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Abstract 

 Currently the Hemlock Woolly Adelgid (Adelges tsuga) is spreading across 

forests in eastern North America, causing the decline and mortality of the eastern 

hemlock and the Carolina hemlock. Investigation into the impact of hemlock mortality on 

ecosystem processes has only recently begun and is not yet fully understood. The loss of 

hemlock from riparian forests in Great Smoky Mountains National Park (GSMNP) could 

reasonably be expected to result in significant alterations to stream environments.  The 

goal of this study was to assess the influence of riparian hemlock stands on stream 

conditions and estimate possible impacts from hemlock loss in GSMNP.  I paired 

hardwood- and hemlock-dominated streams that were similar in topography, geology, 

land use, and disturbance history using Geographic Information Systems (GIS) analysis 

and statistical techniques.  I then monitored each stream pair for water temperature, 

nitrate concentrations, pH, and discharge over eleven months.  I found that differences 

between hemlock- and hardwood-dominated streams could not be explained by dominant 

forest type alone; the presence of hemlock or hardwood riparian forest does not appear to 

exert a consistently dominant signal on measured conditions of headwater streams in 

GSMNP.  The variability in the results suggests that other landscape variables, such as 

the influence of understory Rhododendron species, may exert more control on stream 

conditions than differences between hemlock and hardwood canopies.  For example, 

Rhododendron was found to reduce light levels reaching the forest floor and streambeds 

in both hemlock- and hardwood- dominated forest stands.     

 Evidence from recent peer-reviewed literature suggests that short-term stream 

condition impacts from forest disturbances can be severe.  However, research also 
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indicates that conditions can return to pre-disturbance levels within five to ten years.  In 

GSMNP, the return to long-term stability of stream conditions after hemlock mortality 

will depend on the type of replacement species and how quickly the replacement species 

can establish in disturbed sites.  There is evidence that deciduous hardwood species are 

most likely to replace hemlock.  The results of this study suggest that hemlock and 

hardwood stream conditions are similar in GSMNP.  Therefore, if hardwood species are 

able to replace hemlock in GSMNP and streams are able to recover from short term 

impacts, the long term impacts from hemlock mortality on stream conditions will be 

minimal.  However, the presence of Rhododendron in riparian hemlock forests in 

GSMNP may prevent hardwood species from effectively replacing hemlock, which could 

hinder the return to long-term stability.  
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Chapter 1.  Introduction 

1.1 Subject of the Thesis   

In the interconnected world in which we live, invasive exotic pests are perhaps the 

most immediate threat to the conservation and preservation of our natural areas.  The 

introduction of exotic pests can be detrimental to biological diversity, economies, 

aesthetics, and human health, among other things (White 1997).  Natural ecosystems are 

particularly vulnerable to the introduction of exotic species.  In forested ecosystems, 

exotic pest infestations can significantly alter species composition, stand structure, and 

forest functions (Jenkins et al. 1999).  Tree mortality as a result of infestation can modify 

ecosystem processes by impacting stand dynamics, succession, and nutrient cycling, and 

can make ecosystems more vulnerable to additional disturbances (Orwig et al. 2002).  

Although the spread of exotic species has occurred throughout history, it has significantly 

increased during the last 100 years due to the increased frequency of anthropogenic 

introduction of exotics (Kizlinski et al. 2002).   

Today eastern North America’s forests are being threatened by a number of exotic 

pests, including the Hemlock Woolly Adelgid, Adelges tsugae (HWA).  The HWA is 

currently spreading across the forests of eastern North America, causing the decline and 

mortality of one of the eastern temperate forest’s most important tree species, the eastern 

hemlock (Tsuga canadensis (L.) Carr.).  Decline and mortality of hemlocks due to HWA 

infestation have already occurred in the mid-Atlantic, but HWA has only recently made 

its way into the southern Appalachians.  In 2002, the adelgid was found within the 

borders of Great Smoky Mountains National Park (GSMNP) (Johnson et al. 2005).  The 

consequences of hemlock mortality on ecosystem processes have not been investigated 
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until relatively recently.  Although the eastern hemlock is thought to play a unique role in 

eastern forests, its particular influence on ecosystem functions is not fully understood.  In 

GSMNP, where hemlocks commonly grow along riparian corridors, the loss of hemlock 

from these riparian forests could significantly alter stream environment conditions.   

The threat of the loss of hemlock from riparian forests in GSMNP has caused a 

growing concern among scientists about the impacts of hemlock mortality on stream 

environment conditions.  The type and magnitude of these impacts are not fully 

understood.  In an attempt to understand these impacts, I raise the following questions:   

1. To what degree does hemlock-dominated riparian forest influence stream 

conditions and the adjacent riparian environment? 

2. What will be the initial, short-term impacts to stream conditions and the riparian 

environment caused by the decline and mortality of hemlock? 

3. What long-term changes will occur with the eventual replacement of formerly 

hemlock-dominated forest with non-hemlock dominated forest? 

This thesis will explore these questions and their significance for GSMNP. 

 

1.2 Purpose 

The purpose of this thesis was to assess the influence of riparian hemlock stands 

on stream environment conditions and to explore potential short-term and long-term 

responses of stream environment conditions to hemlock loss in GSMNP.  The response of 

stream conditions to hemlock mortality will occur at two different temporal scales:  1) 

The initial, short term, immediate response of stream conditions to hemlock decline and 

mortality; and 2) The long-term, eventual response of stream conditions to the 
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replacement of hemlock-dominated forest with non-hemlock-dominated forest.  In this 

thesis, I report the results of an assessment of the potential impacts at both of these 

temporal scales.  In order to investigate the unique influence of riparian hemlock stands 

on stream conditions, it is important to understand differences between a functioning 

hemlock-dominated riparian forest and a functioning hardwood-dominated forest.  To 

evaluate this difference, I developed a terrain-based site selection and sampling 

methodology that allowed direct comparison of hemlock-dominated riparian 

environments with topographically similar hardwood-dominated riparian environments.  I 

then compared stream temperature, pH, nitrate concentrations, discharge, and available 

photosynthetic light on paired sites dominated by hemlock and hardwood.  These 

observations and sampling were conducted monthly for one year.  This comparison 

allowed me to characterize the relationship between hemlock forests and adjacent stream 

water conditions.  Although only eleven months of data are presented here due to time 

constraints, twelve months of data were collected and may appear in future publications.   

A thorough assessment of the initial short-term impacts of hemlock decline and 

mortality would require long-term consistent monitoring throughout the transition from a 

healthy hemlock stand to HWA infestation to hemlock decline and mortality.  Since my 

study for practical reasons was limited to only one year of data collection, such long-term 

monitoring was not possible.  Instead, the data I collected serve as baseline data, with 

which additional observed changes in future stream conditions can be compared to 

evaluate the magnitude of short-term changes that occur after my baseline data are 

measured.  Additionally, a section of the literature survey provided in this thesis explores 
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potential short-term impacts to riparian environments from hemlock loss by surveying 

literature related to the impacts of other forest disturbances on riparian environments.     

Hardwood species are the most abundant species observed to regenerate in HWA-

damaged forests in south central Connecticut, New York, and Pennsylvania (Orwig and 

Foster 1998; Yorks et al. 2003).  With the onset of hemlock mortality, hemlock-

dominated riparian systems may eventually be replaced with hardwood-dominated 

riparian systems.  With this in mind, I hypothesize that observations of similarly 

structured hardwood-dominated stream environments, will serve as a predictor of the 

long-term outcome of changes in stream environments formerly dominated by hemlock.  

My study was intended to provide an established baseline to which the expected long-

term transition from hemlock to hardwood forests can be compared.     

 

1.3 Justification and Objectives 

HWA is expected to cause decline and mortality of hemlocks throughout 

GSMNP.  Hemlock mortality in riparian stands, in turn, may cause severe impacts to 

stream environment conditions.  These impacts may be inevitable because hemlocks are 

an important component of riparian forests in GSMNP, and because hemlocks show no 

sign of resistance to HWA infestation.  To date, there have been no studies of the 

immediate response of stream conditions and ecosystem processes to riparian hemlock 

mortality in GSMNP.  Additionally, the long-term impact of this change in riparian forest 

composition on stream environmental conditions is unknown.  In GSMNP, there have 

been no direct comparisons of the functional differences between streams draining 

hemlock-dominated forest and streams draining hardwood-dominated forest.   
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Therefore, in order to assess the potential long-term impacts of hemlock mortality 

and associated forest dynamics, I examined the differences in environmental conditions 

between streams draining forests dominated by hemlocks and streams draining forests 

dominated by mixed hardwoods within GSMNP.  With the anticipated changes in forest 

ecosystems due to hemlock mortality, it is imperative that we strive to comprehend the 

potential ecosystem functions that may be lost through the decline of hemlock among 

riparian forests.  My study investigates this relationship before HWA-induced hemlock 

mortality reaches the levels that are already observed in the Mid-Atlantic and 

Northeastern United States. 

I used the following methods in this investigation: 1) The use of Geographic 

Information Systems (GIS) and Remote Sensing data to characterize watersheds within 

GSMNP based on available geographic data; 2) The identification of terrain-based paired 

watersheds with hemlock and hardwood dominant forests; 3) The use of monitoring 

techniques to conduct a year-long assessment of environmental conditions including 

stream temperature, stream pH, stream nitrate concentrations, and forest floor insolation 

at the selected sites. 

 

1.4 Study Area 

The study area for this investigation is Great Smoky Mountains National Park, 

located in the southern Appalachians along the border of North Carolina and  

Tennessee (GSMNP; Figure 1).  GSMNP is one of the largest federally protected areas in 

the eastern United States, encompassing 212,000 ha (525,000 acres).  The Park is an 

International Biosphere Reserve and a World Heritage Site.  With 10 million visitors per  
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Figure 1: Great Smoky Mountains National Park 
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year, GSMNP is the most visited National Park in the United States.  Visitors are 

attracted to the Park for its natural beauty and many other aesthetic qualities, such as its 

cool, dark hemlock groves.   

 Topography varies greatly in GSMNP and elevations range from 256 m (840 feet) 

near Abrahms River to 2024 m (6643 feet) at the summit of Clingman’s Dome.  The 

complex topography and rugged terrain allow for a diverse mix of forest communities, 

microclimates, and habitat.  GSMNP is world-renowned for its biodiversity, as it contains 

over 1500 species of flowering plants including 100 species of native trees (Walker 1991; 

Kemp 1993).  There are 12 general vegetation types in GSMNP: Cove Hardwood, Grape 

Thicket, Grassy Bald, Heath Bald, Mesic Oak, Mixed Mesic Hardwood, Northern 

Hardwood, Pine, Pine-Oak, Spruce-Fir, Treeless, and Tulip Poplar (Johnson 1995).  The 

eastern hemlock is a dominant species of at least five vegetation types and is an associate 

species in most of the other seven (Johnson 1995).  Hemlock forest is widespread 

throughout the Park, covering 1545 ha (3820 acres) (Johnson et al. 1999).  GSMNP 

contains a substantial amount of old-growth eastern hemlocks, including the largest and 

oldest eastern hemlock in existence (Johnson et al. 1999).  Hemlock in GSMNP is found 

mostly along lower elevation, sheltered streams, but also on exposed ridges and north-

facing slopes.  GSMNP contains over 3200 km (2000 miles) of stream channels.  High-

gradient streams in GSMNP provide habitat for a diverse aquatic biota, including several 

endangered species such as species of salamanders and the native brook trout.  

 GSMNP is an ideal location for research because of the abundance of geographic 

data available.  The Park is a perfect setting for my study because HWA infestation is at 

an early stage, and hemlock mortality could have substantial impacts on broad-scale 
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ecosystem components such as nitrogen saturation of watersheds and endemic 

populations of brook trout.   

 I focus on first- and second-order headwater streams in GSMNP.  Study sites are 

located entirely within the GSMNP boundary, thus diminishing the influence of modern 

land use or human-induced disturbance.  Small headwater streams were chosen for this 

study for a number of reasons.  Headwater streams are important habitats for 

macroinvertebrates, fish, and amphibians (Meyer and Wallace 2001).  Due to their 

geographic isolation, they support genetically isolated populations that are important for 

local biodiversity (Gomi et al. 2002).  Headwater streams are more closely tied to 

landscape processes and have a greater response to disturbances than larger network 

streams (Gomi et al. 2002).  This creates a tight interconnectivity between headwater 

stream characteristics and the landscape attributes and processes that occur within the 

stream’s catchment area.  Headwater streams, because of their topography and small 

stream channel size, typically have vegetative canopy closure above the stream channel, 

while network streams typically have more open canopies above the stream channel.  

Thus, riparian vegetative canopy may have greater influence on headwater stream 

temperatures than on those of network streams.  Smaller streams also carry lower 

volumes of water than larger streams, making them more susceptible to changes in water 

temperature.  Moreover, typical low flow in small headwater streams occurs in late 

summer, when water temperatures reach their annual maxima, making such streams more 

vulnerable to the impacts of increases in solar radiation caused by hemlock loss.  So it is 

logical for this study to focus on streams that currently may be influenced the most by 
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hemlocks and that may be the most susceptible to disturbance from the loss of hemlock in 

the future.   

           

1.5 Thesis Organization 

 This thesis is organized as follows:  Chapter 2 provides a discussion of the 

literature that is applicable and relevant to this study with emphases on the eastern 

hemlock, the hemlock woolly adelgid, and the potential impacts of hemlock mortality on 

riparian environments; Chapter 3 discusses the use of statistics and GIS analysis in the 

selection of research sites for this study, methodologies used in field data sampling, 

laboratory analysis, and statistical analysis; Chapter 4 presents the results of the 

comparisons between paired watersheds; and Chapter 5 discusses the relevancy of these 

results, potential future research, and forest management implications.   
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Chapter 2.  Background 

2.1 Range and Ecology of Eastern Hemlock 

The eastern hemlock (Tsuga canadensis (L.) Carr.) is an important eastern 

conifer, occurring from southern Ontario east to Cape Breton Island, and south through 

the Appalachian Mountains (Little et al. 1980).  The main population of eastern hemlock 

is found in the northeastern United States and Canada, where hemlocks occur throughout 

a wide range of topographic positions.  However, in the southern Appalachians, their 

intolerance of drought and/or heat stress restricts them to moist cool coves, rock outcrops, 

and north-facing ridges (Little et al. 1980).  The eastern hemlock is one of the longest 

living tree species in the Appalachians.  Hemlock can live for up to 800 years, reach a 

height of over 44 m (175 feet), and grow to a diameter of 1.8 m (6 feet) (Ward et al. 

2004).  It is one of the most shade tolerant tree species in the Eastern United States and is 

able to survive in the understory with only 5% of full sunlight (Ward et al. 2004).  Its 

dense, evergreen canopy casts deep shadows on the forest floor, creating a distinct 

microclimate.   

The eastern hemlock is often categorized as a “foundation species” because of the 

unique communities it creates in forest ecosystems.  A “foundation species” has been 

defined as “a single species that defines much of the structure of a community by creating 

locally stable conditions for other species, and by modulating and stabilizing fundamental 

ecosystem processes” (Dayton 1972; Ellison et al. 2005).  Indeed, the attributes of eastern 

hemlocks create forest communities that are distinctive and significantly different than 

nearby deciduous-dominated forest communities.  Hemlock-dominated communities are 

characterized by deep perennial shade, a sparsely vegetated understory, slowly 
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decomposing litter, a deep duff layer, retention of moisture, and moist, acidic, nutrient-

poor soils (Godman and Lancaster 1990; Jenkins et al. 1999).   

These conditions have a significant impact on the microclimate and environment 

of the hemlock understory and forest floor, creating an important habitat for plant and 

animal species.  The dense shade is used for thermal cover by many mammalian species 

including whitetail deer (Odocoileus virginianus), ruffed grouse (Bonasa umbellus), and 

turkeys (Melegris gallopavo) (Anderson and Loucks 1979).  Several species of birds have 

been found to have a significant association with hemlock forest including black-throated 

green warbler (Dendroica virens), blackburnian warbler (Dendroica fusca), hermit thrush 

(Catharus guttatus) and Acadian flycatcher (Empidonax virescens) (Tingley et al. 2002).  

A variety of aquatic species exhibit a strong association with riparian hemlock habitat 

including brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and several 

aquatic invertebrate species (Snyder et al. 2002; Ross et al. 2003).  In headwater streams 

of the Delaware River basin, brook trout and brown trout populations were found to be 

two to three times as prevalent in hemlock-dominated streams compared to hardwood-

dominated streams (Ross et al. 2003).  Of particular concern for GSMNP is the loss of 

important habitat for the native brook trout.  The National Park Service and other wildlife 

and fisheries management agencies have invested a great amount of time and resources in 

the preservation and conservation of genetically pure brook trout populations currently 

living in the Park.  There is concern that the loss of riparian hemlock habitat in GSMNP 

would threaten to reduce, if not eliminate, existing brook trout populations and 

significantly diminish the success of these agencies’ investments (Ross et al. 2003).     
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In addition to the eastern hemlock’s numerous ecological values, the tree also has 

strong aesthetic qualities, evident in various acts of reverence in American culture.  

Recreational areas such as campgrounds and picnic areas are often found in or near 

hemlock stands because of the public’s fondness of hemlock’s aesthetic qualities.  It is 

the state tree of Pennsylvania and even appears in a poem by Robert Frost (Frost 1923).  

Additionally, the eastern hemlock is valued for its use in horticulture and landscaping.  

Eastern hemlock is commonly used in landscaping because of the general appeal of its 

evergreen foliage.  Although timber production of hemlock peaked in the early 1900s, 

hemlock is still harvested for pulpwood (Godman and Lancaster 1990).    

Another species of hemlock, the Carolina hemlock (Tsuga caroliniana Engelm.), 

is endemic to the southern Appalachians and only occurs in the Blue Ridge Mountains of 

eastern Tennessee and western North Carolina.  Although Carolina hemlock occurs in the 

Blue Ridge Mountains just to the east of GSMNP, it has not been found to occur in 

GSMNP.  In locations where the Carolina hemlock and the eastern hemlock both occur, 

the Carolina hemlock is smaller in size, but almost indistinguishable in appearance.     

Hemlock stands are an important component of the forests of GSMNP, covering 

approximately 1545 ha (3820 acres) and often occur in old growth virgin forests that 

include trees over 400 years old (Johnson et al. 1999).  Hemlock stands in GSMNP 

frequently occur along mountain streams, where they affect a number of environmental 

conditions and ecosystem processes including water quality, light and energy insolation, 

nutrient cycling, and type of aquatic habitat (Johnson et al. 1999).  The loss of hemlock 

from these riparian sites may inevitably have significant consequences, but the specific 

impacts are not yet fully understood and have received little attention.   
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2.2 The Hemlock Woolly Adelgid 

The HWA is currently spreading across the forests of eastern North America, 

causing the decline and mortality of both the eastern hemlock and the Carolina hemlock 

(Kizlinski 2002).  The HWA is an aphid-like insect, native to Japan, and was first 

discovered in the forests of Virginia in the early 1950s (Orwig et al. 2002).  Since its 

arrival, it has rapidly spread north, but has only recently made its way into the southern 

Appalachians.  In 2002, HWA populations were discovered near Fontana Dam in 

GSMNP (Johnson 2005).  High rates of hemlock mortality due to HWA infestation have 

been observed in the Mid-Atlantic and Northeastern United States, and hemlock mortality 

is likely to occur in GSMNP (Yorks et al. 2003).  The hemlock is not the first tree species 

in the Park to be threatened by an exotic pest or pathogen.  GSMNP has already lost most 

of its chestnuts (Castanea dentata) to the chestnut blight, and most of its Fraser fir (Abies 

fraseri) to the balsam woolly adelgid.       

The HWA can be devastating to forests due to its rapid reproduction cycle of two 

generations per year, high rate of migration, and variety of dispersal vectors via wind, 

birds, mammals, and humans (McClure 1990; Orwig et al. 2002).  There has been only 

limited success in developing methods to control populations of HWA through 

insecticides, native predators, or exotic predators (Orwig et al. 2002).  To date, the most 

promising method of biological control is the exotic beetle, Pseudoscymnus tsugae (P.T. 

beetle), which is currently being reared in a number of laboratories including the Institute 

of Agriculture at the University of Tennessee.     

Recent studies have reported that HWA populations decline when exposed to 

extreme winter temperatures of –30° C (–22°F), but since temperatures in the GSMNP 
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rarely reach that low, cold temperature will not be a factor in controlling HWA 

populations in the South (Skinner et al. 2003).  Additionally, I hypothesize that the high 

levels of atmospheric nitrogen deposition that occur in GSMNP may result in increases in 

HWA populations.  McClure (1991b) found that HWA population densities were more 

than five times higher on hemlocks exposed to nitrogen fertilizer than on unfertilized 

hemlocks.  HWA survival rates and egg production were also found to be higher on 

nitrogen fertilized hemlocks (McClure 1991b).  With this in mind, hemlock stands in 

GSMNP receiving high levels of atmospheric nitrogen deposition and experiencing 

nitrogen saturation may be more susceptible to HWA infestation and may undergo a 

more rapid rate of mortality.   

Once a hemlock stand is infected by HWA, it may suffer complete mortality 

within 4 to 10 years (Orwig et al. 2002).  To date, hemlock stands have shown no sign of 

developing a resistance to HWA infestation or any sign of recovery once infestation 

occurs (Snyder et al. 2002).  Moreover, unlike other pathogens or pests, HWA infestation 

has been found to cause defoliation in all life stages, saplings and seedlings as well as 

overstory trees (McClure 1991a).  Researchers investigating the susceptibility of hemlock 

to HWA infestation have found that landscape variables such as forest composition, 

forest structure, slope, and elevation do not play a significant role in a particular hemlock 

stand’s susceptibility or mortality (Orwig et al. 2002).  Therefore, an infested hemlock 

stand on any type of landscape could potentially be eliminated from a site in less than a 

decade.  Infestation of HWA should be perceived as a significant threat, and the decline 

of hemlock forest in GSMNP may be inevitable.          
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2.3. Potential Impacts from Hemlock Decline and Mortality          

2.3.1. Observed Initial Impacts from Hemlock Decline and Mortality 

Although Hemlock Woolly Adelgid-induced hemlock decline and mortality are 

only beginning to occur in GSMNP, it has already occurred in the mid-Atlantic and 

northeastern United States where the following changes to forests have been documented:  

1) a reduction of overstory canopy; 2) a net reduction of nutrient uptake by vegetation; 

and 3) a reduction of evapotranspiration rates (Orwig and Foster 1998; Kizlinski et al. 

2002; Snyder et al. 2002; Yorks et al. 2003).  In forests where hemlock is the dominant 

tree species, these responses to hemlock mortality can significantly alter ecosystem 

processes such as nutrient cycling and surface water quality.  The reduction of overstory 

canopy causes more light to reach the forest floor, and thus increases soil and stream 

water temperature (Kizlinski et al. 2002).  Soil samples from hemlock stands undergoing 

decline have indicated the accumulation of nutrients, net increases in mineralization of 

nitrogen, increases in soil pH, lower C:N values, and increases in nitrification and 

nitrogen saturation (Jenkins et al. 1999; Yorks et al. 2003).  These soil observations are 

likely the result of the reduction of nutrient uptake by declining hemlocks and of 

increases in detritus (Yorks et al. 1999).  Increases in soil moisture in HWA infected 

hemlock stands have been observed as a result of reduced evapotranspiration (Yorks et al. 

2003).  The abundance of soil moisture and accumulation of nutrients lead to significant 

leaching of nutrients from the soil (Jenkins et al. 1999).  Excessive concentrations of ions 

have been measured both in the soil and stream water of declining hemlock stands 

(Jenkins et al. 1999; Snyder et al. 2002; Yorks 2003).  These high ion concentrations are 

of concern because they indicate the leaching of cations (Ca2+, Mg2+) and anions (NO3
–, 
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SO4
–), the mobilization of metals (Al3+), and the acidification of soil and surface water 

(Yorks et al. 1999).  These observations indicate that the initial impacts from hemlock 

decline and mortality could cause a depletion of soil nutrient capital and increases in 

nutrient loading, acidification, and metal concentrations in surface water.  

Other observations in hemlock stands undergoing decline or mortality include 

alterations of litter-fall input and forest floor decomposition rates, as well as increases in 

the emergence of shade-intolerant vegetation (Jenkins et al. 1999; Yorks et al. 2003).  

The emergence of shade-intolerant vegetation is attributed to changes in forest floor 

insolation due to canopy decline.  

In GSMNP, hemlocks commonly occur along streams where altered riparian 

forest conditions can rapidly influence stream chemistry and water quality.  Of particular 

concern in GSMNP are alterations to stream water temperature, solar radiation received 

by stream water surfaces, and stream nitrate concentrations caused by hemlock decline 

and mortality.  This thesis will address the potential impacts to stream water temperature, 

pH, discharge, and nitrate concentrations in GSMNP.  

 

2.3.2 Stream Water Temperature and Solar Radiation 

Importance of Stream Water Temperature 

One of the most likely impacts to stream environmental conditions from hemlock 

loss is alteration of stream water temperature regimes.  Researchers hypothesize that the 

perennial shade provided by riparian hemlock stands exerts a strong influence on stream 

water temperatures (Snyder et al. 2002).  The loss of hemlock’s perennial shade is 

expected to alter stream water temperature regimes and possibly result in adverse impacts 
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to aquatic biota.  In order to assess this potential impact, it is important to understand the 

role of stream water temperature as a component of aquatic habitat.   

Water temperature is an important stream attribute, as it drives many physical and 

biological processes, especially in small streams (Beschta et al. 1987; Mellina et al. 

2004).  For example, stream temperature has been found to be the most important factor 

controlling the distribution and migration patterns of trout (Greene 1950).  Stream 

temperature can guide the timing of life cycles of aquatic biota, such as emergence, 

spawning, and migration.  Water temperature drives the functions of aquatic biota, 

including metabolism rates and growth rates (Johnson and Jones 2000).  Modifications to 

natural stream water temperatures caused by forest disturbances can have numerous 

biotic impacts.  In cold water systems, such as headwater streams in GSMNP, 

disturbances that lead to increases in maximum stream water temperatures are of great 

concern.  Exothermic species, such as trout and invertebrates, are sensitive to the 

temperature of the water surrounding them.  Trout species are especially sensitive to and 

limited by high stream water temperatures (Greene 1950).  Higher stream temperatures 

require more energy from trout to sustain biological processes and functions (Tate et al. 

2005).   

Although very little is known about the impact to stream temperatures from 

hemlock mortality, the impacts of other disturbances on stream temperatures are well 

documented.  Land-use change, wildfire, and forest harvesting have led to changes in the 

seasonal and diurnal timing of maximum temperatures as well as the occurrence of 

elevated maximum temperatures (Greene 1950; Bartholow 2000; Johnson and Jones 

2000; Sullivan et al. 2000; Mellina 2002; Johnson 2004).  Extreme disturbances can 
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create lethal stream water temperature levels, causing mortality of stream biota.  More 

commonly, however, disturbances create sub-lethal stream water temperature levels 

which cause thermal stress in stream biota (Sullivan et al. 2000; Tate et al. 2005).  

Thermal stress effectively can result in mortality through alterations to organism 

functions including reproductive success, alterations of the timing of life cycle events, 

and increased incidence of disease (Becker and Fugihara 1978; Johnson and Jones 2000; 

Tate et al. 2005).  Researchers have found that stream temperature controls the rate at 

which salmon eggs mature, the timing of emergence of larval salmon, and the timing of 

migration (Sullivan et al. 2000; Tate et al. 2005).  Modifications to stream water 

temperatures could alter these processes and the timing of their occurrence.  Local 

increases in stream water temperatures can also create thermal barriers in streams, 

preventing certain aquatic species from migrating past the barrier (Richter and Kolmes 

2005).    

The temperature ranges that aquatic species can tolerate differ from species to 

species.  Sullivan and others (2000) have suggested that temperatures over 25 °C (77 °F) 

are lethal and temperatures ranging from 19.4 °C (67 °F) to 24.4 °C (76 °F) are sub-lethal 

for Salmonids in the Pacific Northwest of the United States (Tate et al. 2005).  The 

eastern brook trout (Salvelinus fontinalis), which is native to GSMNP, has an ideal 

stream temperature of 18.9 °C (66 °F) and a maximum limit of 23.9 °C  (75 °F) (Greene 

1950).  If stream water temperatures exceed these suggested ranges and fish populations 

are not able to migrate to more suitable habitat, they may experience thermal stress.  

The concern for stream water temperatures reaching lethal and sub-lethal levels 

has led the Environmental Protection Agency (EPA) to include high temperatures in the 
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Federal Clean Water Act’s list of potential pollutants.  The EPA has developed a critical 

threshold for stream temperature.  If a stream’s temperatures are above the critical 

threshold, it is listed on the “water quality limited” list (Dodge 2005).  However, creating 

a specific critical threshold for stream temperature can be difficult.  The responses of 

aquatic biota to stream temperatures vary by species, geographic location, and life stage 

(Beschta et al. 1987; Sullivan et al. 2000).  Therefore, the critical thresholds for stream 

temperature must be developed for individual reaches based on the species and life stages 

present.  Additionally, critical thresholds for stream temperatures must take into account 

multiple species and multiple life stages that occur within the same reach.       

Stream water temperature also drives physical processes such as organic matter 

decomposition rates, nutrient cycling, and the solubility of gases (Johnson 2004).  For 

example, as stream water temperatures increase, dissolved oxygen decreases.  Reduced 

dissolved oxygen levels caused by increased stream water temperatures can cause 

significant stress in fish species (Richter and Kolmes 2005).  Additionally, researchers 

have found that the toxicity of some organic chemicals and metals increases in response 

to elevated stream water temperatures (MacLeod and Pessah 1973; Howe et al. 1994; 

Richter and Kolmes 2005). 

    

Solar radiation and other factors influencing stream water temperature 

 In order to assess the degree to which the perennial shade of riparian hemlocks 

influences stream water temperature, it is necessary to understand all factors that 

contribute to the thermal regimes of mountain stream water.  Stream water temperature is 

a function of multiple environmental factors.  These include shade, riparian vegetation, 
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air temperature, substrate, conduction, groundwater influence, discharge, stream channel 

geometry, and direct solar radiation (Johnson 2004).  There is disagreement within the 

peer-reviewed literature about the magnitude of influences that each natural contributing 

factor has on stream temperatures (Johnson 2004).  This is in part due to the complex 

interconnectivity of natural ecosystems and the inherent difficulty in examining the 

influence of each factor independently.  However, advances in temperature monitoring 

technologies and methodologies have provided data that suggest that the major factor 

influencing stream water temperature is incoming solar radiation (Johnson 2004).   

 Because water has a high specific heat, differences in the amount of solar 

radiation striking water surfaces strongly influences water temperature regimes.  The 

amount of incoming solar radiation that strikes surface water depends on a number of 

factors.  As a first-order control, topography and the shape of terrain can greatly influence 

the amount of incoming solar radiation.  A stream flowing through a concave gorge, 

hollow, or canyon will receive less solar radiation than a stream flowing through a broad 

valley due to the terrain’s potential for intercepting solar radiation.  As a second-order 

control, riparian vegetative cover also determines the amount of solar radiation that a 

stream can receive.  Riparian vegetation can shade a stream and keep incoming solar 

radiation from striking the water surface.  A stream reach that has no riparian vegetative 

cover will receive much more solar radiation than a similar reach that has an abundance 

of riparian vegetative cover (Brosofske et al. 1997).  In return, differences in solar 

radiation will create differences in water temperature regimes between the two reaches.  

Johnson (2004) conducted an experiment examining the influence of shade on stream 

water temperatures.  Johnson measured air and water temperature for three weeks before 
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shading, three weeks during shading, and three weeks after shading.  Shading was 

simulated using constructed black plastic sheets supported by a suspension system 

approximately 2 m above the surface of the stream water.  Johnson found that maximum 

stream water temperatures decreased significantly during shading.  However, it is not 

known how representative the constructed “shading” was of the shade that natural 

riparian vegetation provides.   

 The ability of riparian vegetation to intercept solar radiation differs based on its 

form and structure.  Trees generally have a greater potential for intercepting solar 

radiation than grasses (Bartholow 2000).  Additionally, different tree species have 

different leaf area indexes and thus some species produce denser shade than others.  

Riparian vegetation not only decreases the exposure of a stream to direct solar radiation 

but also insulates the stream water from heat loss at night.  The potential for insulation 

differs between riparian species as well.  For example, an evergreen tree, such as 

hemlock, can provide insulation to a stream all year long, while deciduous trees lose 

some of their potential for insulation during winter when they lose their leaves.   

 Although incoming solar radiation is the major factor influencing stream water 

temperature, other factors have strong influences as well.  However, these other factors 

are directly related to incoming solar radiation.  Stream discharge and channel geometry 

can influence water temperature, but their influence is ultimately based on the influence 

of incoming solar radiation.  The rate of potential temperature change from solar 

radiation depends on the volume of water and rate of flow in a stream.  A stream with a 

smaller volume of water can change temperature faster than a stream with a larger 

volume of water.  Simply put, it takes more solar radiation to heat a larger volume of 
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water and less solar radiation to heat a lesser volume of water.  With this in mind, it is 

logical that streams with a smaller volume experience greater diurnal and seasonal 

fluctuations of water temperature than streams with a larger volume.  Additionally, this 

explains why annual maximum water temperatures occur during the late summer, when 

streams typically have the lowest volume and rate of flow and direct insolation is at its 

peak (Moore and Minor 1997).  Stream channel geometry also plays a role in determining 

water temperature.  The surface area of a stream is a function of its width.  A wide stream 

has a large water surface area and is able to receive greater amounts of solar radiation 

than a narrow stream containing a similar volume of water (Moore and Minor 1997).  

Thus, streams that are wide, shallow in depth, and contain a small volume of water are 

particularly susceptible to disturbance-induced water temperature changes. 

In the past, researchers have argued that air temperature is a major factor 

influencing stream water temperature.  Models that are used to predict stream water 

temperature over broad areas often use air temperature as the main independent factor.  

However, Johnson (2004) argues that, although air temperature and water temperature are 

correlated, the correlation does not necessarily imply causation.  Air temperature, as well 

as water temperature, is driven by incoming solar radiation, and, based on her field 

experiment studies, Johnson concludes that solar radiation has a much greater influence 

on stream water temperature than air temperature has.         

Conduction, another factor that is considered to influence stream temperature, is 

also a function of incoming solar radiation.  When a reach receives solar radiation, some 

energy from the solar radiation is absorbed directly by the substrate and then transferred 

to the water through conduction, influencing its temperature.  Different types of substrate 
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absorb and conduct energy differently.  For example, Johnson (2004) found that the 

magnitude of diurnal water temperature fluctuations in a bedrock reach was greater than 

in a gravel reach, while average daily water temperatures were similar.   

Stream temperatures are also regulated by the mixing of surface flows with 

subsurface, or hyporheic, flows.  Hyporheic flows have been found to have lower 

magnitude diurnal fluctuations than those observed in stream surface flows (Evans and 

Petts 1997; Johnson 2004).  In some streams, surface water is lost to subsurface flow and 

then reemerges downstream.  In other streams, significant influxes of groundwater enter 

into the in-stream surface flow.  The inflow and outflow of surface and hyporheic waters 

and the influx of groundwater can contribute greatly to the overall water temperature of a 

stream.  The influence of groundwater on stream water temperatures is especially 

important in the summer, when groundwater is typically cooler than the surface water 

(Moore and Minor 1997).  The influx of groundwater in the summer can help cool 

surface waters to water temperatures that are more ideal for stream biota and thus prevent 

thermal stress. 

 

Importance of Riparian Vegetation 

In GSMNP, hemlock commonly occurs along streams and functions as valuable 

riparian vegetation.  The threat of the loss of hemlock as a riparian species in GSMNP 

has caused a growing concern among scientists.  Although the impacts from the loss of 

hemlock as a riparian species are unknown, the overall value of riparian vegetation in 

general is well understood.  Additionally, it is logical to expect impacts from disturbance 
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to hemlock riparian forest to be similar to impacts caused by other disturbances to 

riparian forest.   

Vegetation is an important component of the riparian environment and is essential 

for its well-being.  Riparian vegetation plays an integral role in moderating stream water 

temperatures by intercepting solar radiation and providing insulation to stream water.  

Riparian vegetation also creates microclimatic conditions, which vary by species but 

greatly influence riparian environmental conditions as a whole (Snyder et al. 2002).  For 

example, riparian hemlocks provide deep shade, woody debris, and shelter from wind 

(Orwig and Foster 1998).  Riparian vegetation also controls certain processes of fluvial 

geomorphology.  By stabilizing stream banks, riparian vegetation can help determine 

stream channel geometry, including stream width-to-depth ratios and exposed water 

surface areas, both of which influence stream water temperature.  It is also the source of 

woody debris that accumulates in and around the stream bed.  Woody debris itself 

provides habitat and is a food source for a variety of stream biota.  Different shrub and 

tree species provide different types and amounts of woody debris (Ross et al. 2003).  

Some researchers have suggested that woody debris from riparian hemlock stands creates 

a unique habitat for aquatic biota that is not found in hardwood stands (Snyder et al. 

2002; Ross et al. 2003).   

Some researchers have suggested that the impacts from the loss of riparian canopy 

caused by hemlock mortality will be similar in type to impacts caused by other 

disturbances to riparian forest.  The effects of riparian vegetation disturbance on stream 

temperatures have received considerable attention in the recent peer-reviewed literature.  

Although less is known about the ecological effects of forest pest disturbances, 
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substantial attention has been given to understanding the ecological effects of forest 

harvesting within riparian areas.  When riparian vegetation is removed by forest 

harvesting, stream temperatures significantly increase (Bartholow 2000; Johnson and 

Jones 2000).  Johnson and Jones (2000) found that maximum stream temperatures 

occurred earlier in the summer and increased 7 °C (12.6 °F) after clear-cutting of riparian 

vegetation in western Oregon.  They also documented that after 15 years of regrowth of 

riparian vegetation, stream temperatures returned to pre-harvest levels.  In another 

example, researchers in the southern Appalachians found evidence that riparian forest 

harvesting had caused brook trout to migrate upstream in search of cooler water 

temperatures (Greene 1950).   

There is disagreement in the literature about whether impacts to stream 

temperatures caused by forest harvesting are carried downstream to riparian areas where 

forest harvesting did not occur.  Warmer stream water temperatures caused by forest 

harvesting may have an effect on downstream areas, or it is possible that once the 

affected stream water flows far enough downstream, stream water temperatures return to 

normal as it mixes with water from undisturbed sources (Bartholow 2000).            

In addition to the impacts to stream temperature, riparian disturbances such as 

forest harvesting can also result in alterations to a stream’s fluvial geomorphology.  For 

example, once riparian vegetation is removed, stream banks are no longer stabilized by 

vegetation and heavy erosion from stream banks can occur (Bartholow 2000). 

In an attempt to minimize the impacts of forest harvesting on streams, forest 

harvest best management practices now suggest leaving a substantial buffer of riparian 

vegetation around streams.  Researchers have found that when only the overstory riparian 
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vegetation is removed for harvest, there is less impact to streams than when understory 

vegetation is also removed (Bartholow 2000; Johnson and Jones 2000).       

Riparian vegetation and associated stream temperatures are also disturbed by 

other changes in land use.  Researchers at the Coweeta Hydrologic Laboratory in western 

North Carolina conducted a study comparing stream temperatures in an undisturbed 

forested watershed to stream temperatures in a farmed watershed.  The farmed 

watershed’s riparian vegetation had been replaced with a mixture of cultivated land and 

pasture.  During one year of measurements, weekly maximum stream temperatures in the 

farmed watershed were found to be 6.4 °C (11.5 °F) warmer on average than the 

undisturbed forested watershed (Greene 1950).  Under agricultural best management 

practices, farmers are encouraged to leave an undisturbed buffer of riparian vegetation 

around streams on farmland in order to alleviate negative impacts to stream temperatures.              

Small-scale localized disturbance to riparian vegetation has also been found to 

cause detrimental effects to the riparian environment.  In Pennsylvania, excessive deer-

browsing of willows that were shading trout-inhabited streams caused the trout to migrate 

to other locations where intact riparian vegetative cover remained (Greene 1950).     

 

2.3.3 Stream Nitrate Concentrations and Nutrient Cycling  

Another anticipated impact to stream environmental conditions from hemlock loss 

is the alteration of nutrient cycling and stream nitrate concentrations.  In areas where 

hemlock mortality has already occurred, the reduction of nitrogen uptake by declining 

hemlocks and the input of nitrogen from increased hemlock litterfall have significantly 

altered overall nutrient cycling (Yorks et al. 2003).  As a result of these alterations, net 
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losses of nitrogen to surface water and increased stream nitrate concentrations are 

expected to occur.  In GSMNP, where hemlock decline and mortality has not yet 

occurred, the potential impacts to nutrient cycling and stream nitrate concentrations are 

not known.  However, it is possible that impacts from hemlock loss could be similar in 

type to impacts observed from other forest disturbances.              

During the past few decades, researchers have documented overwhelming 

evidence that forest disturbances, such as timber harvesting, windthrow events, and insect 

defoliation, can increase nutrient export to stream water and alter nutrient cycling of 

forested watersheds (Johnson et al. 1982; Swank 1988; Eshleman et al. 1998; Yeakley et 

al. 2003; Yorks et al. 2003).  Nitrate (NO3
–) is the ion that is most likely to reach elevated 

levels, which persist in streams for many years following disturbance (Swank 1998).  

Stream nitrate concentrations have increased dramatically following riparian forest 

harvesting (Bormann and Likens 1979; Swanson et al. 2000; Townsend et al. 2004).  

Stream nitrate concentrations often peak one to three years after harvesting and return to 

pre-harvest levels after five to ten years (Bormann and Likens 1979; Townsend et al. 

2004).  Following a significant blowdown of canopy trees at the Coweeta Hydrologic 

Laboratory in the southern Appalachians, researchers observed 500-fold increases in 

soilwater nitrate, four-fold increases in groundwater nitrate, and a doubling of stream 

water nitrate (Yeakley et al. 2003).  A strong link between increased stream nitrate 

concentrations and the defoliation of canopy trees by insects has been documented.  

Eshleman and others (1998) found substantial export of nitrate from oak-dominated 

watersheds defoliated by gypsy moth infestation in the central Appalachians.  In Japan, 
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Ohte and others (2003) documented a three-fold increase in stream water nitrate 

concentrations as a result of a partial dieback of a pine forest.                    

In GSMNP, elevated stream nitrate concentrations as a result of hemlock decline 

and mortality are of particular concern.  GSMNP receives some of the highest levels of 

atmospheric nitrogen loading in the United States, leading to the occurrence of nitrogen 

saturation (Johnson and Lindberg 1992).  As a result of hemlock mortality, altered 

nitrogen cycling could increase the extent of nitrogen saturation in the Park.  Nitrogen 

saturation occurs when available nitrogen exceeds the biotic demand and thus results in 

high nitrogen export fluxes (Aber et al. 1989).  Streams draining nitrogen-saturated 

watersheds are characterized by high nitrate concentrations.  According to Fenn and 

others (1998), watersheds draining high elevations, steep slopes, shallow soils, or old 

growth forest are more prone to nitrogen saturation and nitrate export than other 

watersheds.  High elevations, steep slopes, and/or shallow soils cause rapid runoff and 

provide little opportunity for nutrient absorption or biological uptake.  Old growth forests 

typically do not take up as much nitrogen as younger forests, and thus are more prone to 

nitrogen saturation (Foster et al. 1997).  Other studies have suggested that conifer stands 

are more prone to nitrogen saturation than hardwood stands (Aber et al. 1995).  Many of 

these conditions are present in hemlock-dominated watersheds in GSMNP, suggesting 

that these watersheds may be particularly vulnerable to nitrogen saturation.   

Flum and Nodvin (1995), in a publication that assessed stream water chemistry in 

GSMNP, predicted that streams experiencing nitrogen saturation and stream water 

acidification will increase in number in the future due to continued atmospheric nitrogen 

loading.  Increased nitrogen saturation and stream acidification caused by hemlock 
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mortality may accelerate nitrogen saturation and stream water acidification, especially in 

these vulnerable hemlock-dominated watersheds.   

Following the occurrence of a major disturbance, nitrate concentrations in streams 

have exceeded the U.S. federal drinking water standard of 10 mg/L (Riggan et al. 1994; 

EPA 2003).  There is a legitimate concern that nitrogen-saturated, hemlock-dominated 

watersheds suffering from complete hemlock mortality could yield concentrations that 

exceed the federal drinking water standard.  High nitrate levels in stream water can 

contribute to the eutrophication of lakes and ponds as well as pose a threat to human 

health via drinking water (Swanson et al. 2000).  Many communities surrounding 

GSMNP depend on streams originating in the Park for their water supply, which would 

be degraded by elevated nitrate concentrations.         

Researchers suggest that the best method of reducing nitrate loss to stream water 

is to preserve an effective riparian buffer zone (Haycock et al. 1993).  The loss of 

hemlock from riparian forest stands in GSMNP could lead to increased nitrate export to 

streams and a reduction of the effectiveness of the vegetation buffer.  

 

2.3.4. Potential Long-term Impacts from the Loss of Hemlock          

To date, most of the relevant literature has focused on the immediate, short-term 

consequences of hemlock decline and mortality.  Research on the impacts of forest 

disturbances on stream conditions also has focused on immediate, short term effects; very 

little is known about the long-term impacts of hemlock mortality on environmental 

conditions.  Evidence suggests that nutrient cycling, ecosystem processes, and stream 

conditions could return to pre-disturbance levels when replacement species begin to take 
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up nutrients again (Johnson and Jones 2000; Yorks et al. 2003).  If this occurs, soil and 

stream water conditions could slowly return to normal levels over time, but this would 

depend on the rate of uptake and the types of species that emerge to replace the hemlock.  

Species of Birch (Betula), Oak (Quercus), and Maple (Acer) are replacing the eastern 

hemlock in HWA-damaged forests in south central Connecticut (Orwig and Foster 1998).  

In the Catskill Mountains of New York, Striped Maple (Acer pensylvanicum), Red Maple 

(A. rubrum), and Yellow Birch (B. alleghaniensis) are predicted to replace the eastern 

hemlock (Yorks et al. 2003).  However, the forest composition in GSMNP is significantly 

different from that of forests of New York or Connecticut, and currently the species that 

will emerge to replace hemlock in GSMNP are not known.  In GSMNP, dense thickets of 

Rhododendron (Rhododendron) are common in the understory of hemlock stands and 

may play a significant role in regeneration after hemlock mortality.  Furthermore, high 

levels of nitrogen saturation, like those seen in GSMNP, could prevent nutrient cycling 

and ecosystem processes from returning to pre-disturbance levels by inhibiting forest 

regeneration (Silsbee and Larson 1982; Riggan et al. 1985; Fenn et al. 1998).     

Very few studies have attempted to investigate the long-term changes to stream 

conditions and ecosystem processes that will occur with the replacement of formerly 

hemlock-dominated forest with non-hemlock forest.  These long-term changes could be 

addressed by investigating the difference between a functioning hemlock-dominated 

riparian forest and a functioning hardwood-dominated riparian forest.  In Massachusetts, 

an ongoing study has found that evapotranspiration rates differed significantly between 

hemlock and hardwood forests and that hemlock forests contained more soil water than 

hardwood forests in late summer (Hadley et al. 2005).  These differences indicate that 
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small perennial hemlock-dominated streams could become intermittent in the late 

summer if hemlock is eventually replaced by hardwood species.       

Such changes could affect the diversity of niches available for stream biota.  

Snyder and others (2002) investigated the difference between streams draining hemlock 

and mixed hardwood forests for an assessment of the potential association between 

aquatic invertebrates and riparian hemlock habitats in Delaware Water Gap National 

Recreation Area (DWGNRA) in New Jersey.  They found that streams draining hemlock 

forests had a greater diversity of microhabitat types and had more stable thermal and 

hydrologic regimes than streams draining mixed hardwood forests.  Snyder and others 

(2002) also found significant differences in species compositions and trophic structures 

between hemlock- and hardwood-dominated streams.  They documented that 

macroinvertebrate predators were more common and grazers less common in hemlock-

dominated streams (Snyder 2002).  Additionally, brook trout were found to be four times 

more abundant in hemlock-dominated streams than in hardwood-dominated streams 

(Snyder 2002).   

However, the thermal and hydrologic regimes as well as trophic structures of 

hemlock- and mixed hardwood-dominated streams in GSMNP may or may not be similar 

to those observed in DWGNRA.  The terrain and forest species composition are more 

complex in GSMNP than in DWGNRA.  Therefore, a thorough investigation is needed in 

GSMNP in order to assess the long-term impacts of hemlock mortality on stream 

environmental conditions.         
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Chapter 3.  Methods 

3.1. Paired Watershed Methodology and Site Selection 

Due to the proximity of hemlock stands to stream corridors in GSMNP, changes 

to stream conditions may be a significant ecological impact of hemlock mortality.  This 

investigation is the first attempt to assess the influence of riparian hemlock stands on 

stream conditions and the possible impacts from hemlock loss in GSMNP.  In order to 

isolate the effect of riparian hemlock forest on stream conditions, I compared hemlock-

dominated watersheds with non-hemlock-dominated watersheds.  This comparative 

method allows the prediction of the long-term impacts to stream conditions and 

ecosystem processes that will occur with the postulated replacement of formerly 

hemlock-dominated forest with non-hemlock-dominated forest.  The difficulty in this 

type of comparative study lies in site selection.    

Due to the complexities of natural variation in landscapes, controlling for all site 

factors in a comparative field study is nearly impossible (Jenkins et al. 1999).  Careful 

site selection is imperative in order to draw strong inferences from comparative analyses.  

I devised a GIS-based site selection methodology, modified from a methodology 

developed by Young and others (2002).  In this design, the influence of landscape 

variability was minimized so that the specific effect on stream chemistry by forest type 

could be detected.  The overall goal of my site selection design was to select stream 

monitoring sites in which it would be possible to isolate differences in stream conditions 

and water quality due to forest type with all other factors being as equivalent as possible.   

The first task of the site selection process was to obtain digital data of stream and 

watershed locations for GSMNP from a Digital Elevation Model (DEM).  I accomplished 
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this by using ESRI ARC GIS’s Hydrology toolset to delineate streams of an appropriate 

flow, establish stream order, and then delineate watersheds.  In order to focus on first- 

and second- order streams, I defined the minimum accumulation area for stream 

delineation as 100,000 m2.  In an attempt to examine only those watersheds with minimal 

human impact, I developed a GIS model to identify watersheds in which no significant 

historical disturbance has occurred.  I used GSMNP fire history and disturbance history 

GIS shapefiles in the model to identify areas where fire had not occurred in the last 50 

years and areas where intensive logging had never occurred.  In addition, I identified all 

areas that do not have underlying bedrock of the shale-dominated Anakeesta Formation, 

which has the ability to yield sulphuric acid and significantly influence water chemistry 

and nutrient cycling (Flum and Nodvin 1995).  The result of the model identified all areas 

in GSMNP where fire had not occurred in the last 50 years, intensive logging had never 

occurred, and Anakeesta was not the underlying bedrock.  I used on-screen digitizing to 

select first- and second-order watersheds that met these criteria.  The selection of first- 

and second-order streams allowed me to focus on a finer scale, avoiding the influence of 

the diverse mixtures of landscapes and forest types that are typically drained by larger 

watersheds (Swanson et al. 2000).   

The result was the selection of 298 candidate watersheds draining first- and 

second-order streams that have minimal documented human impact.  The average size of 

these 298 watersheds was 182 ha (450 acres).  I then characterized these watersheds 

using nine terrain variables.  Two variables, mean elevation and range of elevation, were 

calculated for each entire watershed area.  I also calculated the mean elevation of the 

actual stream channel.  I then calculated mean elevation, range of elevation, mean slope, 
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terrain shape index, slope/aspect transformation, and topographic radiation index within a 

100 m riparian buffer surrounding each stream channel segment.  I calculated these 

variables within a riparian buffer in order to effectively assess the direct influence of the 

terrain surrounding the streams.  Terrain shape index is a measure of local convexity or 

concavity and was derived by calculating the elevation of a point and subtracting the 

mean elevation of the surrounding 23 Ha.  A resulting positive value indicates a convex 

terrain shape, such as a ridge.  A negative value indicates a concave terrain shape, such as 

a steep gorge.  A terrain shape index value near zero indicates that the terrain is planar 

(McNab 1989).  The slope/aspect transformation index calculates slope multiplied by the 

cosine of aspect.  The result is a continuous value from –1 to 1, which indicates the 

degree to which the slope is facing north (1) or south (–1) (Stage 1976).  The topographic 

radiation index is a measure of how much solar radiation an area should receive based on 

its aspect.  It is calculated by the following formula: 

                                                                   1 – cos ((π / 180)(aspect – 30) 
        Topographic Radiation Index  = ________________________________ 
                                                                                         
              2 

The result is a continuous value from 0 to 1 in which zero indicates locations that are 

typically cooler and wetter while a value of one indicates locations that are typically 

hotter and dryer (Roberts and Cooper 1989).   

 I calculated all nine terrain variables for each watershed using ArcGIS’s zonal 

statistics tool.  I then analyzed the terrain statistics of the 298 watersheds using a K-

means Cluster Analysis classification, which was reiterated numerous times in order to 

choose an appropriate number of clusters.  After analyzing iteration history and terrain  
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characteristics represented by final cluster centers, I determined that five clusters were 

necessary to account for the variability in aspect and terrain shape that occur in the 

complex topography of GSMNP.    I then implemented the cluster assignments of each of 

the 298 watersheds into ArcGIS for further analysis.  The result was the classification of 

all 298 watersheds into five terrain clusters, or classes (Figure 2). 

 I did not want to compare watersheds that were different sizes, had different 

geological substrates, or received different levels of atmospheric deposition.  All three of 

these factors have the potential to influence stream water quality.  For example, 

differences in underlying geology can influences stream chemistry (Zhi-Jun Liu et al. 

2000).  In a central Appalachian watershed, concentrations of Ca2+, Mg2+, pH, total 

alkalinity, and conductivity were found to be closely related to underlying carbonate 

bedrock (Zhi-Jun Liu et al. 2000).  Additionally, streams draining watersheds that receive 

different levels of atmospheric deposition can have significantly different water quality 

properties including pH and nutrient concentrations (Flum and Nodvin 1998).   

 Therefore, I characterized the watersheds by an additional set of landscape 

variables including watershed size, level of atmospheric deposition, and geologic 

substrate.  I classified watershed size into three classes by quantile: 1) 69–183 2) 184–

299; and 3) 300–962 hectares.  I created a model of probable atmospheric deposition for 

GSMNP that is a function of elevation and forest type (Weathers 2000).  Higher 

elevations receive more atmospheric deposition than adjacent lower elevations due to 

orographic effects and cloud deposition (Lovett and Kinsman 1990).  Coniferous forests 

receive higher amounts of atmospheric deposition because of their ability to absorb more   
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Figure 2: Map displaying the characterization of watersheds in GSMNP into five terrain classes
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particles and gases than deciduous forests (Weathers 2000).  I classified atmospheric 

deposition into five classes representing different levels of probable deposition from low 

to high.  I derived geologic substrate from digital geologic data from the National Park 

Service’s legacy data.  Geology in the Park varies, but is dominated by metamorphosed 

sedimentary rocks (King et al. 1968).  There are 25 different classifications of underlying 

bedrock identified in the GSMNP geology database.  Because of the limited spatial extent 

of some of the geologic units included in the geology layer, I chose to omit several from 

this study.  I classified the remaining geological types as either sandstones or siltstones 

and used these two categories.  

I developed a model that identified watersheds that were members of the same 

suite of landscape classifications.  For example, the model selected watersheds that were 

members of terrain cluster one, watershed size class one, probable atmospheric 

deposition level one, and had a geologic substrate of sandstone.  I altered the parameters 

of the model and reiterated the model until every possible combination of the four 

variables had been selected.  The result was a series of “similar watersheds grids” 

containing watersheds that had similar topography, geology, watershed size, and modeled 

atmospheric deposition.  I then examined each “similar watershed grid” to ensure that 

watersheds did indeed have similar topography, geology, watershed size and modeled 

atmospheric deposition.    

Within each “similar watersheds grid,” I assessed watersheds for riparian hemlock 

cover in order to identify one hemlock-dominated watershed and a similar deciduous 

hardwood-dominated watershed for comparison.  I defined hemlock-dominated 

watersheds as watersheds where canopy tree species of the riparian corridor were 
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dominated by greater than 60% hemlock.  I defined deciduous hardwood-dominated 

watersheds as watersheds where canopy tree species of the riparian corridor were less 

than 15% hemlock.  Riparian corridors were established by creating a buffer of 100 m 

along each stream segment in each watershed.  I concentrated on the canopy species of 

riparian corridors in order to focus on forest stands that have the most direct impact to 

stream environment conditions.  I will refer to “deciduous hardwood-dominated 

watersheds” as simply “hardwood-dominated watersheds” for the remainder of this paper 

in order to avoid needless verbiage.  I obtained presence of hemlock in GSMNP from a 

detailed vegetation database developed by Welch and others at the University of Georgia, 

which classified the occurrence of hemlock as either dominant, co-dominant, secondary, 

or inclusive.  (Welch et al. 2002).  For the purposes of this study, I only included 

dominant and co-dominant classified hemlock stands in order to more accurately identify 

the occurrence of hemlock-dominated areas on the landscape.  Although the GSMNP 

vegetation dataset appears to accurately identify canopy trees on the landscape, it may not 

identify important understory species, such as rhododendron.      

Once I identified hemlock-dominated watersheds, I paired each with a hardwood-

dominated watershed that had similar topography, geology, watershed size, and modeled 

atmospheric deposition.  In order to pair a hemlock-dominated watershed with a 

hardwood-dominated watershed that is as topographically similar as possible, I used 

Euclidean distance dissimilarity matrix, a statistical technique.  The dissimilarity matrix 

is created based on user defined input variables.  For this study, I used the original nine 

terrain variables again. The Euclidean distance dissimilarity matrix produces a table that 

assigns a value to the statistical distance between two cases, or for this purpose, 
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watersheds.  A pair of watersheds with a small Euclidean distance value indicates that the 

pair is more similar to each other in regard to the terrain variables than a pair of 

watersheds with a larger Euclidean distance value.  Within each “similar watersheds 

grid,” I paired each hemlock-dominated watershed with a hardwood-dominated 

watershed based on the smallest Euclidean distance value found.  Thus, I paired each 

hemlock-dominated watershed with the most statistically similar hardwood-dominated 

watershed.  In all, I identified a total of 10 pairs of geographically similar hemlock and 

hardwood-dominated watersheds to serve as study sites.                

Following the final selection of stream study site pairs, I conducted field checking 

in order to assess the validity of forest type classification and to observe any landscape 

considerations not apparent from digital data.  For example, I measured stream flow and 

stream width in order to ensure that paired stream sites were as structurally and 

geographically similar as possible.  I also assessed accessibility of paired stream sites 

based on travel time required and the difficulty of travel in order to reach sites.  Based on 

this feasibility assessment, I dropped four pairs from the study because they were either 

difficult to access or would require too mush time to reach.  Therefore, I conducted this 

research at six pairs of streams, or 12 watershed study sites.  Locations of paired 

watersheds are displayed in Figure 3 and terrain statistics for paired watersheds are 

displayed in Figure 4.   
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Figure 3: Paired watershed sites 
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Watershed 
Pair # 

Watershed 
ID 

Hardwood- 
or 

Hemlock-
dominated 

Range of 
elevation 

within 
riparian 
buffer 

Mean 
elevation 

within 
riparian 
buffer 

Mean slope/ 
aspect 

transformation 
value within 

riparian buffer 

Mean 
terrain 
shape 
index 
value 
within 

riparian 
buffer 

Mean 
solar 

radiation 
index 
value 
within 

riparian 
buffer 

Slope 
value 
within 

riparian 
buffer 

Mean 
elevation 

within 
watershed 

Range of 
elevation 
of stream 
channel 

Mean 
elevation 

of 
stream 
channel 

1 116 Hardwood 185 1000 0.06 -19.58 0.38 18.33 1075 140 985 

1 149 Hemlock 143 1054 -0.05 -22.21 0.4 15.55 1142 129 1047 

2 161 Hardwood 490 1075 0.2 -26.55 0.36 24.38 1227 420 1055 

2 10 Hemlock 396 1036 0.19 -24.16 0.41 20.99 1221 374 1018 

3 137 Hardwood 410 1077 -0.18 -24.16 0.7 30.46 1221 402 1052 

3 46 Hemlock 374 1051 -0.23 -27.33 0.73 26.53 1225 360 1032 

4 29 Hardwood 125 496 0.09 -29.79 0.42 22.44 554 99 484 

4 129 Hemlock 179 511 0.07 -31.24 0.45 29.09 575 144 495 

5 5 Hardwood 618 791 0.13 -19.92 0.42 19.81 937 586 777 

5 25 Hemlock 533 852 0.1 -20.69 0.42 25.53 973 521 835 

6 52 Hardwood 199 626 0.14 -23.38 0.38 21.95 684 163 614 

6 127 Hemlock 160 517 0.1 -23.66 0.41 26.02 575 127 502 
 
Figure 4: Statistical table containing nine terrain variables for each paired watershed 
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3.2. Field Methods and Data Collection 

3.2.1 Water Quality: Stream Water Temperature, Stream Nitrate Concentrations, pH 

 Within each of the 12 selected watersheds, I established a monitoring site 

approximately 20 m upstream of the watershed pourpoint (or the point of confluence at 

which the watershed drains into a separate downstream channel).  I measured stream 

water temperature, pH, nitrate concentrations, and flow at this pourpoint monitoring site 

within each watershed.  For water quality monitoring, I followed procedures outlined in 

the United States Geological Survey National Field Manual for the Collection of Water-

Quality Data (USGS, variously dated).   

I used Alpha Mach IBCod © data loggers to collect stream water temperatures 

measurements at hourly increments for eleven months (May 2005–March 2006).  It was 

necessary to collect hourly water temperature measurements in order to document the 

daily maximum and minimum water temperatures as well as anticipated diurnal 

fluctuations of stream water temperature.  I placed the temperature data loggers in stream 

riffle locations where perennial flow would be consistent.  I secured and anchored each 

temperature data logger with plastic-coated clothesline, plastic ties, and stream rocks.  I 

also placed stream rocks around each data logger in a manner that blocked solar radiation 

from directly striking data loggers and influencing stream water temperature 

measurements.  I placed these rocks in a manner such that they would not impede the 

flow of water.     

       I visited each site every 30–60 days to download water temperature data from 

the data loggers and to collect additional water quality parameters.  Nitrate runoff has 

been observed to be excessive during seasons marked by high runoff, so capturing stream 
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conditions for all four seasons enabled observation of seasonal variability (Swanson et al. 

2000).  During each visit to study sites, I measured stream flow using a JDC Flowatch 

flow meter, pH using a Hach Sension pH meter, and I collected stream water grab 

samples using 60 mL polyethylene bottles.  During the measurement of each stream 

environmental parameter, stream depth and stream flow were measured to assess the 

association of stream discharge fluctuations and stream condition measurements.  I 

collected data from both the hemlock and the hardwood members of each pair either on 

the same day or on two consecutive days with similar weather conditions.   

 

Temperature Data Logger Calibration 

Before deploying data loggers in streams, I placed all twelve data loggers in a 

container of cold water.  I programmed the data loggers to record temperature every 

minute for sixty minutes.  After sixty minutes, I downloaded and examined temperature 

data from each data logger in order to ensure that all data loggers were calibrated to 

record the same water temperature (+/– 0.1 °C).   On two occasions during the eleven 

months, I performed a validation check in the field to ensure that all temperature data 

loggers were still calibrated to each other.  In order to accomplish this, I carried a 

baseline data logger to each stream site.  At each site, I removed the active data logger 

from the stream and placed it in a container of water with the baseline data logger.  I 

programmed both data loggers to record water temperature every minute for twenty 

minutes.  After twenty minutes I downloaded and examined temperature data from the 

active data logger and the baseline data logger in order to ensure that both data loggers 
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were calibrated to record the same water temperature.  I found that all twelve active data 

loggers recorded the same temperature (+/– 0.1 °C) as the baseline data logger.    

 

Laboratory Methods 

I analyzed each grab water sample for stream water nitrate concentrations within 

48 hours of collection using a Hach DR/2500 Spectrophotometer in the Tennessee Valley 

Authority Environmental Laboratory.  I used a Cadmium Reduction Method for detecting 

nitrate, which is outlined in Hach’s DR/2500 Procedure Manual (Hach Company 2004).  

I implemented and conducted quality control procedures based on a Hach publication for 

quality control in laboratories (Martin 2002).  These quality control procedures included 

using standard solutions, sample spikes, and sample replicates in order to check the 

accuracy of nitrate analysis.       

 

3.2.2. Photosynthetically Active Radiation 

 Changes in forest floor insolation due to declining canopy and the transition from 

hemlock-dominated forest to hardwood-dominated forest may have profound influences 

on environmental conditions in riparian hemlock forests.  In order to quantify the 

difference in insolation on the forest floor between hemlock and hardwood forest 

canopies, I measured Photosynthetically Active Radiation (PAR) and canopy closure 

within riparian forest in three paired watersheds (3 hardwood-dominated sites and 3 

hemlock-dominated sites).  PAR is the range of light between 400 and 700 nanometers 

that is effective for photosynthesis by plants.  I measured PAR using a Sunfleck 

Ceptometer PAR meter, which measures PAR by recording the amount of energy striking 
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the sensors of the instrument per unit area per unit time (mmol m–2 s–1).  Canopy closure 

is a measure of the density of canopy cover and was measured using a spherical 

densiometer.    

Within hardwood-dominated riparian forest sites, I identified four forest 

composition types: hardwood canopy with no significant understory; hardwood canopy 

with dense deciduous hardwood understory; hardwood canopy with hemlock understory; 

and hardwood canopy with dense Rhododendron understory.  Within hemlock-dominated 

riparian forest sites I identified two forest composition types: hemlock canopy with no 

significant understory; and hemlock canopy with dense Rhododendron understory.  In 

each hardwood and hemlock forest type, I established linear transects parallel to the 

stream channel 50 m in length.  At 10 m increments along each transect, I measured PAR 

and canopy closure.  I conducted the measurements on the forest floor at a height of 1.4 

m above ground and beneath the understory canopy, if present.  I then calculated an 

average PAR and densitometer measurement for each forest type.  Methodologies for 

using the PAR meter are outlined in Sunfleck Ceptometer Operator’s Manual (Decagon 

Devices Inc. 1991); methods for using the Spherical Densiometer are in the Spherical 

Densiometer Instruction Sheet (Lemmon, variously dated).  

 PAR values vary by the angle of the sun and by atmospheric conditions at the 

time of measurement.  Therefore, I collected PAR data on days with favorable 

atmospheric conditions in which there was very little cloud cover that could interfere 

with PAR received by the meter.  With the use of a field assistant and two different PAR 

meters, I synchronized PAR data collection so that I measured PAR in hemlock-

dominated forest types at the exact same moment as a field assistant measured PAR in 
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hardwood-dominated forest types.  This synchronization allowed for a more direct 

comparison of light levels in hemlock-dominated forest types and light levels in 

hardwood-dominated forest types without the influence of the changing angle of sun or 

changing atmospheric conditions.  I conducted these measurements at each of the six sites 

once in August during leaf-on and once in January during leaf-off.  Measurements in two 

different seasons provided an opportunity to assess differences between forest types for 

the leaf-on period and separately for the leaf-off period.   

 

3.3 Statistical Analysis   

 I tested for significant differences of means between each pair of hardwood and 

hemlock-dominated sites for measured parameters including stream temperature, nitrate 

concentrations, discharge, and pH.  I also combined all observations from the six 

hemlock-dominated streams together and all observations from the six hardwood-

dominated streams together into two aggregate samples.  I then tested for differences in 

mean values of each water quality and hydrology parameter for the aggregate samples.     

I used the Independent Samples T-Test for determining differences in means of 

data that were normally distributed (nitrate concentrations, discharge and pH); and the 

Kolmogorov-Smirnov Z test for data that were not normally distributed (stream water 

temperatures).  I also tested for equal variance between each pair of hemlock and 

hardwood sites as well as between the aggregate samples using Levene’s Test for 

Equality of Variances.  I conducted statistical analysis with SPSS statistical software.     
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Chapter 4.  Results 

4.1 Photosynthetically Active Radiation and Canopy Cover 

 I compared PAR and canopy cover between four types of hardwood-dominated 

riparian forest and two types of hemlock-dominated riparian forest within three pairs of 

similarly structured hemlock- and hardwood-dominated watersheds (Pairs 1, 3, and 5).  

Measurements were conducted once in the summer with leaf-on conditions (Figure 5) and 

once in the winter with leaf-off conditions (Figure 6).  Canopy cover and PAR 

measurements are shown in Figure 7.   

I found that understory species composition was a strong determinant of the light 

conditions of the forest interior.  The presence of understory species greatly influenced 

PAR values and canopy cover among forest types and diminished the magnitude of 

difference between hemlock- and hardwood-dominated canopies.  Rhododendron, when 

present as an understory species, was a strong contributor to canopy cover and was 

particularly efficient at reducing PAR at the forest floor.  I found that an understory 

composed of hemlock or Rhododendron produced the lowest PAR levels reaching the  

forest floor in both hardwood- and hemlock-dominated forest types.  The lowest light 

conditions and highest canopy cover occurred in a hemlock-dominated canopy with a 

dense Rhododendron understory.       

 

4.2 Water Quality and Hydrology 

Stream Water Temperature 

 Temperature data for my 6 pairs of hemlock and hardwood-dominated streams 

consisted of hourly data points spanning the period from May 1, 2005 to March 1, 2006.    
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Figure 5: Image representing four different hardwood-dominated riparian forest 
types and two different hemlock-dominated riparian forest types and their 
associated leaf-on canopy cover measurements and PAR values.  PAR values   
(mmol m–2 s–1) indicate the amount of photosynthetically active radiation received at 
the forest floor.  Canopy cover values indicate the percentage of overhead sky 
obscured by plant material. 
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Figure 6: Image representing four different hardwood-dominated riparian forest 
types and two different hemlock-dominated riparian forest types and their 
associated leaf-off canopy cover measurements and PAR values.  PAR values (mmol 
m–2 s–1) indicate the amount of photosynthetically active radiation received in the 
forest interior.  Canopy cover values indicate the percentage of overhead sky 
obscured by plant material. 
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 Summer (leaf-on) Winter (leaf-off) 
Forest Type PAR Canopy Cover (%) PAR Canopy Cover (%) 
Hardwood / minimal understory 51 69.84 378 18.88 

Hardwood / Hardwood understory 20 75.04 247 23.04 

Hardwood / Hemlock understory 14 76.08 33 66.72 

Hardwood / Rhododendron understory 12 80.24 27 71.92 

Hemlock / minimal understory 35 71.92 46 54.24 

Hemlock / Rhododendron understory 7 83.36 11 83.36 
 
Figure 7: PAR and canopy cover values for each forest type.  PAR values (mmol m–2 s–1) indicate the amount of 
photosynthetically active radiation received in the forest interior.  Canopy cover values indicate the percentage of overhead 
sky obscured by plant material. 
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Data collection resulted in approximately 7,500 data points per stream.  Comparisons of 

stream water temperatures between hemlock- and hardwood-dominated streams are 

shown in Figures 8–13.  Gaps of missing data, which occurred at every stream site, can 

be attributed to wildlife and human disturbance of temperature data loggers.  I used a 

motion-detection camera in order to determine the cause of temperature data logger 

disturbance.  One of the culprits, a black bear cub, was captured on film (Figure 14).  In 

order to avoid having the gaps of missing data influence my results, I only used 

temperature data for statistical analysis that I was able to retrieve for both the hardwood- 

and hemlock-dominated sites within a pair.      

 Water temperature results were mixed, with some hardwood streams having 

warmer mean temperatures (Pairs 1, 5, and 6), and some hemlock streams having warmer 

mean temperatures (Pairs 2, 3, and 4).  I tested for the significance of differences between 

the mean recorded stream water temperatures of hardwood- and hemlock-dominated 

streams.  The magnitude of difference in mean stream water temperatures between 

hemlock and hardwood ranged from to 0.02 to 0.53 °C (0.04 to 0.95 °F).  Although these 

differences in stream water temperatures were small, I did find the differences to be 

statistically significant.  Additionally, I found differences in stream temperatures between 

aggregate samples of hardwood- and hemlock-dominated streams to be statistically 

significant.  Mean stream water temperatures among pairs are shown in Figure 15.   I also 

examined differences in the maximum temperature and annual and diurnal ranges of 

temperatures between hemlock- and hardwood-dominated streams.  I found no consistent 

pattern of maximum temperatures or ranges of temperatures occurring with forest type.   
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Pair 1: Stream Water Temperatures
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Figure 8: Stream water temperatures for pair 1 
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Pair 2: Stream Temperatures
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Figure 9: Stream water temperatures for pair 2 
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Pair 3: Stream Temperatures
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Figure 10: Stream water temperatures for pair 3 
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Pair 4: Stream Temperatures
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Figure 11: Stream water temperatures for pair 4 
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Pair 5: Stream Temperatures
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Figure 12: Stream water temperatures for pair 5 
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Pair 6: Stream Temperatures
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Figure 13: Stream water temperatures for pair 6 
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Figure 14: Photograph of black bear cub captured by a motion-detection camera.  Disturbance to monitoring equipment by 
this bear, other wildlife, and humans caused gaps in stream water temperature data 
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Figure 15: Mean stream water temperatures among pairs 
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Hemlock-dominated streams had higher maximum temperatures in pairs 2, 3, and 4 and 

hardwood-dominated streams had higher maximum temperatures in pairs 1, 5, 

and 6.  In pairs 4 and 6, hemlock-dominated streams had higher ranges of stream 

temperatures while in pairs 1, 2, 3, and 5, hardwood-dominated streams had higher 

ranges of stream temperatures.  Strong diurnal fluctuations were observed in both 

hemlock- and hardwood-dominated streams.  Hemlock-dominated streams had higher 

diurnal ranges in pairs 1, 2, and 6 and hardwood-dominated streams had higher diurnal 

ranges in pairs 3, 4, and 5.   

 Additionally, I compared hemlock- and hardwood-dominated stream temperatures 

stratified by leaf-on and leaf-off conditions.  For each pair I chose a single month to 

represent the leaf-on conditions of summer and a single month to represent the leaf-off 

conditions of winter.  Although I generally used the month of August for summer leaf-on 

conditions and the month of December for leaf-off conditions, I had to choose different 

months for some pairs in order to avoid gaps in the data.  For example, I used August and 

December for pairs 1, 2, and 5; late June to late July (6/24–7/23) and December for pair 

3; mid June to mid July (6/19–7/18) and December; July and December for pair 5; and 

August and January for pair 6.   

 I found no consistent pattern of seasonal temperature differences occurring with 

forest type.  In pairs 2 and 3, I found that hemlock-dominated streams had warmer mean 

temperatures in both leaf-on and leaf-off conditions.  In pairs 4 and 6, hemlock-

dominated streams had warmer mean temperatures in leaf-on conditions and cooler mean 

temperatures in leaf-off conditions.  In pairs 1 and 5, hardwood-dominated streams had 
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warmer mean temperatures in leaf-on conditions and cooler mean temperatures in leaf-off 

conditions.       

 Overall, I found no clear, consistent pattern of one forest type being associated 

with a particular thermal regime.                    

 

Stream Nitrate Concentrations 

 Stream nitrate concentrations were similar within pairs.  For each pair, I found 

equal variance and no significant difference in mean nitrate concentrations between 

hemlock- and hardwood-dominated streams.  I also found no significant difference in 

mean nitrate concentrations between aggregate samples of hardwood- and hemlock-

dominated streams.  Nitrate concentrations were low in all streams sampled, ranging from 

0.01 to 0.6 mg/L with an average of 0.179 mg/L.  Concentration values among pairs are 

shown in line graphs in Figures 16–21.  Neither hemlock- nor hardwood-dominated 

streams had consistently higher nitrate concentrations among all pairs.  Hardwood-

dominated streams had higher nitrate concentrations in pairs 1 and 2, while hemlock- 

dominated streams had higher nitrate concentrations in pairs 3, 4, 5, and 6.  Mean values 

of nitrate concentration among pairs are shown in Figure 22.  Data for nitrate 

concentrations, pH, and discharge are presented in Figures 23–25.  

 
 
Stream pH 

 Stream pH values were also similar within pairs (Figures 23-25).  For each pair, I 

found equal variance and no significant difference in stream pH between hemlock- and 
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Figure 16: Stream nitrate concentrations for pair 1 

Pair 1: Stream Nitrate Concentrations
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Pair 2: Stream Nitrate Concentrations 
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Figure 17: Stream nitrate concentrations for pair 2 
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Pair 3: Stream Nitrate Concentrations
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Figure 18: Stream nitrate concentrations for pair 3 
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Pair 4: Stream Nitrate Concentrations
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Figure 19: Stream nitrate concentrations for pair 4 
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Pair 5: Stream Nitrate Concentrations
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Figure 20: Stream nitrate concentrations for pair 5 



 67

Pair 6: Stream Nitrate Concentrations
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Figure 21: Stream nitrate concentrations for pair  
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Stream Nitrate Concentrations
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Figure 22: Mean stream nitrate concentrations among watershed pairs with mean watershed elevations in meters 
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Pair 1 Stream Nitrate mg/L Discharge (m3/s) pH 
Sample 
Date 

Hardwood 
(Watershed #149)  

Hemlock 
(Watershed #116) 

Hardwood 
(Watershed #149) 

Hemlock 
(Watershed #116) 

Hardwood 
(Watershed #149) 

Hemlock 
(Watershed #116) 

06/17/2005 0.04 0.04 0.3244 0.1237 7.01 6.81 
07/25/2005 0.08 0.1 0.0619 0.0565 6.84 6.79 
09/07/2005 0.04 0.03 0.0525 0.0250 6.83 6.97 
09/26/2005 0.05 0.02 0.0546 0.0405 6.89 6.92 
10/18/2005 0.04 0.06 0.0985 0.0583 6.91 6.88 
11/18/2005 0.06 0.05 0.0836 0.0760 6.89 6.87 
12/10/2005 0.02 0.01 0.1658 0.0923 6.95 6.86 
01/21/2005 0.03 0.02 0.0993 0.1093 6.71 6.65 
03/12/2006 0.03 0.03 0.1952 0.0729 6.84 6.81 

Average 0.043 0.040 0.126 0.073 6.874 6.840 
              

Pair 2 Stream Nitrate mg/L Discharge (m3/s) pH 
Sample 
Date 

Hardwood 
(Watershed #161) 

Hemlock 
(Watershed #10) 

Hardwood 
(Watershed #161) 

Hemlock 
(Watershed #10) 

Hardwood 
(Watershed #161) 

Hemlock 
(Watershed #10) 

05/25/2005 0.42 0.51 0.5549 0.2278 6.71 6.82 
06/09/2005 0.44 0.49 0.1874 0.4483 6.695 6.88 
07/23/2005 0.44 0.42 0.0945 0.0849 6.89 6.92 
08/27/2005 0.43 0.44 0.0354 0.0327 6.83 6.87 
10/01/2005 0.47 0.33 0.0292 0.0444 6.89 7.09 
10/18/2005 0.49 0.43 0.0634 0.0723 6.93 6.89 
11/19/2006 0.5 0.51 0.0948 0.0894 6.91 6.85 
12/12/2005 0.6 0.6 0.1293 0.1911 6.97 6.89 
01/23/2006 0.6 0.6 0.0791 0.0843 7.01 6.81 
03/11/2006 0.59 0.57 0.0844 0.0948 6.9 6.88 

Average 0.498 0.490 0.135 0.137 6.874 6.890 
 
Figure 23: Nitrate concentrations, discharge, and pH data for Pairs 1 and 2 
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Pair 3 Stream Nitrate mg/L Discharge (m3/s) pH 
Sample 
Date 

Hardwood 
(Watershed #137) 

Hemlock 
(Watershed #46) 

Hardwood 
(Watershed #137) 

Hemlock 
(Watershed #46) 

Hardwood 
(Watershed #137) 

Hemlock 
(Watershed #46) 

06/14/2005 0.07 0.17 0.2268 0.2153 6.742 6.81 
07/25/2005 0.24 0.23 0.1374 0.1399 6.98 6.87 
09/06/2005 0.21 0.2 0.0410 0.0331 6.87 6.89 
09/27/2005 0.08 0.1 0.0536 0.0248 6.95 6.85 
10/19/2005 0.07 0.14 0.0624 0.0579 6.99 6.93 
11/19/2005 0.09 0.11 0.0742 0.0681 6.89 6.91 
12/10/2005 0.1 0.15 0.0936 0.0894 7.05 7.01 
01/22/2006 0.11 0.14 0.0693 0.0740 7.01 6.8 
03/11/2006 0.08 0.09 0.1070 0.0959 6.78 6.81 

Average 0.117 0.148 0.096 0.089 6.918 6.876 
              

Pair 4 Stream Nitrate mg/L Discharge (m3/s) pH 
Sample 
Date 

Hardwood 
(Watershed #29) 

Hemlock 
(Watershed #129) 

Hardwood 
(Watershed #29) 

Hemlock 
(Watershed #129) 

Hardwood 
(Watershed #29) 

Hemlock 
(Watershed #129) 

06/07/2005 0.05 0.05 0.1678 0.0865 6.85 6.86 
07/23/2005 0.04 0.04 0.0449 0.0226 6.95 6.94 
08/18/2005 0.06 0.04 0.0348 0.1181 6.88 6.87 
09/23/2005 0.06 0.05 0.0159 0.0097 6.89 6.95 
10/19/2005 0.05 0.06 0.0475 0.0345 6.83 6.89 
11/20/2006 0.04 0.03 0.0627 0.0254 6.88 6.81 
12/12/2005 0.04 0.04 0.0726 0.0432 6.78 6.98 
01/22/2006 0.02 0.05 0.0256 0.0632 6.38 6.89 
03/12/2006 0.02 0.04 0.0823 0.0856 6.89 6.9 

Average 0.042 0.044 0.062 0.054 6.814 6.899 
 
Figure 24: Nitrate concentrations, discharge, and pH data for Pairs 3 and 4 
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Pair 5 Stream Nitrate mg/L Discharge (m3/s) pH 
Sample 
Date 

Hardwood 
(Watershed #5) 

Hemlock 
(Watershed #25) 

Hardwood 
(Watershed #5) 

Hemlock 
(Watershed #25) 

Hardwood 
(Watershed #5) 

Hemlock 
(Watershed #25) 

06/14/2005 0.26 0.28 0.1502 0.1159 6.79 6.83 
07/28/2005 0.19 0.24 0.1487 0.2170 6.87 6.81 
08/28/2005 0.2 0.26 0.0352 0.1970 6.91 6.88 
08/30/2005 0.23 0.23 0.0473 0.0512 6.93 6.84 
09/23/2005 0.19 0.24 0.0813 0.0226 7.01 6.82 
10/20/2005 0.21 0.22 0.0362 0.0315 6.89 6.79 
11/20/2006 0.24 0.21 0.0617 0.0579 6.84 6.81 
12/10/2005 0.22 0.21 0.0315 0.0328 6.81 6.91 
01/22/2006 0.24 0.24 0.0402 0.0378 6.86 6.83 
03/10/2006 0.23 0.21 0.1050 0.0830 6.85 6.91 

Average 0.221 0.234 0.074 0.085 6.876 6.843 
              

Pair 6 Stream Nitrate mg/L Discharge (m3/s) pH 
Sample 
Date 

Hardwood 
(Watershed #52) 

Hemlock 
(Watershed #127) 

Hardwood 
(Watershed #52) 

Hemlock 
(Watershed #127) 

Hardwood 
(Watershed #52) 

Hemlock 
(Watershed #127) 

06/07/2005 0.04 0.09 0.0923 0.0691 6.87 6.91 
07/22/2005 0.08 0.08 0.0526 0.0236 6.85 6.84 
08/18/2005 0.07 0.09 0.1651 0.0310 6.94 6.9 
09/23/2005 0.1 0.11 0.0091 0.0089 6.98 6.85 
10/18/2005 0.05 0.07 0.0317 0.0259 7.01 6.87 
11/21/2006 0.09 0.09 0.0375 0.0473 6.81 6.79 
12/13/2005 0.08 0.1 0.0476 0.0357 6.88 6.93 
01/22/2006 0.07 0.08 0.0692 0.0542 6.4 6.81 
03/12/2006 0.06 0.06 0.0729 0.0913 6.94 7.01 

Average 0.071 0.086 0.064 0.043 6.853 6.879 
 
Figure 25: Nitrate concentrations, discharge, and pH data for Pairs 5 and 6
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hardwood-dominated streams.  I also found no significant difference in stream pH 

between aggregate samples of hardwood- and hemlock-dominated streams.  

Concentrations were all very close to neutral (7.0); values ranged from 6.4 to 7.0, with an 

average of 6.87 for all streams.  Neither hemlock- nor hardwood-dominated streams had 

consistently higher pH among all pairs. Hardwood-dominated streams had a higher pH in 

pairs 1, 3, and 5, while hemlock-dominated streams had a higher pH in pairs 2, 4, and 6.  

Mean pH values among pairs are shown in Figure 26.   

 

Stream Discharge 

 Stream discharge was also similar within pairs (Figures 23-25).  I found equal 

variance and no significant difference in mean stream discharge between hemlock and 

hardwood-dominated streams.  Additionally, I found no significant difference in stream 

discharge between aggregate samples of hardwood- and hemlock-dominated streams.  

Mean discharge for all streams was less than one m3/s, ranging from 0.0008 to 0.958 m3 

s–1.  Neither hemlock nor hardwood-dominated streams had consistently higher discharge 

among all pairs.  Hardwood-dominated streams had a higher discharge in pairs 1, 3, 4, 

and 6, while hemlock-dominated streams had a higher discharge in pairs 2 and 5.  Mean 

discharge values among pairs are shown in Figure 27. 
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Figure 26: Mean stream pH among watershed pairs
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Figure 27: Mean stream discharge among watershed pairs 
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Chapter 5. Discussion 

5.1 Introduction to Discussion  

 The results of this research indicate that stream nitrate concentrations, pH, 

hydrology, and water temperatures are similar between hemlock and hardwood-

dominated streams in GSMNP.  I did not find a significant influence of riparian hemlock 

stands on stream conditions, which implies that differences in hemlock and hardwood 

riparian forest types do not result in significant differences in stream water conditions of 

temperature, nitrate concentrations, discharge, and pH.  Additionally, the results of this 

research indicate that if a riparian hemlock forest is eventually able to successfully make 

the transition to an intact riparian hardwood forest, there will be no significant difference 

in stream nitrate concentrations, water temperatures, pH, or discharge.  Thus, if a 

formerly hemlock-dominated riparian forest is able to fully recover from hemlock 

mortality and hardwood replacement species are able to function as an intact ecosystem, 

long term impacts of hemlock mortality on watershed-scale stream nitrate concentrations, 

pH, stream temperature, and discharge will be minimal in GSMNP.  These findings are 

discussed in detail in the following text. 

 

5.2 Water Chemistry and Hydrology  

 The presence of hemlock-dominated riparian forest does not seem to have a 

significant influence on stream nitrate concentrations, pH, and discharge in GSMNP.  I 

found no significant statistical difference in nitrate concentrations, pH, or discharge 

between streams draining hemlock-dominated forest and streams draining hardwood-

dominated forest.  The lack of significant difference in water chemistry between 
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hemlock- and hardwood-dominated streams is consistent with other research (Snyder et 

al. 2002).   

Although pH values were not statistically significantly different between hemlock 

and hardwood streams, I did find four of six hemlock streams to be slightly more acidic 

than their paired hardwood-dominated streams.  I found stream water discharge to be 

similar between hemlock and hardwood-dominated streams.  I believe the similarities of 

measured stream water parameters within pairs are an indication that watershed pairing 

was effective and successful.           

Although I did not find significant differences in nitrate concentrations within 

pairs, I did find differences in nitrate concentrations between pairs of watersheds 

occurring at different elevational ranges.  For example, pair 2 is located at higher 

elevations than pair 4 and also has greater nitrate concentrations than pair 4 (Figure 22).  

This elevational gradient in stream nitrate concentrations in GSMNP can be explained by 

the greater levels of atmospheric deposition of nitrogen that occur at higher elevations in 

GSMNP.  These results are consistent with observations from other research, confirming 

that there is an elevational gradient in stream nitrate concentrations in GSMNP (Flum and 

Nodvin 1995). 

 I also found stream nitrate concentrations to be low, an average of 0.18 mg/L for 

all 14 study sites, which suggests that these low- to mid-elevation watersheds may not be 

particularly susceptible to nitrogen saturation as a result of hemlock mortality.  The 

nitrate concentrations observed in this study are significantly lower than observed nitrate 

concentrations from other studies on headwater streams in GSMNP.  Stream nitrate 

concentrations in Noland Divide, a high elevation stream in GSMNP, have been 
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documented to be in excess of 1.5 mg/L  (Flum and Nodvin 1995).  The difference in 

observed concentrations can be attributed to elevation.  The Noland Divide watershed is 

located at an elevation of 1676–1920 m (5498–6299 ft) and thus has higher nitrate 

concentrations than the watersheds chosen for this study, which are located at elevations 

under 1400 m (4593 ft).  Because hemlock-dominated riparian forest only occurs at low 

to middle elevation watersheds, I chose to focus this study on low to middle elevation 

watersheds instead of high elevation watersheds.  I chose to use low to middle elevation 

watersheds for study sites, instead of high elevation watersheds, since the focus of the 

study was on hemlock-dominated riparian forest, which only occurs at low to middle 

elevations in GSMNP.  The results of this research suggest that because substantial 

hemlock-dominated riparian forest only occurs at lower elevations where nitrogen 

saturation is not yet occurring, long-term impacts of hemlock mortality will not cause 

increased nitrogen saturation.  However, short term impacts could include increased 

stream nitrate concentrations as riparian hemlock stands decline.             

 

5.3 Water Temperature  

Although stream water temperatures were similar between hemlock- and 

hardwood-dominated streams, I did find averaged differences to be statistically 

significant.  However, differences in stream water temperature are not consistent for 

either hemlock or hardwood riparian forest.  For example, hardwood water temperatures 

in Pairs 1, 5, and 6 were warmer than paired hemlock water temperatures on average.  In 

contrast, hemlock water temperatures in pairs 2, 3, and 4 were warmer than hardwood 

water temperatures on average.  I also examined differences in mean temperatures 
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between hemlock- and hardwood-dominated streams stratified by leaf-on summer 

conditions and leaf-off winter conditions.  I found no clear consistent pattern of the 

seasonality of stream temperatures for either hemlock or hardwood riparian forest.   

Additionally, the magnitude and timing of maximum stream water temperatures 

are also not consistent with one particular forest type.  Hemlock streams reached higher 

maximum temperatures in pairs 2, 3, and 4 while hardwood streams reached higher 

maximum temperatures in pairs 1, 5, and 6.  Maximum temperatures were reached in 

August for pairs 2, 3, and 5, while maximum temperatures were reached in July for pairs 

1, 4, and 6.  Thus, the presence of hemlock or hardwood riparian forest does not appear to 

exert a strong, consistent signal on thermal regimes of headwater streams in GSMNP.  

The inconsistency in the results suggests that other landscape variables, such as the 

influence of groundwater or understory species, may exert more control on stream 

temperatures than differences between hemlock and hardwood forest types.   

Although statistical analysis indicates that differences between hemlock and 

hardwood stream temperatures are significant, it is important to put these data into 

perspective and ask if the differences are “significant” in a practical sense.  In this case, 

stream ecology is the subject of concern.  So the question should be whether these 

differences are ecologically “significant.”   

The average difference in stream water temperatures between all hardwood- and 

hemlock-dominate streams in this study is 0.43 °C (0.78 °F).  Additional research is 

needed on multiple aquatic species native to headwater streams in GSMNP to determine 

whether an annually-averaged difference in mean water temperature of 0.43 °C (0.78 °F) 

is ecologically important.   
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For native brook trout populations in GSMNP, elevated stream water 

temperatures in the summer pose the greatest threat.  Green (1950) reports that the ideal 

water temperature for eastern brook trout is 18.9 °C (66 °F) and the maximum limit is 

23.9 °C (75 °F).  Of the twelve headwater streams monitored for water temperature in 

this study, not one reached the maximum temperature limit for brook trout (23.9 °C).  

With this in mind, hemlock and hardwood-dominated headwater streams should both 

provide adequate habitat for brook trout when considering maximum stream temperatures 

alone.  Therefore, I suggest that if hardwood species are able to replace hemlock in 

GSMNP and streams are able to recover from short-term impacts, long-term impacts to 

brook trout habitat will be minimal.  However, as hemlocks decline in GSMNP, I 

hypothesize that short-term elevated stream temperatures could occur.  Additional 

research is needed to determine whether brook trout populations could sustain temporary 

unfavorable water temperatures until formerly hemlock-dominated streams return to 

stable conditions. 

 

5.4 Conflict in Literature  

Some results presented in this thesis differ from the results of a similar study 

assessing differences between hemlock- and hardwood-dominated streams in Delaware 

Water Gap National Recreation Area (DWGNRA), New Jersey.  Snyder and others found 

that in DWGNRA, hemlock-dominated streams had more stable thermal and hydrologic 

regimes than hardwood-dominated streams.  In GSMNP, I found thermal and hydrologic 

regimes to be similar between hemlock and hardwood-dominated streams, with no clear 

consistent pattern of differences between the two forest types. 



 80

The contrasting results can likely be attributed to differences in terrain and forest 

species composition between GSMNP and DWGNRA study sites.  DWGNRA is a linear 

Park straddling the Delaware River with an elevational range of 84 to 490 m (275–1607 

ft) (Snyder et al. 2002).  GSMNP is larger in size and has more complex terrain and 

drainage patterns and has an elevation of 256 to 2024 m (840–6643 ft).  Due to latitudinal 

and elevational differences between the two sites, the distribution of hemlock forest also 

differs.  Synder and others report that when hemlock occurs in DWGNRA, it comprises 

as much as 77% of the basal area in stands (Synder et al. 2002).  In GSMNP, riparian 

hemlock is patchy in distribution and often is mixed with northern and cove hardwood 

species.  Riparian hemlock in GSMNP is not continuous along the entire course of a 

stream, but occurs in sheltered patches intermixed with hardwood species.  In a current, 

ongoing study, Kincaid found that in GSMNP riparian hemlock stands are more species 

rich than hemlock stands that occur on upper elevational slopes (Kincaid 2005, personal 

communication).   

Additionally Kincaid found that riparian hemlock stands in GSMNP have dense 

understories of Rhododendron (Rhododendron maximum) thickets that are not as 

common in hemlock stands located on upper elevational slopes.  The presence of dense 

Rhododendron thickets in the understory of riparian hemlock and hardwood forests in 

GSMNP may have a significant impact on thermal and hydrologic regimes of headwater 

streams in GSMNP.  Rhododendron are able to extend out and over stream surfaces, 

sometimes creating a continuous canopy above the stream water surface.  Rhododendron, 

like hemlock, is evergreen and provides perennial shade for stream water.  In this 

research, I found that the lowest levels of photosynthetically active radiation and the 
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highest canopy closure measurements were recorded beneath Rhododendron.  These 

observations suggest that riparian Rhododendron may play a more important role in 

moderating stream temperature than riparian hemlock.  Additionally, Rhododendron 

often is associated with deep, slowly decomposing litter on the forest floor, similar to the 

litter beneath hemlocks (Romancier 1971).  Furthermore, since Rhododendron shares 

somewhat similar attributes with hemlock and it occurs almost ubiquitously as a dense 

understory species in both hemlock and hardwood-dominated riparian forests, I 

hypothesize that Rhododendron dampens the otherwise unique influences of hemlock and 

hardwood forest types on riparian environmental conditions. 

I hypothesize that the small size, patchy distribution, and mixed-species 

composition of riparian hemlock stands, along with the presence of understory 

Rhododendron, limit riparian hemlock’s effects on the thermal and hydrologic regimes of 

headwater streams in GSMNP.  These same limitations may not occur in DWGNRA and 

other more northerly locations and would thus explain the discrepancy of findings 

between DWGNRA and GSMNP.        

 

5.5 Immediate Short-Term and Eventual Long-Term Impacts of Hemlock Mortality 

Immediate, short-term impacts of hemlock mortality 

 The response of stream conditions to hemlock mortality will occur at two 

different temporal scales:  1) The short-term, immediate response of stream conditions to 

hemlock decline and mortality; and 2) The long-term, eventual response of stream 

conditions to the replacement of hemlock-dominated forest with hardwood-dominated 

forest.  Although the type and extent of immediate impacts to water quality caused by 
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riparian hemlock decline and mortality in GSMNP is unknown, I believe that immediate 

impacts to stream conditions caused by hemlock decline and mortality will be similar to 

the documented impacts to stream conditions from other types of disturbances to riparian 

forest that are discussed in the literature survey in this thesis.  The severity of these initial 

impacts will depend on the size of and composition of riparian hemlock stands and the 

rate and timing of decline and mortality.  If hemlock mortality occurs in a large pure 

species riparian hemlock stand, I believe the defoliation of canopy cover and the 

cessation of nutrients and water being taken up by formerly healthy hemlocks will cause 

somewhat severe localized impacts to water quality.  I believe short-term impacts to 

hemlock decline and mortality will include increased solar radiation reaching the forest 

floor, increased nutrient export to stream water, increased sediment delivery, and 

alterations to hydrology and stream temperatures.   

Many riparian hemlock stands in GSMNP are composed of mixed hardwood 

species with an understory of Rhododendron.  The presence of remaining hardwood 

species and Rhododendron species in formerly hemlock-dominated riparian stands will 

help to minimize the effects of increased solar radiation from the loss of hemlock canopy.  

Living hardwood and Rhododendron species can also continue to take up nutrients and 

water from the soil so that nutrient and water export from soils as a result of hemlock 

mortality will not be as severe.  On the other hand, Yeakley and others (2003) 

investigated the effects of removing riparian Rhododendron compared to the natural 

blowdown of canopy trees on nutrient export to streams.  They found that removing 

Rhododendron resulted in significantly less nutrient export to streams than the natural 

blowdown of canopy trees.  Yeakley and others (2003) suggest, in conclusion, that 
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rhododendron only plays a minor role in controlling nutrient export to headwater streams 

that canopy trees are essential in order to control nutrient loss from soils.    

The timing and the manner in which hemlock decline and mortality occur will be 

a strong determinant of the severity of hemlock mortality’s immediate impacts to stream 

conditions.  If hemlock mortality occurs throughout a watershed at the same time, the 

immediate impacts to stream conditions could be much more severe.  Broad-scale 

hemlock mortality could cause dead standing hemlocks to be more susceptible to 

windthrows.  If a storm felled and uprooted numerous dead standing hemlocks, disruption 

of the roots and soil could result in significant increases in soil and stream water nitrate 

concentrations (Yeakley 2003).  Additionally, the felling and uprooting of dead standing 

hemlocks over a broad area could result in significant sediment input to streams and 

woody debris accumulation, which could cause significant changes to the fluvial 

geomorphology and aquatic habitat of affected stream channels.   

Although the potential immediate impacts of hemlock mortality have been 

compared to impacts from riparian forest harvesting, I believe the impacts will not be as 

great in magnitude because hemlock loss is unlikely to occur at the same time throughout 

a watershed.  Furthermore, it is unlikely that hemlock mortality will result in a complete 

lack of vegetation, like some riparian forest harvesting practices.   

The severity of hemlock mortality’s immediate impacts will ultimately depend on 

the rate at which undisturbed species and replacement species can develop and fill the 

empty niche left by declining and standing dead hemlocks.  It has been documented that 

elevated stream nitrate concentrations returned to pre-disturbance levels five to ten years 

after forest harvesting had occurred (Bormann and Likens 1979; Townsend et al. 2004).  
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Robinson and others (2002) found that elevated soil and stream nitrate concentrations 

decreased significantly as regenerating Fraser firs began to replace standing dead mature 

Fraser firs in GSMNP.  The elevated soil and stream nitrate concentrations had been 

caused by the decline and mortality of mature Fraser fir trees that were killed by the 

balsam woolly adelgid.  Further watershed-specific investigations are needed in GSMNP 

in order to determine the length of time that formerly hemlock-dominated watersheds will 

require before riparian conditions will be able to return to pre-disturbance environmental 

conditions.        

 

Eventual, long-term impacts from hemlock mortality 

The results of this research indicate that the long-term, eventual response of 

stream conditions to the replacement of hemlock-dominated forest with hardwood-

dominated forest should be minimal if these systems can recover from the immediate 

impacts of hemlock decline and mortality.  However, these results refer to watershed-

scale impacts and may not address the more localized impacts that may occur at the 

stream-feature scale as a result of the replacement of riparian hemlock with hardwood 

species.  For example, some headwater streams have deep pools that are currently located 

beneath dense hemlock canopy and may be a refuge for biota seeking the shaded cooler 

water during warm summer months.  Although this research suggests that long-term 

impacts from hemlock mortality may be insignificant on a watershed-wide scale, this 

conclusion does not take into account more localized impacts that may occur on a smaller 

stream-feature scale, such as in refuge pools.    
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The long-term, eventual response of stream conditions to the replacement of 

hemlock-dominated forest with non-hemlock-dominated forest will be determined by the 

ability of riparian forest to recover from the immediate impacts from hemlock mortality 

and return to a functional intact system.  The research presented in this thesis makes an 

assumption, based on the current literature, that riparian hemlock forest in GSMNP will 

be replaced by riparian hardwood forest.  However, the observations of hardwood 

replacing hemlock in the current literature are based on research conducted in the mid-

Atlantic and northeastern United States.  Environmental conditions in the southern 

Appalachians and GSMNP differ from conditions in the mid-Atlantic and northeast.  

Therefore, there are some factors in GSMNP which may restrict the recovery from short-

term impacts and limit the ability of the formerly hemlock-dominated riparian forest from 

developing into a functional intact hardwood-dominated riparian ecosystem.     

For example, although none of the 14 watersheds chosen for this study exhibited 

signs of nitrogen saturation, other watersheds in GSMNP are experiencing nitrogen 

saturation (Flum and Nodvin 1995), which may prevent a fully functional intact 

hardwood-dominated riparian forest from replacing the formerly hemlock-dominated 

riparian forest.  In this case, net loss of nitrate from the soil to stream water may continue 

and significant long term impacts to stream and soil nitrate concentrations from hemlock 

mortality may occur.   

 Additionally, forest species compositions in the southern Appalachians differ 

from species compositions of the mid-Atlantic and northeastern United States.  For 

example, Rhododendron, which is a ubiquitous riparian species in the southern 

Appalachians, is present but not as common in the mid-Atlantic, and is not found at all in 
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the Northeast.  Rhododendron has two significant attributes that could prevent an intact 

hardwood-dominated riparian forest from replacing the formerly hemlock-dominated 

riparian forest in the southern Appalachians: 1) Rhododendron grows vigorously in 

disturbed areas and 2) Rhododendron limits the regeneration of hardwood tree species.       

Dobbs and Parker (2004) found significant expansion of the distribution of 

Rhododendron in riparian environments in the Southern Appalachians as a result of forest 

disturbance and fire suppression.  Researchers have suggested that many Rhododendron 

thickets formed in the southern Appalachians as a result of the opening of the forest 

canopy in the 1930s after the blight-induced decline of the American chestnut (Castanea 

dentata) (McGinty 1972; Clinton et al. 1994).  Other researchers attribute the 

establishment of Rhododendron thickets to forest disturbances such as logging (McGee 

and Smith 1967; Vandermast 2002).  In locations where the mortality of overstory tree 

species has occurred, Rhododendron has been found to develop into a dense thicket 

forming a continuous sub-canopy with an absence of canopy tree species (Baker and Van 

Lear 1998; Vandermast et al. 2002).  With the opening of the forest canopy caused by 

hemlock decline and mortality, I hypothesize that dense thickets of Rhododendron could 

expand along formerly hemlock-dominated riparian corridors and prevent the recruitment 

and colonization of hardwood canopy tree seedlings.  Research has shown that 

Rhododendron has the ability to cause mortality and suppress the growth of hardwood 

seedlings (Nilsen et al. 2000; Lei et al. 2002; Hille Ris Lambers and Clark 2003).  

Rhododendron has been found to reduce the availability of resources both above (light, 

precipitation) and below ground (water, nutrients) for canopy tree seedlings (Nilsen et al. 

2000).    Other research has suggested that Rhododendron may have some allelopathic 
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characteristics (Nilsen et al. 1999; Nilsen et al. 2001).  In these southern Appalachian 

Rhododendron thickets, hemlock has been found to be the only riparian tree species that 

has been able to regenerate and attain overstory status (Vandermast et al. 2002).  Once 

hemlock is absent from riparian forests in the southern Appalachians, I hypothesize that it 

may be possible that no other tree species will be able to regenerate and attain overstory 

status in dense Rhododendron thickets without the aid of gap-phase disturbance.  I also 

hypothesize that with the loss of riparian hemlock, dense Rhododendron thickets without 

overstory tree species may become more prevalent in the riparian forest of the southern 

Appalachians.  If this occurs, the long-term impacts to riparian environmental conditions 

in the southern Appalachians caused by hemlock mortality will be much more severe 

than if intact hardwood-dominated riparian forest was able to replace formerly hemlock-

dominated riparian forest.  Additional research on the influence of Rhododendron 

thickets on riparian environmental conditions would contribute to a better understanding 

of the potential future of currently hemlock-dominated riparian forest in GSMNP.   

 

5.6 Baseline Data 

The riparian environmental parameters measured in this study will serve as 

baseline data, characterizing the conditions of low to middle elevation headwater streams 

before the onset of HWA induced hemlock mortality in GSMNP.  Baseline data can be 

used in the future to track the magnitude of change in riparian environmental conditions 

that occur with hemlock decline and hemlock mortality.   
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5.7 Forest Management Implications 

As a result of this research, I believe that riparian hemlock stands should be 

considered as priority sites for the implementation of HWA control strategies in order to 

help minimize potential short-term impacts to riparian environmental conditions.  I would 

suggest that management of hemlock mortality focus on minimizing the immediate 

effects of hemlock decline and mortality.  Efforts should be focused on large pure-species 

riparian hemlock stands that will have the greatest immediate impact to stream 

conditions.  There is evidence that the uprooting of trees result in more significant losses 

of nitrate to stream water than if trees remain standing (Yeakley et al. 2003).  Therefore, 

management agencies should attempt to prevent declining and dead standing hemlocks 

from being uprooted in locations where they are in close proximity to streams.   

Management agencies should also investigate opportunities to encourage the 

establishment of hardwood canopy species in locations where hemlock mortality has 

occurred.  Vandermast and Van Lear (2002) suggest introducing periodic fire into 

riparian forests in the Southern Appalachians in order to control Rhododendron 

expansion and to help encourage hardwood canopy tree regeneration.  While fire 

introduction may suppress the establishment of Rhododendron thickets, it may also lead 

to further increases in nutrient export to stream water and therefore should be used with 

caution.  The mechanical removal of Rhododendron has proved somewhat unsuccessful 

and should also be used with caution.  Clinton and Vose (2000) document the 

development of extremely high densities of Rhododendron after only a few years 

following mechanical removal.   



 89

Management agencies should strive to establish an intact riparian vegetative cover 

in order to minimize the impacts to riparian environmental conditions from hemlock 

decline and mortality.  An intact riparian vegetative cover will intercept solar radiation, 

reducing energy input to stream water surfaces, and will take up nutrients, reducing the 

levels of nitrate that will enter stream water.     

 

5.8 Conclusions 

The current peer-reviewed literature documents that short-term impacts to stream 

conditions from hemlock mortality and other forest disturbances can be severe.  

However, research also indicates that stream conditions return to pre-disturbance levels 

within five to ten years.  In GSMNP, the return to pre-disturbance levels after hemlock 

mortality will depend on the type of replacement species and how quickly the 

replacement species can establish in disturbed sites.  There is evidence that deciduous 

hardwood species are most likely to replace hemlock.  The results of this study suggest 

that hemlock and hardwood stream conditions (temperature, nitrate concentrations, pH, 

and discharge) are similar in GSMNP.  Therefore, if deciduous hardwood species are able 

to replace hemlock in GSMNP and formerly-hemlock ecosystems are able to recover 

from short-term impacts, the long-term impacts from hemlock mortality on stream 

conditions will be minimal.  However, the presence of Rhododendron in the understory 

of riparian hemlock forests in GSMNP may prevent deciduous hardwood species from 

replacing hemlock, which could result in significant long term impacts to species 

composition and stream conditions in formerly hemlock-dominated sites.   
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This paper specifically addresses impacts to stream conditions from hemlock 

mortality and suggests that long-term impacts to stream conditions in GSMNP will be 

minimal.  However, it is important to note that this paper does not address impacts from 

hemlock mortality to aesthetics, recreation, or wildlife, all of which could be substantially 

impacted by the loss of hemlock from eastern forests.  Additional studies investigating 

impacts from hemlock mortality on specific wildlife species are needed. 

The results and inferences from this research are limited by the duration of the 

study and the sample size.  Although I found no clear, consistent pattern of hemlock or 

hardwood riparian forest being associated with particular stream conditions, it is possible 

that a pattern could emerge from a larger sample size monitored over a longer period of 

time.  However, it is my opinion that the results presented in this thesis are a good 

representation of the stream conditions that occur with hardwood- and hemlock-

dominated headwater streams in GSMNP and that a larger sample size would yield 

similar results.  Furthermore, I believe that the results and discussion in this paper further 

our understanding of the differences in stream conditions between hemlock- and 

hardwood-dominated headwater steams and the potential short-term and long-term 

impacts that can be expected from hemlock mortality in GSMNP.             
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