireland et al., 

1939). Ultimately, gullies reach a state of equilibrium and the knick points are no longer visible 

(Heede, 1976).  

Although the gullies can be formed naturally, gully formation has long been attributed to 

human influence on the landscape (Bocco, 1991). Changes in land use, such as the conversion of 

forest to farmland, disrupt the “natural equilibrium” of a landscape through irrigation and the 

diversion and concentration of surface flows (Hudson, 1981). Agricultural practices are the most 

common drivers of human-induced gullying, the effects of which are observed everywhere from 

the rainforest-turned-farmland areas of Brazil and Malaysia to the desert of the southwest United 

States (Morgan, 1996). The fertile topsoil layer is often the most easily eroded, a problem 

exacerbated by repeated tilling. Evidence suggests that threshold values for critical slope and 

drainage area that lead to development of gullies are higher for uncultivated land than for 

cropland, although these thresholds also depend on vegetation type, soil structure, and type of 

tilling (Poesen et al., 2003). 
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2.2 Remote sensing of topography 

Studies in early publications on gully monitoring primarily utilized field measurements 

with erosion pins to determine change (Ireland et al., 1939; Leopold and Miller, 1956; Betts et 

al., 2003). The advent of modern remote sensing techniques, such as aerial photography and 

photogrammetry, has facilitated the study of gully dynamics using DEMs. Betts et al. (2003) 

used DEMs derived from photogrammetry to study erosion within New Zealand gullies over 

periods of 14 and 32 years. Along with the fewer hours spent in the field, this technique yielded 

DEMs ranging from 0.2 m to 1.65 m in spatial resolution, significantly improved the precision of 

the erosion estimate. They also found that the erosion rates measured from the DEMs were 

directly proportional to √𝐴𝑔, where Ag is gully area (Betts et al., 2003). 

 Remote sensing advances have benefitted topographical research through consistent 

increases in sensor resolution. LIDAR is a remote sensing technique in which a laser scanner 

rapidly emits pulses of energy that are intercepted by a surface and returned to the scanner. Like 

Radio Detection and Ranging (RADAR) and other active ranging systems, LIDAR transmits and 

receives electromagnetic energy, recording the amount of energy backscattered from the 

intercepting surface. The only difference between LIDAR and RADAR is that LIDAR systems 

emit shortwave energy in the near-infrared and visible range, while RADAR emits long-

wavelength microwaves.  

An electromagnetic wave propagates as it travels through or along a medium. The 

propagation of this wave of energy between transmittance and reception by the sensor is 

represented by the radar equation: 
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𝑅 =  √
𝑃𝑠 × 𝐺2 × 𝜆2 × 𝜎

𝑃𝑒 × (4𝜋)3

4

 

where:  

 Ps is the transmitted power 

 G is the antenna gain 

 λ is the wavelength 

 σ is the radar cross-section 

 and, Pe is power returning to the sensor (W) 

 

The radar equation can also be used to describe how LIDAR systems determine range 

estimates. The equation gives the power PE returning to the sensor, depending on the transmitted 

power Ps, the slant range R, and the radar cross-section σ (Wolff, 2016).  The reflected power Pr 

at the intercepting surface is required to determine the power PE returning to the sensor. 

Reflected power Pr depends on the power density Su, antenna gain G, and radar cross section σ 

(Wolff, 2016). The radar cross section σ is the reflective ability of the target surface and is 

dependent on its shape and material composition, and the direction and frequency of the 

intercepting laser. Antenna gain G is the effect of redistributing radiated power to provide a 

stronger signal in one direction (Wolff, 2016). The power density Su of a transmitter in all 

directions is given in watts/m
2
 by (Wolff, 2016): 

𝑆𝑢 =  
𝑃𝑠

4 × 𝜋 × 𝑅2  

where:  

 Ps is the transmitted power 

 Su is the nondirectional power density 

 And, R is the range from the antenna to the target surface 
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The directional power density is equal to the nondirectional power density multiplied by the 

antenna gain. The power returning to the sensor Pe in watts (W) is found by (Wolff, 2016):  

𝑃𝑒  =
𝑃𝑠×  𝐺2 × 𝜎× λ2

(4×𝜋)3 × 𝑅4   

where: 

 Ps is the transmitted power 

 σ is the cross-section 

 λ is the wavelength 

 and, R is the range 

 

The radar equation takes into account all factors influencing the wave propagation of an emitted 

pulse (Wolff, 2016).  

LIDAR survey has become the preeminent technique for gathering the high resolution 

elevation data used to generate DEMs (Cavalli et al., 2008; Hohenthal et al., 2011; Marks and 

Bates, 2000). Point data collected using LIDAR systems are referred to as point clouds (Heritage 

and Hetherington, 2007). Each point in the cloud includes 3-dimensional coordinates (x, y, z) 

that are often accompanied by an intensity value that represents the ratio of the strength of the 

reflected pulse returned from the intercepted surface to the strength of the pulse at its emittance 

(Cang et al., 2013; Kaasalainen et al., 2011; Kukko et al., 2008). Intensity values are dependent 

upon a number of factors, including but not limited to, wavelength, range, reflectivity of the 

surface, presence of ambient light, humidity, and the laser’s perpendicularity to the surface, also 

known as the incidence angle (Cang et al., 2013).  

The position accuracy in spatial data is commonly measured by Root Mean Square Error 

(RMSE) between control points within the spatial data set and ground truth measurements. The 

RMSE can also be calculated to describe the registration error between two LIDAR point clouds. 
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The National Standard for Spatial Data Accuracy (NSSDA) determines the RMSE as the square 

root of the average of a sample of squared differences between the data set being measured and a 

reference data set (Federal Geographic Data Committee, 1998). Equation 2 shows the RMSE 

calculations using a set of points to quantify the registration accuracy of a transformed point 

cloud to a reference point cloud (Federal Geographic Data Committee, 1998; Toth, 2014): 

𝑅𝑀𝑆𝐸𝑟 =  √𝛴((𝑥𝑑𝑎𝑡𝑎,𝑖−𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖)
2

+(𝑦𝑑𝑎𝑡𝑎,𝑖−𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖)
2

)

𝑛
         (2) 

where: 

 𝑥𝑑𝑎𝑡𝑎,𝑖 and  𝑦𝑑𝑎𝑡𝑎,𝑖 are coordinates of point i within the point cloud being tested for 

registration accuracy 

 𝑥𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖 and  𝑦𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖 are coordinates of the corresponding point i within the 

reference point cloud 

 n is the number of sampled points used to compute RMSE 

 i is an integer from 1 to n 

 Two primary methods for gathering LIDAR data are airborne (ALS) and terrestrial laser 

scanning (TLS) (Heritage and Hetherington, 2007). Although similar in function, applications 

vary significantly between them (Baltsavias, 1999; Heritage and Hetherington, 2007). An ALS is 

better suited for data acquisition that necessitates coverage over areas of 1 km
2
 or larger, while a 

TLS is often conducted for smaller areas. ALS and TLS also differ greatly in the resolution of 

the resultant data. The spatial resolution of data collected by ALS is typically between 1 m and 3 

m, while a TLS can yield data at the centimeter scale (Hohenthal et al., 2011).  

Types of LIDAR can be further divided into discrete return and waveform. The 

waveform LIDAR systems record the full return of an emitted pulse, so that an emitted pulse 

may return multiple backscattered pulses to the sensor. Discrete return systems only record one 

return per emitted pulse (Wagner et al., 2006; Hohenthal et al., 2011). In waveform systems, the 
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return number of collected points is stored as an additional attribute that is often used to separate 

bare earth from the remainder of the point cloud (Heritage and Hetherington, 2007). 

 Like other remote sensing techniques, LIDAR is subject to a trade-off between spatial 

resolution and coverage (Heritage et al., 2009; Hodge et al., 2009; Milan et al., 2007; Rumsby et 

al., 2008). For example, TLS has proven effective in quantifying morphological change 

following minor flooding events at the reach scale (Picco et al., 2013), while ALS is more 

suitable for the study of major events at the basin scale (Croke et al., 2013). Perroy et al. (2010) 

used a combination of airborne and terrestrial LIDAR to measure annual volumetric soil loss due 

to gully erosion in a watershed on Santa Cruz Island, California. Their results were validated by 

comparing measurements taken using LIDAR to existing geomorphic and geodetic survey data 

gathered using total stations (Perroy et al., 2010). ALS and TLS methods have also been 

evaluated in terms of their suitability to monitor seacliff changes over a 6 month period along a 

400 m coastline in Del Mar, California (Young et al., 2010). Variations in cliff face volume 

changes measured using both methods were strongly correlated. But the TLS data captured small 

changes more consistently and a greater volume of change overall. The researchers noted that the 

ALS data can be gathered very rapidly; in comparison, TLS can provide better coverage of areas 

at the base of the sea cliff (Young et al., 2010).  

 Both ALS and TLS have been used extensively for the study of erosion and deposition at 

a variety of temporal scales, but their advantages are most pronounced when applied at short 

time intervals (Bangen et al., 2014; Corsini et al., 2013; Croke et al., 2013; Kukko et al., 2008). 

The high spatial resolution of the data produced using LIDAR captures minor changes in 

microtopography occurring over a period of months or years that would be immeasurable using 

traditional remote sensing methods (Hohenthal et al., 2011).  
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A TLS operator must consider critical parameters, such as point spacing, range, and field 

of view (FOV), when preparing a survey (Carr et al., 2013). These parameters are set to ensure 

that point density, the number of points per unit area, is enough to produce surface models at a 

desired resolution. The FOV is an angular measure of the extent of the viewshed of the TLS. The 

scanner should be set to a vertical and horizontal FOV large enough to fully capture the surface 

of interest (Zhu et al., 2008; Carr et al., 2013). The point spacing should be set to ensure that the 

average distance between points is less than or equal to the desired model resolution at the 

specified range (Zhu et al., 2008). Optimizing scan parameters requires additional consideration 

of instrument-specific parameters, such as step angle, laser beam strength, diameter, and 

divergence (Carr et al., 2013). The step angle of a scanner determines the degree of rotation 

between the emittance of each successive laser pulse. Point spacing at a given range is a function 

of step angle where point spacing equals to the distance times the tangent of the step angle (Carr 

et al., 2013). The relationship of step angle and point spacing is illustrated in Figure 1. 
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Figure 1. A) A larger step angle results in greater point spacing. The example diagram in A 

shows that the number of points captured for an equal surface area are reduced from five to three 

by increasing the size of the step angle between emitted pulses from the scanner (Carr et al., 

2013); B) Point spacing increases as distance from the scanner increases (Carr et al., 2013).  

 

 

Laser beam diameter and divergence of the TLS instrument should also be considered 

when preparing a survey because of their impact on resultant point density. The diameter of the 

laser at the point of contact with a surface, the laser “foot print”, increases with increasing 

distance of the intercepting surface from the scanner (Zhu et al., 2008). This rate of increase is an 

angular measure referred to as the beam divergence and is dependent upon the laser strength, or 

the wavelength at which the light is emitted, and its initial diameter (Zhu et al., 2008). 

Divergence is given by (Carr et al., 2013): 

𝜃 = 2 ×  arctan (
𝐷𝑓− 𝐷𝑖

2 ×𝑙
)  

where: 

 Θ is beam divergence 

 Df and Di is the beam diameter at two separate points, and 
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 l is the distance between Df and Di 

 

Figure 2 depicts the diminished surface detail captured by three differently sized laser footprints. 

Point cloud detail is diminished at excessive distances from the scanner due to this increase in 

laser foot print diameter. 

 

 

Figure 2. Depiction of how beam divergence can impact the detail of captured points. The three 

laser foot prints are intercepting the same hypothetical surface at unknown ranges. The smallest 

foot print returns the best range estimate because it illuminates the surface around the laser nadir 

with the highest precision (Carr et al., 2013).  
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CHAPTER THREE 

Study Site 

The study site for this research is a gully within the Meeman-Shelby Forest State Park 

(MSFSP) located north of Memphis in Shelby County, Tennessee (Figure 3). The park is along 

the eastern bluff of the Mississippi River and covers 54.5 km
2
. It is one of the most visited state 

parks in Tennessee (Tennessee State Parks 2016). MSFSP and its surrounding areas are prone to 

gully formation due to human and environmental factors, such as land use history and silt loam 

soils. Shelby County has a humid subtropical (Cfa) climate according to the Köppen climate 

classification. Temperatures peak in July with average highs and lows of 33° C (92° F) and 23° 

C (74° F), respectively. January is the coldest month with average highs and lows of 9.9° C (50° 

F) and 0.3° C (33° F), respectively. Shelby County averages 1.36 m (4.47 ft) of precipitation per 

year with much occurring in the early winter and spring months (U.S. Climate Data 2016). 

Historical monthly averages for high and low temperature and precipitation for Shelby County 

are illustrated in Figure 4.  

 

 

Figure 4. Historical (1981-2010) monthly average high and low temperature and precipitation for 

Shelby County, Tennessee (U.S. Climate Data 2016). 
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Figure 3. Location of the pool gully site is marked with a red ‘X’ on the topographic map of 

Meeman-Shelby Forest State Park. The inset map shows all of Shelby County, Tennessee – 

orange and green filled areas are the bottomland and river terrace sections of the park, 

respectively. 
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Mississippi river floodplain comprises the western half of the land area in MSFSP. 

Hardwood forest featuring bald cypress (Taxodium distichum) and Tupelo swamp (Nyssa 

biflora) covers the bottomland that floods episodically during spring months (Tennessee State 

Parks 2016). The Mississippi river terrace, known locally as the Chickasaw Bluff, bisects the 

park, rising abruptly from the bottomland to higher elevations in the eastern half of the park 

(Barnhardt, 1988; Tennessee State Parks 2016). Species of oak (Quercus), beech (Fagus), 

hickory (Carya), and sweet gum (Liquidambar) trees cover the river terrace and provide a habitat  

for hundreds of bird species as well as deer and small mammals, such as beaver and fox 

(Barnhardt, 1988; Tennessee State Parks 2016).  

Barnhardt (1989) examined the effectiveness of the extensive soil conservation program 

in the MSFSP. The federal government acquired the land in 1935 to establish a “recreational 

demonstration area” managed by the National Park Service. The project included major 

reclamation efforts. Hundreds of check dams were constructed within active gully channels and, 

in some cases, the channels were re-engineered entirely. Barnhardt (1989) concluded that 

mitigation efforts were largely ineffective, as heavy rainfall events tend to re-invigorate gully 

activity, although certain areas appeared to have achieved a degree of stability.  

This study focuses on a “pool gully” (Figure 5) formed at the out spout of the drainage 

system for a nearby pool. The gully is carving into the river terrace of the Mississippi River and 

was formed after the drainage system was engineered. The gully is approximately 30 m at its 

widest, with a headwall depth of approximately 20 m and a length of 90 m. The catchment area 

of the pool deck is approximately 4070 m
2
. The 18 inch pipe discharges drainage from the pool 

deck as well as a biweekly flush of significant volumes of water for filter maintenance during 

operational months of May, June, and July, also known as backwashing. The pool has a 
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perimeter of 150 m and a water capacity of approximately 75,000 gallons. Public pools typically 

have a turnover of 6 to 8 hours, meaning that the full capacity of the water circulates through the 

pump over that period (Pool and Spa, 2016). A 75,000 gallon pool with a 6-hour or 8-hour 

turnover will have approximate flow rates of 208 and 156 gallons per minute (gpm), respectively 

(Pool and Spa, 2016). A pool of comparable size and flow rate is expected to backwash at a rate 

of approximately 280 gpm due to back pressure. The recommended backwash frequency and 

duration depends on the number of patrons (Pool and Spa, 2016). Assuming a backwash duration 

of 30 minutes, at 280 gpm the biweekly discharge due to backwashing is approximately 8400 

gallons of water.  

 

 

Figure 5. Photograph of the pool gully channel. The drainage pipe is visible inside the red box at 

the top of the photograph. 
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In our conversation, park authorities estimated that the pool was constructed at some 

point during the 1960s. They also acknowledged the pool valley’s impressive size and rapid 

growth. We examined available historical aerial photography in this area to investigate the time 

when the pool was built. The left aerial photograph in Figure 6 reveals that the pool is absent on 

February 13, 1969. The pool is visible in the right photograph, indicating it was constructed 

before April 12, 1973.  Assuming that initial incision into the bluff was a consequence of pool 

drainage, we estimate that the pool valley formed between 1969 and 1973.  

 

 

Figure 6. The two aerial photos indicate that the pool at Meeman-Shelby Forest State Park was 

constructed between 02/13/1969 and 04/12/1973. Left: AR1SWCL00010059, 02/13/1969, 

1:20500; Right: AR5730010929044, 04/12/1973, 1:131000 

Source: United States Geological Survey 
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CHAPTER FOUR 

Methods 

4.1 Airborne LIDAR data overview 

An airborne LIDAR survey of Shelby County, Tennessee, was conducted by the United 

States Geological Survey (USGS) in January 2012. The data was gathered at a maximum 

nominal point spacing of < 1 m with the goal to improve the accuracy and precision of the 1/9 

arc-second (3-meter) National Elevation Dataset (NED). A Leica ALS50-II 150 kHz LIDAR 

instrument was flown on a Cessna 404 aircraft. Instrument specifications for the Leica system 

are detailed in Table 1 of Appendix III. Additional details of the airborne LIDAR survey are also 

described in Appendix III (Woolpert, 2012).  

 

Table 1. LIDAR data sets used in the analysis 

Sensor Date Type Coverage Spatial Reference Source 

ALS *  1/24/2012 Cloud Shelby County NAD83 UTM 16N Leica ALS50-II 

TLS (5) ** 12/24/2014 Cloud Gully NAD83 UTM 16N Faro Focus 3D X330 

TLS (10) ** 2/8/2015 Cloud Gully & parking NAD83 UTM 16N Faro Focus 3D X330 
* Airborne laser scanning product of LIDAR campaign commissioned by the United States Geological Survey, 

January 2012 

** Terrestrial laser scanning data sets and the total number of scans in parenthesis 

 

 

4.2 TLS data acquisition, processing, and model generation 

Gathering the TLS data and preparing it for analysis required much planning and effort. 

The workflow for data acquisition is illustrated in Figure 7. Heritage and Hetherington (2007) 

noted that parameterization of a TLS survey is dependent on the application as well as the make 
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and model of the LIDAR instrument. The TLS used for both surveys was a FARO Focus 3D X 

330 laser scanner. The instrument specifications are listed in Table 2. 

 

Table 2. Faro Focus 3D X330 terrestrial laser scanner technical specifications 

Parameter Faro Focus 3D Specifications 

Range 0.6 m to 330 m to a 90% reflective surface 

Measurement Speed 122000 to 976000 points/second 

Ranging Error +- 2 mm 

Vert. / Horiz. FOV 300 / 360 degrees 

Step Angle 0.009 degrees 

Laser Class Class I laser product (FDA CFR 21) 

Wavelength 1550 nm 

Beam Divergence 0.19 mrad @ 1/e
2
 

Beam Diameter at Exit 2.25 mm @ 1/e
2
 

Additional Sensors Dual axis compensator (levels each scan, accurate to 0.015 

degrees), barometer, compass, GNSS 

 

 

 

 

 

 

Figure 7. General workflow for data acquisition and processing with the terrestrial laser scanner 

 

TLS data were collected on 12/24/2014 and 2/8/2015 to generate DEMs of sufficient 

resolution to detect micro-topographical change within the gully channel. A fundamental element 

of planning was to choose and document well-distributed positions of both the scanner 
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instrument and stationary scan registration around the gully. The registration points were later 

used to place the scans into the proper orientation relative to each other. A total of five scans per 

survey were collected within the gully for each of the two TLS surveys. General information 

about the scans within the pool valley is listed in Table 3. An additional five scans were also 

performed outside the gully during TLS2. Taking into consideration best practices outlined by 

Carr et al. (2013), the TLS positions were chosen based on the following considerations: a) a 

minimum of 4 control points were within the viewshed of the scanner; b) substantial overlap 

existed between scanning viewsheds; c) topographic shadow, or areas shielded from view of the 

scanner due to relief, was minimized; d) areas of interest were scanned from multiple 

perspectives; and e) the TLS was placed atop the tripod above relevant terrain features and at a 

consistent height (1.65 m). Figure 8 illustrates the positions of the scanner for the TLS survey 

conducted on December 24, 2014. 

 

Table 3. Terrestrial LIDAR survey statistics for the five scans performed within the gully on 

December 24, 2014 and February 8, 2015. The scanner was set to emit approximately 

43,267,380 total pulses within a 360° horizontal field of view and 300° vertical field of view.  

Scan ID Date Latitude, Longitude Total Points RMSE (m) 

TLS1001 12/24/2014 35.317433, -90.061229 24,508,783 0.014 (avg) 

TLS1002 12/24/2014 35.317370, -90.061180 26,262,629 0.0091 

TLS1003 12/24/2014 35.317439, -90.061103 27,640,332 0.0163 

TLS1004 12/24/2014 35.317376, -90.060990 29,393,729 0.0152 

TLS1005 12/24/2014 35.317267, -90.060976 32,786,140 0.0148 

TLS2001 02/08/2015 35.317462, -90.061219 25,613,229 0.017 (avg) 

TLS2002 02/08/2015 35.317382, -90.061169 27,428,903 0.0194 

TLS2003 02/08/2015 35.317443, -90.061052 27,913,785 0.0201 

TLS2004 02/08/2015 35.317413, -90.060974 29,323,810 0.0161 

TLS2005 02/08/2015 35.317336, -90.060948 31,745,204 0.0133 
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Figure 8. Scan positions for the survey of the gully performed on 12/24/2014 overlaid upon a 

mesh produced from the ground points from the merged point clouds. Black areas are gaps with 

too few points to interpolate.  

 

The TLS was set to collect points with 0.02 m spacing at a range of 20 m for the two TLS 

surveys of the pool gully. These specifications should yield point cloud data with enough detail 

to produce DEMs at 0.02 m resolution, deemed suitable for the purpose of this study to capture 

short term changes in topography. Point spacing for segments of the gully channel within 20 m 

of the scan positions did not exceed 0.02 m. Increases in beam diameter are negligible at this 

range and were not considered. The scanner was set for a 360° horizontal FOV and a 300° 

vertical FOV, so that points were captured in all directions except the circular area over 60 

degrees below the horizontal plane of the scanner. Each scan took 08:09 (MM:SS) to perform 

43,267,380 measurements. Fewer points exist in the resulting clouds because emitted pulses that 

do not intercept a surface will not return point measurements. The TLS captured an average of 
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28,261,654 points per scan across all scans within the gully. For each survey, the total number of 

points collected increased with each sequential scan because of increasing surface area as scan 

positions moved deeper into the gully (Table 3). 

GPS measurements were taken using a Trimble GeoXH at each scan and each target 

position. The GPS readings were differentially corrected to ensure optimal co-registration among 

the TLS point clouds. Due to the depth of the pool valley, the receiver periodically lost 

connection to some or all GNSS satellites. For this reason, positions were recorded for a 

minimum of 10 minutes at 5 second intervals. The GPS positions were differentially corrected 

and applied to the scan files (.fls) with Faro Scene version 5.3.3 software (Faro Technologies) to 

ensure proper registration. Differential correction took place in the Trimble GPS Pathfinder 

Office version 4.10 software (Trimble Inc.). Position records were excluded if fewer than 4 

GNSS satellites were overhead and/or fewer than 5 nearby base stations were pinged at the time 

of recording. They were also excluded if horizontal uncertainty was greater than 15 cm after 

differential correction.  Differentially corrected GPS positions were compiled for each reference 

target and scan location and a representative average position was determined for each.  

Corrected GPS positions were applied to each of the scans so that we were confident that 

the center point of each was within 15 cm of the actual location. Reference targets were found in 

each of the scans and were assigned corresponding labels and GPS positions. With each 

additional reference, the scans were transformed to better reflect the true locations of the 

contained points. When each reference targets had been assigned GPS positions, the scan points 

are close to their true position and orientation. The locations of the individual scans were refined 

further using the Cloud-to-Cloud registration tool in SCENE. The most centrally-located scan 

was set as the reference scan and the remaining four were transformed to match. The software 
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provides registration accuracy as the computed RMSE for a set of points within each transformed 

scan to the reference scan. The distance of each reference target, referred to as “tie points” in 

Faro Scene, within the transformed scans to its predicted position within the reference scan is 

also computed as a measure of accuracy. The Scene software returns a tie point “tension” in 

meters representing the distance from the tie point to the predicted position of the tie point after 

cloud transformation. High tie point tension indicates it might be negatively influencing overall 

registration accuracy. Tie points with tensions greater than 0.1 m were removed and Cloud-to-

Cloud registration performed again, reverting transformations when registration accuracy was 

diminished and excluding tie points when accuracy improved until the best the registration was 

achieved. The general process for georeferencing and registration of the TLS point clouds is 

depicted in the flow chart in Figure 9.  

 

 

Figure 9. Flow chart describing the process for georeferencing and co-registration of the TLS 

point cloud data 

 

An additional measure was taken to ensure adequate registration of the ALS and TLS 

point clouds because of the lack of control points and uncertainty of the TLS1 and TLS2 scan 
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positions determined using GPS. The positions of the five scans performed outside of the pool 

valley during TLS2 are depicted in Figure 10 along with terrain points from the ALS survey. 

Utility poles as well as the corners of the swimming pool and nearby structures were treated as 

control points within the ALS survey and matched to equivalent points captured by the nearby 

scans from TLS2 using tools within the open source Cloud Compare version 2.6 software. 

Registration of the TLS2 point cloud to the ALS point cloud yielded a 4x4 transformation matrix 

that captured the rotation and translation from its original orientation. The transformation matrix 

was applied to the TLS1 point cloud to reconcile its registration with the TLS2 point cloud so 

that all three achieved the highest possible co-registration. 

 

 

Figure 10. Scans were performed outside of the pool gully to improve registration between the 

airborne LIDAR point cloud and the terrestrial LIDAR point cloud from 02/08/2015.  

 

After point cloud co-registration, points representing vegetation and other noise were 

removed to generate the DEMs from the points representing the bare-earth terrain. This process 



27 
 

was performed using a combination of tools provided within the commercial software Quick 

Terrain Modeler (QTM) 8.0.4 (Applied Imagery, LLC).  Extracting bare-earth points from the 

ALS point cloud was relatively straightforward using the last returns of the point clouds. An 

interpolated surface was generated from the last returns in the ALS cloud using QTM. The 

screenshot in Figure 11 shows the grid generation options available to users through QTM. The 

default interpolation method is called adaptive triangulation. This method populates cells of a 

grid with the max, mean, or min Z of points that fall within each, where possible. If a cell 

contains no points but at least 5 adjacent cells are valid, simple interpolation is used to determine 

the cell value. Larger gaps are filled using Delaunay Triangulation. 

 

 

Figure 11. Settings in Quick Terrain Modeler 8.0.4 for conversion of point cloud data to gridded 

data. 
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 The amount of effort required to remove noise depends on the complexity of terrain and 

typically involves various combinations and iterations of common grid statistics (Hofle et al., 

2013). The near-vertical sidewalls in portions of the pool gully complicated noise removal 

because they can be misrepresented by statistics calculated within a horizontal grid. To address 

this issue, a preliminary step was taken by slicing the clouds into subsets at 5 meter vertical 

intervals. The majority of non-terrain points in each subset were identified and removed with 

relative ease through visual examination. After the preliminary noise removal, the slices were 

merged back into a single cloud for each TLS1 and TLS2.  

After slicing and re-merging, most of the points represent the terrain, with the remaining 

noise clustered too close to the ground to be visibly distinguished. This noise was removed using 

the Above Ground Level (AGL) Analyst within QTM. The AGL Analyst estimates ground level 

by determining the minimum elevation within each cell of a horizontal grid. Points are assigned 

values equal to the height above the minimum elevation within each grid cell. Choosing a grid of 

the appropriate size is critical to using this tool effectively. A grid finer than the average density 

of the ground points will cause the lowest elevation in some grid cells to be measured from 

above-ground points. Alternatively, a grid that is too coarse will result in a loss of detail when 

filtering based on assigned heights above the terrain. A ground level estimate was calculated 

within a 0.02 m grid for both point clouds using the AGL Analyst and points were assigned AGL 

values. The grid size and slope of the terrain was considered when filtering noise based on the 

AGL values. With an estimated maximum slope of the gully sidewalls of approximately 75 

degrees and a grid cell size of 0.02 m used to calculate AGL values, it was determined that points 

with AGL values less than or equal to 0.07 m could represent terrain points in areas with the 

steepest slope. For this reason, only points with AGL values greater than 0.07 m were removed. 
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The two point clouds were almost entirely ground points after filtering with the AGL Analyst. 

The final step in removing noise near the terrain was to calculate slope for the points within a 

fine horizontal grid. Local slope values were assigned to the points within a 0.01 m grid and 

points with slope values greater than 75 degrees were removed. The slope-based filter was 

effective in removing the remaining noise because non-ground points typically result in a slope 

approaching 90 degrees when compared to the points within adjacent cells. The adaptive 

triangulation method mentioned previously was used to generate DEMs from the remaining 

ground points.  

4.3 Gully morphometrics  

Terrain points within the pool gully were removed from the ALS point cloud and 

interpolated to create an estimated model of the “undisturbed” slope of the river terrace. The 

volume of material exported from the entire gully since initiation was estimated by calculating 

the volume between the estimated undisturbed slope and the ALS-derived gully DEM. This 

analysis was performed in QTM using the “Volume Calculation” tool. 

A different method was used to estimate volumes of erosion and deposition over the 

shorter time intervals. Change detection between two DEMs is performed by deriving a DEM of 

difference (ΔDEM) (Croke et al., 2013; James et al. 2007; Thoma et al. 2005). A ΔDEM is a grid 

equal in area to the intersection of two input DEMs and contains calculated values equaling to 

the elevation difference between corresponding grid cells. This method has been used to 

effectively measure relative quantities of erosion and deposition. When the DEM from a later 

observation is subtracted from the DEM from an earlier observation, the sum of the positive 

values within a ΔDEM equals to the gross volume of material lost from cells that experienced net 



30 
 

erosion and the sum of the negative values equals to the gross volume of material gained by cells 

that experienced net deposition. The same method was applied to this study to analyze the 

geomorphic change within the pool gully channel. The following equations represent the ΔDEM 

calculations used to quantify topographic change within the gully: 

1) DEMALS 2012 – DEMTLS 2014 = ΔDEM; DEMALS 2012 – DEMTLS 2015 = ΔDEM 

2) DEMTLS1 – DEMTLS2 = ΔDEM 

The DEM from TLS1 was treated as the baseline to derive the ΔDEM for TLS2. The 

resulting volumes of TLS1 DEM above and below the TLS2 DEM represent the volumes of 

erosion and deposition that occurred between the two surveys, respectively. To better understand 

the differences in short term gully morphology, three areas of interest were chosen in the 

topographically distinct segments for detailed examination: the gully channel, gully head, and 

left wall areas (Figure 12). The gully channel area represents the portion of the gully that meets 

the maximum slope criteria for DEM generation mentioned in the previous section. The gully 

head and left wall areas are subsets of the gully channel that were chosen because much of the 

geomorphic change detected through the ΔDEM analysis was concentrated in these two areas. 

The gully head area is located directly beneath where the drainage pipe breaches the gully 

headwall.  The left wall is a portion of the left sidewall of the gully where considerable mass 

wasting is evident in the ΔDEM. 
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Figure 12. Areas of interest within the pool gully: gully channel (yellow), gully head (red), and 

left wall (blue). 

 

 

4.4 Scale analysis 

The sensitivity of topographic measurements to the resolution of a DEM has been 

investigated (Zhang and Montgomery, 1994; Yang et al., 2010). Comparisons of measurements 

from DEMs with resolutions equivalent to those available in popular elevation datasets such as 

the NED and SRTM have shown a large disparity in derived topographic attributes (Huaxing et 

al., 2006; Deng et al., 2007; Sorensen and Seibert, 2007). Although topographic measurements 

on high-resolution DEMs are more precise than on lower-resolution DEMs, the benefit of this 

increased resolution varies with the geographical scale of the application. High data resolution 

coincides with high data volume and high volume data is inherently more cumbersome than low 

volume data; thus, data resolution exceeding that necessary for a particular application makes 
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analysis less efficient. Zhang and Montgomery (1994) noted substantial differences in slope and 

drainage area measurements from DEMs of simulated landscapes at 2, 4, 10, 30, and 90 m 

resolution. Despite these differences, they concluded that 10 m DEMs are a compromise between 

data resolution and volume at the landscape scale. Yang et al. (2010) conducted a similar scale 

experiment to delineate stream networks using DEMs between 1 and 60 m resolution produced 

from airborne LIDAR data. They concluded that 10 m DEMs were most appropriate for 

extracting stream channels at the landscape scale. The scale analysis conducted in this study aims 

to examine similar effects of the influence of DEM resolution on terrain analysis results when 

applied to smaller scales through the study of microtopography within the pool gully.  

To conduct the scale analysis, the two TLS point clouds were incrementally resampled in 

QTM from 0.02 m to match the 0.66 m resolution of the ALS model. Change volume was 

calculated for each resolution and plotted for visual interpretation of the relationship between 

resolution and measurement results. For both erosion and deposition, a distinct change in the 

relationship of volume measurements to resolution is apparent as resolution decreases. The 

volume calculations were fit with segmented regression analysis by resolution to determine the 

resolution at which the behavior of the erosion and depositions volumes begin to change. 

Segmented regression, also known as piecewise or broken-stick regression, is used when a 

variable x is thought to predict y differently over certain ranges of x (Netter et al., 1990). This 

method is commonly used in scientific fields to measure abrupt changes in relationship at some 

point of significance for the independent variable, and to model thresholds. For example, 

segmented regression is used in medicinal studies to gauge the impact of an introduced treatment 

(Netter et al., 1990). Ecological studies use it to determine thresholds for factors related to 

species survivability, such as habitat loss (Toms and Lesperance, 2003). In geomorphology, 
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segmented regression has been used to identify distinct phases in rates of bedload transport 

(Ryan and Porth, 2007). Segmented regression analysis is applied to our data to check for the 

existence of a threshold in resolution where the behavior of measured volumes of erosion and 

deposition changes. The strength of the regressions were evaluated by R
2
 and p-values and 

examined by the residual mean square error (MSE) of each and the threshold resolution was 

determined by the regression with the lowest MSE. The MSE measures the vertical spread of the 

data points around the regression line. An annotated R workflow is included in Appendix IV.  
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CHAPTER FIVE 

Results 

5.1 Gully morphometrics 

The estimated total volume of material exported from the entire pool gully since its 

initiation was determined by calculating the volume difference between the interpolated 

undisturbed slope and the gullied slope DEMs generated from the ALS point cloud. The two 

models used to perform this analysis are illustrated in Figure 13. The volume difference between 

the two DEMs indicates that an estimated 9985.9 m
3
 of material has been displaced from the 

original bluff slope since the pool and drainage pipe were installed. 

 

 

Figure 13. Left: A terrain mesh representing the undisturbed river terrace slope (circa 1970) and 

surrounding area was produced from the airborne LIDAR point cloud. Inset 1a shows the 

triangulated mesh produced from terrain points and 1b shows the same mesh colored by 

elevation. Right: A terrain mesh produced from the terrain points in the airborne LIDAR point 

cloud. Inset 2a shows the triangulated mesh and 2b shows the same mesh colored by elevation.  



35 
 

Considering that the drainage pipe is comprised of 10 foot segments and the original 

discharge point was approximately 25 m from its current position, we estimate that three pipe 

segments lie buried beneath eroded material within the pool valley. This distance indicates an 

average half meter of headwall retreat per year over the nearly 40 years since the pool was 

constructed. The change in length of the exposed drainage pipe from its end to its base at the 

headwall was also measured from the two TLS point clouds to estimate headwall recession over 

the 49 day period. TLS1 and TLS2 contain 0.82 m and 0.90 m of exposed pipe, respectively. 

This indicates that the area of headwall immediately surrounding the pipe advanced about 0.08 m 

over the 49 day period. The detected retreat likely occurred as undercutting caused portions of 

the headwall to collapse, evidenced by large chunks of headwall material at its base (Figure 1, 

Appendix III). Soil erosion and mass wasting of the southeast-facing headwall of the gully is 

visually evidenced by segments of the pipe falling to the valley bottom. One such pipe segment 

is seen in photos in Figure 2 of Appendix III that were taken on the days of the two TLS surveys. 

The pool gully headwall erosion is of a critical concern to park management as it approaches a 

nearby access road.  

The DEM produced from the ALS point cloud in 2012 was also compared to the DEMs 

of comparable resolution (0.66 m) produced from the TLS1 and TLS2 point clouds to quantify 

change volume for the gully channel area of interest. During the roughly 3-year period between 

the ALS survey (1/24/2012) and the first of the two TLS surveys (12/25/2014), the volume of 

eroded material was estimated to be 615.8 m
3
. The volume of eroded material was estimated to 

be 616.9 m
3 

between the ALS survey (1/24/2012) and the second of the two TLS surveys 

(2/8/2015), indicating that an additional 1.1 m
3
 of material was eroded during the 49 days 

between TLS1 and TLS2 (12/25/2014 - 2/8/2015). The comparisons are summarized in Table 4. 
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Table 4. Summary of volumes of change from differencing the digital elevation models from 

each terrestrial LIDAR survey (here, TLS) with the digital elevation models from the airborne 

LIDAR survey (here, ALS) 

Model comparison Resolution (m
2
) Area of Interest Volume Eroded (m

3
) 

DEM1969:1973 – DEMALS 2012 0.4356 Entire gully 9985.9 

DEMALS – DEMTLS1 0.4356 Gully channel 615.8 

DEMALS – DEMTLS2 0.4356 Gully channel 616.9 

 

 

To investigate the detailed changes of erosion and deposition within the gully channel 

area of interest, the volume change between TLS1 and TLS2 was calculated using DEMs of 0.02 

m. The total volume change within the gully channel over the 49 day period between December 

2014 and February 2015 is -2.1 m
3
, indicating a net import of material into the gully channel. 

The volume of change consists of 13.6 m of gross deposition and 11.5 m of gross erosion. Figure 

14 depicts the ΔDEM from the gully channel in three dimensions. The red to blue color gradient 

represents the spectrum from net erosion to net deposition. 

 

 

Figure 14. Difference model of the gully channel created by calculating the volume difference 

between the digital elevation models produced from the two terrestrial LIDAR surveys. The 

change detected for the two sub-areas (gully head and left wall) with respect to the rest of the 

gully channel is clearly depicted. Erosion and deposition are shown in red and blue, respectively, 

contrasting the yellow and green that represent relatively stable portions of the gully channel. 
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The two areas of interest within the gully channel contain a large proportion of the cells 

that represent either tail of the distribution of ΔDEM values. The gully head area covers 97 m
2
 

directly beneath the pipe with an average slope of 35.3 degrees. The volumes of 3.5 m
3
 of gross 

deposition and 2.6 m
3
 of gross erosion account for 25.7% and 22.6% of the respective total for 

each for the study area within the gully channel. The left wall covers approximately 80 m
2
 of 

surface area of the northern sidewall of the pool valley with an inward slope around 48 degrees. 

We measured approximately 2.5 m
3
 gross deposition and 3.6 m

3
 of gross erosion at the left wall, 

or 18.3% and 31.3% of the respective total for each. The change detected for these two sub-areas 

with respect to the rest of the gully channel is clearly depicted in Figure 14. The two areas of 

erosion and deposition are shown in red and blue, respectively, contrasting the yellow and green 

that represent the relatively stable portions of the channel. 

5.2 Scale analysis 

A total of 64 additional DEMs of the gully channel were produced in 0.02 m cell 

dimension increments from 0.02 m to 0.66 m from resampled TLS point clouds. Statistics 

summarizing the basic parameters for each DEM are listed in Tables A1 and A2 of the appended 

materials. The quantities of erosion and deposition measured at the incremental resolutions 

revealed minor variations in volume measurements with each reduction in DEM resolution until 

approximately 0.30 m. A summary of the volumes of change at the various resolutions are 

included in Table 5 and illustrated in the plots in Figure 16.  
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Table 5. Volume calculations digital elevation models (DEMs) produced from the initial 

terrestrial LIDAR survey of TLS1 above (deposition) and below (erosion) DEMs from the 

follow-up terrestrial LIDAR survey. 

Resolution 

(m) 

Volume Erosion 

(m
3
) 

Volume Deposition 

(m
3
) 

0.02 11.5 13.6 

0.04 11.4 13.5 

0.06 11.3 13.4 

0.08 11.3 13.3 

0.10 11.4 13.5 

0.12 11.2 13.5 

0.14 11.3 13.3 

0.16 11.3 13.5 

0.18 11.3 13.7 

0.20 11.4 13.6 

0.22 11.6 13.5 

0.24 11.4 13.5 

0.26 11.6 13.9 

0.28 11.9 14.3 

0.30 11.9 14.7 

0.32 11.7 14.8 

0.34 12.2 15.3 

0.36 11.9 15.4 

0.38 12.4 15.5 

0.40 12.5 15.9 

0.42 12.7 15.7 

0.44 12.5 16.0 

0.46 12.3 15.8 

0.48 12.8 16.8 

0.50 13.3 16.4 

0.52 13.1 16.0 

0.54 12.4 16.9 

0.56 12.5 17.0 

0.58 13.5 17.2 

0.60 13.2 17.7 

0.62 13.4 17.5 

0.64 13.3 17.1 

0.66 14.0 17.4 
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The mean, maximum, and minimum volumes of erosion calculated from models between 

0.02 and 0.30 m resolution are 11.5 m
3
, 11.9 m

3
, and 11.2 m

3
, respectively. After 0.30 m, 

measured volumes of erosion increase towards the maximum 14.0 m
3
 measured from the 0.66 m 

resolution ΔDEM. The mean, maximum, and minimum volumes of deposition calculated from 

models between 0.02 and 0.30 m resolution are 13.7 m
3
, 14.7 m

3
, and 13.3 m

3
, respectively. 

After 0.30 m, measured volumes of deposition increase and generally become more variable. We 

can expect the segmented regression analysis to reveal thresholds at resolutions near the onset of 

the increasing measurements for erosion and deposition. 

 

  

Figure 16. Erosion and deposition measurements from the differenced elevation models from the 

two terrestrial LIDAR surveys (DEMTLS1 – DEMTLS2 = ΔDEM) at resolutions between 0.02 m 

0.66 m. Treating the 0.02 m difference models as reference, volumes of erosion and deposition 

are increasingly overestimated with decreasing resolution. The corresponding data is located in 

Table 5. 

 

 

The strength of the fit for each break point in the iterative segmented regression analysis 

was evaluated by its MSE. The MSE for the fits at each break point from 0.1 m to 0.56 m are 

listed in Table 3 of Appendix I and plotted in Figure 17. The lowest residual MSE for the erosion 
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and deposition measurements indicate break points at exist 0.18 m (MSE=0.2490) and 0.28 m 

(MSE=0.2516) resolutions, respectively. 

 

 

Figure 17. a) Mean square errors (m) for segmented regression lines fit to erosion measurements 

at each break point; b) Mean square errors (m) for segmented regression lines fit to deposition 

measurements at each break point. The corresponding data is located in Table 3 of Appendix I. 

 

 

The patterns of computed MSEs for erosion and deposition indicate that variation in 

measured volumes of both increase as resolution decreases. The lowest MSE of the regressions 

for erosion measurements (break point = 0.18 m resolution) reveals some interesting information 

about the measurements at the resolutions above and below. When DEM resolution is less than 

0.18, the linear fit of erosion volume measurements by resolution is given by the equation: 
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y = -1.00x + 11.43 (p= 0.06) 

Relatively low R
2
 value (R

2
= 0.40) indicates that the decreasing resolution is not strongly 

associated with the minor decrease exhibited in the measured erosion volumes down to the break 

point resolution. When model resolution is greater than 0.18, the linear fit of erosion volume 

measurements by resolution is given by the equation: 

y = -4.76x + 10.43 (p= 1.15E-11) 

The low p-value indicates that the regression is statistical significance. The high R
2 

value (R
2
= 

0.87) indicates that the apparent increase in volumes of erosion measured after the break point is 

strongly associated with decreasing resolution. The two regressions indicate that resolution has 

very little, if any, effect on volumes of erosion measured from 0.18 m or finer DEMs, while 

DEMs of resolutions greater than 0.18 increasingly overestimate erosion volumes. The two linear 

fits for erosion are illustrated in the plot in Figure 18. 

 The lowest MSE for the segmented regressions of deposition volume by resolution 

indicate a break point at 0.28 m resolution. Visual interpretation of the plotted deposition 

volumes by resolution (Figure 16) suggest that the true break point is closer to 0.24 m resolution. 

A segmented regression was fit to a break point at 0.24 m resolution for deposition volume 

measurements by resolution. When DEM resolution is less than 0.24, the linear fit of erosion 

volume measurements by resolution is given by the equation: 

y = 0.37x + 13.144 (p= 0.48) 

The high p-value indicates that the regression is not statistical significance. The low R
2
 value 

(R
2
= 0.05) indicates that the variation in deposition volume is not related to DEM resolution 
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through the break point of 0.24 m. When DEM resolution is greater than 0.24 m, the linear fit of 

deposition volume measurements by resolution is given by the equation:  

y = 8.88x + 11.95 (p= 1.05E-12) 

The low p-value indicates that the regression is statistical significance. The high R
2 

value (R
2
= 

0.92) indicates that the apparent increase in volumes of deposition measured after the break point 

is strongly associated with decreasing resolution. The segmented regression of deposition 

volume by resolution indicates that deposition is increasingly overestimated with decreasing 

resolution after the break point at 0.24 m. The two linear fits for deposition are illustrated in the 

plot in Figure 18. 
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Figure 18. The strongest fits of the segmented regressions for erosion and deposition. Top: The 

two regressions indicate that resolution has very little, if any, effect on volumes of erosion 

measured from 0.18 m or higher DEMs, while DEMs of resolutions greater than 0.18 

increasingly overestimate erosion volumes. Bottom: The segmented regression of deposition 

volume by resolution indicates that deposition is increasingly overestimated with decreasing 

resolution after the break point at 0.24 m. 
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CHAPTER SIX 

Discussion 

6.1 Gully morphometrics 

6.1.1 ALS-derived gully morphology accuracy and uncertainty 

While subject to uncertainty from a number of assumptions, the estimate of headwall 

retreat is valuable to park officials concerned by encroachment of the pool gully upon the nearby 

pool access road. A primary source of potential error is the reliability of registration between the 

ALS and TLS data for comparison. The ALS point data in the area of the pool valley produced a 

0.66 m resolution DEM of the source data set. The relatively sparse distribution of points within 

the pool valley and pool gully channel is due in part to poor penetration of the dense forest 

canopy and slope of the valley walls exceeding 20°. Studies have shown that ALS data does not 

well-represent gullies with slopes greater than 20° and narrow channels (James et al., 2007).  The 

terrain interpolation method often leads to representation of gullies as narrow and steep-sided 

gullies to appear to have rounded edges and shallow channels, giving an exaggerated appearance 

of stability (James et al., 2007).  

The horizontal margin of error exceeding 0.5 m and vertical margin of error of nearly 

0.16 m for points in the ALS point cloud can also have significant impact on volumetric 

calculations such as those used to measure soil redistribution within the pool gully. Previous 

investigations indicate that the uncertainty of volume calculations between two DEMs is greater 

than the nominal error within the original DEMs (Brown and Arbogast, 1999). Woolard and 

Colby (2002) used ALS-derived DEMs to calculate volumetric change in dunes along the coast 

of Cape Hatteras, North Carolina, at resolutions ranging from 1 to 20 m. Changes in dune 
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topography were captured most accurately by comparison of DEMs with resolutions between 1 

and 2 m, but calculated error was consistently greater than nominal elevation error within input 

DEMs. Comparisons of DEMs produced from multi-temporal ALS surveys have demonstrated a 

tendency to underestimate change volume in areas of complex topography (Heritage and 

Hetherington, 2007). Furthermore, studies have shown that advertised margins of error often 

underestimate true vertical and horizontal inaccuracies within ALS datasets (Baltsavias, 1999). A 

vertical precision lower than that reported by the ALS instrument manufacturer was shown in a 

survey of an area of the Green River in Utah where authors calculated a mean vertical error of 43 

cm for an area of complex topography using a system with a reported uncertainty between 15 

and 20 cm (Bowen and Waltermire, 2007). 

Another potential error in our calculations is the co-registration of the ALS and TLS data. 

Inherent differences in the two types point cloud data (ALS and TLS) limit the effectiveness of 

visual and automated co-registration methods (Tao and Huang, 2014). The Iterative Closest Point 

(ICP) algorithm is a common method for registering point clouds of similar densities. The ICP 

chooses the closest pair of points within the two clouds and iteratively transforms the moving 

cloud to minimize the mean square error until a minimum threshold distance between the two is 

met (Besl, 1992). Performance of the ICP algorithm has been shown to decrease with increasing 

complexity of the input point clouds (Gressin et al., 2012) and the ability of RMSE to represent 

registration accuracy diminishes with increased disparity in point densities (Besl, 1992).  

Differences in perspective and coverage, as well as the disparity in positional accuracy of 

points collected by ALS and TLS systems may affect the estimate of the retreat of the pool 

valley headwall. The manufacturer produced estimate of horizontal accuracy of the ALS system 

is between 0.07 and 0.64 (Woolpert, 2011), far less than the range accuracy of the TLS system 
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(0.002 m) used in this study. Additionally, ALS systems capture points from a top-down 

perspective over large areas, while TLS systems capture points from an oblique perspective in 

adjustable fields of view. The greatest detail within an ALS data set occurs at surfaces that face 

upward and the least detail at surfaces perpendicular to the ground. The opposite is true for TLS 

systems (Hohenthal et al., 2011; Cheng et al., 2013).  A terrestrial LIDAR scanner obtains points 

from a low perspective and limited vertical FOV such that the tops of surfaces aren’t captured 

directly beneath the scanner and at elevations above the scanner position (Cheng et al., 2013). 

Another source of difficulty to integrate the two types is the disparity in point density. ALS data 

is acquired from significantly further distances than TLS data, and thus, relatively few points per 

unit area are captured (Wu et al., 2010). Registration methods such as the ICP which seek to 

match pairs of points perform poorly when asked to match many points from the higher density 

cloud to a single point in the lower density cloud. In addition, automated registration methods 

often fail to detect corresponding points within discrete point cloud data (Wu et al., 2010; Cheng 

et al., 2013).  

Our attempt to minimize registration error between the ALS and TLS data used in this 

analysis mimicked the methods used by Cheng et al. (2013) where registration was performed by 

identifying static features in the ALS point clouds and scanning them with the TLS to ensure 

corresponding control points existed between the two datasets. By performing scans of the area 

in the immediate vicinity of the pool, we were able to use three utility poles and the corners of 

the pool and a nearby building as control points to align the TLS2 cloud to the ALS cloud with 

an RMSE of 0.21 m. According to registration standards suggested by the American Society for 

Photogrammetry and Remote Sensing, our RMSE corresponds to an average horizontal accuracy 

within 15 cm and vertical accuracy within 20 cm (Smith et al., 2014), although RMSE tends to 
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be overestimated for clouds with highly disparate point densities (Sanii, 2008). The RMSE 

metric also tends to be less conclusive with regards to accuracy for points that lie farthest away 

from the control points (Csanyi and Toth, 2007) as is the case with the TLS data collected within 

the pool valley. The pool valley is located west of the control points used to co-register the ALS 

and TLS point clouds. In an ideal scenario control points would be well-distributed around the 

pool valley and yield an RMSE that better represents true co-registration accuracy for points 

within the pool valley.  

6.1.2 TLS-derived gully morphology 

Visual interpretation of the ΔDEM produced from the TLS1 and TLS2 survey DEMs 

suggest that much of the observed volume change is from mass wasting of the gully headwall 

and sidewalls with steep slopes. Figure 19 depicts a segment of the gully point cloud from TLS2 

with points colorized by elevation, slope, and vertical difference as well as a 3D surface model 

with elevation texture overlay. The areas of warm colors in (c) the vertical difference cloud 

indicate material eroded between TLS1 and TLS2 and generally coincide with the areas of warm 

colors in (b) the slope cloud.  Also evident in the vertical difference cloud are areas of deposition 

indicated by the cool colors that are predominately located within the gully channel directly 

beneath the eroded areas. These are examples of the localized wasting that is characteristic of 

active gullies described by Imeson and Kwaad (1980). The wasting is likely a repeating cycle of 

activity exhibited by gullies where collapse of the head- and  sidewalls leads to temporary local 

stabilization and an excess of soil material that is gradually expelled from the channel (Bennett, 

1928; Ireland et al., 1939; Morgan, 1996). 
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Figure 19. a) Gully point cloud from TLS2 with points colorized by elevation; b) colorized by 

slope; c) colorized by vertical difference from TLS1; d) interpolated surface colorized by 

elevation 

 

 

 The pattern of mass wasting is more easily perceived through the cross-sectional plot in 

the gully channel (Figure 20). Three 4 m wide cross sections 4 m apart and covering a 12 meter 

length of the gully channel extending from the gully head to the left wall were sampled at 0.02 m 

resolution from both of the TLS surveys. The solid and dashed lines represent TLS1 and TLS2, 
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respectively. Cross section pair 1 (TLS1_CS1, TLS2_CS1) shows heavy incising of the gully at 

the center of the channel. Wasting of the right side wall is also evident as TLS2_CS1 moves up 

the x axis from the center of the channel. It briefly extends above and then dips back beneath 

TLS1_CS1 between the 2.7 and 3.2 m portion of the cross section. This half meter section 

clearly depicts sidewall wasting and the accumulation beneath. Similar wasting is evident in 

cross section pair 2 between 0.80 m and 1.70 m of the left sidewall and the entire extent of the 

right sidewall. Incision at the channel center is also apparent although it is not to the same degree 

as cross section pair 1.  

 

 

Figure 20. 4 m wide cross sections at 4 m intervals of a 12 m section of the gully channel 

sampled at 0.02 m resolution. The solid lines are cross sections from the terrestrial LIDAR 

survey on 12/24/2014 and dashed lines are cross sections from the survey on 02/08/2015. 
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Cross section pair 3 shows substantial deposition of material at the base of the right sidewall 

between 2.04 m and 2.76 m. TLS1_CS3 shows a near-vertical right sidewall that appears to have 

retreated approximately 18 cm at its peak when compared to TLS2_CS3.  

These cross sections are likely snapshots of repeating phases of gully channel dynamics 

described in published literature. Cross section pair 1 shows a phase of relative stability 

characterized by gently sloping sidewalls with rounded upper edges and the majority of erosion 

activity occurring in the center of the channel (Heede, 1976; Morgan 1996; Bull and Kirkby, 

1997). Over time we can expect further incision of the channel bed and erosion at the base of the 

sidewalls, increasing their slope, decreasing their stability, and widening their upper edges 

(Bocco, 1991; Morgan, 1996). Cross section pair 2 shows moderate degrees of sidewall activity 

and channel incision. The right sidewall is steeply sloped and alternates between areas of erosion 

and deposition to its peak while the left sidewall has reached relative stability comparable to that 

of the sidewalls in cross section pair 1. The imbalance between the left and right sidewalls is a 

feature of the migrating gully channel (Bocco, 1991) as it widens disproportionately in one 

direction before reversing and widening in the other direction (Imeson and Kwaad, 1980; Bocco, 

1991). Cross section pair 3 shows accumulation of material on the left sidewall from portions 

outside the plot area. The right sidewall is in rapid retreat as this pair of cross sections is in the 

most unstable phase of widening and infilling (Bocco, 1991; Morgan, 1996).  

The volumes measured in this analysis are the aggregated vertical difference of all cells 

greater- or less-than zero, such that they represent all detectable redistributions of material within 

the area of observation in the gully. For this reason, adjacent cells with detectable volumes of 

erosion and deposition may account for the same material. A better representation of the 

geomorphic processes at play in the gully channel may be to quantify rates of erosion and 
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deposition, rather than volumes. Future analyses should include bulk density measurements for 

the active soils so rates and other soil properties calculated per unit area may be established. The 

TLS measured results should also be validated using erosion pins or similar methods. How local 

hydrology may be affecting the results is another potential topic to be investigated in the future. 

6.2 Scale analysis 

Both TLS point clouds may contain point densities exceeding that necessary to quantify 

the gully dynamics. Gallant and Hutchinson (1996) pointed out that the accuracy of derived 

terrain products is influenced dramatically by DEM resolution. For example, slope gradient 

exhibits the general tendency to decrease as DEM resolution is decreased (Chang and Tsai, 1991; 

Thieken et al., 1999; Thompson et al., 2001; Wolock and Price, 1994; Zhang and Montgomery, 

1994), and thus, their ability to represent the landscape is diminished at these coarser resolutions. 

Schoorl et al. (2000) found evidence to suggest that soil loss estimates increased as coarser 

resolution DEMs were implemented in their statistical model. The similar trend is also observed 

in our measurements of displaced volume at progressively coarser resolutions. Comparison of 

field measurements of slope with DEM-derived slope estimates indicate that higher resolution 

DEMs produce substantially more accurate estimates than lower resolution counterparts (Warren 

et al., 2004), noting that second-order calculations such as rates of soil erosion and deposition 

may be impacted heavily by such variation. Research also suggested that high resolution DEMs 

that are downsampled to resolutions comparable to those of commonly used elevation datasets 

retain considerably higher detail than DEMs produced from data of equivalent resolution (Vaze 

et al., 2010). This begs the question of whether the same is true of downsampled LIDAR data. 

The lower resolution DEMs used in this analysis were produced by downsampling the LIDAR 
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point clouds and interpolating from the remaining points rather than resampling a 2-dimensional 

DEM at lower resolution.  

The relationship revealed in our results agrees with the generalization that the ability of 

coarse resolution DEMs to accurately represent the terrain is diminished with increasing 

topographic relief. Schoorl et al. (2000) found that this effect is reflected in derived volumes of 

erosion and deposition in their analysis of time series DEMs of modeled catchments. They tested 

this by calculating rates of erosion and sedimentation using DEMs of 5 different pixel 

resolutions. The degree to which erosion overestimated increased with each reduction in DEM 

resolution. The authors also provided evidence that sediment re-deposition increased at finer 

resolutions, indicating that some over-prediction of erosion measurements may be confounded 

by diminished ability of coarsened DEMs to capture re-sedimentation (Schoorl et al., 2000). 

While our erosion volume measurements follow a similar trend to that demonstrated by Schoorl 

et al. (2000), deposition volume measurements within the pool gully channel did not increase at 

finer resolution. This opposite trend in our data could be the result of the exceptionally high 

levels of deposition occurring in the portion of the pool gully in which this research is focused. 

Our TLS data was gathered in the portion of gully channel nearest the headwall of the pool 

valley. The gully channel extends a distance beyond the scope of our survey roughly equivalent 

in length to the segment for which we have data. Imported material into the gully channel may be 

lower in these further sections because there is less material to potentially collapse into the gully 

from the shorter sidewalls. This area could perhaps more closely resemble trends in re-

sedimentation shown in the artificial catchments used by Schoorl et al. (2000). It is also possible 

that local relief inside the pool gully channel is significant enough that their trends are not 

applicable.  
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The established resolution thresholds for the calculations of erosion (0.18 m) and 

deposition (0.24 m) volumes provide noteworthy insight into our data and acquisition methods. 

The gentle slopes of the regression lines fit before the two break points compared with the slopes 

of the fits after them indicate that the erosion and deposition measurements hold relatively 

constant at resolutions higher than the break point thresholds. This inference is also supported by 

the tight distribution of data points before the break point thresholds compared with those after. 

Two useful pieces of information are gleaned from applying the segmented regression to our data 

if assuming the highest resolution DEMs most accurately represent the gully terrain: 1) volumes 

of erosion and deposition within the pool gully measured from DEMs of at least 0.24 m 

resolution are reasonably close to those measured from the baseline 0.02 m DEMs, and 2) 

increasingly overestimated volumes of erosion and deposition are derived from the DEMs of 

resolution lower than 0.18 m and 0.24 m, respectively.  

To demonstrate the potential for increased efficiency in TLS data processing by 

collecting point data of appropriate densities, we can measure the length of time taken to read an 

ASCII point cloud to a data array in R. The 0.02 m DEM for TLS1 was interpolated from 

approximately 835,000 terrain points versus approximately 4,250 points for a 0.28 m DEM. Each 

data point consists of three 32-bit float coordinate values and three 8-bit integer RGB values. R 

read the two clouds to an array in 2.72 and 0.03 seconds, respectively (Appendix IV), on a 3.1 

GHz consumer grade laptop running Windows 10. For comparison, the same operation required 

103 seconds for one of the five original, unfiltered point clouds from TLS1 containing 

approximately 32,000,000 points. Computer resources are truly strained when processing 

requires that multiple unfiltered clouds (approaching two gigabytes each in the case of the TLS1 

point cloud data) be loaded to memory. This exercise illustrates the value that knowledge of 
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LIDAR data resolution requirements adds for this application moving forward. This knowledge 

will improve future acquisition and processing of LIDAR data from the pool gully. 
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CHAPTER SEVEN 

Conclusions 

In this thesis, I calculated volumes of erosion and deposition over two periods within a 

small gully using multi-temporal airborne and terrestrial LIDAR point cloud data. The data 

acquired using TLS exceeded the necessary point density to produce DEMs of 2 cm resolution. 

Differencing DEMs from the two surveys resulted in volumes of gross erosion (11.5 m
3
) and 

deposition (13.6 m
3
) within the gully channel that seem reasonable for the period between 

12/24/2014 and 02/08/2015. Visual inspection of the ΔDEM suggests that the detected net 

deposition was likely the result of the wasting head- and side-walls of the larger pool valley into 

the gully channel. These results indicate that detectable volumes of erosion and deposition 

occurred within the gully.  

The eroded volume measured for the time between the ALS survey and the first of the 

TLS surveys (615.8 m
3
; ~2.9 years) agrees with the total volume of displaced material over the 

period between the pool gully initiation and the ALS survey (9985.9 m
3
; ~ 42 years). The same 

is true to a lesser degree for the volume measured for the period between the ALS survey and the 

second of the TLS surveys (616.9 m
3
; ~3.0 years). These results raise questions about the method 

of comparison between the ALS and TLS data because no deposition was detected through either 

calculation (DEMALS – DEMTLS1 = ΔDEM; DEMALS – DEMTLS2 = ΔDEM) while deposition was 

detected (17.4 m
3
) through differencing of the resampled TLS DEMs at resolutions comparable 

to that of the ALS data set (DEMTLS1 0.66m – DEMTLS2 0.66m = ΔDEM). The accuracy of the co-

registration between the ALS data set and the two TLS data sets is worth further investigation. I 

hypothesize that the poor spatial distribution of control points used in the co-registration caused 
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overestimation of the computed RMSE. The man-made features that were used as control points 

between the ALS and TLS data sets were located no less than 50 meters east of the gully so the 

accuracy of their alignment is suspect. It is recommended that the RMSE between the ALS and 

transformed TLS data sets be computed for a sample of points within the gully rather than a 

sample of points across the entire data sets if the ALS data is to be incorporated in any future 

analyses. 

I also calculated the erosion and deposition volumes from DEMs resampled at a variety 

of resolutions to identify an optimal point density for data sets used to measure geomorphic 

changes within the gully. The choice of point density is significant because it is a function of the 

desired nominal point spacing set by the operator of the TLS instrument in the field. For the 

purpose of the analysis, it is assumed that the DEMs of 0.02 m resolution provided the most 

accurate estimation of the gross volumes of erosion and deposition within the pool gully over the 

49 day period. The analysis exposed a trend of increased overestimation of volumes of both 

erosion and deposition at decreased DEM resolutions. The tendency to overestimate erosion with 

decreases in resolution is exhibited in a similar study by Schoorl et al. (2000). However, the 

deposition volumes measured by Schoorl et al. (2000) were increasingly underestimated as 

resolution decreased in their analysis. The opposite trend was observed in the scale analysis 

presented in this thesis. This is perhaps because the slope in the steepest portions of our study 

area may be represented by just one or two cells in the lower resolution models (>0.28 m). This 

can result in cell values that average points representing both the top and bottom of the gully 

sidewall. One potential improvement to the analysis moving forward would be to make the 

calculations for the steeper portions of the gully directly from the point clouds. The thresholds 

established through the segmented regression indicate that the decreases in terrain model 
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resolution begin to strongly affect the erosion and deposition volume calculations at those 

thresholds, 0.18 m and 0.28 m resolution for erosion and deposition, respectively. Based on this 

information, for future surveys of the pool gully the TLS instrument can be set to collect points 

at densities between 10 and 30 points per square meter to optimize efficiency without 

diminishing the quality of subsequent analyses. 

The erosion and deposition volume measurements may be better assessed by extending 

the temporal coverage of our point cloud datasets within the gully. Further analysis of the gully 

through additional TLS surveys will help to validate inferences made from the two observations 

to date. Coupling these data with in-depth analysis of soil profiles in the gully channel will lend 

further insight into erosion and deposition processes within the pool gully. 
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Appendix I. Tables 

Table A1. Elevation statistics of resampled DEMs from the terrestrial LIDAR survey on 

12/24/2014 
Cell x,y (m) Resolution (m

2
) Pts Pts/m

2
 Min Z (m) Max Z (m) Mean Z (m) Std Z (m) 

0.02 0.0004 835984 2500.0 75.399 92.812 81.572 3.614 

0.04 0.0016 208974 625.0 75.406 92.787 81.572 3.614 

0.06 0.0036 92894 278.0 75.407 92.770 81.573 3.614 

0.08 0.0064 52243 156.0 75.401 92.678 81.572 3.615 

0.10 0.0100 33441 100.0 75.421 92.674 81.575 3.616 

0.12 0.0144 23206 69.0 75.417 92.594 81.571 3.613 

0.14 0.0196 17060 51.0 75.404 92.755 81.574 3.616 

0.16 0.0256 13063 39.0 75.409 92.742 81.572 3.615 

0.18 0.0324 10311 31.0 75.407 92.643 81.569 3.612 

0.20 0.0400 8362 25.0 75.408 92.548 81.573 3.613 

0.22 0.0484 6907 21.0 75.426 92.461 81.573 3.616 

0.24 0.0576 5796 17.4 75.420 92.522 81.567 3.613 

0.26 0.0676 4942 14.8 75.423 92.643 81.567 3.611 

0.28 0.0784 4265 12.8 75.427 92.554 81.572 3.616 

0.30 0.0900 3714 11.1 75.436 92.467 81.566 3.606 

0.32 0.1024 3266 9.8 75.479 92.447 81.565 3.612 

0.34 0.1156 2894 8.7 75.481 92.493 81.571 3.609 

0.36 0.1296 2579 7.7 75.499 92.531 81.566 3.607 

0.38 0.1444 2318 6.9 75.477 92.458 81.564 3.606 

0.40 0.1600 2085 6.3 75.432 92.419 81.574 3.608 

0.42 0.1764 1895 5.7 75.425 92.376 81.579 3.619 

0.44 0.1936 1730 5.2 75.512 92.549 81.578 3.613 

0.46 0.2116 1574 4.7 75.426 92.312 81.555 3.603 

0.48 0.2304 1451 4.3 75.511 92.742 81.584 3.623 

0.50 0.2500 1336 4.0 75.491 92.556 81.582 3.625 

0.52 0.2704 1236 3.7 75.495 92.289 81.568 3.616 

0.54 0.2916 1150 3.4 75.493 92.491 81.564 3.608 

0.56 0.3136 1063 3.2 75.472 92.346 81.564 3.609 

0.58 0.3364 996 3.0 75.566 92.354 81.565 3.612 

0.60 0.3600 927 2.8 75.432 92.289 81.577 3.600 

0.62 0.3844 869 2.6 75.483 92.159 81.570 3.606 

0.64 0.4096 817 2.4 75.545 92.478 81.574 3.629 

0.66 0.4356 766 2.3 75.542 92.333 81.595 3.630 
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Table A2. Elevation statistics of resampled DEMs from the terrestrial LIDAR survey on 

02/08/2015 
Cell x,y (m) Resolution (m

2
) Pts Pts/m

2
 Min Z (m) Max Z (m) Mean Z (m) Std Z (m) 

0.02 0.0004 836635 2500.0 75.384 92.817 81.584 3.600 

0.04 0.0016 209180 625.0 75.396 92.795 81.584 3.601 

0.06 0.0036 92966 278.0 75.392 92.767 81.583 3.600 

0.08 0.0064 52304 156.0 75.404 92.766 81.585 3.601 

0.10 0.0100 33469 100.0 75.407 92.697 81.585 3.601 

0.12 0.0144 23241 69.0 75.407 92.635 81.583 3.599 

0.14 0.0196 17074 51.0 75.411 92.732 81.585 3.601 

0.16 0.0256 13069 39.0 75.408 92.675 81.585 3.600 

0.18 0.0324 10322 31.0 75.409 92.524 81.582 3.595 

0.20 0.0400 8366 25.0 75.411 92.748 81.585 3.604 

0.22 0.0484 6914 21.0 75.438 92.608 81.589 3.603 

0.24 0.0576 5812 17.4 75.404 92.743 81.583 3.601 

0.26 0.0676 4948 14.8 75.402 92.549 81.583 3.597 

0.28 0.0784 4272 12.8 75.451 92.408 81.590 3.604 

0.30 0.0900 3719 11.1 75.457 92.642 81.588 3.608 

0.32 0.1024 3267 9.8 75.464 92.568 81.578 3.599 

0.34 0.1156 2898 8.7 75.437 92.430 81.591 3.609 

0.36 0.1296 2586 7.7 75.421 92.635 81.584 3.602 

0.38 0.1444 2323 6.9 75.510 92.563 81.588 3.607 

0.40 0.1600 2092 6.3 75.483 92.520 81.588 3.601 

0.42 0.1764 1896 5.7 75.496 92.524 81.575 3.594 

0.44 0.1936 1731 5.2 75.493 92.318 81.582 3.606 

0.46 0.2116 1580 4.7 75.417 92.422 81.585 3.600 

0.48 0.2304 1456 4.3 75.515 92.418 81.594 3.608 

0.50 0.2500 1340 4.0 75.427 92.697 81.593 3.601 

0.52 0.2704 1237 3.7 75.509 92.344 81.584 3.610 

0.54 0.2916 1151 3.4 75.443 92.398 81.585 3.593 

0.56 0.3136 1070 3.2 75.492 92.522 81.575 3.605 

0.58 0.3364 990 3.0 75.554 92.502 81.596 3.618 

0.60 0.3600 930 2.8 75.459 92.402 81.616 3.621 

0.62 0.3844 871 2.6 75.580 92.235 81.582 3.604 

0.64 0.4096 814 2.4 75.563 91.934 81.580 3.578 

0.66 0.4356 771 2.3 75.491 92.409 81.611 3.619 
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Table A3. Residual mean square error (MSE) for segmented regression fits at break points 

between 0.0100 m
2
 (0.01 m x 0.01 m) resolution and 0.3136 m

2
 (0.56 m x 0.56 m) resolution. 

Strongest fits indicated by the lowest MSE are in bold. 

Cell x,y (m) Resolution (m
2
) Erosion MSE (m

3
) Deposition MSE (m

3
) 

0.10 0.0100 0.2614 0.3229 

0.12 0.0144 0.2521 0.3077 

0.14 0.0196 0.2510 0.2965 

0.16 0.0256 0.2493 0.2960 

0.18 0.0324 0.2490 0.2953 

0.20 0.0400 0.2492 0.2961 

0.22 0.0484 0.2504 0.2963 

0.24 0.0576 0.2539 0.2884 

0.26 0.0676 0.2521 0.2631 

0.28 0.0784 0.2538 0.2516 

0.30 0.0900 0.2622 0.2601 

0.32 0.1024 0.2665 0.2941 

0.34 0.1156 0.2619 0.3097 

0.36 0.1296 0.2720 0.3468 

0.38 0.1444 0.2667 0.3685 

0.40 0.1600 0.2778 0.3814 

0.42 0.1764 0.2862 0.4004 

0.44 0.1936 0.2928 0.4027 

0.46 0.2116 0.2936 0.4088 

0.48 0.2304 0.2902 0.4009 

0.50 0.2500 0.2949 0.4198 

0.52 0.2704 0.2946 0.4211 

0.54 0.2916 0.2770 0.4032 

0.56 0.3136 0.2882 0.4085 
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Appendix II. Large photographs from the study site 

 

 

Figure A1. Headwall material deposited in the gully channel 
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Figure A2. The photographs were taken near the base of the gully headwall on (a) 

12/24/2014 and (b) 02/08/2015. A section of the pool drainage pipe is shown to have 

fallen and been buried by material from the headwall. 

 

 

  



77 
 

Appendix III. R Segmented Regression 

# jmcnelis@utk.edu 

setwd("C:\\Users\\jmcne\\Documents\\R_THESIS\\SEGREG\\") 

fl <- file("data.txt") 

listdata <- read.table(fl, text="Element1\tElement2\tElement3", header=FALSE) 

res <- listdata$V1 

ero <- listdata$V2 

dep <- listdata$V3 

 

# List of break points to test iteratively 

breaks <- res[which(res >= 0.10 & res <= 0.56)] 

print(breaks) 

[1] 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 

[20] 0.48 0.50 0.52 0.54 0.56 

 

# Loop through break points fitting segmented regression at each. Add residual mean square error of the  
# points around each fit to variable MSE. 

mse <- numeric(length(breaks)) 

for(i in 1:length(breaks)){ 

  piecewise1 <- lm(ero ~ res*(res < breaks[i]) + res*(res >= breaks[i])) 

  mse[i] <- summary(piecewise1)[6] 

} 

mse <- as.numeric(mse) 

print(mse) 

[1] 0.2614460 0.2520790 0.2509769 0.2493197 0.2489516 0.2491845 0.2504148 0.2539121 0.2521283 

[10] 0.2537838 0.2622016 0.2665324 0.2619074 0.2719859 0.2666546 0.2778436 0.2862343 0.2927546 

[19] 0.2935723 0.2901938 0.2948775 0.2946492 0.2769652 0.2882196 

mse2 <- numeric(length(breaks)) 

for(i in 1:length(breaks)){ 

  piecewise2 <- lm(dep ~ res*(res < breaks[i]) + res*(res >= breaks[i])) 

  mse2[i] <- summary(piecewise2)[6] 

} 
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mse2 <- as.numeric(mse2) 

print(mse2) 

[1] 0.3228827 0.3077458 0.2964695 0.2959319 0.2952986 0.2961189 0.2962717 0.2883851 0.2631150 

0.2515626 0.2630591 

[12] 0.2940951 0.3096801 0.3467952 0.3685264 0.3813617 0.4004167 0.4027332 0.4087712 0.4009226 

0.4197831 0.4210767 

[23] 0.4032393 0.4084569 

 

# Determine lowest residual MSE. Plot residual MSE for each break point. 

msemin <- breaks[which(mse==min(mse))] 

plot(breaks,mse,xlab="Break points",ylab="mean squared error (m)",pch=16) 

print(msemin) 

0.18 

msemin2 <- breaks[which(mse2==min(mse2))] 

plot(breaks,mse2,xlab="Break points",ylab="mean squared error (m)",pch=16) 

print(msemin2) 

0.28 

 

# Fit segmented regression to break point with lowest residual MSE.  

piecewise1final <- lm(ero ~ res*(res < msemin) + res*(res > msemin)) 

summary(piecewise1final) 

Call: 

lm(formula = ero ~ res * (res < msemin) + res * (res > msemin)) 

         

Residuals: 

Min       1Q   Median       3Q      Max  

-0.60358 -0.08962  0.01733  0.13594  0.48712  

         

Coefficients: (1 not defined because of singularities) 

Estimate Std. Error t value Pr(>|t|)     

(Intercept)          10.44187    0.26212  39.836  < 2e-16 *** 

res                   4.76739    0.37354  12.763 3.43e-13 *** 

res < mseminTRUE      1.00813    0.32814   3.072  0.00469 **  
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res > mseminTRUE     -0.01268    0.27492  -0.046  0.96354     

res:res < mseminTRUE -6.01739    1.99000  -3.024  0.00530 **  

res:res > mseminTRUE       NA         NA      NA       NA     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

         

Residual standard error: 0.2533 on 28 degrees of freedom 

Multiple R-squared:  0.9139, Adjusted R-squared:  0.9016  

F-statistic:  74.3 on 4 and 28 DF,  p-value: 1.697e-14 

piecewise2final <- lm(dep ~ res*(res < msemin2) + res*(res > msemin2)) 

summary(piecewise2final) 

Call: 

lm(formula = dep ~ res * (res < msemin2) + res * (res > msemin2)) 

 

Residuals: 

     Min       1Q   Median       3Q      Max  

-0.58070 -0.11923  0.01228  0.13846  0.53158  

 

Coefficients: (1 not defined because of singularities) 

                      Estimate Std. Error t value Pr(>|t|)     

(Intercept)            12.1140     0.2857  42.406  < 2e-16 *** 

res                     7.8070     0.5161  15.127 5.28e-15 *** 

res < msemin2TRUE       1.2744     0.3204   3.978 0.000446 *** 

res > msemin2TRUE       0.4070     0.2731   1.490 0.147289     

res:res < msemin2TRUE  -6.8455     1.0490  -6.525 4.50e-07 *** 

res:res > msemin2TRUE       NA         NA      NA       NA     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2464 on 28 degrees of freedom 

Multiple R-squared:  0.9772,    Adjusted R-squared:  0.9739  

F-statistic: 299.9 on 4 and 28 DF,  p-value: < 2.2e-16 
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Appendix IV. R test XYZ to array 

 

> proct <- proc.time() 

> xyz <- read.table(“tls1_02.xyz”) 

> proc.time() – proct 

user   system   elapsed 

2.64   0.08   2.72 

> proct <- proc.time() 

> xyz <- read.table(“tls1_28.xyz”) 

> proc.time() – proct 

user   system   elapsed 

0.04   0.00   0.03 

> proct <- proc.time() 

> xyz <- read.table(“tls1001.xyz”) 

> proc.time() – proct 

user   system   elapsed 

99.28   1.69   103.00 
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