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ABSTRACT 

Geoarchaeological investigations were used to assess the depositional and post-depositional 

processes that effected the Rush Creek Site ( 40CN79) in Cannon County, Tennessee. Of particular 

interest was a buried landform, found in the floodplain of the East Fork Stones River, that was 

sealed by sterile alluvium. This formation contained both prehistoric and historic artifacts within the 

same context. The stratigraphy of the site was determined by deep testing to describe the site and 

the landforms associated with the site. Samples collected from the exposed profiles of the deep test 

pits were subjected to particle size, pH, carbon, and phosphorus analyses. Statistical parameters 

derived from the particle size analysis were subjected to multivariate statistical procedures. 

Particle size and multivariate analyses demonstrate that variable landforms can be 

discriminated according to relative age due to the formation of pedogenically derived clay in older 

landforms, and increased sand content in younger landforms. Carbon and phosphorus analyses show 

human influence in the buried floodplain formation due to the substantial amount of each found 

in the midden in comparison to the surrounding landforms. Conflicting radiocarbon dates and 

historic period research in the area helped to demonstrate that a possible historic truncation episode 

was responsible for the deposition of historic artifacts within the archaeological context of those of 

aboriginal origin. 
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CHAPTER 1 

INTRODUCTION 

The Rush Creek Site (40CN79) is located in the Outer Basin region of the Nashville Basin. 

The site is situated on a Pleistocene age terrace, and on a floodplain bounded by this terrace and 

the East Fork Stones River, 0.5 km. west of Woodbury in Cannon County, Tennessee (Figure 1). 

The site lies directly to the west of the confluence of the East Fork Stones River and Rush Creek, 

85°05'26" long, 35°49'05" lat. The East Fork Stones River originates in the Highland Rim region 

to the east, and becomes entrenched at the confluence of Doolittle Creek within the Woodbury town 

limits. The river meanders downstream producing small, but distinct alluvial terraces and floodplains 

within the meander bends. The site consists of numerous intrusive subsurface features atop a 

Pleistocene age terrace, and a buried Holocene age deposit in the floodplain which is sealed by 

sterile alluvium. Documented buried alluvial landforms within floodplains and terraces in the 

Nashville Basin (Brackenridge 1982, 1984; Morris 1985, 1986; Turner and Klippel 1989) have 

produced studies of relict landforms of archaeological significance. 

A section of the proposed State Route #1 connecting Woodbury to Murfreesboro, 

Tennessee would impact the site area. Phase 2 archaeological investigations were conducted by the 

Division of Archaeology, Tennessee Department of Conservation in 1985. This investigation 

uncovered concentrations of lithic artifacts and several subsurface features on the Pleistocene age 

terrace. A cultural "midden" was detected through deep testing in the floodplain area. This midden 

contained lithic debitage, wood charcoal, faunal remains, and one diagnostic Kirk-type projectile 

point. A lense of charcoal was discovered in one of the deep test sections and was surmized to 

be related to a possible Early Archaic component. Geomorphological investigations estimated the 

midden was formed ca 10,000 yr B.P. subsequent to Early Holocene channel abandonment. 

Following channel abandonement, a sequence of colluvial sheetwash and alluvial deposits provided 
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the parent material for the cultural midden and was subsequently sealed by sterile overburden. 

Significance of this site was determined: 

- On the basis of the archaeological and geomorphological information that has been 
produced by the Phase 2 testing at 40CN79, limited Phase 3 (data recovery) excavations are 
recommended. The importance of the site lies primarily in the buried Early Archaic horizon 
that was defined .. . on the south slope of the site. It is believed that this culture-bearing 
stratum represents a relatively short term single component occupation. Significantly, it is 
in a sealed context below culturally sterile colluvial sheetwash and floodplain deposits. This 
Archaic occupation of this area began initially on the surface of a channel bar deposit and 
subsequent to that was present on the surfaces of a succession of alluvial and colluvial 
sheetwash deposits. After abandonement of the area for prehistoric occupation, these 
deposits containing features and artifactual materials were sealed by sterile alluvial and 
colluvial sheetwash deposits. Given the presence of moderate quantities of artifactual 
materials in the culture bearing zone, an adequate recovery of these materials in a Phase 
3 excavation should provide information for the definition of the assemblage associated with 
this type of Archaic settlement. Additionally, the presence of carbonized botanical remains 
in the midden and the presence of preserved bone materials should be adequate to provide 
information of the subsistence base. FinalJy, the clearly defined alluvial and colluvial 
stratigraphy in this portion of the site can be further studied to determine the geological 
processes responsible for the formation of the geological deposits in the area of the site. 
Of particular interest is the presence of preserved wood in the alluvial gravels that underlay 
the culture-bearing stratum (Spears, et al. 1986: 39-41). 

Phase 3 investigations were conducted by the University of Tennessee, Department of 

Anthropology in 1986. Following the recommendations of the Phase 2 investigations, large areas 

of the Pleistocene age terrace were opened and further deep testing in the floodplain area was 

implemented. Phase 2 trenches were reopened and sterile overburden was removed, exposing the 

buried surface documented in the Phase 2 investigations. Excavation units were placed on this 

buried surface where it was hoped an investigation into Early Archaic subsistance patterns would 

ensue. 

It was quickly evident that a true Early Archaic component was lacking. One of the first 

indications of a disrupted context was the discovery of domesticated animal remains on top of and 

slightly intrusive into the surface of the buried cultural midden. An excavation of a charcoal lense, 

noted in one of the deep test waJls (Feature 18, Phase 2; Area C, Phase 3), uncovered historic 

artifacts dating to the mid-nineteenth century associated with the buried surface of the midden. 
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Lithic artifacts were found throughout the buried landform, but no diagnostic artifacts were found. 

Historic artifacts, animal bone, and angular limestone . fragments were found on top of and slightly 

intrusive into this cultural midden, while lithic artifacts were distributed throughout the midden. , · 

Laboratory analysis confirmed the suspected archaeological context. Botanical analysis 

revealed plant foodstuffs were rare and wood charcoal analysis concluded a prevalence of floodplain 

and low terrace adapted species of maple (Acer sp.), sycamore (flatanus occidentalis), black willow 

(Salix nigra), and ash (Eraxinus sp.). Analysis of the lithic debitage revealed no concentrations of 

artifacts denoting activity areas, but � homogeneous distrubution of debitage both vertically and 

horizontally through the midden. Faunal analysis documented the presence of domestic pig (Sus 

scrofa), and domestic cow (I!os taurus) on the surface of and slighty intrusive into the midden. C-

14 analysis presented more problems. A sample extracted from a topographically higher position in 

the midden denoted a mid-Holocene landform, while a charcoal sample from a lower topographic 

area of the midden reveal� a mid-nineteenth century deposition. Historic period inquiries note the 

possibility of an historic period mill race which may have truncated the floodplain in this area. 

A geoarchaeological analysis was undertaken to unravel this contextual problem. The 

primary concern in this investigation is to develop an understanding of the depositional sequences 

of these alluvial landforms at the Rush Creek Site as well as understanding the post-depositional 

effects of pedogenesis. Of primary concern is the stratigraphic relationships of these landforms and 

their pedogenic alterations through time for the purpose of documenting chronosequential 

relationships. Because temporal associations at this site are paramount to understanding the site 

context, this investigation will attempt to develop a chronosequence of alluvial landforms and 

subsequent disturbance as it relates to changes in sediment sources, chemical and physical alterations 

in these landform due to pedogenic effects, and disturbance processes influenced by human activity. 

Several lines of inquiry will be undertaken in this geoarchaeological investigation. A 

stratigraphic assessment will be used to document occurrence of alluvial landforms in the site area. 
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A pedological investigation will be used to document the various soils and soil forming processes. 

Statistical analysis of textural parameters will be used to correlate various landform associations. 

Chemical analysis, including carbon and phosphate analyses, will be used to define and delimit 

buried surfaces as well as to document human influence on the landform. 
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CHAPTER 2 

GEOARCHAEOLOGY: A BACKGROUND 

Geoarchaeology is a new and burgeoning sub-discipline of archaeology that has received 

considerable attention in recent years (Butzer 1982; Gladfelter 1977, 1981; Hassan 1979; Stein 1985, 

1987). Geoarchaeology is the integration of archaeological studies with those of the earth sciences. 

Such studies include geomorphology, stratigraphy and sedimentation, pedology, and geography. 

Archaeological sites are viewed as fossil assemblages associated with or contained within landform 

matrices conforming to natural laws of uniformitarianism. Human impact can influence the 

development of the landform while, in turn, environmental dynamics can influence man's impact on 

the landform. By studying the dynamics of change of landforms associated with archaeological sites, 

geoarchaeology can aid in the interpretation and environmental reconstruction of archaeological 

contexts. 

Geoarchaeology has been defined as "archaeological research using the methods and 

concepts of the earth sciences" (Butzer 1982: 35). Earth science studies include: 

geography and pedology as well as geology. Each provides component data essential to the 
study of environmental systems ... a competent geo-archaeologist should be able to evaluate 
diverse sources of empirical data, as generated within the archaeological project and as 
available from external sources, in order to apply the information to construct an integrated 
model of a geo-environmental system. Ideally, this model eventually will be linked with 
information on biota, demography, and material culture to generate a higher order model 
of prehistorical settlement and subsistence patterning (Butzer 1982: 35). 

Geoarchaeology, as a discipline, has a wide range of uses in archaeological inquiry. These 

uses include; locating archaeological sites, studying regional stratigraphic relationships for recognition 

of activity areas, analyzing sediments for elucidation of site forming processes, analyzing 

paleoenvironments, modeling cultural/environmental interactions and developing geochronologies 

(Hassan 1979: 267). The strength of geoarchaeology is in the integration of archaeological remains 
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within an environmental context (Gladfelter 1977: 519). Geoarchaeology is a study of the interface 

between the physical and biological environment as it relates to human activities. 

At the core of geoarchaeological research is the concept of the cultural sediment. A 

sediment is defined as "any particulate matter on the surface of the earth that has been deposited 

by some process under normal surface conditions" (Stein 1985: 6). Geoarchaeologists examine 

sediments and chemical residues for the purpose of defining a sediment's history. Because humans 

act as geomorphic agents, archaeological residues are treated as components of a sedimentary matrix 

(Butzer 1982: 39). A sediment's history is a function of four factors: the source of the sediment, 

transportation mechanism of the sediment, the environment of deposition of the sediment, and the 

post depositional processes which effect the sediment (Stein 1985: 5). Those factors which cannot 

be ascribed to natural processes can be assumed to have been effected by cultural processes. 

Stratigraphy 

One of Thomas Jefferson's many contributions to science was the systematic excavation of 

a burial mound by stratigraphic layers (Willey and Sabloff 1980: 31). From that moment forward, 

archaeologists have devoted considerable time to the study of the "natural layers" that contain and 

bound archaeological assemblages. These natural layers contain considerable information regarding 

the site's spatial and temporal context and provide clues for the depositional and post-depositional 

episodes that influence archaeological assemblages. 

The concepts regarding geologic stratigraphy can be in the understanding of archaeological 

stratigraphy. One of the basic building blocks is the sedimentary unit. Campbell (1967) denotes 

stratigraphic units of sedimentary bodies into lamina, laminasets, beds and bedsets. The bed is the 

basic building block of stratigraphy and a bed can be considered an inferred time-stratigraphic unit 

of limited areal extent and of relatively short time span (Campbell 1967: 7). One of the more 

appropriate stratigraphic units is the lithostratigraphic unit which is defined as a: 
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body of sedimentary, extensive igneous, meta-sedimentary, or metavolcanic strata which is 
distinguished and delimited on the basis of lithic characteristics and stratigraphic position. 
A lithostratigraphic unit generally conforms to the Law of Superposition and commonly is 
stratified and tabular in form (NACOSN 1983: 855). 

These lithostratigraphic units can be further subdivided into formations, members, and beds. Other 

appropriate stratigraphic units include allostratigraphic units which are sedimentary bodies defined 

by their bounding discontinuities (NACOSN 1983: 865) and chronostratigraphic units which are 

reference sedimentary units used as temporal markers for similar formations with synchronous 

boundaries (NACOSN 1983: 868). 

The laws regarding stratigraphic succession are applicable to archaeological stratigraphy. 

Several of these laws, conforming to uniformitarian priciples are defined as follows: 

The Law of Superposition: in a series of layers and interfacial features, as originally created, 
the upper units of stratification are younger and the lower are older. 

The Law of Original Horizonality: any archaeological layer deposited in an unconsolidated 
form will tend towards an horizontal deposition. 

The Law of Original Continuity: any archaeological deposit, as originally laid down will 
be bounded by a basin of deposition, or will thin down to a feather edge. 

The Law of Stratigraphic Succession: any given unit of archaeological stratification takes 
its place in the stratigraphic sequence of a site from its position between the 
undermost of all units which lie above it and the uppermost of all those units which 
lie below it and with which it has a physical contact, all other superpositional 
relationships being regarded as redundant (Harris 1979: 112-113). 

Gasche and Tunca (1983) have offered a guide to archaeostratigraphic classification. The principal 

concept is the definition of lithologic units into ethnostratigraphic and/or chronostratigraphic units. 

Ethnostratigraphic units are to be classified according to their contents of anthropic origin. The 

purpose is to organize the sequences of strata in units characterized by artifact classes (Gasche and 

Tunca 1983: 329). Chronostratigraphic units are defined on the basis of duration and are temporal 

sequences of strata (Gasche and Tunca 1983: 329). Archaeologists though have been cautioned as 
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to the inherent confusion in associating stratigraphic units with cultural components which may not 

conform on a regional basis (Gruber 1978). 

Alluvial Geomorphology 

Alluvial landforms have been of tremendous importance to archaeologists. Buried landform 

surfaces in floodplains and terraces are considered prime locations for the study of preserved 

archaeological remains (Binford 1983). Stream dynamics and morphology, depositional regimes, and 

environmental forcing factors have had tremendous impact on the presence and disturbance of 

archaeological sites. For example, it has been estimated that 95% of all Paleolithic artifacts found 

in fluvatile environments have been redeposited in some degree (Shackley 1978: 55). It is therefore 

essential to understand these hydrologic regimes and their relationships to archaeological sites. 

There are three major types of river regimes; braided, meandering and straight. All natural 

channels exhibit alternating pools or deep reaches, and riffles or shallow reaches regardless of type 

or pattern. Braided regimes are characterized by channel diversion around alluvial islands. 

Meandering regimes generally occur at smaller values of slope than do braiding regimes and 

meandering regimes exhibit less bankful discharges than braided regimes (Leopold and Maddock 

1953, Leopold and Wolman 1957). The shape of these channels tends to be a factor of the texture 

of the bank. As the clay and silt content of a bank increases downstream, the depth of the channel 

will increase in relation to the width, and as clay and silt contents decrease downstream, the width 

of the channel will generally increase in contrast to the depth (Schumm 1969: 17). The clay content 

of the bank tends to make the matrix more cohesive, and resistant to erosion (Schumm 1969: 28). 

An aggrading meandering regime is characterized by the lateral truncation of the stream 

across the landform. Depending upon the amount of hydraulic discharge downstream, sediments 

suspended in rivers and streams are deposited in the channels and within the meander bends. This 

results in asymetric valley profiles characterized by steep slopes on the cutting side of the river in 

comparison to the gentle slopes of the depositional landforms on the other side. Such assymetric 
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profiles are described by Brackenridge (1982, 1984). These alluvial landforms consist of floodplains· 

and terraces. The parent material for floodplains and terraces consists primarily of channel deposits 

and overbank deposits. Channel deposits consist of rounded lag gravel demarcating the presence o� · · 

a former channel bed (Fahnestock and Hanshild 1962, Cheetham 1976). Overbank deposits consist 

of lateral accretion generally ascribed to the development of relict sand bars, vertical accretion 

consisting of silty upper matrices deposited from suspended loads during flood stages, and splay 

deposits consisting of fine materials deposited with the breeching of natural levees (Lattman 1960: 

278-280). Because deposition of a floodplain does not continue indefinitely, the floodplain surface 

can be converted to a terrace by a major tectonic, climatic, or human event (Wendland 1982). This 

alters the regime of the river to cause it to entrench itself below its established bed and floodplain. 

A terrace is then distinguished from a floodplain by the frequency with which each is overflowed 

(Wolman and Leopold 1957: 87). 

Changes in stream dynamics which can lead to changes in depositional regimes and landform 

development are due to geomorphic thresholds. There are two major types of geomorphic 

thresholds; extrinsic and intrinsic. An extrinsic threshold is one that is exceeded by the force or 

process external to the system. An example would be regime changes caused by a climatic event. An 

intrinsic threshold indicates that changes occur without a change in an external variable. An example 

would be a long term weathering process reducing the strength of slope materials leading to slope 

adjustment and mass movement of materials (Schumm 1980: 473-474). Thresholds in streams can 

be recognized by depositional and non-depostional events. In analyzing a stream's capacity to carry 

sediment, a stream's critical power threshold can be assessed. A stream's power is power available 

to carry a sediment load. A stream's critical power is that power needed to carry a sediment load. 

The threshold of critical power occurs when the stream power and critical are equal. When stream 

power exceeds critical power during long time spans, additional sediment load is obtained by vertical 

erosion that cuts V-shaped cross valley profiles and results in strath terraces. When critical power 
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exceeds stream power there is a decrease in sediment load and grain size (Bull 1979: 453). Critical 

power thresholds are sensitive to changes in climate, base level, and human impact (Johnson 1982: 

223) and result in aggradation or degradation. 

Alluvial Pedology 

Aspects of pedogenesis and post-depositional alteration of sediments are important to the 

understanding of the archaeological record. The process of pedogenesis can have a profound impact 

on the physical and chemical dynamics of archaeological contexts. Soil studies are useful in 

archaeology by determining the relative age of sites, identifying pedologic, geologic and man 

influenced horizons, determining occupational sites by soil chemical analyses, determing the 

erosional-sedimentary history of a site, and determing original soil surfaces of an area (Foss 1976: 

234). Ruhe (1983) estimates that most soil orders in the United States with the exception of Ultisols 

were formed during the Holocene. It is therefore important to understand the pedogenic nature of 

sediments and the effects on archaeological context. 

Jenny (1941) produced the· classic work on the factors of soil formation. This work listed 

five major factors of soil formation; a soil is a function of the climate, biota, relief, parent material, 

and time. Any variation within any of these factors would produce a different soil distinguished by 

the developmental effects of these factors. Simonson (1959) outlined a general theory of soil genesis. 

This · theory identified two major processes; the accumulation of parent materials and the 

differentiation of soil horizons within a profile. Horizon differentiation, which is the distinguishing 

criteria for separating different soils, is the function of four major factors; additions, losses, 

translocations, and transformations. Additions include such processes as accumulation of organic 

matter to the profile. Losses are materials depleted from the soil profile such as the removal of 

soluble salts and carbonates. Translocations are materials transported through the profile such as 

movement of clays which form argillic horizons. Transformations are the physical and chemical 

changes occuring without transportation such as the weathering of primary minerals into secondary 
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minerals. The pedogenic alteration of sediments can alter the original depositional context of 

archaeological sites. 

The dynamics in the physical properties of soils can disrupt the depositional context of 

archaeological sites. Such physical effects as human disturbance (Hughes and Lampert 1977) and 

gravitational influences (Rick 1976) have been documented. One of the most important fact�rs of 

weathering and geomorphic alteration is water. Water moving across a landform or through a profile 

can have important affects (McKeague and Arnaud 1969). The packing and antecedent moisture 

within a soil profile can accentuate or inhibit the movement of water through a profile (McQueen 

1961, Aylor and Parlange 1973). Water movement can erode a profile, add parent material to a 

profile or move materials within a profile which can affect depositional context. The biological, 

chemical or physical churning of soil materials is called "pedoturbation" (Buol et al. 1973: 89). One 

such pedoturbational process is the mixing of materials caused by shrink-swell activities within the 

soil. Wetting and subsequent drying of a profile can influence, under certain conditions, expandible 

clays. The drying of these clays cause subsurface cracks within the areas of structural weakness. A 

soil can crack and materials can be transported down through a profile. Coarse textured sediments 

generally have more stable peds than fine textured sediments. Blocky structured soils have ped faces 

developed by shear forces while prisms and columns have vertical faces formed mainly by tension 

cracking (White 1966: 140). This process is known as argilliturbation (Wood and Johnson 1978: 352) 

and can have considerable affects on depositional contexts (Cahen and Moyersons 1977). 

Effects of pedogenesis can produce chemical alterations within a profile. With accelerated 

weathering, a profile can go into a desilication process which accelerates with acidity (Jackson et 

al. 1948: 1254). A weakly desilicated profile, representing initial soil weathering, is recognized by 

a greater number of exchangable bases in relation to Si02 content, predominance of 2:1 phylosilicate 

minerals, and predominance of smectites, chlorite, montmorillinite, vermiculite, and allophane. A 

moderately desilicatcd profile has fewer exchangable bases than weakly desilicated profiles, but the 
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presence of these bases are slightly higher than the Si02 content and are represented by 1:1 

phyllosilicate minerals with predominance of kaolinite and halloysite. Intensely desilicated profiles 

have less exchangable bases in relation to Si02 content, predominance of aluminum hydroxide 

minerals and gibbsite. This is also known as laterization and represents the end product of a 

weathering profile. The primary weathering mechanism for desilication is hydrolysis (Pedro et al. 

1969: 464). In well drained soils, eluviation of silica and basic cations (K, Na, Mg, Ca, and others) 

has taken place for the entire solum in different degrees as a function of time (Jackson 1965: 20). 

A profile will generally exhibit the movement of the weathering equation to the right from a weakly 

to a strongly desilicated profile. An exception would be alluvial landforms where the additions of 

fresh sediment and soluble exchangable bases from the floodwaters can move the equation back to 

the left reducing the effects of weathering (Jackson et al. 1948: 1�9). Many of the materials 

deposited in archaeological sites are subject to the effects of chemical weathering and/or chemical 

preservation dependent upon the conditions and chemical nature of the site. 

Many archaeological sites associated with alluvial landforms are found buried beneath 

alluvial sediment. These buried sites are often located on buried surfaces representing former stable 

landforms. These buried landforms are also refered to as paleosols. Paleosols are soils formed in the 

past. There are three major types of paleosols: relict soils, buried soils and exhumed soils. Relict 

soils are soils formed on preexisting landscapes but were never buried by younger sediments. 

Formation processes date from the time of the original landscape. Buried soils are soils formed on 

preexisting landscapes and were subsequently buried by younger sediments. Exhumed soils are soils 

that were buried by younger sediments and reexposed by removal of the younger overburden (Ruhe 

1965: 755). Paleosols can be used to aid in the determination of past environments. By comparing 

paleosols with soils of recent environments, relationships can be understood (Valentine and 

Dalrymple 1976). Buried paleosols can be recognized by the relict A-horizon or organic 

accumulation of a former surface (Ruhe 1969: 37). Discrepancies in lithology can be used to assess 
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a multisequel profile (Ruhe and Daniels 1958: 69) indicating buried surfaces. Stone lines which 

occur in a profile may also indicate a buried surface (Ruhe 1959: 223). The documentation of 

paleosols in a landform is important for understanding the depositional history, and becomes of 

extreme importance when paleosols are associated with archaeological sites. 

Rivers can entrench themselves below their established beds and floodplains. This process 

creates sequences of alluvial landforms called terraces. Many times these landforms are created in 

the same manner, denoting time as one of the primary soil for�ation factors of importance. Older 

to younger alluvial landforms created by similar hydrologic regimes can be refere4 to as a 

chronosequence. A chronosequence of New River alluvium in Virginia was examined for four soils 

formed on successively older terraces (Harris et al. 1980). The study found that with time, there was 

increasing clay illuviation and an increase in citrate dithionite extractable iron with depth in older 

landforms. The clay mineralogy indicated a weathering progression from mica-vermiculite to hydroxy 

interlayered vermiculite to kaolinite (Harris et al. 1980: 862). Birkeland (1978) found with 

Quaternary age deposits in Baffin Island that within 100,000 years, a chronosequence developed from 

an oxic horizon in a 200 year old soil to the development of a strong cambic horizon in a 100,000 

year old soil (Birkeland 1978: 733). Ruhe (1956) studied a chronosequence in a Wisconsinan loess 

Iandform, a Late Sangamon soil, and a Kansan till. The study found that with increasing age there 

was an increase in thickness of the soil solum, an increase in thickness of the B-horizon, and an 

increase in clay content (Ruhe 1956: 453-454). In a comparison of soils developed in Kansan, 

Illinoian and Wisconsinan age drifts in New Jersey and Pennsylvania, Novak et al. (1971) found an 

increase in particle size with increasing age and increase in extractable iron (Novak et al. 1971: 211-

218). A chronosequence of loess derived soils in southeastern Iowa demonstrated increased cation 

elluviation and increased formation and movement of clay within a soil solum with increasing age 

(Hutton 1951: 324). The study of a chronosequence can illustrate the changes a landform 

experiences with time. The comparison can also aid in isolating those pedologic processes that are 
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developed. rather than inherited from the parent material. Once the process of time can be 

extrapolated, environmental information can be gained by assessing the remaining variability between 

these landforms. 

Alluvial Geoarchaeology 

Archaeologists, utilizing earth science concepts, have been integrating investigations of 

archaeological contexts with studies of depositional histories and post-depositional developments 

occurring at archaeological sites. Many of these sites are located in alluvial depositional regimes. 

The analysis of alluvial sediments provides clues toward formation processes, climatic forcing factors, 

pedogenic alteration, and man-land interactions. Alluvial landforms are sensitive to change, and such 

change can be documented and correlated with archaeological analyses. 

Several studies combining earth science techniques with archaeological inquiries have been 

undertaken. Ahler (1973a, 1973b) used a series of sediment tests to deduce variability in Rodgers 

Rockshelter, Missouri. The studies included determination of particle size, mineral content, organic 

matter, and phosphates. The particle size analysis, using hydrometer and sand sieve methods were 

subjected to multivariate statistical techniques. Principal components analysis and factor analysis 

yielded three factors. Weighted average cluster analysis of these three factors yielded ten depositional 

units. Every major change noted in the archaeological record coincided with the major changes in 

depositional patterns. The Post-Pleistocene depositional history of Rodgers Rockshelter shows a 

progression of intense upland erosion and aggradation by the Pomme de Terre River, to a period 

of severe local hillside erosion and valley degradation, to a period of combined alluvial and colluvial 

deposition on the Tlb terrace. Davidson (1973) used particle size and phosphate analyses to explain 

the evolution of a large tell at Sitagroi in northeastern Greece. The study was able to determine that 

local alluvium was used for house construction, growth of the tell was due to house collapse and 

that house collapse explains the thick sediment layers between living floors. Burgess and Jacobsen 

(1984) used organic matter and phosphate analyses to determine cultural versus non-cultural 
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sediments of shelters in Namibia. These are just a sampling of studies demonstrating the utility ·of · 

integrating earth science studies with archaeological investigations. 

Geomorphic studies have been integrated with archaeological investigations concerning . 

questions of site formation processes and variations in environmental parameters. Geomorphic and 

sediment stratigraphic studies at the Koster site in the lower Illinois River Valley deduced major 

Holocene environmental changes which may have influenced prehistoric populations (Butzer 1977, 

1978). From these geomorphic studies, Butzer deduced rapid valley aggradation from reworked loess 

after 10,000 yr. B.P. The floodplain stabilized around 5,000 yr. B.P. and showed aggradation again 

after 2,500 yr. B.P. Butzer also documented the geomorphic erosional affects of human-landscape 

interactions. The major conclusion was that environmental changes in the valley influenced human 

adaptive strategies making paleoenvironmental variables critical in archaeological studies. Stein 

(1982) used pH, phosphorous, organic carbon, clay mineralogy, and particle size analyses to 

determine the evolution of a shell midden in the Green River Valley of Kentucky. The study 

determined that during the Pleistocene, outwash transported by the Ohio River dammed the rivers 

draining west-central Kentucky and created a large lake. The resultant lake bed lacustrine deposits 

comprised the present Green River floodplain. Restricted movement of the river channel within fine 

textured river banks aided in the preservation of these shell middens. Gardner and Donahue (1985) 

used stereographic aerial photography for geomorphic modeling and terrain analysis to aid site 

location the the Little Platte drainage of Missouri. In this study of alluvial landform development, 

they concluded that the Little Platte drainage during the Archaic and Early Woodland periods 

experienced low precipitation levels and could not have sustained the Little Platte as an ephemeral 

stream, thus explaining the concentrations of archaeological materials in the Tl and T2 terraces. An 

increase in moisture after 4,000 yr. B.P. may have increased the resource potential for the valley. 

Pedologic investigations at archaeological sites can also aid in understanding site formation 

processes and paleoenvironmental parameters. Foss (1976) used soil studies and integrated them 
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with Paleoindian sites in the Shenandoah River Valley of northern Virginia and the Delaware River 

Valley of eastern Pennsylvania. The studies showed that Pleistocene age terrace soils associated with 

Paleoindian sites showed appreciable horizonation, clay and iron accumulation in the B-horizon, clay 

coatings _on peel surfaces, and moderately developed structure in the B-horizon. Discontinuities found 

within these Pleistocene age profiles proved imponant from an archaeological standpoint because 

of the different age relationships and activities associated with breaks in sedimentary patterns (Foss 

1976: 237). The study also showed that the pH's of the terrace and floodplain profiles were effected 

by recharge of bases by flooding, that organic matter decreased with depth, and that phosphate 

accumulation increased at lithologic discontinuities associated with archaeological sites (Foss 1976: 

243). 

Holliday (1985a, 1985b, 1985c) studied two buried soils indentified in early and middle 

Holocene sediment at the stratified Lubbock Lake archaeological site in Yellowhouse Draw, Texas. 

The first buried soil formed in organic rich lacustrine and sandy eolian sediments was deposited 

from 11,000 to 8,500 yr. B.P. and was developed from 8,500 to 6,300 yr. B.P. A common gleyed 

horizon directly below the A-horizon indicated the soil was formed in a marsh with the water table 

at or below the surface. The second buried soil was found in highly calcareous lacustrine sediments 

along the valley axis and in sandy eolian material along the valley margin with deposition and 

pedogenesis occurring between 6,300-5,000 yr. B.P. The relatively high organic matter content of 

the A-horizon and mineral leaching of carbonate in the C-horizon suggested that the water table 

was high in the valley axis fades. The valley margin facies exhibited some evidence of clay illuviation 

and precipitation of calcium carbonate. The data suggested a regional climatic change toward 

conditions of increased eolian activity, reduced effective moisture, and possibly warmer temperatures 

for the Early to the Middle Holocene period, and is believed to have affected human adaptive 

strategies during these times. 
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The study of geoarchaeology incorporates a numerous set of disciplines in the evaluation 

of archaeological contexts. The interdisciplinary nature of geoarchaeology is its primary strength in 

investigating archaeological problems. A vast array of methods and techniques found within earth 

science disciplines provides the archaeologist with an arsenal of investigative procedures essential 

in deducing site formation processes and environmental parameters which influence the deposition 

and preservation of archaeological sites. Without the establishment of proper archaeological context, 

questions concerning higher levels of theory about human behavior cannot be established. 
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CHAPTER 3 

ENVIRONMENTAL SETTING 

The Rush Creek site and the valley floors of the East Fork Stones River are a part of the 

Inner Nashville Basin which is also incorporated into the Interior Low Plateaus Physiographic 

Province of Middle Tennessee and Kentucky (Fenneman 1938) (Figure 2). The adjacent valley slopes 

are comprised of formations representative of the Outer Nashville Basin and the upland plateau 

areas are a part of the Highland Rim. The Interior Low Plateaus Province represents a series of 

sedimentary deposits of Paleozoic age. These deposits are characterized by calcareous limestones and 

dolomites with some deposits of interbedded shales and sandstones. 

The Highland Rim is a cherty Mississippian plateau with erosional remnants of Devonian 

shales. This is the largest feature of the Interior Low Plateaus Province and covers some 24,087 km2 

of Alabama, Tennessee, and Kentucky. The Highland Rim surrounds the Nashville Basin. Elevation 

ranges from 289-335 m AMSL in the east and north, and some 289-304 m AMSL in the western 

area (Edwards_ et al. 1974: 2). 

The Outer Nashville Basin is underlain by more erosion resistant Middle and Late 

Ordovician limestones. These consist of highly phosphatic and silica enriched limestones of the 

Maysville and Nashville groups. The area of the Outer Basin is roughly 10,900 km2• The topography 

consists of steep slopes, narrow ridges and narrow valley floors. The Outer Basin surrounds the 

Inner Nashville Basin and rises some 50-100 m above the Inner Basin with elevational ranges of 213-

274 m AMSL (Wilson 1949: 75). (Figure 2) 

The Inner Nashville Basin is composed of Middle Ordovician limestones mainly of the 

Stones River Group in the central and most eroded parts of the Nashville Basin. The Inner Basin 

covers roughly 4,400 km2• The topography consists of gently rolling relief with isolated hills as 
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Figure 2. Nashville Basin, Including the Rush Creek Site ( 40CN79). 
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outliers of the Outer Basin. Elevation is 155-203 m AMSL and karst features such as sinkholes and 

caverns are common (Wilson 1949: 24). (Figure 2) 

The Rush Creek site occupies alluvial landforms on the north bank of the East Fork Stones 

River, about .5 km west of Woodbury, Tennessee. The East Fork Stones River originates about 1 

km east of Woodbury and flows northwest through the Nashville Basin where it joins the 

Cumberland River at Neely Bend about 20 km east of the city of Nashville. The Rush Creek site 

includes a buried floodplain formation and some remnant archaeological features located atop a 

Pleistocene age terrace. The site is located within a meander bend of the East Fork Stones River 

adjacent to the Rush Creek confluence to the east. 

Regional Geology 

The Nashville Basin and Highland Rim are erosional remnants of Paleozoic sedimentation. 

The Nashville Basin is part of the pre-Cambrain structural dome of the Cincinnati Arch sometimes 

referred to as the Nashville Dome. The Nashville Dome is part of a gentle anticline that was once 

structurally high but is now topographically low (Wilson 1949: 334). The present area of the 

Nashville Basin (15,300 km2) is believed to be the original area of the Dome (Luther 1977: 37). The 

Cumberland Plateau to the east represents a series of deltaic sedimentary deposits of Pennsylvanian 

sandstones and shales. The Cumberland Plateau was formed by progradation of fluvial sediments 

which originated in the Appalachians and were deposited into the large shallow inland sea that is 

now the Interior Low Plateaus. The Cumberland Plateau represents a geoform that once surrounded 

and covered the Dome (Piper 1932: 19). 

Throughout the Paleozoic and Mesozoic eras, the Nashville Basin underwent cycles of 

sedimentation, submergence, uplift, and erosion. These processes eventually weathered the formation 

until the Pennsylvanian sandstone cap and the cherty Mississippian cap were breached eventually 

exposing the less resistant Ordovician and Devonian limestones (Luther 1977: 37-38). The curved 

and weakened surface of the Dome encouraged its truncation as streams developed in the weakened 
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substrate and the landform succumbed to erosional forces. The Paleozoic formations surrounding 

the Basin were most resistant and weathered differentially leaving those landforms such as the 

Pennsylvanian Cumberland Plateau and the Mississippian Highland Rim topographically higher than · 

the Basin (Piper 1932: 19). The gradual retreat of the Cumberland Plateau escarpment exposed a 

somewhat resistant Mississippian Plateau of cherty substrate. This broad landform known as the 

Highland Rim is the largest section of the Interior Low Plateaus Province. At its contact with the 

Nashville Basin, the Highland Rim exposes an irregular escarpment of Mississippian limestones and 

Devonian shales. 

It has been suggested that forces forming the Basin took less than 10 million years and the 

major drainages of the Basin including the Elk, Duck, Cumberland, and Harpeth rivers continue to 

follow along stress points in the substrate (Miller 1974: 20). These rivers generally follow an east 

to west drainage originating in the Highland Rim to the east and flow toward the Tennessee River 

Valley in the :west. These drainages were instigated by tectonic upwarping during Late Pliocene­

Early Pleistocene times. The Nashville Basin and Highland Rim experienced a great amount of 

truncation due to the down-cutting of these drainages. The rivers continued to aggrade until contact 

was made with some more resistant Ordovician limestones of the Carters, Lebanon, and Ridley 

formations, primarily found in the Inner Nashville Basin. During Late Pleistocene times, the rivers 

ceased down-cutting and the river valleys began to fill with alluvial sedimentation from meandering 

river regimes. This process has left distinct alluvial terraces and floodplains along the valley floors. 

The down-cutting of rivers across the Highland Rim and Nashville Basin has exposed several 

geologic formations, some of distinct economic importance to prehistoric peoples (Figure 3). One 

of the lower formations exposed by the East Fork Stones River includes the Carters formation. This 

Ordovician formation consists of fine grained, yellowish brown limestone. The formation is thin 

bedded in the upper part. The lower part consists of thicker bedded limestone with very slight 
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amounts of chert with scattered mottlings of magnesian limestone and thin bentonite beds. 

Thickness has been recorded from 50 to 100 feet (Hardeman 1966). 

The Hermitage formation is one which overlies the Carters formation. This Ordovician 

formation consists of thin-bedded to laminated sandy and argillaceous limestone with shale, nodular 

shaley limestone, coquina, and phosphatic calcarenite. Thickness is 50 to 100 feet (Hardeman 1966). 

The Bigby-Cannon formation overlies the Hermitage formation. This formation is 

Ordovician in age and consists of brownish-grey calcarenite and light grey to brownish-grey 

cryptograined to medium-grained even-bedded limestone. Thickness of this formation is 50 to 125 

feet (Hardeman 1966). 

Overlying the Bigby-Cannon formation is the Leipers and Catheys formations. These 

formations are Ordovician in age and consists of dark-grey, fine-grained, thin to medium bedded 

limestone; argillaceous, nodular and shaley, medium-dark gray to brownish-grey, fine-grained, thin 

bedded� fossiliferous limestone; and medium bedded. crossbedded calcarenite. This formation has a 

thickness of 100 to 250 feet (Wilson and Barnes 1968). 

The Fort Payne formation overlies the Leipers and Cathys formations. This formation may 

have been the most important economically for the prehistoric inhabitants of the Rush Creek site. 

This formation is Mississippian in age and consists of bedded chert. calcareous and dolomitic 

silicastone. minor limestone and shale. scattered lenses of crinoidal limestone and thin green shale 

at the base. The thickness of this formation is about 250 feet (Hardeman 1966). This formation 

contained the primary chert resource for lithic tool manufacture at the Rush Creek site and could 

be procured in situ or collected as cobbles from stream beds. 

Two formations which overlie the Fort Payne formation and could have been of some 

economic importance in the area are the St. Louis formation and the Monteagle formation. The 

St. Louis formation is Mississippian in age and consists of fine-grained, brownish-grey limestone 

which is dolomitic and cherty. Thickness of this formation is 100 to 280 feet. The Monteagle 
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formation is Mississippian in age and consists of fragmental and oolitic limestone, light grey and fine 

grained, brownish gray limestone. Thickness of this formation is 180 to 350 feet (Hardeman 1966). 

These formations contain a nodular, very fine grained chert which is optimal for lithic manufacture. 

However, these chert types seem to be relatively absent from the raw material found at the Rush 

Creek site. 

The soils of the Interior Low Plateaus Physiographic Province exhibit a diversity reflective 

of the variable bedrock geology and the rolling relief. The floodplains and terraces of the Inner and 

Outer Nashville Basin are derived from Quaternary alluvium. The Armour-Lynnville-Arrington 

Association predominates on these landforms which are agriculturally rich and productive (Springer 

and Elder 1980). The Outer Basin floodplains are very fertile due to their phosphatic nature. They 

are extremely fertile where they overlie the Hermitage, Bigby-Cannon and Leipers-Cathys formations 

and are considered some of the richest soils in Tennessee. The Inner Basin floodplains, however, 

are only moderately high in phosphorous, and are less productive than the Outer Basin floodplains 

(Edwards et al. 1974). 

The upland soils of the Outer Basin are thinly developed on steep slopes and have a high 

chert content. The Dellrose-Bodine-Mimosa Association predominates in the high ridge tops. The 

uplands of the Inner Basin are derived from the Carters, Lebanon, and Ridley formation limestones. 

These limestones are composed of about 90% calcium carbonate which produces soils of low fertility 

and poor development. Common soils occurring in the uplands of the Inner Basin include those of 

the Colbert, Ashwood, Rockland, and Barfield series (Edwards et al. 1974: 17). 

Soils of the Highland Rim are primarily cherty, acidic, and highly leached. Bodine, 

Montview, and Dickson soil series predominate in the Highland Rim (Springer and Elder 1980: 28). 

The soil series most represented at the Rush Creek site are the Arrington and Armour 

. series. The Arrington series is taxonomically Cumulic Hapludolls (f ine-silty, mixed, thermic). They 
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consist of dark-colored, well drained soils formed in the floodplain and are not subjected to standing 

water for any period of time, but are subject to overflow. These soils are on nearly level landforms, 

have good structure, and have a moderately high phosphorous content. Quartz is the dominant 

mineral in the silt fraction (Edwards et al. 1974). 

The northern portion of the Rush Creek site occupies a higher Pleistocene age terrace 

generally mapped as the Armour series which is taxonomically Ultic Hapludalfs (fine-silty, mixed, 

thermic). The Armour soils occupy the low benches and gentle footslopes above the floodplains of 

the rivers of the Nashville Basin. They are generally deep, well drained, and permeable. The chief 

parent material is alluvium, but silty areas in the upper layers may be alluvium mixed with loess. 

There is usually an increasing phosphorous content with depth indicating that the parent material 

may have been alluvium from phosphatic limestone. Aluminum interlayered vermiculite and kaolinite 

are the chief clay minerals in the soil. A distinct argillic horizon is present and the . soil base 

saturation ranges from 40-60% (Edwards et al. 1974). 

Climate 

The climate of the Nashville Basin is defined as Humid Mesothermal by Thornwaite's (1931) 

classification system. The climate is generally mild with adequate precipitation for most vegetation 

(Edwards et al. 1974: 5). The mean annual temperature is 15.3° C, and the mean annual 

precipitation is 129 cm (Dickson 1960: 375). The climate is influenced by two major air masses, a 

Northerly Canadian air mass is primarily winter dominant prevailing between the months of 

November through March. The Gulf Southerly air mass is summer dominate prevailing between the 

months of May through September. These air masses rarely exchange throughout the summer 

months (Smalley 1980: 3). 

Precipitation in the Nashville Basin is heaviest between the months of January and April 

averaging around 37.16 cm (Harmon et al. 1959: 31). Evapotransporation exceeds precipitation 

between May and October and short droughts are common (Edwards et al. 1974: 7). The average 
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summer temperature is around 25° C with an absolute maximum temperature of 41° C recorded in 

July. In the upland Inner Basin, soils that have a root zone capacity of 10.16 cm have a 44% 

probability that 40 drought days will occur during the months of May through October (Edwards 

et al. 1974: 7). There is a 45% probability that 10 drought days will occur between August and 

September (Edwards et al. 1974: 7). The region is frost free 190-205 days out of the year (Smalley 

1980: 3). Winters are moderate with a 12° C average temperature and an absolute low temperature 

of -27° C recorded in January (Dickson 1960: 375). The ground generally remains frozen to a depth 

of 5 to 15 cm for 2 to 12 days during this time. Compared with soils from the Inner Basin, the soils 

of the Outer Basin are generally cooler, and absorb more moisture (Slusher and Lytle 1973: 72). 

Vegetation 

The vegetational suite in the Nashville Basin is defined as Western Mesophytic by Braun 

(1950: 122). Due to the variability of the bedrock geology, the vegetation in the Nashville Basin is 

substratum specific indicating that there are no major dominating taxa on the whole. Crites' (1983) 

study in the Cheek Bend area of the Inner Nashville Basin near Columbia, Tennessee defined four 

major habitat/forest communities within a 9 km2 area. In the floodplain areas of the Inner Basin a 

silver maple-sycamore-green ash association was found. The submesic valley slopes exhibited an oak­

dogwood-elm association. A cedar-oak association was found in the xeric uplands and a hickory­

cedar-oak association in the subxeric uplands. It was determined that the parent material, 

topography, soil depth, and moisture content were the primary factors influencing distribution of 

plant taxa across the landscape. 

The diversity of the parent material and topography of the Inner Nashville Basin provides 

a variety of habitats suitable for a great number of woody and herbaceous taxa. The floodplains of 

the Inner Basin provide a habitat for those taxa which are flood tolerant. Ash, maple, sycamore, 

alder, osage orange, gum, willow, and ironwood can be found in these areas (Faulkner 1983: 8, 

Shaver and Dennison 1928). Edible, herbaceous types which are well suited to floodplain conditions, 
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can be found within the Inner Basin. These include chickweed, spanish nettle, lambsquarter, common 

plantain, swamp sunflower, jerusalem artichoke, wild carrot, sedge and water smartweed (Shaver and 

Dennison 1928). In the xeric uplands of the Inner Basin, one can find limestone outcrops which can .· 

cover from 40 to 90% of the ground surface. This area provides prime habitat for xerothrophic 

plants and cedars, and is often known as the "cedar glades" (Quarterman 1949; 1950). Taxa in the 

cedar glade areas include eastern red cedar, ash, hickory, sycamore, elm, oak, buckhorn, hackberry, 

and sassafras (Crites 1983: 40-41). Edible plants in the cedar glade areas include prickly pear, sea­

purslane, skunk cabbage, wild carrot and peppergrass (Baskin and Baskin 1975, Quarterman 1950). 

The Outer Nashville Basin, considered one of the most productive agricultural regions of 

Tennessee, once supported a thick deciduous forest. In the terrace and floodplain areas one could 

find white and winged elm, red oak, black walnut, ash, red bud, and black locust (Shaver and 

Dennison 1928). Edible plants in this area include weak nettle, pale persicaris, goose grass, and 

small cane (Shaver and Dennison 1928). The upland slopes of the Outer Basin provide suitable 

habitats for xeric arboreal taxa. These include oaks, cedars, black locust, and red bud (Springer and 

Elder 1980: 9). Herbaceous plants in this area include choke cherry, spicebush, dwarf sumac, and 

southern black haw (Frick 1939). 

The vegetation of the Highland Rim is described as including oaks with a dogwood 

understory and an open herbaceous community (Braun 1950: 154). Other arboreal taxa include 

maple, beech, tulip tree, hickory, and white ash. Xeric hardwoods such as post oak and black jack 

1>ak are also common (Edwards et al. 1974: 9). 

Paleoenvironment 

Through time the Nashville Basin has been affected by many major dynamic changes in 

climate, biota, and landform. Several studies document changes in North American climates as 

functions of air mass and prevailing air stream patterns across North America (Bryson 1966; Bryson 

and Hare 1974; Bryson and Wendland 1967). During most of the Late Pleistocene, the Midsouth 
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area was dominated by an Arctic air stream system which kept the area in a state of homeostatis 

due to cold, boreal _climate with little seasonal fluctuation (Bryson and Wendland 1967; Delcourt 

and Delcourt 1981). The Early Holocene (12,000 to 10,000 yr. B.P.) was distinguished by a more 

southward penetration of the Arctic air stream and a more northern influence of the Caribbean 

air mass creating a significant fluctuation in moisture and temperature gradients (Bryson and 

Wendland 1967; Delcourt 1979). Warm, dry westerly winds blocked the Canadian and Gulf air 

masses between 8,000 and 4,000 yr. B.P. creating a climatic optimum distinguished by warmer 

temperatures and drier conditions (Bryson and Wendland 1967; Delcourt 1979). Around 4,000 yr. 

B.P., the climate returned to a more mesic condition which characterizes this area of Tennessee 

today (Delcourt and Delcourt 1981 ). 

Paleoecological and paleoenvironmental studies in the Nashville Basin and Interior Low 

Plateaus have been useful in documenting major environmental changes in these areas. Brackenridge 

(1982, 1984) has provided a model for sedimentation, aggradation and landform stability in the 

geomorphologic, geochronologic study of alluvial landforms on the Duck River in the Inner 

Nashville Basin of Tennessee. Klippel and Parmalee (1982) have provided a documentation of 

fauna! changes in the Inner Nashville Basin from the study of the paleontology of the stratified 

Cheek Bend Cave site (40MU261). Delcourt's (1979) study of palynological sequences from 

Anderson Pond in White County, Tennessee documents changes in vegetational suites from Late 

Pleistocene times to the present. 

The Late Pleistocene/Early Holocene transition, which occured around 10,000 yr. B.P., was 

one which experienced many dynamic environmental changes. During the Early Holocene transitional 

period there existed a Northern Mixed Coniferous-Northern Hardwood forest. Taxa within this early 

transitional period included pine, spruce, hemlock, oak and birch. The later portion of this 

transitional period experienced a gradual change from a northern forest type to a closed canopy 

mast forest of oak, maple, beech, basswood, elm, walnut, hemlock and gum (Delcourt and Delcourt 
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1981). Due to the cool, moist climate instigated by this environmental change, there was a major 

shift in alluvial regimes in the Inner Basin. An excess of moisture raised the river levels considerably 

creating an unstable floodplain situation from 10,000-7,200 yr. B.P. Under these conditions, the 

Cannon Bend Formation (Ttal, Tla2), a lower alluvial floodplain formation, was created within the 

alluvial landforms of the Nashville Basin (Brackenridge 1982, 1984). During this time boreal 

mammal species were extrapolated from the area (Klippel and Parmalee 1982). 

The Hypsithermal interval, a Mid-Holocene climatic optimum from 8,000-4,000 yr. B.P., 

witnessed a change from the cool moist Early Holocene conditions to a warmer, drier environment. 

It is during this time that a major paleosol formed on top of the Cannon Bend Formation alluvium 

around 7,200 yr. B.P. It is estimated that basin discharge and runoff was reduced by 51-65% during 

this period (Brackenridge 1982, 1984). Prevailing dry westerly winds provided a blocking mechanism 

deleting the effects of the northerly Canadian and southerly Gulf winds. This blocking action created 

a drop in mean annual precipitation of around 35 cm (Solomon et al. 1980). The vegetational 

transition from a closed canopy forest to a mixed mesophytic forest was completed during this 

period (Delcourt 1979). This period also saw the expansion of the cedar glades in the Inner Basin 

and a decrease in mesophytic taxa in the Outer Basin. The Mid-Holocene levels in Cheek Bend 

Cave document the occurrence of the grassland sorcid Cryptotis parva, and also the first appearance 

of freshwater mussels. A collection of unionid assemblages in these levels tend to infer that the 

Duck River was shallow and swift during this period (Klippel and Parmalee 1982). The stability of 

floodplains during this time created a more dependable resource zone for human occupants on 

floodplains and would be areas of low vulnerability during a draughty period. 

The Late Holocene period experienced a return to a cool, moist climate with an increase 

in precipitation from 5,000-200 yr. B.P. (Solomon et al. 1980). Upland vegetation readjusted to the 

same areal distribution as it has today. Brackenridge (1982, 1984) recognized a period of fill 

accretion and terrace instability at 6,200-4,200 yr. B.P. This was a portion of the Leftwich Formation, 
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a Late Holocene alluvial sequence. A paleosol developed on this formation between 4,200-3,900 yr. 

B.P. and there were two additional fill accretion and stability episodes between 3,000-2,600 yr. B.P. 

These were also designated part of the Leftwich Formation (Tlbl, Tlb2, Tlb3) (Brackenridge 1982, 

1984). Around 200 years ago, another episode of fill accretion was documented due to increasing 

landform instability from Historic Period land clearance practices. This produced the Sowell Mill 

Formation, a thick alluvial formation which blankets the floodplains and higher terraces. This 

formation is produced by alluvial overbank suspended load deposition (TOa, TOb, TOc), in the 

Nashville Basin (Brackenridge 1982, 1984). 

31 



CHAPIBR 4 

FIELD METHODS 

A deep testing procedure was implemented at the Rush Creek site to determine if buried 

stratigraphic deposits containing primary cultural material was present and record the stratigraphic 

and pedologic relationships of the alluvial landforms. A series of eight backhoe trenches was spaced 

across the area of the site, some of which were re-excavated ·from trenches opened by Phase 2 

testing procedures (Figure 4). All trenches were excavated roughly perpendicular to the river in an 

attempt to examine as many different landforms as was logistically possible. Trenches were numbered 

in accordance to their relative position, perpendicular to the river. Trenches in the same relative 

line were given the same trench number and different section numbers (i.e. 1R2.SN). The Trench 

1 series was the farthest to the west of the site and the Trench 4 series was located to the far east 

of the site. The Trench 2 series (TR2.S1, TR2.S1.5, TR2.S2, TR2.S3, and TR2.S4) was used in the 

construction of the composite cross-section of the site. 

Backhoe trenches were dug approximately 1.5 to 2 meters deep or until bedrock was 

exposed. From the deepest point, a series of steps were excavated to allow easy access into the 

trench and a quick escape if the trench walls destabilized. After completion of the excavation, the 

walls of the trench were cut and smoothed with trowels to alleviate the smears and bucket marks, 

and to aid in showing stratigraphic associations. Elements that appeared in the walls of the trench, 

including charcoal, rounded pebbles, lithic debitage, and bone fragments, were marked with color 

coded flagging tape (cf. Turner et al. 1982). Upon completion, the trench wall was then mapped in 

profile and p'hotographed. The utilii.ation of this technique aided in the designation of stratigraphic 

associations. 
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Figure 4. Plan View of the Rush Creek Site (40CN79). 
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Archaeo1ogical Investigations 

Previous work performed at the Rush Creek Site included plowzone stripping atop the 

Pleistocene age terrace and deep testing investigations in the floodplain . . Plowzone stripping . . · . 

techniques were used to locate and excavate any subsurface features. Deep testing was performed 

to examine and define the buried midden described in Phase 2 testing procedures. 

An area of approximately 40 m x 20 m was stripped of its plowzone layer with the use of 

a backhoe. Thirteen feature� were located within this area known as "Stripped Area A" (Figure 4). 

Most of the features excavated appeared to be the product of natural disturbances, such as animal 

burrows, root systems, and tree falls. The features that may have been culturally produced were 

generally irregular, shallow, and sometimes contained small size lithic debitage. No diagnostic 

artifacts were recovered, nor any floral or faunal materials apparent. A human burial was recovered, 

but was found to be in a poor state of preservation with little or no pit outline evident. The site 

has been subjected to plowing, and the possibility exists that deep features were truncated severely 

and shallow postmolds completely obliterated. 

Archaeological investigations in the floodplain were manifested in three major areas of 

excavation. Excavation Area A (Figure 4) was located adjacent and to the west of Trench 3. Section 

2 of the deep test excavations. The overburden of approximately 8 m x 6 m was cleared with use 

of a backhoe. A 4 m x 4 m block of 1 m x 1 m units were placed within this cleared area for 

excavation. Excavations in the TOb sediment demonstrated this formation was relatively sterile with 

a few lithic artifacts and some charcoal present. The contact between the TOb and the Tl was very 

distinct with the Tl sediments much darker and firmer than the TOb. The highest density of material 

was located atop the Tl surface. The majority of the charcoal (65.7%) and limestone (54.7%) was 

found here. Of particular interest was the discovery of several fragments of bone that were found 

on the surface and just barely intrusive into the Tl formation. Most of the bone here was 

indeterminate due to the rather poor state of preservation. However, three identifiable fragments 
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included one distal right lateral femur fragment of Sus scrofa (domestic pig) was found in the TOb 

overburden and one right second molar of Sus scrofa was found slightly imbedded in the Tl 

formation surface. Also, one left first molar of Odocoileus virginianus (white tailed deer) was found 

in the surface of the Tl formation. There were no diagnostic lithic artifacts found in this excavation. 

Excavation Area B (Figure 4) was located adjacent and to the west of Trench 2. Section 2. 

A block unit of approximately 9 m x 6 m was cleared by a backhoe and 21 1 x 1 m units were 

placed. The surface of the Tl in this block followed the slope of the underlying bedrock, sloping 

down from the T2 scarp and leveling off at the base of the slough. The sediment in this excavation 

was similar to the sediments in Excavation Area A with the exception of the northernmost units 

where the soil structure exhibited a stronger subangular structure that the remaining Tl sediments. 

A radiocarbon sample extracted from this particular soil revealed a chronometric date of 5160 ± 

210 yr. B.P. (Beta 22072). In the excavation, 94.7 % of all limestone recovered was located at the 

Tl--TOb interface. One tooth fragment of Odocoileus virginianus and one proximal phalange 

fragment of Bos taurus (domestic cow) were found slightly intrusive into the Tl surface. The 

remaining artifacts were rather homogeneously dispersed without any clear areas of concentration. 

Lithic debitage was randomly dispersed although there seemed to be a tendency for smaller debitage 

to be found toward the base of the units as they were excavated to bedrock. 

Excavation Area C (Figure 4) was located adjacent and to the east of Trench 3. Section 2. 

The area covered roughly 4 m x 4 m. The TOb overburden was excavated to the surface of the Tl 

formation and a charcoal lense appeared. Wood charcoal samples from this excavation were 

radiocarbon dated at 150 ± 80 yr. B.P. (Beta 21683). The wood charcoal was identified as sycamore 

(flatanus occidental is) and maple (Acer �) primarily belonging to floodplain adapted types. There 

was a great amount of burned limestone found on top of the Tl formation within this charcoal 

concentration. Associated with this limestone was a ceramic stoneware sherd that probably dated 
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around the last half of the 19th century. The limestone also appeared burned, and much of the 14 

pieces of unidentifiable bone appeared burned. 

Soil Descriptions 

Pedologic data were recorded for each trench. A trowel was used to ped a section of the 

wall on each trench. "Pedding" is a process used to expose a trench wall by breaking the soil along 

its areas of structural weakness. Horizon boundaries were marked with flagging tape and each 

trench wall was photographed in profile. The horizons were then described and sampled. Samples 

of about 2,000 grams in size were taken back to the laboratory for testing. Upon completion of all 

the analysis, stratigraphic and pedologic information was added to the maps of each trench section. 

Soil horizons at the site were determined by field examination. Master soil horizons that 

were identified at the site in each trench section were determined by the following criteria: 

A horizons: Mineral horizons that formed at the surface or below an O horizon and (1) are 
characterized by an accumulation of humified organic matter intimately mixed with 
the mineral fraction and not dominated by properties characteristic of E or B 
horizons ... or (2) have properties resulting from cultivation, pasturing, or similar 
kinds of disturbance (Soil Survey Staff 1981: 4-41). 

B horizons: Horizons that formed below an A, E, or O horizon and are determined by 
obliteration of all or much of the original rock structure ... and by (1) illuvial 
concentration of silicate clay, iron, aluminum, humus, carbonates, gypsum, or silica, 
alone or in combination; (2) evidence of removal of carbonates; (3) residual 
concentration of sequioxides; (4) coatings of sequioxides that make the horizon 
conspicuously lower in value, higher in chroma, or redder in hue than overlying and 
underlying horizons without apparent illuviation of iron; (5) alteration that forms 
silicate clay or liberates oxides or both and that forms granular, blocky, or prismatic 
structure if volume changes accompany changes in moisture content; or (6) any 
combination of these (Soil Survey Staff 1981: 4- 41,42). 

C horizons or layers: Horizons or layers, excluding hard bedrock, that are little affected 
by pedogenic processes and lack properties of 0, A, E, or B horizons. Most are 
mineral layers, but limnic layers, ... whether organic or inorganic, are included. The 
material of C layers may be either like or unlike that from which the solum 
presumably formed. A C horizon may have been modified even if there is no 
evidence of pedogenesis (Soil Survey Staff 1981: 4-42). 
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Lower case letters used to determine specific kinds of master soil horizons which were utilized in 

this study are as follows: 

b Buried genetic horizon: . . .  used in mineral soils to indicate identifiable buried genetic 
horizons if the major features of the buried horizon had been established before 
it was buried. It is not used in organic soils or to separate an organic layer from 
a mineral layer. Genetic horizons may or may not have formed in the overlying 
material, which may be either like or unlike the assumed parent material of the 
buried soil (Soil Survey Staff 1981: 4-43). 

g Strong gleying: . . .  used to indicate either that iron has been reduced and removed 
during soil formation or that saturation with stagnant water has preserved a reduced 
state. Most of the affected layers have low chroma and many are mottled. The low 
chroma can be the color of reduced iron or the color of uncoated sand or silt 
particles from which the iron has been removed. Symbol "g" is not used for soil 
materials of low chroma, such as some shales or E horizons, unless they have a 
history of wetness. If "g" is used with "B", pedogenic change in addition to gleying 
is implied. If no other change has taken place, the horizon is designated Cg (Soil 
Survey Staff 1981: 4-44). 

p Plowing or other disturbance: . . .  used to indicate disturbance of the surface layer by 
cultivation, pasturing, or similar uses. A disturbed organic horizon is designated Op. 
A disturbed mineral horizon, even though clearly over a E, B, or C horizon is 
designated Ap (Soil Survey Staff 1981: 4-45). 

t Accumulation of silicate clay: . . .  used to indicate an accumulation of silicate clay that 
either has formed in the horizon or has been moved into it by illuviation. The clay 
can be in the form of coatings on ped surfaces or in pores, lamellae, or bindings 
between mineral grains (Soil Survey Staff 1981: 4-45). 

w Development of color or structure: . . .  used with "B" to indicate development of color 
or structure, or both, with little or no apparent illuvial accumulation of material 
(Soil Survey Staff 1981: 4-46). 

After identification, soil horizons were described using the 
following criteria: 

Color: determined by the Munsell (1975) color chart for moist and dry colors. Any coatings 
or oxides were also determined along with an estimate of the relative percentage 
of minor colors in comparison to the dominant color. 

Depth: measured in centimeters from the surface, includes upper and lower boundaries. 

Texture: the field identification of the relative percentages of gravel, sand, silt and clay 
content according to criteria for field examination (Soil Survey Staff 1981: 4-51). 
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Structure: refers to the development of soil aggregates or peds. The size, shape, and degree 
of development are assessed. 

Consistence: the pliability or firmness of soil aggregates determined by field analysis. 

Coatings and oxides: determined by the extensiveness of the coatings and the relative 
percentages of these fractions in comparison to the dominant mineral fraction. 

Boundary: refers to the lower boundary of the horizon. It is used to describe the grade and 
shape of the natural boundaries between horizons. 

Coarse fragments: includes field assessment of size and relative percentage of materials 
greater than 2 mm, and in this analysis lithic debitage, charcoal, bone, limestone, 
alluvial gravel, and historic artifacts were included. Relative percentage estimates 
of these were determined by comparison with the dominant mineral fraction. 

Roots, pores, and tunnels: used to determine the extent of biotic activity from plants, insects 
and other animals. Size and relative amounts were determined by field observation. 

Discontinuities: designated by an arabic prefix of the master soil horizon. Used to designate 
lithologic discontinuities and may indicate sequences of soils with differing parent 
materials of different ages. 

The results of the pedologic investigation are found in the soil descriptions in Appendix A 

Stratigraphy 

Five major lithostratigraphic units were documented at the Rush Creek site. The 

depositional model was first implemented in the Columbia Reservoir by Brackenridge (1982, 1984). 

This model consists of four major stratigraphic formations. These formations are the Cheek Bend 

Formation (Late Pleistocene, T2), the Cannon Bend Formation (Early Holocene, Tla), the Leftwich 

Formation (Late Holocene, Tlb ), and the Sowell Mill Formation (Historic, TO). This formational 

model was instrumental in the interpretation of the alluvial stratigraphy in the Columbia Reservoir 

archaeological investigations along the Duck River near Columbia, Tennessee. The Cheek Bend 

formation is a Pleistocene alluvium which currently occupies the relatively higher position of the 

second terrace. The Leftwich and Cannon Bend formations are Holocene age alluvium that occupy 

the floodplains of the Nashville Basin. The Sowell Mill Formation is an historic alluvium that forms 

a thick overbank deposit near the river's edge, and also consists of fill in a truncated slough at the 
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junc-ture of the second terrace and the floodplain of the Rush Creek site. From the stratigraphy 

observed at the site, this model can apply to the alluvial depositional formations along the East 

Fork Stones River as well (Figure 5). 

T2a Formation. The T2a formation is a Pleistocene alluvium that occupies the lower 

mantle of the Pleistocene age terrace at the Rush Creek site. It is overlain by the T2b formation 

and is underlain by Carters limestone bedrock. There is a distinct lithological discontinuity that 

separates the two T2 formations recognizable by a pebble line indicative of a truncation episode. 

This formation has a distinct argillic horizon. It has a clay texture with strong medium subangular 

blocky structure. The moist consistence is firm and sticky with thin continuous clay coatings. 

Manganese and iron oxides are expressed as coatings and nodules with each comprising about 20% 

of the sediment matrix. The boundaries between the horizons are gradual and smooth while the 

boundary between the T2b and the T2a is clear and smooth. Rounded chert gravels comprise about 

10% of the sediment matrix. The dominant color is lOYR 6/6 (brownish yellow) with iron oxides 

expressed as 7.SYR 5/6 (strong brown) and manganese oxides expressed as 7.SYR 3/0 (very dark 

grey). This description was taken from the sediment column in TR2.S4, 167-189 cm below the 

surface. 

T2b Formation. The T2b formation is a Pleistocene age alluvium that occupies the upper 

mantle of the second terrace at the Rush Creek site. The archaeological features located on this 

terrace are intrusive into this formation. It is overlain by a relatively thick plowzone and underlain 

by the T2a formation. This formation extends from the T2 scarp, runs laterally across the second 

terrace, and is approximately 75 cm thick on top of the T2. This formation has a relatively distinct 

argillic horizon. It has a silty clay loam texture with moderate medium subangular blocky structure. 

Some fine laminations are present. The moist consistence is firm and sticky. The ped surfaces have 

thin continuous clay coatings and the boundaries between the soil horizons are gradual and smooth. 
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The color of the matrix is predominantly 7.5YR 5/4 (brown) with clay coats of 7.5YR 4/4 (dark 

brown). The type section for this description was taken from the sediment column in TR2.S4 

between 60-82 cm below the surface. 

Tl Formation. Buried archaeological assemblages are incorporated in the matrix of the Tl 

formation at the Rush Creek Site. It is difficult to interpret stratigraphically due to the variability 

in the radiocarbon dates, the presence of historic materials associated with prehistoric assemblages, 

and the . general lack of diagnostic artifacts. This is an alluvial formation that has experienced 

extensive pedogenic alteration. This formation occupies the lower part of the floodplain slough 

section at the base of the T2 footslope. It is overlain by TOb deposits in the slough and underlain 

by Carters limestone bedrock. The formation runs from the southern lip of the floodplain slough 

approximately 11 meters to the edge of the T2 footslope. Maximum thickness of this formation is 

about 30 to 40 centimeters. Two paleosols are recognized on the surface of this formation 

representing episodes of Mid-Holocene landform stability, and historic landform stability. The Mid­

Holocene paleosol, C-14 dated at 5160 ± 210 yr. B.P., is found where the surface of the formation 

is slightly inclined as it rises up along the T2 footslope. This particular paleosol may only cover 

about 10 square meters of surface. The historic paleosol is much more extensive and covers the 

majority of the Tl formation surface. Due to possible historic disturbance, this formation was likely 

truncated by an erosional episode and the Mid-Holocene paleosol may be representative of the only 

undisturbed section of the Tl formation. The Tl formation corresponds with the Tlbl formation 

(Leftwich) in the Columbia Reservoir which dated between 4,200-3,900 yr. B.P. (Brackenridge 1982, 

1984). 

One of the Tl paleosols covers the majority of the Tl surface and was recognized in the 

field as a buried "A" horizon. This unit exhibited a silty clay loam texture with moderate, medium 

subangular blocky structure. The moist consistence is friable and slightly sticky with thin 

discontinuous clay coatings. There arc a few manganese nodules present comprising about 2% of 
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the matrix. The boundary between the Tl paleosol and the TOb overburden is abrupt and smooth. 

A few rounded chert pebbles, lithic debitage and charcoal pieces were noted in the field comprising 

about 5% of the matrix. Archaeological investigations in this formation demonstrated that historic 

age materials including historic ceramics and domesticate faunal remains were on the surface or 

slightly intrusive into this soil horizon. Charcoal extracted from a buried surface (identified as 

Feature 18 in Phase 2 excavations) (Spears et al. 1986), discovered in TR3.S2 yielded a radiocarbon 

date of 150 ± 80 yr. B.P. This charcoal was associated with a stoneware sherd and several pieces 

of burned limestone. The majority of the limestone fragments, charcoal, and faunal remains were 

discovered at this Tl paleosol-TOb overburden contact. It is suggested that a disturbance episode 

was responsible for the truncation of the Tl landform. The deposition of the charcoal, bone, 

limestone and historic artifacts was the result of a disturbance episode abandonment and 

stabilii.ation of the landform. The Tl paleosol was then covered by a thick veneer of historic age 

alluvium comprised by the TOb formation. The historic Tl paleosol was documented in TR1.S2, 

TR2.S2, and TR3.S2. The type section for this description was taken from the sediment column for 

TR2.S2, 133-152 cm below the surface. 

The majority of the matrix of the Tl formation is a subsoil which has experienced some 

development of an argillic horizon. The texture is a silty clay with a moderate coarse subangular 

blocky structure. The moist consistence is firm and sticky with thin, continuous clay coatings. The 

boundaries are gradual and smooth. Coarse fragments consist of rounded chert pebbles, lithic 

debitage, and charcoal which comprise about 10% of the sediment matrix. There is an absence of 

bone, limestone, and historic materials in this part of the sediment matrix, suggesting major 

disturbance processes were confined to the surface of the Tl formation. However, there is evidence 

of site disturbance due to argilliturbation (Wood and Johnson 1978) or shrink-swell processes which 

may have moved the lithic debitage downward from primary context. The moist color of the matrix 

is lOYR 3/3 (dark brown). This argillic horizon was found in TR1.S2, TR2.S2, and TR3.S2. The type 
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section for this description was located in the sediment column in TR2.S2, 165-176 cm below the 

surface. 

At the base of the Tl formation is a gravel bar deposit which overlies Carters limestone 

bedrock. The texture is a gravelly clay with massive structure that exhibits gleying due to the 

reducing conditions of a perched water table. The moist consistence is firm and sticky with iron 

oxide and manganese oxide coatings comprising about 10% of the total matrix. There is a clear, 

smooth boundary between this gravelly horizon and the overlying argillic horizon. Common large 

and medium rounded chert gravels and cobbles comprise about 30% of the sediment matrix. 

Dominant color is lOYR 3/3 (dark brown). Lithic debitage found in this particular soil horizon 

exhibited some waterwear on the surfaces. This may have been a former Late Pleistocene-Early 

Holocene lag channel deposit that was covered by a silty alluvium when the river meandered 

southward in this particular bend. This soil unit was found in TR1.S2, TR2.S2, and TR3.S2. The 

type section for this description was taken from the sediment column in TR2.S2, 176-180 cm below 

the surface. 

A second paleosol was discovered later in the investigation. This paleosol was barely 

distinctive from the other Tl paleosol with the exception that it had a much stronger medium 

subangular blocky structure. This particular paleosol was only located in TR2.S2 and defined as 

Lithostratigraphic Unit IVa in the Phase 2 investigations (Spears et al. 1986). This unit exists where 

the footslope of the T2 begins to rise up the terrace scarp. This unit may in fact represent the only 

preserved portion of the Tl; one that was not subjected to lateral disturbance from the historic 

slough. A Kirk-type projectile point was discovered in the Phase 2 testing (Spears et al. 1986) 

leading to the suggestion that the unit was Early Holocene in age. However, a charcoal sample from 

this unit yielded a C-14 date of 5160 ± 210 yr. B.P. (Beta 22072). This date most closely correlates 

with the Tlbl paleosol of the Leftwich formation discovered in the Columbia Archaeological Project 

with dates ranging from 4,200-3,900 yr. B.P. (Brackenridge 1982, 1984). Unfortunately, no diagnostics 
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were discovered here during Phase 3 mitigation. The occurrence of an Early Holocene deposit with 

a Kirk association seems suspect and the unit is more likely a Late Archaic association. 

The Tl formation at the Rush Creek Site is enigmatic at best. The variety of conflicting 

evidence makes the archaeological integrity of this formation suspect. Two major conclusions can 

be drawn from the evidence. The first is that an historic age site disturbance process was primarily 

responsible for the truncation and intrusion of this formation. The second is that the relatively 

homogeneous nature of the lithic debitage found within this formation suggests that post­

depositional processes such as argilliturbation may have distorted the integrity of the archaeological 

assemblages. Therefore, the primary context of the site is lacking. 

TOa Formation. The TOa formation is a silty alluvium that underlies the TOb formation and 

overlies Carters limestone bedrock. This formation comprises the majority of the sediment within 

the floodplain and consists of a silty upper mantle and grades into a gravel bar at its base. This 

formation runs laterally from the river bank of the East Fork Stones River where exposure is slight, 

to 32 meters into the interior of the floodplain to the southern edge of the floodplain slough. Its 

maximum thickness is about 130 cm in the interior of the floodplain. The TOa has been dated at 

around 1,500 yr. B.P. in the Columbia Reservoir and is considered a Late Holocene landform 

(Mahaffy 1984). 

The silty upper mantle of the TOa formation is relatively homogeneous across the floodplain 

and has characteristics of slight but evident pedogenic activity. The texture is a silt loam with weak 

coarse subangular blocky structure. The moist consistence is friable and nonsticky with thin 

discontinuous clay coatings on the ped surfaces. The boundaries are gradual and smooth with some 

coarse fragments of angular limestone and rounded chert gravels noted in some portions of the 

matrix (2-5%). The moist color is lOYR 4/3 (brown) with dry color of lOYR 5/3 (brown). The type 

section for this description was taken from the sediment column in TR2.Sl, 103-119 cm below the 

surface. 
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A thin sand lense separates the silty upper mantle from the gravelly base in this formation. 

The texture is a sandy loam with weak coarse subangular blocky structure. The moist consistence 

is friable and nonsticky with no clay coatings visible on the ped surfaces. It has a clear, smooth 

boundary, and rounded chert pebbles comprise about 10% of the matrix. Moist color is a lOYR 5/6 

(yellowish brown). The type section for this description was taken from the sediment column in 

TR2.S1.5, 76-89 cm below the surface. 

At the base of the TOa formation is a very distinct gravel bar comprised of rounded chert 

gravels. This indicates a Late Holocene lag channel. The gravel bar exhibits a sandy gravel texture 

with granular structure due to the lack of finer sediments. The wet consistence is loose and 

nonsticky with no clay coatings evident. A few manganese nodules were noted comprising less than 

2% of the matrix. Rounded chert gravels and cobbles comprise from 60-80% of the sediment matrix. 

Color is highly variable primarily expressed in the different exterior colors of the individual gravels, 

however, a lOYR 6/6 (brownish yellow) tends to predominate. The type section for this description 

was taken from the sediment column in TR2.S1.5, 89-130 cm below the surface. 

The TOa formation is the primary floodplain formation at the Rush Creek site. It comprises 

most of the floodplain area, at times from the surface to bedrock. Its relative absence in the 

floodplain slough suggests that this formation may have been truncated due to some erosional 

process which stripped sediment away from the slough. It is likely that the TOa was deposited prior 

to this disturbance and truncated prior to the deposition of the TOb formation. 

Toh Formation. The TOb formation is one where the primary mode of deposition is alluvial 

suspended load deposition. This formation is Late Historic in age with a C-14 date of 150 ± 80 yr. 

B.P. (Beta 21683) extracted from the base of this formation and atop the Tl paleosol in TR3.S2, 

116 cm below the surface. This formation is located atop the levee bank at the river's edge where 

the thickness of the formation reaches a maximum depth of around 85 cm and thins gradually from 

the river bank to 21 meters into the interior of the floodplain. In this area the TOb overlies an 

45 



earlier floodplain formation, the TOa formation. The TOb formation also was located in the · 

floodplain slough at the base of the T2 scarp where it has infilled a former slough channel that 

stripped away some of the older floodplain formation. In this area the TOb reaches a maximum ·_· 

depth of 115 cm where it overlies a Middle Holocene formation (Tl) and extends 17 meters across 

this former slough. Due to the relatively young age, this formation has experienced little pedogenic 

alteration· resulting in relatively well preserved varve stratigraphy. The intermittant sand and 

laminated silt lenses may indicate individual episodes of initial flood water velocity and concomitant 

ponding. These sand and silt lenses are located toward the base of the formation unit in the slough, 

but are more dispersed atop the levee near the river bank. Analysis of a similar landform in the 

Columbia reservoir dated this formation at around 300-400 yr. B.P. and is considered a landform 

developed during the historic period (Mahaffy 1984). 

The dominant matrix of the TOb formation is a silt loam with weak moderate subangular 

blocky structure. The moist consistence is friable and nonsticky and the soil peds have thin 

discontinuous clay coatings. There are a few fine manganese nodules present comprising about 2% 

of the matrix with common pieces of angular limestone and rounded chert pebbles comprising up 

to 10% of the matrix. The boundary between these horizons in this matrix is generally gradual and 

smooth with few fine roots and pores. Moist color of the matrix is lOYR 4/3 (brown). Type section 

for this description was located in the sediment column of TR2.S2, 48-63 cm below the surface. 

Sand lenses which can be found intermitantly throughout this formation exhibit a sandy 

loam texture and a loose granular structure comprised primarily of rounded chert grains. The moist 

consistence is loose and nonsticky with no visible clay coatings. Manganese nodules are common 

comprising up to 10% of the matrix and rounded chert pebbles are common. The lenses exhibit 

abrupt irregular boundaries. There is no evidence of roots and pores and the moist color is lOYR 

4/3 (brown). The type section for this description is located in the sediment column in TR2.S2, 112-

120 cm below the surface. 
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Laminated silt lenses can be found interspersed with the sand lenses and at the base of the 

TOb formational unit. Texture is a silt to silt loam with massive, lamin�ted structure. The moist 

consistence is friable and nonsticky with no visible clay coatings. There are abrupt, irregular 

boundaries with some evidence of manganese coatings exhibited on the top and bottom of the 

lenses. The majority of the matrix has a moist color of lOYR 4/4 (dark yellowish brown) with fine 

laminae of lOYR 7/4 (very pale brown). The type section for this description is located in the 

sediment column of TR2.S2, 109-122 cm below the surface. 

The identification of the TOb formation at the Rush Creek site was important for several 

reasons. The identification aided in the determination of areas of the site marked by disturbance 

processes. It helped to show that its deposition was two directional. The first was in the floodplain 

slough where sediment was deposited following a low lying depression across the floodplain. The 

second was deposited laterally from overbank flooding. The historic date on the surface and slightly 

intrusive into the Tl paleosol indicated an historic age for the initial deposition of this landform 

and the relatively sandy nature of this sediment in comparison to the underlying TOa formation may 

be interpreted as increased sediment load due to increased landform instability from historic land 

clearance processes. Although some colluvial input was noted in sediment originating from the T2 

scarp, the primary mode of deposition from this particular formation is alluvial. 

Plowzone (PZ). The plowzone at the Rush Creek Site is extensive across the entire 

landform. Thickness of the plowzone varies from 15 to 30 cm and is thickest where the relief of the 

landform is relatively flat. The plowzone thins considerably along the T2 scarp where the relief is 

more steep. This formation developed under cultivation activities where the surface soil was churned 

and mixed by plowing activities. 

The plowzone across the floodplain exhibits a strong medium granular structure with a 

loose, friable, nonsticky moist consistence. There arc no visible clay coatings or evidence of 

illuviation. The matrix has common medium and fine roots and pores. The texture is a gravelly silt 
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loam with angular pieces of coarse, medium and fine limestone fragments comprising about 20% 

of the matrix. Moist color is generally a lOYR 4/4 (dark yellowish brown). This formation does vary 
\ 

with most of the limestone pieces concentrated along the T2 scarp and within the slough of the 

floodplain. Common rounded chert pebbles are found within the slough of the floodplain and atop 

the T2. The type section for this description was taken from the sediment column in TR2.S2, 0-32 

cm below the surface. 

Discussion 

The determination of the development of alluvial landforms at the Rush Creek site is 

important in the interpretation of archaeological context. Various episodes of deposition and 

disturbance shaped the landform and altered the archaeological integrity of the site. The 

interpretation of these processes is critical in the interpretation of the Rush Creek Site. 

The initial deposition of alluvium at the Rush Creek Site probably began around Late 

Pleistocene times when the East Fork Stones River ceased downcutting into Carters Formation 

bedrock and began lateral deposition of alluvium in the meander bends. This process formed the 

T2 alluvial terrace or Cheek Bend Formation. There was probably a period of stability and 

truncation between the deposition of the T2a and the T2b. During Early Holocene times, the East 

Fork Stones River shifted laterally away from the Pleistocene age terrace and began depositing 

alluvium along its former channel. This landform aggraded until around 5,000 yr. B.P. when the 

landform stabilized probably due to a Mid-Holocene warming and drying trend. This corresponds 

with the Tlbl formation (Leftwich Formation) in the Columbia Reservoir (Brackenridge 1982, 

1984). The absence of the Tla or Cannon Bend Formation at this site is unexplained. After the Tl 

formation stabilized the TOa formation (Sowell Mill Formation) was deposited across the floodplain. 

This formation may have been deposited due to aboriginal land clearance practices which aided in 

the destabilization of the surrouading landform increasing the sediment load carried by the river. 

This landform probably continued to slowly aggradc from 1500 yr. B.P. until 200 yr. B.P. when 
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again excessive landform destabilization by historic clearance and agricultural practices influenced 

the increasing sediment load carried by the river. This is noted in the sandier nature of the TOb 

sediment as opposed to the underlying TOa formation. About the same time a disturbance episode 

across the floodplain became evident. Around 150 yr. B.P. the floodplain was truncated laterally 

paralleling the river. From Rush Creek to some 200 meters downstream toward the river, a distinct 

depression was carved by hydrologic activity. This slough downcut through the floodplain stripping 

the TOa deposits at the base of the T2 scarp and truncated the buried palcosol of the Tl formation. 

The abandonment of this slough was marked by deposition of historic remains on top of and slightly 

intrusive into the surface of the Tl formation. This process subsequently mixed some of this historic 

material with aboriginal materials within the Tl formation. This truncation episode affected all of 

the Tl surface with the exception of a small pocket of sediment located somewhat further up the 

slope of the T2 escarpment. After the slough was abandoned, sterile overburden consisting of TOb 

deposits filled in the slough and softened the gradient of the landform. This process resulted in a 

cultural midden scaled by sterile overburden. 

The archaeological deposits in this stratigraphic situation are rather complex. The majority 

of the archaeological materials arc confined to the Tl strata. However, it has been suggested there 

is only a small pocket of intact deposits that may have been unaffected by the historic age 

disturbance. A radiocarbon date of this particular unit of around 5,000 yr. B.P. would indicate a 

Middle to Late Archaic archaeological association, but no diagnostic artifacts of this period were 

recovered from this strata. The remainder of the Tl formation appears to have undergone extensive 

pedogenic alteration due to argilliturbation and shrink-swell activities. The lithic materials in this 

unit are distributed somewhat homogeneously throughout the sediment with no clear concentrations 

of material. Historic age materials are found on the surface of the Tl formation. A radiocarbon date 

of around 150 yr. B.P. on this surface suggests a time of slough abandonment. Historic age materials 

associated with the base of the TOb and the surface of the Tl include domesticate fauna! remains, 
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ceramics, limestone, and recent charcoal. It is believed a possible mill race may have truncated the 

site and the present surface of the Tl may demarcate the extent of the disturbance. It is unfortunate 

that these disturbance episodes affect ively altered a rather potential archaeological site. 
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CHAPTER 5 

LABORATORY METHODS 

Samples that were collected from the stratigraphic sections at the Rush Creek site were 

subjected to a battery of tests and analyses. A particle size analysis was implemented to define the 

parameters in the grain size distribution within each sample. The pH determination of each sample 

was used to understand the chemical reaction and variability in these samples. A carbon analysis was 

used to determine carbon percentag.es and document the presence of buried surfaces. A phosphate 

analysis was used to determine areas of human activity. Multivariate statistical procedures were used 

to identify variabil i ty between landforms and assess the stratigraphic integrity of the site. 

Particle Size Analvsis 

A particle size analysis was performed on all soil samples collected for the trench sections. 

These samples were air dried and ground with a mortar and pestle until fine enough to pass through 

a number 10 (2.0 mm, -1 0) sieve. The samples were split and subsamples of 40 grams were taken. 

An initial particle size analysis was performed using the hydrometer method to assess the silt and 

clay content (Day 1965). The data were then converted to standard 0 size designations (5.0 0, 6.0 

0, 7.0 0, 8.0 0, and > 8.0 0) (Krumbein 1934). 

From the samples tested with the hydrometer method, a sand sieve analysis was 

incorporated. A series of nested geologic sieves was utilized; 4 mm (-2.0 0), 1 mm (-1.0 0), 0.5 mm 

(0.0 0) ,  0.250 mm (2.0 0), 0.125 mm (3.0 0), and 0.625 mm (4;00 0) .  The sample solution within 

the settling cylinder was poured through a 0.053 mm (4.4 0) wet sieve and the soil sample was dried 

and added to the 4 mm (-2.0 0) sieve. A sieve shaker was used and the sand sample was shaken 

for 15 minutes. The sample in each screen was weighed and the percentage calculated. For those 

samples with textures coarser than a loamy fine sand, the samples were split and quartered, and 

subsamples of at least 200 grams were taken. This subsample was washed through a 2 mm (-1.0 0) 
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geologic sieve. The remaining gravel was dried and weighed and the percentage calculated. This 

procedure was performed to allow better representation for those samples too coarse to assess with 

the hydrometer method (Shackley 1975). Percentage data for 0 size designations were recorded in 

Appendix B. 

The particle size data were converted to phi size designations. Phi (0) is equal to -log2 

diameter (mm) (Krumbein 1934). The data were then plotted onto arithmetic probability paper as 

a cumulative frequency based on the percentages of 1.0 0 units. Points along the cumulative 

frequency curve were extrapolated for the fifth, sixteenth, twentyfifth, fiftieth, seventyfifth, 

eightyfourth, and ninetyfifth percentiles as determinants for the statistical parameters of mean, 

standard deviation, skewness, and kurtosis. The cumulative frequency ranges were calculated for 

-2.0 0 to 14.0 0. 

Textural Analvsis 

Sediment parameters were determined for each of the samples collected at the Rush Creek 

site. It is believed that textural parameters can be used to designate and discriminate sediments 

according to their environments of deposition (Folk and Ward 1957; Mason and Folk 1958; 

Friedman 1967; Greenwood 1969; Taira and Scholle 1979; McLaren 1981). The primary measures 

utilized in these studies arc mean, standard deviation, skewness, and kurtosis. 

Graphic mean. The Graphic Mean (Mz) is regarded as a measure of the grain size most 

representative of the sample. A graphic mean that tends· toward the coarse or negative end of the 

0 scale is interpreted as being deposited in an environment of deposition of greater energy than 

sediments with a mean size that tends toward the fine or positive end of the 0 scale. The graphic 

mean size (Mz) of a sediment is defined by the equation: 

Mz = 01 6% + 050% + 084% 
3 

(Folk and Ward 1957: 12) 

52 



The mean particle size in a sediment unit is a reflection of the average size of material transported 

and deposited regardless of minerological composition (Greenwood 1969: 1351). 

Graphic Standard Deviation. The Inclusive Graphic Standard Deviation (oi) in a sediment 

unit is a basic measure of the sorting of the sample. A high standard deviation value represents a 

more poorly sorted sediment than a low standard deviation value. If the grain size distribution is 

Gaussian-normal, 68% of the sample will lie within the range Mz ± oi (Mason and Folk 1958: 

217). Inclusive Graphic Standard Deviation is defined by the equation: 

6 i= 084% - 01 6% + 095% - 05% 
4 6.6 

(Folk and Ward 1957: 13) 

Graphic Skewness. Graphic Skewness (Ski) measures the symmetry of a sediment 

distribution. Symmetrical curves have a skewness value of 0.00 and as skewness becomes more 

extreme, the value approaches a theoretical maximum of + 1 .00 to -1 .00 (Mason and Folk 1958: 

217). A skewness value in a sediment reflects the relative frequency of occurrence of energy 

flucuations of the depositional environment above or below the average (Greenwood 1969: 1351). 

Skewness is defined by the equation: 

Ski = 01 6% + 084% - 2050% + @5% + @95% - 2050% 
2(084% - 016%) 2(095% - 05%) 

(Folk and Ward 1957: 13) 

Verbal limits for skewness distributions are: 

-1.00 to -0.30 very negatively skewed 
-0.30 to -0.10 negatively skewed 

-0. 10 to +0.10 nearly symmetrical 
+0.10 to +0.30 positively skewed 
+0.30 to + 1 .00 very positively skewed 

(Folk and Ward 1957: 14) 
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Graphic Kurtosis. Graphic Kurtosis (Ko) measures the ratio of the sorting in the extremes 

of the distribution compared with the sorting in the central part of the distribution (Folk and Ward 

1957: 14). A normal curve has a kurtosis value of 1 .00. For example, a curve with a kurtosis value 

of 1 .20 is more peaked (leptokurtic) and is better sorted in the central part of the distribution 

(075% to 025%) than in the tails (095% to 05% ). The spread between the tails is therefore 1 .20 

times as great as it would be if the distribution were normal (Mason and Folk 1958: 218). A high 

kurtosis value in a sediment reflects a depositing agent carrying material of a size in the mean of 

the distribution for a greater length of time than normal (Greenwood 1969: 135 1). Graphic Kurtosis 

is defined by the equation: 

Ko = 095% - 05% 
2.44(075% - 025%) 

(Folk and Ward 1957: 14) 

Verbal limits of Graphic Kurtosis are defined as: 

Mu1tivariate Ana1vsis 

< 0.67 very platykurtic 
0.67 to 0.90 platykurtic 
0.90 to 1 .  1 1  mesokurtic 
1. 1 1  to 1.50 leptokurtic 

1 .50 to 3.00 very lcptokurtic 
> 3.00 extremely leptokurtic 

(Folk and Ward 1957: 14) 

A multivariate statistical analysis was performed on the sediment samples using the variables 

Graphic Mean, Inclusive Graphic Standard Deviation, Graphic Skewness, and Graphic Kurtosis. The 

procedure was performed with the Statgraph ics (version 4.2) software package. Because of the 

extreme coarse nature of the gravel bar and lag channel deposits, the analysis was performed on the 

finer upper matrices of the alluvial deposits. Multivariate procedures have discerned varying 
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depositional environments in other studies (Folk and Ward 1957; Mason and Folk 1958; Greenwood 

1969). Sediment parameters analyzed by multivariate procedures are controlled by available material; 

processes of erosion, transport, and deposition; and the energy levels of the environment 

(Greenwood 1969: 1347). Although it has been cautioned to avoid sediments which have undergone 

diagenic or pedogenic alterations through time (Greenwood 1969: 1347), this study intends to 

demonstrate that formation can be discriminated on the basis of pedogenic alterations through time. 

Data used in the multivariate analysis are recorded in Appendix C. 

pH Analvsis 

The pH of a sediment is a measurement of the negative logarithm of hydrogen ion activity 

as is determined by a hydrogen sensitive electrode. Two factors which influence the pH of a soil is 

the soil solution ratio and the equilibrium salt concentration. An increase in either factor will in 

turn lower the pH (Bohn ct al. 1979: 205). Because of the affects of the diffuse double layer effect 

(Bohn et al. 1979: 141) it is important to position the electrode as close to the colloid surfaces as 

possible. It is optimal to use an electrode which allows a free diffusion of KCl through a standard 

plug without actual flow of solution (Schofield and Taylor 1955: 167). Although pffs have been 

utilized well in archaeological studies (Dietz and Dethlefsen 1963; Gordon and Buikstra 1981), one 

must be cautioned that a pH analysis is not a catch-all determination of the chemical nature of the 

sediment, and alternative methods need to be explored for problems of pedogenic alteration of 

archaeological sites. 

A series of pH tests were performed on all of the samples collected. The pH level was 

tested using a pH meter and a 1 :1 soil to deionized distilled water ratio. The pH determinations 

were compared with pH determinations performed at the Agricultural Extension Service Laboratory 

in Nashville, Tennessee for the purpose of replicability. Results of the pH analysis are recorded in 

Appendix D. 
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Carhon Analvsis 

The determination of carbon percentages in a sediment sequence can aid in the delimitation 

of buried land surfaces and demarcate evidence of human activity. Archaeological studies have 

utilized carbon analyses to define archaeological site parameters (Stein 1982; Ahler 1973b; Foss 

1976). Carbon can be added to a landform by root development on the surface, by mixing of organic 

materials from the surface by pedoturbational processes, or as refuse from faunal and human 

activity. Carbon content can also be an indicator of the relative leaching of a profile. 

Total carbon percentages were determined for all samples from the investigation. The 

samples were dried and ground with a mortar and pestle fine enough to pass through a 60 mesh 

(0.250 mm, 2.00 0) sieve. A carbon analyzer was used to perform the analysis. Approximately 1 

gram of material was weighed and placed in a crucible. The carbon analyzer includes a furnace 

h. h h f 10000 C, combusting all carbon in the forms of organic carbon and w 1c eats to a temperature o 
calcium carbonate. The carbon analyzer automatically computes the weight of the sample tested and 

correlates this with the amount of carbon dioxide released from the combustion. The carbon 

analyzer is equipped with a system that measures the carbon dioxide released from a sample and 

computes this variable into a total carbon percentage. Duplicate samples were used at varying · 

intervals to document replicability of the tests. Results of the analyses are presented in Appendix 

D. 

Phosphate Analysis 

Phosphorous in the form of phosphate (P05) is an important test for archaeological sites. 

Phosphorous, which is basic in DNA, increases through the life chain because of its chemical 

immobility. It is found in a variety of products and foodstuffs which eventually find their way into 

the soil system. The removal of phosphate is not su�ject to normal oxidation-reduction processes 

as with other soluble chemical elements commonly found in soils (Eidt 1977: 1327). The correlation 

between phosphate concentrations and archaeological sites has been so effective, the government 
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of Sweden recognizes phosphate determination along grid systems as an appropriate means of site 

location (Sjoberg 1976: 447). Phosphate analysis has aided in denoting and delimiting many 

archaeological sites (Proudfoot 1976; Mattingly and Williams 1962; Griffith 1980). 

A phosphate analysis was performed on all samples collected at the site. The samples were 

dried, split and ground fine enough to pass through a 60 mesh (0.250 mm, 2.00 0) sieve. Ten gram 

samples were sent to the University of Tennessee Agricultural Extension Service Laboratory in 

Nashville, Tennessee. Extractable phosphorous was recorded in pounds per acre and converted to 

parts per million (ppm) for recording. Results of the phosphate analysis arc presented in Appendix 

D. 

57 



CHAPTER 6 

RESULTS 

The results of all analyses are presented within this chapter. Profile descriptions, texture 

analyses, carbon analyses, phosphorus analyses and pH's are reported. The results are documented 

on a trench by trench basis with a general discussion of the results of the multivariate discriminant 

analysis as a summary. 

Trench 2. Section 4 

Trench 2. Section 4 represents the Pleistocene age sediments at the Rush Creek site. The 

parent material consists of old alluvium and a bisequel soil profile is represented. The sequences 

are separated by a lithologic discontinuity marked by a pebble line appearing at 107 cm in the 2Bt1 

horizon (Figure 6). The brighter color values of 7.5YR expressed in the clay coatings are the result 

of oxidized iron (Table 1; see Appendix A for more detailed soil horizon descriptions). There are 

two argillic horizons represented in each sequum with a 7% increase in clay content from the Ap 

to the Bt2 horizon in the upper sequum (T2b), and a 14% increase in clay content from the 2Bt1 

horizon to the 2Bt5 horizon in the lower sequum (T2a) (Figure 7). The high clay content in the 

lower sequum concurs with the relative age in comparison to the upper scquum. There is also a 

change from a medium subangular blocky structure in the upper sequum to a strong subangular 

blocky structure in the lower sequum. The presence of manganese nodules and coatings suggest the 

permeability of the soil is poor in the lower sequum. The profile in this trench has a higher clay 

content than the profiles of the floodplain suggesting the clay content is pedogenic rather than 

sedimentary in origin. 

The textural analysis demonstrates that the clay content as well as the coarse fragment 

content help to discriminate the two soil sequums represented. The mean values of these samples 

show the means range from 6.70 0 to 6.06 0 in the upper scquum (Figure 8). The mean values 
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Table 1. Soil Horizon Descriptions of Trench 2. Section 4. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 22 lOYR 4/3 2mgr sil 
Bt 1 22- 40 7.5YR4/4 2msbk sicl cs 
Bt2 40- 60 7.5YR4/6 2msbk sicl cs 
Bt3 

60- 82 7.5YR5/4 2msbk sicl gs 
Bt

4 
82-107 7.5YR5/6 2msbk sicl gs 

2Bt1 107-123 7.5YR5/6 2fsbk sicl cs 
2Bt2 123-145 7.5YR5/6 2msbk cl cs 
2Bt3 

145-167 lOYR 5/4 2msbk cl gs 
2Bt4 167-189 lOYR 5/4 2msbk C gs 
2Bt5 

189-208 lOYR 6/6 2msbk C gs 
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values in the lower sequum range from 4.87 0 to 5.81 0 indicative of the rounded alluvial gravel 

in the 2Bt 1 through the 2Bt3 horizons designating the lithologic discontinuity between the T2b and 

the T2a formations. The high mean values in the last two samples (2Bt
4 and 2C) are the highest 

mean values (6.80 0 and 6.81 0) in the profile which represents an increase in clay content and the 

drop of the alluvial gravel at 167 cm. The standard deviation values show that the upper sequum 

where values range from 2.78 0 to 3.08 0 are better sorted than the lower sequum whose values 

range from 3.66 0 to 4.32 0 (Figure 8). The alluvial gravel and the clay content in the lower sequum 

tend to spread the distribution of 0 .sizes from the mean grain size. The skewness values show that 

the skewn�sses of the upper scquum are very positively skewed in comparison to the samples in the 

lower sequum which show nearly symmetrical and positive skewnesses. The high clay content in this 

trench generally skews the distribution to the fine end of the scale but the presence of alluvial gravel 

in the lower sequum pushes the skewness values back toward the coarse end of the scale. The 

relative lack of gravel and the higher clay content moves the skewness values back toward the very 

positive end in the two bottom samples. The kurtosis values show that the samples with the highest 

clay contents (Bt2, 2Bt4, and 2Bt5) are mcsokurtic or as evenly sorted in the tails as in the central 

part of the distrubution. The remaining samples range from leptokurtic to very leptokurtic. 

The auxiliary analyses of carbon, phosphate and pH denote their relative age of this 

landform in comparison to the floodplain and_ the bisequel nature of the soil (Figure 9). The 

greatest percentage of carbon (1.20%) is in the Ap horizon or surface of the profile. The carbon 

decreases steadily to 0. 17% in the Bt4• An increase to 0.20% in the 2Bt1 horizon demarcates the 

presence of the buried surface of the T2a formation. Another steady decrease is present to the 

bottom of the soil unit (0. 16%). The phosphorus analysis shows an increase of phosphorus from 22 

ppm at the surface to 36 ppm at the 2Bt3 horizon. The increasing phosphorus in the profile tends 

to correlate with the increasing clay content in the argillic horizon of the upper sequum. Because 

the clay mineral fraction of a soil is the most chemically reactive, the phosphorus content may be 
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prone to the same illuvial process as the clay content. There is no increase in phosphorus at the 

Iithologic discontinuity, instead a steady decrease to 12 ppm at the bottom of the profile is noted. 

The pH analysis shows a steady decrease from 5.8 pH at the surface to 4.6 pH at the base of the 

unit. This indicates the profile is relatively well weathered, but the pH's may be high enough to 

tentatively classify the profile as an Alfisol (Figure 9). 

Trench 1 .  Section 2 

Trench 1. Section 2 is located in the slough area of the floodplain at the base of the T2 

escarpment. There is a bisequel profile represented by a dark clayey buried soil of early to mid­

Holocene age buried by historic age overburden. The overburden (TOb) is a silty clay loam to sandy 

loam deposit (Figure 10). There is some evidence of pedogenic alteration, but the alteration is slight 

with granular and weak subangular blocky structure. There is an abrupt boundary with the Holocene 

deposit (Tl) with a sandy loam overlying a clay loam (Table 2). There is a 4% increase in clay from 

the bottom of the TOb to the top of the Tl and the argillic horizon in the Tl exhibits a 6% 

increase in clay from the TOb formation (Figure 11). The color of the Tl has a lower hue and 

chroma than the overlying TOb and exhibits a moderately developed subangular blocky and prismatic 

structure with illuvial clay coatings that are thin and continuous. Charcoal is present in the Tl, 

especially in the 2Ab horizon. There is a gravel bar at the base of the unit which has undergone 

some gleying resultant of reducing conditions caused by a perched water table. The discontinuity 

between the Tl and the TOb should be reflected in the laboratory analysis. 

The major textural parameter which separates the TOb from the Tl in this tr�nch is the 

mean grain size (Figure 12). The means of the TOb range from 4.64 0 to 5.87 0 while the Tl means 

range from 5.96 0 to 6.30 0. The higher clay content in the Tl is indicative of pedogenic alteration 

of primary minerals into secondary clay minerals. The standard deviation values are more randomly 

distributed throughout the profile. The basic pattern in this sorting index shows the samples in the 

upper sections of each soil sequum (Bw1 and 2Ab) are better sorted than the lower portions. The 

65 



N 

� 40 CN 79 

Trench I. S2 
East Prof ile 

0 

0
0 

0 
0 

• 

• Chorcool Cl Buried A 
o Rounded Pebble c;J Grovel Lense 
a Lithic 
• Bone 
� t<rotavino 

S urface 

0 
0 

O 
O 0 

: o 
O Tob 

c:,O 

O 
O 0 

0 0 

0 0 5  

Figure 10. East Profile of Trench 1. Section 2. 

' "'  

E levation In  Meters 

98.0 

s 97.5 

97.0 

96.5 

96.0 

95.5 

95.0 



Table 2. Soil Horizon Descriptions of Trench 1. Section 2. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 29 lOYR 4/3 2msbk sil 
Bw1 29- 55 lOYR 4/3 lcsbk sicl cs 
Bw2 

55- 59 lOYR 4/3 Ofgr sl cs 
2Ab 59- 68 lOYR 3/2 lcpr cl cs 
2Bt

1
b 68- 95 lOYR 3/2 2msbk cl gs 

2Bt2b 95-122 lOYR 3/3 2msbk cl gs 
2Bt3b 122-144 lOYR 3/3 lmsbk sci gs 
2Bgb 144-185 lOYR 3/3 Om gscl cs 
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skewness values show the samples in the Tl are more finely skewed with ranges of 0.42 0 to 0.63 

0 than the TOb samples which range from 0.03 0 to 0.35 0. The high clay content in the Tl reflects 

this pattern. The kurtosis values show that the Tl samples are more closely patterned with values 

of 1.07 0 to 1.52 0 while the TOb samples range from being leptokurtic (1.27 0) to very leptokurtic 

(2.23 0). The clay content in the samples tends to be the major discriminating factor between the 

TOb and the Tl formations. 

The auxiliary laboratory analyses tend to reflect the bisequcl nature of this profile. The 

carbon analysis shows the high accumulation of carbon in the surface at 1.28% in the Ap horizon 

(Figure 13). There is a steady decrease in carbon to 0.96% in the Bw2 horizon. The carbon increases 

in the 2Ab horizon at 1.25% which rivals the Ap horizon content. There is a steady decrease to 

0.65% in the lower gravel bar. Because the greatest content of carbon in the Tl formation is not 

in the 2Ab horizon, but in the 2Bt2b horizon, the translocation of carbon through the profile is 

implied. The phosphorus distribution in the profile shows similar patterns. The greatest content is 

300 ppm at the surface and a decrease through the TOb formation is observed to 60 ppm in the Bw2 

horizon. A sharp increase is observed in the 2Ab horizon of 120 ppm, followed by a sharp decrease 

to 75 ppm in the 2Bt1b horizon, to a steady increase in phosphorus in the gleyed 2Bgb horizon of 

300 ppm. The graphic peaks in carbon and phosphate tend to show the Tl as a legitimate buried 

surface where organic matter once accumulated. The increase in phosphorus in the Tl may also 

show that phosphorous may have illuviated through the profile. The pH's of this profile range from 

6.6 to 7.0 pH due to the phosphatic nature of the parent material. 

Trench 2. Section 2 

Trench 2. Section 2 represents a bisequel profile with an early to mid-Holocene alluvium 

(Tl) buried by an Historic alluvium (TOb). This trench is located in the slough area at the base of 

the T2 scarp. The TOb formation in this profile exhibits a silt loam texture in the upper matrix with 

some pedogenic alteration in the Bw horizons, and intermittant granular sand lenses and massive 
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lamenated silt lenses in the lower C horizons (Figure 14). These intermittant sand and silt lenses 

may be indicative of a hydrologic regime governed by damming of the river causing a decrease in 

water velocity depositing fine sediments, and water release processes which increase water velocity 

and deposit coarser grained sediments. These sand and silt lenses overlie the Tl formation and 

exhibit an abrupt boundary. The sediments of the Tl formation is darker in color and higher in clay 

content than the overlying TOb deposits (Table 3). There is greater soil development with moderate 

subangular blocky structure and thin continuous illuvial clay coatings. The surface of the Tl on the 

2Ab horizon had visible charcoal fragments and some animal bone with lithic debitage. The lower 

horizons of the Tl only contained lithic dcbitage. There is a gravel bar at the base of the Tl which 

exhibited some gleying from a perched water table and overlay limestone bedrock (Figure 15). 

The textural analysis performed on the samples in this profile demonstrate that mean grain 

size is the most important factor separating TOb samples and Tl samples (Figure 16). The Tl 

formation exhibits the highest mean values in the profile in the 2Ab and 2Bt1b horizons with values 

of 5.96 0 and 6.00 0, respectively. The intermittent sand-silt lenses in the TOb also descriminate 

with sand lense values ranging from 4.5 1  0 to 4.75 0, and silt lcnse means ranging from 5.59 0 to 

5.89 0. The standard deviations show the sand lenses in the TOb arc more poorly sorted than the 

remaining samples in the profile. The skewness values demonstrate that the grain size distributions 

of the sand lenses of the TOb are more symmetrical than the remaining samples. Kurtosis values in 

the profile exhibit li ttle patterning with all samples exhibiting leptokurtic to very leptokurtic 

distributions. 

The auxiliary laboratory analyses tend to confirm the bisequel nature of this profile (Figure 

17). The carbon analysis shows the greatest accumulation of carbon in the Ap horizon at 1 .30%. 

There is a steady decrease in carbon to 0.39% in the C, horizon of the TOb reflective of a typical 

weathering profile. A slight increase to 0.54% is observed in the C
8 

horizon and another increase 

to 0.84% in the 2Ab horizon of the Tl formation. The Tl formation exhibits an increasing carbon 
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Table 3. Soil Horizon Descriptions of Trench 2. Section 2. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 32 lOYR 4/4 2mgr Sil 

Bw
1 

32- 48 lOYR 4/3 lmsbk sil cs 
Bw

2 
48- 63 lOYR 4/3 lmsbk Sil gs 

Bw3 63- 70 lOYR 4/3 2mgr sl ci 
Bw4 70- 83 l OYR 4/3 lcsbk sil as 
C1 83- 88 10YR 4/3 l fgr sl ai 
Cz 88- 95 lOYR 4/4 Om sil ai 
C3 95-100 lOYR 4/4 l fgr sl ai 
C4 100-102 lOYR 4/4 Om sil ai 
Cs 102-109 l OYR 4/4 l fgr sl ai 
c6 109-1 12 lOYR 4/4 Om sil ai 
C1 1 12-120 lOYR 4/3 l fgr sl ai 
Cs 120-133 lOYR 4/4 Om Sil as 
2Ab 133-152 lOYR 3/3 lmsbk sicl as 
2Bt 1b 152-165 lOYR 3/3 lmsbk cl gs 
2Bt2b 165-176 lOYR 3/3 lcsbk cl gs 
2Bgb 176-180 lOYR 3/3 Om gel cs 
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content to the base of the profile of 1 .21 % in the 2Bgb horizon. This demarcates a former buried 

surface. The phosphorus analysis exhibits similar patterning. A high concentration of phosphorus 

of 260 ppm is observed at the surface of the profile which steadily decreased to 56 ppm in the Ci 

horizon. In the interbedded sand and silt lenses, the phosphorus content increases within the sandier 

lenses in comparison to the siltier lenses. There is a significant increase in phosphorus from the C8 

horizon (75 ppm) to the 2Ab horizon (110 ppm). The phosphorus content peaks in the 2Bt1b and 

2Bt2b horizons at 260 ppm and decreases to 90 ppm in the gravel bar at the base of the unit. This 

evidence indicates the Tl was a former buried surface with phosphorus accumulating from organic 

refuse at the former surface. The high levels of phosphorus with decreasing depth in the Tl 

formation indicates phosphorus may have b�en translocated. The pH's of the profile, which range 

from 6.1 to 6.8 pH, seem to indicate a relatively unweathered parent material. 

Trench 3. Sect ion 2 

Trench 3. Section 2 is located in the slough of the floodplain at the base of the T2 scarp. 

This profile exhibits a bisequal profile with an early to mid-Holocene soil (Tl) buried by TOb 

formation historic age deposits (Figure 18). The soil · development of the Tl landform exhibits 

greater development of soil structure, darker colors, and presence of continuous clay coatings (Table 

4). The TOb sediments show some pedogcnic development in the upper matrix, but have massive 

laminated silt lenses in the lower portion of the matrix (Figure 19). The interbedded sand lenses 

found in TR2.S2 were not present here but the laminated silt lenses are present. These silt lenses 

also exhibit a high clay content (24.00% ), but it is believed this clay is sedimentary rather than 

pedogenic in origin due to the lack of soil development. There is an abrupt boundary separating TOb 

and Tl sediments. Charcoal samples extracted from the surface of this interface was dated at 150 

± 80 yr. B.P. (Beta 21683). Historic age stoneware sherds were also found in an excavation unit 

1 meter from the sediment column on the surface of the Tl formation. Lithic artifacts and charcoal 

fragments were found in the Tl matrix below the buried surface. 
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Table 4. Soil Horizon Descriptions of Trench 3. Section 2. 

Horizon Depth (cm) Color Structure Texture Boundary 
\. 

Ap 0- 26 lOYR 4/3 2mgr sil 
Bw 26- 44 lOYR 4/3 lmsbk sil gs 
Bt1 44- 58 lOYR 4/3 lcsbk sicl gs 
Bt2 58- 70 lOYR 4/4 2msbk sicl gs 
C1 70- 87 lOYR 4/4 Om sil cs 
Ci 87- 99 lOYR 4/4 Om sil gs 
½ 99-1 16 lOYR 4/3 Om Sil gs 
2Ab 1 16-135 lOYR 3/3 2msbk sicl cs 
2Bt 1b 135-149 lOYR 3/3 2msbk cl gs 
2Bt2b 149-159 lOYR 3/3 2msbk cl gs 
2C 159-177 lOYR 4/4 Ogr gs cs 
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The textural analysis tends to confirm the biscquel nature of the sediment profile (Figure 

20). With the exception of the Ap horizon, the means of the TOb formation show these samples are 

finer than those of the Tl formation. The means in the TOb range from 5.90 0 to 6.90 0 while the 

means in the Tl formation range from 5.28 0 to 5.66 0. This is a reversal of the situation in TR1.S2 

and TR2.S2 where the Tl formation samples are finer than the overlying TOb samples. This may 

be indicative of a hydrologic regime of lower water velocities than the samples downstream, and 

may indicate a relatively gentle pool or eddy that would deposit finer materials than those 

downstream. Standard deviation values in the Tl are lower, ranging from 2.30 0 to 2.74 0, than the 

values in the TOb which range from 2.75 0 to 3.62 0. These values indicate that the sediments of 

the Tl are better sorted than those of the TOb. All of the samples, with the exception of the Ap 

horizon, exhibit a very positively skewed distribution due to the high clay content in all of the 

samples. The kurtosis values of the Tl are higher, with ranges of 1.77 0 to 2.62 0, in comparison 

to the TOb kurtosis values which range from 1.03 0 to 1.64 0. The Ap horizon is an exception with 

an extremely high kurtosis value of 3.35 0. A high kurtosis value represents a distribution that is 

more well sorted in the central part of the distribution in comparison to the tails of the distribution. 

The auxilliary laboratory analyses tend to confirm the bisequel nature of this sediment 

profile (Figure 21). The greatest accumulation of carbon is 1.42% in the Ap horizon. There is a 

steady decrease in carbon through the TOb to 0.90% in the C1 horizon with a carbon peak in the 

Bt1 horizon at 0.99%. The carbon then increases to 0.90% in the Ci horizon and to 1.23% in the 

C3 horizon. The carbon increases to 1.26% in the 2Ab horizon of the Tl formation with a peak 

carbon percentage of 1.35% in the 2Bt1b horizon. The carbon then decreases to 1.10% in the gravel 

bar (2C horizon) at the base of the unit. The carbon percentages in the Tl rival that of the Ap 

horizon and indicate a buried surface in the Tl formation. The phosphorus analysis shows a 

maximum distribution. of phosphorus in the Ap, Bw and Bt
1 horizons of 300 ppm. The phosphorus 

content sharply decreases to 75 ppm in the c; horizon of the TOb formation. A sharp peak is 
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observed in the 2Ab horizon of the Tl  formation at 300 ppm and remains so until it drops to 250 

ppm in the gravel bar. The sharp increase in phosphorus content at the Tl surface tends to indicate 

the Tl was a true buried surface with phosphorus contents attributed to additions of organic matter 

and refuse. The pffs, which range from 6. 1 to 7. 1 pH, are relatively high. 

Trench 4. Section 2 

Trench 4. Section 2 is located on the floodplain and is situated between the T2 escarpment 

and the slough. The effects of the slough, as seen in TR1.S2, TR2.S2, and TR3.S2, were not evident 

in this trench section. The sediments are comprised of Late Holocene-Historic age alluvial deposits 

of the TOa formation. The sediment textures indicate the profile has a silt loam upper matrix that 

gradually grades into a lag channel deposit composed of rounded chert gravels and cobbles (Figure 

22). Colors are in the range of lOYR 4/3 to lOYR 4/4 and some pedogenic development is observed 

in the presence of thin discontinuous clay coatings (Table 5). The field observations of this profile 

indicated a single sequum; however, laboratory analysis suggests a possible besequel soil. A clay peak 

of 18.50% is observed in the Bw1 and Bw2 samples and another clay peak is observed in the Bw5 

horizon at 16.00%. If this is a bisequel sediment, it is likely that the TOb formation overlies the TOa 

formation in this profile (Figure 23). 

Textural analysis confirms a silty upper mantle grading into a gravel bar (Figure 24). Mean 

distributions in this profile range from 4.46 0 to 5.88 0. Gravel bar means range from -1.51 0 to 

1.06 0 reflecting the coarse nature of the sediments. Standard deviation values reflect a relatively 

poorly sorted upper mantle comprising the Ap, Bw1, Bw2, and Bw3 horizons with distributional 

ranges of 2.69 0 to 3.02 0. The Bw4 and Bw5 horizons are better sorted with standard deviation 

values of 2.29 0 to 3.65 0. The skewness values for the upper silty matrix shows little variation with 

values ranging from 0.49 0 to 0.60 0 indicating these sediments are very positively skewed. The 

gravel bar deposits exhibit skewness values which range from nearly symmetrical distributions (0.09 
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Table 5. Soil Horizon Descriptions of Trench 4. Section 2. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 14 lOYR 4/3 2mgr sil 
Bw1 

14- 30 lOYR 4/3 lmsbk sil cs 
Bw2 30- 44 lOYR 4/3 lmsbk sil gs 
Bw3 44- 64 lOYR 4/3 lmsbk Sil gs 
Bw4 64- 81 lOYR 4/3 lmsbk sil gs 
Bw5 81- 98 lOYR 4/3 lcsbk Sil gs 
Bw6 98-115 lOYR 3/3 2msbk sil gs 
B/C 115-129 lOYR 3/3 2mgr ls cs 
C1 

129-141 lOYR 4/4 Ogr gs gs 
Cz 141-163 lOYR 4/3 Ogr gs gs 
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0) to very positively skewed distributions (0.75 0). Kurtosis values reveal the silty upper mantle has 

distributions that are very leptokurtic while the gravel bar deposits exhibit leptokurtic distributions. 

Carbon and phosphorus analyses in this profile reflect the possible bisequel nature of this 

landform (Figure 25). The total carbon analysis exhibits a high in the Ap horizon of 1.14% that 

decreases to 1.01 % in the Bw2 horizon. A sharp peak is then observed in the Bw4 horizon of 1.42% 

possibly indicating a buried surface. The distribution then decreases to 0.88% in the gravel bar at 

the base of the unit. Phosphorus analysis shows a maximum of 300 ppm in the Ap, Bw1, and Bw2 

horizons. A sharp decrease is noted in the Bw3 horizon to 250 ppm and gradually increases to 300 

ppm in the Bw6 horizon, with a drop of 180 ppm observed at the bottom of the lag channel deposit. 

The decrease in phosphate in the silty upper mantle may be indicative of a leaching profile from 

a former buried surface. Phosphorus may have been translocatcd through the profile into the lower 

silty mantle. The relatively high amounts of phosphorus in this profile may indicate that phosphorus 

is sedimentary in origin rather than pedogenic. Phosphorus would enter the profile as a component 

of the parent material of the sedimentary matrix. The pH's in this profile are relatively high, ranging 

from 6.5 to 7.0 pH. 

Trench 2. Section 1 .5 

Trench 2. Section 1.5 is located between the slough and the levee on the floodplain. The 

sediments in this trench are composed of a silt loam upper mantle that grades into a lag channel 

deposit at the base (Figure 26). The TOa formation is represented in this trench section. Colors are 

generally lOYR 4/3 to lOYR 4/4 with some soil development indicated by the moderate soil 

structure and discontinuous clay coatings (Table 6). Clay percentages are relatively homogeneous 

with 16.50% clay content in the upper silty mantle which grades to 2.00% clay in the gravel bar 

(Figure 27). There is only one soil sequum represented in this profile. 

The textural analysis performed on these samples reflect a natural alluvial distribution of 

a single sequence in a profile. Mean values in the sediment show a gradual decrease in mean size 
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Table 6. Soil Horizon Descriptions of Trench 2. Section 1.5. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 25 10YR 4/3 2mgr sil 
Bw1 25- 37 lOYR 4/3 2msbk sil cs 
Bw

2 
37- 48 lOYR 4/3 2msbk sil gs 

Bw3 48- 63 10YR 4/3 2msbk sil gs 
Bw4 63- 76 10YR 4/3 1csbk 1 gs 
Bw5 76- 89 10YR 4/4 1csbk gs gs 
c1 89-100 lOYR 5/6 Ogr gs cs 
c; 100- 1 1 1  lOYR 5/6 Ogr gs gs 
C3 1 1 1 -130 lOYR 6/6 Ogr gs gs 

93 



C 

C 

.2 
0 
E 

0 :c: p H G r o ve l - Sand - S i l t - C loy ¾ 
0----....--------

10 

20 

r 40 

E 50 
C ., 

A p P low 
Zone 

·= 
� 

70 Bw4 To o 

� 80 

90 

100 

1 10 

B w� 

c ,  

C 2 

Grove l 

40 C N  79 
T R 2 . S l . 5  

Sed imen t Analysis 
� Grovel : > 2.00 mm 
C Sand : 2 . 00mm - 0.0625 mm 
c::J S i l l : 0. 0 6 2 5 mm-0.0039 n,m 
c::I Clo y = c 0.00�9mm 

Figure 27. Sediment Analysis of Trench 2. Section 1.5. 

94 

B 

D 

E 

: G 

H 

PH I S i ze F requency 

A'  SL 
B 

c' 

o '  

50 � J75 _ r-, 25 u 
E'--..... -c:r:H!:m=1 ...... .....i;;;...1..,.,1---._,_ 0 l 

c::CbCL J:J 
J� 
J� 



from the top of the silty mantle (5.69 0) to the base of the lag channel deposit (-1.46 0) (Figure 

28). This shows a gradual change from a fine silty matrix that grades into a coarser gravelly matrix. 

The sediments exhibit a gradually increasing standard deviation value from the surface (2.49 0) to 

the base of the silty mantle (4.04 0). This indicates the profile becomes increasingly poorly sorted 

with depth as the sediments become coarser approaching the gravel bar. The gravel bar is relatively 

well sorted with standard deviation values ranging from 1.55 0 to 2.03 0. From the surface to the 

base of the silty upper mantle there is a steady decrease in skewness values from 0.57 0 to 0.20 0 

indicating the rise in coarse sediment textures as the sediments approach the gravel bar. The gravel 

bar reflects very positively skewed distributions ranging from 0.69 0 to 0.76 0 values. The kurtosis 

values decrease from the surface to the base of the silty upper mantle with ranges from 1.80 0 to 

1 .29 0. The gravel bar exhibits very leptokurtic distributions ranging from 1.09 0 to 1.39 0. The 

nature of these sediment distributions are represented by the gradual increase in the sand and gravel 

fraction with increasing depth in the profile. 

The auxiliary laboratory analyses reflect the single sequum of soil development within this 

profile (Figure 29). Total carbon analyses show a maximum of 1.32% at the surface in the Ap 

horizon with decreasing values with depth to a low of 0.64% in the c; horizon. An increase of 

0.82% is noted at the base of the gravel bar in the C3 horizon. The phosphorus analysis is more 

variable with a concentration of phosphorus in the surface (290 ppm) and in the silty matrix 

overlying the gravel bar (300 ppm). The relatively high amounts of phosphorus in this profile 

indicate the phosphorus is sedimentary rather than pedogenic in origin. The pH's in the silty upper 

mantle range from 6.9 to 7. 1 pH and pH's in the gravel bar deposits range from 5.3 to 5.7 pH. The 

decrease in pH's in the gravel bar deposits reflect the less reactive nature of coarser sediments. 

Trench 2. Section 1 

Trench 2. Section 1 is located on the levee at the river bank. This profile represents 

bisequel alluvial sediments with the TOb and TOa formations represented (Figure 30). The TOb 
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formation overlies the TOa formation and has a sandier nature with loam textures in comparison 

to the silt loam texture of the TOa formation (Table 7). The entire profile exhibits weakly developed 

structure with thin discontinuous clay coatings in the TOa sediments. The TOa formation grades into 

a gravel lag channel deposit at its' base (Figure 31). The sandier nature of the TOb sediments is 

regraded as increased sediment load in the river may be due to landform instability from historic 

age land clearance practices. 

The textural analysis of the sediments in this profile reflects the bisequel nature of the 

profile (Figure 32). The means of the TOb formation range from 4.37 0 at the surface (Ap horizon) 

and increases gradually to 5.04 0 in the Bw3 horizon, gradually getting finer with depth. The TOa 

formation has even finer sediments within the 4.97 0 to 5.60 0 range. The standard deviations of 

the entire profile are relatively similar with ranges in the TOb sediments of 2.65 0 to 2.96 0 and 

ranges in the Toa sediments of 2.87 0 to 3. 1 1  0. The 2Bw5 sample has a standard deviation value 

of 3.72 0 reflecting its sandier, poorly sorted nature because of its juxtaposition with the gravel bar. 

The skewness values of the profile show the TOa samples are slightly more positively skewed (0.38 

0 to 0.49 0) than the TOb samples (0.23 0 to 0.35 0). The TOa samples are also more leptokurtic 

(1.62 0 to 1.82 0) than the TOb samples (1.48 0 to 1.58 0). 

The carbon and phosphorus analyses aid in confirming the bisequel nature of this profile. 

The total carbon percentage is greatest in the Ap horizon at 1.78% and drops steadily to the 2Bw
1 

horizon to 0.93% (Figure 33). A carbon peak is observed at the 2Bw2 horizon of 1.08% and drops 

steadily again to 0.83% in the 2Bw4 
horizon. This indicates � buried surface confirmed by the 

lithologic discontinuity between the TOb and TOa formations. The carbon percentage increases again 

to the base of the gravel bar at 1.47%. Because only the fine material was extracted from the gravel 

bar for carbon analysis, it appears that organic carbon is a major component of the fine material 

in the gravel bar. The phosphate analysis may also reflect the bisequel nature of the profile. The 

lowest phosphorus content of 90 ppm is observed at the surface in the Ap horizon. The phosphorus 
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Table 7. Soil Horizon Descriptions of Trench 2. Section 1. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 17 lOYR 3/3 2mgr sl 
Bw1 17- 38 lOYR 3/3 lmsbk 1 cs 
Bw2 38- 60 lOYR 4/3 lmsbk gs 
Bw3 60- 81 lOYR 4/3 lmsbk gs 
2Bw1 81-103 lOYR 4/3 lmsbk sil cs 
2Bw2 103-1 19 lOYR 4/3 lmsbk sil gs 
2Bw3 1 19-138 lOYR 4/3 lcsbk Sil gs 
2Bw4 138-162 lOYR 4/3 lcsbk sil gs 
2Bw5 162-179 lOYR 4/3 2msbk sil gs 
2C 179-199 lOYR 4/3 Ogr gls as 
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Figure 31. Sediment Analysis of Trench 2. Section 1. 
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content increases to 300 ppm in the Bw2 horizon, perhaps denoting some leaching of phosphorus 

or use by plants. The phosphorus content also drops to 290 ppm in the 2Bw2 horizon of the TOa 

formation, po�sibly reflecting a minor amount of leaching or translocation of phosphorus from the 

buried surface. The phosphorus content drops to 250 ppm in the 2Bw5 horizon and increases again 

to 300 ppm in the gravel bar. The high content of phosphorus in the profile suggests the 

phosphorus is sedimentary rather than pedogenic in origin. The loam to silt loam texture of the 

profile would allow for good permeability and phosphorus could be added to the system by 

floodwaters. The pH's for this profile are relatively high ranging from 6.6 to 7.2 pH. 

Trench 4. Section 1 

Trench 4. Section 1 is located on the levee near the river bank. Field descriptions and 

observations denoted a single alluvial sequence with a silty upper mantle grading into a lag channel 

deposit at the base (Figure 34). There is evidence of weakly developed soil structure with thin 

discontinuous clay coatings. Colors are generally a lOYR 4/3 (Table 8). This trench represents a 

single alluvial sequence of TOa formation deposits (Figure 35). 

The textural analysis of this profile tends to divide the sediments into two groups; a silty 

upper mantle and a lag channel deposit (Figure 36). The means of the silty upper mantle range 

from 4.73 0 to 5.62 0, and the lag channel deposits exhibit means of 1.34 0 and 0.65 0. The upper 

mantle is better sorted with standard deviation values of 2.48 0 to 3.07 0, than the lag channel 

deposits which have standard deviation values of 3.71 0 and 3.90 0. The silty upper mantle is more 

positively skewed than the lag channel deposits. The silty upper mantle is also more leptokurtic. 

The auxiliary laboratory analysis in this profile demonstrates the possibility of a bisequel 

profile rather than a single alluvial sequence (Figure 37). Total carbon percentages start high in the 

Ap horizon with a content of 1.57%. The content drops in the Bw1 horizon to 1 .09%. A sharp 

carbon peak is observed in the Bw3 horizon of 1.30% suggesting a buried surface may be present 

here. The carbon percentage drops to 0.84% in the underlying horizon (Bw4) and increases again 
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Table 8. Soil Horizon Descriptions of Trench 4. Section 1. 

Horizon Depth (cm) Color Structure Texture Boundary 

Ap 0- 24 10YR 4/3 2mgr sil 
Bw1 24- 45 10YR 4/3 2msbk Sil cs 
Bw2 45- 65 10YR 4/3 lmsbk sil gs 
Bw3 65- 85 10YR 4/3 lmsbk sil gs 
Bw4 85- 96 10YR 4/3 lcsbk I gs 
C1 96-118 10YR 4/3 Ogr sl cs 
c; 118-144 10YR 4/2 Ogr gs cs 
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to 1.09% at the base of the lag channel deposit. Phosphorus analysis exhibits a relatively low 

concentration on the surface of the profile (180 ppm) that increases in the Bw1 horizon (260 ppm). 

A steady decrease to 220 ppm is observed in the Bw3 horizon which may indicate leaching or 

translocation due to a possible buried surface. The phosphorus content increases to 300 ppm into 

the lag channel deposit. 

Multivariate Analysis 

A multivariate discriminant analysis was performed on soil samples from the Rush Creek 

site to determine if these sediments would discriminate in accordance to relative age. �e samples 

were placed into one of five groups representing the T2a, T2b, Tl, TOa, and TOb formations. Four 

variables, graphic mean, graphic standard deviation, graphic skewness, and graphic kurtosis were used 

in this study. All samples, with the exception of those representing lag channel or gravel bar 

remanants, were utilized. A total of 69 samples representing the finer upper mantles of the sediment 

profiles was subjected to the analysis. 

The discriminant analysis performed on the sediment samples yielded four discriminant 

functions (Table 9). The first discriminant function explains 79.56% of the relative variation with 

a significance level of 0.00 (Table 10). Standardized discriminant function coefficients revealed that 

the major components of the first discriminant function were the graphic standard deviation and the 

graphic mean (Table 11) indicating that mean grain size, and relative soring of the sediments were 

the most important in explaining the variability between formations. The second discriminant 

function explained 16.18% of the variation and was significant to the 0.05 level (Table 10). The 

graphic skewness is the major discriminant coefficient for the second discriminant function (Table 

10). This is interpreted as the skewness of the distribution from the mean is important, especially 

in regard the skewness of the distribution curve toward the fine or positive end of the phi scale. The 

remaining two discriminant functions derived explain 4.26% of the variation and are not significant 

to any level. The discriminant function coefficient for kurtosis is an important component in the 
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Table 9. Discriminant Analysis for Sediment Samples from the Rush Creek Site. 

Discriminant Function Eigenvalue Relative Percentage Canonical Corr 

1 1.2578178 79.56 0.74639 
2 0.2558469 16.18 0.45136 

0.0665413 4.21 0.24978 
0.0007725 0.05 0.02778 

Table 10. Discriminant Functions Derived for Sediment Samples from the Rush Creek Site. 

Functions Derived Wilks Lambda Chi-Square DF Sig. Level 

0 0.3304162 70.320036 16 0.00000 
0.7460196 18.605715 9 0.02876 

2 0.9368864 4.139768 4 0.38742 
0.9992281 0.049035 1 0.82475 

1 1 1  



Table 1 1 . Standardized Discriminant Function Coefficients for Sediment Samples from the Rush 
Creek Site. 

1 2 3 4 

Mz 0.87026 0.03318 -2.08770 -0.12977 
o'. 

I 
1.02835 0.33140 1.23671 0.60182 

Ski -0.18475 1.31045 2.67658 0.68693 

Kc; -0.26378 0.33891 -0.18243 1.02304 
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fourth discriminant function derived and indicates that kurtosis is but a minor indicator of variability 

between formations in this study. 

The classification results for the multivariate discriminant analysis were determined (Tables 

12 and 13). Sediment samples were grouped in accordance to relative age from the oldest (T2a) to 

the youngest (TOb ). The classification results show that the T2a and T2b formations discriminated 

well with only one sample from the T2b formation misclassified. The T2a and T2b formations 

exhibit strong argillic horizons and higher clay contents than the remaining floodplain samples. The 

high clay content is deemed as pedogenic in origin from the breakdown of primary minerals into 

secondary minerals. This is a weathering situation that takes a relatively long period of time to 

develop and explains the good discrimination represented. The Tl formation, or the buried "A" 

(cultural midden) was only predicted correctly 20% of the time. Forty percent of the Tl samples 

were misclassified with the T2 formations and 40% were misclassified as TO formation samples. 

Samples from the Tl formation which exhibited higher clay contents and lower standard deviations 

(well sorted) were classified with the Pleistocene age formations. Tl samples in close proximity to 

the lag channel deposits and exhibiting lower mean sizes from the inclusion of sand and gravel in 

the distribution were classified in the Late Holocene-Historic formations. The Tl formation exhibits 

pedogenic alteration and the higher clay contents of the argillic horizons in the Tl tend to lead to 

an association with Pleistocene age deposits, while samples collected in proximity to the lag channel 

deposits are more poorly sorted which may explain its misclassification with the TO deposits. 

Samples representative of the TOa formation were classified correctly 72.73% of the time. Four 

samples of the TOa which exhibited some soil development in the form of thin clay coatings were 

misclassified as Tl formation samples, and 2 samples which were sandier in nature with lower mean 

grain sizes were misclassified with TOb samples. Samples representative of the TOb formation were 

correctly classified 48.15% of the time. Four samples were misclassified as T2b formation samples. 

These samples were located in the varve deposits overlying the Tl formation in Trench 3. Section 
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Table 12. Classification Results for Sediment Samples from the Rush Creek Site; Predicted Group 
Counts. 

A c t u a l  T2a T2b Tl TOa TOb Total 
Group 

T2a 5 0 0 0 0 5 
T2b 0 4 1 0 0 5 
Tl 1 3 2 3 1 10 
TOa 0 0 4 16 2 22 
TOb 0 4 4 6 13 27 

Table 13. Classification Results for Sediment Samples from the Rush Creek Site; Predicted Group 
Percentages. 

A c t u a l  T2a T2b Tl TOa TOb Total 
Group 

T2a 100.00 0.00 0.00 0.00 0.00 100.00 
T2b 0.00 80.00 20.00 0.00 0.00 100.00 
Tl 10.00 30.00 20.00 30.00 10.00 100.00 
TOa 0.00 0.00 18.18 72.73 9.09 100.00 
TOb 0.00 14.81 14.81 22.22 48. 15 100.00 
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2. These samples exhibited the . highest clay contents in the floodplain; however, the massive, 

laminated nature of the samples suggest the clay content is inherited or sedimentary in nature rather 

than pedogenic in nature. Four samples of the TOb formation which were misclassified as Tl 

formation samples were located directly below the plow zone where some soil development in the 

form of thin clay coatings were noted. In general, the TOb formation samples are sandier in nature 

and have lower mean grain sizes than the samples from the remaining formations. 

The results of the multivariate discriminant analysis were successful in discriminating 

landforms by relative ages with some reservations. This classification results tend to lead to the 

conclusion that the development of pedogenic clay is an extremely important factor in discriminating 

between these landforms. Older landforms with a greater development of pedogenic clay 

discriminates well because of higher mean sizes, good sorting, and highly positive skewnesses. 

Younger samples exhibit less pedogenically derived clay, as well as high sand contents due to Late 

Holocene-Historic Period land clearing practices. Land clearing increases the erosional potential of 

the landform and the grain size distributions from runoff is increased. As long as the depositional 

agent has a high critical power threshold, the result is deposition of coarser grained sediments on 

the floodplain. The formation of primary interest (Tl) has a well enough developed argillic horizon 

with pedogenically derived clay to classify it as a formation older than the TOb and TOa, but not 

high enough to be Pleistocene in age. 

Thermodynamics may play a part in the classification of these formations. The Pleistocene 

age formations exhibit well developed pedogenic profiles because the energy of the system has had 

sufficient time to order the profile, decreasing the entropy of the system. More recent sediments 

exhibit a higher entropy because the profiles have not experienced the longer time factor for the 

the relative energy of the system to order the profile. Therefore, as time increases, the energy 

quotient increases, and the profile becomes more ordered through time, and discriminates much 

better. An older profile therefore exhibits less variability between horizons than a younger profile. 
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CHAPTER 7 

DISCUSSION 

When dealing with depositional histories of landforms, especially those as complex as the 

Rush Creek site, no singular analysis is adequate. It takes a battery of investigative techniques to 

discern the various factors operating on the system. The compilation of these analyses, both field 

and laboratory oriented, aid in the interpretation of these depositional histories and postdepositional 

processes. 

The T2a and T2b formations (Cheek Bend) were alluvial in origin and formed during the 

Late Pleistocene. The postdepositional development of these landforms are evidenced by the strong 

argillic horizons that were developed as well as the brighter red and yellow colors from the 

expression of oxidized iron. These landforms exhibit relatively low carbon and phosphate contents 

in comparison to the floodplain landforms due to weathering processes over time. The high clay 

content is due to the weathering of primary into secondary minerals over time. The discontinuity 

between the T2a and the T2b formations is marked by a line of alluvial gravel and a small carbon 

increase denoting a buried surface. The T2a and T2b landforms represent former active floodplains 

that were abandoned when the East Fork Stones River entrenched itself below these formations 

sometime around the Early Holocene period. 

The Tl formation (Leftwich) was developed after the East Fork Stones River entrenched 

itself below the T2 formations. It was formed by alluvial overbank deposits over the former lag 

channel deposit. The landform aggraded until it stabilized around 5,000 yr. B.P. when a soil was 

developed on its surface. This stabilization was due to a mid-Holocene warming and drying trend 

known as the Hypsithermal Interval. Radiocarbon dates from the Tl paleosol most closely correlates 

with the Tlbl paleosols recorded along the Duck River by Brackenridge (1982, 1984). 

Archaeological materials were deposited on this surface including lithic debitage and organic refuse. 
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The archaeological component is unknown, but the chronometric dating of this landform suggests · · 

a Late Archaic association. 

The postdepositional processes on the Tl formation has developed an argillic horizon. The, _ .  

alteration of primacy into secondary minerals has not been as complete as with the T2 formations. 

The stickiness of the consistency of this landform suggests the presence of three layered phylosilicate 

clays may be possible. The wetting and drying processes have left vertical cracks in this formation 

denoting shrink-swell activi�ies. Other profiles in the Nashville Basin have exhibited some slight 

slickenside development in Leftwich formation sediments (Morris 1985). There has also been 

evidence of artifact movement through Leftwich formation sediments in the Nashville Basin due to 

shrink-swell activities (Hofman 1986). At the Rush Creek site, these artifacts were deposited on the 

Tl surface and may have been translocated down through the profile over time. Lithic analysis 

performed on artifacts from this landform reveal a random distribution of lithics vertically and 

horizontally through the profile. The high carbon and phosphate contents in this landform suggest 

deposition of organic refuse along with lithic debitage. The darker color, good structure, and firm 

sticky consistency demarcate the Tl formation from other floodplain formations at the Rush Creek 

site. 

The Tl formation was buried by a Late Holocene alluvial overbank deposit, the TOa 

(Cannon Bend) formation. The TOa formation is a silty alluvial overbank deposit that aggraded 

over the former Tl formation channel. There is some soil development present on the TOa surface 

in the form of thin discontinuous clay coatings, but not enough to develop argillic horizons. There 

is evidence of organic accumulation of plant materials on the surface of the TOa and also evidence 

of leaching of soluble phosphorus. The TOa has a lower mean grain size than the Tl formation 

suggesting some influence from aboriginal land clearance practices resulting from landform 

destabilization upstream. 
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During the Historic Period, an important episode transpired at the Rush Creek site. A 

slough was developed across the site originating at Rush Creek and running across the site at the 

base of the T2 scarp to some 200 meters where it joins the East Fork Stones River. It was 

speculated that a mill may have existed downstream and the slough was evidence of a former mill 

race. Historic research could not pin down a mill in this relative locale. It has been noted that corn 

mills were located all along the Stones River at the heads of streams where there was drop enough 

to tum an overshot wheel (Mason 1982: 91). A map drawn in 1865 by Confederate Col. W.E. Merril 

(1865) locates mills at the Stones River near the Woodbury vicinity. No mill was located at the 

Rush Creek site at that time, but a line is drawn across the landform at the particular bend where 

Rush Creek is located. The exact meaning is not known as to whether Col. Merril was portraying 

a mill race, stream, or road bed, but there is something noted here. However, Col. Merril did not 

locate Rush Creek on the map, so a valuable landmark is missing. Goodspeed (1972: 856) notes two 

early mills dating to 1813 in the Woodbury area and it is possible that the Rush Creek mill 

predated the 1865 map. There is also some mention of a road bed which may have crossed the 

Stones River somewhere near the Rush Creek vicinity (Mason 1982: 10). Whatever the disturbance, 

it truncated the Rush Creek site along the T2 scarp and eroded the TOa formation. 

It is believed that the disturbance or slough was formed by running water. The erosional 

processes stripped the TOa formation sediments at the base of the T2 scarp and eroded the landform 

down to the surface of the Tl formation. Because of its high clay content and its firm consistence, 

the Tl formation was not affectively eroded. The clay content made the Tl matrix more cohesive 

than the overlying TOa formation. This characteristic of the Tl sediments was noted in the relative 

difficulty of waterscreening this sediment in comparison to the TOa and TOb formation sediments. 

Eventually, erosional processes stripped the TOa formation, and the surface of the Tl formation was 

reexposed. The Tl formation then became an exhumed paleosol and historic period artifacts, 

including domesticated faunal remains, and historic age stoneware were deposited on the surface of 
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the Tl formation after the slough was abandoned. Charcoal samples extracted from the surface of 

this exhumed soil revealed an historic date of around 150 yr. B.P. This is believed to demarcate the 

abandonment of the slough. A small section of the Tl that was located farther up slope from the 

slough represents the only undisturbed portion of the Tl formation. A mid-Holocene date from 

charcoal extracted from this paleosol confirmed this suspicion. 

Following the abandonment of the slough, the infilling process began. The fill of the slough 

consisted of alternating sand and silt lenses comprising the TOb formation. This represents the sterile 

overburden which buried the Tl formation. These alternating sand and silt lenses also represent a 

series of varve deposits from alluvial activity. It is believed that the fine, well sorted silty to clayey 

sediments were deposited by a damming action downstream which ponded the slough. The water 

became still enough for the deposition of fine silt and clay sized particles. The sand lenses are 

believed to represent higher velocity hydrologic regimes resultant from the release of water 

downstream. There is some evidence of pedogenesis in the upper mantle of the TOb slough deposits 

suggesting the ponding process had ceased. The pedogenic development is in the form of thin 

discontinuous clay coatings and some development of soil structure. 

The TOb sediments which occupy the floodplain, outside the realm of the slough, form a 

sandy upper mantle which overlays the TOa formation. This is especially noted in the areas of the 

levee where a bisequel soil is evident. The TOb formation is high in phosphate and pH values, due 

to the addition of s�luble cations from floodwaters which occasionally inundate the Rush Creek site 

floodplain. The TOb formation is the highest in sand content of all the formations at the site, and 

this is interpreted as the result of landform destabilization upstream due to histor._ic land clearance 

practices. The evidence also suggests this landform continues to aggrade depositing TOb sediments 

across the floodplain to the present. 
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CHAPTER 8 

CONCLUSION 

The geoarchaeological investigations at the Rush Creek Site was a study in the 

determination of depositional and post-depositional processes which effect an archaeolgocial site. 

Through field observations, laboratory analyses and quantitative assessments, the history of the site's 

sediment systems can be addressed. Once the sediment system has been assessed, determination of 

archaeological context is possible. 

The primary conclusion concerning the Rush Creek Site is that the Tl formation represents 

a legitimate prehistoric archaeological context. The dark color, good soil structure, high clay content, 

high phosphate and carbon content distinguishes this formation from the surrounding landforms. 

The soil development on top of the formation suggests its stabilization around 5,000 yr. B.P. It is 

believed lithic artifacts, probably of a Late Archaic component, were deposited on this surface and 

were translocated down through the profile through time due to argilliturbation. It is also believed 

that historic erosional processes truncated the surface of the Tl formation, reexposing its surface. 

The high clay content of the Tl created a cohesive matrix that was erosion resistant and disturbance 

affected only the surface of the formation. Historic age artifacts were deposited on the surface of 

the reexposed Tl during and shortly after slough abandonement. Following slough abandonement, 

the Tl surface was buried and sealed by sterile overburden comprised of TOb formation deposits. 

The secondary conclusion of this investigation is that altered landforms at the Rush Creek 

Site can be discriminated according to age. The primary discriminating variable in assessing landform 

age is the development of pcdogenic clay minerals. The older the landform the higher the pedogenic 

clay content. More recent sediments can be discriminated not only by a lower pedogenic clay 

content, but also by its higher sand content through time. Increasing sediment load transported by 

the Stones River was influenced by aboriginal and historic period land clearance practices. The 
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determination of carbon and phosphorus contents within the profiles of these landforms demarcated 

sedimentary breaks and aided in the location of former stable land surfaces. 

The results of this geoarchaeological survey have yielded more than archaeological context 

assessments. The development of landforms and their impact by the associated environment is useful 

for more than simply archaeological site assessment. It is encouraged that future investigators of 

archaeological sites utilize interdisciplinary approaches in solving archaeological problems. The yield 

of information is much more profound than the effort expended. 

121 



BIBLIOGRAPHY 



BIBLIOGRAPHY 

Ahler, S.A 
. 1973a Post-Pleistocene depositional change at Rodgers Shelter, Missouri. Plains Anthropologist . .  · 

18:1-26. 

1973b Chemical analysis of deposits at Rodgers Shelter, Missouri. Plains Anthropologist 
18:116-131. 

Aylor, D.E. and J. Parlange 
1973 Vertical infiltration into a layered soil. Soil Science Society of America Proceedings 

37:673-676. 

Baskin, C.C. and J.M. Baskin 
1975 Additions to the herbaceous flora of the Middle Tennessee Cedar Glades. Journal of 

the Tennessee Academy of Science 50(1 ):25-26. 

Binford, L.R. 
1983 Bones: Ancient Men and Modern Myths. Academic Press, New York. 

Birkeland, P. W. 
1978 Soil development as an indication of relative age of Quaternary deposits, Baffin Island, 

N.W.T., Canada. Artie and Alpine Research 10:733-747. 

Bohn, H., B. McNeil, and G. O'Connor 
1979 Soil Chemistry. John Willey and Sons, New York. 

Brackenridge, G.R. 
1982 Ailuvial Stratigraphy and Geochronology along the Duck River, Central Tennessee: A 

History of Changing Floodpla in Sedimentary Regimes. Ph.d. dissertation, University 
of Arizona, Tucson. University Microfilms, Ann Arbor. 

1984 Alluvial stratigraphy and radiocarbon dating along the Duck River, Tennessee: 

Braun, E.L. 

Implications regarding floodplain origin. Geological Society of America Bu11etin 95:9-
25. 

1950 Deciduous Forests of Eastern North America. Blakiston Co., Inc., Philadelphia. 

Bryson, R.A 
1966 Air masses, streamlines, and the boreal forest. Geographical Bu11etin 8(3):228-269. 

Bryson, R.A and F.K. Hare 
1974 The climates of North America. In Cl imates of North America, edited by R.A Bryson 

and F.K. Hare, pp. 1-47, Elsevier, New York. 

123 



Bryson, RA and W.M. Wendland 
1967 Tentative climatic patterns for some late glacial and post-glacial episodes in Central 

North America. In Life, Land, and Water. Proceedings of the 1966 Conference on 
Environmental Studies of Glacia1 Lake Agassiz Region, edited by W.J. Meyer-Oakes, 
pp. 271-298, Department of Anthropology, University of Manitoba, Occassional Papers 
No. 1. 

Bull, W.B. 
1979 The threshold of critical power in streams. Geological Society of America Bulletin 

90:453-464. 

Buol, S. W., F.D. Hole, and R.J. McCracken 
1973 Soil Genesis and Classification. Iowa State University Press, Ames. 

Butzer, K. W. 
1977 Geomorphology of the lower Illinois Valley as a spatial temporal context for the Koster 

Archaic Site. Il] inois State Museum Reports of Investigations 34:1-60. 

1978 Changing Holocene environments of the Koster Site: A geo-archaeological perspective. 
American Antiquity 43(3):408-413. 

1982 Archaeology as Human Ecology. Cambridge University Press, Cambridge. 

Cahen, D. and J. Moeyerson 
1977 Subsurface movements of stone artifacts and their implications for the prehistory of 

Central Africa. Nature 266:812-815. 

Campbell, C. V. 
1967 Lamina, laminaset, bed, and bedset. Sed imentology 8:7-26. 

Cheetham, G.H. 
1976 Paleohydrological investigations of river terrace gravels. In Geoarchaeology, edited by 

D.A Davidson and M.L. Shackley, pp. 335-344. Westview, Boulder, Colorado. 

Crites, G.D. 
1983 Woody Vegetation in the Inner Nashville Basin: An Examp1e from the Cheek Bend 

Area of the Centra1 Duck River Va1ley. Report submitted to the Tennessee Valley 
Authority, Norris. 

Davidson, D.A 
1973 Particle size and phosphate analysis: Evidence for the evolution of a tell. Archaeometry 

15:143-152. 

Day, P.R. 
1965 Particle fractionation and particle size analysis. In Methods of Soil Analysis: Part 1, 

edited by C.A Black, pp. 653-669, Agronomy 9, American Society of Agronomy, 
Madison, Wisconsin. 

Deetz, J. and E. Dethlefsen 
1963 Soil pH as a tool fo archaeological site interpretation. American Antiquity 29:242-243. 

124 



Delcourt, H.R. 
1979 Late Quaternary vegetation history of the Eastern Highland Rim and adjacent 

Cumberland Plateau of Tennessee. Ecological Monographs 49:255-280. 

Delcourt, PA and H.R. Delcourt 
1981 Vegetation maps for Eastern North America: 40,000 yr. B.P. to the present. In 

Geobotany JI, edited by R.C. Romans, pp. 123-165. Plenum Publishing Corp., New 
York. 

Dickson, R.R. 
1960 The climate of Tennessee. In Climates of the United States, Vol 1, Eastern States (Plus 

Puerto Rico and the Virgin Islands). Water Information Center, Inc., Port Washington. 

Edwards, M.J., J.A Elder, and M.E. Springer 
1974 The Soils of the NashviHe Basin. U.S. Department of Agriculture, Soil Conservation 

Service, Bulletin 499, Washington, D.C. 

Eidt, R.C. 
1977 Detection and examination of anthrosols by phosphate analysis. Science 197:1327-1333. 

Fahnestock, R.K. and W.L Hanshild 
1962 Flume studies on the transport of pebbles and cobbles in a sandy bed. Geological 

Society of America Bunetin 73:1431-1436. 

Faulkner, C.T. 
1983 VegetationaJ Patterning in the Nashville Basin of Tennessee. Ms. on file Department 

of Anthropology, University of Tennessee, Knoxvil1e. 

Fenneman, N.M. 
1938 Physiography of the Eastern United States. McGraw Hill, New York. 

Folk, R.L. and W.C. Ward 
1957 Brazos River bar, a study in the significance of grain size parameters. Journal of 

Sedimentary Petrology 27:3-27. 

Foss, J.E. 
1976 

Frick, T.A 
1939 

The pedological record at several paleo-indian sites in the Northeast. In Amerinds and 
their PaJeoenvironments in Northeastern North America, edited by W. Newman and 
B. Salwen, pp. 234-244, New York Academy of Science, Vol. 288, New York. 

Slope vegetation near NashviJle, Tennessee. Journal of the Tennessee Academy of 
Science 14(4):344-420. 

Friedman, G.M. 
1967 Dynamic processes and statistical parameters compared for size frequency distribution 

of beach and river sand. Journal of Sedimentary Petrology 37:327-354. 

125 



Gardner, G.D. and J. Donahue 
1985 The Little Platte drainage, Missouri: A model for locating temporal surfaces in a 

fluvatile environment. In Archaeological Sediments in Context, edited by J.K. Stein and 
W.R. Farrand, pp. 69-89. Center for the Study of Early Man, Institute for Quaternary 
Studies, University of Maine, Orono. 

Gasche, H. and 0. Tunca 
1983 Guide to archaeostratigraphic classification and terminology: Definitions and principles. 

Journal of Field Archaeology 10:325-335. 

Gordon, C.C. and J.E. Buikstra 
1981 Soil pH, bone preservation and sampling bias at mortuary sites. American Antiquity 

46(3):566-577. 

Goodspeed Publishing Co. 
1972 The Goodspeed Histories of Cannon, Coffee, Dekalb, Warren and White Counties. Ben 

Lamond Press, McMinnville, Tennessee. Reprinted from 1887, History of Tennessee. 
Goodspeed, Chicago. 

Greenwood, B. 
1969 Sediment parameters and environment discrimination: An application of multivariate 

statistics. Canadian Journal of Earth Sciences 6:1347-1358. 

Griffith, M.A 
1980 A pedological investigation of an archaeological site in Ontario, Canada: An 

examination of soils in and adjacent to a former village. Geoderma 24(4):327-336. 

Gruber, J.W. 
1978 Archaeological strata and cultural process. Archaeology of Eastern North America 6:91-

94. 

Hardeman, W.D. 
1966 Geologic Map of Tennessee, West Central Sheet. Tennessee Department of 

Conservation, Division of Geology, Nashville. 

Harmon, AB., E. Lusk, J .. Overton, J. Elder, and L. Williams 
1959 Soil Survev of Maury County, Tennessee. Soil Survey Series 1952, No. 7, U.S. 

Department of Agriculture, Washington, D.C. 

Harris, E.C. 
1979 The laws of archaeological stratigraphy. World Archaeology 11:111-117. 

Harris, W.G., S.S. Iyenagar, L.W. Zelany, J.C. Parker, D.A Lietzke, and W.J. Edmonds 
1980 Mineralogy of a chronosequence formed in New River alluvium. Soil Science Society 

of America Journal 44( 4):862-868. 

Hassan, F.A 
1979 Geoarchaeology, the geologist and archaeology. American Antiquity 44:267-270. 

126 



Hofman, J. 
1986 Vertical movement of artifacts in alluvial and stratified deposits. Current Anthropology 

27:163-171. 

Holliday, V.T. 
1985a Early and Middle Holocene soils at the Lubbock Lake archaeological site, Texas. Catena 

12:61-78. 

1985b Holocene soil-geomorphological relations in a semi-arid environment: The southern high 
plains of Texas. In Soils and Quaternary Landscape Evolution, edited by J. Boardman, 
pp. 325-357. Willey, New York. 

1985c Morphology of Late Holocene soils at the Lubbock Lake archaeological site, Texas. Soil 
Science Society of America Journal 49(4):938-949. 

Hughes, J.P. and R.J. Lampert 
1977 Occupational disturbance and types of archaeological deposits. Journal of Archaeological 

Science 4: 135-140. 

Hutton, C.E. 
1951 Studies of the chemical and physical characteristics of a chrono-litho sequence of loess 

derived prarie soils of southeastern Iowa. Soil Science Society of America Proceedings 
15:318-324. 

Jackson, M.L 
1965 Clay transformations in soil genesis during the Quaternaiy. Soil Science 99:15-22. 

Jackson, M.L, S.A Tyler, AL. Willis, G.A Bourbeau, and R.P. Pennington 
1948 Weathering sequence of clay-size minerals in soils and sediments: I. fundamental 

generalizations. Journal of Physical Col loid Chemistry 52:1237-1260. 

Jenny, H. 
1941 Factors of Soil Formation. MacGraw Hill, New York. 

Johnson, W.H. 
1982 Interrelationships among geomorphic interpretations of the stratigraphic record, process 

geomorphology, and geomorphic models. In Space and Time in Geomorphology, edited 
by C.E. Thorn, pp. 219-241. Allen and Unwin, London. 

Klippel, W.E. and P.W. Parmalee 
1982 Diachronic variation in insectivores from Cheek Bend Cave, and environmental change 

in the Midsouth. Paleobiology 8:447-458. 

Krumbein, W.C. 
1934 Size frequency distribution of sediments. Journal of Sedimentary Petrology 4:65-77. 

Lattman, L.H. 
1960 Cross sections of a floodplain in a moist region of moderate relief. Journal of 

Sedimentarv Petrology 30:275-282. 

127 



Leopold, L.B. and T. Maddock 
1953 The hydraulic geometry of stream channels and some physiographic implications. U.S. 

Geological Survey Professional Papers 252:1-57. 

Leopold, L.B. and N.G. Wolman 
1957 River channel patterns: Braided, meandering, and straight. U.S. Geological Survey 

Professional Papers 282-B:39-85. 

Luther, E.T. 
1977 Our Restless Earth: The Geologic Regions of Tennessee. The University of Tennessee 

Press, Knoxville. 

McKeague, J.A and R.J. St. Arnaud 
1969 Pedotranslocation: eluviation-illuviation in soils during the Quaternary. Soil Science 

107:428-434. 

McLaren, P. 
1981 An interpretation of trends in grain size measures. Journal of Sedimentary Petrology 

51:611-624. 

McQueen, J.S. 
1961 Some factors influencing streambank erodibility. U.S. Geological Survey Professional 

Papers 424-B:28-29. 

Mahaffy, J.J. 
1983 Geoarchaeology of the Holocene and Late Pleistocene Alluvial Deposits along the 

Middle Duck River, Tennessee. Report submitted to the Tennessee Valley Authority, 
Norris. 

Mason, C.C. and R.L. Folk 
1958 Differentiation of beach, dune, and aeolian land environments by size analysis. Journal 

of Sedimentary Petrology 28:211-226. 

Mason, R.L 
1982 Cannon Coun ty. Memphis State University Press, Memphis. 

Mattingly, G.E.G. and R.J.B. Williams 
1%2 A note on the chemical analysis of a soil buried since Roman times. Journal of Soil 

Science 13:254-258. 

Merril, Col. W.E. 
1865 Map of Woodbury Vicinity. Ms. on file, State Archives, Nashville, Tennessee. 

Miller, R.A 
1974 The Geologic History of Tennessee. Bulletin 74, Tennessee Department of Conservation, 

Division of Geology, Nashville. 

128 



M�� M� 
1985 Stratigraphic and pedologic descriptions of the Fattybranch Site ( 40MU408). In Cultural 

Adaptations in the Shelby Bend Archaeological District, edited by D.S. Amick, J.M . . 
Herbert, and M.E. Fogarty, pp. 470-490. Report submitted to the National Park Service, 
Southeast Archaeological Center, Tallahassee. 

1986 Deep testing at the Chapman Site. In The Chapman Site: A Terminal Archaic 
Settlement in the Middle Cumberland River Drainage of Tennessee, edited by C. Bentz, 
pp. 20-46. Tennessee Anthropological Association, Miscellaneous Papers No. 11 ,  · 
Knoxville, Tennessee. 

Munsell Color Company, Inc. 
1975 Munsen Soil Color Charts. Munsell Color Company, Inc., Baltimore. 

North American Commission on Stratigraphic Nomenclature 
1983 North American stratigraphic code. American Association of Petroleum Geologists 

Bu11etin 67:841-875. 

Novak, R.J., H.L. Motto and L.A. Douglas 
1971 The effect of time and particle size on mineral alteration in several Quaternary soils 

in New Jersey and Pennsylvania, U.S.A. In Paleopedology, edited by D.H. Yaalon, pp. 
211-224. Israel University Press, Jerusalem. 

Pedro, G., M. Jamagne, and J.C. Bejoir 
1969 Mineral interactions and transformations in relation to pedogenesis during the 

Quaternary. Soil Science 107:462-469. 

Piper, AM. 
1932 Ground Water in North Central Tennessee. U.S. Department of the Interior, Water 

Supply Paper No. 640, U.S. Government Printing Office, Washington, D.C. 

Proudfoot, B. 
1976 The analysis and interpretation of soil phosphorous in archaeological contents. In 

Geoarchaeology, edited by D.A. Davidson and M.L. Shackley, pp. 93-1 13. Westview, 
Boulder, Colorado. 

Quarterman, E. 
1949 Ecology of cedar glades: I. Distribution of glade flora in Tennessee. Bulletin of the 

Torrey Botanical Club 77:1-9. 

1950 

Rick, J.W. 
1976 

Major plant communities of Tennessee cedar glades. Ecology 31 (2):234-254. 

Downslope movement and archaeological intrasite spatial analysis. American Antiquity 
41: 133. 

129 



Rube, R.V. 
1956 Geomorphic surfaces and the nature of soils. Soil Science 82:441-455. 

1959 Stone lines in soils. Soil Science 87:223-231. 

1965 Quaternary paleopedology. In The Quaternary of the United States, edited by H.E. 
Wright and D.G. Frey, pp. 755-764. Princeton University Press, Princeton. 

1969 Soils, paleosols, and environment. In Pleistocene and Recent Environments of the 
Central Great Plains, edited by W. Dort and J.K. Jones, pp. 37-52. University Press of 
Kansas, Lawrence. 

1983 Aspects of Holocene pedology in the United States. In Late-Quaternary Environments 
of the United States. Vol 2, edited by W.H. Wendland, pp. 12-25. University of 
Minnesota Press, Minneapolis. 

Rube, R.V. and R.B. Daniels 
1958 Soils, paleosols, and soil horizon nomenclature. Soil Science Society of America 

Proceedings 22(12):66-69. 

Schofield, R.K. and AW. Taylor 
1955 The measurement of soil pH. Soil Science Society of America Proceedings 19(2):164-

167. 

Schumm, S.A 
1969 The shape of alluvial channels in relation to sediment type. U.S. Geological Survey 

Professional Papers 352-B:17-30. 

1980 Some applications of the concept of geomorphic thresholds. In Thresholds in 
Geomorphology, edited by D.R. Coates and J.D. Vitak, pp. 473-485. Allen and Unwin, 
Boston. 

Shackley, M.L. 
1975 Archaeological Sediments. Willey and Sons, New York. 

1978 The behaviour of artifacts and sedimentary particles in a fluvatile environment. 
Archaeometry 20:55-61. 

Shaver, J.M. and M. Dennison 
1928 Plant succession along Mill Creek. Journal of the Tennessee Academy of Science 3(4):5-

13. 

Simonson, R. 
1959 Outline of a generalized theory of soil genesis. Soil Science Society of America 

Proceedings 23(2):152-156. 

Sjoberg, A 
1976 Phosphate analysis of anthropic soils. Journal of Field Archaeology 3:447-454. 

130 



Slusher, D.F. and SA Lytle 
1973 Alfisols--light colored soils of the humid temperate areas. In Soils of the Southern 

States and Puerto Rico, edited by S.W. Buol, Southern Cooperative Service Bulletin No. 
174. 

Smalley, G.W. 
1980 Classification and evaluation of forest sites on the Western Highland Rim and 

Pennyroal. In General Technical Report S0-30, U.S. Department of Agriculture, U.S. 
Forest Service, Washington, D.C. 

Soil Survey Staff 
1984 Soil Survey Manual. Soil Conservation Service, U.S. Department of Agriculture, U.S. 

Government Printing, Washington, D.C. 

Solomon, AM., H.R. Delcourt, D.C. West, and T.J. Blasing 
1980 Testing a simulation model for reconstruction of pre-Historic forest stand dynamics. 

Quaternary Research 14:275-293. 

Spears, W.S., T.H. Bianchi, A Robbins, and M.B.D. Trubitt 
1986 The State Route 1 Project: Test Excavations at Woodbury, Tennessee. Report of 

Investigations No. 2, Department of Conservation, Division of Archaeology, Nashville. 

Springer, M.S. and J.A Elder 
1980 Soils of Tennessee. Bulletin 596. The University of Tennessee Agricultural Experiment 

Station, Knoxville and the U.S. Department of Agriculture, Soil Conservation Service, 
Washington D.C. 

Stein, J.K. 
1982 

1984 

1985 

1987 

Geologic analysis of the Green River shell middens. Southeastern Archaeology 1:22-
39. 

Organic matter and carbonates in archaeological sites. Journal of Field Archaeology 
11 :239-246. 

Interpreting sediments in cultural settings. In Archaeological Sed iments in Context, 
edited by J.K. Stein and W.R. Farrand, pp. 5-19. Center for the Study of Early Man, 
Institute for Quaternary Studies, University of Maine, Orono. 

Deposits for archaeologists. In Advances in Archaeological Method and Theory, Vol. 
11, edited by M.B. Schiffer, pp. 337-395. Academic Press, New York. 

Taira, A and P.A Scholle 
1979 Discrimination of depositional environments using settling tube data. Journal of 

Sedimentary Petrology 49:787-800. 

Thornwaite, C.W. 
1931 The climate of North America according to a new classification. Geography Review 

21:633-655. 

131 



Turner, W.B., J.L Hoffman, and G.R. Brackenridge 
1982 Technique to aid in recording and field interpretation of stratigraphic sections in 

archaeological deposits. Journal of Field Archaeology 9(1): 133-136. 

Turner, W.B. and W.E. Klippel 
1989 Hunter-gatherers in the Nashville Basin: Archaeological and geological evidence for 

variability in prehistoric land use. Geoarchaeology: An International Journal 4(1) :1-25. 

Valentine, K. W.G. and J.B. Dalrymple 
1976 Quaternary buried paleosols: A critical review. Quaternary Research 6:209-222. 

Wendland, W.M. 
1982 Geomorphic responses to climatic forcing during the Holocene. In Space and Time in 

Geomorphology, edited by C.E. Thorn, pp. 355-371. Allen and Unwin, London. 

White, E.M. 
1966 Subsoil structure genesis, theoretical considerations. Soil Science 101:135-141. 

Willey, G.R. and J.A Sabloff 
1980 A History of American Archaeology. Thames and Hudson, London. 

Wilson, C. W. 
1949 Pre-Chattanooga Stratigraphy in Central Tennessee. Bulletin 56. Tennessee Department 

of Conservation, Division of Geology, Nashville. 

Wilson, C. W. and R.H. Barnes 
1968 Geologic Map and Mineral Resources Summary for the Woodbury Quadrangle, 

Tennessee. Tennessee Department of Conservation, Division of Geology, Nashville. 

Wolman, M.G. and LB. Leopold 
1957 River floodplains: Some observations on their formation. U.S. Geological Society 

Professional Papers 282-C:87-107. 

Wood, W.R. and D.L. Johnson 
1978 A survey of disturbance processes in archaeological site formation. In Advances in 

Archaeological Method and Thcorv, Vol 1, edited by M.B. Schiffer, pp. 315- 381. 
Academic Press, New York. 

132 



· APPENDICES 



APPENDIX A 

SOIL PROFILE DESCRIPTIONS 



Appendix A-1. Soil Profile Descriptions of Trench 2. Section 4. 

SITE: 40CN79 
LOCATION: Cannon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Old alluvium 
PHYSIOGRAPHY: Top of T2, Pleistocene terrace 
RELIEF: Nearly level 
ELEVATION: About 200 m AMSL 
SLOPE: Less that 2% 
ASPECT: South 
EROSION: Slight 
PERMEABILITY: Moderate 
DRAINAGE: Well drained 
GROUNDWATER: Not evident 
MOISTURE: Moderately dry 
ROOT DISTRIBUTION: 0-107 cm 
SALT OR ALKALI: Not evident 
STONINESS: Some alluvial gravel at 123 cm 

PZ Formation 

Ap 

T2b Formation 

0-22 cm; moist color lOYR 4/3, dry color lOYR 6/4; silt loam texture; moderate, 
medium, granular (crumb) structure; friable, moist, nonsticky consistence; no visible 
clay coatings; many fine and medium roots; many fine and medium pores and 
tunnels; no noticeable coarse fragments. 

22-40 cm; moist color 7.SYR 4/4, dry color lOYR 6/4; silty clay loam texture; 
moderate, medium, subangular blocky structure; friable, moist, nonsticky consistence; 
thin, discontinuous clay coatings; clear, smooth boundary; many fine and medium 
roots; many fine and medium pores and tunnels; no noticeable coarse fragments. 

40-60 cm; moist color 7.5YR 4/6 with clay coatings of 7.5YR 4/4, dry color lOYR 
6/4; silty clay loam texture; moderate, medium, subangular blocky structure; friable, 
moist, sticky consistence; thin, continuous clay coatings; clear, smooth boundary; 
common fine and medium roots; common fine and medium pores and tunnels; no 
noticeable coarse fragments. 

60-82 cm; moist color 7.SYR 5/4 with clay coatings of 7.SYR 4/4, dry color lOYR 
6/4; silty clay loam texture; moderate, medium, subangular blocky structure with 
some fine laminations present; firm, moist, sticky consistence; thin, continuous clay 
coatings; common medium pores and tunnels; no noticeable coarse fragments. 
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Bt4 

T2a Formation 

2Bt,. 

2Bt5 

82-107 cm; moist color 7.5YR 5/6, dry color lOYR 7/4; silty clay loam texture; 
moderate, medium, subangular blocky structure with some fine laminations present; 
firm, moist, sticky consistence; thin continuous clay coatings; few fine manganese 
nodules comprising about 2% of the matrix; gradual, smooth boundary; few fine 
roots; common fine pores and tunnels; no noticeable coarse fragments. 

107-123 cm; moist color 7.5YR 5/6, dry color lOYR 7/4; silty clay loam texture; 
moderate, fine, subangular blocky structure; firm, moist, sticky consistence; thin, 
continuous clay coatings; common fine manganese nodules and coatings comprising 
about 10% of the matrix; clear, smooth boundary; common medium rounded chert 
gravels comprising about 10% of the matrix; few fine pores and tunnels. 

123-145 cm; moist color 7.5YR 5/6, iron oxide coatings 7.5YR 4/6 comprising about 
10% of matrix, manganese oxide coatings 7.5YR 3/0 comprising about 10% of 
matrix, dry color lOYR 7/4; clay loam texture; moderate, medium subangular blocky 
structure; firm, moist, sticky consistence; thin, continuous clay coatings; common 
fine manganese nodules comprising about 10% of matrix; clear, smooth boundary; 
common medium rounded chert gravels comprising about 10% of matrix; few fine 
pores and tunnels; no noticeable roots. 

145-167 cm; moist color lOYR 5/4, iron oxide coatings lOYR 5/6, manganese oxide 
coatings lOYR 2/1, dry color lOYR 7/4; clay loam texture; moderate, medium, 
subangular blocky structure with some fine laminations present; firm, moist, sticky 
consistence; thin, continuous clay coatings; common fine manganese nodules 
comprising about 10% of matrix; gradual, smooth boundary; common medium 
rounded chert gravels comprising about 10% of matrix; few fine pores and tunnels; 
no noticeable roots. 

167-189 cm; moist color lOYR 5/4, iron oxide coatings 7.5YR 5/6, manganese oxide 
coatings 7.5YR 3/0, dry color lOYR 7/4; clay texture; moderate, medium, subangular 
blocky structure; firm, moist, sticky consistence; thin discontinuous clay coatings; 
common fine manganese nodules and coatings comprising about 20% of matrix, iron 
oxide coatings comprise about 20% of matrix; common rounded chert gravels 
comprising about 10% of matrix; few fine pores and tunnels; no noticeable roots. 

189-208 cm; moist color lOYR 6/6, iron oxide coatings 7.5YR 5/6, manganese oxide 
coatings 7.5YR 3/0, dry color lOYR 7/4; clay texture; moderate, medium, subangular 
blocky structure; firm, moist, sticky consistence; thin, continuous clay coatings; 
common fine manganese nodules and coatings comprising about 20% of matrix; iron 
oxide coatings comprise about 20% of matrix; gradual smooth boundary; common 
medium rounded chert gravels comprising about 10% of matrix; no noticeable roots 
or pores. 
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Appendix A-2. Soil Profile Descriptions of Trench 1. Section 2. 

SITE: 40CN79 
LOCATION: Cannon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Alluvium 
PHYSIOGRAPHY: Floodplain, footslope of T2 
RELIEF: Nearly level, to slightly rolling 
ELEVATION: About 200 m AMSL 
SLOPE: 10% 
ASPECT: South 
EROSION: Evident 
PERMEABILITY: Moderately Rapid 
DRAINAGE: Well drained 
GROUNDWATER: 171 cm below surface 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-122 cm 
SALT OR ALKALI: Not evident 
STONINESS: Alluvial gravel bar noted at bottom of unit 

PZ Formation 

Ap 

TOb Formation 

Bw1 

0-29 cm; moist color lOYR 4/3; silt loam texture; moderate, medium, subangular 
structure; friable, moist, nonsticky consistence; no visible clay coatings; few fine 
manganese nodules comprising about 5% of matrix; many fine roots; common 
medium rounded chert gravels comprising about 10% of matrix; common fine and 
medium pores and tunnels. 

29-55 cm; moist color lOYR 4/3; silty clay loam texture; weak, coarse, subangular 
structure; friable, moist, nonslicky consistence; thin, discontinuous clay coatings; few 
fine manganese nodules comprising about 2% of matrix; clear, smooth boundary; 
few charcoal fragments comprising about 2% of matrix; few medium rounded chert 
pebbles comprising about 5% of matrix; common fine and medium pores and 
tunnels; common fine roots. 

55-59 cm; moist color lOYR 4/3; sandy loam texture; fine, granular structure; loose, 
dry, nonsticky consistence; thin, discontinuous clay coatings; few fine manganese 
nodules comprising about 2% of matrix; clear, smooth boundary; few fine roots; no 
noticable coarse fragments or pores. 
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Tl Formation 

2Ab 

2Bgb 

R 

59-68 cm; moist color lOYR 3/2; clay loam texture; weak, coarse, prismatic structure; 
friable, moist, sticky consistence; thin, discontinuous clay coatings; few fine 
manganese nodules comprising about 2% of matrix; clear, smooth boundary; few 
fine roots; common medium rounded chert gravels comprising about 10% of matrix; 
few charcoal fragments comprising about 2% of matrix; few fine and medium pores 
and tunnels. 

68-95 cm; moist color lOYR 3/2; clay loam texture; moderate, medium, subangular 
blocky structure; firm, moist, sticky consistence; thin continuous clay coatings; 
gradual, smooth boundary; few fine roots; few medium rounded chert gravels 
comprising about 5% of matrix; few charcoal fragments comprising about 2% of 
matrix; few fine pores and tunnels. 

95-122 cm; moist color lOYR 3/3; clay loam texture; strong, medium, subangular 
blocky structure; firm, moist, sticky consistence; thin continuous clay coatings; 
gradual, smooth boundary; few fine roots; common rounded chert gravels comprising 
about 10% of matrix; few fine pores and tunnels. 

122-144 cm; moist color lOYR 3/3; gravelly medium sandy clay loam texture; weak, 
moderate, subangular blocky structure; friable, moist, sticky consistence; thin 
continuous clay coatings; gradual, smooth boundary; many medium rounded chert 
gravels comprising about 2% of matrix; few fine pores and tunnels; no noticable 
roots. 

144-185 cm; moist color lOYR 4/3, gleyed coatings 5YR 5/1 comprising about 30% 
of matrix, iron oxide coatings 7.5YR 5/6 comprising about 20% of matrix; gravelly 
medium sandy clay loam; massive structure; firm, moist, sticky consistence; no 
visible clay coatings; clear, smooth boundary; many medium and coarse rounded 
chert gravels comprising about 20% of matrix; no noticable roots or pores. 

185 cm. 

Additional Field Notes: 

Buried "A" very prominent in this trench. Most coarse fragments are rounded chert gravels. No lithic 
debitage noted; however, lithics found when overburden was stripped to the surface of the buried 
"A". Buried "A" runs along the length of the trench. Bedrock lies directly below 2Bgb horizon. Water 
table lowered after long drought, it could be much higher. 
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Appendix A-3. Soil Profile Descriptions of Trench 2. Section 2. 

SITE:: 40CN79 
LOCATION: C.annon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Alluvium, some colluvium 
PHYSIOGRAPHY: Footslope of T2 
RELIEF: Nearly level, to slightly rolling 
ELEVATION: About 200 m M1SL 
SLOPE: Less than 5% 
ASPECT: South 
EROSION: Slight 
PERMEABILITY: Moderately rapid 
DRAINAGE: Well drained 
GROUNDWATER: Highest level noted at 2 m below surface 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-70 cm 
SALT OR ALKALI: C.aC03 coatings noted on some limestone fragments 
STONINESS: Alluvial gravel lense noted at bottom of unit overlying bedrock 

PZ Formation 

Ap 

TOb Formation 

0-32 cm; moist color lOYR 4/4; gravely silt loam texture; moderate, medium, 
granular structure; loose, friable, nonsticky consistence; no visible clay coatings; 
common medium and fine roots; common coarse, medium, and fine angular and 
rounded limestone and chert fragments comprising about 20% of the matrix; 
common medium and fine pores and tunnels. 

32-48 cm; moist color lOYR 4/3; silt loam texture; weak, moderate, subangular 
blocky structure; friable, moist, nonsticky consistence; thin, discontinuous clay 
coatings; few fine manganese nodules comprising about 2% of the matrix; clear; 
smooth boundary; common fine roots; few angular limestone fragments comprising 
about 5% of matrix; common fine and medium pores and tunnels. 

48-63 cm; moist color lOYR 4/3; silt loam texture; weak, moderate, subangular 
blocky structure; friable, moist, nonsticky consistence; thin discontinuous clay 
coatings, few fine manganese nodules comprising about 2% of matrix; gradual, 
smooth boundary; few fine roots; common rounded and angular chert pebbles 
comprising about 10% of matrix; common fine pores and tunnels. 

63-70 cm; moist color lOYR 4/3; sandy loam texture; moderate, medium, granular, 
structure; loose, moist, nonsticky consistence; no visible clay coatings; common fine 
manganese nodules comprising about 5% of matrix; clear, irregular boundary; few 
fine roots; few rounded chert pebbles comprising about 5% of matrix; few fine 
pores and tunnc]s. 
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Bw4 

c .. 

Tl Formation 

2Ab 

70-83 cm; moist color lOYR 4/3 with fine laminae of lOYR 7 /4; silt loam texture; 
weak, coarse, subangular blocky structure; friable, moist, nonsticky consistence; no 
visible clay coatings; abrupt, smooth boundary; few medium pores and tunnels. 

83-88 cm; moist color lOYR 4/3; sandy loam texture; weak, fine, granular structure 
primarily consisting of chert grains; no visible clay coatings; common fine manganese 
nodules comprising about 5% of matrix; abrupt, irregular boundary; no noticeable 
roots, pores, or coarse fragments. 

88-95 cm; moist color lOYR 4/4 with fine laminae of lOYR 7 /3; silt loam texture; 
massive, laminated structure; friable, moist, nonsticky consistence; no visible clay 
coatings; abrupt, irregular boundary; no noticeable roots, pores, or coarse fragments. 

95-100 cm; moist color lOYR 4/4; sandy loam texture; weak, fine, granular structure 
primarily consisting of chert grains; loose, moist, nonsticky consistence; no visible 
clay coatings; common fine manganese nodules comprising about 5% of matrix; 
abrupt, irregular boundary; no noticeable roots, pores, or coarse fragments. 

100-102 cm; moist color lOYR 4/4 with fine laminae of lOYR 7/4; silt loam texture; 
massive, laminated structure; friable, moist, nonsticky consistence; no visible clay 
coatings; abrupt, irregular boundary; no noticeable roots, pores, or coarse fragments. 

102-109 cm; moist color lOYR 4/4; sandy loam texture; weak, fine, granular 
structure consisting primarily of chert grains; loose, moist, nonsticky consistence; 
no visible clay coatings; common fine manganese nodules comprising about 5% of 
matrix; abrupt, irregular boundary; few medium rounded chert gravels comprising 
about 5% of matrix; no noticeable roots or pores. 

109-112 cm; moist color lOYR 4/4 with fine laminae of lOYR 7/4; silt loam texture; 
massive, laminated structure; friable, moist nonsticky consistence; no visible clay 
coatings; abrupt, irregular boundary; no noticeable roots, pores, or coarse fragments. 

112-120 cm; moist color lOYR 4/3; sandy loam texture; weak, fine, granular 
structure, primarily chert grains; loose, moist, nonsticky consistence; no visible clay 
coatings; common fine manganese nodules comprising about 10% of matrix; abrupt, 
irregular boundary; common medium, rounded chert gravels; no noticeable roots 
or pores. 

120-133 cm; moist color lOYR 4/4 with fine laminae of lOYR 7/4; silt loam texture; 
massive, laminated structure; friable, moist, nonsticky consistence; no visible clay 
coatings; abrupt, smooth boundary; common medium pores; no visible roots or 
coarse fragments. 

133-152 cm; moist color lOYR 3/3 with fine laminae of lOYR 7/4; silty clay loam 
texture; moderate, medium, subangular blocky structure; friable, moist, slightly sticky 
consistence; thin discontinuous clay coatings; few fine manganese nodules comprising 
about 5% of matrix; abrupt, smooth boundary; few medium rounded chert pebbles, 
lithic debris, and charcoal fragments comprising about 5% of matrix; common 
medium and fine pores and tunnels; no noticeable roots. 
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152-165 cm; moist color 10YR 3/3 with fine laminae of 10YR 7/4; clay loam texture; 
moderate, medium, subangular blocky structure; friable, moist, sticky consistence; 
thin continuous clay coatings; common fine manganese nodules with manganese 
coatings comprising about 10% of matrix; gradual, smooth boundary; common, · 
medium, rounded chert pebbles, with lithic debris, and charcoal comprising about 
10% of matrix; few fine pores and tunnels; no noticeable roots. 

165-176 cm; moist color IOYR 3/3; clay loam texture; moderate, coarse, subangular 
structure; firm, moist, sticky consistence; thin, continuous clay coatings; few fine 
manganese nodules comprising about 5% of matrix; gradual, smooth boundary; 
common, medium, rounded chert pebbles, with lithic debris, and charcoal comprising 
about 10% ·of matrix; few fine pores and tunnels; no noticeable roots. 

176-180 cm; moist color IOYR 3/3 with manganese oxide coatings of 10YR 2/2 
comprising about 10% of matrix, and iron oxide coatings of 7.5YR 5/6 comprising 
about 10% of matrix; gravelly clay loam texture; massive structure with extensive 
gleying; firm, moist, sticky consistence; clear, smooth boundary; common coarse 
rounded chert pebbles comprising about 30% of matrix; no noticeable roots or 
pores. 

180 cm. 

Additional Field Notes: 

Soil unit consists of historic alluvium overlying a buried "A" horizon. Sand lenses are primarily 
rounded chert grains with pieces of limestone found in the plowzone and on the surface of the 2Ab 
horizon. Lithic debris noted in buried soil with noticeable waterwear in the lower gravelly horizon. 
Charcoal is found throughout the profile, but predominates near the surface of the buried "A". 
Limestone bedrock lies directly beneath 2Bgb horizon. 
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Appendix A-4. Soil Profile Descriptions of Trench 3. Section 2. 

SITE: 40CN79 
LOCATION: C.annon County, Tennessee 
VEGETATION: Pature, forage 
PARENT MATERIAL: Alluvium 
PHYSIOGRAPHY: Footslope of T2 
RELIEF: Nearly level to slightly rolling 
ELEVATION: About 200 m AMSL 
SLOPE: Less than 5% 
ASPECT: South 
EROSION: Slight 
PERMEABILITY: Moderately rapid 
DRAINAGE: Well drained 
GROUNDWATER: Evident at 179 cm below surface 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-99 cm 
SALT OR ALKALI: Not evident 
STONINESS: Gravel lense at bottom of unit 

PZ Formation 

Ap 

TOb Formation 

Bw 

Bt2 

0-26 cm; moist color lOYR 4/3; silt loam texture; moderate, medium, granular 
(crumb) structure; friable, moist, nonsticky consistence; thin, discontinuous clay 
coatings; common fine and medium roots; common angular limestone and chert 
fragments comprising about 10% of matrix; common fine and medium pores and 
tunnels. 

26-44 cm; moist color lOYR 4/3; sil t loam texture; weak, medium, subangular blocky 
structure; friable, moist, nonsticky consistence; thin discontinuous clay coatings; 
gradual smooth boundary; common fine and medium roots; few medium angular 
limestone and chert fragments comprising about 5% of matrix; common fine and 
medium pores and tunnels. 

44-58 cm; moist color lOYR 4/3; silty clay loam texture; weak, coarse, subangular 
blocky structure; firm, moist, slightly sticky consistence; thin, discontinuous clay 
coatings; gradual, smooth boundary; few fine roots; few fine pores and tunnels; no 
noticeable coarse fragments. 

58-70 cm; moist color lOYR 4/4; silty clay loam texture; moderate, medium 
subangular structure; friable, moist, slightly sticky consistence; thin discontinuous 
clay coatings; gradual, smooth boundary; few fine roots; few fine pores and tunnels; 
no noticeable coarse fragments. 
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Tl Formation 

2Ab 

2C 

R 

70-87 cm; moist color lOYR 4/4 with laminae lOYR 5/4 comprising about 40% of 
matrix; silt loam texture; massive, laminated structure; friable, moist, nonsticky 
consistence; no visible clay coatings; clear, smooth boundary; few fine roots; few fine 
and medium pores and tunnels. 

87-99 cm; moist color lOYR 4/3 with laminae lOYR 7/4 comprising about 40% of 
matrix; silt loam texture; massive, laminated structure; friable, moist, nonsticky 
consistence; no visible clay coatings; gradual, smooth boundary; few fine roots; few 
fine pores and tunnels; no noticeable coarse fragments. 

99-116 cm; moist color lOYR 4/3 with laminae lOYR 7/4 comprising about 40% 
of matrix; silt loam texture; massive, laminated structure; friable, moist, nonsticky 
consistence; no visible clay coatings; manganese oxide coatings comprise about 
30% of matrix; gradual, smooth boundary; few fine pores and tunnels; no noticeable 
roots or coarse fragments. 

116-135 cm; moist color lOYR 3/3 with manganese oxide coatings lOYR 2/1 
comprising about 30% of matrix; silty clay loam texture; moderate, medium, 
subangular blocky structure; friable, moist, sticky consistence; thin, continuous clay 
coatings; clear, smooth boundary; few charcoal fragments comprising about 5% of 
matrix; few fine pores and tunnels; no noticeable roots. 

135-149 cm; moist color lOYR 3/3 with manganese oxide coatings of lOYR 2/1 
comprising about 10% of matrix; clay loam texture; moderate, medium, subangular 
blocky structure; friable, moist sticky consistence; thin, continuous clay coatings; 
gradual, smooth boundary; few fine pores and tunnels; no noticeable roots or coarse 
fragments. 

149-159 cm; moist color lOYR 3/3 with manganese oxide coatings of lOYR 2/1 
comprising about 10% of matrix, and gleyed coatings of 2.5YR 5/2 comprising about 
10% of matrix; clay loam texture; moderate, medium subangular blocky structure; 
friable, moist, sticky consistence; thin continuous clay coatings; gradual, smooth 
boundary; few fine pores and tunnels; no noticeable roots or coarse fragments. 

159-177 cm; moist color lOYR 4/4; gravelly medium sand texture; granular structure; 
loose, wet, sticky consistence; no visible clay coatings; manganese nodules comprise 
about 20% of matrix; clear, smooth boundary; many medium and coarse rounded 
chert gravels comprising about 50% of matrix; no noticeable roots or pores. 

177 cm. 

Additional Field Notes: 

Silt lenses above buried "A" reminiscent of silt lenses in TR2.S2. Argillic horizon present with much 
more manganese coatings in the buried "A". A very distinctive gravel bar represented here. Historic 
charcoal lense noted on top of buried "A" but no artifacts were observed in the profile unit. 
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Appendix A-5. Soil Profile Descriptions of Trench 4. Section 2. 

SITE: 40CN79 
LOCATION: Cannon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Alluvium 
PHYSIOGRAPHY: Floodplain, footslope of T2 
RELIEF: Nearly level to slightly rolling 
ELEVATION: About 200 m AMSL 
SLOPE: Less than 2% 
ASPECT: South 
EROSION: Slight 
PERMEABILITY: Moderately rapid 
DRAINAGE: Well drained 
GROUNDWATER: Evident at 129 cm 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-115 cm 
SALT OR ALKALI: Not evident 
STONINESS: Alluvial gravel at bottom of unit 

PZ Formation 

Ap 

TOa Formation 

0-14 cm; moist color lOYR 4/3, dry color lOYR 6/3; silt loam texture; moderate, 
medium, granular (crumb) structure; friable, moist, nonsticky consistence; no visible 
clay coatings; common fine and medium roots; common medium angular limestone 
fragments and rounded chert gravels comprising about 10% of matrix; common fine 
and medium pores and tunnels. 

14-30 cm; moist color lOYR 4/3, dry color lOYR 6/3; silt loam texture; weak, 
moderate, subangular blocky structure; friable, moist, slightly sticky consistence; thin, 
discontinuous clay coatings; clear, smooth boundary; common fine roots; few 
medium angular limestone fragments comprising about 5% of matrix; common fine 
and medium pores and tunnels. 

30-44 cm; moist color lOYR 4/3, dry color lOYR 6/3; silt loam texture; weak, 
moderate subangular blocky structure; friable, moist slightly sticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; common fine roots; few 
fragments of charcoal comprising about 2% of matrix; common fine and medium 
pores and tunnels. 

44-64 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; weak, 
moderate, subangular blocky structure; friable, moist, slightly sticky consistence; thin 
discontinuous clay coatings; gradual smooth boundary; few fine roots; few fragments 
of charcoal comprising about 2% of matrix; common fine and medium pores and 
tunnels. 
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64-81 cm; moist color lOYR 4/3, ·dry color lOYR 5/3; silf loam texture; weak, 
moderate, subangular blocky structure, friable, moist, slightly sticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few fragments 
of charcoal comprising about 2% of matrix; common fine pores and tunnels. 

81-98 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; weak, coarse, 
subangular blocky structure; friable, moist, slightly sticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few fragments 
of charcoal comprising about 2% of matrix; common fine pores and tunnels. 

98-115 cm; moist color lOYR 3/3, dry color lOYR 5/3; silt loam texture; moderate, 
medium subangular blocky structure; friable, moist, slightly sticky consistence; thin 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few medium 
rounded chert gravels comprising about 5% of matrix; few fine pores and tunnels. 

1 15-129 cm; moist color lOYR 3/3, dry color lOYR 5/3; gravelly, loamy medium 
sand texture; moderate, medium, granular structure; friable, moist, slightly sticky 
consistence; no visible clay coatings; clear, smooth boundary; many medium rounded 
chert gravels comprising about 30% of matrix; few fine pores and tunnels; no 
noticeable roots; common fine manganese nodules comprising about 10% of matrix. 

129-141 cm; moist color lOYR 4/4, dry color lOYR 5/3; gravelly sand texture; 
granular structure; loose, moist, nonsticky consistence; no visible clay coatings; 
gradual, smooth boundary; many medium and coarse rounded chert gravels 
comprising about 50% of the matrix; no noticeable roots or pores; common 
manganese nodules comprising about 10% of matrix. 

141-163 cm; moist color lOYR 4/3, dry color lOYR 5/3; gravelly sand texture; 
granular structure; loose, moist, nonsticky consistence; common fine manganese 
nodules comprising about 10% of matrix; gradual smooth boundary; many medium 
and coarse rounded chert gravels comprising about 70% of matrix; no noticeable 
roots or pores. 

163 cm. 
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Appendix A-6. Soil Profile Descriptions of Trench 2. Section 1.5. 

SITE: 40CN79 
LOCATION: Cannon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Alluvium 
PHYSIOGRAPHY: F1oodplain 
RELIEF: Nearly level 
ELEVATION: About 200 m AMSL 
SLOPE: Less than 2% 
ASPECT: North 
EROSION: Not evident 
PERMEABILITY: Moderately rapid 
DRAINAGE: Well drained 
GROUNDWATER: Evident at 135 cm 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-1 1 1  cm 
SALT OR ALKALI: Not evident 
STONINESS: Gravel bar noted in base of unit 

PZ Formation 

Ap 

TOa Formation 

Bw1 

Bw4 

0-25 cm; moist color lOYR 4/3; silt loam texture; moderate, medium, granular 
structure (crumb); loose, moist, nonsticky consistence; many fine and medium roots; 
common medium angular limestone and rounded chert fragments comprising about 
10% of matrix; many fine and medium pores and tunnels. 

25-37 cm; moist color lOYR 4/3; silt loam texture; moderate, medium, subangular 
blocky structure; friable, moist, nonsticky consistence; thin, discontinuous clay 
coatings; clear, smooth boundary; common, fine roots; common fine and medium 
pores and tunnels; no noticeable coarse fragments. 

37-48 cm; moist color lOYR 4/3; silt loam texture; moderate, medium, subangular 
blocky structure; friable, moist, nonsticky consistence; thin, discontinuous clay 
coatings; gradual, smooth boundary; common, fine roots; common fine and medium 
pores and tunnels; no noticeable coarse fragments. 

48-63 cm; moist color lOYR 4/3; silt loam texture; moderate, medium, subangular 
blocky structure; firm, moist, nonsticky consistence; thin, discontinuous clay 
coatings; gradual, smooth boundary; few fine roots; common fine and medium 
pores and tunnels; no noticeable coarse fragments. 

63-76 cm; moist color lOYR 4/3; loam texture; weak, coarse, subangular blocky 
structure; friable, moist, nonsticky consistence; no visible clay coatings; gradual, 
smooth boundary; few fine roots; few fine and medium pores and tunnels; no 
noticeable coarse fragments. 
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76-89 cm; moist color 10YR 4/4; sandy loam texture; weak, coarse subangular . 
structure; friable, moist, nonsticky consistence; no visible clay coatings; gradual, 
smooth boundary; few fine roots; common rounded chert gravels comprising about 
10% of the matrix; few fine and medium pores and tunnels. 

89-100 cm; moist color toYR 5/6; gravelly sand texture; granular structure; loose, · 
moist, nonsticky consistence; no visible clay coatings; few fine manganese nodules 
comprising about 2% of matrix; clear, smooth boundary; few fine roots; many 
rounded chert gravels and cobbles comprising about 60% of matrix; no noticeable 
pores or tunnels. 

100-111 cm; moist color toYR 5/6; gravelly sand texture; granular structure; loose, 
moist, nonsticky consistence; no visible clay coatings; few fine manganese nodules 
comprising about 2% of matrix; gradual, smooth boundary; few fine roots; many 
rounded chert gravels and cobbles comprising about 60% of the matrix; no visible 
pores or tunnels. 

11 1-130 cm; moist color lOYR 6/6; gravelly sand texture; granular structure; loose, 
wet, nonsticky consistence; no visible clay coatings; few fine manganese nodules 
comprising about 2% of matrix; gradual, smooth boundary; many rounded chert 
gravels and cobbles comprising about 80% of the matrix; no noticeable roots or 
pores. 

Additional Field Notes: 

Represents good alluvial sequence of graded sediment, probably historic in age. Well developed 
gravel bar, relatively clean of oxides with a few scattered charcoal fragments. No cultural material 
was noted within this sequence. 
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Appendix A-7. Soil Profile Descriptions of Trench 2. Section 1. 

SITE: 40CN79 
LOCATION: Cannon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Alluvium 
PHYSIOGRAPHY: Floodplain, levee bank 
RELIEF: Nearly level 
ELEVATION: About 200 m AMSL 
SLOPE: Less than 2% 
ASPECT: North 
EROSION: None 
PERMEABILITY: Moderately rapid 
DRAINAGE: Well drained 
GROUNDWATER: Not evident 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-138 cm 
SALT OR ALKALI: None 
STONINESS: Alluvial gravel at bottom of unit 

PZ Formation 

Ap 

TOb Formation 

Bw1 

0-17 cm; moist color lOYR 3/3, dry color lOYR 5/3; sandy loam texture; moderate, 
medium, granular structure; friable, moist, nonsticky consistence; no visible clay 
coatings; common fine and medium roots; common fine and medium pores and 
tunnels; no noticeable coarse fragments. 

17-38 cm; moist color lOYR 3/3, dry color lOYR 5/3; loam texture; weak, medium, 
subangular structure; friable, moist, nonsticky consistence; no visible clay coatings; 
clear, smooth boundary; common fine roots; common fine and medium pores and 
tunnels; no noticeable coarse fragments. 

38-60 cm; moist color lOYR 4/3, dry color lOYR 5/3; loam texture; weak, moderate, 
subangular blocky structure; friable, moist, nonsticky consistence; no visible clay 
coatings; gradual, smooth boundary; common fine roots; common fine and medium 
pores and tunnels. 

60-81 cm; moist color lOYR 4/3, dry color lOYR 6/3, loam texture; weak, medium, 
subangular blocky structure; friable, moist, nonsticky consistence; no visible clay 
coatings; gradual, smooth boundary; common fine roots; few medium rounded chert 
gravels comprising about 5% of the matrix; common fine and medium pores and 
tunnels. 
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TOa Formation 

2C 

81-103 cm; moist color lOYR 4/3, dry color lOYR 6/3; silt loam texture; weak, 
medium, subangular blocky structure; friable, moist, nonsticky consistence; thin, 
discontinuous clay coatings; clear, smooth boundary; few fine roots; few fine pores 
and tunnels; no noticeable coarse fragments. 

103-119 cm; moist color lOYR 4/3, dry color lOYR 5/4; silt loam texture; weak, 
medium, subangular blocky structure; friable, moist, nonsticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few medium 
blocky limestone fragments comprising about 2% of matrix; few fine pores and 
tunnels. 

119-138 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; weak, 
coarse, subangular blocky structure; friable, moist, nonsticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few fine 
pores and tunnels; no noticeable coarse fragments. 

138-162 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; weak, 
coarse, subangular blocky structure; friable, moist, slightly sticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few fine 
pores and tunnels; no noticeable coarse fragments. 

162-179 cm; moist color lOYR 4/3, dry color lOYR 5/3; sill loam texture; moderate, 
medium, subangular structure; loose, moist, slightly sticky consistence; thin, 
continuous clay coatings; gradual, smooth boundary; few rounded chert gravels 
comprising about 5% of the matrix; few fine pores and tunnels; no noticeable roots. 

179-199 cm; moist color lOYR 4/3, dry color lOYR 5/3; gravelly loamy sand texture; 
granular structure; loose, moist, nonsticky consistence; no visible clay coatings; 
abrupt smooth boundary; many medium and coarse rounded chert gravels comprising 
about 50% of the matrix; no noticeable roots or pores. 
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Appendix A-8. Soil Profile Descriptions of Trench 4. Section 1. 

SITE: 40CN79 
LOCATION: Cannon County, Tennessee 
VEGETATION: Pasture, forage 
PARENT MATERIAL: Alluvium 
PHYSIOGRAPHY: Floodplain, backslope of levee 
RELIEF: Nearly level 
ELEVATION: About 200 m AMSL 
SLOPE: Less than 2% 
ASPECT: North 
EROSION: Not evident 
PERMEABILITY: Moderately rapid 
DRAINAGE: Well drained 
GROUNDWATER: Not evident 
MOISTURE: Moist 
ROOT DISTRIBUTION: 0-96 cm 
SALT OR ALKALI: Not evident 
STONINESS: Alluvial gravel bar at base of unit 

PZ Formation 

Ap 

TOa Formation 

0-24 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; moderate, 
medium granular structure; moist, friable, nonsticky consistence; thin discontinuous 
clay coatings; common fine roots; few medium, angular limestone fragments 
comprising about 10% of matrix; common fine and medium pores and tunnels. 

24-45 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; moderate, 
medium, subangular blocky structure; moist, friable, nonsticky consistence; thin, 
discontinuous clay coatings; clear, smooth boundary; common fine roots; common 
fine and medium pores and tunnels; no noticeable coarse fragments. 

45-65 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; weak, 
medium, subangular blocky structure; moist, friable, nonsticky consistence; thin 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; common 
fine and medium pores and tunnels; no noticeable coarse fragments. 

65-85 cm; moist color lOYR 4/3, dry color lOYR 5/3; silt loam texture; weak, 
medium subangular blocky structure; moist, friable, nonsticky consistence; thin, 
discontinuous clay coatings; gradual, smooth boundary; few fine roots; few fine and 
medium pores· and tunnels; no noticeable coarse fragments. 

85-96 cm; moist color lOYR 4/3, dry color lOYR 5/3; loam texture; weak, coarse, 
subangular blocky structure; moist, friable, nonsticky consistence; no visible clay 
coatings; gradual, smooth boundary; few fine roots; few fine pores and tunnels; no 
noticeable coarse fragments. 
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96-118 cm; moist color lOYR 4/3, dry color lOYR 5/3; gravelly medium sandy loam 
texture; weak, fine, granular structure; loose, moist, nonsticky consistence; no visible 
clay coatings; few fine manganese nodules comprising about 2% of the matrix; clear, 
smooth boundary; rounded chert gravels comprise about 30% of the matrix; few fine 
pores and tunnels. 

118-144 cm; moist color lOYR 4/2, dry color lOYR 5/3; gravelly sand texture; weak, 
fine, granular structure; loose, moist, nonsticky consistence; no visible clay coatings; 
few fine manganese nodules comprising about 5% of matrix; common medium pores 
and tunnels. 
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APPENDIX B 

SEDIMENT ANALYSIS RESULTS 



Appendix B-1. Sediment Analysis of Trench 2. Section 4. 

PHI S IZE I 
Grtvel Sand Stlt 

�A�� Horizon pH -�.a .f.o U.o l.b 2.0 3.0 4.0 S.o 6.0 7 .b 8.0 

Ap 5 .8 0 .64 0 .60 0 . 60 . 1 . 40 2 .03 1 . 73 2 .05 43 .95 17 .00 9 .00 3 . 50 1 7 . 50 

Bt1 5 . 7  0 . 57 0 .35 0 . 48 1 . 60 2 .05 1 . 53 1 . 90 49 .52 7 .00 10.00 5 .00 20 .00 

Bt2 5 .0 0.00 0. 10 0. 13  0 . 70 1 . 50 1 . 15 1 . 28 4 1 . 14 16 .00 7 .00 6 . 50 24 .50 

Bt3 
5 . 1  0 . 38 0 .22 0 . 25 1 . 60 2 . 13 1 . 43 1 . 60 48 . 39 7 .00 6 . 50 7 .00 23 . 50 

Bt4 5 . 1  0 .47 0 . 59 1 . 35 3 .00 2 . 83 1 . 85 1 . 98 44 .43 13 . 50 6 .00 3 . 50 20 . 50 � 

2Bt
1 

4 . 8  3 .03 5 . 72 5 .88 4 . 73 3 . 15 1 . 93 1 . 95 30. 1 1  15 .00 3 .00 4 .00 2 1 . 50 

28t
2 

4 . 5  3 .45 3 .60 3 . 80 4 . 53 3 . 35 2 .05 2 . 15 31 . 07 1 1 . 50 7 .00 4 . 50 23 .00 

2Bt3 4 . 7  2 .08 2. 77 3 . 20 3 .80 3 . 20 2 . 33 2 . 65 34 . 97 8 .00 5 . 50 6 . 50 25. 00  

2Bt4 4 .6  1 .02 1 . 74 1 . 23 1 . 85 2 . 33 2 .05 2.48 35. 30 9 .00 5 .00 4 . 50 33. 50 

2C 4 .6  1 . 57 2. 31  1 . 23 1 . 58 1 . 80 1 . 68 2 .08 37. 25 7 .00 4 . 50 4 . 50 34 . 50 



Appendix B-2. Sediment Analysis of Trench t. Section 2. 

PHI SIZE I 
Gravel Sand Sf lt CAIi Hortzon pH -2.11 -I.II a.11 1.0 2.0 3.0 4.0 S.o 6.0 7.0 1.0 . 

A, 7.0 2 . 13 t .M 1 .n 2.05 2 . 73 2 .93 6.00 40.44 13.00 6 .00 6 .00 15 .50 

Bw1 
6.8 1 . 63 0 .78 0.83 1 . 40 2-. 33 3 . 10 6 . 15 39 . 78 13.00 7 . 50 5 .00 18.50 

Bw
2 

7 .0  4 .93 2.63 1 . 28 3 . 33 5 . 60 5 .08 6 .05 34 . 10 12.00 6 . 50 4 .00 14 . 50 

2Ab 6 .7  0.02 0 .22 0 .43 0 . 78 1 . 70 2 .33 4 .60 43.42 15 .50 6 . 50 6.00 18. 50 

.... 
2Bt1b 6 .6  1 . 36 0.53 0 . 70 0 .85 1 . 28 0 .93 2 . 13 46 . 72 9 .00 7 .50 6 .00 23.00 

2Bt2
b 6.6  1 . 02 0.44 0 .63 1 . 15 1 . 98 0 .98 1 . 83 46.47 10 . 50 4 . 50 7 . 50 23 .00 

2Bt3b 1.0 1 . 96 1 .82 1 . 93 2 . 78 3 .68 1 . 73 2 .38 35. 22 12.00 6.00 6.50 . 24 .00 

28gb 7 .0  17.09 3.86 3. 15 4 . 50 5 .63 2 .68 2.83 27 . 76 5 .00 4 . 50 4.00 19.00 



Appendix B-3. Sediment Analysis of Trench 2. Section 2. 

PH SIZE I 
Grawel Sand St 1t  

���i Hort zon pH -2.U -1.o I.I 1.0 2.D J.D I.I S.o 6.0 ,.o 8.0 

Ap 6 .6  2 .68 1 . 44 0 . 30 1 . 15 2 . 78 3 . 28 5 .83 39. 54 16.00 6 . 50 5 .00 15 .50 

Bw1 6 .6  3 .98 1 .05 0.93 1 .83 3 . 38 2 .85 4 . 88 36 .60 15 .00 7 .00 5 .00 17 .50 

Bw2 6. 1 7 . 78 2 . 78 2 .03 2 . 70 3 .88 4 . 15 6 . 25 33 . 43 12 .50 4 . 50 5 . 50 14 . 50 

Bw3 6.6 3 .98 3 .25 3 .45 6 .55 7 . 60 6.45 7 . 20 29 .02 10.00 4.00 3 .00 I S . SO 

Bw4 
6 . 5  0 .08 0.45 0 .53 1 . 43 2 . 63 2.45 3 . 68 40 . 75 17 . 50 10.00 5 .00 15. 50 

cl 6 .6  0 . 35 2 . 33 4 .08 8 . 53 9 . 25 6 .03 5 . 18 3 1 . 75 9.00 3 .00 4 . 50 16.00 

� C2 6 . 3  o.os 0. 29 0. 10 0 .83 2 .40 2 . 25 4 . 23 49 .35 13 .00 6 . 50 4 .00 17 .00 
VI 
VI C3 6 .7  5 . 70 2 .24 1 . 70 3 . 73 5 . 35 3 . 58 5 .08 38. 62 9 .00 5 .50 3 .00 16 . 50 

C
4 

6. 7 0 . 23 1 .40 0 .53 2 . 10 3 . 38 3 .08 6 . 73 45 .55 9 .50 6 .50 3 .00 18.00 

C5 6 . 5  1 . 06 3 .04 3 .00 4 .98 5 . 33 4 .83 8 . 25 35 .01 1 1 . 00 3.00 4 . 50 16.00 

c6 6 .4  2 .03 0.91 0 .85 2 . 30 3 . 68 3 .33 6 . 75 42 . 15 13.00 5.00 2 .50 17 .50 

C7 6. 7 3 .37 3 .97 4 . 55 6 . 30 8 .38 6 . 78 7 .23 28 .42 8 .00 4 . 50 3 .00 15 . 50 

CB 6 . 5  0.04 0.22 0 .38 l .  13 1 . 63 1 . 13 2 .40 45.07 17 .00 7 .50 6.00 1 7 . 50 

2Ab 6. 1 2.28 1 . 02 0.85 2 . 13  2 .88 2 .00 3 . 33 39 . 51 10.00 1 1 .00 6 .00 19.00 

2Bt1 b 6 .3  0 . 13 0 .38 o.so 0.93 1 . 20 1 . 58 4 . 50 44 . 78 12.00 7 .50 7 .50 19 .00 

21t2b 6 .5  10.07 0.42 0 .53 0.85 1 .08 1 . 30 3.85 39 .90 1 1 .00 7 . 50 7 .00 16 .50 

28gb 6 . 8  25. 37 3 .20 2 .48 2 . 03 1 . 45 1 . 30 2 .85 30. 32 6 .00 5 .00 4 . 50 15 . 50 



Appendix B-4. Sediment Analysis of Trench 3. Section 2. 

PHI S IZE I 
Gravel S.lld St l t  

�A�I Hori zon pH -z.o -t.o o.o 1.0 2.0 l.O 4.0 S.b 6.0 1.0 8.0 

Ap 6.9  13. 44 0.74 0 .98 1 . 13 1 . 43 1 . 95 4 .68 4 1 .65 1 1 . 50 5. 50 3 . 50 13 . 50 

Bw 6.9 0.37 0.59 1 . 18 2 . 10 2 .95 3 .25 6.28 38 . 78 12 .00 7 . 50 6 .00 19.00 

Bt1 6 .5  o.oo 0.29 0 . 13 0.43 1 . 25 2 . 18 5 . 90 43. 32 12.00 9.00 5 . 50 20.00 

Bt
2 

6 . 7  0.60 0.62 1 . 00  1 . 33 2 . 28 2.93 4 . 13 39. 1 1  1 1 .00 10.00 5 . 50 21 . 50 

ct 6.6  0. 18 0.36 0. 18 0 . 55 1 . 23 1 . 33 1 .80 39. 37 12. 50 10. 50 7 . 50 24 .00 
..,a 

C2 6.4  0.00 0.05 0. 13 0. 18 0.40 0.65 1 . 10 40.49 9 . 50 10.00 10.00 27 . 50 

C3 6. 1 o.oo 0.07 0 .33 0.45 0 .93 1 . 73 3 . 30 41 . 19 14 . 50 7 . 50 8.00 22.00 

2Ab 6 . 3  o.oo 0.00 0 .05 0 .20 0.85 1 .88 6 .25 48 . 77 14 . 50 6 . 50 5 .00 16.00 

2Bt1b 6 . 5  o.oo 0.04 0. 10 0 .95 2 .33 3 .33 6 . 73 45 .52 13 .50 6 .50 5.00 16 .00 

2Bt2b 6 . 5  0.90 0.57 1 . 35 3 .20 3 . 78 3 .38 5 .60 43.22 14 . 50 s .oo 4 .00 14 . 50 

2C 7 . 1  51 . 76 7 .67 8 .83 10.40 6 .63 1 . 13 0.68 4.90 o.so 1 .00 1 .00 5 . 50 



Appendix B-5. Sediment Analysis of Trench 4. Section 2. 

PHI S I ZE I 
Gravel Sand snt 

�1�, Hori zon pH -�.u .1.u o.U 1.0 2.U J.U �.D S.11 g_n 7.b 8.0 

t\r 6 .9 1 . 09 o . so 0 .53 1 . 18 3 .05 4 . 70 8 .23 40. 22 IS .SO 4 . 50 4 .00 16 .50 

9"1 6.9 0 . 40 o.so 0 .53 1 . 90 4 . 35 4 . 78 7 .33 41 .35 8 .50 8 .00 3 .50 18.50 

Bwz 6 .7  o .oo 0. 14 0 . 18 0 .60 2 . 13 3 .75 8 .40 42 . 30 15.00 5.00 4 .00 18 . 50 

Bw3 6.6 0. 12 0.45 0. 73 1 . 45 3 . 33 4 . 53 7 . 25 41 . 15 13 . 50 5 .00 4 . 50 18.00 

Bw4 6.6 o.oo 0.03 0 . 23 0.68 2 .68 4 .88 7 . 78 44 . 22 16 .00 6 .00 4 .00 13. 50 ....., 

Bw5 6.6 0.00 0.05 0.43 1 . 53 3 . 23 4 .40 7.73 40.65 16 .00 6.00 4 .00 16 .00 

Bw6 6 .5  0.81 1 . 56 3 . 18 4 .85 7 .85 7 . 35 7 . 53 32. 90 14 .00 3 . 50 3 . 50 13.00 

8/C 7 .0  38.22 8 .30 8 . 55 9 .90 10. 23 5 .00 1 .83 7 . 97 3 . 50 0 . 50 · 1 .00 5 .00 

cl  6 .6 29 .85 4 .53 2 .63 10. 75 23 . 25 6 .93 1 . 58 8 .48 2.00 1 . 00 2.00 7 .00 

c2 7.0 64 . 93 9 .26 6 . 93 6 .48 3 . 55 0 . 78 0. 30 2 . 77 0 . 50 1 .00 0 .50 3 . 50 



Appendix B-6. Sediment Analysis of Trench 2. Section 1.5. 

PHI S IZE I 
6rHe1 Simi St1t 

�A�� Hort zon pH -�.D -1.D II.II I.II 2.U 3.D i.11 5.D I.D 7.D II.II 

Ap 7 . 1 0.37 0 .34 0. 10 1 . 10 4 . 73 6 .00 8 . 35 39.01 12. 50 5 .00 6 .00 16. 50 

8w1 6.9 0.00 0.03 0 .03 0 .30 2 .08 4 . 78 6.40 43 .88 12 .50 6 .50 7 .00 16 . 50 

Bw2 6 .8  o.oo o.oo 0.05 0 .25 2 . 75 7 . 33 7 .83 43 . 29 8 . 50 7 .50 6 .00 16. 50 

Bw3 6 .9  0.00 0.00 0 . 13 0 .88 6 .  18 12 .58 9 .60 33 . ll 10 .00 6 . 50 4 . 50 16 . 50 

Bw4 7.0 0 . 14 0 . 53 1 . 08 3 .98 13 .03 16 .23 8. 78 25. 23 6 .00 4 . 50 4 .00 16 . 50 

Bw5 6 .9  14 . 80 3 . 29 5 . 38 10.45 16 .48 10. 78 5 . 20 14 .62 3 .00 2 .00 2. 50 1 1 . 50 

c
l 

5 .3  56 . 42 9 . 37 4 . 93 6 . 75 10. 10 3 . 13 0 .95 2 .85 0 .50 0 .50 0 .50 3 .00 

C2 5 . 7  63 .30 9.98 6 . 48 9 . 73 5 .45 0 .95 0 .25 1 . 36 0 .00 o.oo 0 .50 2 .00 

C3 5 . 5  60.20 10.08 6 . 78 9 ,85 4 . 83 0 .90 0 .38 2 .48 o.oo o . so 0.00 4 .00 



Appendix B-7. Sediment Analysis of Trench 2. Section 1. 

PHI S I ZE I 

Gr1Yel Sltld St lt  
�A�i Hor1 ton pH -2.u -1.u o.o l.o z.o 3.0 4.0 5.0 1.0 7.o 8.0 

Ap 7. 1 0.00 o. 12 0.08 1 . 05 1 1 . 78 16.83 12.08 28.06 1 1 . 50 4 .00 Z . 50 12�00 

Bw1 7. 1 0.00 0.04 0 .23 1 .03 8.28 15.65 12 . 15 31 . 12 10.50 5 .50 3 .00 12 . 50 

Bw2 1 .0  o.oo 0.07 0. 15  0 .98 10. 98 17 .30 1 1 . 18 29. 34 8.00 4.00 4 . 50 13. 50 

Bw3 7 . 2  0.04 0 .09 0 .05 0.48 7 .40 14 . 10 9.03 32 .01 10.00 6 . 50 3 . 50 16.00 

... 2Bw1 7.0 0 . 1 1  0 .08 0.03 0.40 4 . 75 7 .08 7 .28 36 .87 1 1 . 50 8.00 5 .00 18.00 

2Bw2 6 .9  0 . 15 0. 1 1  0 .43 1 .08 6 .68 9 .23 7 .33 34 .99 13.00 5.00 4 .00 18 .00 

2Bw3 6.8 0 .37 0. 19 o.  15 0.83 3 .65 5 .95 8.05 40.81 1 1 . 50 8.00 3. 50 17 .00 

28w4 7.0 o.oo 0.00 0 . 13 0 . 75 3 .38 7 .45 10. 58 37 . 7 1  1 1 . 50 5 . 50 5 .00 18.00 

2Bw5 7.0 4.68 0 .39 0.83 3 .63 8. 10 6 .73 7 .90 30. 24 10. 50 6 . 50 3 .00 17 .50 

2C 6.6 52 .91 7 . 1 1  6 .45 7 . 70 8.90 2 .58 1 . 15 s.20 1 .00 1 .00 1 . 00 5.00 

� \ . .. 



Appendix B-8. Sediment Analysis of Trench 4. Section 1. 

PHI S IZE I 
Gr1wel Sand St 1t  

�A�I Hortzon pH -2.U -I.II a.a I.D 2.U ,.a .. , s.a ,.a ,.a 8.0 

Ap 7.0 0.05 0 .06 0. 15 0 .50 5 .30 12. 13 12 . 33 36 . 98 . 1 1 .00 6 . 50 3 .00 12.00 

Bw
1 

7 .2  0 .25 0. 14 0. 15  0. 55 4 . 20 9.28 9.98 37.45 1 1 .00 6.00 3 . 50 17 . 50 

.... Bw
2 

6.9 o.oo 0. 10 0. 18 0.85 3 . 58 5 .58 8. 15  39. 5& 13 .50 7.00 4 . 50 17.00 

Bw
3 

6 .9  0.00 o.oo 0.03 0.95 6.93 10.60 9 .38 35.61 10.00 7.00 4.00 15. 50 

Bw4 7.0 0 .32 0. 27 1 . 33 4 . 33 8.95 9 .33 9. 15 33 .82 10. 00  2 . 50 6 . 50 13. 50 

cl 
7 . 1 24 .20 3 . 53 5 .98 1 1 . 18 14 .50 6 . 10 4.00 14 . 51 2 . 50 1 . 50 2 . 50 9 . 50 

C2 7 .3  46.04 3 .66 4 . 35 8 .20 9.93 3 .63 2 . 30 10.89 1 . 50 1 . 50 1 .00 7.00 



APPENDIX C 

SEDIMENT PARAMETERS 



Appendix C-1. Sediment Parameters of Trench 2. Section 4 

Horizon M
z 

o•. 
I Ski 

Ap 6.27 2.97 0.57 1.94 
Bt

1 
6.06 2.86 0.59 1.61 

Bt2 6.70 2.78 0.55 1.06 
Bt3 6.32 3.02 0.63 1.25 
Bt4 6.09 3.08 0.51 1.88 
2Bt1 4.87 4.31 0.03 1.41 
2Bt2 5.19 4.32 0.18 1.68 
2Bt3 5.81 4.02 0.26 1.46 
2Bt4 6.81 3.66 0.47 0.99 
2Bt5 6.80 3.78 0.47 1.02 
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Appendix C-2. Sediment Parameters of Trench 1. Section 2 

Horizon M
z 

o'. 
I 

Ski 

Ap 5.39 2.98 0.31 2.23 
Bw1 5.87 2.42 0.35 1 .27 
Bw2 4.64 3.59 0.03 2. 16 
2Ab 5.96 2.62 0.61 1 .52 
2Bt1b 6.30 2.99 0.62 1 .29 
2Bt2b 6.30 2.75 0.63 1.07 
2Bt3b 6.28 3.52 0.42 1.49 
2Bgb 3.75 5.04 -0.05 0.97 
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Appendix C3. Sediment Parameters of Trench 2. Section 2. 

Horizon o'. 
I 

Ski 

Ap 5.49 2.79 0.37 2.23 
Bw1 5.59 3.29 0.28 2.21 
Bw2 

4.51 3.80 -0.01 2.16 
Bw3 4.35 3.84 0.05 1.51 
Bw4 5.66 2.48 0.48 1.87 
C1 4.51 3.63 0.12 1.37 

c; 5.76 2.52 0.61 1.90 

c; 4.75 3.84 0.07 2.37 
C4 5.72 2.91 0.50 2.06 
Cs 4.73 3.51 0.17 2.08 
c, 5.55 3.05 0.39 2.57 

C, 4.60 3.61 0.13 1.42 

Cs 5.89 2.45 0.63 1.55 
2Ab 5.96 3.05 0.45 1.80 
2Bt1b 6.00 2.62 0.64 1.35 
2Bt2b 5.48 3.41 0.22 2.29 
2Bgb 3.30 4.82 -0.14 0.76 
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Appendix C-4. Sediment Parameters of Trench 3. Section 2. 

Horizon o'. 
I 

s� 

Ap 4.22 3.82 -0.10 3.35 
Bw 5.90 2.96 0.49 1.64 
Bt1 6.08 2.69 0.65 1.40 
Bt2 6.19 3.02 0.54 1.47 
C1 6.55 2.81 0.61 1.10 
Ci 6.86 2.89 0.58 1.03 
C3 6.33 2.75 0.65 1.18 
2Ab 5.66 2.30 0.65 1.77 
2Bt1b 5.62 2.45 0.57 1.86 
2Bt2b 5.28 2.74 0.35 2.62 
2C -0.97 2.86 0.78 1.48 
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Appendix C-5. Sediment Parameters of Trench 4. Section 2. 

Horizon Mz o'. 
I 

s� 

Ap 5.51 2.75 0.45 2.34 
Bw1 5.65 3.02 0.45 1.81 
Bw2 5.88 2.69 0.60 1.78 
Bw3 5.73 2.85 0.50 1.87 
Bw4 5.37 2.29 0.51 2.28 
Bw5 5.54 2.59 0.49 2.11 
Bw6 4.46 3.15 0.09 1.79 
B/C 0.36 3.35 0.50 1.03 
C1 1.06 3.65 0.18 1.08 
c; -1.51 2.00 0.75 0.93 
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Appendix C-6. Sediment Parameters of Trench 2. Section 1.5. 

Horizon M, o'. 
I 

Ski 

Ap 5.44 2.79 0.43 1.80 
Bw1 5.69 2.49 0.57 1.57 
Bw2 

5.54 2.62 0.53 1.62 
Bw3 5.17 2.97 0.37 1.52 
Bw4 4.74 3.32 0.31 1.29 
Bw5 2.12 4.04 0.20 1.30 
C1 -1.10 2.24 0.76 1.27 
Cz -1.50 1.55 0.69 1.09 
¼ -1.46 2.03 0.74 1.39 
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Appendix C-7. Sediment Parameters of Trench 2. Section 1. 

Horizon Mz o•. 
I s� 

Ap 4.37 2.65 0.23 1.53 
Bw1 4.58 2.66 0.26 1.58 
Bw2 4.79 2.89 0.20 1.48 
Bw3 5.04 2.96 0.35 1.51 
2Bw1 5.61 2.90 0.46 1.62 
2Bw2 5.40 3.11 0.38 1.85 
2Bw3 5.57 2.75 0.49 1.83 
2Bw4 5.60 2.87 0.49 1.63 
2Bw

5 4.97 3.72 0.16 1.71 
2C -0.80 2.92 0.79 1.24 
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Appendix C-8. Sediment Parameters of Trench 4. Section 1. 

Horizon Mz o'. 
I 

s� 

Ap 4.73 2.48 0.29 1.87 
Bw1 5.44 2.91 0.43 1.83 
Bw2 5.62 2.71 0.49 1.79 
Bw

3 
5.09 2.87 0.35 1.70 

Bw4 4.73 3.07 0.23 1.69 
C1 1.34 3.90 0.19 0.91 
c; 0.65 3.71 0.39 0.99 
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APPENDIX D 

CHEMICAL ANALYSIS RESULTS 



Appendix D-1. Chemical Analysis of Trench 2. Section 4. 

Horizon 

Ap 
Bt1 

Bt2 

Bt3 

Bt4 

2Bt1 

2Bt
2 

2Bt3 

2Bt4 

2Bt5 

Total Carbon (%) 

1.20 
0.80 
0.39 
0.23 
0.17 
0.20 
0.20 
0. 18 
0. 18 
0. 16 
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E x t r a c t a b 1 e pH 
Phosphorus (ppm) 

22 5.8 
12 5.7 
20 5.0 
36 5.1 
34 5.1 
25 �8 
20 45 
16 4.7 
14 4.6 
12 4.6 

. ,. ""' 

. ; .  



Appendix D-2. Chemical Analysis of Trench 1. Section 2. 

Horizon Total Carbon (%) E x t r a c t a b l e pH 
Phosphorus (ppm) 

Ap 1.28 300 7.0 
Bw1 0.99 220 6.8 
Bw2 0.96 60 7.0 
2Ab 1.00 130 6.7 
2Bt

1
b 1.08 75 6.6 

2Bt2b 1.25 120 6.6 
2Bt3b 0.96 210 7.0 
2Bgb 0.65 300 7.0 
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Appendix D-3. Chemical Analysis of Trench 2. Section 2. 

Horizon Total Carbon (%) E x t r a c t a b l e  pH 
Phosphorus (ppm) 

Ap 1 .30 260 6.6 
Bw1 

0.80 250 6.6 
Bw2 0.78 210 6.1 
Bw3 0.54 100 6.6 
Bw4 

0.51 70 6.5 
C1 0.42 70 6.6 

½ 0.41 56 6.3 

½ 0.39 70 6.7 
C4 0.35 46 6.7 
Cs 0.37 56 6.5 
c6 0.34 54 6.4 

C, 0.39 75 6.7 

c; 0.54 75 6.5 
2Ab 0.84 110 6.1 
2Bt

1
b 1.18 260 6.3 

2Bt2b 1.20 260 6.5 
2Bgb 1 .21 90 6.8 
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Appendix D-4. Chemical Analysis of Trench 3. Section 2. 

Horizon Total Carbon (%) E x t r a c t a b l e  pH 
Phosphorus (ppm) 

Ap 1.42 300 6.9 
Bw 0.90 300 6.9 
Bt1 0.99 300 6.5 
Bt2 0.84 240 6.7 
C1 0.75 100 6.6 

Ci 0.90 75 6.4 

c; 1.23 160 6.1 
2Ab 1.26 300 6.3 
2Bt1b 1 .35 300 6.5 
2Bt2b 1.34 300 6.5 
2C 1 .10 250 7.1 
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Appendix D-5. Chemical Analysis of Trench 4. Section 2. 

Horizon Total Carbon (%) E x t r a c t a b l e  pH 
Phosphorus {ppm) 

Ap 1.14 300 6.9 
Bw1 0.99 300 6.9 
Bw2 1.01 300 6.7 
Bw3 1.14 250 6.6 
Bw4 1.42 260 6.6 
Bw5 

1.27 290 6.6 
Bw6 1.07 300 6.5 
B/C 0.86 300 7.0 
C1 0.88 300 6.6 

½ 0.88 180 7.0 
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Appendix D-6. Chemical Analysis of Trench 2. Section 1.5. 

Horizon Total Carbon (%) E x t r a c t a b l e  pH 
Phosphorus (ppm) 

Ap 1.32 290 7.1 
Bw1 1.19 250 6.9 
Bw2 1 .11 260 6.8 
Bw3 

1.07 230 6.9 
Bw4 1.00 300 7.0 
Bws 0.85 300 6.9 
C1 

0.77 300 5.3 
c; 0.64 280 5.7 
C3 0.82 290 5.5 
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Appendix D-7. Ch�mical Analysis of Trench 2. Section 1. 

Horizon Total Carbon (%) E x t r a c t a b l e  pH 
Phosphorus (ppm) 

Ap 1.78 90 7.1 
Bw1 1.40 190 7.1 
Bw2 1.09 300 7.0 
Bw3 0.97 300 7.2 
2Bw1 0.93 300 7.0 
2Bw

2 
1.08 290 6.9 

2Bw
3 0.93 300 6.8 

2Bw4 0.83 280 7.0 
2Bw5 1.16 250 7.0 
2C 1.47 300 6.6 
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Appendix D-8. Chemical Analysis of Trench 4. Section 1. 

Horizon 

Ap 
Bw1 

Bw2 

Bw3 

Bw4 
C1 
½ 

Total Carbon (%) 

1.57 
1.09 
1.18 
1.30 
0.84 
1.01 
1.09 
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E x t r a c t a b 1 e pH 
Phosphorus (ppm) 

180 7.0 
260 7.2 
250 6.9 
220 6.9 
300 7.0 
300 7.1 
300 7.3 
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