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Abstract

Image processing has been a traditional engineering field, which has a broad range of

applications in science, engineering and industry. Not long ago, statistical and ad hoc

methods had been main tools for studying and analyzing image processing problems.

In the past decade, a new approach based on variational and partial differential

equation (PDE) methods has emerged as a more powerful approach. Compared with

old approaches, variational and PDE methods have remarkable advantages in both

theory and computation. It allows to directly handle and process visually important

geometric features such as gradients, tangents and curvatures, and to model visually

meaningful dynamic process such as linear and nonlinear diffusions. Computationally,

it can greatly benefit from the existing wealthy numerical methods for PDEs.

Mathematically, a (digital) greyscale image is often described by a matrix and

each entry of the matrix represents a pixel value of the image and the size of the

matrix indicates the resolution of the image. A (digital) color image is a digital

image that includes color information for each pixel. For visually acceptable results,

it is necessary (and almost sufficient) to provide three color channels for each pixel,

which are interpreted as coordinates in some color space. The RGB (Red, Green,

Blue) color space is commonly used in computer displays. Mathematically, a RGB

color image is described by a stack of three matrices so that each color pixel value of

the RGB color image is represented by a three-dimensional vector consisting values
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from the RGB channels. The brightness and chromaticity (or polar) decomposition

of a color image means to write the three-dimensional color vector as the product of

its length, which is called the brightness, and its direction, which is defined as the

chromaticity. As a result, the chromaticity must lie on the unit sphere S2 in R3.

The primary objectives of this thesis are to present and to implement a class of

variational and PDE models and methods for color image denoising based on the

brightness and chromaticity decomposition. For a given noisy digital image, we pro-

pose to use the well-known Total Variation (TV) model to denoise its brightness and

to use a generalized p-harmonic map model to denoise its chromaticity. We derive the

Euler-Lagrange equations for these models and formulate the gradient descent method

(in the name of gradient flows) for computing the solutions of these equations. We

then formulate finite element schemes for approximating the gradient flows and imple-

ment these schemes on computers using Matlabr and Comsol Multiphysicsr software

packages. Finally, we propose some generalizations of the p-harmonic map model, and

numerically compare these models with the well-known channel-by-channel model.
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Chapter 1

Introduction

1.1 Digital Image Processing

In modern society, images are powerful information and widely used in numerous

fields, such as medical industry, machine vision, and space exploration etc. Because

of the complexity and diversity of images, image processing is one of the most chal-

lenging areas in mathematics, engineering, medical science, and entertainment indus-

try. Development of computer technology enables us to process images produced by

devices such as camera, scanner, ultrasounds, and X-rays to improve their quality,

enhance their features, and combine different pieces of information. Any image pro-

cessor can be presented by an input-output system shown in Figure 1.1, where u0 is

an observed image, which could be degraded due to either poor imaging conditions or

problems during storage. Mathematically, an image processor could be any linear or

nonlinear operator that processes the input and produces desired output F . The im-

age processor is often developed and designed for specific applications. For instance,

one wishes to restore or enhance the observed images which are degraded to obtain

high quality images based on other important visual devices, such as tumor detection
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Figure 1.1: Image Processor

from lowly contrasted CT images and detecting celestial details from a blurry Hubble

telescope image. Image processing could be divided into three main areas. They

are image restoration, compression, and segmentation. It is challenge to develope

the image processor is challenging because most image processing problems are ill-

posed inverse problems, which means that it requires to recover or detect F from u0.

Numerous approaches, such as stochastic modeling, wavelets, variational and PDE

modeling, for image processing have been developed in the past thirty years. Modern

image processing is qualitatively connected. Stochastic and wavelets, however, are

not suitable to preserve sharp edges which define the location of objects. Here, we are

interested in variational approach for image processing. PDE models treat images as

continuous functions. The PDE models have been successfully used in many areas of

image processing including denoising, enhancement, inpainting, and deblurring. The

main reason for the successful application of PDEs in image processing is that many

variational problems or their regularized approximations can be effectively computed

via their Euler-Lagrange equations. In this thesis, we focus on the PDE method for

denoising both gray images and color images. In order to understand the process of

the noise removal models, it is important to have a good grasp of the mathematical

meaning of images.

To give the mathematical definition of images, the concept of pixels needs to be

recalled. Pixel is a compound word of Picture and Element. The monitor divides

the screen into thousands of regular grids to display images. We call a regular grid,
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a pixel. Thus, images are nothing but a set of numbers given on pixels which are

arranged in rows and columns. Images may be defined as a two-dimensional function,

f(x, y), where x, y are spatial (plane) coordinates, and the value of f at any pair

of coordinates (x, y) indicates the intensity of the images at that point [Gon04].

Therefore, mathematically an image is a matrix whose elements are pixel values.

Figure 1.2 shows the representations of an image as a matrix and spatial coordinates.

An RGB color image is an M × N × 3 array of color pixels, where each pixel

is a triplet corresponding to the red, green, and blue components of an RGB image

at a specific spatial location. An RGB color image may be viewed as a “stack” of

three gray-scale images (see Figure 1.3) that, when fed into the red, green, and blue

inputs of a color monitor, produce a color image on the screen [Gon04]. The number

of bits used to represent the pixel values of images determines the number of colors

and shades of gray to be displayed. Common pixel representations are unsigned bytes

(8-bit integers in the range [0,255]) and floating point, that is, there are 256 possible

colors or shades of gray-level. An RGB color image has 24-bits information (8-bit per

channel). The RGB color image is an additive image which means that red, green,

and blue are combined in various ways to produce other colors. Figure 1.4 displays

the representation of additive color mixing. Pixel values of RGB color image means

“how much” red, green, and blue at the pixel. A color image with 24-bit has 256

shades of red, green, and blue, so that there are 16,777,216 possible combinations

of colors. Figure 1.5 shows that the primary and secondary colors of light at the

vertices. Red is a composition of RGB values (255, 0, 0) and it is (1, 0, 0) in the

RGB color cube. Black is a combination of (0, 0, 0) in RGB color map, and white is

a combination of (255, 255, 255). The main diagonal of RGB color cube have gray

values from black to white, that is, gray is a combination of equal values of RGB.

Since all components in gray are identical in RGB, a gray-scale image only uses 8-bit

3



Figure 1.2: Conversions of Image to Matrix and Spatial Coordinates
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Figure 1.3: RGB Color Image
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Figure 1.4: The Representation of Additive Color Mixing
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Figure 1.5: RGB Color Cube

7



data per pixel instead of 24-bit. As a result, the gray-scale image is an M × N × 1

matrix. In image processing, the input is often the intensity values at pixels and the

output is the image itself.

In this thesis we will introduce some gray and color image denosing models and

study their approximations by finite element methods. The main goals of this thesis

are to present the state-of-the-art of these models and to numerically approximate

them on computers.

1.2 Outline of the Thesis

The main question for image denosing is following one: Given a noisy/degraded

image g(x, y) which contains “unknown” additive noise η(x, y), find the original image

u(x, y) such that

u(x, y) + η(x, y) = g(x, y). (1.1)

In the case of gray images, g, η, and u are scalar-valued functions, while in the case

of color images, g, η, and u are 3-component vector-valued functions. Problem (1.1)

is an ill-posed inverse problem since its solutions are clearly not unique. To select the

“best” physically meaningful solution, it is necessary to choose a selection criterion.

In Chapter 2, we deal with the total variation (TV) model which is the best known

model for denoising gray images. The TV model was first introduced by Rudin, Osher

and Fatemi [Rud92] in 1992. Edges in images are very important for understanding

images. To accurately represent edges of images, Rudin, Osher and Fatemi postulated

that image functions should be functions of the bounded total variation (BV) since

BV functions can have jumps. Furthermore, they proposed that the “original” image

u in (1.1) should be the BV function which has the least BV-norm (which measures

8



oscillations of BV funtions). The TV model has been used in many applications in

image denoising, deblurring, and inpainting. In this chapter, we introduce the TV

flow model and a regularized TV flow model, and survey uniqueness and existence

results concerning these models. We also discuss the fully discrete finite element

approximations of these models and survey error analysis and convergence results of

the finite element approximations. Finally, we present some numerical simulations of

the finite element schemes.

In Chapter 3, we address a related noise removal model for color images. As we de-

scribe above that a color image is expressed by a vectorial value I(x) = (r(x), g(x), b(x))

for each pixel x = (x1, x2) representing the intensity of three primary colors (Red,

Green, Blue)

I : Ω ⊂ R2 → D := {(R, G,B) : R, G,B ≥ 0} ⊂ R3.

Various approaches, such as the channel-by-channel, vector model denoising, and

non-flat feature denoising for denoising color image have been introduced in the liter-

ature by many people. Some of these approaches directly treat the RGB color system

as a vector space [Sap96, Blo98]. Most recent studies have proposed the use of the

chromaticity and brightness(CB) model which is closer to human perception. The

CB model basically decomposes I(x) into two components, chromaticity and bright-

ness. Chan et al. [Cha01] have verified that CB decomposition gives better denoised

images than the channel-by-channel model which denoises each RGB channels sep-

arately. Another advantage of CB decomposition is that it allows one to denoise

the chromaticity and the brightness separately by different methods. In this thesis,

we use the TV model to denoise the brightness component and the p-harmonic map

flow to denoise the chromaticity. Since the TV model is introduced in Chapter 2, we
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only discuss the p-harmonic map flow in this chapter. Finite element approximations

of the p-harmonic map flow and their error analysis are discussed. The numerical

simulations are presented as well.

In Chapter 4, we present numerical simulations to compare the CB decomposition

method and the channel-by-channel method for color image denoising. We then

propose some generalizations of the p-harmonic model for denoising color images.

1.3 Programming

The finite element method, which is one of the best known numerical methods for

solving PDEs, is used to approximate the PDEs of all noise removal models discussed

in this thesis. For numerical tests, we use Matlabr and Comsol Multiphysicsr soft-

ware packages to do all simulations presented in this thesis.

Matlabr has an image processing toolbox, it produces a matrix (or array) which

presents pixel values of an input image. It manipulates images like numbers. Also,

it can save images in different formats such as gif, png, and jpg. It has a function to

generate noise with different types and densities.

Comsol Multiphysicsr is a popular software package for solving PDE problems

by using the finite element method. It has a powerful GUI (graphical user interface)

and is easy to create any domain and to generate meshes. Since an image consists of

pixels which are tiny rectangles, we use rectangle meshes instead of triangle meshes in

our simulations, which are also allowed in Comsol Multiphysicsr. For each numerical

simulation, we first generate the image dataset by Matlabr, then import the dataset

into Comsol Multiphysicsr. Each component of dataset is placed on a rectangle mesh

10



which corresponds to a pixel of the image. Next, we solve the PDE(s) of a selected im-

age denoising model by Comsol Multiphysicsr. Finally, we export computed solution

from Comsol Multiphysicsr into Matlabr to assemble the recovered image.
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Chapter 2

Gray Image Denoising

In this chapter, we will consider gray image denosing and restoration. We will in-

troduce the total variation denosing model of Rudin-Osher-Fatami [Rud92], the total

variation flow, and finite element approximations of the total variation flow. Numer-

ical tests and error analysis for the gray image model will be presented and summa-

rized.

2.1 Introduction

Let ũ: Ω ⊂ R2 → R be a real gray level image without noise, and g: Ω ⊂ R2 → R

be the same scene image with noise. Suppose that u(x, y) and g(x, y) denote the

pixel values of the denoisied image and the noisy image at (x, y) ∈ Ω, respectively.

The total variation (TV) denosing model seeks the denoised image u as the function

which minimizes the following functional

J(v) :=

∫

Ω

|∇v| dx (2.1)
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on BV (Ω), the space of functions of bounded total variation (defined below), subject

to the constraints

∫

Ω

(v − g) dx dy = 0, (2.2)
∫

Ω

1

2
(v − g)2 dx dy = σ2, (2.3)

where σ > 0 is the error level and assumed to be known. The first constraint (2.2)

corresponds to the assumption that the noise has zero-mean, and the second constraint

(2.3) uses a priori information that the standard deviation of the noise η(x, y) := u−g

is σ [Cha97,Rud92].

We call that a function u ∈ L1(Ω) is a function of bounded variation if all of

its first order partial derivatives are measures with finite total variation in Ω. The

gradient of such a function u, denoted by ∇u, is a vector-valued measure with the

finite total variation

∫

Ω

|∇u| dx ≡ ||∇u|| := sup

{∫

Ω

−u div v dx ; v ∈ [C1
0(Ω)]N , ||v||L∞ ≤ 1

}
.

The space of functions with bounded total variations is defined as

BV (Ω) = {u : u ∈ L1(Ω) and

∫

Ω

|∇u| dx < ∞},

it is a Banach space with the BV norm

||u||BV := ||u||L1 + ||∇u||,

and is continuously embedded in L1(Ω) [Bar,Cha02].
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To avoid solving the constrained minimization problem, the constrained TV model

is often reformulated as an unconstrained problem by enforcing the constraints weakly.

The unconstrained minimization problem reads as

min Jλ(v) (2.4)

where

Jλ(v) :=

∫

Ω

|∇v| dx +
λ

2

∫

Ω

|v − g|2 dx, (2.5)

and λ is a nonnegative penalization parameter that controls the trade-off between

goodness of fit-to-the-data and variability in v.

The steepest descent method which is a well-known method for the unconstrained

minimization problem, leads to consider its gradient flow:

∂u

∂t
= div

( ∇u

|∇u|
)
− λ(u− g) in ΩT ≡ Ω× (0, T ), (2.6)

∂u

∂n
= 0 on ∂ΩT ≡ ∂Ω× (0, T ), (2.7)

u(·, 0) = u0(·) in Ω, (2.8)

where T is a positive number and u0 is an initial guess. In the rest of the thesis,

we refer the above gradient flow as the TV flow. Many authors have addressed,

analyzed, and approximated numerically the above TV flow. We refer to [Fen03] and

the references therein for a detailed discussion about the TV flow and its numerical

approximations. Chambolle and Lions [Cha97] presented existence and uniqueness

result for

min J(v) (2.9)

14



subject to

∫

Ω

(v − g) dx dy = 0, (2.10)
∫

Ω

1

2
(v − g)2 dx dy = σ2, (2.11)

and proved that (2.9)-(2.11) is equivalent to the minimization of (2.5) for a unique

and non-negative λ under the specific assumptions. We refer to [Cha97] for a more

detailed discussion.

To avoid dividing by zero in numerical simulations, we regularize |∇u| by
√
|∇u|2 + ε2 for ε > 0. This is a well-known regularization technique to approximate

and compute the minimizer of the total variation energy and its variants [Fen03]. We

compute the solution of the following regularized problem

∂uε

∂t
= div

(
∇uε

√
|∇uε|2 + ε2

)
− λ(uε − g) in ΩT , (2.12)

∂uε

∂n
= 0 on ∂ΩT , (2.13)

uε(·, 0) = u0(·) in Ω. (2.14)

The energy functional corresponding to the equation (2.12) is

Jλ,ε(v) :=

∫

Ω

√
|∇v|2 + ε2 dx +

λ

2

∫

Ω

|v − g|2 dx, (2.15)

which is a convex regularization to the total variation functional (2.5).

The remainder of this chapter is organized as follows. In Section 2.2, we summarize

existence and uniqueness results for the regularized flow and the TV flow. In Section

2.3, we discuss finite element approximations, error analysis and convergence rate for
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the TV flow. In Section 2.4, we present some numerical simulations for gray image

denoising via (2.12)-(2.14).

2.2 The Total Variation Denoising Model

In this section, we summarize existence and uniqueness results for the gradient flow

(2.12)-(2.14) and the TV flow (2.6)-(2.8).

Remark 2.1. Since images are defined in rectangles, hence Ω ⊂ R2 for the image

processing applications. Mathematically, existence and uniqueness theorems of solu-

tions for the gradient flow (2.12)-(2.14) and the TV flow (2.6)-(2.8) holds for Ω ⊂ RN

(N ≥ 2). Thus, all theorems will be stated for Ω ⊂ RN (N ≥ 2).

The first theorem, which was proved in [Fen03], states existence and uniqueness

for the gradient flow (2.12)-(2.14) in the spirit of [Lic78,Ger80] for the minimal surface

and the prescribed mean curvature flow, respectively.

Theorem 2.1. Let Ω ⊂ RN(N ≥ 2) be a bounded domain with Lipschitz bound-

ary ∂Ω. Suppose that u0, g ∈ L2(Ω). Then, there exists a unique function uε ∈
L1 ((0, T ); BV (Ω))

⋂
C0 ([0, T ]; L2 (Ω)) such that

uε(0) = u0, uε
t ∈ L2 ((0, T ); H−1 (Ω)), (2.16)

and for any s ∈ [0, T ]

∫ s

0

∫

Ω

vt(v − uε) dx dt +

∫ s

0

[Jλ,ε(v)− Jλ,ε(u
ε)] dt

≥ 1

2

[
‖v(s)− uε(s)‖2

L2 − ‖v(0)− u0‖2
L2

]

∀ v ∈ L1 ((0, T ); BV (Ω)) ∩ L2 (ΩT ) such that vt ∈ L2 (ΩT ).

(2.17)
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Moreover, suppose uε
i (i = 1, 2) are two functions which satisfy (2.17) with respective

datum functions uε
i (0), gε

i (i = 1, 2). Then, there holds

‖uε
1 − uε

2‖L2 ≤ ‖uε
1(0)− uε

2(0)‖L2 +
√

λ ‖gε
1 − gε

2‖L2 ∀ s ∈ [0, T ]. (2.18)

We remark that we shall define a weak solution of the gradient flow (2.12)-(2.14) as

a function uε ∈ L1 ((0, T ); BV (Ω)) ∩ C0 ([0, T ]; L2 (Ω)) which satisfies (2.16)-(2.17)

by applying the idea of [Lic78,Ger80]. Also, Theorem 2.1 can be easily generalized

to the cases of nonhomogeneous Dirichlet and Neumann boundary conditions follow-

ing [Lic78,Ger80], under some appropriate assumptions on the boundary data. For

example, consider the nonhomogeneous Dirichlet boundary condition case

uε = φ on ∂Ω× (0, T ),

we only need to replace the energy functional Jλ,ε(·) by the energy functional

Φλ,ε(u) := Jλ,ε(u) +

∫

∂Ω

|u− φ| dx, (2.19)

where the Dirichlet datum is enforced weakly (see [Lic78, Ger80, Giu84] for more

discussions). Then, all results of Theorem 2.1 can be extended to this case under some

suitable assumptions on φ, and particularly the analysis remains same (cf. [Fen03]).

Our second theorem [Fen03] addresses existence and uniqueness of solutions for

the TV flow; it also shows that the TV flow is the limiting problem of the gradient

flow (2.12)-(2.14) as ε → 0

Theorem 2.2. Let Ω ⊂ RN(N ≥ 2) be a bounded domain with Lipschitz boundary

∂Ω and u0, g ∈ L2(Ω).
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(i) There exists a unique function u ∈ L1 ((0, T ); BV (Ω)) ∩ C0 ([0, T ]; L2 (Ω)) such

that

u(0) = u0, ut ∈ L2 ((0, T ); H−1 (Ω)), (2.20)

and for any s ∈ [0, T ]

∫ s

0

∫

Ω

vt(v − u) dx dt +

∫ s

0

[Jλ(v)− Jλ(u)] dt

≥ 1

2

[
‖v(s)− u(s)‖2

L2 − ‖v(0)− u0‖2
L2

]

∀ v ∈ L1 ((0, T ); BV (Ω)) ∩ L2 (ΩT ) such that vt ∈ L2 (ΩT ).

(2.21)

(ii) Suppose ui (i = 1, 2) are two functions which satisfy (2.21) with respective datum

functions ui(0), gi (i = 1, 2). Then,

‖u1 − u2‖L2 ≤ ‖u1(0)− u2(0)‖L2 +
√

λ ‖g1 − g2‖L2 ∀ s ∈ [0, T ]. (2.22)

(iii) Let uε be the weak solution of the gradient flow (2.12)-(2.14) as stated in The-

orem 2.1, then there holds

lim
ε→0

‖uε(t)− u(t)‖Lp(Ω) = 0 for a.e. t ∈ (0, T ), ∀ p ∈
[
1,

N

N − 1

)
,

uε
t → ut weakly in L2 ((0, T ); H−1(Ω)).

(2.23)

Similarly, a weak solution of the TV flow (2.6)-(2.8) will be defined as a function

u ∈ L1 ((0, T ); BV (Ω)) which satisfies (2.20)-(2.21) with the same reason as stated

for Theorem 2.1. It is clear that this definition comes naturally in view of Theorem

2.1 and the convergence result (2.23) [Fen03]. In the context of image processing,

∂Ω is usually piecewise smooth and the observed image g ∈ L∞, although the initial
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condition is less restrictive. As a result, we can only expect weak solution for the

gradient flow (2.12)-(2.14).

The following theorem [Fen05] shows convergence rate of the regularization pro-

cedure in power of ε.

Theorem 2.3. Suppose that uε
0, g ∈ L2(Ω). Let uε, u be the weak solution of (2.12)-

(2.14) and (2.6)-(2.8), respectively, there exists a positive constant C0 = C0(T ) such

that

ess sup
t∈ [0,T ]

‖u(t)− uε(t)‖L2(Ω) ≤ ‖u0 − uε
0‖L2(Ω) + 2

√
C0(T ) ε

1
2 . (2.24)

2.3 Finite Element Approximations for the Total

Variation Flow

In this section, we describe the finite element method for the TV flow and summarize

error analysis results for the finite element method.

Remark 2.2. For practical reasons, we let N = 2 throughout this subsection although

the results cited below also hold in the case N = 3.

Remark 2.3. We will consistently omit writing dx after integrals over domains and

ds after integrals over ∂Ω since it is understood that we are integrating with respect

to the variables on which the domain is defined.

Our main goal is to construct computable approximate solutions for the solution

u of the gradient flow (2.12)-(2.14), where Ω ⊂ R2 is a bounded open domain with

Lipschitz boundary ∂Ω and

V := H1(Ω) = {v : v ∈ L2(Ω), ∇v ∈ [L2(Ω)]2}.
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We will first derive the variational formulation for (2.12)-(2.14), and then proceed

to formulate a semi-discrete finite element approximation and a fully discrete finite

element approximations.

2.3.1 Variational Formulation

Let

fε(z) =
√

z2 + ε2,

then

|∇uε|√
|∇uε|2 + ε2

= f ′ε(|∇uε|).

To derive the variational formulation, for a fixed t ∈ (0, T ) multiply both sides of

(2.12) by a test function v ∈ V , then integrate over Ω:

∫

Ω

{∂uε

∂t
v − div

(
f ′ε(|∇uε|)∇uε

|∇uε|
)

v + λuε v
}

=

∫

Ω

λ g v. (2.25)

Using Green’s formula on the left hand side of (2.25) we get

∫

Ω

(∂uε

∂t
v +

f ′ε(|∇uε|)
|∇uε| ∇uε · ∇v + λuε v

)
−

∫

∂Ω

f ′ε(|∇uε|)
|∇uε|

∂uε

∂n
v =

∫

Ω

λ g v, (2.26)

where ∇ denotes the gradient operator. By the boundary condition (2.13), the second

integral on the left-hand side of (2.26) vanishes. Hence,

∫

Ω

(∂uε

∂t
v +

f ′ε(|∇uε|)
|∇uε| ∇uε · ∇v + λuε v

)
=

∫

Ω

λ g v. (2.27)
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We now define the weak formulation for (2.12)-(2.14) as follows: Find uε ∈
L2((0, T ); V ) ∩H1((0, T ); L2(Ω)) such that

(uε
t , v) + a(uε, v) + λ b(uε, v) = λ (g, v) ∀ v ∈ V, (2.28)

(uε(·, 0), v) = (u0(·), v) ∀ v ∈ V, (2.29)

where

(uε
t , v) =

∫

Ω

∂uε

∂t
v,

a(uε, v) =

∫

Ω

f ′ε(|∇uε|)
|∇uε| ∇uε · ∇v,

b(uε, v) =

∫

Ω

uε v,

(g, v) =

∫

Ω

g v.

We now construct a finite-dimensional subspace Vh of V . Let Th = {K1, . . . , KmR
}

be a quasi-uniform triangulation of Ω ⊂ R2 with mesh size h ∈ (0, 1) and Ω = ∪
K∈Th

K,

so that all elements K of Th roughly have the same size. Here Ki are non-overlapping

triangles.

Remark 2.4. When N = 3, Ki are not triangles, they are tetrahedrons instead.

Next, we define Vh to be the finite element space of continuous, piecewise linear

functions associated with Th, that is,

Vh := {vh : vh ∈ C0(Ω), vh|K ∈ P1(K), ∀K ∈ Th},

where vh|K denotes the restriction of v to K, and P1(K) stands for the set of all linear

polynomials on K.
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Remark 2.5. We could define the finite element space of continuous, piecewise poly-

nomials of degree less than or equal to r on K for any positive integer r, however, for

presentation clarity, we confine ourself to the case r = 1 in this thesis.

2.3.2 Semi-Discrete Finite Element Approximation

Let Nh := {pi}, (i = 1, . . . , mx,) be a set of all vertices of the triangulation Th. Every

function v ∈ Vh is uniquely determined by its nodal values ηj = v(pj), j = 1, · · · ,mx.

Let ϕj ∈ Vh be a piecewise linear function corresponding such that

ϕj(pi) = δij ≡





1 if i = j,

0 if i 6= j i, j = 1, . . . , mx.

It is easy to check that each ϕj is uniquely determined and the set {ϕj} forms a basis

for Vh. The support of each basis function (the closure of the set of points for which

ϕj(x) 6= 0) consists of the triangles with the common vertex pi.

With these basis functions of the finite element subspace Vh in place, we can

represent any vh ∈ Vh as

vh(x) =
m∑

j=1

ηj ϕj(x) ∀ x ∈ Ω, (2.30)

where ηj = vh(pj), j = 1, · · · ,mx. The semi-discrete finite element method for (2.28)-

(2.29) is now defined as: Find uh : [0, T ] → Vh such that

(u̇ε
h, vh) + a(uε

h, vh) + λ b(uε
h, vh) = λ (g, vh) ∀ vh ∈ Vh, (2.31)

(uε
h(·, 0), vh) = (u0(·), vh) ∀ vh ∈ Vh. (2.32)
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Remark 2.6. To avoid inconvenient subscripts, u̇h will be used to denote the time

derivative
∂uh

∂t
.

Since uε
h ∈ Vh we can express uε

h in terms of the basis functions {ϕi}mx
i=1 of Vh as

follows:

uε
h(x, t) =

mx∑
i=1

ξi(t) ϕi(x) (x, t) ∈ Ω× (0, T ), (2.33)

where ξi(t) = uh(pi, t). Substituting (2.33) and vh = ϕj in (2.31)-(2.32), we get

mx∑
i=1

ξ̇ε
i (t)(ϕi(x), ϕj(x)) +

mx∑
i=1

ξε
i (t)â(ϕi(x), ϕj(x)) + λ

mx∑
i=1

ξε
i (t)(ϕi(x), ϕj(x))

= λ(g, ϕj) j = 1, . . . , mx, t ∈ (0, T ),

(2.34)

m∑
i=1

ξε
i (0)(ϕi(x), ϕj(x)) = (u0, ϕj) j = 1, . . . ,mx, (2.35)

where

â(ϕi(x), ϕj(x)) =

∫

Ω

f ′ε(|
∑mx

i=1 ξε
i (t)∇ϕi(x)|)

|∑mx

i=1 ξε
i (t)∇ϕi(x)| ∇ϕi(x) · ∇ϕj(x).

In matrix notation (2.34)-(2.35) can be written as

Lξ̇ε(t) + (Â + λL)ξε(t) = λc ∀ t ∈ (0, T ), (2.36)

Lξε(0) = χ, (2.37)
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where

L = [Lij], Lij := (ϕi, ϕj), (2.38)

Â = [Âij(ξ
ε(t))], Âij(ξ(

εt)) := â(ϕi, ϕj), (2.39)

c = (c1, · · · , cmx)
T , cj := (g, ϕj), (2.40)

χ = (χ1, · · · , χmx)
T , χj := (u0, ϕj). (2.41)

Equations (2.36)-(2.37) form a nonlinear ODE system in ξε(t).

2.3.3 Fully Discrete Finite Element Approximation

In order to discretize in time, we introduce (uniform) partition of the interval [0, T ].

Let {tn}mT
n=0 be an equally spaced partition of [0, T ] of mesh size k = tn − tn−1 ∈

(0, 1), n = 1, . . . , mT and introduce the notation dtU
n :=

un − un−1

k
. Then the fully

discrete finite element discretization of the gradient flow (2.12)-(2.14) is defined as

follows: Find Un ∈ Vh for n = 1, . . . ,mT such that

(dtU
n, vh) + â(Un, vh) + λ b(Un, vh) = λ(g, vh) ∀ vh ∈ Vh, (2.42)

U0(·) = uε
h(·, 0) ∀ vh ∈ Vh, (2.43)

where

(dtU
n, vh) =

∫

Ω

dtU
n vh, (2.44)

â(Un, vh) =

∫

Ω

f ′ε(|∇Un|)
|∇Un| ∇Un∇vh, (2.45)

b(Un, vh) =

∫

Ω

Un vh, (2.46)

(g, vh) =

∫

Ω

g vh. (2.47)
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Remark 2.7. The above scheme is the implicit Euler method for (2.36)-(2.37).

It is easy to see that (2.42) can be rewritten as the following system of equations:

(L + k(Â(ξn) + λL))ξn = Lξn−1 + kλb n = 1, . . . ,mT ,

ξ0 = ξε(0) = L−1χ,

where ξn is an approximation to ξ(tn).

As we can see that (2.45) is well-defined for all values of |∇Un| for f ′ε(z) =

z√
z2 + ε2

. Since fε(z) is strictly convex, it can be shown that (2.42)-(2.43) has a

unique solution {Un}. In fact, it also can be verified that the finite element scheme

(2.42) satisfies the following stability estimate [Fen03]:

‖Un
1 − Un

2 ‖L2 ≤ ‖U0
1 − U0

2‖L2 +
√

λ‖g1 − g2‖L2 0 ≤ n ≤ mT , (2.48)

where Un
i , (i = 1, 2) is the solution of (2.42) with initial data U0

i , gi (i = 1, 2),

respectively. As we have shown, the fully discrete finite element scheme is based on

the weak formulation of (2.28)-(2.29). To derive error analysis of the fully discrete

finite element scheme, it requires some regularity of the solution uε, which asks for

some regularity of u0 and g. One way to get the regularity of u0 and g is first to

smoother the datum functions u0 and g, denote the regularized functions by û0 and

ĝ, respectively, then to work with the same differential equation with the new data

û0 and ĝ. By the stability estimate (2.18), this approach is possible [Fen03].
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For the fully discrete finite element solution Un, we define its constant and linear

interpolations in t as follows:

U
ε,h,k

(·, t) := Un−1(·) ∀ t ∈ [tn−1, tn), 1 ≤ n ≤ mT ,

U
ε,h,k

(·, t) :=
t− tn−1

k
Un(·) +

tn−1 − t

k
Un−1(·) ∀ t ∈ [tn−1, tn], 1 ≤ n ≤ mT .

Clearly, U
ε,h,k

is continuous in x but discontinuous in t. On the other hand U
ε,h,k

is

continuous in both x and t. The next two theorems [Fen03] give an error analysis for

the above fully discrete finite element approximation.

Theorem 2.4. Suppose that u0 ∈ H1
loc(Ω) ∩ W 1,1(Ω), g ∈ L2(Ω) ∩ H1

loc(Ω) and

∂Ω ∈ C2, then the solution uε of the gradient flow (2.12)-(2.14) belongs to L∞((0, T );

W 1,1(Ω)) ∩ L∞((0, T ); H1
loc(Ω)). Then, for each fixed ε > 0, Un satisfies

k

l∑
m=1

[
‖dtU

m‖2
L2 +

λk

2
‖dt(U

m − g)‖2
L2

]
+ J0,ε(U

l) ≤ J0,ε(U
0), 1 ≤ l ≤ mT .

Moreover, under the following starting value constraint:

lim
h→0

‖u0 − U0‖L2 = 0,

there also hold

lim
h, k→0

‖uε − U
ε, h, k‖L∞((0,T ); Lp(Ω)) = 0, (2.49)

lim
h, k→0

‖uε − U
ε, h, k‖L∞((0,T ); Lp(Ω)) = 0, (2.50)

uniformly in ε for any p ∈ [1,
N

N − 1
) and N = 1, 2, 3.
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Theorem 2.5. Let u stand for the weak solution of the TV flow (2.6)-(2.8). Under

assumptions of Theorem 2.4 there hold

lim
ε→0

lim
h, k→0

‖u− U
ε, h, k‖L∞((0,T ); Lp(Ω)) = 0, (2.51)

lim
ε→0

lim
h, k→0

‖u− U
ε, h, k‖L∞((0,T ); Lp(Ω)) = 0, (2.52)

for any p ∈ [1,
N

N − 1
) and N = 1, 2, 3.

Our last theorem [Fen05] provides a rate of convergence for the error u− U
ε, h, k

.

Theorem 2.6. Suppose that u0 ∈ C2(Ω), g ∈ L∞((0, T ); W 1,∞(Ω)), ∂Ω ∈ C3. Then,

under the following starting value and mesh constraints

‖uε
0 − U0‖L2 ≤ Ch2 and k = O (h2),

there holds the error estimate

ess sup
t∈ [0,T ]

‖u− U
ε, h, k‖L2(Ω) ≤ C1(ε)k + C2(ε)h

2 + 2
√
|Ω|T √ε,

where Ci(ε) for i = 1, 2 are positive constants which depend on ε−1 in some low

polynomial order.

2.4 Numerical Tests

In this section, we provide some numerical tests for the TV flow. In each test, we add

a Gaussian noise with variance 0.2 to the original test image to get a noisy image g.

We then use the TV model with the fully discrete finite element method to remove

the noise and to get a denoised image u which should be very close to the original
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image. We use the peak-signal-to-noise ratio (PSNR) measured in dB to measure

the quality of denoised images. To compute PSNR, we need to compute the mean

squared error (MSE) of the reconstructed image which is defined by

MSE(u− g) = E(u− g)2 =
∑ (u− g)2

(size of image)2
.

Then, the PSNR is given by

PSNR = 10 log10

(MAX2

MSE

)
,

where MAX is the maximum pixel value, e.g., 255 for 8 bit images [Bov05]. The

PSNR is relative measure, that is, the comparison between two values for different

denoised images gives the measure of quality. An image with a higher PSNR value

has a better quality than an image of the same scene but with a lower PSNR value

does. λ = 100 and the time step k = 1E − 5 are used for the numerical tests. Figure

2.1 is an original cameraman image and Figure 2.2 is a noisy cameraman image with

Gaussian noise added in Figure 2.1. Figure 2.3-Figure 2.6 show the snapshots of TV

flow of Figure 2.2. It is easy to see that noise in Figure 2.2 is gradually removed as

t gets larger. Figures 2.7 and 2.8 are an original pepper image and a noisy pepper

image, respectively. Also, snapshots of TV flow of Figure 2.8 are provided from Figure

2.9-Figure 2.12. Another numerical test is shown in Figure 2.13 which is an original

mandril image. Like other tests, a noisy mandril image with Gaussian noise with

zero mean and 0.2 variance can be seen in Figure 2.14 and the snapshots of TV flow

of Figure 2.14 are presented in Figure 2.15-Figure 2.18. According to the numerical

results, edges in denoised images smear when t gets too large.
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Figure 2.1: Original Cameraman Image

Figure 2.2: Snapshot of TV Flow at t = 0 with h = 2E − 3, PSNR=42.82

Figure 2.3: Snapshot of TV Flow at t = 5E − 5 with h = 2E − 3, PSNR=67.42
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Figure 2.4: Snapshot of TV Flow at t = 1E − 4 with h = 2E − 3, PSNR=61.19

Figure 2.5: Snapshot of TV Flow at t = 1.5E − 4 with h = 2E − 3, PSNR=55.58

Figure 2.6: Snapshot of TV Flow at t = 2E − 4 with h = 2E − 3, PSNR=51.41
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Figure 2.7: Original Pepper Image

Figure 2.8: Snapshot of TV Flow at t = 0 with h = 5E − 3, PSNR=54.30

Figure 2.9: Snapshot of TV Flow at t = 5E − 5 with h = 5E − 3, PSNR=65.57
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Figure 2.10: Snapshot of TV Flow at t = 1E − 4 with h = 5E − 3, PSNR=66.04

Figure 2.11: Snapshot of TV Flow at t = 1.5E − 4 with h = 5E − 3, PSNR=65.85

Figure 2.12: Snapshot of TV Flow at t = 2E − 4 with h = 5E − 3, PSNR=62.75
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Figure 2.13: Original Mandril Image

Figure 2.14: Snapshot of TV Flow at t = 0 with h = 5E − 3, PSNR=31.25

Figure 2.15: Snapshot of TV Flow at t = 5E − 5 with h = 5E − 3, PSNR=45.29
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Figure 2.16: Snapshot of TV Flow at t = 1E − 4 with h = 5E − 3, PSNR=42.87

Figure 2.17: Snapshot of TV Flow at t = 1.5E − 4 with h = 5E − 3, PSNR=38.88

Figure 2.18: Snapshot of TV Flow at t = 2E − 4 with h = 5E − 3, PSNR=36.31
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Chapter 3

Color Image Denoising

3.1 Introduction

As we described in Chapter 1, vector I(x) = (r(x), g(x), b(x)) represents the intensity

of the three primary colors. The chromaticity and brightness are produced from a

color image by

η(x) := |I(x)| (brightness), (3.1)

g :=
I(x)

|I(x)| (chromaticity), (3.2)

where |I(x)| is the Euclidean norm of I(x). Therefore, the brightness η(x) is the

length of the RGB color vector and the chromaticity g denotes the normalized color

component which must lie on the unit sphere S2 in R3 and the direction of this

vector indicates the color. In this chapter, we use p-harmonic map to denoise the

chromaticity of a given color image.

Let u : Ω ⊂ Rm → Sn−1 ⊂ Rn be a vector-valued function, where Ω is a bounded

domain with smooth boundary ∂Ω and Sn−1 denote the unit sphere in Rn. We
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consider the p-energy

Ep(u) =
1

p

∫

Ω

|∇u|p dx, 1 ≤ p < ∞ (3.3)

for u ∈ C1(Ω,Sn−1). A map u is called a p-harmonic map if u is a minimizer of Ep.

This is a constrained minimization problem with constraint |u| = 1 a.e. in Ω.

The Euler-Lagrange equation of p-energy is (see Appendix A)

−∆pu = |∇u|pu, (3.4)

where

∆pu := div(|∇u|p−2∇u). (3.5)

The operator ∆p is often called the p-Laplacian [Che94,Mis01,Far02]. The equation

(3.4) is a singular elliptic equation for 1 ≤ p < 2, and a degenerate elliptic equation

for p > 2. For p = 2, both degeneracy and singularity disappear.

We call a map u ∈ W 1,p(Ω,Sn−1) a weakly p-harmonic map if u satisfies (3.4) in

the sense of distribution, where W 1,p(Ω,Sn−1) denotes the Sobolev space

W 1,p(Ω,Sn−1) := {u ∈ W 1,p(Ω,Rn);u(x) ∈ Sn−1 for a.e. x ∈ Ω}.

Applying the gradient decent method, which is one of best-known methods for mini-

mization problem, leads to considering the following gradient flow (or heat flow) for

the p-energy functional Ep:

ut −∆pu = |∇u|pu in ΩT := Ω× (0, T ), (3.6)

|u| = 1 in ΩT , (3.7)
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complemented with some given boundary and initial conditions. It is easy to see

that (3.6) is a singular parabolic equation for 1 ≤ p < 2 and a degenerate parabolic

equation for p > 2. For p = 2, both degeneracy and singularity disappear.

The p-harmonic map and p-harmonic heat flow have been studied extensively in

the past twenty years for 1 < p < ∞. Chen [Che89] proved the existence of global

weak solution for the harmonic flow in the case of the target manifolds are spheres

using a penalization technique. Coron [Cor90] and Hungerbühler [Hun97] showed

nonuniqueness of the p-harmonic flow. The p-harmonic map and p-harmonic flow

appear in many scientific and engineering applications. For example, the harmonic

map (p = 2) and its heat flow play a critical role in modeling liquid crystals and in

micromagnetism. Image processing for denoising color images is another application

of p-harmonic map and its heat flow for 1 ≤ p < 2. For instance, given the chro-

maticity g of a noisy color image, one method for recovering chromaticity u of color

images using the p-harmonic map is defined as follows [Tan00,Ves02]:

u = argmin
v∈W 1,p

N (Ω,S2)

Jp,λ(v) for p ≥ 1, (3.8)

where

Jp,λ(v) := Ep(v) +
λ

2

∫

Ω

|v − g|2 dx for λ > 0, (3.9)

W 1,p
N (Ω,S2) :=

{
v ∈ W 1,p(Ω,S2);

∂v(x)

∂n
= 0 for a.e. x ∈ ∂Ω

}
.

The most important and interesting cases are 1 ≤ p < 2 since the denoised images

using these models are better at keeping geometric information such as edges and

corners of the noisy color images. We call (3.8) the p-harmonic model for color image

denoising, again, the parameter λ controls the trade-off between goodness of fit-to-

fit-data and variability in u.
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3.2 The p-Harmonic Map Denosing Model

Again, motivated by the steepest descent method for solving (3.8), we consider the

gradient flow (heat flow) for the energy functional Jp,λ to find the solution for the

p-harmonic model. The gradient flow for (3.9) is defined as [Bar]

ut −∆pu + λ(u− g) = µp,λu in ΩT , (3.10)

|u| = 1 in ΩT , (3.11)

∂u

∂n
= 0 on ∂ΩT := ∂Ω× (0, T ), (3.12)

u = u0 on Ω× {t = 0}, (3.13)

where

µp,λ := |∇u|p + λ(1− u · g).

There are two nonlinear terms in the p-harmonic flow equation, the first one is

the p-Laplace term and the other one is the right hand side of (3.10) due to the

nonconvex constraint |u| = 1. To handle the degeneracy of the p-Laplace term, we

approximate the p-energy Ep(v) by the following regularized energy

Eε
p(u) :=

bp(ε)

2

∫

Ω

|∇v|2 dx +
1

p

∫

Ω

|∇v|pε dx (3.14)

=

∫

Ω

{
bp(ε)

2
|∇v|2 +

1

p
[ |∇v|2 + ap(ε)

2 ]
p
2

}
dx,

where ε > 0 and

ap(ε) :=





0 if 2 ≤ p < ∞,

ε if 1 ≤ p < 2,

(3.15)

bp(ε) := εα for 1 ≤ p < ∞, (3.16)
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and some α > 0 [Bar]. In the rest of this chapter, we use the shorthand notation

|∇v|ε :=
√
|∇v|2 + ap(ε)2. (3.17)

To handle the nonconvex constraint |u| = 1 a.e., we approximate it by the well

known Ginzburg-Landau penalization [Bet94], that is, instead of applying the exact

constraint |u| = 1 a.e., we enforce it approximately by adding a penalization term to

the regularized p-energy Eε
p, that is,

Eε,δ
p (v) := Eε

p(v) + Lδ(v) for ε, δ > 0, (3.18)

where

Lδ(v) :=
1

δ

∫

Ω

F (v)dx, F (v) :=
1

4
(|v|2 − 1)2 ∀ δ > 0, v ∈ Rn. (3.19)

So the idea is, as ε gets smaller and smaller, the energy functional Eε,δ
p becomes more

and more favorable for maps u which take values close to the unit sphere Sn−1 [Bar].

Therefore, the regularized model for the p-harmonic model (3.8) (with general m and

n) is defined as

u = argmin
v∈W 1,p

N (Ω,Rn)

Jε,δ
p,λ(v) for p ≥ 1, (3.20)

where

Jε,δ
p,λ(v) := Eε,δ

p (v) +
λ

2

∫

Ω

|v − g|2 dx. (3.21)
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The gradient flow for the regularized energy functional Jε,δ
p,λ is given by

uε,δ
t −∆ε

pu
ε,δ +

1

δ
(|uε,δ|2 − 1)uε,δ + λ(uε,δ − g) = 0 in ΩT , (3.22)

∂uε,δ

∂n
= 0 on ∂ΩT , (3.23)

uε,δ = u0 on Ω× {t = 0}, (3.24)

which is an approximation to the original flow (3.10)-(3.13). In the rest of this chapter,

we define

∆ε
pv := bp(ε)∆v + div(|v|p−2

ε ∇v) = div
(
(bp(ε) + [|∇v|2 + a2

p(ε)]
p−2
2 )∇v

)
. (3.25)

The regularized flow (3.22)-(3.24) not only plays an important role for proving ex-

istence of weak solutions for the flow (3.10)-(3.13) but also provides a practical and

convenient formulation for computing the solutions [Bar]. Barrett et al. [Bar] proved

the well-posedness of (3.22)-(3.24), the energy law, a maximum principle, and some

uniform (in ε and δ) a priori estimates. In addition, they proved the existence of global

weak and classical solutions for the regularized flow (3.22)-(3.24), and the existence

of global weak solutions for the flow (3.10)-(3.13) for 1 ≤ p < ∞.

3.3 Finite Element Approximations for the

p-Harmonic Map Heat Flow

In this section, we will discuss the finite element approximations for the p-harmonic

heat flow. The convergence of the numerical solutions, as the spatial and temporal

mesh sizes and the parameters ε and δ all tend to zero, of the gradient flow (3.10)-

(3.13) will be summarized.
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Remark 3.1. We denote that u = (u1, u2, u3) and g = (g1, g2, g3). Each component

of u and g corresponds to red, green and blue channel, respectively.

Remark 3.2. We will only construct fully discrete finite approximation schemes for

m = 2 and n = 3, which is the case for image processing applications. However,

our formulation and convergence analysis can be generalized to the case Ω ⊂ R3, and

n ≥ 1.

We will begin with a detailed derivation of the variational formulation, and then

formulate the semi-discrete finite element approximation. At the end, we will intro-

duce the fully discrete finite element discretization to compute the solutions of the

p-harmonic flow (3.10)-(3.13) via (3.22)-(3.24).

Remark 3.3. For notation brevity, we will consistently omit the indices ε, δ and p

on u.

3.3.1 Variational Formulation

Let

V =
{
v ∈ H1(Ω,R3);

∂v

∂n
= 0 on ∂Ω

}
.

To derive the variational formulation, first multiply (3.22) by a test function v ∈ V,

then integrate over Ω we get

∫

Ω

ut v −
∫

Ω

div
(
(bp(ε) + |∇u|p−2

ε )∇u
)

v +
1

δ

∫

Ω

(|u|2 − 1)uv

+ λ

∫

Ω

(u− g)v = 0.

(3.26)
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Note that we use (3.25) for the second term in (3.22). Applying Green’s formula to

the second term of (3.26), we get

∫

Ω

ut v +

∫

Ω

B · ∇v −
∫

∂Ω

Bn · v +
1

δ

∫

Ω

(|u|2 − 1)uv + λ

∫

Ω

(u− g)v = 0, (3.27)

where

B = [bp(ε) + |∇u|p−2
ε ]∇u.

Since
∂u

∂n
= 0 on ∂Ω, hence Bn = 0 on ∂Ω, and (3.27) becomes

∫

Ω

utv +

∫

Ω

B · ∇v +
1

δ

∫

Ω

(|u|2 − 1)uv + λ

∫

Ω

(u− g)v = 0. (3.28)

Remark 3.4. To avoid inconvenient subscripts, u̇ will be used to denote the time

derivative ut.

Our variational formulation to the p-harmonic flow (3.10)-(3.13) is defined as

follows: Find u(·, t) : [0, T ] → V such that u ∈ L2((0, T ); V )∩H1((0, T ); L2(Ω)) and

(u̇,v) + a (u,v) +
1

δ
b (u,v) + λ(u− g,v) = 0 ∀v ∈ V, (3.29)

(u(·, 0),v) = (u0(·),v) ∀v ∈ V, (3.30)

where

(u̇,v) =

∫

Ω

∂u

∂t
v,

a (u,v) =

∫

Ω

B · ∇v,

b (u,v) =

∫

Ω

(|u|2 − 1)uv,

(u− g,v) =

∫

Ω

(u− g)v.
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The following existence theorem was proved in [Bar].

Theorem 3.1. System (3.29)-(3.30) has a solution provided that |u0| ≤ 1 and |g| ≤ 1

a.e. in Ω. Moreover, there exists a convergent subsequence of {uε,δ} (still denoted by

the same notation) whose limit (as ε, δ → 0) u is a global weak solution to (3.10)-

(3.13).

3.3.2 Semi-Discrete Finite Element Approximation

To define our finite element approximations for (3.29)-(3.30), let Th = {K1, . . . , KmR
}

be a quasi-uniform triangulation of Ω of mesh size h ∈ (0, 1) and Ω = ∪
K∈Th

K. Since

our triangulations are quasi-uniform, all elements K of Th roughly have the same size.

Our finite element space is defined as

Vh := {v ∈ C0(Ω,R3); vh|K ∈ [P1(K)]3, ∀K ∈ Th}.

LetNh := {pi}, (i = 1, . . . ,mx) denote the set of all vertices of Th and {−→φ j1,
−→
φ j2,

−→
φ j3}

∈ Vh, (j = 1, . . . , mx) be a function corresponding to vertex pi such that

−→
φ j1 :=




φj

0

0




,
−→
φ j2 :=




0

φj

0




,
−→
φ j3 :=




0

0

φj




,

where

φj(pi) = δij ≡





1 if i = j,

0 if i 6= j , i, j = 1, . . . , mx.
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It can be shown that {φ}mx,3
j=1,k=1 form a basis for Vh, and

uh(x, t) =
mx∑
i=1

3∑

k=1

ξik(t)
−→
φ ik(x) ∀x ∈ Ω, (3.31)

where ξik(t) = uh
k(pi, t). Then, our semi-discrete finite element method for (3.29)-

(3.30) is defined as follows: Find uh : [0, T ] → Vh such that

(u̇h,vh) + a (uh,vh) +
1

δ
b (uh,vh) + λ(uh − g,vh) = 0 ∀vh ∈ Vh, (3.32)

(uh(·, 0),vh) = (u0(·),vh) ∀vh ∈ Vh. (3.33)

Substituting (3.31) and vh =
−→
φ jk into (3.32)-(3.33), then (3.32)-(3.33) becomes

mx∑
i=1

3∑

k=1

ξ̇ik(t)(
−→
φ ik(x),

−→
φ jk(x)) +

mx∑
i=1

3∑

k=1

ξik(t)â(
−→
φ ik(x),

−→
φ jk(x))

+
1

δ

mx∑
i=1

3∑

k=1

ξik(t) b̂ (
−→
φik(x),

−→
φjk(x)) + λ

mx∑
i=1

3∑

k=1

ξik(t)((
−→
φ ik(x)− g),

−→
φ jk(x)) = 0,

j = 1, . . . , mx, t ∈ (0, T ),

(3.34)

mx∑
i=1

3∑

k=1

ξik(0)(
−→
φ ik(x),

−→
φ jk(x)) = (u0,

−→
φ jk(x)), j = 1, . . . , mx. (3.35)

Here,

â(
−→
φ ik(x),

−→
φ jk(x)) =

∫

Ω

B̂ · ∇−→φ jk(x),

B̂ = [bp(ε) +
mx∑
i=1

3∑

k=1

ξik(t) |∇−→φ ik(x)|p−2
ε ]∇−→φ ik(x),

b̂(
−→
φ ik(x),

−→
φ jk(x)) =

∫

Ω

(∣∣∣
mx∑
i=1

3∑

k=1

ξik(t)
−→
φ ik(x)

∣∣∣
2

− 1
)−→

φ ik(x)
−→
φ jk(x).
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(3.34)-(3.35) can be written in matrix form as

L ξ̇(t) +
{
Â +

1

δ
B̂ + λG

}
ξ(t) = 0 ∀ t ∈ (0, T ), (3.36)

L ξ(0) = χ, (3.37)

where

L = [Lσν ], Lσν := (
−→
φ ik,

−→
φ jk), (3.38)

Â = [Âσν(ξ(t))], Âσν(ξ(t)) := â(
−→
φ ik,

−→
φ jk), (3.39)

B̂ = [B̂σν(ξ(t))], B̂σν := b̂(
−→
φ ik,

−→
φ jk), (3.40)

G = [Gσν ], Gσν := (
−→
φ ik − g,

−→
φ jk), (3.41)

χ = (χ1, · · · , χ3mx)
T , χν := (u0,

−→
φ jk), (3.42)

σ = (i− 1)3 + k, i = 1, · · · ,mx, k = 1, 2, 3, (3.43)

ν = (j − 1)3 + j, j = 1, · · · ,mx, l = 1, 2, 3, (3.44)

and

ξ(t) = [ξ11(t), ξ12(t), ξ13(t), · · · , ξ(3mx)1(t), ξ(3mx)2(t), ξ(3mx)3(t)]
T . (3.45)

(3.36)-(3.37) is a nonlinear ODE system in ξ(t). In the next section, we will describe

the time discretization of (3.32) and address convergence of our fully discrete finite

element approximations.

45



3.3.3 Fully Discrete Finite Element Approximation

To formulate the fully discrete finite element approximations, we decompose the den-

sity function F , which is not a convex, into the difference of two convex functions W+

and W−, that is,

F (v) = W+(v)−W−(v).

One such example is W+ =
|v|4
4

and W− =
|v|2
2
− 1

4
. Obviously, this decomposition

is not unique. It is easy to see that (|u|2 − 1)u in (3.26) is ∇F (u). Using ∇F (v) =

∇W+(v)−∇W−(v), we can decompose b(uh,vh) in (3.32) into

b(uh,vh) = b+(uh,vh)− b−(uh,vh),

where

b+(uh,vh) := (∇W+(uh),vh),

b−(uh,vh) := (∇W−(uh),vh).

Let Jτ := {t}mT
s=0 be a quasi-uniform partition of [0, T ] with mesh size τ :=

T

mT

,

and ∂tv
k :=

vk − vk−1

τ
. Then, our fully discrete finite element discretization for the

initial boundary value problem (3.22)-(3.24) is defined as follows: Find uk
h ∈ Vh for

k = 1, · · · ,mT such that

(∂tu
k
h,vh) + a(uk

h,vh) + λ(uk
h − g,vh)

+
1

δ
b+(uk

h,∇vh) =
1

δ
b−(uk−1

h ,vh)∀vh ∈ Vh,
(3.46)

(u0
h(·),vh) = (u0(·),vh) ∀vh ∈ Vh, (3.47)
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where

(∂tu
k
h,vh) =

∫

Ω

∂tu
k
h vh,

a(uk
h,vh) =

∫

Ω

Bk
h · ∇vh,

b+(uk
h,vh) =

∫

Ω

∇W+(uk
h)vh,

b−(uk−1
h ,vh) =

∫

Ω

∇W−(uk−1
h )vh,

(uk
h − g,vh) =

∫

Ω

(uk
h − g)vh.

Since equation (3.46) is a nonlinear equation in uk
h for each k, the above numerical

method is an implicit scheme. In matrix notation, (3.46) becomes

{
L + τ

(
Â +

1

δ
B̂+ + λG

)}
ξk =

(τ

δ
B̂− + L

)
ξk−1, (3.48)

where ξk
il is an approximation to ξil(tk). For the fully discrete finite element solution

uk
h, we define its linear interpolation in t as

Uε,δ,h,τ (·, t) :=
t− tk−1

τ
uk

h(·) +
tk−1 − t

τ
uk−1

h (·)

∀ t ∈ [tk−1, tk], 1 ≤ s ≤ mT .

(3.49)

It is obvious that Uε,δ,h,τ is continuous in both x and t. The following theorem [Bar]

shows the convergence of the numerical solution to the weak solution of (3.22)-(3.24).

Theorem 3.2. Let Ω ⊂ Rm be a bounded domain with Lipschitz boundary. For

1 ≤ p < ∞, suppose that u0 ∈ L∞((0, T ); W 1,p∗(Ω,Rn)), p∗ := max{2, p}, |u0| ≤ 1,

and |g| ≤ 1 a.e. in Ω. For each pair of positive numbers (ε, δ), let uε,δ denote the

unique weak solution of (3.22)-(3.24) and Uε,δ,h,τ be defined by (3.49). Then, there
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holds

lim
h,τ→0

‖uε,δ −Uε,δ,h,τ‖Lq(ΩT ) = 0 ∀ q ∈ [1,∞). (3.50)

The last theorem [Bar] verifies the convergence of the numerical solution to a weak

solution u of (3.10)-(3.13).

Theorem 3.3. , Let 1 ≤ p < ∞, Uε,δ,h,τ be defined by (3.49), and u be a weak

solution of (3.10)-(3.13). Then, there exists a subsequence of {Uε,δ,h,τ} (still denoted

by the same notation) such that

lim
ε,δ→0

lim
h,τ→0

‖u−Uε,δ,h,τ‖Lq(ΩT ) = 0 ∀ q ∈ [1,∞). (3.51)

3.4 Numerical Tests

In this section, we present some the numerical tests for the p-harmonic map heat flow

model with p = 1. Similar to the procedure used in Section 2.4, in each test to be

given below, we add a “salt & pepper” noise with noise density 0.02 to the original

test image to produce a noisy image g, we then use the p-harmonic map heat flow

model to remove the noise and to get a denoised image u. For numerical tests, we

used λ = 5 and time step k = 1E−5. The same measurement PSNR is used to judge

the quality of the denoised image. PSNR for color image can be calculated by

PSNR = 10 log10

( MAX2

(MSE(R) + MSE(G) + MSE(B))/3

)
,

Figure 3.1 is Lena image without noise. Figure 3.2 shows Lena image with “salt

& pepper” noise with noise density 0.02. We used Figure 3.2 for the initial condition.

Figure 3.3 is a snapshot at t = 2E − 4, which still has noise. Snapshot in Figure 3.4
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Figure 3.1: Original Lena Image

Figure 3.2: Snapshot of 1-harmonic Map Flow at t = 0 with h = 7E−3, PSNR=23.47

Figure 3.3: Snapshot of 1-harmonic Map Flow at t = 2E − 4 with h = 7E − 3,
PSNR=15.82
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Figure 3.4: Snapshot of 1-harmonic Map Flow at t = 5E − 4 with h = 7E − 3,
PSNR=15.98

has noise but it is already a bit denoised. Most of noise is removed in Figure 3.5. We

can notice that all the noise in Figure 3.6 is removed at t = 1E − 3.
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Figure 3.5: Snapshot of 1-harmonic Map Flow at t = 7E − 4 with h = 7E − 3,
PSNR=15.88

Figure 3.6: Snapshot of 1-harmonic Map Flow at t = 1E − 3 with h = 7E − 3,
PSNR=15.85
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Chapter 4

Generalized Model

In this Chapter, we first introduce a generalized model of the p-harmonic map model

for color image denosing. We then present some numerical tests for the generalized

model. Finally, we compare numerical tests from Section 3.4 with those obtained by

channel-by-channel model.

4.1 Generalizations

For a given noisy chromaticity g, our generalized model seeks

u = argmin
v∈W 1,1

N (Ω,Sn−1)

Jβ,λ(v), (4.1)

where

Jβ,λ(v) := β Eϕ(v) +
λ

q

∫

Ω

|v − g|q dx for β > 0, λ ≥ 0, 1 ≤ q < ∞, (4.2)

Eϕ(v) :=

∫

Ω

ϕ(|∇v|) dx, (4.3)
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and the energy density function ϕ : R+ ∪ {0} → R+ is a real-valued, continuous,

nondecreasing, convex, and linear growth function [Fen06]. Some examples of such

density functions are

ϕ(s) = s ∀ s ∈ R+ ∩ {0}, (4.4)

and

ϕ(s) =
√

s2 + 1 ∀ s ∈ R+ ∩ {0}, (4.5)

which is known as minimal surface energy density. It is easy to verify that a solution

of (4.1) with (4.4) and q = 2 is the 1-harmonic map model, which was discussed in

Chapter 3. The Euler-Lagrange equation of (4.1) is given by [Fen06]

−β divB + λ|u− g|q−2(u− g) = µβ,λu in Ω, (4.6)

|u| = 1 a.e. in Ω, (4.7)

Bn = 0 on ∂Ω, (4.8)

where

B :=
ϕ′(|∇u|)
|∇u| , µβ,λ := βϕ′(|∇u|)|∇u|+ λ|u− g|q−2(1− u · g).

Again, the gradient descent method motivates us to consider the following gradient

flow for the energy functional Jβ,λ

ut − β divB + λ|u− g|q−2(u− g) = µβ,λu in ΩT , (4.9)

|u| = 1 a.e.in ΩT , (4.10)

Bn = 0 on ∂ΩT := ∂Ω× (0, T ), (4.11)

u = u0 on Ω0 = Ω× {t = 0}, (4.12)
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where u0 is some given initial map and ϕ′(s) denotes the derivative of ϕ(s).

We use the same techniques as those used in Chapter 3 to handle the degeneracy

of the leading term in (4.9) and the nonconvex constraint |u| = 1, we then introduce

the following regularized variation problem as an approximation to (4.1)

u = argmin
v∈W 1,1

N (Ω,Rn)

J ε,δ
β,λ(v) for ε, δ > 0, (4.13)

where

J ε,δ
β,λ(v) := βEε,δ

ϕ (v) +
λ

q

∫

Ω

|v − g|q dx, (4.14)

Eε,δ
ϕ (v) :=

ε2

2

∫

Ω

|∇v|2 dx +

∫

Ω

ϕ(|∇v|ε) dx + Lδ(v), (4.15)

and Lδ(v) is same as (3.19). Finally, the gradient flow for the regularized energy

functional J ε,δ
β,λ is given by [Fen06]

uε,δ
t − βεα ∆uε,δ − β div

(ϕ′(|∇uε,δ|ε)
|∇uε,δ|ε |∇u|ε,δ

)
(4.16)

+λ|uε,δ − g|q−2(uε,δ − g) +
β

δ
(|uε,δ|2 − 1)uε,δ = 0 in ΩT , (4.17)

Bε,δn = 0 on ∂ΩT , (4.18)

uε,δ = u0 on Ω0. (4.19)

Fully discrete finite element approximation schemes can be derived similarly as in

Chapter 3. Here, we present numerical tests for the generalized model.
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4.2 Numerical Tests

The following images are numerical tests for (4.17)-(4.19) and q = 1 and with (4.5)

and q = 1,which are compared with the results obtained by the 1-harmonic map and

by the channel-by-channel models. For the channel-by-channel model, we use the TV

flow model to denoise each channel.

First four Figures 4.1, 4.2, 4.3, and 4.4 are snapshots of (4.17)-(4.19) with (4.4)

and q = 1 at four different time steps. As t gets larger, noise is gradually removed.

Figures 4.5, 4.6, 4.7, and 4.8 show snapshots of the flow with (4.5) and q = 1. Finally,

numerical tests for the channel-by-channel model using the TV flow to denoise each

channel are shown in Figure 4.9 to Figure 4.12. We observed that edges in the images

are smeared when noise is totally removed.
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Figure 4.1: Snapshot of (4.4) with q = 1 at t = 2E − 4, PSNR=15.87

Figure 4.2: Snapshot of (4.4) with q = 1 at t = 5E−4 with h = 7E−3, PSNR=15.95

Figure 4.3: Snapshot of (4.4) with q = 1 at t = 7E−4 with h = 7E−3, PSNR=15.98
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Figure 4.4: Snapshot of (4.4) with q = 1 at t = 1E−3 with h = 7E−3, PSNR=15.81

Figure 4.5: Snapshot of (4.5) with q = 1 at t = 2E−4 with h = 7E−3, PSNR=15.81

Figure 4.6: Snapshot of (4.5) with q = 1 at t = 5E−4 with h = 7E−3, PSNR=15.83
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Figure 4.7: Snapshot of (4.5) with q = 1 at t = 7E−4 with h = 7E−3, PSNR=15.82

Figure 4.8: Snapshot of (4.5) with q = 1 at t = 1E−3 with h = 7E−3, PSNR=15.60

Figure 4.9: Snapshot of Channel-by-Channel at t = 1E − 4 with h = 7E − 3,
PSNR=25.58
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Figure 4.10: Snapshot of Channel-by-Channel at t = 3E − 4 with h = 7E − 3,
PSNR=25.18

Figure 4.11: Snapshot of Channel-by-Channel at t = 5E − 4 with h = 7E − 3,
PSNR=23.77

Figure 4.12: Snapshot of channel-by-channel at t = 1E − 3 with h = 7E − 3,
PSNR=15.60
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Appendix A

We derive the Euler-Lagrange equation of the p-energy in the case of p = 2. Consider

the problem of minimizing the energy

I[w] =
1

2

∫

Ω

|∇w|2 dx (A.1)

over all functions belonging to the admissible class

A := {w ∈ H1(Ω; Rn)| |w| = 1 a.e.} = H1(Ω; Rn) ∩ Sn−1. (A.2)

For any two same size matrices A = [aij] and B = [bij], we define A : B =
∑
i,j

aijbij.

The following theorem [Eva02] shows Euler-Lagrange equation of harmonic maps.

Theorem A.1. Let u ∈ A satisfy

I[u] = min
w∈A

I[w].

Then ∫

Ω

∇u : ∇v dx =

∫

Ω

|∇u|2u · v dx
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for any v ∈ H1(Ω; Rn) ∩ L∞(Ω; Rn). Furthermore, u = (u1, · · · , un) is a weak

solution of the boundary-value problem

−∆u = |∇u|2u in Ω, (A.3)

∂u

∂n
= 0 on ∂Ω. (A.4)

Proof. 1. Fix v ∈ H1(Ω; Rn) ∩ L∞(Ω; Rn). Then since |u| = 1 a.e., we have

|u + τv| 6= 0 a.e. for each sufficiently small τ . Consequently,

v(τ) :=
u + τv

|u + τv| ∈ A. (A.5)

Consider

i(τ) := I[v(τ)].

Since u is a minimizer of I[·], we observe that i(·) has a minimum at τ = 0. Therefore,

i′(0) = 0
(
′ =

d

dτ

)
. (A.6)

2. Now

i′(0) =

∫

Ω

∇u : ∇v′(0) dx. (A.7)

We compute directly from (A.5) that

v′(τ) =
v

|u + τv| −
[(u + τv) · v](u + τv)

|u + τv|3 . (A.8)

Hence, v′(0) = v − (u · v)u. Inserting this equality into (A.6), (A.7), we find

0 =

∫

Ω

{∇u : ∇v −∇u : ∇((u · v)u)} dx. (A.9)
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Since |u| ≡ 1, we have

(∇u)Tu = 0.

We then verify

∇u : ∇((u · v)u) = |∇u|2(u · v) a.e. in Ω.

Therefore,

∫

Ω

∇u : ∇v dx =

∫

Ω

|∇u|2u · v dx ∀v ∈ H1(Ω; Rn) ∩ L∞(Ω; Rn). (A.10)

3. Since

∫

Ω

∇u : ∇v dx = −
∫

Ω

∆u · v dx +

∫

∂Ω

∂u

∂n
· v ds

= −
∫

Ω

∆u · v dx,

(A.11)

(A.10) becomes

∫

Ω

(−∆u− |∇u|2u) · v dx = 0 ∀v ∈ H1
0 (Ω; Rn) ∩ L∞(Ω; Rn).

Thus,

−∆u = |∇u|2u in Ω. (A.12)

Finally, it follows from (A.10), (A.11), and (A.12) that

∫

∂Ω

∂u

∂n
· v ds = 0 ∀v ∈ H1(Ω; Rn) ∩ L∞(Ω; Rn).

Hence, ∂u
∂n

= 0 a.e. on ∂Ω.
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Remark A.1. The function λ = |∇u|2 is the Lagrange multiplier corresponding to

the pointwise constraint |u| = 1.
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Appendix B

The following codes are written in Matlabr. To load an image in Matlabr, we use

I=imread(’filename’).

To add noise, we use imnoise(I, ’noise type’, mean of noise). All the func-

tions for the numerical tests are listed below.

function name description

RGB Write each RGB channel of a color image as a gray image.

CBC Combine RGB channel to generate a color image.

NG Separate a color image into the brightness

and the chromaticity components.

DNI Combine RGB the brightness and the chromaticity components.

cPSNR Compute PSNR for a color image.

PSNR Compute PSNR for a gray image.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function rgb=RGB(I)

% RGB separates RGB channel of color image and

% write each channel as a gray image.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

r=I(:,:,1); g=I(:,:,2); b=I(:,:,3);

imwrite(r,’rfilename.imagetype’);

imwrite(g, ’gfilename.imagetype’);

imwrite(b, ’bfilename.imagetype’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function drgb=CBC(r,g,b)

% CBC combines RGB channels to generate a color image.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[n,m]=size(r);

degb=zeros(n,m,3);

drgb(:,:,1)=r;

drgb(:,:,2)=g;

drgb(:,:,3)=b;

imwrite(drgb, ’filename.imagetype’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function M=NG(I)

% NG breaks a color image into two parts which are the brightness

% and the chromaticity.

% Also, it saves results in certain format in order to import data to

% FEMLAB.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

cp=double(I);

g1=cp(:,:,1);

g2=cp(:,:,2);

g3=cp(:,:,3);

[n,m]=size(g1);

M=zeros(n,m);

for i=1:n

for j=1:m

if (g1(i,j)==0 & g2(i,j)==0 & g3(i,j)==0)

M(i,j)=1;

else

M(i,j)=sqrt((g1(i,j))^2+(g2(i,j))^2+(g3(i,j))^2);

end

end

end

ng1=g1./M;

ng2=g2./M;

ng3=g3./M;

X=linspace(0,1.8,n);
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Y=linspace(0,1.8,m);

nng1=[X;Y;ng1];

nng2=[X;Y;ng2];

nng3=[X;Y;ng3];

NM=[X;Y;M];

save Innr4.txt -ascii nng1

save Inng4.txt -ascii nng2

save Innb4.txt -ascii nng3

save Innm4.txt -ascii NM
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function DC=DNI(enr,eng,enb,enm)

% DNI combine the denoised brightness and chromaticity of image,

% then produces a color image.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nm=double(enm);

nr=enr(3:end,:);

ng=eng(3:end,:);

nb=enb(3:end,:);

[n,m]=size(nr);

DC=zeros(n,m,3);

% scalar* vector

DR=nr.*nm;

DG=ng.*nm;

DB=nb.*nm;

% put RGB channel together

DC(:,:,1)=DR;

DC(:,:,2)=DG;

DC(:,:,3)=DB;

RI=uint8(DC);

imwrite(RI,’filename.imagetype’);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [cPSNR,mse]=cpsnr(X,Y)

% function [cPSNR,mse]=cpsnr(X,Y)

% cpsnr(X,Y) computes Peak signal to noise ratio of the

% difference between images and the

% mean square error of color image

% If the second input Y is missing then the PSNR and MSE of X itself

% becomes the output (as if Y=0).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<2, D=X; else

if any(size(X)~=size(Y)),

error(’The input size is not equal to each other!’);

end

D=X-Y;

end D1=double(D); mse=sum(D1(:).*D1(:))/prod(size(X));

PSNR=10*log10(255^2/mse/3);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [PSNR,mse]=psnr(X,Y)

% function [PSNR,mse]=psnr(X,Y)

% psnr(X,Y) computes Peak signal to noise ratio of the difference

% between images and the mean square error of gray image.

% If the second input Y is missing then the PSNR and MSE of X itself

% becomes the output (as if Y=0).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nargin<2, D=X; else

if any(size(X)~=size(Y)),

error(’The input size is not equal to each other!’);

end

D=X-Y;

end

D1=double(D);

mse=sum(D1(:).*D1(:))/prod(size(X));

PSNR=10*log10(255^2/mse)
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