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Abstract

To better understand nuclei and the strong nuclear force, it is useful to analyze

global nuclear properties and trends across the nuclear chart. To this end, we

utilized Nuclear Density Functional Theory with Skyrme Energy Density Functionals

in conjunction with high-performance computing to perform large-scale mass table

calculations for even-even nuclei. Using the binding energy, pairing gap, root-mean-

square radius, and deformation data from these tables we were able to analyze the

two-proton and two-neutron drip lines, neutron skin depth, two-proton radioactivity,

and the effect of nuclear deformation on mass filters. We used numerous energy

density functionals to assess the statistical and systematic errors associated with our

calculations.
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Chapter 1

Introduction

The ultimate goal of nuclear physics is to obtain a fundamental understanding of the

nuclear force and its vast technological and societal implications. As new facilities

such as the Facility for Rare Isotope Beams (FRIB) come online and begin accessing

previously unobserved portions of the nuclear chart [1], nuclear theory can now

have its more extreme predictions compared to experimental data and be changed

as necessary.

There are three major categories of nuclear models: ab initio methods, shell model

(Configuration Interaction) approaches, and self-consistent mean-field techniques

which employ nuclear Density Functional Theory (DFT). The range of each of these

methods is shown in Figure 1.1 [2]. Ab initio methods and Configuration Interaction

approaches are limited to light- and medium-mass nuclei due to the large configuration

space they require for heavier systems [3]. At present, nuclear DFT is the tool of choice

when dealing with nuclei all over the nuclear chart [4].

Nuclear DFT is constructed upon mean-field theory, where individual protons

and neutrons move independently within an average potential produced by all of the

nucleons present. Since nuclear DFT can be independently applied to a specific

nucleus, the theory can be exported across the nuclear landscape with a fairly

high level of accuracy [5]. Therefore, utilizing nuclear DFT provides a means by

1



which to calculate nuclear binding energies, neutron and proton radii, and many

other properties for nuclei across the entire nuclear landscape (2 ≤ Z ≤ 120 and

2 ≤ N ≤ 300) [4, 6–9]. By employing DFT, one can apply an embarrassingly-parallel

computational framework to produce calculations across the nuclear landscape and

analyze global nuclear properties which can then be compared to those of the ever

expanding experimental frontier.

This work focuses on the analysis of global nuclear properties amongst different

Skyrme energy density functionals (EDFs) and the comparison of some properties to

experimental data. The properties which we considered were binding energies, proton

and neutron pairing gaps, nuclear radii, and shape deformation. These properties

were obtained directly from large-scale mass table calculations. Using these data,

we investigated the two-proton and two-neutron drip lines, uncertainties in neutron-

skin values, and the process of two-proton decay. Additionally, in an effort to better

understand the interactions which govern some of our calculations, we also analyzed

the effect of octupole deformation on various mass filters.
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Chapter 2

Microscopic Nuclear Mass Table

with High-Performance Computing

This chapter is a summary of the following published work:

• J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. Perhac, and M.

Stoitsov, ”Microscopic nuclear mass table with high-performance computing”,

JPCS, 402, 012030 (2012)

The original work can be found in Appendix A.

2.1 Overview

As was mentioned in Chapter 1, nuclear theory essentially consists of three different

approaches. Ab initio and configuration interaction models are generally only

applicable to light- and medium-mass nuclei, since the configuration space required for

either approach very rapidly increases with the number of nucleons present. Nuclear

DFT is a mean-field theory, hence all of the nucleons in a system are subjected to an

average nuclear potential. This construction of the nuclear interaction effectively

reduces the size of the required configuration space and allows for ground-state

properties to be calculated from very light to very heavy and exotic nuclei.
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We take the Skyrme-HFB method to approach the self-consistent Hartree-Fock-

Bogoliubov (HFB) problem [3]. This approach is based on local nuclear densities

and currents [3, 10, 11]. The self-consistent HFB equations are solved numerically

by the computational code HFBTHO [12]. Due to the independent nature of the

solutions, the code can be implemented across the nuclear chart (one processor per

nucleus) in an embarrassingly parallel scheme. We consider the following six Skyrme

EDFs: SkM* [13], SkP [10], SLy4 [14], SV-min [15], UNEDF0 [8], and UNEDF1

[9]. For each of these six parameterizations, we calculate ground-state properties for

even-even nuclei with N ≤ 300 and Z ≤ 120 on the JAGUAR XT5 supercomputer.

2.2 My Contributions

• Performed the large-scale mass table calculations on the JAGUAR and KRAKEN

supercomputers for the following Skyrme EDF parameterizations: SkM*, SLy4,

SkP, UNEDF0, UNEDF1, and SV-min.

• Aided in the creation of figure 3.

• Proofreading and editing of the accepted paper.
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Chapter 3

The Limits of the Nuclear

Landscape

This chapter is a summary of the following published work:

• J. Erler, N. Birge, M. Kortelainen, W. Nazarewicz, E. Olsen, A. Perhac, and

M. Stoitsov, ”The limits of the nuclear landscape”, Nature 486, 509 (2012).

The original work can be found in Appendix B.

3.1 Overview

With the aforementioned nuclear mass tables, we can now make global predictions

with respect to ground-state nuclear properties and also gauge the statistical and

systematic errors of our calculations. With this information, we can make a prediction

on the maximum number of nuclei stable to nucleon emission.

The proton or neutron separation energy is defined as the amount of energy needed

to remove said nucleon from a specific nucleus. The one-proton and one-neutron

separation energies are defined as

6



Sp(Z,N) = B(Z − 1, N)−B(Z,N) (3.1)

Sn(Z,N) = B(Z,N − 1)−B(Z,N) (3.2)

where B(Z,N) denotes the binding energy of a nucleus with Z protons and N

neutrons. Our binding energies are defined to be positive, thus when separation

energy is less than zero, the nucleus in unstable with respect to nucleon emission.

Therefore, the stable nuclear landscape consists of all nucleons with positive proton

and neutron separation energies. The drip lines, which are composed of the last nuclei

stable, mark these boundaries of the nuclear chart.

Nuclear pairing generally tends to stabilize even-even species with respect to their

odd-mass or odd-odd neighbors [16]. Due to this stabilization, the one-nucleon drip

lines are reached earlier in the nuclear landscape than the two-nucleon drip lines,

which is discussed in greater detail in Appendix B. Since the focus of this work

is to predict the maximum number of bound nuclei, we focus on two-proton and

two-neutron separation energies defined as follows

S2p(Z,N) = B(Z − 2, N)−B(Z,N) (3.3)

S2p(Z,N) = B(Z,N − 2)−B(Z,N) (3.4)

For each of the six EDF parameterizations previously mentioned, the nuclear drip lines

were determined. The systematic uncertainty was then calculated for both the two-

proton and two-neutron drip lines, and a summary of these calculations can be seen in

Figure 1 of Appendix B. Although the uncertainty in the position of the two-neutron

drip line grows with the distance from the valley of stability, the consistency between

EDFs was much greater than initially expected. This consistency is exemplified in

regions near magic nuclear numbers (2, 8, 20, 28, 50,82,126,184).

7



We also analyzed separation energies along various isotopic chains to analyze the

statistical uncertainties. We compared these results to the predictions of the FRDM

[17] and HFB-21 [18] models, along with experimental data. Our results for the

erbium isotopic chain can be seen in Figure 2 of Appendix B. As N increases along

the isotopic chain, the statistical uncertainty steadily increases, as expected. However

away from the drip lines, we see good consistency not only between the considered

EDFs, but also with experimental data and predictions made by the Finite Range

Droplet Model (FRDM) [17] and the HFB-21 [18] interaction.

Having determined the predicted drip lines for each functional, we then determined

the number of stable nuclei predicted for each parameterization, including the odd-

mass and odd-odd nuclei. We predict that 6, 900 ± 500syst nuclei are bound with

respect to nucleon emission [16].

3.2 My Contributions

• Filtered the data to reflect the nuclear chart of only particle-bound nuclei.

• Aided in the creation of the following figures:

1. Figure 1

– Performed drip line analysis of the six mass tables using S2n and S2p

values along with λn and λp. Once the drip line was established for

each parametrization, an average drip line was calculated, along with

its uncertainty.

2. Figure 2

– For the six functionals and the FRDM and HFB-21 models, similar

plots were created along various isotopic chains, including erbium.

3. Supplementary Figures 2-4

• Proofreading and editing of the letter and the supplementary paper.
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Chapter 4

Neutron-skin Uncertainties of

Skyrme Energy Density

Functionals

This chapter is a summary of the following published work:

• M. Kortelainen, J. Erler, W. Nazarewicz, N. Birge, Y. Gao, and E. Olsen,

”Neutron-skin uncertainties of Skyrme energy density functionals”, Phys. Rev.

C, 88, 031305(R) (2013)

The original work can be found in Appendix C.

4.1 Overview

An invaluable aspect of theoretical calculations of global nuclear properties is that

these predictions can be quickly compared to experimental data, which allows nuclear

theory to pin down key parameters. To this effect, we consider nuclear radii. More

specifically, we consider neutron skin thickness defined as the difference of neutron

9



and proton point root-mean-square radii:

rskin =< r2n >
1/2 − < r2p >

1/2 (4.1)

for the six functionals above. Experiments such as The Lead Radius Experiment

(PREX) [19], the follow up experiment PREX-II [20], and The Calcium Radius

Experiment (CREX) [21] could provide useful constraints on nuclear DFT parameters,

provided the uncertainty in the measurements is smaller than the uncertainty in the

calculations. Thus we perform a global study of the systematic error, and provide a

statistical analysis of the theoretical error for calcium and lead nuclei, along with a

few isotopic chains.

A summary of the systematic uncertainty analysis of rskin can be seen in Figure 1

of Appendix C. As expected, the average neutron skin thickness and its systematic

uncertainty both increase with N [22, 23]. As was seen along the drip lines Chapter

3, the systematic uncertainty in rskin is also fairly small, not exceeding 0.05 fm for

very neutron-rich systems. Once again, these EDFs yield very consistent findings,

despite having different optimization strategies.

We next considered the statistical uncertainty in rskin along several isotopic

chains for the UNEDF0 and SV-min EDFs. The isotopes considered were calcium,

zirconium, erbium, and Z = 120, the results of which can be seen in Figure 2 of

Appendix C. The statistical errors in 48Ca and 208Pb were also considered and

compared to both the accuracy of PREX and the predicted accuracies of PREX-II

and CREX. The following table (taken directly from the work) can be seen below.

Having found that the statistical uncertainty is less than the accuracy of the

PREX and PREX-II experiments, they are unlikely to provide any useful constraints

on isovector coupling constants of the theory. However, the predicted 0.02 fm accuracy

of CREX [21] should be able to supply useful constraints.

10



Table 4.1: Theoretical uncertainties on rskin in 208Pb and 48Ca (in fm). (Taken
directly from the table in Appendix C.) Shown are statistical errors of UNEDF0
and SV-min, systematic error ∆rsystskin, the model-averaged deviation of Ref. [24], and
errors of PREX [19] and planned PREX-II [20] and CREX [21] experiments.

Nucleus ∆rstatskin ∆rsystskin Ref. [24] Experiment

UNEDF0 SV-min

208Pb 0.058 0.037 0.013 0.022 0.18 [19], 0.06[20]

48Ca 0.035 0.026 0.019 0.018 0.02 [21]

4.2 My Contributions

• Using the aforementioned HFBTHO mass table data, calculated ravskin and

∆rsystskin.

• Aided in the development and production of Figure 1 (a) and (b).

• Proofreading and editing of the accepted paper.
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Chapter 5

The Landscape of Two-Proton

Radioactivity

This chapter is a summary of the following published works:

• E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac,

”Landscape of Two-Proton Radioactivity”, Phys. Rev. Lett., 110, 222501

(2013)

• E. Olsen, M. Pfützner, N. Birge, M. Brown, W. Nazarewicz, and A. Perhac,

”Erratum: Landscape of Two-Proton Radioactivity”, Phys. Rev. Lett., 111,

139903 (2013)

The original works can be found in Appendix D, and Appendix D: Erratum.

5.1 Overview

By analyzing ground-state global nuclear properties calculated for the six different

EDFs, one can estimate various nuclear properties, such as decay lifetimes. With these

lifetimes, one can perform a systematic check of the theory and the corresponding

predictions, which can then be compared to experimental data. One such property

12



of particular interest is two-proton (2p) radioactivity, where two protons are ejected

from an unbound nucleus (nuclei beyond the proton drip line). Motivated by the

experimental discovery of 2p emission in 45Fe [25, 26], 19Mg [27], 48Ni [28], and 54Zn

[29] we perform a global analysis of this decay path, as it has not been performed

above strontium [30–34]. Thus this work aims to not only illuminate a global region of

2p radioactivity, but also to determine the best candidates to experimentally observe

this process.

Within our global survey of 2p radioactivity, we attempt to maximize the number

of possible emitters. To this end, we consider two types of 2p decay: sequential

and simultaneous. Sequential decay occurs when one proton is emitted from the

nucleus followed by emission of a second proton some (relatively short) time later.

Simultaneous decay is when both protons leave the nucleus at the same time as a

correlated pair. To determine nuclei that could be potential candidates, we impose the

energetic criteria seen in Appendix D: Erratum. These two criteria function as less

stringent energetic requirements that allow for the maximum number of candidates

to be determined.

To determine 2p half-lives, we considered two different decay models, the diproton

model and the direct decay model. The former is outlined in refs. [30, 31, 35], and

the latter is outlined in refs. [35–37]. With these half-lives calculated, we then

imposed the lifetime criteria seen in equations (2) and (3) of Appendix D. The

lower bound of Eq. (2) is imposed since time scales of this magnitude mark the limit

of sensitivity for typical in-flight projectile fragmentation techniques [37]. The upper

bound ensures that the nucleus is not dominated by β decay. The criterion of Eq.

(3) removes any fast α emitters from our pool of candidates. To determine potential

nuclei with α decay and 2p decay competition, we also explore candidates which fulfill

0.1T2p ≤ Tα ≤ 10T2p. Our results our summarized in Figs. (1) and (2) of Appendix

D: Erratum.

We find that sequential and simultaneous decay are predicted to occur up to Te,

after which, only sequential decay is predicted to exist. After Pb, we find that α

13



decay is the only decay path and 2p decay is very unlikely to be observed. Finally,

we predict that the best candidates for experimental observation of 2p decay are

57Ge, 62,63Se, 66Kr, and 103Te. These nuclei are located only a few neutrons away

from currently known isotopes and are predicted by both decay models and multiple

EDFs. The best candidates predicted to exhibit α decay and 2p decay competition

are 103Te and 145Hf.

5.2 My Contributions

• Utilized the above mass table calculation data to calculate various properties

such as T2p and Q2p.

• Aided in the approximation of T2p by running a WKB approximation code with

the above data as input.

– The above data was then compared to experimentally known 2p emitter

lifetimes.

• Applied various criteria for nuclei to be admitted to the 2p decay landscape.

• Calculated model multiplicity to determine the average 2p trajectory.

• Aided in the production of Figure 1 via the above data and data filtering.

• Aided in the production of Figure 2 in a similar fashion.

• Proofreading and editing of the letter and erratum.
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Chapter 6

Octupole Deformation Effects on

Mass Filters

6.1 Introduction

Differences of global nuclear properties can provide insight into the interactions that

govern the nucleus. Here, we focus on differences of binding energy and compare

said differences in regions of stronger octupole deformation, namely the even-even

actinides and lanthanides. The mass filters considered were: two neutron separation

energy S2n, two proton separation energy S2p, and the double-difference indicator

δVpn. From these investigations, we can perform future work on exploring this effect

on these mass filters and gain some deeper understanding of the interactions which

we have incorporated into our models.

All of the above work has been accomplished with the code HFBTHO, which

does not presently include a reflection asymmetric degree of freedom. With the

development of the code AxialHFB, we can now explore reflection-asymmetric

deformations in nuclear ground states across the nuclear landscape for four different

functionals: UNEDF0, UNEDF1, UNEDF2 [38], and SV-min (see Fig. 6.1). With

these calculations at hand, we would like to investigate the effect of β3 deformation

15
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Figure 6.1: The landscape of ground-state β3 deformation. The above are the
calculated ground-state β3 deformations for even-even nuclei for Z ≤ 120 and N ≤
300. Note that since one of the mass-filters in question is δVpn, only the stable nuclei
with well defined δVpn are plotted.

on the two-proton and two-neutron separation energies, and δVpn mass filters. As

discussed in Chapter 3, separation energies are the primary factor in determining

the stability of nuclei. Hence, with AxialHFB available for four different functional

parameterizations, we would like to analyze any possible effect of β3 these mass filters

that are vital for shaping the nuclear landscape.

The δVpn mass filter functions as a somewhat different indicator than the

aforementioned separation energies for our analysis. As outlined in refs. [39–41],

δVpn =
1

4
{B(Z,N)−B(Z,N − 2)−B(Z − 2, N) +B(Z − 2, N − 2)} (6.1)

and represents the following mixed partial derivative [42]:

δVpn(Z,N) ≈ ∂2B

∂Z∂N
(6.2)

The proton-neutron interaction clearly performs a vital role in finite nuclear matter,

particularly the development of deformation in nuclei [39, 43]. Therefore with

16



constrained (β3 = 0) and unconstrained calculations, we may then probe the proton-

neutron interaction of actinides and lanthanides, where octupole deformation becomes

much more important [40, 44].

6.2 Analysis

To verify that our constrained calculations produced nearly equivalent β2 deforma-

tions as our unconstrained calculations, we plotted β2 (and β3) against neutron

number for all of the even-even actinide and lanthanide isotopic chains. We found, as

expected, that β2 values for the constrained calculations followed the general trend of

those for the unconstrained calculations closely, with a few very minor discrepancies

where β2 deformation began earlier along the isotopic chains for the unconstrained

calculations. Otherwise, the results agree quite well.

We next examined S2n and S2p differences between the two calculations. Away

from regions of octupole deformation, the plots lay virtually on top of one another,

but we found a functional-independent trend in octupole deformed regions. As β3

begins to increase from zero, the unconstrained values fall below the constrained

values by up to 1 MeV. Then, as β3 approaches a maximum value along the chain,

the unconstrained value of S2n falls below the constrained and gradually the two values

converge as β3 returns to zero. The S2p difference is not as nearly as pronounced. As

expected, the main difference occurs in regions of octupole deformation, and the plots

are essentially identical for the rest of the isotopic chain. In those regions of β3 6= 0,

the unconstrained values of S2p are slightly larger (generally less than 0.5 MeV) than

the constrained values S2p. Figures 6.2-6.9 show the S2n and S2p results for thorium

and neodymium.

Finally, we compared unconstrained and constrained values of δVpn. Although

the differences are larger between the isotopic chains, this is to be expected, as δVpn

involves the differences of the binding energies of four different nuclei and the δVpn

energy scale is much smaller. As with S2n and S2p we see the largest variation between

17



the unconstrained and constrained calculations occurs in the region of nonzero β3. In

those regions, we see that the unconstrained δVpn maxima are shifted neutrons up or

down the isotopic chain. Although the shift is generally consistent between functional

parameterizations, there does not appear to be much of a correlation between Z and

the location of the peak (see figures 6.2-6.9).

6.3 Future Work

Having analyzed the results of four different functional paramaterizations, the next

step to take will be to obtain large-scale mass table calculations for the following

functionals: SkP, SkM*, and SLy4. With said results, a similar analysis to the above

will be performed. We will then proceed to compare our calculations to experimental

data in order to perform an assessment of our predictions. Finally, in a similar

fashion as we did in Chapter 3, an error analysis may be performed for the AxialHFB

computational framework.
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Figure 6.2: β3 Deformation effect on thorium Mass Filters. Above is the comparison
of δVpn, S2n, and S2p for constrained and unconstrained AxialHFB calculations along
the thorium isotopic chain for the SV-min functional parameterization.
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Figure 6.3: Same as Figure 6.2 but for UNEDF0.
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Figure 6.4: Same as Figure 6.2 but for UNEDF1
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Figure 6.6: β3 Deformation effect on neodymium mass filters. Above is the
comparison of δVpn, S2n, and S2p for constrained and unconstrained AxialHFB
calculations along the neodymium isotopic chain for the SV-min functional
parameterization.
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Figure 6.7: Same as Figure 6.6 but for UNEDF0.
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Figure 6.8: Same as Figure 6.6 but for UNEDF1.
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Figure 6.9: Same as Figure 6.6 but for UNEDF2.

6.4 My Contributions

• Performed large-scale AxialHFB mass table calculations on the Darter and Eos

ORNL clusters based on the following functional parametrizations: SV-min,

UNEDF0, UNEDF1, and UNEDF2.

• Performed δVpn, S2n, and S2p calculations from the output of the above

calculations.

• Filtered and analyzed the above mass filter data

• Created deformation, δVpn, S2n, and S2p plots along even-even isotopic chains

for the actinides and lanthanides.
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Chapter 7

Conclusion

Large-scale computing plays an integral role in modern theoretical nuclear physics. By

utilizing the nuclear DFT framework, calculations of ground state nuclear properties

can be exported across the entire nuclear landscape. Thus by analyzing and examining

global nuclear properties and comparing the results with experimental data, one can

quickly gauge the robustness of nuclear DFT and Skyrme EDFs. In this work, we

primarily focused on ground-state binding energies, nuclear radii, pairing gaps and

energies, and shape deformation data.

7.1 Microscopic Nuclear Mass Table with High-

Performance Computing

In Chapter 2 we outlined the computational framework of our calculations from

the HFBTHO code. We then discussed how some of the tabulated global nuclear

properties can be calculated in a relatively small period of time using nuclear DFT

with various Skyrme EDF parameterizations. Finally, we discussed the applicability

of these large-scale calculations and their potential in future work.
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7.2 The Limits of the Nuclear Landscape

In Chapter 3 we briefly reviewed the current status of the experimental and

theoretical nuclear landscape. We then delineated the role of one- and two-

nucleon separation energies along with nucleonic chemical potentials in shaping the

boundaries of nuclear binding, the proton and neutron drip lines. Based on six

different functional parameterizations of our mass-table calculations, we assessed

the systematic and statistical error bars involved with our calculations. We also

compared our calculations to those predicted by other models and found relatively

sound agreement. Thus, having established a fairly consistent nuclear boundary, we

predicted the existence of 6, 900± 500syst nuclei that are bound to nucleon emission

with Z ≤ 120.

7.3 Neutron-skin Uncertainties of Skyrme Energy

Density Functionals

In Chapter 4 we examined nuclear radii and their uncertainties across our nuclear

mass-table calculations. Since these predictions are vital for neutron star equations-of-

state, we estimated our theoretical systematic and statistical uncertainties on neutron

skin thickness. We found that our uncertainty in neutron-skin increased with neutron

excess and that our statistical errors associated with this property were larger than

the systematic error across the landscape. Also, our results show that the upcoming

CREX experiment should have the necessary accuracy to reduce statistical error on

future neutron-skin calculations.

7.4 The Landscape of Two-Proton Radioactivity

In Chapter 5 we analyzed global two-proton radioactivity based on our nuclear mass-

table data. Using one- and two-proton separation energies and pairing gaps, we
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calculated 2p decay widths and lifetimes. Based on the consistency of our functionals,

we predicted strong candidates for experimental observation of 2p emission. We also

determined systems in which there would be noticeable competition between α-decay

and 2p emission. We also determined that above lead, 2p-decay does not exist and

α-decay is the dominant decay path.

7.5 Octupole Deformation Effects on Mass Filters

In Chapter 6 we utilized the new computer code AxialHFB to explore the effect of

reflection asymmetric shape deformations in nuclei. We examined the mass filters

S2n, S2p, and δVpn along lanthanide and actinide isotopic chains for constrained

(β3 = 0) and unconstrained calculations. There was found to be very little difference

in the two calculations with respect to S2p, however for S2n, the energies of the

unconstrained calculations were found to be larger than the constrained calculations

until maximum β3 deformation was reached. δVpn maxima along isotopic chains also

appeared to be shifted by a few neutrons, depending on the specific isotope. Further

work is to be done with the aforementioned functionals to get a better handle on

uncertainties associated with our data and finally, the seven mass table calculations

will be compared to experimental values.
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[37] M. Pfützner, “Particle radioactivity of exotic nuclei,” Phys. Scripta, vol. 2013,

no. T152, p. 014014, 2013. 13

[38] M. Kortelainen et al., “Nuclear energy density optimization: Shell structure,”

Phys. Rev. C, vol. 89, p. 054314, May 2014. 15

34



[39] R. Cakirli, D. Brenner, R. Casten, and E. Millman, “Proton-Neutron Interactions

and the New Atomic Masses,” Phys. Rev. Lett., vol. 94, p. 092501, March 2005.

16

[40] M. Stoitsov, R. Cakirli, R. Casten, W. Nazarewicz, and W. Statula, “Empirical

Proton-Neutron Interactions and Nuclear Density Functional Theory: Global,

Regional, and Local Comparisons,” Phys. Rev. Lett., vol. 98, p. 132502, March

2007. 17

[41] J.-Y. Zhang, R. Casten, and D. Brenner, “Empirical proton-neutron interaction

energies. Linearity and saturation phenomena ,” Phys. Lett. B , vol. 227, no. 1,

pp. 1 – 5, 1989. 16
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Appendix A

Microscopic nuclear mass table

with high-performance computing

This information was uploaded as an attachment (see Microscopic-nuclear.pdf).
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Appendix B

The limits of the nuclear landscape

This information was uploaded as an attachment (see Limits-nuclear.pdf).
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Appendix C

Neutron-skin uncertainties of

Skyrme energy density functionals

This information was uploaded as an attachment (see Neutron-skin.pdf).
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Appendix D

Landscape of Two-Proton

Radioactivity

This information was uploaded as an attachment (see 2proton-radioactivity.pdf).
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D.1 Erratum

This information was uploaded as an attachment (see 2proton-erratum.pdf).
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