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ABSfRACT 

Emission properties of fifteen different powder and crystalline thermographic 

phosphors have been characterized for potential use in high temperature sensing 

applications. Excitation and emission spectra of these rare-earth activated thermographic 
phosphors have been measured as a function of temperature using a special mini oven 

built inside of a fluorescence spectrophotometer. Several of the thermophosphors 
underwent decay lifetime analysis and were calibrated for use in high temperature 

measurements. 

The excitation spectra taken from room temperature-to approximately 400°C, reveal 

that the phosphors Y 203:Eu3+, YV04:Eu3+, Ba3(P04)i :Eu2+, LaP04:Eu3+, LuP04: 

Eu3+, YP04:Eu3+, YV04:Dy3+, Y 202S:Eu3+, and Y 202S:Tb3+ exhibit a significant 

temperature-dependent shift in their charge-transfer (C-T) absorption band. In addition, 

the peak position of the charge-transfer band in the europium-doped orthophosphate 

crystals is located at higher energies or deeper into the ultraviolet as the cation radius of 
the host crystal lattice decreases. The experimental results also show that the onset 
quenching temperature of the orthophosphate phosphors increases as a function of 

decreasing cation radius. The orthophosphate crystals YP04:Eu3+, LuP04:Eu3+, and 

LuP04:Dy3+ were found to have high onset quenching temperatures when compared to 

those of the powder phosphors. Orthophosphate single-crystals may prove to be the 

phosphor of choice for high temperature measurements ranging from 700°C to 1400°C. 

lV 



TABLE OF CONTENTS 

CHAPI'ER PAGE 

I. AN INTRODUCTION TO THERMOGRAPHIC PHOSPHORS ........... 1 
Introduction .......... .......................................... ................. 1 
High Temperature Thermophosphor Measurements ........ ..... .......... 3 

II. THERMOGRAPHIC PHOSPHOR THEORY ................................ 7 
Spectroscopy of Rare-earth Doped Materials ... ... . . ... . . ... . . . . . . . .. .. . . .. 7 

Origin of the Fluorescence Spectrum ................................... 8 
Role of the Charge-Transfer State (CTS) ............................... 13 

Temperature Dependence of Thermographic Phosphors .................. 16 
Quenching of Emission .. .. . . . . . . . . .. . . . . . . . . .. .. ... .. . . .. . . . . . . . . . . . . .. .. 20 
Quenching of Emission Intensity ........................................ 20 
Quenching of Lifetime Decay ............................................ 21 
Spectral Temperature Dependence ...................................... 21 

Role of the Structure and CTS in Quenching Onset .. .. . . .. . .. . .. .. .. .. ... 22 
Effect of the Cation Radius in the Host Crystal Lattice ............... 22 
Position of the CTS with respect to the Onset Quenching 

Temperature ........................................ ................ .. 
III. EXPERIMENTAL METHODS AND PROCEDURE ....................... . 

Thermographic Phosphor Materials ....................................... .. 
Phosphor Powders ...................................................... .. 
Orthophosphate Crystals 
Crystal Lattice Structure ................................................. . 
Crystal Fabrication ....................................................... . 

Excitation and Emission Spectra at Room and 

23 
26 
26 
27 
30 
31 
32 

Elevated Temperatures . ... ... .. .. . .. ......... .... ... ..... .. .... .. .... .. . .. 35 
UV Filter Characteristics ...................................................... 44 
Fluorescence Spectrophotometer Intensity Correction Spectra ........... 44 
Fluorescence Spectrophotometer Reproducibility .......................... 52 
Decay Lifetime Measurements ................................................ 58 

V 



Experimental Lifetime Method for YV04:Dy3+ ... ...... ......... .. .. .. 59 
Experimental Lifetime Method for the Orthophosphate Crystals .... 62 

Background Blackbody Radiation and Thermal Leakage Effects........ 69 
Temperature Cycling Behavior .............. ..... ..... .................. ..... 71 
Calculation of Onset Quenching Temperature .. .. . ... .. .. .... .. .. .... ... ... 72 

IV. DISCUSSION OF RESULTS . ................... ................ .............. 77 
Excitation and Emission Spectra at Room and Elevated Temperatures .. 77 

Dysprosium-doped Yttrium Vanadate (YV04:Dy3+) .................. 79 
Dysprosium-doped Yttrium Oxide (Y 203:Dy3+) ...................... 86 
Dysprosium-doped Lutetium Phosphate (LuP04:Dy3+) .............. 91 
Europium-doped Lanthanum Phosphate (LaP04:Eu3+) .............. 97 
Europium-doped Yttrium Phosphate (YP04:Eu3+) .................... 105 
Europium-doped Lutetium Phosphate (LuP04:Eu3+) ................. 111 
Europium-doped Yttrium Oxide (Y 203:Eu3+) ......................... 119 
Europium-doped Yttrium Vanadate (YV04:Eu3+) ..................... 127 
Europium-doped Barium Phosphate (Ba3(P04)i:Eu2+) .............. 137 
Europium-doped Lanthanum Oxysulfide (La202S:Eu3+) ............ 142 
Europium-doped Yttrium Oxysulfide (Y 202S:Eu3+) .................. 150 
Gadolinium-doped Yttrium Oxide (Y 203 :Gd) ......................... 159 
Manganese-doped Magnesium Fluorogermanate 

(Mg4(F)GeO 6 :Mn) .. ...... ....................... ...... .... ... .... .. 164 
Praseodymium-doped Yttrium Oxysulfide (Y 202S:Pr) ............... 172 
Terbium-doped Yttrium Oxysulfide (Y 202S :Tb3+) ................... 177 

Lifetime Decay Measurements .. ..... .. ........... ... .. ........... ............ 186 
Europium-doped Lanthanum Phosphate (LaP04:Eu3+) .............. 187 
Europium-doped Yttrium Phosphate (YP04:Eu3+) .................... 187 
Europium-doped Lutetium Phosphate (LuP04:Eu3+) ................. 192 
Europium-doped Yttrium Oxide (Y 203:Eu3+) ......................... 197 
Dysprosium-doped Lutetium Phosphate (LuP04:Dy3+) .............. 197 
Dysprosium-doped Yttrium Vanadate (YV04:Dy3+) .................. 197 

VI 



Discussion of Onset Quenching Temperature . .. . . . . . . . .. . . . . . .. .. . . .. .. . . . 204 
V. SUMMARY AND CONCLUSION .............................................. .... 208 

Future Research and Experim.:!ntal Suggestions ........................... 2 10 
LIST OF REFERENCES .............................................................. 2 17 
APPENDICE S  . ................ ...... .... ... ............. .......... ...... ............... 223 

Appendix A ................................................... ..... ................ 224 
Appendix B ............................... ... ..... ................................. 225 
Appendix C . . . .. . . . ... . . . . . . . . . . .. . .. .. . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . .. . . . . 226 

VITA . .. . . . . . . .. . . . ... .... . .. . . . . . . . . . . . . . . . . . ..... ..... . . .. . . ... .. .. ........ . ... . . . . . . ... 243 

Vil 



LISf OF FIGURFS 

FIGURE PAGE 

1-1. Calibration curve for several thermographic 
phosphors .......... .... .. ..... .................. . .......... .. ... . . ... . .. 4 

2-1. Simplified energy level diagram . .. . ... . ... . ... .. . ... . . .  .. . .. .. .. . .. ... . .. 10 

2-2. Energy levels of the lanthanides ..... ..................... ................ 11 

2-3. Energy levels in Eu3+ with the charge-transfer state in Y 203 ......... 14 

2-4. Energy levels in Eu3+ with the charge-transfer state in La2O2S ...... 15 

2-5. Configuration coordinate diagram at low temperature ................. 17 

2-6. Configuration coordinate diagram at high temperature ................. 19 

3-1. SEM photograph of the LaPO4:Eu3+ single crystal phosphor ........ 34 

3-2. Experimental configuration for obtaining excitation and emission 
spectra of phosphors at elevated temperatures ........... .. .. ..... .. 36 

3-3. Cross-sectional top view of the ceramic oven used for high 
temperature spectral characterization of thermographic 
phosphors . . . .  . . . . . . . . . . .. . . . . . .. . . .. . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . 38 

3-4. High temperature ceramic oven dimensions ... ... .... .. .. . ... . ..... .. . .. 39 

3-5. Ceramic sample holder for the orthophosphate crystals ................ 40 

3-6. Label attachment for each spectrum chart . . . . .. .. . . . . . . . . . . . . . . . . . . .. . . .. 41 

3-7. Reflectance spectrum of magnesium oxide in the sample 
cell with and without an ultraviolet filter ... ....... .... ... ...... .. ... . 45 

3-8. Emission spectrum of the ultraviolet filter (high sensitivity) ........... 46 

3-9. Emission spectrum of the ultraviolet filter without the 1st and 
2nd (300.0 nm and 600. 0  nm) order lines ................ .. ......... 47 

3-10. Reflectance spectrum of magnesium oxide in the sample cell ... .... .. .  49 

3-11. Reflectance spectrum of magnesium oxide (without a quartz window) 50 

V11l 



3-12. Emission spectra of europium-doped lanthanum oxysulfide 
for analysis of chart recorder reproducibility ...... .................. 55 

3-11. The standard deviation versus the mean wavelength of 
several emission peaks of La2O2S :Eu3+ ............................. 57 

3-14. Experimental configuration for lifetime decay measurements 
of dysprosium-doped yttrium vanadate .............................. 60 

3-15. Experimental configuration for obtaining exponential lifetime 
data of several orthophosphate crystals .. .. .. . . .. . . . . . . . . . . . . . . . . . .. . 63 

3-16. Technique for the generation of a 395 run laser line from 
a 1064 nm Nd:YAG laser .............................................. 66 

3-17 . Method use for determining the onset quenching temperature 
of a thermographic phosphor .......................................... 73  

4-1. Excitation spectrum of dysprosium-doped yttrium vanadate 
at room temperature (571 nm EM) ..... .. .. .. .... .... ....... .. .. .... .. 81 

4-2. Emission spectrum of dysprosium-doped yttrium vanadate 
at room temperature (330 nm EX) .................................... 82 

4-3. Emission spectrum of dysprosium-doped yttrium vanadate 
(expanded view) at room temperature (330 nm EX) ............... 83 

4-4. Excitation spectra of dysprosium-doped yttrium vanadate 
at elevated temperatures (571 nm EM) ............................... 84 

4-5. Emission spectra of dysprosium-doped yttrium yanadate 
at elevated temperature (330 nm EX) . ... ... .... ... ... ....... ... ... .. 85 

4-6. Excitation spectrum of dysprosium-doped yttrium oxide 
at room temperature (571 nm EM) .. .... .. .. .. .. .. .. .. .. . . .. .... .. .. . 87 

4-7 .  Emission spectrum of dysprosium-doped yttrium oxide 
at room temperature (349 nm EX).................................... 88 

4-8. Excitation spectra of dysprosium-doped yttrium oxide 
at elevated temperatures (571 nm EM) ............................... 89 

4-9. Emission spectra of dysprosium-doped yttrium oxide 
at elevated temperature (350 nm EX) ............ ... ... ... ... ... ... ... 90 

4-10. Excitation spectrum of dysprosium-doped lutetium phosphate 
at room temperature (57 3 nm EM) .. .. .. .. .. .. .... .. .. .. .. .. .. .... .. . 92 

4-11. Emission spectrum of dysprosium-doped lutetium phosphate 
at room temperature (353 nm EX) .................................... 93 

1X 



4-12. Emission spectrum (expanded form) of dysprosium-doped 
lutetium phosphate at room temperature (353 nm EX) ............ 94 

4-13. Excitation spectra (expanded form) of dysprosium-doped 
lutetium phosphate a� elevated temperatures ( 484 nm EM) . ...... 95 

4-14. Excitation spectra of dysprosium-doped lutetium phosphate 
at elevated temperatures (573 nm EM) ....... ......... ... ......... ... 96 

4-15. Emission spectra of dysprosium-doped lutetium phosphate 
at elevated temperatures (353 nm EX) . ........... ... ... ... ..... ... .. 98 

4-16. Excitation spectrum of europium-doped lanthanum phosphate 
at room temperature (590 nm EM) . . ......... .. .. ... .. ....... .. ... .. . 99 

4-17. Emission spectrum of europium-doped lanthanum phosphate 
at room temperature (280 nm EX) ................ ................... 100 

4-18. Excitation spectra of europium-doped lanthanum phosphate 
at elevated temperatures (590 nm EM) .............................. 102 

4-19. Peak charge-transfer wavelength versus temperature 
for LaPO4 :Eu3 + .........................•.............................. 103 

4-20. Emission spectra of europium-doped lanthanum phosphate 
at elevated temperatures (280 nm EX) . . .. ... . . . . . .. . . . . . . . .. . . . . .. . . 104 

4-21. Excitation spectrum of europium-doped yttrium phosphate 
at room temperature (592 nm EM) .. .. .... .... .. .. .. ...... .... .. ..... 106 

4-22. Emission spectrum of europium-doped yttrium phosphate 
at room temperature (396 nm EX) . ..... .... ......... .... .. .... .. . .. . 107 

4-23. Excitation spectra of europium-doped yttrium phosphate 
at elevated temperatures (593 nm EM) . ... ...... ............... ...... 108 

4-24. Peak charge-transfer wavelength versus temperature 
for YPO4 :E u3 + ......................................................... 110 

4-25. Emission spectra of europium-doped yttrium phosphate 
at elevated temperatures (396 nm EX) .. ... .... ........ .. .. ... . ... .. 112 

4-26. Excitation spectrum of europium-doped lutetium phosphate 
at room temperature (593 nm EM) ................................... 113 

4-27. Emission spectrum of europium-doped lutetium phosphate 
at room temperature (395 nm EX) ................................... 114 

4-28. Excitation spectra of europium-doped lutetium phosphate 
at elevated temperatures (593 nm EM) .......... ..................... 115 

X 



4-29 Peak charge-transfer wavelength versus temperature 
for LuPO4 : Eu 3+ ...... . . .... . . .. . . . . . . . . . . ...... . . . .... ...... ........... 1 17 

4-30. Emission spectra of europium-doped lutetium phosphate 
at elevated temperatures (396 nm EX) ............................... 1 18 

4-31. Excitation spectrum of europium-doped yttrium oxide 
at room temperature (61 1  nm EM) ................................... 120 

4-32. Emission spectrum of europium-doped yttrium oxide 
at room temperature (270 nm EX) ................................... 12 1 

4-33. Excitation spectra of europium-doped yttrium oxide 
at elevated temperatures (61 1  nm EM) ............................... 122 

4-34. Excitation spectra (expanded form) of europium-doped 
yttrium oxide at elevated temperatures (61 1  nm EM) .............. 123 

4-35. Peak position of the charge-transfer band plotted as a function 
of increasing temperature .............. ........ ..... ......... .... ..... 125 

4-36. Emission spectra of europium-doped yttrium oxide 
at elevated temperatures (270 nm EX) ... ............ ...... ... ...... 126 

4-37. Excitation spectrum of europium-doped yttrium vanadate 
(Type 1 120) at room temperature (619 nm EM) ................... 128 

4-38. Excitation spectrum of europium-doped yttrium vanadate 
(Type 2391) at room temperature (619 nm EM) ................... 129 

4-39. Emission spectrum of europium-doped yttrium vanadate 
(Type 1 120) at room temperature (325 nm EX) ................... 130 

4-40. Excitation spectra of europium-doped yttrium vanadate 
(Type 2391) at elevated temperatures (619 nm EM) ............... 13 1 

4-41. Peak charge-transfer wavelength versus temperature 
for YVO4 :Eu3 + . . . . . .. . . . . ... . . . ... . .. . . . . .. . . ....... .. . . . . . .. . . . . . . . . .. 133 

4-42. Excitation spectra of europium-doped yttrium vanadate 
(Type 1 120) at elevated temperatures (619 nm EM) ............... 135 

4-43. Emission spectra of europium-doped yttrium vanadate 
(Type 239 1) at elevated temperatures (320 nm EX) ............... 136 

4-44. Excitation spectrum of europium-doped barium phosphate 
at room temperature (415 nm EM) ................................... 138 

4-45. Emission spectrum of europium-doped barium phosphate 
at room temperature (305 nm EX) . .... ... .. ........ ... .... .... .. . .. . 139 

xi 



4-46. Excitation spectrum of europium-doped barium phosphate 
at elevated temperatures (415 nm EM) ............................... 140 

4-47. Emission spectrum of europium-doped barium phosphate 
at elevated temperatures (305 nm EX) . ... ... .. ... .. . ... .. . . . ... . . . . . 141 

4-48. Excitation spectrum of europium-doped lanthanum oxysulfide 
at room temperature (538 nm EM) ................................... 143 

4-49. Excitation spectrum of europium-doped lanthanum oxysulfide 
at room temperature (612 nm EM) ................................... 144 

4-50. Excitation spectrum of europium-doped lanthanum oxysulfide 
at room temperature ( 619 nm EM) .. . .. .. .. .. .. .. .. .. . .. . . . . . . . . . . . . .. 145 

4-51. Emission spectrum of europium-doped lanthanum oxysulfide 
at room temperature (345 nm EX) .................................... 146 

4-52. Emission spectrum (expanded form) of europium-doped 
lanthanum oxysulfide at room temperature (345 nm EX) .......... 147 

4-53. Excitation spectra of europium-doped lanthanum oxysulfide 
at elevated temperatures (538 nm EM) ............................... 148 

4-54. Emission spectra of europium-doped lanthanum oxysulfide 
at elevated temperatures (330 nm EX) ............................... 149 

4-55. Excitation spectrum of europium-doped yttrium oxysulfide 
at room temperature (612 nm EM) ................................... 151 

4-56. Excitation spectrum of europium-doped yttrium oxysulfide 
at room temperature (619 nm EM) ................................... 152 

4-57. Emission spectrum of europium-doped yttrium oxysulfide 
at room temperature (355 nm EX) ................................... 153 

4-58. Emission spectrum (expanded form) of europium-doped 
yttrium oxysulfide at room temperature (355 nm EX) ............. 154 

4-59. Excitation spectra of europium-doped yttrium oxysulfide 
at elevated temperatures (620 nm EM) ............................... 155 

4-60. Emission spectra of europium-doped yttrium oxysulfide 
at 25°C and 105°C (355 nm EX) ...................................... 156 

4-61. Emission spectra of europium-doped yttrium oxysulfide 
at 200°C and 305°C (355 nm EX) ................................ .... 157 

4-62. Emission spectra of europium-doped yttrium oxysulfide 
at elevated temperatures (355 nm EX) .................. ..... ... ... .. 158 

X11 



4-63. Excitation spectrum of gadolinium-doped yttrium oxide 
at room temperature (315 nm EM) . . .. .. .. . . . . . . .. . . . .  . . . . . . . . .. . . . . . 160 

4-64. Emission spectn,m of gadolinium-doped yttrium oxide 
at room temperature (275 nm EX) ................ .. . .. . . . . . . . . . .. . .. 161 

4-65. Excitation spectrum of gadolinium-doped yttrium oxide 
at elevated temperatures (315 nm EM) ....... . .. ... ........ .......... 162 

4-66. Emission spectrum of gadolinium-doped yttrium oxide 
at elevated temperatures (275 nm EX) ......... ......... ..... ... ... .. 163 

4-67. Excitation spectrum of manganese-doped magnesium 
fluorogermanate at room temperature (628 nm EM) ...... . . . . . . . . .  165 

4-68. Excitation spectrum of manganese-doped magnesium 
fluorogermanate at room temperature (655 nm EM) ........... .... 166 

4-69. Emission spectrum of manganese-doped magnesium 
fluorogermanate at room temperature (325 nm EX) ............... 167 

4-70. Emission spectrum of manganese-doped magnesium 
fluorogermanate at room temperature ( 420 nm EX) ............... 168 

4-71. Emission spectra of manganese-doped magnesium 
fluorogermanate at room temperature (325/420 nm EX) . ... .. ... . 169 

4-72. Excitation spectra of manganese-doped magnesium 
fluorogermanate at elevated temperatures (655 nm EM) . . ..... . .. 170 

4-73. Emission spectra of manganese-doped magnesium 
fluorogermanate at elevated temperatures (420 nm EX) ... ... .. . .  171 

4-7 4. Excitation spectrum of praseodymium-doped yttrium 
oxysulfide at room temperature (5 14 nm EM) ..... . ...... . . . . . ..... 173 

4-75. Emission spectrum of praseodymium-doped yttrium 
oxysulfide at room temperature (300 nm EX) . . . . . . . . . . ..... . . . .... 174 

4-7 6. Excitation spectra of praseodymium-doped yttrium 
oxysulfide at elevated temperatures (5 14 nm EM) ..... . ... . . .. . . . .  175 

4-77. Emission spectra of praseodymium-doped yttrium 
oxysulfide at elevated temperatures (300 nm EX) .. .... .. . . . . . . ... 176 

4-78. Excitation spectrum of terbium-doped yttrium oxysulfide 
at room temperature (543 nm EM) .. .. ... . .. .. .. . .  .. .. .. .. .. . . . .  .. . . . 178 

4-79. Emission spectrum of terbium-doped yttrium oxysulfide 
at room temperature (290 nm EX) . . . .. ... .. .. . .  . .  . . . .. . . . . . .  . .  . .  . . .  . 179 

Xl1l 



4-80. Emission spectrum (expanded form) of terbium-doped 
yttrium oxysulfide at room temperature from 400.0 nm 
to 520.0 nm (290 nm EX) ............................................. 180 

4-81. Emission spectrum (expanded form) of terbium-doped 
yttrium oxysulfide at room temperature from 520.0 nm 
to 650.0 nm (290 nm EX) ............................................. 181 

4-82. Excitation spectra of terbium-doped yttrium oxysulfide 
at elevated temperature (545 nm EM) ............................... 182 

4-83. Emission spectra of terbium-doped yttrium oxysulfide 
at 25°C and 1 10°c (290 nm EX) ...................................... 183 

4-84. Emission spectra of terbium-doped yttrium oxysulfide 
at 150°C and 300°C (290 nm EX) .................................... 184 

4-85. Emission spectra of terbium-doped yttrium oxysulfide 
at elevated temperature (290 nm EX) ............................... 185 

4-86. Lifetime calibration curve for europium-doped lanthanum 
orthophosphate ......................................................... 189 

4-87. lifetime calibration curve for europium-doped yttrium 
orthophosphate ......................................................... 191 

4-88. Lifetime calibration curve for europium-doped lutetium 
orthophosphate ......................................................... 194 

4-89. Oscilloscope photographs showing the changing exponential 
lifetime decay signal of LuP04 :Eu3+ at 700°C and 800°C ........ 195 

4-90. Oscilloscope photographs showing the changing exponential 
lifetime decay signal of LuP04:Eu3+ at 900°C and 1000°C 196 

4-9 1. Lifetime calibration curve for europium-doped yttrium oxide ... .... .. 199 

4-92. Lifetime calibration curve for dysprosium-doped lutetium 
orthophosphate . ......................................... . ... ........... 201 

4-93. Lifetime calibration curve for dysprosium-doped 
yttrium vanadate ................. ................................... .... 203 

4-94. Combined lifetime calibration curves for several high 
temperature thermographic phosphors .............................. 205 

xiv 



LIST OF T ABLES 

TABLE PAGE 

2-1. Comparison of the ionic radii of several orthophosphate 
phosphors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . 24 

3-1. Tabulated information on thermographic phosphors 
researched for spectral and emission properties . .. . .. . .. . . . . .. . .. . . 28 

3-2. Spectrophotometer reproducibility data . . . . . . . . . . .. . .. . .. . . . . . . . . . . . . . . . .  56 

4-1. Tabulated data for the peak position of the 590 nm 
charge-transfer bands of europium-doped lanthanum 
phosphate measured as a function of temperature ....... . . . . . . . . . .. 101 

4-2. Tabulated data for the peak position of the 593 nm 
charge-transfer bands of europium-doped yttrium 
phosphate measured as a function of temperature .................. 109 

4-3. Tabulated data for the peak position of the 593 nm 
charge-transfer bands of europium-doped lutetium 
phosphate measured as a function of temperature ............ ...... 117 

4-4. Tabulated data for the peak position of the 611 nm 
charge-transfer bands of europium-doped yttrium 
oxide measured as a function of temperature ..... . . . . . . . . . . . . . . . . . .  124 

4-5. Tabulated data for the peak position of the 619 nm 
charge-transfer bands of europium-doped yttrium 
vanadate measured as a function of temperature . ...... . . . . ... . . . . . 132 

4-6. Lifetime data for europium-doped lanthanum phosphate .............. 188 

4-7. Lifetime data for europium-doped yttrium phosphate .................. 190 

4-8. Lifetime data for europium-doped lutetium phosphate ................. 193 

4-9. Lifetime data for europium-doped yttrium oxide ..... . . . . . . . . . . . . . . . . . . 198 

4-10. Lifetime data for dysprosium-doped lutetium phosphate .............. 200 

4-11. Lifetime data for dysprosium-doped yttrium vanadate ...... ........... 202 

4-12. Onset quenching temperatures for several thermographic 
phosphors . . . .  . . . . . . . . . . .. . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 

xv 



CHAPTER! 

AN INTRODUCTION TO THERMOGRAPHIC PHOSPHORS 

Introduction 

The word luminescence was introduced by E. Wiedemann around 1889 to describe 

light emission which is not caused solely by the temperature of the material. Luminescent 

sources may be classified according to the way the source material generates light. Two 

such classifications are fluorescence and phosphorescence, which depend solely on the 

lifetime in the excited state or radiative relaxation time. When the lifetime of the excited 

state is of the magnitude of approximately 10-8 second (or 10 nsec), the phenomenon is 

usually regarded as fluorescence. Therefore in the fluorescence case, the emission of 

light normally exists only as long as the exciting source is present. If the emission of 

light persists after the exciting source has been removed, the action is then termed 

phosphorescence. In phosphorescence, the radiative emission of light may continue for 

seconds, minutes, days, even months after the stimulating source has been removed. 

With the phosphorescence phenomenon, the electrons are generally stable and in an 

intermediate state, and gradually they return to their lower states. The processes that 

control the luminescent behavior are complex and vary widely depending on the type of 

materials used in the construction of the phosphor.( ! )  

Phospfwrs are luminescent compounds that emit either visible, infrared, or in some 

cases, ultraviolet light when subject to an exciting radiation source. Phosphors consist 
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of a basic material, such as an oxide, oxysulfide, vanadate, or phosphate, activated by a 

rare-earth element. Most of the inorganic phosphors used commercially have a crystalline 

structure and usually behave as insulators. Phosphor excitation can be accomplished in 

several ways. In cathodoluminescence, the phosphor is exposed to highly energetic 

electron bombardment in which electron energies may exceed ten kilovolts. This method 

is typically used in operation of a cathode ray tube. Injection luminescence occurs in 

semiconductor devices such as light emitting diodes. This technique causes high energy 

electrons and holes to be swept across a PN junction. When they recombine with 

majority carriers, photons are emitted. Finally photo- luminescence occurs when the 

phosphor electrons are optically excited or pumped to higher energy levels and upon 

relaxation by different processes emit photons. 

Rare earth activated phosphors have been the subject of extensive research studies. 

The luminescent emission of the dopant impurities in a wide variety of host lattice 

environments has led to the development of phosphors with attractive properties for many 

varied applications. For example, phosphors have emission properties which make them 

useful in the development of solid state lasers. Researched and developed primarily for 

the lighting and display industries, phosphors have found use in hundreds of 

applications. Fluorescent lamps, cathode ray tubes for oscilloscopes, computers, and 

televisions, are some common phosphor applications. They are also used in 

criminology. Current research efforts are being placed on the commercial development of 

bright phosphors with small particle size for use in high-resolution cathode ray screens. 

The fact that phosphor luminescence properties can be influenced by external stimuli 

such as temperature and pressure, to name a few, make phosphors the subject of study 

for potential use in temperature sensing applications. 
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High Temperature Thennophosphor Measurements 

All phosphors are affected by temperature in some way. Certain phosphors which 

are exploited for their temperature characteristics are known as thermophosphors or 

thermo graphic phosphors and have potential application in high temperature luminescent 

measurement systems. Although thermographic phosphors have been studied for years, 

there is still much to be learned concerning the characteristics and quantum mechanical 

mechanisms which make them temperature-sensitive. As new phosphor materials and 

instrumentation are being developed, more facts are being uncovered regarding 

thermophosphor emission. 

Recent efforts exploit the temperature dependence of fluorescence properties of 

various thermophosphors for temperature measurement applications on static and 

dynamic remote surfaces. Demonstrations in the past have shown that remote phosphor 

thermometry can be used to measure temperatures of gas centrifuge rotors, internal 

components of a jet turbine engine or rocket engine and other remote, rotating 

surfaces. <2,3,4) Other applications of the thermophosphor technique can be extended to 

rotating machinery such as motors and generators, internal combustion engines, and 

flywheels. The temperature of dynamic surfaces such as projectiles in flight, rail- and 

coil-gun components and explosive environments are prospective measurement 

applications. These temperature measurements are often performed optically without 

touching the surface of interest with any thing other than the thermophosphor. (5,6) 

The technique is based on the fact that thermographic phosphors emit strong 

fluorescence under ultraviolet excitation and that the fluorescence decay lifetime has a 

logarithmic dependence with temperature. The temperature dependence arises from 

phonon-induced nonradiative relaxation processes which compete with radiative 
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processes. The fluorescence intensity and lifetime decreases abruptly with rising 

temperature at the onset of the temperature range where nonradiative processes begin to 

dominate. As a result of these lifetime decay measurements, thermophosphors are 

calibrated for use in temperature measuring systems. Several of the most common 

thermographic phosphors used in temperature measurements are Y 2O3:Eu3+,  

YVO4 :Eu3 + , La2O 2S :  Eu3 +  and Y2O 2S :Tb3 +. Figure 1-1 shows four phosphor 

calibration curves for three of the most reliable thermophosphors. 

0 '----'---_._ _ __._ _ __., _ __.....__ ...... _....._ _ _._ ___ __, 
1 00 200 300 400 500 600 700 800 900 

Temperature (°C)  

Figure 1- 1 .  Calibration curves for several thermographic phosphors. 



5 

It is interesting to note that by selection of the proper emission lines, these three 

phosphors provide for a temperature measurement range from 0°C to 1200°C. 

The advantages of high temperature measurements that incorporate thermographic 

phosphor techniques are many. Since the method can be performed remotely, it is useful 

in hazardous, noisy, and explosive environments. Optical temperature methods based on 

thermophosphors, are essentially immune to electrical interference and have a wide 

temperature sensing range. With current state-of-the-art electronic equipment, 

measurements can be made at a rate of 5000 times per second. Finally since phosphor 

thermometry is a non-contact method, it is useful in static or dynamic surfaces, confined 

areas or rotating surfaces where measurements with conventional temperature transducers 

such as thermocouples can not be made. 

In other research efforts, it has been shown that certain charge-transfer states and 

spectral bands of most europium-doped phosphors shift as a function of 

temperature.<7,8,9,lO, l l ) Fluorescent spectral line shift phenomena can also be exploited 

for use in high temperature measurements and can be used to support theories which 

explain the quantum electronic mechanisms of exponential decay lifetimes. Characteristics 

of thermophosphors are still being carefully investigated and new phosphor powders and 

crystals are undergoing testing and calibration for potential thermometry applications. 

The focus of this thesis is twofold. First, the investigations of the luminescent 

spectra of thermophosphors measured as a function of temperature will be summarized 

and second, the results of an experimental study of the decay lifetimes of several 

temperature-dependent phosphors will be presented. It is believed that this effort 

specifically records for the first time, phosphor excitation spectra, measured as function 

of increasing temperature ranging from ambient to 450°C. 

In the pages that follow, characteristics of the emission properties of thermographic 
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phosphors will be investigated in finer detail. Particular attention will be given to 

important information and observations that may have influence on or application to high 

temperature measurements. 

Chapter II gives some details on the theory of thermographic phosphors and how the 

theory is related to the research efforts of this thesis. Spectroscopy of rare-earth activated 

phosphors will be discussed along with the origin of the fluorescence spectrum. Details 

of the temperature dependence of thermographic phosphors will be given. Particular 

attention will be given to the role of the charge-transfer state and its relationship to 

thermophosphor quantum mechanisms. 

Chapter ill is a very detailed discussion of the experimental configurations, methods 

and procedures used in the investigation of thermophosphor emission properties. 

Specific details are given about the acquisition of excitation and emission spectra for 

phosphors at room temperature and measurements of spectra as a function of increasing 

temperature. Equally important is a complete description of the methods and equipment 

used in obtaining lifetime decay data of the thermographic phosphors research. Details of 

the instrumental errors and random errors in data acquisition are given. The fluorescence 

spectrophotometer has been investigated for chart recorder reproducibility and xenon 

lamp spectra are presented along with a description of correcting obtained spectra for 

variations in lamp intensity. A new method of defining the onset quenching temperature 

from a phosphor lifetime calibration curve using a computer program is presented and 

discussed in detail. A discussion of experimental results follows in Chapter IV. 

Spectra obtained at room and elevated temperatures are presented in detail along with 

decay lifetime calibration data. Chapter V summarizes the experimental results and 

presents improvements to experimental methods and suggests several possible 

thermophosphor experiments for future research. 



CHAPfER II 

THERMOGRAPHIC PHOSPHOR THEORY 

Several theoretical aspects related to the quantum mechanical nature of 

thermographic phosphors will be discussed in the following pages. The origin of the 

fluorescence spectrum is described along with specific transitions of phosphors 

researched in this work. The phosphor Y 2O3:Eu3+ which has been intensively studied in 

the past, will be used as an example for descriptive purposes. Particular attention will be 

given to the temperature dependence of thermophosphors and the charge transfer state 

and its role in the luminescence process. 

Spectroscopy of Rare-earth Doped Materials 

Rare-earth ions incorporated into a host crystal lattice structure when properly 

excited, exhibit sharp-line emission spectra. This means a large fraction of their 

fluorescent output is concentrated into a few narrow-band emission lines. In addition, 

one may see broad bands in both absorption and excitation spectra, usually in the 

ultraviolet. The emission lines are typically associated with the inner 4f transitions of the 

ions themselves while the bands may result from the dopant ion interactions with the host 

lattice. 
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Origi.n oftlie Fluorescence Spectrum 

The discussion will begin with a description of the transitions in a two level quantum 

system. The system may be excited to the higher levels by acquiring energy, for example 

via collision or light absorption. The downward relaxation that occurs from this state is 

due either to nonradiative relaxation or spontaneous emission of electromagnetic or 

fluorescent radiation. Photons are emitted as the electrons give up their energy on the 

downward transitions from higher energy levels. The total relaxation rate 'Ytota1 on any 

given transition will be the sum of the radiative decay rate 'Yrad and the nonradiative decay 

rate 'Ynr- Therefore, 

'¥total = 'Yrad + 'Ynr- (1 . 1) 

Above the onset quenching temperature of the phosphor, the nonradiative decay rate 

becomes appreciable and increases with temperature. In most cases, the nonradiative 

transition rate is generally not directly measureable. The intrinsic lifetime 'tj is equal to 

l l'Yrad at all temperatures. This is measured when '¥total = 'Yrad or when 'Ynr is 

approximately zero. The fluorescence lifetime 'tn or 'ttotal is given as 1/'Ytotal and is 

actually measured experimentally. The lifetime 'tj of an upper level can be measured by 

observing the fluorescent emission from the upper level Ej to any other lower level E i 

immediately after a short pulse of exciting radiation is subject to the sample material. The 

measured intensity In(t) of the fluorescent emission on a specific j�i transition is given 

by 

In(t) = const. x e-tl'ttotal = const.x e-t'Ytotal. ( 1 .2) 
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Therefore, the measured intensity should decrease, decay, or relax in an exponential 

manner. The same result is achieved in terms of population difference by considering the 

transient response of a two-level atomic system. The transient solution to the rate 

equation for t > to is 

where �ss is the steady-state value of � • .1N(t0) is the initial population difference, 

and W 12 is an applied signal or driving function. If the applied signal or driving function 

W 12  is not present, such as when the excitation is turned off, the population �(t) will 

then relax from its initial population value LiN(ta) to its thermal-equilibrium population 

value �0 • This relaxation will therefore be a decaying exponential function with an 

exponential time constant T 1 • The time constant T 1 is generally equivalent to the 

population recovery or energy decay times t or yl used in other analyses. <12) 

The energy level diagram shown in Figure 2.1 helps to further explain the band 

theory of a basic phosphor. The diagram shows the valence band, conduction band, and 

the forbidden gap, also known as the band gap. The band gap separates the tightly 

bound valence band electrons from the free electron conduction band level. When an 

electron is excited into the conduction band, it may wander about before becoming 

trapped in a potential well just below the conduction band minimum. It may also make a 

radiative transition back to the valence band ground state emitting a photon in the process. 

Traps are thought to be defects in the crystal lattice structure. The electron, once trapped 

will remain for a time determined by the depth of the trap and the subsequent excitations 

the trapped electron experiences. However if the electron escapes from the trap back into 

the conduction band, it may become retrapped or possibly be returned through a radiative 
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Figure 2-1. Simplified energy level diagram. 
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process to the ground state. In many phosphors, the excited electron makes radiative 

transitions to luminescence centers (LC) located in the band gap rather than return to the 

valence band. The term luminescence center refers to any atom, ion or group of atoms 

which assist in the luminescence process. Such luminescence centers in phosphors are 

the rare-earth activators.<1 3) 

Activator ions, such as Eu3+, Pr3+, Gd3+, Sm3+,and Tm3+, may be excited by the 

transfer of energy from the host lattice. Figure 2-2 shows the positions in energy of a 

number of the excited states of these and other rare-earth ions of the lanthanide series.<14) 

Certain absorption band regions are indicated, together with the environments in which 

they were observed. The arrows indicate known excitation transfer interactions resulting 

in sensitized fluorescence. 
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When a phosphor or other luminescent substance emits light, it gives, in most cases, an 

emission according to a fundamental law known as Stokes' Law. This law states that 

the wavelength of the emission 11.,EM is always greater than the wavelength of the exciting 

source 11.,EX. 

Visible spectroscopy utilizes the principle of excitation of the electrons in a molecule. 

Energy differences exist between the ground state and the excitation state of the electrons. 

When the various wavelengths of radiation from, for instance, a spectrophotometer 

correspond with the energy differences of the electron states, energy is removed from the 

optical beam. These appear as absorption peaks or bands at those particular wavelengths. 

The amount of absorption is proportional to the concentration of the activator in the 

sample. 

Fluorescence spectroscopy uses the principle of excitation of electrons in a molecule. 

Besides measuring energy absorption from a ground state to an excitation state (excitation 

spectrum), fluorescence spectroscopy analyzes energy in the form of light given off by a 

molecule in returning from an excitation state to a ground state (emission spectrum). The 

excitation energy is composed of electronic and vibrational energy, while the emission 

energy is only the electronic energy (light is not emitted by vibrational energy). 

Therefore the emission energy will always be less than the excitation energy, causing the 

emission spectrum to appear at longer wavelengths than the excitation spectrum. 

The emission spectrum is a plot of emission intensity as a function of the emission 

wavelength for a particular excitation wavelength. The excitation spectrum is a plot of 

emission intensity as a function of the excitation wavelength for a particular emission 

wavelength. In other terminology, it is a plot of the energy absorbed by the phosphor as a 

function of the excitation wavelength. 
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Role of the Charge-Transfer State (CTS) 

A charge-transfer transition is an electronic transition between the states of the 

activator ion and the surrounding ligands. In an oxide such as yttrium oxide, a 

charge-transfer can be thought of by removing an electron off a neighboring oxygen ion 

and placing it in an empty europium orbital. In this particular scenerio, the resultant is the 

formation of an Eu2+ ion. When the electron leaves the Eu2+ ion and returns back to the 

oxygen, it leaves the Eu3+ ion in an excited state which lead to the production of the Eu3+ 

emission. Struck and Fonger describe this excitation into the charge-transfer state of 

Eu3+ as leading to the partial dissociation of the charge-transfer state into divalent 

europium and a free hole which may subsequently trapped.05 ) This effect of 

charge-transfer state dissociation may lead to decreased emission or quenching of the 

phosphor fluorescence. 

In the case of the host lattice Y 203 , with an impurity ion of Eu3+, a charge-transfer 

takes place between the oxygen-dominated lattice and the Eu3+ ion. As determined from 

absorption spectrum, this charge-transfer band would be observed at approximately 260 

nm. Figure 2-3 shows the position of the Y 203 charge-transfer state with respect to the 

4f states of the Eu3+ activator in its normalized configuration coordinate diagram. 

Similarly, Figure 2-4 shows the position of the La202S charge-transfer state with respect 

to the 4f states of the Eu3+ dopant ion in its normalized configuration coordinate diagram. 

Other phosphors such as some of the oxysulfides can exhibit two charge-transfer bands 

since charge-transfer transitions occur between Eu3+ and both oxygen and sulfur. The 

phosphors Y203S:Eu3+, La202S:Eu3+, and Y203S:Pr may show double charge-transfer 

bands in their absorption spectra. The appearance of a charge-transfer band is generally 

governed by two factors, the willingness of a dopant ion to accept another electron and 
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the willingness of the neighboring host to donate an electron. A study by Ozawa shows 

that it is possible for the charge-transfer band to partially overlap the host lattice 

absorption band.(16) Although excitation into the host absorption band results in a large 

amount of fluorescence, many researchers prefer to take advantage of the charge-transfer 

state excitation which is efficient at 337 nm. The 337 nm line is commonly produced by 

a nitrogen laser. 

Temperature Dependence of Thermographic Phmphors 

Interaction of the charge-transfer transition with those of the 4f levels of Eu3+ is 

primarily responsible for the temperature quenching of the europium luminescence. The 

temperature dependence and thermal quenching of the 5D emission of Eu3+ has been 

studied by Fonger and Struck.<17) A simplified description of the results of their work 

will be discussed with the use of several configuration coordinate diagrams. Figure 2-5 

shows a configuration coordinate diagram at low temperature. The lowest vibrational 

levels of the 4f ground state (7F), the 4f excited state (5D), and the charge-transfer state 

can be occupied at relatively low temperatures. Excitation of the charge-transfer state (0 

=> 1 )  is followed by a rapid relaxation into the lower vibrational levels of the 

charge-transfer state (1 => 2) . The energy is then channeled to the lowest vibrational 

levels in the excited 4f configuration (2 => 3). This is known as direct feeding of the 

charge-transfer state to the 5D states. Further relaxation to the 4f ground state (3 => 0) 

produces the optical transition which is observed as 4f fluorescence. Nonradiative 

relaxation may occur from (1 => 3) and (2 => 3) which at low temperatures is usually 

quite small. Therefore there may be some lattice quenching at lower temperatures due 

predominatly to the nonradiative effects. 
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At higher temperatures, more vibrational levels for  each of  the states can be 

occupied. The Boltzmann distributions of electrons are shifted and the vibronic levels 

become thermally populated in both the 4f states and the charge-transfer states. Figure 

2 -6 shows a configuration coordinate diagram at high temperature. Excitation of the 

charge-transfer state (0 � 1), followed by rapid relaxation into the lower vibrational 

levels of the charge-transfer state ( 1  � 2) occurs similar to lower temperatures. Since the 

higher vibronic levels of the 4f excited states are now thermally populated, this leads to 

energy transfer back to the charge-transfer state (3 � 2). The energy which was 

transferred from the charge-transfer state to the 5D state is now transferred back into the 

charge-transfer state. This can occur in both directions (2 ¢::) 3). And since this energy 

is transferred back into the charge-transfer state, it is no longer available for 

luminescence. The result is an observed decrease in emission intensity and reduced 

fluorescence lifetime. The phenomenon in which electrons bleed off from the 

charge-transfer state back to the lattice is the known as phono-coupling. This largely 

nonradiative process gives rise to thermal quenching. 

Struck and Fonger determined that 5D
j 

populations U = 0, 1 ,2,3) were quenched to 

the charge-transfer state in the order 5D3 , 5D2, and 5D 1 as the temperature increased. 

These results were based on emission intensity measurements on the dominant 

fluorescence lines of the 5D
j 

levels in La202S :Eu3+ and Y202S :Eu3+ as a function of 

temperature.O8) This can be seen once again by recalling Figure 2-4. 

An interesting phenomenon detailed by Struck and Fonger occurs at higher 

temperatures when an electron from an neighboring oxygen ion fills the hole left by the 

electron that transferred to create the Eu2+ ion.<15) This formation of the Eu2+ ion leaves 

a free hole which upon recombination with other electrons gives rise to emission created 

through the recombination of the Eu2+ - hole. This recombination may explain the 
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non-exponential effects that may occur in the Eu3+ fluorescence at higher temperatures, 

specifically above the onset of emission quenching. 

Quenching of Emission 

For some phosphors, the fluorescence intensity slowly increases with increasing 

temperature, reaches a maximum, and then decreases. This behavior arises from a 

competition of an increasing absorption for the exciting radiation and thermal quenching 

of the emitted radiation. The decrease in fluorescence intensity beyond the onset of 

quenching is usually logarithmic. In a study by Haake (l9), he shows that the initial slow 

increase of fluorescence intensity as temperature increases is strongly dependent on the 

thickness of the sample considered. The phosphors used in his study were manganese­

doped magnesium fluorogermanate. Thin samples, for example those in which the 

penetrating exciting radiation is not absorbed completely, in comparison with thick 

samples exhibit a steeper slope and a maximum at higher temperature. If the phosphor is 

in powder form, the average particle size also influences the slope. 

Quenching of Emission Intensity 

Quenching of the emission intensity at higher temperatures can be explained simply 

as a redistribution of electron population densities. These population densities are 

described by Boltzman's relationship of electron distributions. At higher temperatures, 

phonon-induced nonradiative relaxation begins to dominate. There are fewer electrons in 

the higher energy states available for de-excitation. At the onset of temperature 

quenching, a larger number of electrons are transferred back into the charge-transfer state 
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making them unavailable for luminescence. Therefore the intensity of the fluorescence 

should decrease significantly with increasing temperatures above quenching onset 

Quenching of lifeti.me Decay 

The variation in exponential lifetime decay with temperature is due to the presence of 

the charge-transfer states in the host lattice. The fluorescence is produced by radiative 

de-excitations of the dopant activators. However, the presence of the charge transfer 

state governs the fraction of radiative to non-radiative decay that can occur and as a result 

the overall exponential lifetime decay will change. As described previously in this 

section, the fact that electrons are transferred back to the charge-transfer band results in a 

reduction of energy available for fluorescence thereby making fluorescence lifetimes 

shorter. 

Spectral. Temperature Dependence 

The spectral shift of the ultraviolet band in europium-doped phosphors when 

measured as a function of increasing temperature should theoretically shift to lower 

energies. This phenomenon will only occur in the excitation spectrum, particularly in the 

charge-transfer absorption bands of Eu3+ activated phosphors. At any temperature, the 

nuclei of the phosphor are constantly in motion and under normal excitation, the 

charge-transfer band is created by electron transfer between the oxygen-dominated lattice 

and the activator ion. As the temperature of the phosphor increases, vibronic levels of the 

4f excited states will fill up. Since the higher vibronic levels of the 4f excited states are 

now thermally populated, this leads to a lower excitation energy because the excitation 
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transition starts at a higher level in the 4f vibrational ground states (7F). The transition 

has a lower difference in excitation energy from the 4f ground state to the 4f excited states 

and therefore requires lower optical absorption energy. This in turn leads to a decrease in 

absorption energy and a charge-transfer band shift towards the red should be evident in 

the excitation spectra when measured as a function of increasing temperature. Results of 

the excitation spectra measured as a function of increasing temperature are presented in 

Chapter IV. 

Role of the Structure and CTS in Quenching Onset 

In this section, the effects of the cation radius within the host crystal lattice are 

presented. A short discussion on the importance of the position of the charge-transfer 

state with respect to the onset quenching temperature follows. 

Effect of the Cation Radi.us in the Host Crystal Lattice 

A paper by Ropp <20) discusses the coupling between the charge transfer and 5D 

states of the trivalent rare earths. The separation or overlap of the intershell (4f-5d) and 

charge transfer spectra of the trivalent rare earths depend upon properties of the host 

crystal lattice, not upon the activator rare earths themselves. Charge transfer energy 

positions can be related to (a) symmetry of neighboring atoms around the central rare 

earth, (b) degree of polarizability of these neighboring atoms, and (c) the amount of 

covalency in the structural bonding. An example indicates that when sulfur was added to 

a Y2O3 host (doped with trivalent europium) to form a new host lattice of Y2O3S the 
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observed charge transfer band appears at lower energies in the excitation spectra. The 

effects of the host cation radius can be exploited to create phosphors with charge transfer 

band at specific energy locations. 

Position of the CTS with Respect to the Onset Quenching Temperature 

The energy or position of the charge-transfer transition relative to the ground state 

affects the onset of quenching temperature of phosphors. The contribution to the 

charge-transfer energy from the host depends mainly upon the polarizability of the nearby 

anions. Blasse and Hoefdraad have studied the position of the charge-transfer band of 

Eu3+ and the effects of the ionic radius of the relevant host ion.<21 ,22) They conclude 

that (a) the charge-transfer band position varies as a function of the host lattice, and (b) 

the variation in VIII coordinations is proportional to the Eu-O distance and with 

increasing bond length the charge-transfer band shifts to lower energies. Their data place 

the position of ScPO4:Eu3+ (:::: 48 kK) at a higher energy when compared to LaPO4:Eu3+ 

(37 kK). Thus, for a given dopant ion, the charge-transfer band shifts to lower energies 

as the cation radius increases. 

Rare-earths are suited for high temperature measurements since the optical 

transitions occur between the energy levels of the 4f states. Since the lattice-dopant ion 

coupling is small for the 4f states, many processes which contribute to the onset of 

temperature quenching of emission occur at relatively high temperatures. Furthermore, 

reduction of the lattice -ion coupling should yield an increase in onset quenching 

temperatures which can be observed in lifetime decay calibration. Exploiting the 

knowledge of the effect of a decrease in host-ion bonding and applying it to 

thermographic phosphor measurements may show interesting results. 
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Several orthophosphate single crystal phosphors are being investigated in this work 

for charge-transfer band location and lifetime decay calibration. These phosphors have 

potential use in high temperature sensing applications. More importantly, these 

orthophosphates have been fabricated with various host lattice structures and are all 

trivalent europium-doped with the same activator concentrations. Details of their 

constituents and fabrication are presented further in this document. Table 2-1 compares 

the host cation radii of the available orthophosphate crystals. 

Table 2-1. Comparison of the ionic radii of several orthophosphate phosphors. 

Orthophosphate Phosphor Cation Radius 

Europium-doped Lanthanum Phosphate 1 .061  A 

Europium-doped Yttrium Phosphate o.893 A 
Euro pium-doped Lutetium Phosphate o. 850 A 
Europium-doped Scandium Phosphate o .730 A 

Source: CRC Handbook of Physics 

It is seen that lanthanum has a cation radius of 1.06 lA whereas yttrium has a cation 

radius of 0.893A. The cation radii of lutetium and scandium are even smaller. Therefore 

two aspects should be evident in the results of excitation spectra and lifetime decay 

analysis of these orthophosphates. First, it should be observed that the position of the 
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charge-transfer band in the absorption spectra will be located at higher energies or 

optically, deeper into the ultraviolet as the cation of the host crystal decreases. For 

example, the peak position of the charge-transfer band in lanthanum phosphate should be 

located at lower energies than the peak position of the charge-transfer band in yttrium 

phosphate. Secondly, an increase in the onset of temperature quenching should be 

observed in the phosphors which host a smaller cation radius. For example, the onset 

quenching temperature for lutetium phosphate should be higher than the onset quenching 

temperature for lanthanum and yttrium phosphate. Details of the results of the spectral 

and lifetime decay measurements are discussed in Chapter IV. 



CHAPfER ID 

EXPERIMENTAL METHODS AND PROCEDURE 

Complete details of the experimental methods and procedures used to obtain 

excitation and emission spectra at room and elevated temperatures, and lifetime decay 

calibration measurements are presented in the following pages. A brief discussion of 

thermographic phosphor materials compares and contrasts properties of the powder 

phosphors with those of the single crystal orthophosphate phosphors. Orthophosphate 

crystal structure and fabrication are also discussed. Systematic and experimental 

complications, error measurement, and error correction are presented for excitation and 

emission spectra and for lifetime decay measurements. A new method of defining and 

calculating the onset quenching temperature from a phosphor lifetime calibration curve 

using a computer program is presented and discussed in detail. 

Thennographic Phosphor Materirus 

Luminescent phosphor materials used in this research are categorized into two types, 

polycrystalline granular powder phosphors (referred to as powders) and single crystal 

orthophosphate crystals. Each phosphor consists of a host crystal lattice structure which 

is doped with one of several rare-earth activator elements. Typically found in the powder 

phosphors is an oxygen-dominated crystal lattice structure with compounds such as the 

metal oxides, oxysulfides, vanadates, fluorogermanates, and phosphates being combined 
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with element such RS yttrium, lanthanum, magnesium and many other similar elements. 

The orthophosphate crystals usually consist of an oxygen-dominated phosphate lattice 

structure with the addition of a lanthanide element such as lanthanum, cerium, 

praseodymium, and so forth. 

The lighting and display industries use a variety of rare-earth doped phosphors for 

various applications. There are literally hundreds of different host crystal lattice/dopant 

ion combinations that are and can be manufactured by these phosphor companies. 

Chemicals and materials used for the production of commercially-produced and specialty 

phosphors are well documented by the industry, in particular Sylvania Chemical and 

Metallurgical Division of GTE Products Corporation. (23) 

General information on all of the thermographic phosphors researched for spectral 

and emission properties is shown in Table 3-1. All of the fifteen powder and crystal 

phosphors were analyzed spectroscopically by their excitation and emission spectra 

measured both at room temperature and as a function of increasing temperature. 

Tabulated are the number and type of spectra taken for each phosphor sample. The table 

also describes peak emission color, the phosphor manufacturer, the lot number, 

phosphor type, lifetime data availability, and other pertinent information concerning any 

of the phosphors characterized. 

Phosphor Powders 

The powder phosphors used in spectral and lifetime experiments were manufactured 

commercially by GTE-Sylvania Chemical and Metallurgical Division, USR Optronix, and 

AESAR. Samples of the phosphors were either purchased from or donated by the 

manufacturer or obtained from other research laboratories currently involved in thermo-
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phosphor work. These inorganic phosphors have typical application in cathode-ray 

tubes, photocopy and UV-emitting lamps, fluorescent sign tubes, x-ray intensifying 

screens, electroluminescent devices, tagging and identification, and high-pressure 

mercury vapor lamps to name a few. Europium-doped yttrium oxide with its 

characteristic red emission can be found in color television tubes as a tri-phosphor 

component, whereas terbium-doped lanthanum oxysulfide is used in monochromatic 

green data display screens. 

Available in technical information bulletins published by phosphor chemical 

manufacturers are typical optical properties such as fluorescence color, peak emission 

wavelength, line or band width, color coordinates, relative CR brightness, and decay or 

persistence classification. Typical physical properties of commercially-made phosphors 

such as body color, particle size, bulk density, material density, and other useful 

information are available to researchers in published technical literature.<24) Some of the 

commercially-made phosphors contain impurities and oftentimes gives rise to unknown 

spectral lines in emission spectra. Therefore further chemical analysis may be necessary 

to completely understand the fluorescent results. 

Eleven polycrystalline phosphor powders were researched for spectral shifts in their 

charge-transfer absorption bands and of these eleven powders, two of the phosphors 

underwent decay lifetime calibration for potential use in high temperature sensing 

applications. These phosphor powders include dysprosium-doped yttrium vanadate and 

yttrium oxide, europium-doped yttrium oxide, yttrium vanadate, barium phosphate, 

lanthanum oxysulfide, and yttrium oxysulfide, gadolinium-doped yttrium oxide, 

manganese-doped magnesium fluorogermanate, praseodymium-doped yttrium 

oxysulfide, and terbium-doped yttrium oxysulfide. 
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Orthophosphate Crystals 

Single crystals are generally thought to be better host structures for thermographic 

phosphor work than polycrystalline granular powders. Several reasons are noted for this 

hypothesis. Single crystal phosphors can be grown under carefully monitored conditions 

which should result in lower surface and internal impurity levels that those found in 

polycrystalline powder form. Using x-ray diffraction analysis, single crystal lattice 

parameters can be measured with greater accuracy . .  _Crystals can be cut and polished to 

meet higher optical standards and specifications which may help eliminate optical 

alignment errors in the measurement system. Typically the lattice spacing and general 

structure of a single crystal is quite regular, therefore analysis and modeling of the 

quantum physics of the de-excitation process can be more easily performed. It can be 

seen that single crystals, as compared to granular polycrystalline powders, offer more 

opportunity for quantitative analysis and structural control for use in thermometry 

measurements. 

Several single crystal orthophosphate samples were obtained from the Solid State 

Physics Division of Oak Ridge National Laboratory. The mineral monazite, a mixed 

lanthanide orthophosphate (from the lanthanide series La, Ce, Nd, ... ) exhibits 

characteristics that make analogs of this substance attractive for potential employment as 

hosts for the containment of radioactive nuclear waste. These research investigations of 

nuclear waste containment and management by the Solid State Division of ORNL are well 

documented. <25,26) 

Since many of these orthophosphate crystals are doped with rare-earth activators, 

they exhibit strong fluorescence of varied wavelengths. Of particular interest to 

thermographic phosphor measurements are the europium and dysprosium-doped 
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orthophosphate crystals which display bright visible orange-red and yellow fluorescence 

under ultraviolet excitation. 

An orthophosphate is defined as a molecular compound which contains the P04 

radical, for example lanthanum orthophosphate LaP04 • Construction of an 

orthophosphate begins with an oxide such as Lu203 and combines it with lead hydrogen 

phosphate. The chemical equation of the reaction of these two compounds is given as 

which yields lead pyrophosphate, lead oxide, water and the orthophosphate. With the 

addition of another oxide to the reaction equation which contains the dopant ion, a doped 

orthophosphate can be formed. For example, the addition of europium oxide, lutetium 

oxide, and lead hydrogen phosphate will eventually form an europium-doped lutetium 

orthophosphate crystal. 

Four orthophosphate crystals were researched for spectral shifts in their 

charge-transfer absorption bands and underwent decay lifetime calibration for potential 

use in a high temperature measurement system. These orthophosphates include single 

crystals of europium-doped lanthanum, yttrium and lutetium phosphate and 

dysprosium-doped lutetium phosphate. 

Crystal Lattice Strncture 

At elevated temperatures, the lanthanide orthophosphates (LnP04 with Ln = La, Ce, 

Pr, . . .  , Lu) crystallize into two different structural classes. Orthophosphates of the first 

half of the lanthanide transition series (LaP04 through GdP04) crystallize in the 
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monoclinic form, while orthophosphates of the second half of the series (ThPO4 through 

LuP04) crystallize with the tetragonal structure. It is important to note that even though 

ScPO4 and YP04 are not included in the lanthanide transition series, they also have 

tetragonal crystal structures. The monoclinic lanthanide orthophosphate form is a direct 

structural analog of the natural mixed rare-earth mineral monazite, while the tetragonal 

form is the structural analog of the minerals, zircon and xenotime.<27,28) Therefore, of 

the orthophosphate host crystals researched, YPO4 and LuPO4, have tetragonal crystal 

symmetry whereas LaP04 is of the monoclinic structural form. 

Although the physical structure of orthophosphate crystals is quite complex, the 

fundamental properties of both pure and rare-earth-doped phosphates have been 

investigated by utilization of techniques such as optical absorption spectroscopy, 

Rutherford backscattering, x-ray diffraction, and Raman spectroscopy. In particular, 

electron paramagnetic resonance (EPR) spectroscopy has been used to determine the site 

symmetries and valence states for a number of impurities in both single crystal and 

polycrystalline samples of orthophosphates. Structural investigations of LaPO4, YPO4 

and LuPO4 crystals using EPR spectroscopy and other techniques have been exhaustively 

researched and are well documented in other publications. (26,29) 

Crysta/, F abricati.on 

Doped single crystals of LaPO4, YPO4, and LuPO4 were grown at the Solid State 

Division of ORNL using a flux technique by first reacting the host material and dopant 

oxides with lead hydrogen phosphate in covered, tight-fitting platinum crucibles. 

Trivalent europium and dysprosium dopants were added in the form of the oxides, Eu2O3 

and Dy2O3 . As a result, the crystals in their final form, are either europium- or 
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dysprosium-doped. After 16 hours in a high temperature furnace at approximately 

1360°C, the crucibles were slowly cooled at a rate of approximately 1 °C/h to 900°C and 

then, directly to room temperature. Following the subsequent cooling to room 

temperature, the resulting single crystals were removed from the solidified lead 

pyrophosphate flux by boiling in concentrated nitric acid for approximately three weeks. 

(28) The freed crystals appear translucent with a very slight white color. However, some 

of the crystals exhibit a slight grayish color due to minute amounts of the flux material 

still embedded in its structure. Further optical clarification of the crystals can be achieved 

by continued boiling in the nitric acid bath. 

For example, the orthophosphate phosphor LuPO4:Eu3+ was grown with the 

following initial constituents: 

60g PbHPO4 
3.5g Lu2O3 

0.0175g Eu2O3 

where the ratio of the weight of Eu2O3 to the weight of Lu2O3 gives the dopant 

percentage by weight. For this particular orthophosphate the dopant level is 0.5% by 

weight. Dopant levels of phosphors are also commonly given in atomic percent. 

However in this work, dopant levels are given in percentage by weight. Constituents of 

each orthophosphate crystal are given by formula and weight in grams and can be found 

in Table 3-1. An electron photomicrograph of the single crystal LaPO4:Eu3+ is shown in 

Figure 3-1 and details some of its surface features. 



Figure 3- 1 .  SEM photograph of the LaPO4:Eu3+ single crystal phosphor. 

34 
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Excitation and Emis.sion Spectra at Room and Elevated Temperatures 

Excitation and emission spectra were obtained at room and elevated temperatures 

using the experimental configuration shown in Figure 3-2. A Perkin-Elmer 650- l OS 

fluorescence spectrophotometer was used along with its built-in, high-intensity xenon 

lamp as an excitation source. The model XBO 1 50 watt source is a short arc xenon lamp 

manufactured by Osram Incorporated. A miniature oven was constructed of high 

temperature ceramic brick material and was designed to fit inside the internal housing of 

the fluorescence spectrophotometer. The ceramic brick pieces were joined together and 

cemented with Sauereisen No. 75 high temperature electrical refractory cement. 

In addition to the ceramic material, the oven consists of a diffusion-pump cartridge 

heating element controlled by an adjustable AC power supply and has a maximum output 

temperature of approximately 500°C. A Keithley 173A digital voltmeter is connected to 

the output of the AC power supply and is used to monitor the voltage to the oven heating 

element. The oven temperature has been roughly calibrated to its input AC voltage. Since 

there is no feedback output from the thermocouple, the operator must set a voltage value 

and monitor the oven temperature until the desired temperature is reached. 

The mini oven also features quartz optical ports through which excitation radiation is 

incident upon the crystals and its fluorescence observed through the exit port by a 

photomultiplier tube. Dimensions of these SupraSil quartz optical windows are 1 mm in 

thickness and 31.75  mm in diameter and are essentially UV transparent. A Wahl type K 

thermocouple calibrated with NBS standards was mounted in the mini oven and placed 

approximate I y 1 -2 mm in front of the crystal sample to monitor its temperature. 

A cross-sectional top view of the ceramic oven used for the high temperature spectral 
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characterization is shown in Figure 3-3 and reveals the major components of the oven. 

The dimensions of the high temperature ceramic oven are shown in Figure 3-4. The 

oven has an overall length of 130 mm, width of 108 mm, and height of 100 mm. A 

Helma solid sample cell holder was used to hold all of the powders and crystals for room 

temperature spectra measurements. This cell contains a metal cavity for the sample and is 

covered with a 12 mm SupraSil II quartz window. The holder mounts in the housing of 

the spectrophotometer and positions the sample cell at a 60° angle to the excitation beam. 

A special ceramic holder was constructed for each powder and crystal phosphor sample 

under high temperature measurement and was carefully positioned inside the cavity of the 

mini oven. The holder consists of a 40x15x10 mm piece of ceramic material with a small 

10x6x4 mm hole near its bottom in which the powders and crystals are placed. Covering 

the crystals is a 1 mm thick quartz window cemented in place with Sauereisen No. 75 

cement. A diagram for the ceramic holder used to hold the orthophosphate crystals is 

shown Figure 3-5. 

The powder phosphors are usually packed into their ceramic holders and then 

soaked with pure ethanol. The ethanol helps to coagulate the powder, keeping it from 

falling out of the holder and thereby eliminating the need for a quartz window cover. 

Since the phosphor crystals are held in their ceramic holders with a quartz window, it 

may be possible that optical coupling between the excitation source, the phosphor 

sample, and the photomultiplier will be reduced slightly. The two quartz windows of the 

oven will also reduce the excitation and emission radiation slightly. 

Excitation and emission wavelengths for each spectrum varied from 220.0 nm 

continuously up to 800.0 nm which is the range of the spectrophotometer. The operator 

of the spectrophotometer has several options or settings to choose from, although most 

setting remained fixed throughout the majority of the measurements. 
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Figure 3-4. High temperature ceramic oven dimensions. 
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Figure 3-5. Ceramic sample holder for the orthophosphate crystals. 
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Photomultiplier sensitivity ranges from 0. 1 to 30 with increments available in one 

tenths. The gain of the Hamamatsu R372F photomultiplier tube in the spectrophotometer 

was set to normal unless specified on the spectrum label. Spectrophotometer response 

and mode were set to normal. The scan speed has a range of 15  to 240 nanometers per 

minute however most spectrum scans were obtained at 30 nm/min. Excitation and 

emission bandpass slits have widths ranging from 1 nm to 25 nm. The majority of 

spectra were obtained with excitation and emission bandpass slit widths set to 1 nm. The 

spectrophotometer has a wavelength resolution of less than or equal to 1 .5 nm and a 

wavelength accuracy of ±2 nm or better. 

Spectra obtained for each phosphor sample were plotted on Gould Accuchart 

recording paper with an Perkin Elmer/Hitachi Model 057 X-Y chart recorder. The chart 

recording paper measures 1 1  inches by 1 6  inches and is marked in 1 mm increments. A 

Perkin Elmer 650- 10 X-Y Recorder Interface was used to drive the chart recorder. The 

recorder interface scan mode was set to A to correlate the movement of the x-axis with 
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the wavelength of the spectrophotometer. The reset button was used to reposition the 

chart pen to the starting point of the x-axis so that another scan can be run. The pen 

setting on the chart recorder set to "auto" so that when an excitation or emission scan was 

run, the pen was raised from and lowered to the chart paper automatically. The chart 

hold setting was set "on" to firmly hold the chart recording paper in place. The X and Y 

range setting on the chart recorder were used to scale the acquired spectrum so that it 

wo1Jld fit on the recording chart paper. These range settings were adjusted for each 

spectrum. Figure 3-6 show a sample label that is attached to each spectrum chart. This 

label is used to preserve important information about each phosphor spectrum including 

spectrophotometer settings so that spectra may be reproduced easily in the future. 

Sample LuP04:Eu3+ 

Date Nov. 1 0, 1 988 Spectrum 
Type EMISSION 

l n it. A.R.B 
@ Wavelength 395 nm EX 

Temp. __ 3_0_o_o_c __ 

Bandpass EX __ 1 _n_m __ 

EM 1 nm 

Scan ___ 3_o ___ _ 
Sens. ___ 1_o_._4 ___ _ 

X = XS Y = X2 

Gai n  Norm 

Mode Norm 

Resp. Norm 

Filter - None -
D Sample cell • Temp. 

Figure 3-6. Label attachment for each spectrum chart 

The procedure of obtaining a typical excitation spectra will be described. The 

powder or crystal phosphor is placed carefully in its appropriate holder and placed into 

the cavity of the mini oven. The oven was then aligned with the excitation beam. The 
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excitation grating was slowly rotated while watching the phosphor sample for bright 

fluorescence. This was done if the emission lines of the phosphor were unknown. The 

emission grating was set near the wavelength of the visually-detected emission and the 

sample compartment lid was closed. The emission and excitation gratings were slowly 

rotated until the chart recorder pen reached its peak intensity value (maximum 

photomultiplier signal) and still remained in the range of the chart recorder y-axis. This 

was done mainly by trial and error to achieve the maximum intensity value. Other 

spectrophotometer settings were adjusted accordingly, in particular the photomultiplier 

tube sensitivity. After the peak emission line is found, the emission grating remains 

fixed. The excitation grating is set to 220.0 nm and the spectrophotometer rotates the 

excitation grating to excite the phosphor usually through a range of wavelengths starting 

from 220.0 nm and ending with 600.0 nm. The result of this procedure produces an 

excitation spectrum. After a few test scans are completed and the final spectrophotometer 

settings are verified, excitation spectra are taken at room temperature and then at elevated 

temperatures. Temperatures within the oven range from roughly 20°C up to 450°C. Care 

was taken to allow for temperature within the oven to stabilize. Each excitation or 

emission spectrum was recorded on a separate chart for each temperature point. The 

emission spectrum is recorded using the same procedure however the excitation 

wavelength remains fixed while the emission grating rotates through a selected range of 

wavelengths. It is usually not necessary to have to readjust the photomultiplier sensitivity 

when acquiring the emission spectrum. 

The excitation and emission wavelengths for each spectrum were analyzed using 

hand-calculated graphical methods. All wavelength measurements are given in 

nanometers. The charts were proportionally scaled and for some of the phosphors, 

significant changes in wavelength were measured at the peak of the charge-transfer 
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absorption bands. The spectral charts for each phosphor at different temp�ratures were 

then compiled on a light table by hand tracing each with multicolored pencils. This 

results in a one-page excitation or emission spectra which displays all of the spectral lines 

for each temperature measured. Details of any significant charge-transfer spectral shifts 

and changes in intensity and wavelength can be compared and contrasted from the 

one-page chart. The spectral charts found in the following pages of this thesis are only 

graphical representations of the actual spectra and are solely used for neat and orderly 

presentation of data and results. Using a DEST optical scanner in conjunction with an 

Apple Macintosh computer, each chart was digitized and store on computer disks. The 

digitized spectra charts were then used as background templates for Adobe Illustrator 88, 

an program which traces a template and produces high-quality graphical output. The 

graphs produced with Adobe Illustrator 88 were printed on an Apple LaserWriter Plus 

high-resolution printer. 

Two other final details regarding spectrophotometer measurements should be 

discussed at this time. It was mentioned earlier that the Helma solid sample cell was 

mounted at 60° with respect to the excitation beam. Since the excitation beam maybe 

partially reflected (specular light) from the surface of the sample cell, a portion of the 

excitation light may enter the emission monochromator. Also second order excitation 

may enter the emission monochromator, interfering with spectral measurements. For 

example if the excitation wavelength is on the order of 220 to 300 nm, it is possible that a 

second order line will be observed by the emission monochromator in the 400 to 600 nm 

range. An ultraviolet filter was used to help reduce or eliminate second order effects in 

the spectra obtained. 

Since the mini oven is in close proximity to the photomultiplier tube of the 

spectrophotometer, it is suspected that blackbody background radiation or thermal heating 
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may be a contributing factor affecting the spectral results, especially at higher 

temperatures. This complication is discussed later in this chapter. 

UV Filter Characteristics 

An ultraviolet filter was normally used in the measurement of excitation and 

emission spectra at room temperature. The primary purpose of the filter was to reduce or 

eliminate the second order excitation lines sometimes reflected from the surface of the 

Helma solid sample cell holder. The ultraviolet filter was placed inside the sample 

compartment of the spectrophotometer in front of the photomultiplier tube. This filter has 

a cutoff wavelength of 400.0 nm as shown in the reflectance spectrum of magnesium 

oxide of Figure 3-7. The reflectance spectrum of magnesium oxide was also used to 

characterize the spectral output of the the xenon lamp of the spectrophotometer and is 

discussed in the following section. The emission spectrum of the filter was also acquired 

and shows a small amount of fluorescence located at 518.0 nm when excited with 300 

nm. This spectrum was taken at a photomultiplier tube sensitivity of 30. Figure 3-8 

shows the emission spectrum of the filter with first and second order excitation lines 

whereas Figure 3-9 shows the essentially the same emission spectrum but with the 

reflected excitation lines removed 

Fluorescence Spectrophotometer Intensity Correction Spectra 

A short discussion of spectrophotometer intensity correction is necessary and a 

method for obtaining corrected spectra is presented. It should be noted that the output of 

the Perkin-Elmer 650-lOS fluorescence spectrophotometer is not corrected for variations 
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in source intensity and photomultiplier spectral responsivity. Most of the current 

state-of-the-art fluorescence spectrophotometers have built-in computer correction for 

both the xenon lamp intensity and photomultiplier spectral responsivity and the result is 

true corrected spectral output. These spectrophotometers have two detectors, one which 

monitors the xenon lamp intensity spectrum and the other which is used to collect the 

fluorescence spectrum. Since a computer collects the spectral waveforms, which are 

usually displayed on a high-resolution screen, it can easily run the waveforms through a 

correction algorithm thereby producing the corrected spectra 

Ideally, one would like the intensity of the excitation source to be flat across the 

spectrum of wavelengths of interest. However this is usually not the case since most 

broadband lamps contain spectral peaks at various wavelengths. This usually calls for 

correction of peak variations. The correction of intensity variations of the xenon source 

can be made by dividing the spectra obtained by the xenon lamp spectra. The correction 

of spectral variations in the photomultiplier tube can be made by dividing the spectra 

obtained by its spectral responsivity curve. These corrected spectra are then multiplied by 

the measured excitation or emission spectrum to obtain a corrected measurement. 

A reflectance spectrum of 99. 99% pure magnesium oxide powder was actually used 

to obtain a spectrum of the 150 Watt OSRAM high-pressure xenon lamp used in the 

Perkin Elmer spectrophotometer. Figures 3-10 shows the reflectance spectrum of 

magnesium oxide when placed in the Helma sample cell with a quartz window. Figure 

3-11 shows the reflectance spectrum of magnesium oxide when placed in ceramic holder 

without a quartz window. The reflectance spectrum of magnesium oxide is generally 

straight (or flat) for all wavelengths of light since it is a pure reflector. 

This was done to verify any changes in the reflectance spectrum due to effects of the 

quartz window in the Helma sample cell. A comparison of the two spectra shows almost 
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identical peaks, both in intensity height and wavelength peak position. More importantly 

the reflectance spectra characterize the spectral output of the xenon lamp and it can be 

easily seen that there is wide variation in its intensity. Prominent peaks in the spectrum 

are found at approximately 397.85, 420.08, 438.27, 448.40, 461.52, 466.57, 472.63, 

480.72, and 491.83 nm. The spectral radiant distribution of the same xenon lamp was 

obtained from the OSRAM corporation and can be found in Appendix A of this 

document. Prominent peaks in the OSRAM spectrum are found near 397, 420, 438, 

450, 462, 467, 473, 480, and 492 nm which compares favorably to the reflectance 

spectra shown in Figures 3-10 and 3-11. Once the xenon lamp spectrum is known it can 

be used to correct for variations in its intensity with respect to the acquired spectra. 

Intensity correction of the spectra obtained with the Perkin Elmer 650- l0S 

fluorescence spectrophotometer could be a time-consuming task. One could use a 

computer to digitize the spectra of the xenon lamp and photomultiplier tube response and 

store the waveforms in memory. Likewise all acquired spectra could be digitized and 

stored in the computer. Using certain software packages, the waveforms could be 

divided and multiplied accordingly until corrected spectra are obtained, analyzed, and 

printed. Other techniques are probably available to achieve the same results but may 

hardly be worth the effort. 

Therefore, the spectra presented in Chapter IV have not been corrected for variations 

in the excitation source or photomultiplier output. However, the need for intensity 

corrected spectra is not of great importance to this work since the spectral work focuses 

mainly on the wavelength-dependence or the wavelength peak position(s) of each 

spectrum. The spectra presented in this thesis work, when compared to similar spectra 

produced by other researchers, may exhibit slightly different intensity values for the same 

spectral peak or band. 
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Fluorescence Spectrophotometer Reproducibility 

A simple statistical study was performed to analyze the reproducibility of a 

spectrophotometer spectral scan and to obtain a level of uncertainty in the measurement. 

Random errors only are presented and are due mainly to the inconsistency of the x-axis or 

wavelength drive motor train in the X-Y chart recorder. Other random errors may be due 

to operator error in resetting the excitation or emission grating dials to their proper 

wavelength values prior to recording a spectra ,or fluctuations in the timing signals from 

the spectrophotometer to the X-Y chart recorder interface. Most importantly, this 

analysis will provide useful information as to the reproducibility of fluorescence spectra 

as the wavelength peaks of the spectra shift due to random errors. 

The sample mean, sample variance, sample standard deviation and mean value of the 

sample standard deviation of the complete spectra were measured for selected 

fluorescence peaks of the emission spectra of La202S:Eu3+. The arithmetic mean or 

average of ungrouped data for a sample is given by 

(3 .2) 

where n is the number of observations in the sample, Xi is the observed individual 

sample value (or peak value of a La202S:Eu3+ fluorescence lines in this case),  and A is 

the sample mean or mean value of the fluorescence peak:.(30) The sample variance, s2, is 

given by 

s 2 = _i =_! ___ _ 

n - 1 
(3. 3) 
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where the numerator is the summation of the squared deviations between each observed 

sample value Xi, and the sample mean A. The standard deviation s, is given by 

i =  1 s =  
n - 1  

(3.4) 

which is the positive square root of the variance. The standard deviation is noted as the 

most important calculation since it is a measure of the dispersion of the sample data from 

the sample mean. The more the sample data are dispersed, the higher will be the value of 

the standard deviation from the sample mean. The mean value of the variance of all 

spectral data or for all of the sample data for all six peaks is denoted by the variable 

My AR, is given by 

m 
(3.5) 

whereas the mean value of the standard deviation between all of the spectral data denoted 

by the variable Mso is given by 

I s. 
j = 1 J 

M SD = m 
(3 .6) 

where m is the number of samples or the number of fluorescence peaks in the 

La2O2S:Eu3+ spectrum which was analyzed. 

Using the La2O2S:Eu3+ test phosphor in the spectrophotometer, 20 identical spectra 

(hence n = 20) were acquired, each on a separate chart. The excitation wavelength 

remained fixed at 345 nm while the emission wavelength began at 520 nm and ended at 
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640 nm for each scan. The scan speed was set at 30 nm/min and the x-axis range- was 

increased to XS to allow for finer resolution of the peaks. Six major fluorescence peaks 

(hence m = 6) were analyzed for their sample mean, variance, and standard deviation. A 

graphical representation of the compiled spectra for the La2O2S :Eu3+ test phosphor is 

shown in Figure 3-12 and gives the sample mean, variance, and standard deviation 

values for each peak. 

Table 3-2 shows a complete breakdown of the data for all 20 charts and also 

includes the sample mean, variance, and standard deviation values for each of the six 

peaks. All wavelength values are given in nanometers. 

All calculations were done with a Macintosh computer using a spreadsheet program. 

It can be seen that the standard deviation for Peaks 1 through 6 are 0. 510298, 0. 476363, 

0.457333, 0. 277901, 0. 310476, and 0.340925 nanometers respectively. Peak 1 had the 

largest amount of data dispersion whereas Peak 4 had the least. The standard deviation 

versus the mean wavelength of several emission peaks of La2O2S :Eu3+ is shown in 

Figure 3-13. 

The mean value of the standard deviation for all of the spectral data was found to be 

0. 395549333 nm. Therefore for this chart recorder and spectrophotometer, the dispersion 

of data as a function of wavelength may vary on the average of approximately 0. 4 nm per 

spectral scan. 



A
•

 5
39

.3
04

6
 

so
• 0

.5
10

29
8

 

V
a

r .•
 0

.2
604

04
 

52
0.

0 
n

m
 

P
e

a
k

 1
 

P
e
a
k
 2

 A
.

 5
56

.5
2

78
 

so
• 0

.4
76

36
3 

V
a

r.-
0

.22
6

9
2

2
 

U
s

in
g

 t
h

e
 E

m
is

s
io

n
 S

p
e

c
tr

u
m

 o
f 

E
u

ro
p

iu
m

-d
o

p
e

d
 

L
a

n
th

a
n

u
m

 O
x

y
s

u
lf

id
e

 t
o

 A
n

a
ly

z
e

 t
h

e
 C

h
a

rt
 

R
e

c
o

rd
e

r 
R

e
p

ro
d

u
c

ib
il

it
y

 

A
-

586
.3

9
72

 

so
 • 

0
.4

57
333

 

V
a

r.-
0

.209
154

 P
e
a
k

3
 

A
.

 5
94

.1
38

0 

so
. 0

.2
7

7
90

1 

V
a

r .•
 0

.0
77

2
29

 

P
e
a
k
 4

 

A
-

6
14

.7
9

54
 

so
. 0

.3
104

7
6

 

V
a

r .•
 0

.0
9

6
39

5 

P
ea

k 
5
 

P
ea

k 
6
 

�
 

A
•

 6
2

3.
436

9
 

so
 • 0

.3409
2

5 

V
a

r .•
 0

.1
162

30
 

64
0.

0 
n

m
 

Fi
gu

re
 3

-1
2.

 E
m

is
si

on
 s

pe
ct

ra
 o

f e
ur

op
iu

m
-d

op
ed

 la
nt

ha
nu

m
 o

xy
su

lfi
de

 fo
r a

na
ly

si
s o

f c
ha

rt
 re

co
rd

er
 re

pr
od

uc
ib

ili
ty

. 
VJ

 
VJ

 



56 

Table 3-2. Spectrophotometer reproducibility data. 

Chart Peak 1 Peak 2 Peak 3 Peak 4 Peak 5 Peak 6 

Chart 1 539.5349 556.6777 586.5781 594. 1 528 61 4.4850 623.4551 
Chart 2 539.0955 556.38 1 9  586.33 1 7  593.9698 61 4.8744 623.71 86 
Chart 3 538.8629 556. 1 204 586.4214 594.2475 6 1 4.71 57 623.1 438 
Chart 4 538.5994 555.7988 585.5978 593.5975 61 4.3969 622.9966 
Chart 5 539.9993 557. 1 988 587. 1 978 594.3975 61 4.9968 623.5965 
Chart 6 539.0635 556.321 1 586.4214  594.0468 61 4.7157 623.7458 
Chart 7 539.2965 556.9849 586.5327 594.371 9 61 4.8744 623. 1 1 56 
Chart 8 539.4702 556.5563 586.3576 593.9073 61 4.9669 623.7086 
Chart 9 539.9667 557. 1 381 586.8885 594.2762 61 4.6423 623.4276 
Chart 1 0  539.6689 556.9536 586.7550 594.3046 61 5 . 1 656 623.7086 
Chart 1 1  538.83 1 4  556.0601 585.7095 593.9232 6 1 4.3573 622.771 3 
Chart 1 2  539.5993 556.7988 586.5978 594.3975 61 5 . 1 968 623.7965 
Chart 1 3  540.3322 557.0764 586.9767 594.55 1 5  61 4.8837 623.6545 
Chart 1 4  539.8662 557. 1 237 587.0234 594.6488 61 5.51 84 623.9465 
Chart 1 5  539.6656 556.9231 586.2207 594.2475 61 5 . 1 1 71 623.5452 
Chart 1 6  538.9369 556.279 1 586.3787 594.1 528 61 4.8837 623.6545 
Chart 1 7  538.9262 556.241 6 586.4430 594.0940 61 4.6309 623.4899 
Chart 1 8  538.5235 555.8389 585.8389 593.69 1 3  61 4.6309 623.0872 
Chart 1 9  538.7994 555.7988 585.9978 593.9975 61 4.3969 622.7966 
Chart 20 539.0541 556.2838 585.6757 593.7838 61 4.4595 623.3784 

Mean 539.3046 556.5278 586.3972 594. 1 380 6 1 4.7954 623.4369 

Standard 0.51 0298 0.476363 
Deviation 

0.457333 0.277901 0.31 0476 0.340925 

Variance 0.260404 0.226922 0.2091 54 0.077229 0.096395 0. 1 1 6230 

All wavelength values given in nanometers. 
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Decay Lifetime Measurements 

The laser-induced fluorescence of thennographic phosphors provides a remote, 

non-contact method of of making high temperature measurements as describe previously. 

Certain temperature-dependent emission lines are selected for each phosphor and are 

analyzed by their exponential lifetime decays at specific temperatures. The fluorescence 

lifetime normally exhibits a logarithmic dependence above the onset quenching 

temperature of the phosphor. Europium- and dysprosium-doped phosphors have been 

considered in this work. Specifically, single crystals of LaPO4:Eu3+, YPO4:Eu3+, 

LuPO4:Eu3+, and LuPO4:Dy3+ where examined along with YVO4:Dy3+ and Y 2O2Eu3+ 

powders. Lifetime measurements of YVO4:Dy3+ powder were performed in the 

Precision Measurements Laboratory of the Department of Nuclear Engineering and 

Engineering Physics at The University of Virginia. All other lifetime measurements were 

made at the laboratories of the Applied Technology Division of the Oak Ridge National 

Laboratory in Oak Ridge, Tennessee. 

The following two sections give details of the experimental configurations and 

methods used for making lifetime decay measurements. It should be noted that lifetime 

decay data for the Y2O2 :Eu3+ powder was not acquired as part of this research and is 

presented only for comparison to other phosphor lifetime measurements. The 

experimental configuration for Y2O2:Eu3+ is described by Cates (6) and is very similar to 

the apparatus used in the Precision Measurements Laboratory at The University of 

Virginia. 
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Experimental Lifetime Method for YV04:Dy3+ 

Lifetime decay measurements of the fluorescence of YV04 :Dy3+ were acquired 

using the experimental configuration shown in Figure 3-14. The measurements system 

utilizes a PRA nitrogen laser as an excitation source which operates at 16 kilovolts and 

with a 7 .9 Hz repetition rate. The phosphor sample was stimulated with ultraviolet 

radiation at 337 nm, a primary line generated by the nitrogen laser. The Type 2370 

YV04:Dy3+ phosphor was obtained from Sylvania Electrochemical Division and exhibits 

light green-yellow fluorescence color under laser excitation. Strong fluorescence of 

YV04:Dy3+ was observed at 485 nm and 575 nm in which the emission wavelengths 

were selected with a Jarrell-Ash Model 82010 monochromator. The excitation slit was 

set at 2000 micron while the emission slit was set at 1750 micron. An EMI 

photomultiplier tube was used to detect the fluorescence at the exit slit of the 

monochromator. The photomultiplier tube was adjusted to - 1.1 kilovolts provided by an 

ORTEC high-voltage power supply. The photomultiplier tube output was connected to a 

Tektronix 7854 digitizing oscilloscope with the vertical 7 A26, horizontal 7B85, and 

horizontal 7B87 modules installed. The signal input was terminated with 50 Q and 2 kQ 

terminators. A Compaq DeskPro 286 computer was interfaced to the oscilloscope with 

the GPIB bus and was used to primarily analyze and store the acquired lifetime signals on 

disk. A single fiber optic cable was used to transfer laser light into a Lindberg high 

temperature oven whereas a bundled two cable fiber was used to collect fluorescence and 

transfer in to the monochromator input aperture. The hard clad silica optical fiber used in 

the experiment was Type 1-076, manufactured by Ensign-Bickford Optics and was 

polished at both ends. The fiber has a cladding diameter of 1040 µm and a core diameter 

of 1005 µm. 
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A ceramic holder was constructed for the YVO4:Dy3+ phosphor which was carefully 

placed and aligned in the oven. Under 337 nm laser excitation, a fluorescence signal was 

observed and then optimized for the 575nm emission line on the monochromator. 

Fluorescence from the phosphor was very bright. The 575nm line appears to have a 

higher intensity and yields a larger signal than that of the 485nm emission line. Data 

were initially taken at room temperature, 300°C and 350°C until all of the signal was lost 

due to thermal quenching and the burning of the fiber cladding in the oven. It was first 

thought that the fibers had simply become misaligned, however at closer inspection, it 

was seen that the fiber ends which were placed in the oven had actually blackened. The 

oven was shut down and the fibers were realigned but still no signal was observed so 

they were removed and inspected. The fiber ends were repolished but still there was a 

significant loss in light propagation down the fiber. Finally the damaged ends were 

stripped of the jacket covering, recleaved and polished. Another fiber was stripped, 

cleaved, and polished and it was combined together with the other emission fiber in order 

to double the fluorescence intensity detected by the monochromator. This technique 

worked well since the observed signal was rather large in intensity. 

Lifetime data were taken at room temperature, 150, 200, 250, 300, 350, 360, 370, 

380, 390, and 400°C. The laser was shut off after each lifetime signal was acquired and 

digitized, in order to save nitrogen gas. However the settings on the laser were marked 

to give approximately the same power settings. The repetition rate as mentioned before 

was fixed at 7.9 Hz and was not changed during experimentation. All exponential 

lifetime signals were acquired using the DECAY program and were stored on computer 

disk for future analysis. Several of the lifetime waveforms (the exponential signal and its 

logarithm) were photographed with the oscilloscope camera. This was done to observe 

any non-exponential effects in the lifetime signal. 
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Studies aimed at identifying the systematic errors associated with a laboratory-grade 

version of this type of phosphor-based thermometry system have been well documented 

and are summarized by Gillies.<31) In addition, estimates for the lifetime errors were 

taken from a comprehensive study by Dowell <32) and the Lindberg oven temperature 

measurement uncertainty is estimated as 10°C as an upper bound as documented in a 

calibration study by Lutz. (33) Complete results of the lifetime decay analysis of 

YVO4:Dy3+ are presented in detail and can be found in Chapter IV. 

Experimental Lifetime Method for the Orthophosphate Crystals 

Fluorescent decay lifetime measurements of the single crystal orthophosphates were 

made using a rather elaborate experimental configuration which is shown in Figure 3- 15. 

The fluorescence of all orthophosphate samples was stimulated with a tunable laser 

system operating within a range of 394 to 397 nm. For all lifetime measurements, the 

excitation wavelength was set to approximately 395 nm. The creation of a 395 nm 

excitation line from a Nd:YAG laser was performed in a interesting way and will be 

described in the following two paragraphs. 

A Quanta Ray DCR Nd: Y AG pulsed laser operated with 1064 nm output. This 

1064 nm beam (infrared) was input to a Quanta Ray Model HG-2 crystalline harmonic 

generator where its second harmonic line of 532 nm (green) was selected. A Quanta Ray 

HG-2 Crystal Temperature Controller was used to keep the harmonic generator crystals 

warm and at a constant temperature. The fundamental beam and the second harmonic 

was separated using a Quanta Ray PHS- 1  Prism Harmonic Separator. The separated 
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fundamental and second harmonic beams were sent to the Quanta Ray PDLl pulsed dye 

laser. The 532 nm line was used to pump an DCM red laser dye which was tuned to 

628.2 nm whereas the 1064 nm line passes through the dye laser cavity. 

The DCM dye was dissolved in optical-grade methanol and mixed in different 

concentrations for use in the oscillator and amplifier cuvettes of the dye laser. DCM 

which is manufactured by Exciton Incorporated, was selected because of its high tuning 

efficiency peak located at 640 nm. A Quanta Ray TSC - 1  Dye Circulator was used to 

continuously circulate the laser dye throughout the oscillator and amplifier cuvettes. The 

1064 nm and 628.2 nm lines are directed to the input apertures of the Quanta Ray WEX 

wavelength extender. A nonlinear process known as sum-frequency mixing occurs in the 

crystal at sufficiently high powers in which a photon is created with an energy equal to 

the sum of the input photons. The WEX system uses two dichroic mirrors to combine 

the two beams and a crystal module which contains a KDP No. 1 1  crystal. The equation 

describing the sum-frequency mixing is given by 

1 1 
'\ + '\ 
/\, L aser /\, D ye 

(3.7) 

where "-Laser is the wavelength of the fundamental laser beam, "-Dye is the operating 

wavelength of the dye laser and "-wEx is the output or generated wavelength of the 

wavelength extension system. Substitution of the operating wavelengths of the 

experimental configuration into Equation 3.7 gives the following relationship 

395 nm 
1 1 

1064 nm + 628 . 2 nm 
(3 .8) 

where the 395 nm beam is actually the sum of the reciprocals of the 1064 nm and 628.2 
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nm lines. Therefore the-, output of the WEX yields the 395 nm excitation line. A 

schematic diagram for generating a 395 nm laser line from a 1.064 µm Nd:YAG laser 

using the previously described technique is shown in Figure 3-16. 

The 395 nm beam was guided with planar dichroic mirrors to a short focussing lens 

which focussed the radiation into a bundle of three 1 mm diameter sapphire rods. 

Sapphire rods were chosen for their ability to transfer ultraviolet light without significant 

losses and for their resistance to the high temperatures generated by the oven. The 

dichroic mirrors used have a reflectance greater than 99% at a wavelength of 391 nm. 

The sapphire bundle transfers the excitation light through a small hole in the oven to the 

non-fluorescing ceramic sample holder which is firmly mounted inside of a Lindberg 

high temperature oven. The temperature of the Lindberg oven was controlled by an 

external control unit and has a maximum internal operating temperature of 1200°C. The 

fluorescence from the orthophosphate crystals was collected once again by the sapphire 

rods and transferred the phosphor luminescence to the entrance aperture of a 

McKee-Peterson quarter meter monochromator (f/8) which selects the emission 

wavelength. A convex lens was used to couple the fluorescence into the monochromator. 

The fluorescence signal was acquired by a highly-sensitive RCA photomultiplier tube 

which is displayed on a Tektronix 7854 digitizing oscilloscope. This particular 

photomultiplier tube was modified by EG&G Corporation of Las Vegas in which the 

dynode was optimized for linear output at higher output currents. This change allows for 

a larger dynamic range, increased linearity, higher output currents and most important, 

increased sensitivity. A EG&G ORTEC Model 456 high voltage power supply provides 

-2.5 kilovolts to the photomultiplier tube. Five hundred and 2 kilohm terminators were 

used to terminate the input signal to the oscilloscope. The oscilloscope is triggered by a 

10 Hz signal from the Nd: Y AG laser. An IBM AT computer is attached via an IEEE 488 
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parallel bus (GPIB) and is used to store and analyze the digitized waveforms and lifetime 

measurements. 

Most of the lifetime measurements were taken with the Nd:YAG laser set to 

approximately 60 Joules/pulse on the oscillator and 70 Joules/pulse on the amplifier, 

however higher amplifier power settings were used at higher calibration temperatures to 

increase the amount of fluorescence. The Quanta Ray DCR power supply provides high 

voltage and filtered coolant water necessary to the operation of the Nd:Y AG laser. The 

laser flashlamp coolant water is pumped at approximately 2 gallons per minute. 

Lifetime measurements for LaP04:Eu3+, YPO4 :Eu3+, and LuPO4:Eu3+ were made at 

emission wavelengths of 593.8, 593.5, and 593.0 nm respectively whereas the 

measurements for LuPO4 :Dy3+ were made at 574.4 nm. A typical lifetime measurement 

of an orthophosphate is obtained by first positioning the ceramic crystal holder in the 

oven and aligning it with the sapphire rod bundle. While the oscilloscope is being 

observed, the holder can be translated and rotated slightly in the oven to find the optimum 

fluorescence signal. Likewise the grating of the dye laser can be turned to achieve the 

most efficient excitation wavelength. The coupling lens in front of the monochromator is 

positioned for maximum signal. It may also be necessary to adjust the emission 

wavelength and entrance aperture slit of the monochromator. Hence these procedures can 

be used for "tuning up the system optics" .  Amplitude and timebase settings are adjusted 

accordingly so that a good exponential signal is viewed on the screen of the oscilloscope. 

A program called EXP.PRO was written for the oscilloscope to analyze the 

exponential fluorescence signal and a listing of the programming commands can be found 

in Appendix B .  The oscilloscope utilizes its own unique programming language 

developed by Tektronix. The algorithm begins by initializing the proper amplifier and 

timebase plug-in modules. One hundred samples of the background are taken with the 
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laser excitation blocked, allowing the photomultiplier tube to detect ambient light and 

optical background noise (blackbody radiation from the oven in some cases) in the 

surrounding measurement environment. With the Nd: Y AG laser in full operation, the 

program takes 100 samples of the fluorescence signal. The background signal is then 

subtracted from the acquired fluorescence signal and smoothed with a built-in waveform 

smoothing algorithm. A single cursor appears allowing the operator to set its value to the 

maximum value of the smoothed fluorescence waveform. This maximum value is 

multiplied by 1/exp (or 2.718281828). It should be noted that this operation is analogous 

to taking 36.8% of the maximum value. The first cursor is then set to the 1/exp point 

while a second cursor remains at the maximum value point. The lifetime is therefore 

given as the time between the maximum value and 36.8% (1/exp) of the maximum value. 

The 1/exp criterion was used for all of the orthophosphate lifetime measurements 

and was chosen mainly to assure consistency in data acquisition, especially if the lifetime 

decay is not first-order exponential. The method helps to eliminate the ambiguity in 

placing the cursors on the acquired waveform thereby allowing for increased coherence 

between lifetime measurements of the samples. 

During lifetime measurements it was sometimes necessary to adjust the 

monochromator aperture slits, the Nd:YAG laser power settings, and the amplifier and 

time-base settings on the oscilloscope to allow for the best resolution of a fluorescence 

signal on the oscilloscope. A background signal was always taken after each minor 

readjustment to the system to account for any optical noise changes in the nearby 

environment. Each of the raw lifetime decay signals were transferred to the IBM AT 

computer via the GPIB bus and were archived on disk for future analysis. The computer 

also has the capability to transfer the digitized waveform stored on disk back to the 

oscilloscope for comparison to similar acquired data. In addition to storing lifetime 
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signals on computer disk, oscilloscope photographs were taken of the acquired 

fluorescence signal superimposed on its logarithm to show any non-exponential effects in 

the measurement. At higher temperatures, the exponential decay signal may begin to 

change from a first order exponential into second- or third-order exponential making the 

logarithm slightly non-linear. Therefore, the more non-linear the logarithm of the raw 

exponential signal is, the more difficult it will become to accurately measure the lifetime 

from its slope. 

A few other less important points about this particular lifetime experimental 

configuration should be mentioned. There is some concern about the bundled sapphire 

rods used to couple excitation and emission light into and out of the oven. It is suspected 

that systematic losses are most prominent at this point of the measurement system and 

other ways of coupling light should be investigated for future experimentation. It was 

interesting to note the accuracy and consistency of the 1/exp criterion (for calculating the 

lifetime of the phosphor) used in the Oak Ridge Applied Technology Division laboratory 

when compared to the DECAY program used in the Precision Measurements Laboratory 

of the University of Virginia. Most of the lifetime values were held to within +/-4 

microseconds. In addition, the Lindberg oven temperature measurement uncertainty is 

estimated as 10°C as an upper bound as found in the study performed by Lutz. (33) 

Estimates for the lifetime errors were not analyzed Complete results of the lifetime decay 

analysis of the orthophosphate crystals can be found in Chapter IV. 

Background Blackbody Radiation and Thermal Leakage Effects 

Blackbody radiation is normally generated by the heating elements found in the mini 

oven of the fluorescence spectrophotometer and in the Lindberg oven used for lifetime 
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decay experiments. Particularly above 700°C, blackbody radiation effects on the 

photomultiplier tube can be a complication in the measurement of spectra or lifetime 

decay. In lifetime measurements ranging from 300°C to 900°C, the blackbody 

background is collected by the photomultiplier tube and sampled by the digitizing 

oscilloscope. This background signal is then subtracted from the acquired fluorescence 

signal before the lifetime is analyzed. However at temperatures above 900°C, blackbody 

radiation becomes so intense that it makes it difficult to extract the fluorescence signal 

from the collected signal. In addition, since the blackbody is everpresent and behaves 

like a DC signal, it tends to saturate the photomultiplier tube, making the lifetime 

measurement even more difficult. 

In regard to the phenomenon of thermal leakage, it is uncertain at this time exactly 

what effects the mini oven inside the fluorescence spectrophotometer has on the system 

optics and photomultiplier tube. Since the ceramic oven is not absolutely insulated, 

thermal energy does escape into the sample chamber and its surrounding environment and 

heats the area near the photomultiplier tube of the spectrophotometer. The temperature of 

the photomultiplier window was measured using an Omega HH-99A digital thermometer 

with a type-K (chromel-alumel) thermocouple. At an oven temperature of 350°C, the 

surface in front of the photomultiplier tube window was measured to be approximately 

42°C. This measured temperature is high enough to possibly cause the photomultiplier to 

produce an inaccurate reading. A recent study has documented the effects of increased 

temperatures on photomultiplier tubes.C34) An increase in temperature can cause an 

increase in photomultiplier tube dark current, which reduces the signal to noise ratio of 

the instrument. The results of this study may help explain the decrease in luminescent 

intensity of the phosphor excitation and emission spectra taken at temperatures above 

200°c. 
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In addition, at temperatures near 350°C, the background blackbody radiation emitted 

from the heating element of the mini oven tends to dominate the observed fluorescence, 

making it difficult to discern and detect. Therefore it is possible that at temperatures 

greater than 400°C ,  the blackbody radiation effects may completely dominate the 

fluorescence in this type of measurement system. On the other hand, it may also be 

possible that the fluorescence is being quenched at these temperatures and shows up in 

the spectral plots as a reduction of the fluorescence intensity peaks. 

Background blackbody radiation may be reduced significantly with a fluorescence 

spectroscopy system that utilizes a pulsed, tunable dye laser excitation source. It may 

also be necessary to cool the photomultiplier tube with liquid nitrogen in an attached 

chamber or to use an internally-mounted fan to circulate and cool the air near the 

photomultiplier tube housing. Lifetime decay configurations may someday include 

mechanical choppers or liquid crystal display optical windows to help eliminate or reduce 

the amount of blackbody that reaches the photomultiplier tube. Further experimentation 

and several methods of reducing the effects of thermal leakage and background 

blackbody radiation are presented and discussed in Chapter V. 

Temperature Cycling Behavior 

Temperature cycling experiments detail any change in fluorescence under repeated 

large temperature excursions. In many aspects, temperature cycling is similar to signal 

and lifetime reproducibility. The need for these data is most useful to applications which 

utilize the thermophosphor technique. Some temperature cycling work has been done in 

the past with La202S:Eu3+ phosphors.(4) Fluorescence variation can possibly occur from 
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dopant ion concentration changes by ion drift or migration within the lattice, from a host 

lattice structure configuration change, or even a chemical breakdown of the phosphor 

compound. These effects were not characterized as part of this research but should be 

investigated in future thermophosphor work for both the powder and orthophosphate 

phosphors. 

Calculation of the Onset Quenching Temperature 

The onset quenching temperature of thermographic phosphors can now be easily 

determined with the use of a computer program developed as part of this thesis project. 

Using the method of best-fit or linear regression, two equations linearly approximate the 

lifetime calibration curve (data) of a thermographic phosphor and determine the initial 

point of temperature dependence. This point is actually the intersection of the two lines. 

A graphical representation of this method is shown in Figure 3-17. 

The method is used to define a consistent and mathematically simple criteria for 

onset quenching temperature. In the past, the onset quenching temperature point was 

graphically estimated at the knee of the calibration curve but was never quantified. 

Several other criteria were considered for onset quenching temperature such as taking the 

temperature point which is 10% of the maximum value of the lifetime, graphically 

analyzing of the curve, or using any other statistically measured value which may be 

fitted consistently to the "knee" of the lifetime calibration curve. 

Using the linear best-fit relationship between two sets of n data which include the 

points (x 1 ,y1),  (x2,y2); · · , (xn ,Yn), the equation for the line of 
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Figure 3- 17 .  Method used for determining the onset 

quenching temperature of a thermographic phosphor. 

best-fit is given as  

Yi = mxi + b 

where the slope of the line m and y-intercept b are given by 

n n n 

n �x y - �x . � y  £..i l 1 £..i 1 £..i 1 

i i m = --------2-

n tx: - (tx i) 
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(3.9) 

(3. 10) 
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(3.11) 

Consequently the line of best-fit is also defined as the line which minimizes the sum 

LIY ;  - (mx ;  + b)l -
i =  1 

(3. 12) 

This sum is the total of the lengths (if all lengths are considered to be nonnegative) of the 

vertical distances from the data points to the best-fit line.<35) Since a typical lifetime 

decay curve consists of two near linear data regions, two linear equations can be written 

(3. 13) 

(3. 14) 

where Equation 3. 13 describes the equation of the line for the data that is not 

temperature-dependent and Equation 3.14 represents the equation of the line for the 

temperature-dependent part of the calibration curve. In order to find the intersection 

points (x,y) of the two lines, one may use Cramer's rule and determinants. The solution 

to the x-value point or the onset quenching temperature point T Q can be found by solving 



which can be reduced to 

x =  

T = X 
Q 
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(3. 15) 

(3 . 16) 

Similarly the lifetime value at the onset quenching temperature point can be found using 

the same methods but solving for the y-value of the two linear equations. 

The theory as described above was developed into a menu-driven computer program 

which is used to determine the onset quenching temperature given a lifetime calibration 

curve. The original computer program, named CALQUEN.BAS Version 1.00, was 

written 'in Microsoft BASIC for any personal computer that will run MS-DOS. 

However, the program code can be simply converted to run on any other machine such as 

an Apple Macintosh or DEC VAX. A complete program listing of CALQUEN.BAS can 

be found in Appendix C. 

Using the program is easy. The main menu allows the user to input lifetime data 

manually, input data stored in an external data file, obtain help with the program, or quit 

the program. If data are input manually, the program has an option which will allow the 

user to store data to disk for later use. The program constantly checks and reports input 

and file-handling errors and has a built-in option which will print data to a line printer for 

data input verification. It should be noted that all data files should include the filename 

extension .DAT, which must be included when the program requests a filename. The 

extension must be typed as part of the filename since the program will not append this 
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extension. Perhaps future versions of this program will allcw for more elaborate data 

structures and filename variables. The calculations section of the program linearly fits the 

data, calculates the slope m and y-intercept of each line and reports a temperature value 

for the onset quenching point of the phosphor being analyzed. The user once again has 

the option to proceed with more calculations and/or obtain a complete printout of the 

results of the analysis. Results of this computer analysis of the onset quenching 

temperature are described later in Chapter IV. 



CHAPTER IV  

DISCUSSION OF RESULTS 

Excitation and Emis.9on Spectra at Room and Elevated Temperatures 

The excitation and emission spectra of fifteen powder and crystalline phosphors 

were measured at room temperature and at elevated temperatures ranging from 

approximately 22°C to 400°C. The experimental apparatus described in Chapter ill was 

used to acquire this spectral data. In particular, these phosphors are activated with the 

rare-earth elements dysprosium, europium, gadolinium, manganese, prasecxlymium, and 

terbium. Observations of the experimental results show that certain absorption lines in 

the excitation spectra of both phosphors are temperature-dependent. 

In the excitation spectra taken from room temperature to approximately 400°C, the 

phosphors Y 2O3 :Eu3+, YVO4:Eu3+, Ba3(PO4)i:Eu2+, LaPO4:Eu3+ , LuPO4:Eu3+, 

YPO4:Eu3+ , YVO4 :Dy3+, Y 2O2S :Eu3+ , and Y 2O2S :Tb3 + exhibit a significant 

temperature-dependent shift in their charge-transfer absorption band. The majority of 

these phosphors are europium-doped in which their charge-transfer shift is much larger 

than the other two phosphors doped with dysprosium and terbium. In general, the 

charge-transfer band of these particular phosphors exhibits a shift towards the red (or to 

lower energies) with an increase in temperature. Graphs of the peak charge-transfer 

wavelength versus temperature for several of the europium-doped phosphors show that 

this temperature-dependent shift is linear. 

In light of the theoretical discussion of Charter II, one possible factor that may be 
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causing this shift is the increased crystal lattice spacing between the host crystal and the 

dopant europium (or dysprosium and terbium) activator. At elevated temperatures, the 

charge-transfer band does not actually change itself, however the relative position of the 

transition from its base ground state to the charge-transfer state has changed. This 

characteristic is observed as the spectral shift in the charge-transfer absorption band in the 

excitation spectra. For example, at room temperature, the transition to the charge-transfer 

state starts from the ground state of the host atom. At a mu_ch higher temperature, the 

transition to the charge-transfer state does not actually start at the ground state (as it did at 

room temperature) but at a vibrational level higher up on the energy level configuration 

coordinate diagram. 

It was observed that phosphors with charge-transfer bands deeper into the ultraviolet 

region or located at higher charge-transfer state energies yield higher onset quenching 

temperatures. The measurement of decay lifetimes for these phosphor provides more 

evidence on the previous statement and details are discussed further on in this chapter. It 

was also found that the peak of the charge-transfer band is located at higher energies as a 

function of the decrease in the cation radius of the host crystal lattice. In particular, the 

excitation spectra of the europium-doped orthophosphate crystals show the differences of 

the locations of the charge-transfer bands. The specific locations of the charge-transfer 

bands in the orthophosphates will be presented later in this chapter. 

It was generally observed in both the excitation and emission spectra of the 

thermophosphors, that the luminescent intensity decreased as the temperature was 

increased. The charge-transfer bands of the majority of the phosphors also tend to 

broaden at higher temperatures. Both of these phenomena can be verified through the 

observation of the phosphor spectra. As previously mentioned in Chapter III, it is 

suspected that the observed decrease in luminescent intensity may be due to either 

background blackbody radiation, an increase in the photomultiplier dark current, 
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quenching of the phosphor, or possibly a combinati0n of these. Future research may 

help identify the mechanisms which cause this phenomenon to be observed. 

One advantage of an increased spectral shift of the charge-transfer absorption band 

towards the red is that lasers of longer excitation wavelengths can be used to stimulate the 

fluorescence of the phosphor samples at higher initial temperatures, thus making these 

lasers useful in high temperature measurement applications. For example, if a particular 

phosphor has a charge-transfer band located at a peak wavelength of 260 nm at room 

temperature, one would need a laser operating at 260 nm to obtain maximum absorption 

by the phosphor during excitation. Lasers with output at this wavelength are generally 

hard to find. However if the charge-transfer band of this same phosphor is located near 

335 nm at a temperature of 800°C, one could use a nitrogen laser operating at 337 nm for 

the excitation of the fluorescence. 

In the pages that follow, can be found the spectra of all the phosphors that were 

researched as part of this thesis. It should be noted that the spectral results are organized 

and presented by the dopant element of the phosphor. In some cases where a significant 

shift of the charge-transfer band is observed, the data for its peak position are presented 

in tabulated form and graphed 

Dysprosium-doped Yttrium Vanadate (YVO4:Dy3+) 

Dysprosium-doped phosphors under excitation exhibit a fluorescence color that 

appears yellowish-green to the eye. Two strong emission areas are visible in the 

emission spectra and are centered around 480 nm and 575  nm. This bright emission is 

mainly due to the 4F91i-6H1512 transitions for the 480 nm group and 4F912-6H1312 for the 

575 nm group as described in a study by Blasse.(36) 
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The excitation and emission spectra of dysprosium-doped yttrium vanadate were 

measured at room temperature and at elevated temperatures ranging from 26°C to 295°C. 

The room temperature excitation spectrum for the 571 nm emission line of YV04:Dy3+ 

can be found in Figure 4-1. Most of the absorption occurs in the charge-transfer band 

located at 330.0 nm whereas a smaller absorption peak is found at 364.0 nm. Figure 4-2 

shows a room temperature emission spectrum taken under 330 nm excitation. Two 

fluorescence groups were measured at 481 nm and 570 nm. Figure 4-3 shows the same 

room temperature emission spectrum in its expanded form to give higher resolution of the 

two fluorescent groups. Strong lines of emission in this spectrum are found at 473.6, 

480.6, 483.3, 570.0, 572.3, and 575.9 nm. 

The excitation and emission spectra of YV04 :Dy3 measured as a function of 

temperature are shown in Figures 4-4 and 4-5 respectively. There is a significant spectral 

shift towards the red in the charge-transfer band of the excitation spectra of YV04:Dy3 . 

At 26°C the peak of the charge-transfer band is located at 321.2 nm whereas at 295°C it 

has been relocated to 344.4 nm, an overall shift of 23.2 nm in roughly 270°C. One may 

notice a second order line located at 286.0 nm in the spectrum of 295°C. It is also 

interesting to note the broadening of the band along with the decrease in luminescent 

intensity as the phosphor temperature increases. 

The high resolution emission spectra taken measured as a function of temperature 

shown no significant spectral shifts although there is a reduction of luminescent intensity 

at a temperature of 250°C. This emission spectrum at 250°C shows two peaks located at 

482.5 and 570.0 nm. 
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Dysprosium-doped Yttrium Oxide (Y203:Dy3+) 

The excitation and emission spectra of dysprosium-doped yttrium oxide were 

measured at room temperature and at elevated temperatures ranging from 23°C to 350°C. 

The room temperature excitation spectrum for the 571 nm emission line of Y2O3 :Dy3+ 

can be found in Figure 4-6. There is no evidence of any major charge-transfer band in 

this spectrum however there are several other absorption bands which were detected. A 

strong absorption peak is found at 349 nm whereas other less intense peaks are found at 

295, 324, 363, 383, 395, 423, 445, and 454 nm. Figure 4-7 shows a room temperature 

emission spectrum taken under 349 nm excitation. Two fluorescence groups are located 

at 485 nm and 571 nm, however unlike the emission spectrum of YVO4:Dy3+, it is 

difficult to resolve the other peaks of emission located in the two groups. The 571 nm 

line should be noted for its strong fluorescence. 

The excitation and emission spectra of Y2O3:Dy3 measured as a function of 

temperature are shown in Figures 4-8 and 4-9 respectively. There is a no significant 

spectral shift towards the red in any of the peaks of the excitation spectra of Y 2O3:Dy3+. 

It may be possible that there are charge-transfer bands located near 240 nm of the spectra 

however it is unknown at this time if these bands are indeed true charge-transfer bands. 

Since the spectrophotometer has not been intensity corrected, it may be possible that these 

bands were not truly resolved. The other peaks of absorption lie at approximately the 

same location as those in the room temperature spectrum. It is also interesting to note 

that there is not a drastic reduction in luminescent intensity as the temperature increases 

which is characteristic of the excitation spectra of most of the other phosphors 

researched. The emission spectra (with two groups located at roughly 485 nm and 57 1 .0 

nm) measured as a function of temperature shown no significant spectral shifts although 

there is a reduction of luminescent intensity at a temperature of 250°C. 
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Emission Spectra of Dysprosium-doped 
Yttrium Oxide at Elevated 
Tem peratures (350 nm EX) 

Temperature Une Type 

25 °C 

250 °C 

0 

LI) 
Cl) 
"2" 

0 

r--­
l/) 

90 

440.0 nm 650.0 nm 

Figure 4-9. Emission spectra of dysprosium-doped yttrium oxide 
at elevated temperatures (350 nm EX), 
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Dysprosium-doped Lutetium Phosphate (LuPO4:Dy3+) 

The room temperature excitation spectrum for LuP04:Dy3+ is shown in Figure 4-10 

and is obtained at an emission wavelength of 573 nm. No charge-transfer band was 

evident in the spectrum. Strong lines of absorption are located at 327, 353, 361, and 390 

while less intense peaks are found at 258, 296, 339, 382, 399, 429, 451, and 474 nm. 

The room temperature emission spectrum for LuPO4:Dy3+ at 353 nm excitation is 

shown in Figure 4-11. Two fluorescence groups were measured near 480 nm and 573 

nm. The same room temperature emission spectrum shown in Figure 4-12 was expanded 

to give better resolution of the emission lines within each group. The 480 nm group 

consists of lines of emission at 475.7, 478.7, 483.1, and 485.8 nm whereas the 575 nm 

group consists of three emission lines located at 568.3, 572.9, and 578.7 nm. 

Excitation spectra of LuPO4:Dy3+ taken at elevated temperatures are presented in 

Figure 4-13 and Figure 4-14 for the 484 nm and 573 nm emission lines respectively. At 

484 nm emission, the major lines of excitation are located at 326.5, 352.8, 365.9, and 

388.5 nm. Other lesser significant lines of excitation are located at 295.9, 339.2, and 

388.5 nm. For emission at 573 nm, the dominant lines of excitation are 327 .3, 353.0, 

366.7, and 389.9 nm. Other lesser significant lines of excitation are located at 395.0, 

428.8, 451.1, and 474.4 nm. 

In the excitation spectra at high temperature of an emission wavelength of 484 nm, it 

can be seen that there is little quenching of fluorescence at 390°C as compared to the 573 

nm emission at 285°C where quenching has already begun. It is possible that the 484 nm 

line of LuP04:Dy3+ may have a higher onset quenching temperature during lifetime decay 

calibration. The lifetime decay data for LuPO4 :Dy3+ was taken at an emission 

wavelength of 575 nm and results of the measurements are presented later in this chapter. 

In both of the excitation spectra, a charge-transfer band is not visible in the spectral plot. 
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Emission spectra of LuP04:Dy3+ acquired at elevated temperatures (25°C and 250°C) 

are presented in Figure 4- 15. Lines of emission are found at 475.5, 478.5, 483.0, 

485.8, 568.0, 573.0, and 578.8 nm. It can be seen in these spectra that the emission 

intensity is still rather strong at the higher temperature. Since the dysprosium ion has no 

charge-transfer transitions, and the energy gap between the ground state and 4F912 state is 

somewhat larger than europium, it is expected that the onset quenching of its 

luminescence may occur at higher temperatures. For this reason, LuP04:Dy3+ is of great 

interest to thermophosphor researchers since it and other dysprosium-doped phosphors 

may possibly be the thermophosphors of choice for high temperature applications. 

Europium-doped Lanthanum Phosphate (LaPO4:Eu3+) 

In the excitation spectrum of both orthophosphate phosphors and other Eu3+ doped 

phosphors, a charge-transfer absorption band is usually evident along with several 

narrower absorption peaks, which are due to atomic transitions within the dopant ion. 

Excitation and emission spectra are presented for LaPO4 : Eu3 + taken at room 

temperature and at elevated temperatures. The excitation spectrum of the 590 nm 

emission line of LaPO4 :Eu3+ taken at room temperature (20°C) is shown in Figure 4- 16. 

The peak of the charge-transfer absorption band for this phosphor lies at 280 nm while 

another prominent atomic transition line lies at 395 nm. Other less important atomic 

transition peaks lie at 317, 359, and 375 nm. The room temperature emission spectrum 

for LaPO4 :Eu3+ at 280 nm excitation is shown in Figure 4-17. Two strong emission 

lines are seen at 585 nm and 59 1 nm and two weaker emission lines are also found at 61 1 

nm and 619 nm. 
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phosphate at room temperature (280 nm EX). 
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Table 4-1 shows in tabulated form the data for the peak position of the 590 nm 

charge-transfer bands of the phosphor measured as a function of temperature. Excitation 

spectra at elevated temperatures for the 590 nm emission line of LaP04:Eu3+ are 

displayed in Figure 4-18. The peak of the charge-transfer band shifts from 27 6.5 nm to 

296.2 nm, a difference of 19.7 nm as temperature increases from 25.5°C to 300°C. The 

difference and minute change of the atomic transition peaks are within the error limits of 

the instrumentation and do not display any significant temperature-dependent spectral 

shift. The peak charge-transfer wavelength versus temperature is plotted in the graph of 

Figure 4-19. It is observed that the spectral shift of the charge-transfer band peak 

wavelength is linear as a function of the elevated temperature. 

The emission spectra of LaP04:Eu3+ for excitation at 280 nm are shown in Figure 

4-20 for increasing temperatures. No distinguishable spectral shifts were observed on 

the 585 nm or 591 nm emission lines, however it was observed that the peaks decreased 

in signal intensity as temperature increased. 

Table 4-1. Tabulated data for the peak position of the 590 nm charge-transfer bands of 

europium-doped lanthanum phosphate measured as a function of temperature. 

Europium-doped Lanthanum Phosphate 

Temperature {°C) 

25.5 
1 00 .0  
200 .0 
300.0 

Wavelength (peak) 

276.5 nm 
283. 1 nm 
293.7 nm 
296.2 nm 
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Peak C-T Wavelength versus Temperature for Eu-doped LaP04 

31 0.0 .-----,.--....---....-----,----.---,-----,----, 
E .s 
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Cl 
C: 300.0 � 

3: 
ai 290.0 in 
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(]) 
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<ii 280.0 .c: 
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_::,:: co 

Cl) 
0. 

270.0 ...._ _ ___._ _____ .__ _______ ...._ __ .__ _______ .... 
0 .0  1 00.0 200.0 300.0 400.0 

Temperature (°C) 

Figure 4- 19. Peak charge-transfer wavelength versus temperature for LaPO4 :Eu3+. 
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Europimn-doped Yttrium Ph�phate (YP04:Eu3+) 

Excitation and emission spectra are presented for YP04: Eu3+ acquired at room 

temperature and at elevated temperatures. The excitation spectrum of the 592 nm 

emission line of YP04:Eu3+ taken at room temperature (26°C) is shown in Figure 4-21. 

The room temperature charge-transfer band is found at a peak wavelength of 240 nm. A 

strong absorption band is located at 395 nm while other peaks of lesser intensity were 

observed at 287, 3 19, 364, 384, 452, and 467 nm. It is unsure at this time as to why 

there is a large band observed in the region from 360 to 570 nm. 

The room temperature emission spectrum for YP04:Eu3+ at 396 nm excitation is 

shown in Figure 4-22. Similar to LaP04:Eu3+, two strong emission lines are seen at 593 

nm and 595 nm and two weaker emission lines are found at 6 12 nm and 618 nm. 

Excitation spectra are presented in Figure 4-23 for YP04:Eu3+ taken at temperatures 

ranging from 26°C to 460°C. The peak of the charge-transfer absorption band for this 

phosphor lies at 239.7 nm while another prominent atomic transition line lies at 395 nm. 

Other less important atomic transition peaks lie at 3 18.8, 363.7, 383.9, 451.9 and 467.1 

nm. There is a significant spectral shift towards the red in the charge-transfer band of 

YP04:Eu3+. At 26°C the peak of the charge-transfer band is located at 239.7 nm whereas 

at 460°C it has been relocated to 265.9 nm, an overall shift of 26.2 nm in roughly 434°C. 

Note the broadening of the charge-transfer band along with an increase in luminescent 

intensity as the phosphor temperature increases. There is not any noticeable shift in any 

of the atomic transition lines of this spectra. Table 4-2 shows in tabulated form the data 

for the peak wavelength position of the charge-transfer bands measured as a function of 

temperature. The peak charge-transfer wavelength versus temperature is plotted in the 

graph of Figure 4-24. It is observed that the spectral shift of the charge-transfer band 

peak wavelength is a linear function of the elevated temperature. 
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Table 4-2.Tabulated data for the peak position of the 593 nm charge-transfer bands of 

europium-doped yttrium phosphate measured as a function of temperature. 

1i,11,11111a1,,11t11t11111i,111•1 
Europium-doped Yttrium Phosphate 

Temperature (°C) Wavelength (peak) 

26.5 239.7 nm 

1 00.0 243 .2  nm 

200.0 249. 8  nm 

300.0 256.3  nm 

360.0 259. 8  nm 

425.0 262 .4  nm 

460.0 265.9 nm 
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Figure 4-24. Peak charge-transfer wavelength versus temperature for YPO4:Eu3+. 
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The emission spectra of YP04 :Eu3+ for excitation at 396 nm is shown in Figure 

4-25 for increasing temperatures. No distinguishable spectral shifts were observed on 

the 591.9 nm or 595.0 nm emission lines, however it was observed that the peaks 

decreased in signal intensity as temperature increased. 

Europium-doped Lutetium Ph05phate (LuPO 4: Eu3+) 

Excitation and emission spectra are presented for LuP04:Eu3+ obtained at room 

temperature and at e levated temperatures. The excitation spectrum of the 593 nm 

emission line of LuP04 :Eu3+ taken at room temperature (26°C) is shown in Figure 4-26. 

The room temperature charge-transfer band is found at a peak wavelength of 227 nm. A 

very strong absorption band is located at 395 nm while other less intense peaks were 

observed at 287 , 300, 320, 363, 380, 385, 470, and 530 nm. 

Five fluorescence lines are found in the LuP04 :Eu3+ room temperature emission 

spectrum taken at 395 nm excitation as shown in Figure 4-27 . This spectrum is very 

similar to that of YP04 :Eu3+ with the addition of a emission line at 587.7 nm. This 

additional line may be due to intrinsic host-dopant crystal structure factors however its 

presence requires further investigation. 

Europium-doped lutetium phosphate also shows a significant spectral shift towards 

the red in its charge-transfer band as temperature is increased. Figure 4-28 displays 

excitation spectra at elevated temperatures for the 593 nm emission line of LuP04 :Eu3+. 

The peak position of the charge-transfer absorption band for LuP04 :Eu3+ lies at 227 nm 

while another strong line of absorption lies at 397 nm. The peak of the charge-transfer 

band shifts from 228 nm to 243 nm, a difference of 15 nm as temperature increased from 

25.0°C to 400°C. The atomic transition peaks show no significant spectral shift. Other 

less intense atomic transition peaks lie at 280, 300, 320.6, 363.9, 383.9, 418.2, 466.5, 
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527 .8 and 537 .9 nm. Table 4-3 shows in tabulated form the data for the peak 

wavelength position of the charge-transfer bands measured as a function of temperature. 

The peak charge-transfer wavelength versus temperature is plotted in the graph of 

Figure 4-29. Similar to the other orthophosphates, it is observed that the spectral shift of 

the charge-transfer band peak wavelength is linear as a function of the elevated 

temperature. 

The emission spectra of LuPO4 :Eu3+ for excitation at 227 nm is shown in Figure 

4-30 for increasing temperatures. No distinguishable spectral shifts were observed for 

the emission lines. However, unlike the emission spectra taken at temperature for 

LaPO4:Eu3+ and YPO4:Eu3+, it was observed that the peaks decreased very slightly in 

signal intensity as temperature increased. 

It should be noted that the peak of the charge-transfer band of LuPO4:Eu3+ starts at 

228 nm, deeper into the UV region when compared to the peak of the charge-transfer 

band of LaPO4:Eu3+ which begins at 276.5 nm. The peak of the room temperature 

charge-transfer band of YPO4 :Eu3+ lies at 239.7 nm. This shows that the peak of the 

charge-transfer band shifts to higher energies with decreasing host cation radius, since 

lutetium has a cation radius of 0.85 A compared to yttrium at 0.893 A and lanthanum at 

1 .061 A. Hence the onset quenching temperature of LuP04:Eu3+ should be significantly 

higher than that of LaPO4 :Eu3+ and this is shown in further lifetime decay results. 
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Table 4-3. Tabulated data for the peak position of the 593 nm charge-transfer bands of 

europium-doped lutetium phosphate measured as a function of temperature. 

liliiiiiiti;iiiiiiliiit;lil.iiitltii:iijiii;li:iiiifiil 
Europium-doped Lutetium Phosphate 

Temperature (0G) Wavelength (peak) 

25.0 228.0 nm 

1 00.0 23 1 . 0 nm 

200.0 233 .5 nm 

305.0 237 .0  nm 

400.0 243.0 nm 

Peak C-T Wavelength versus Temperature for Eu-eloped LuP04 

250.0 ,---,---,----,,----,----,.----.-----.---------

y = 226.7302 + 0.0377x R = 0.99 

220.0 ....__.__ ___ .____,..____. _ __._ _ __._ _ __._ _ __,_ _ __,__....,,1 
0.0 1 00.0 200 .0 300.0 400.0 500.0 

Temperature (°C) 

Figure 4-29. Peak charge-transfer wavelength versus temperature for LuP04 :Eu3+. 
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EMISSION SPECTRA OF 
LuPO4:Eu3 + ORTHOPHOSPHATE CRYSTALS 

AT ELEVATED TEMPE RATU RES 
(227nm EXCITATION) 

TEMP. 

22.4° C 
1 00 .0° c 
20o.o0c 
30o.o0c 
400.o0c 

C 
I'-

1 18 

650nm 

MARF,N MARl�A 

Figure 4-30. Emission spectra of europium-doped lutetium 

phosphate at elevated temperatures (227 nm EX). 
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Europium-doped Yttrium Oxide (Y203:Eu3+) 

Of all the thermophosphors researched for broadening effects and absorption band 

spectral shift, Y 203:Eu3+ showed the most significant changes in its peak charge-transfer 

absorption band position at elevated temperatures. First, the excitation spectrum of the 

61 1 nm emission line of Y203 :Eu3+ taken at room temperature is shown in Figure 4-31 .  

The room temperature charge-transfer band is found at a peak wavelength of 267.3 nm. 

A strong absorption band is located at 466.0 nm while other less intense peaks were 

observed at 363.2, 383.4, 394.5, and 533.0 nm. 

Five fluorescence lines are displayed in the Y 203:Eu3+ room temperature emission 

spectrum taken at 270 nm excitation which is shown in Figure 4-32. The most prominent 

emission line is located at 6 1 1 .0 nm whereas other lines are located at 586.0, 593.0, 

598.0, and 630.0 nm. 

The excitation spectra at increasing temperatures for the 61 1 nm emission line of 

Y 203 :Eu3+ is shown in Figure 4-33. At room temperature (26.6°C), the spectra display 

a charge-transfer absorption band centered at 267.3 nm and several atomic transition 

peaks. The strongest atomic emission transitions are found at wavelengths 394.5 

(7F0-5L6), 466. 1 (7F2-5D2), and 533.7 nm (7F0-5D 1). A line at 337 nm marks the point 

where excitation from a nitrogen laser may be used in a particular temperature sensing 

application. Figure 4-34 displays an excitation spectrum at elevated temperatures for the 

61 1 run emission line in Y 203 :Eu3+ and reveals the charge-transfer absorption peak with 

increased resolution. Table 4-4 tabulates the peak wavelength position and bandwidth 

(measured at FWHM) for the 61 1 nm absorption band in the excitation spectra at their 

associated temperatures. The charge-transfer absorption band peak wavelength at 26.6°C 

is 267.3 nm, where at 400°C, the peak wavelength is found at 289.5 nm, a change of 

22.2 nm in 373.4°C. Similarly, the bandwidth of the charge-transfer band broadens at 
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Table 4-4. Tabulated data for the peak position of the 61 1 nm charge-transfer bands of 

europium-doped yttrium oxide measured as a function of temperature. 

li�ii11i��ti��ililii�i1(�&i1tii�i1i�ii��*lt��ii;�;�xtti1��&;�:jil 
Europium-doped Yttrium Oxide 

Temperature (0G) Wavelength (peak) Bandwidth (FWHM) 

26.6 267.3 nm 27 n m  

1 1 4.5 269 .4 nm 28 n m  

1 50.0 273 .4 nm 3 1  n m  

200.0 278.4  nm 33 n m  

250.0 280. 5  nm 35 n m  

300.0 282. 4  nm 38 n m  

350.0 285.4 nm 4 1  nm 

400.0 289 .5  nm 45 nm 
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elevated temperatures. It is observed that the atomic transition peaks show no detectable 

shift to the red with increasing temperatures. Figure 4-35 shows the peak position of the 

charge-transfer band plotted as a function of increasing temperature. It can be seen from 

this plot that the spectral shift in this phosphor is linear. An extrapolation of the data, 

assuming the charge-transfer shift continues in a linear manner, would show the peak 

position of charge-transfer band to be located at 337 nm near 1200°C. At this point, a 

nitrogen laser may be most efficient in stimulating the phosphor's luminescence. 

The emission spectra of Y 2O3:Eu3+ for excitation at 270 nm is shown in Figure 

4-36 for increasing temperatures ranging from 38°C to 386°C. No distinguishable 

spectral shifts were observed on the 611 nm emission line, however it was observed that 

the peak, when measured at FWHM, broadened from 9 nm to 21 nm as temperature 

increased. 

Peak C-T Wavelength vs Temperature for Eu-doped Y203 

300.0 ..---..---...--.....---.---.....---.---...----.----.--.... 

E c: y = 264.6067 + 0.06 1 1 x  A =  0.99 

g> 290.0 1---+--1---+--+--+--+----t--"Wlll,..c:;--i---i 
Cl) 

ai 
� 
� 
<ii 
00 280.0 1---+---i--+--+-----:�-+----t----+---i---i 

1 
E' 
<ti <3 270.0  t--+--"7"'T"'llllr---+---+---+---+---+---+---+----i 

_:,e_ 
<ti 
Cl) 

260.0 .____...__..___...__......__...__ ......... _....__....._ _ _._ _ _, 
1 00 200 300 400 500 

Temperature (°C) 

Figure 4-35. Peak position of the charge-transfer band plotted 

as a function of increasing temperature. 



SPECT RAL  S H I F T  I N F O RMAT I O N  

6 >.. 1 = 0 .5 nm 

6 A2 = 0.3 nm 

..:. T 1 = 242° C 

,H 2 = 1 06° C 

B RO A D E N I N G  E F F ECTS 

6 /3FWHM = 9 nm = 38° C 

6/3FWHM = 1 4 nm = 280° C 

6/3FWHM = 2 1  nm = 386° C 

580 nm 6 1 0  

E M I SS I O N  SPECTRA F O R  
v

2
o

3
. E u @ 270 nm 

O CT .  22 ,  1 987 
TEMP. CODE  

30°c 
200° c 
386° c 

Figure 4-36. Emission spectra of europium-doped yttrium 

oxide at elevated temperatures (270 nm EX). 
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Europium-doped Yttrium Vanadate (YVO4:Eu3+) 

Two different types of YVO4 :Eu3+ phosphor were used in this spectral analysis both 

manufactured by Sylvania. It is not specifically known what chemical differences there 

may be between the two phosphors, however slightly stronger dopant concentrations, 

higher purity, or particle size may be certain factors related to their differences. 

The room temperature spectrum of Type 1120 YVO4 :Eu3+ has a charge-transfer 

band located at 325.6 nm as shown in Figure 4-37. Other lines of absorption are located 

at 362.0, 381.0, 394.0, 416.0, and 464.0 nm. The room temperature spectrum of Type 

2391 YVO4:Eu3+ has a charge-transfer band located at 321.5 nm as shown in Figure 

4-38. Other lines of absorption are found at 394.0 and 464.0 nm. 

The room temperature emission spectrum of Type 1120 YVO4:Eu3+ is presented in 

Figure 4-39 and shows strong fluorescent lines located at 613.4 and 617.4 nm due 

primarily to the europium activator. Several other less significant emission lines are 

found at 420.1, 432.2, 449.3, 468.4, 538.9, and 593.3 nm, in which some of their 

emission may arise from impurities in the phosphor. 

Europium-doped yttrium vanadate also shows a significant spectral shift to the red in 

its charge-transfer absorption band as temperature is increased. The excitation spectra 

presented for these phosphors were made within a temperature range of 23.0°C to 400°C. 

Shown in Figure 4-40 is the excitation spectrum of Type 2391 YVO4:Eu3+ at various 

temperatures for the 619.0 nm emission line. Table 4-5 shows the peak wavelength 

position and bandwidth for the charge-transfer absorption band in the excitation spectra at 

their associated temperatures. The absorption band peak wavelength at 23°C is 321.5 

nm, where at 400°C, the peak wavelength is found at 368.2 nm, a noticeable change of 

46.7 nm in 377°C. Figure 4-41 shows a graph of the peak charge-transfer wavelength 

position plotted against temperature for Type 2391 YVO4:Eu3+. 
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220 nm 

TEMP. 

200°c 

4QQOC 

.,. 
_/

., 

337 nm 

EXC ITAT ION  SPE CTRA F D R  

Y V04 : E u  @ 6 1 9  nm 

TYPE 2391  

NOV .  1 7 ,  1 987 

WAVE LENGTH 
C O D E  (peak) 

BANDWIDTH 

( FWH M)  

32 1 . 5  nm 

329 . 6  nm 

343.6 nm 

353.2 

368.2 nm 

( Est imated) 

63 nm 

7 0  nm 

83 nm 

91 nm 

7 6  nm 

13 1 

LAS E R  

L I N E  

5 1 0  nm 

Figure 4-40. Excitation spectra of europium-doped yttrium vanadate 

(Type 2391) at elevated temperatures (619 nm EM). 
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Table 4-5. Tabulated data for the peak position of the 619 nm charge-transfer bands of 

europium-doped yttrium vanadate measured as a function of temperature . 

l�[l�iill1�11!l�lll[lllllllfl!llfJlttl11!11«1111111till\l.ill!ltllll 
Europium-doped Yttrium Vanadate 

Temperature (°C) Wavelength (peak) Bandwidth (FWHM) 

23.0 32 1 .5  nm 63.0 n m  
77.0 326.5 nm 66.0 nm 
1 00.0 329 .6  nm 70.0  nm 
1 50 .0  335.6 nm 77.0 nm 
200 .0 343 .6  nm 83.0 nm 
255.0 348.6 nm 89.0  nm 
300.0 353. 2  nm 9 1 .0 nm 
370.0 357.2  nm 93.0 nm 
400.0  368.2 nm 76.0 n m  



Peak C-T Wavelength versus Temperature for Eu-Doped YV04 

380 

370 

360 

350 

340 

330 

320 

31 0 

! l ! l y = 31 8.3781 + 0. 1 1 66x 
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R .. 0.99 
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""" 
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_,,,, � 

1 00 200 300 
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/ 
I V 

400 500 

Figure 4-41.  Peak charge-transfer wavelength versus temperature for YVO4:Eu3+. 
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It should be noted in th,e excitation spectra at elevated temperatures of the Type 2391 

phosphor that when the charge-transfer band shifts to the red, it eventually dominates the 

fluorescence of the atomic excitation peak at 394 nm. Excitation spectra are also 

presented for Type 1 120 YV04:Eu3+ made within a temperature range of 26.4 °C to 

350°C. Shown in Figure 4-42 is its excitation spectrum at various temperatures for the 

619.0 nm emission line. The absorption band peak wavelength at 26.4°C is located at 

3 10.8 nm, whereas at 350°C,  the peak wavelength is found at 342. 1 nm, a noticeable 

change of 3 1.3 nm in 323.6°C. Again, one of the advantages of these two particular 

phosphors lies in the fact that their charge-transfer band is located near the 337 nm line 

and can be used in temperature sensing applications which require a N2 laser for efficient 

excitation. 

The emission spectrum of Type 2391 YV04:Eu3+ for excitation at 320 nm is shown 

in Figure 4-43 for a temperature range of 25°C to 275°C. Several lines of emission are 

located at 587.3,  595.6, 6 10.2, 614.9, 618.5, and 638.2 nm. No distinguishable 

spectral shifts were observed on any of the major emission lines, however it was 

observed that the relative intensity was sometimes higher at elevated temperatures than 

that measured at room temperature. It is not known why this occurs. 



EXCITAT I ON  SPE CTRA F O R  

YV04 : Eu  @ 6 1 9  nm 

Type 1 1 20 
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TEMP. co o r  WAVE LENGTH (peak )  

220 nm 337 nm 

LAS E R  L I N E  

2 6.4oC -- 3 1 0.8 nm 

3 1 9.4 

324.9 

342 . 1  
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BANDWIDTH 
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7 1 .6 nm 
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Figure 4-42. Excitation spectra of europium-doped yttrium vanadate 

(Type 1 1 20) at elevated temperatures (6 19 nm EM). 
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Europium-doped Barium Phosphate (Ba3(P()4)i:Eu2+) 

Excitation and emission spectra are presented for europium-doped barium phosphate 

taken within a temperature range of 25°C to 330°C. A room temperature spectrum of 

Ba3(PO4)i :Eu2+ are shown in Figure 4-44 and displays the peak position of its 

charge-transfer band which is located at 355 nm. The observed fluorescence of this 

phosphor appears blue to the eye and the dopant ion is known to be divalent europium. 

Figure 4-45 shows the peak emission wavelength positioned at 411 nm when excited by 

wavelength of 305 nm. 

The excitation spectra at various temperatures for the 415.0 nm line of 

Ba3(PO4)i:Eu2+ is shown in Figure 4-46. In the excitation spectra, the charge-transfer 

absorption band shows a slight spectral shift to the red at increasing temperatures. The 

absorption band peak wavelength at 25°C is found at 355 nm, whereas at 330°C, the peak 

wavelength is located at 374 nm, a change of 19 nm in 305°C. In addition, the 

charge-transfer absorption band bandpass wavelength (at FWHM) is measured at 104 

nm, 109 nm, 119 nm, and 120 nm for temperatures 25°C '  155°C ' 240°C '  and 330°C 

respectively. 

An emission spectrum at various temperatures for Ba3(PO4)i :Eu2+ at 305.0 nm 

excitation is shown in Figure 4-47. Broadening and spectral shift are also observed The 

emission peak wavelength is measured at 31 nm, 38 nm, 42 nm, and 44 nm for 

temperatures 25°C , 155°C ,  240°C ,  and 330°C respectively. Relative intensities in the 

emission spectra of this phosphor are still strong at higher temperatures. 
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Emission Spectrum of Europium-doped 
Bari um Phosphate at Room Temperature 

(305 nm EX) 
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Figure 4-45 .  Emiss ion spectrum of europium-doped barium phosphate at 
room temperature (305 nm EX).  

139 



23
0 

n
m

 

BR
OA

DE
NI

NG
 E

FF
EC

TS
 

Li
(JF

W
H M

 
= 

10
4 

nm
@ 

25
0
c 

Li
(JF

W
H M

 
= 

10
9 n

m
@ 

15
50

c 

Li
(JF

W
H M

 
= 

11
9

nm
@

24
0°

C 

LO
 

LO
 

(")
 

Li
(JF

W
H M

 
= 

12
0

nm
@

33
0°

C 

r/
___,

�
�

 
;;_;-

__
 ., 

_ __,
-..,

, 

'-...
� 

.,..
-

/
 

"''"'
 "'"

" 
/

 
-------

-�
-'�

 
r;

,/
 

/
' 

-
-

//
 

/
_,--

-
',�

 
/

/ 
, 

I 

I 
I 

,/
 

\ 

/
/

 /
 

EX
CI

TA
TI

ON
 

I 

/
/

'/
' 

Ba
3 

(P
O 

) 
. /

P
E

C
T

R
U

M
 O

F 
\ 

,,
/'

�
 

42
· 

,
AT

4 1
5,

m 

' 
--

,,.I/
-

TE
M

P. 
CO

DE
 

' v
/··

,...-
r/

r/
_,,.

 

/)
:/'

� 
SP

EC
TR

A
L S

HI
FT

 

2
s0

c 

1s
s0

c 

24
0°

c 

1/' 
Li

;\ 1 
= 

5 n
m 

Li 
;x. 2

 =
 9

 n
m 

Li
;\ 3

 =
 5

nm
 

Li 
T 1

 =
 1

30
°
C 

Li
T 2 

= 
85

°
C 

Li
T 3

 =
 

90
°

C 

Li
;\ 

= 
63

 n
m 

Li 
T 

= 
10

20
c 

33
0°

c 

�
 \ \ 

'�
 

\ 
' 

\ 
"'

 
\ 

' 

.........
 , 

FW
HM

 

42
0 

n
m

 

MA
R

T
IN

 MA
R

IE
TT

A
 

Fi
gu

re
 4

-4
6.

 E
xc

ita
tio

n 
sp

ec
tra

 o
f e

ur
op

iu
m

-d
op

ed
 b

ar
iu

m
 p

ho
sp

ha
te

 at
 el

ev
ate

d t
em

pe
ra

tu
re

s (
41

5 
nm

 E
M

). 
.....

 
.p..

 
0

 



370 nm 

..,. ..,.  
I I �, lift 
��I\ ..,. \I 

,,../\' 
I 
I 

y 

FWHM 

SPECTRAL SH I FT I N F O R MATI O N  

.6 A1 = 3 nm 

Ci. t-2 = 4 nm 

Ci. AJ = 5 nm 

� T ,  = 1 3o0 c 

Ci. T 2 = 85° C 

Ci. T 3 = 90°C 

B R O AD E N I N G  E F F E CTS 

..i (JFWHM = 3 1  nm @ 25°C 

Ci. (JFWHM = 38 nm @  1 SS°C 

.6 (JFWH M = 42 nm @ 240°C 

..i (JFWHM = 44 nm @ 330°C 

EM ISS I O N  SPE CTR UM O F  
Ba3 I PD4)2 : E u  A T  305 nm 

O CT .  20, 1 98 7  

TEMP. C O D E  

2 s0c 
1 s s0 c 
240°c 
330° c 

5 1 0  nm 

Figure 4-47 . Emission spectrum of europium-doped barium 

phosphate at elevated temperatures (305 nm EX). 

141 



142 

Europium-doped Lanthanum Oxysulfide (La2O2S:Eu3+) 

The excitation spectrum of the 538 nm emission line of La2O2S:Eu3+ taken at room 

temperature is shown in Figure 4-48. The peak of the charge-transfer absorption band for 

this phosphor lies at 340.6 nm. Other less important atomic transition peaks lie at 396.4 

and 466.3 nm. The excitation spectrum of the 612 nm emission line of La2O2S:Eu3+ 

taken at room temperature is shown in Figure 4-49. The peak of the charge-transfer 

absorption band for this phosphor lies at 345.4 nm. Other atomic transition peaks are 

found at 396.0, 466.8 and 538.6 nm. The excitation spectrum of the 619 nm emission 

line of La2O2S:Eu3+ taken at room temperature is shown in Figure 4-50. The peak of the 

charge-transfer absorption band for this phosphor lies at 346.1 nm whereas other atomic 

transition peaks can be found at 398.0, 469.2 and 540.5 nm. 

The room temperature emission spectrum for La2O2S:Eu3+ at 345 nm excitation is 

shown in Figure 4-51. Several strong emission lines are seen at 537, 554, 583, 593, 

612 and 619 nm. An expanded form of the same room temperature emission spectrum is 

shown in Figure 4-52 and gives finer resolution to some of the more dominant peaks in 

the spectrum. Those peaks are located at 536.9, 553.8 and 583.8 nm. 

Excitation spectra at elevated temperatures for the 538 nm emission line of 

La2O2S:Eu3+ are displayed in Figure 4-53 The peak of the charge-transfer band shifts 

from roughly 333.2 nm to 335.7 nm, a difference of only 2. 5 nm as temperature 

increased from 25°C to 200°C. 

The emission spectra of La2O2S:Eu3+ for excitation at 350 nm are shown in Figure 

4-54 for elevated temperatures. No distinguishable spectral shifts were observed, 

however it is interesting to note that the spectra show a gradual decrease in intensity of 

the 592, 612, and 621 nm emission lines as temperature was increased from 22°C to 

250°C. 
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1 50 

Europium-doped Yttrium Oxysulfide (Y 2O2S:Eu3+) 

Excitation and emission spectra are presented for Y 202S :Eu3 +  taken at room 

temperature and at elevated temperatures. The excitation spectrum of the 612  nm 

emission line of Y 2O2S :Eu3+ taken at room temperature is shown in Figure 4-55. The 

peak of the charge-transfer absorption band for this phosphor lies at 352.0 nm and 

another prominent atomic transition line lies at 393.0 nm. Other less important atomic 

transition peaks lie at 400, 4 15, 464, 47 1 ,  524, and 535 nm. Likewise, the excitation 

spectrum of the 619 nm emission line of Y 2O2S :Eu3+ taken at room temperature is shown 

in Figure 4-56. The peak of the charge-transfer absorption band for this phosphor lies at 

352.6 nm. Atomic transition lines can be found close to those lines of the spectrum taken 

at an emission wavelength of 612 nm. 

The room temperature emission spectrum for Y2O2S :Eu3+ at 355 nm excitation is 

shown in Figure 4-57 . Several strong emission lines are seen at 536, 591 ,  612 and 619 

nm while weaker emission lines are found at 468, 495, 512, 554, 580, and 585 nm. An 

expanded form of the same room temperature emission spectrum is shown in Figure 4-58 

and gives finer resolution of some of the major peaks in the spectrum. Those peaks are 

located at 537.6, 592.2, 613.0, and 622.3 nm. 

Excitation spectra at elevated temperatures for the 620 nm emission line of 

Y 2O2S :Eu3+ are displayed in Figure 4-59. The peak of the charge-transfer band shifts 

from roughly 349.9 nm to 361.0 nm, a difference of only 1 1 . 1  nm as temperature 

increased from 25.5°C to 200°C. The emission spectra of Y 2O2S :Eu3+ for excitation at 

355 nm are shown in Figures 4-60 and 4-61 for discrete temperatures of 25, 105, 200, 

and 305°C. These spectra show the gradual decrease in intensity as temperature 

increases. No distinguishable spectral shifts were observed. Figure 4-62 is a compiled 

version of these spectra measured as a function of temperature. 
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Emission Spectrum of Europium-doped 
Yttrium Oxysulfide at 25°C 
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Emission Spectrum of Europium-doped 
Yttrium Oxysulfide at 200°c 

(355 nm EX) 
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Gadolinium-doped Yttrium Oxide (Y 203:Gd) 

Excitation and emission spectra were taken for gadolinium-doped yttrium oxide 

within a temperature range of 25°C to 335°C. The fluorescence of this phosphor 

generally yields a bluish color to the eye when excited with an excitation wavelength of 

approximately 275 nm. The room temperature excitation spectrum for the 31 5 nm 

emission line is shown in Figure 4-63 for Y 203 :Gd. Strong absorption lines are 

observed at 275.6 nm while weaker absorption lines are seen at 248. 1 and 255.1 nm. It 

is uncertain at this time if the observed absorption band is due to a charge-transfer or a 5D 

state transition and should be further investigated in future research. A room temperature 

emission spectrum taken at an excitation wavelength of 275 nm is shown in Figure 4-64. 

Only one strong peak is observed in the spectrum and is located at a peak wavelength of 

315.0 nm. 

The excitation spectra at various temperatures for the 315 nm line of Y 203 :Gd are 

shown in Figure 4-65. It was observed that the absorption band showed no significant 

spectral shift in the excitation spectra as the temperature increased, other than slight shifts 

due to instrumental errors in the equipment used. Emission spectra at various 

temperatures for Y 203:Gd at 275 nm excitation are shown in Figure 4-66. No 

distinguishable broadening effects or shift in spectral position of the absorption band and 

atomic emission bands associated with the gadolinium ion were detected. It is also 

shown that the luminescent intensity of both the absorption band and atomic emission 

band decreased slightly as the phosphor temperature was increased in both the excitation 

. and emission spectra. 
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300 .0 nm 

161 

Emission Spectrum of Gado l in ium-doped 
Yttrium Oxide at Room Temperature 

(275 nm EX) 
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L[) 

340.0  nm 

Figure 4-64. Emission spectrum of  gadolinium-doped yttrium oxide 
at room temperature (275 nm EX). 
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Figure 4-66. Emission spectrum of gadolinium-doped yttrium 

oxide at elevated temperatures (275 nm EX). 

163 

340 nm 



164 

Manganese-doped Magnesium Fluorogermanate {M!4(F)Ge06:Mn) 

Excitation and emission spectra are presented for MgiF)GeO6 :Mn acquired at room 

temperature and at elevated temperatures ranging from 25°C to 350°C. The room 

temperature excitation spectrum of the 628 nm emission line of Mg4(F)GeO6 :Mn is 

shown in Figure 4-67. The peaks of the two major absorption bands for this phosphor 

are located at 325.0 and 419.4 nm. An atomic transition peak can be found at 449.3 nm. 

Likewise, the excitation spectrum of the 655 nm emission line of M�(F)GeO6 :Mn taken 

at room temperature is shown in Figure 4-68. The peaks of the absorption bands for this 

emission lie at 332.5 and 420.0 nm. An atomic transition line can also be found at 449.6 

nm. 

The room temperature emission spectrum for MgiF)GeO6:Mn at 325 nm excitation 

is shown in Figure 4-69. Several strong emission lines are seen at 621.0, 628.0, 647. 1 

and 654.6 nm while a weaker emission line is found at 637 .5 nm. The room temperature 

emission spectrum for Mg4(F)GeO6:Mn at 420 nm excitation is shown in Figure 4-70. 

Similar to the previous spectrum, several strong emission lines are seen at 622.0, 629.0, 

648.5 and 6555.0 nm while a weaker emission line is found at 638.0 nm. Figure 4-7 1 

details the intensity peak difference in the emission spectra between excitation at 420 nm 

as compared to 325 nm. 

Excitation spectra at elevated temperatures for the 655 nm emission line of 

Mg4(F)GeO6:Mn are displayed in Figure 4-72. There is only a small shift in the peak 

positions of the absorption bands which more than likely are due to instrumental error. A 

noticeable decrease in the relative intensity of the peaks was evident. The emission 

spectra measured as a function of temperature for MgiF)GeO6:Mn under excitation at 

420 nm are shown in Figure 4-73. The spectra shows an increase in intensity of the 626 

nm line at higher temperatures where the 653 nm line exhibits an intensity reduction. 
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Praseodymium-doped Yttrium Oxysulfide (Y2O2S:Pr) 

Excitation and emission spectra are presented for praseodymium-doped yttrium 

oxide taken within a temperature range of 20.4°C to 247 .7°C. The room temperature 

excitation spectrum of the 514 nm emission line of Y 2O2S :Pr is shown in Figure 4-7 4. 

The peak of the major absorption band is located at 301.6 nm whereas a smaller, less 

significant band is located at 266.3 nm. An atomic transition peak can also be found at 

468.3 nm. 

The room temperature emission spectrum for Y 2O2S :Pr at 300 nm excitation is 

shown in Figure 4-75. Two strong emission lines are found in this spectrum and are 

located at 502.4 and 513.6 nm. Praseodymium-doped phosphors usually exhibit a 

greenish-yellow color to the eye under stimulation of approximately 300 nm. 

Similar to the Y 2O3 :Gd phosphor, it was observed that the absorption band in the 

excitation spectra showed no significant spectral shift at elevated temperatures. Slight 

shifting of the emission lines may be due to instrumental error in the spectrophotometer. 

The excitation spectra at various temperatures for the 514.0 nm line of Y 2O2S :Pr are 

shown in Figure 4-76. The origin of the observed absorption band in Y 2O2S :Pr is 

unknown. 

Emission spectra at various temperatures for Y2O2S :Pr at 300.0 nm excitation are 

shown in Figure 4-77. Again, no distinguishable broadening effects or shift in spectral 

position of the absorption band and atomic emission bands associated with the 

praseodymium ion were detected. And furthermore, the luminescent intensity of both the 

absorption band and atomic emission band decreased significantly at increased 

temperatures in both the excitation and emission spectra. 
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Terbium-doped Yttrium Oxysulfide (Y 2O2S:Tb3+) 

Excitation and emission spectra are presented for Y 2O2S :Tb3+ measured at room 

temperature and at elevated temperatures. The excitation spectrum of the 543 nm 

emission line of Y 2O2S :Tb3+ taken at room temperature is shown in Figure 4-78. A 

room temperature charge-transfer band is located at a peak wavelength of 290.7 nm. 

Less intense peaks were observed at 378.5 and 488.7 nm. 

Five relatively strong fluorescence lines are found in the Y 2O2S :Tb3+ room 

temperature emission spectrum under 395 nm excitation and are shown in Figure 4-79. 

The most intense emission lines are found at 41 2.9, 416.5, 435.2, 438.2, and 542.6 nm. 

Other emission lines were observed at 456.3, 468.5, 47 3.5, 482.6, 487 .6, 492.2, 

548.2, and 584.5 nm. This emission spectrum is shown in expanded form in Figures 

4-80 and 4-81 which covers a range of wavelengths from 400 to 650 nm. 

Terbium-doped yttrium oxysulfide also shows a vary slight spectral shift towards 

the red in its charge-transfer band as temperature is increased. Figure 4-82 displays 

excitation spectra at elevated temperatures for the 545 nm emission line of Y 2O2S :Tu3+. 

The peak position of the charge-transfer absorption band for Y 2O2S :Tb3+ lies at 290.1 

nm at room temperature and shifts slightly to 293.2 nm at 200°C. The atomic transition 

peak at 379.4 shows no significant spectral shift. The emission spectra measured at 25°C 

and l 10°C can be found in Figure 4-83 while the same spectra for temperatures ranging 

from 150°C to 300°C are shown in Figure 4-84. This basically demonstrates the decrease 

in relative intensity of Y 2O2S:Tb3+ as a function of temperature . Particular attention 

should be paid to the strength of the 543 nm line. Figure 4-85 is a compiled version of 

the emission spectra measured at these same temperatures. 



22
0.

0 
n
m

 

r--­ ci
 

a,
 

(\J
 

L()
 

co
 

r--­ C')
 

E
xc

it
at

io
n

 S
p

ec
tr

u
m

 o
f 

T
e

rb
iu

m
-d

o
p

e
d

 
Y

tt
ri

u
m

 O
xy

su
lf

id
e

 a
t 

R
o

o
m

 T
e

m
pe

ra
tu

re
 

(5
43

 n
m

 E
M

) 

r--­ co
 

co
 

'<I"
 

52
0.

0 
n

m
 

Fi
gu

re
 4

-7
8.

 E
xc

ita
tio

n 
sp

ec
tru

m
 o

f t
er

bi
um

-d
op

ed
 y

ttr
iu

m
 o

xy
su

lf
id

e 
at

 ro
om

 te
m

pe
ra

tu
re

 (5
43

 n
m

 E
M

). 
......

 
-...J

 
00

 



3
0

0
.0

 n
m

 

Ol
 

N
 � 

"' <D
 � 

N
 

lf)
 

(')
 � N

 
CI)

 
(')

 � 

E
m

is
s

io
n

 S
p

e
c

tr
u

m
 o

f 
T

e
rb

iu
m

-d
o

p
e

d
 Y

tt
ri

u
m

 

O
x

y
s

u
lf

id
e

 a
t 

R
o

o
m

 T
e

m
p

e
ra

tu
re

 (
2

9
0

 n
m

 E
X

) 

(')
 

lO
 "' � 

lf)
 co <D
 � 

"' (')
 

r--­ � 

<D
 

,-..:
 co � 

N
 

N
 

� I
I� 

CI)
 � 

<D
 N � Ii)
 N

 
a:i

 � 

lf)
 � CI)
 "' 

6
4

0
.0

 n
m

 

Fi
gu

re
 4

-7
9.

 E
m

iss
io

n 
sp

ec
tru

m
 o

f t
er

bi
um

-d
op

ed
 y

ttr
iu

m
 o

xy
su

lfi
de

 a
t r

oo
m

 te
m

pe
ra

tu
re

 (2
90

 n
m

 E
X

). 
......

 
-..J

 
\0

 



4
0

0
.0

 n
m

 

l'­ cvi
 

'<I"
 

lO
 

<.O
 

'<I"
 

'<I"
 

l!)
 

N
 

"T
 

Ol
 

N
 

(')
 

"T
 

l'­ v
 

(')
 

"T
 

l'- 00
 

(')
 

"T
 

E
m

is
s

io
n

 S
p

e
c

tr
u

m
 (

E
x

p
a

n
d

e
d

 f
o

rm
) 

o
f 

T
e

rb
iu

m
-d

o
p

e
d

 

Y
tt

ri
u

m
 O

x
y

s
u

lf
id

e
 a

t 
R

o
o

m
 T

e
m

p
e

ra
tu

re
 

(2
9

0
 n

m
 E

X
) 

fr
o

m
 4

0
0

.0
 n

m
 t

o
 5

2
0

.0
 n

m
 

tO
 

l!)
 

"T
 

� (')
 

l'­ v
 

l'­ N
 

<O
 

"T
 

en
 r--: <O
 

st
 

'<I"
 

N
 

en
 

'<I"
 

5
2

0
.0

 n
m

 

Fi
gu

re
 4

-8
0.

 E
m

iss
io

n 
sp

ec
tru

m
 (e

xp
an

de
d 

fo
rm

) o
f t

er
bi

um
-d

op
ed

 y
ttr

iu
m

 o
xy

su
lfi

de
 a

t r
oo

m
 

te
m

pe
ra

tu
re

 (2
90

 nm
 E

X)
 fr

om
 4

00
.0

 n
m

 to
 5

20
.0

 n
m

. 
,_.

 
00

 
0

 



5
2

0
.0

 n
m

 

0
 

c,j
 � 

0)
 

f'-­ s;t
 

U)
 

E
m

is
s

io
n

 S
p

e
c

tr
u

m
 (

E
x

p
a

n
d

e
d

 f
o

rm
) 

o
f 

T
e

rb
iu

m
-d

o
p

e
d

 

Y
tt

ri
u

m
 O

x
y

s
u

lf
id

e
 a

t 
R

o
o

m
 T

e
m

p
e

ra
tu

re
 

(2
9

0
 n

m
 E

X
) 

fr
o

m
 5

2
0

.0
 n

m
 t

o
 6

5
0

.0
 n

m
 

0
 

U)
 

co
 

U)
 

6
5

0
.0

 n
m

 

Fi
gu

re
 4

-8
1.

 E
m

iss
io

n 
sp

ec
tru

m
 (e

xp
an

de
d 

fo
r

m) 
of

 te
rb

iu
m

-d
op

ed
 y

ttr
iu

m
 o

xy
su

lfi
de

 a
t r

oo
m

 
te

m
pe

ra
tu

re
 (2

90
 n

m
 E

X
) f

ro
m

 5
20

.0
 n

m
 to

 6
50

.0
 n

m
. 

......
 

00
 

......
 



I I I 

0
 

Ol
 

N
 

I 

,"'
\ ci
 

Ol
 

N
 

I ""'
 

Ol
 

N
I 

I I 

/
\

 

/ 
N

 

I 
c<i

 
Ol

 
I 

N
 

I 
I 

I 
/"

"
 

, /
 

I 
\ 

/\
I 

I 
\ 

I 
I 

\ 
\ 

I 
\ 

/ 
/ 

\ 
\ 

I 
I 

\ 
I 

A 
\ 

I 
' 

I 
I V

 
I 

I 
\

\ 
I 

\ 
: 

I 
I 

\\ 
' 

I 
I 

\ 
,'

 
I 

\
\

 
' 

I 
I 

I 
\ 

I 
I 

�
 

/
/ 

\ 
y

.,/
/

 
\ 

/
/

 
' 

a--=----
.:::-

"
 

22
0.

0 
nm

 

E
xc

it
at

io
n

 S
p

ec
tr

a 
o

f 
T

e
rb

iu
m

-d
o

p
e

d
 

Y
tt

ri
u

m
 O

xy
su

lf
id

e 
at

 E
le

va
te

d
 

T
e

m
p

e
ra

tu
re

s 
(5

45
 n

m
 E

M
) 

"<t
 

oi
 

t-­ C')
 Te

m
pe

ra
tu

re
 

Li
ne

 ty
pe

 

2 3
° c 

10
0° c 

15
0° C 

20
0° c 

44
0.

0 
nm

 

Fi
gu

re
 4

-8
2.

 E
xc

ita
tio

n 
sp

ec
tra

 o
f t

er
bi

um
-d

op
ed

 y
ttr

iu
m

 o
xy

su
lfi

de
 a

t e
le

va
te

d 
te

m
pe

ra
tu

re
 (5

45
 n

m
 E

M
). 

r-'
 

00
 

N
 



co .,, 

"' 
co .,, 

Emission Spectrum of Terbium-do ped 
Yttr ium Oxysulfide at 25°C (290 nm EX) 

co co .., 

co .., "' 

Second Order 
Line 

1 83 

360.0  nm 670.0 nm 

co "' 
.,, co 

M 

Emission  Spectrum of Terbium-doped 
Yttri um Oxysulfide at 1 1 0°C (290 nm EX) 

..,. 
<D ,..._ 
C'") ..,-..,-

co co ..,. 

..,. "' "' 
Second Order 

Line 

360.0 n m  670.0 nm 

Figure 4-83 .  Emiss ion spectra of terbium-doped yttrium oxysulfide 
at 25 °C and l 1 0°C (290 nm EX) . 



360.0 n m  

360.0 nm 

Emission Spectrum of Terbium-doped 
Yttr ium Oxysulfide at 1 50°C (290 nm EX) 

co co " 
N 
O> " 

co " "' 

Second Order 
Line 

184 

670 .0  nm 

Emission Spectrum of Terbium-doped 
Yttri um Oxysulfide at 300°C (290 nm EX) 

co co 

.,,. 
co 

Second Oraer 
Line 

670.0 nm 

Figure 4-84.  Emiss ion s pectra of terbium-doped y ttrium oxysulfide 
at 1 50°C and 300°C (290 nm EX). 



36
0.

0 
nm

 

Cl)
 

(')
 lf)

 
Cl)

 
(')

 

<D
 

"<t
 

O>
 

'<t
 

lf)
 

(')
 

"<t
 Cl)

 
(')

 
"<t

 

:s "<t
 

E
m

is
s

io
n

 S
p

e
c

tr
a 

o
f 

T
e

rb
iu

m
-d

o
p

e
d

 Y
tt

ri
u

m
 O

x
y

s
u

lf
id

e
 

a
t 

E
le

v
a

te
d

 T
e

m
p

e
ra

tu
re

s
 {

2
9

0
 n

m
 E

X
) 

O>
 

<D
 

"<t
 

"<t
 

r--­ '<t
 

Cl)
 

Cl)
 

'<t
 

(')
 

'<t
 

lf)
 ' Cl)

 
'<t

 
l{)

 

''
 

''
 

''
 ' 

'1 
: 

I 
' 

'<t
 

Cl)
 

lf)
 

Te
m

pe
ra

tu
re

 

2
5

°

C
 

Li
ne

 typ
e 

1
5
0

°

C
 

-
-
-
-
-
-
-
-
-
-
-
· 

3
0
0

°

C
 

t, !;1
, 

Se
co

nd
 O

rd
er

 
:, 

Li
ne

 

I I I I I I I I 

., 
:.. -

�,:
 ::zt

�-�
-:._�

�r
��

I \ "'�
--

-
-·�}

' \
t 
:._ 

I I 

67
0.

0 
nm

 

Fi
gu

re
 4

-8
5. 

Em
iss

io
n 

sp
ec

tra
 o

f t
er

bi
um

-d
op

ed
 y

ttr
ium

 o
xy

su
lfi

de
 a

t e
lev

ate
d 

tem
pe

ra
tur

e 
(2

90
 nm

 E
X

). 
......

 
00

 
u-,

 



186 

Lifetime Decay Measurements 

Exponential decay lifetimes of six thermographic phosphors were measured using 

the experimental configurations and methods described in Chapter 3. The results of these 

decay measurements have produced lifetime calibration curves for each of the 

thermographic phosphors tested. Having undergone decay lifetime calibration, these 

phosphors may someday find application in remote, non-contact, high temperature 

measurement systems. 

Laser excitation of wavelengths near 395 nm were created to stimulate the 

fluorescence of each orthophosphate crystal sample. In general, all of the 

europium-doped orthophosphates have room temperature lifetimes near 3200 µsec and in 

most cases, begin to quench at higher temperatures as compared to europium-doped 

yttrium oxide. The powder phosphors were stimulated with a nitrogen laser operating at 

337 nm. All lifetime measurements for the single crystal were acquired at the Oak Ridge 

National Laboratory whereas similar measurements for dysprosium-doped yttrium 

vanadate were produced at the Precision Measurements Laboratory of The University of 

Virginia. Lifetime data for the europium-doped yttrium oxide thermophosphor are 

presented for comparison with other accumulated data. Its emission characteristics have 

been well documented and furthermore it appears to be the current phosphor of choice in 

high temperature thermometry applications. The data for the europium-doped yttrium 

oxide phosphor, which is presented here in this section, were taken from experiments 

performed by Cates and others.(6) 

Lifetime measurements are presented on the following pages for LaP04: Eu3 +, 

YP04:Eu3+, LuP04 :Eu3+, LuP04:Dy3+, and YV04 :Dy3+. All lifetime data are presented 

in tabulated and graphical form. Graphical forms of data presentation are in most cases 

referred to as lifetime calibration curves. The logarithmic region of the calibration curve is 
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ul-u.ally temperature-sensitive. Temperatures are given in degrees centigrade and lifetime 

values are given in microseconds unless specified other wise. The chapter concludes 

with a discussion of the results for onset quenching temperature analysis using the 

CALQUEN program and method. 

Europium-doped Lanthanum Phosphate 

Lifetime measurements were performed on LaPO4 :Eu3+ with the Nd: Y AG laser 

excitation set at 393 . 1  nm. The decay lifetime data of the 593.8 nm fluorescence line of 

LaPO4:Eu3+ are presented in Table 4-6 and the calibration curve is shown in Figure 4-86. 

At room temperature, the recorded lifetime value of LaP04:Eu3+ is approximately 3265 

µsec. Gradually, its decay lifetime decreases in strength to an approximate value of 2000 

µsec at 440°C. As the temperature of the phosphor increases, its radiative transitions 

begin to quench and there is a smooth logarithmic decrease in decay time which begins 

near a temperature of approximately 500°C and continues to about 700°C. 

Europium-doped Yttrium Phosphate 

Lifetime measurements were performed on YPO4:Eu3+ with the Nd:YAG laser 

excitation adjusted to 395.5 nm. The decay lifetime data of the 593.5 nm emission line of 

YPO4 :Eu3+ are presented in Table 4-7 and a calibration curve is shown in Figure 4-87. 

At room temperature, the recorded value of its lifetime decay is roughly 3 1 39 µsec. 

Similar to LaPO4:Eu3+, the decay lifetime of YPO4 :Eu3+ is gradually reduced in strength 

to a value of 1900 µsec at 660°C. As the temperature of the phosphor increases, emission 

quenching begins and there is a smooth logarithmic decrease in decay time which starts at 

a temperature of approximately 700°C and continues out to nearly 1 100°C. 
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Table 4-6. Lifetime data for europium-doped lanthanum phosphate. 

�l�i jiiI1:�:i�!ii�i;:;:�!i1li:1�f i;;;�.�:�l.::��i�iI.!ilt��;;i;.::I1sii..iii��;����f �;[.ji 
Europium-doped Lanthanum Phosphate 

Temperature (°C) Lifetime (µsec) 

20.0 3265.0 
1 00 .0  3 1 79.0  
200.0 3071 .0  
300 .0 2863 .0 
350.0  271 5 .0 
400.0 2509 .0 
450 .0 1 897.0  
500.0 1 1 52 .0 
525.0 547.3 
550 .0 296 .4 
575.0 1 48.2 
600 .0 86.76 
625.0 44.4 
650 .0 1 6.31  
675.0 1 1 .82 
700.0 4.72 
750.0 3 .57 
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Table 4-7.  Lifetime data for europium-doped yttrium phosphate. 

lltitlllll11ll!lill!llti11:lr.il[ITalll!li11IIlli 
Europiu�oped Yttrium Phosphate 

Temperature (°C) Lifetime (µsec) 

20.0 3 1 39.0 
1 00 .0 301 3.0 
200.0 2776.0 
300 .0  2637.0 
400 .0 2570 .0 
500 .0 2480.0 
600.0 2341 .0 
660.0 1 901 .0 
700.0 1 305.0 
725.0 930.2  
750 .0 584.5 
775.0 393 . 1  
800 .0 239 .8  
825.0 1 46 .2  
850.0 97. 1 1 
900 .0 45.7 
950.0 28.0 
1 000.0 5.57 
1 1 00.0 1 .72 
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Europium-doped Lutetium Phosphate 

Lifetime decay measurements were performed on LuPO4:Eu3+ with the Nd:Y AG 

laser generating an excitation wavelength of 395.4 nm. The decay lifetime data of the 

593.5 nm emission line of LuPO4:Eu3+ are listed in Table 4-8 and the calibration curve is 

shown in Figure 4-88. At room temperature, the recorded value of its lifetime decay is 

approximately 3 125 µsec. Similar to the LaPO4:Eu3+ and YPO4:Eu3+ phosphors, its 

decay lifetime is slowly reduced in strength from its room temperature point to a value of 

roughly 1 880 µsec at 700°C. As the temperature of the LuPO4:Eu3+ increases, 

fluorescence quenching starts near 740°C and there is a somewhat smooth logarithmic 

decrease in decay time which continues out to nearly 1 100°C. 

During lifetime decay measurements, it is often necessary to continually monitor the 

logarithm of the signal and check for linearity of its slope. Figures 4-89 and 4-90 show 

the non-exponential effects of the decay lifetime signals for LuPO4:Eu3+, measured as a 

function of temperature. This series of oscilloscope photographs displays the acquired 

fluorescent signals and their corresponding logarithms from 700°C to 1000°C. Typically, 

below onset quenching temperature , the acquired decay signal is of single exponential 

form where the slope (or lifetime) of the logarithm can be easily measured. However 

above the onset quenching temperature, the logarithm of the signal tends to become 

non-linear and thereby making lifetime analysis much more difficult and less accurate . In 

the oscilloscope photograph at 700°C, the logarithm of the signal exhibits a linear slope 

throughout the signal compared to the photograph at 1000°C, where several straight 

portions of the logarithm can be seen. Oscilloscope photographs were taken for all 

thermophosphor calibrations to check the non-exponential effects of the signal but were 

not presented in the thesis documentation. 
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Table 4-8. Lifetime data for europium-doped lutetium phosphate. 

111�t!ii:�im�11i11tiiiizllm11,11111.i1fi11111ii111itti 
Europium-doped Lutetium Phosphate 

Temperature {°C) Lifetime (µsec) 

26 .0 31 25.0 

300.0 2597.0 

600.0 2344.0 

650.0 2080.0 

700.0 1 887.0 

750.0 1 355.0 

800.0 878.9  

850.0 41 3 .5 

900.0 206.8 

950.0 1 00 .0 

1 000.0 1 5.98 

1 050.0 5 .86 

1 1 00.0 3.399 
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TEMP = 700°C r = 1 .887 µ s  

TEMP = 8oo0c r = 879.9 µ s  

Figure 4-89. Oscilloscope photographs showing the changing exponential lifetime 

decay signal of LuP04 :Eu3+ at 700°C and 800°C. 
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TEMP = goo0c T = 206.8 µ s  

TEMP = 1 000°C r = 1 5 .98 µ s  

Figure 4-90. Oscilloscope photographs showing the changing exponential lifetime 

decay signal of LuP04 :Eu3+ at 900°C and 1000°C. 
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Europium-doped Yttrium Oxide 

Decay lifetime data of the 61 1 nm emission line of Y 2OfEu3+ are listed in Table 4-9 

and its calibration curve is shown in Figure 4-89. At room temperature, the lifetime 

value is approximately 900 µsec. This phosphor shows a slight rise in lifetime to 

roughly 1 100 µsec at 300°C and then a gradual reduction until quenching takes place at 

approximately 510°C. A smooth logarithmic decrease in decay time continues out to 

nearly 1 150°C. 

Dysprosium-doped Lutetium Phosphate 

Lifetime measurements were performed on LuPO4 :Dy3+ under laser excitation at 

397. 8 nm. The decay lifetime data of the 57 4.4 nm fluorescence line of LuPO 4:Dy3+ are 

presented in Table 4- 10  and a calibration curve is shown in Figure 4-95. At room 

temperature, the recorded lifetime is approximately 543.0 µsec. Characteristically, it 

slowly increased in strength in decay lifetime to a maximum value of 610 .5 µsec at 

700°C. With increasing temperature, the transition began to quench near 900°C. There 

appears to be a logarithmic decrease in decay time beyond onset quenching temperature 

however more data are required to fully verify its behavior. 

Dysprosium-doped Yttrium Vanadate (YVO4:Dy3+) 

Lifetime decay analysis was performed on YVO4 :Dy3+ with a nitrogen laser 

generating an excitation wavelength of 337 nm. The decay lifetime data of the 575.0 nm 

emission line of YVO4:Dy3+ are listed in Table 4-1 1  and a calibration curve is shown in 

Figure 4-96. At room temperature, the recorded lifetime is approximately 160.8 µsec. 
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Table 4-9. Lifetime data for europium-doped yttrium oxide. 

Mll.t!�:t.�:1=�1=i]!f ,Ili1J.!liliii!��!!iii:11:;�;t:;tfJJ;:ti::l@l�tt!*!ld 
Europium-doped Yttrium Oxide 

Temperature {°C) Lifetime (µsec) 

1 00.0 900.0 

200.0 1 000.0 

300.0 1 1 00.0 

400.0 950.0 

450 .0 900.0 

500 .0 850 .0  

550.0 550.0 

600 .0 270.0 

650.0 1 1 5.0  

700.0 48.0 

750 .0  2 1 .0  

800.0  1 0 .0  

850.0 4 .5 

900.0 1 .9 

950.0 1 .2 

1 000.0 0 .4  
1 050.0 0 .28 

1 1 00.0 0 . 1 2  

1 1 50.0 0 .05 

1 200.0 0 .04 
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Table 4-10. Lifetime data for dysprosium-doped lutetium phosphate. 

_,,1111aarar1a111rtsJ!:i11rj1111 
Dysprosium-doped Lutetium Phosphate 

Temperature (°C) Lifetime (µsec) 

24.0 543.0 

200 .0 563. 7  

300 .0 573 .8  

400 .0 620.0 

500 .0  598.7 
600.0 609.9 

700 .0 6 1 0 .5 

800 .0 596 .7 

900 .0 538.0 

950 .0 475.5 

1 000.0 41 1 .3 
1 050 .0 336 .6 
1 1 00.0 1 7 1 .9  

1 200.0 95.0 
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Table 4- 1 1 . Lifetime data for dysprosium-doped yttrium vanadate. 

li:1 r f 1;1:1;i11]:tif iiitiiii,liiti\itli�iiiit�i11011i.11;;�u12�wi£ii�lI1:1r1 
Dysprosium-doped Yttrium Vanadate 

Temperature (°C) Lifetime (µsec) 

26.0 1 60 .87 
1 50.0 1 77. 1 7  
200.0  1 67 .83 
240.0 1 62.51 
300.0 1 28.71 
350 .0 50 . 1 1 
360 .0 33.25 
370.0 2 1 .88 
380.0 1 4. 28 
390.0 8 .63 
400.0 5 .82 
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The lifetime decay of the phosphor slowly increased in strength to a maximum value 

of 177 µsec at 150°C and then decreases slowly to 129 µsec at 300°C. As temperature 

increased, the radiative transition began to quench near 305°C. There also appears to be a 

logarithmic decrease in decay time beyond the onset quenching temperature of this 

phosphor. 

D�on of the Onset Quenching Temperature 

The decay lifetimes of several high temperature thermographic phosphors are 

compared in the calibration curves of Figure 4-97. The CALQUEN .BAS computer 

program, written to analyze lifetime calibration data, was used to determine the onset 

quenching temperature of each phosphor researched. Using the method of line of best-fit, 

two equations interpolate the lifetime calibration curves of each thermographic phosphor 

and determine the initial point of temperature dependence. Table 4-12 summarizes the 

results of the onset quenching temperature analysis for the six thermophosphors. 

It is seen that LuPO4 :Dy3+ has the highest onset quenching temperature of all the 

orthophosphates tested. Its onset quenching temperature was calculated as 905.02°C. 

Proceeding LuPO4:Dy3+, are LuPO4:Eu3+, YPO4 :Eu3+, and LaPO4 :Eu3+ in which their 

onset quenching temperatures were found to be 756.5, 668 .5, and 461.7°C respectively. 

Presented again are the cation radii for LuPO4:Eu3+, YP04:Eu3+, and LaP04 :Eu3+ which 

measure 0.85, 0.893, and 1.061 A. It was found that as the cation radius decreases in 

the europium-doped orthophosphates, their onset quenching temperatures tend to 

increase. For example, LuPO4 :Eu3+, with ionic radius of 0.85 A and onset quenching 

temperature of 756.5°C can be compared to LaPO4:Eu3+, with ionic radius of 0.85 A and 

onset quenching temperature of 461.7°C. 
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Table 4- 12. Onset quenching temperatures of several thermographic phosphors. 

-
Phosphor 

Onset Quenching 
Temperature 

Europium-doped Lanthanum Phosphate 46 1 .6932 °C 

Europium-doped Yttrium Phosphate 668.4855 °C 

Europium-doped Lutetium Phosphate 756.5296 °C 

Europium-doped Yttrium Oxide 506.9 1 53 °C 

Dysprosium-doped Lutet ium Phosphate 905.0262 °C 

Dysprosium-doped Yttrium Vanadate 304.9 1 98 °C 
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With this observation in mind, it is probable that an europium-doped scandium phosphate 

crystal phosphor should yield an even higher onset quenching temperature since its cation 

radius is approximately 0.73 A This cation radius is much smaller than other 

europium-doped orthophosphates tested. This hypothesis may also be extended to other 

phosphors whose host cation radius is as small when compared to the cation radii of 

phosphors researched in this work. 



CHAPfER V 

SUMMARY AND CONCLUSION 

Some of the emission properties of thermographic phosphors were measured 

because of their potential use in high temperature sensing applications. Specifically, the 

role of the charge-transfer state in the host/dopant crystal lattice and its relationship to 

thermophosphor emission properties was discussed. An experimental study of the 

excitation and emission spectra measured as a function of increasing temperature of 

fifteen phosphors was reported. In addition to spectral experiments, the emission decay 

times of these phosphors were measured. These lifetime decay plots are calibrations for 

use in remote thermographic measurement applications. Experimental errors, 

complications and corrections for the fluorescence spectrophotometer and lifetime decay 

configurations were presented. And finally, a computer program was developed to help 

clarify the onset quenching temperature point given a lifetime calibration curve. The 

intersection of the two lines that interpolate the lifetime data is defined as the onset 

quenching temperature point. 

Several conclusions can be drawn from these research efforts and are listed in the 

paragraphs that follow: 

a .  In the excitation spectra taken from room temperature to approximately 400°C, 

the phosphors Y 2O3 :Eu3+, YVO4:Eu3+, Ba3(PO4)i :Eu2+, LaPO4 :Eu3+, 

LuPO4:Eu3+, YPO4:Eu3+, YVO4:Dy3+, Y2O2S:Eu3+, and Y2O2S:Tb3+ exhibit a 
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significant temperature-dependent spectral shift towards the red in their 

charge-transfer absorption bands. In general, it was observed in the several of 

the europium-doped phosphors that this shift is linearly as temperature increases. 

b. The peak position of the charge transfer band in the europium-doped 

orthophosphate crystals is located at higher energies or deeper into the ultraviolet 

as the cation radius of the host crystal lattice decreases. 

c .  It is found that in the europium-doped orthophosphate crystals, the onset 

quenching temperature increases with a decrease in host cation radius. This 

phenomenon was observed in the lifetime calibration curves of LaPO4 :Eu3+, 

LuPO4:Eu3+, and YPO4:Eu3+. 

d .  The orthophosphate crystals have the highest onset quenching temperatures of 

any of the thermophosphors that have been characterized to date. In particular, 

dysprosium-doped lutetium phosphate has an onset quenching temperature of 

approximately 905°C. The orthophosphate crystals YPO4 :Eu3+ and LuPO4 : 

Eu3+ were also found to have high onset quenching temperatures, 668.49°C and 

756.53°C respectively. 

e. The orthophosphate crystals may prove to be the phosphors of choice for high 

temperature sensing applications ranging from 700°C to 1400°C based on 

experimental data. 
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Future Research and Experimental Suggestions 

The original intent of this thesis research was to investigate the spectra of powder 

and orthophosphate phosphors measured as a function of temperature and to obtain 

lifetime decay calibration for several thermophosphors. However this work has opened 

many new doors for future experimentation and research projects to further elucidate 

characteristics of emission properties and high temperature measurement applications of 

thermographic phosphors. There are many more questions to be asked and answered 

with respect to this work. Different experiments and methods can be used, and slight 

variations of past spectra and lifetime experiments can be performed to further verify the 

results presented in this thesis. For example, the spectral experiments can be done at 

higher wavelength resolution while lifetime decay measurements can be performed with 

greater accuracy and precision. On the following pages are details of comments and 

suggestion for improvements to past experimentation and ideas for future experiments 

related to the characterization of high temperature thermophosphors. 

Background blackbody radiation effects on the photomultiplier tube can be a real 

problem in the measurement of spectra or lifetime decay at temperatures above 600°C. 

Similarly, thermal leakage near the optics and front surface area of the photomultiplier 

tube in the housing of the fluorescence spectrophotometer can possibly increase its dark 

current output at higher temperatures and drastically effect the results of the experiment. 

Therefore, several suggestions are in order. One can connect an ammeter in series with 

the output of the photomultiplier tube to measure and verify its output dark current as 

temperature increases and then compare the acquired current to the manufacturers 

specifications, if they are available. Most photomultiplier tubes have a range where 

certain dark currents are usable. This procedure should be done with no optical radiation 
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incident to the photomultiplier tube. The dark current should remain constant as the 

temperature of the oven is increased or as the area around the photomultiplier tube is 

heated. It may be necessary to cool the photomultiplier tube with liquid nitrogen in an 

attached surrounding chamber or to use an internally-mounted fan to circulate and cool 

the air near the photomultiplier tube housing. Another way to help reduce the thermal 

leakage from the oven in the spectrophotometer housing would be to use a ceramic 

material with greater insulating properties. This way less heat would affect the 

photomultiplier tube dark current and nearby optics. 

Future research of excitation spectra measured at elevated temperatures may include 

the measurement of the spectra at higher resolution. With the use of the pulsed Nd: YAO 

pump laser, a tunable dye laser and a large variety of available dyes, a researcher may be 

able to obtain a high resolution excitation (and emission) spectra measured as a function 

of temperature. Since the Quanta Ray dye laser has a stepper motor attached to the 

diffraction grating, additional electronic control circuitry can be used to pulse the motor 

thus achieving a range of excitation wavelengths. A monochromator can be used to select 

the emission wavelength and its photomultiplier tube output would connect to a chart 

recorder to acquire an excitation scan. Similarly an emission scan could be acquired by 

first selecting an excitation line from the laser and using the built-in stepper motor on the 

monochromator to rotate the emission grating. Several electronic circuits and stepper 

motor controllers are available for the Quanta Ray dye laser unit. Since the phosphor 

sample would be placed in the Linberg oven, excitation and emission spectra have the 

potential to be measured at temperatures ranging from 400 to 1200 °C with much higher 

resolution. Accuracy of these spectra would be closer to ± 1 Angstrom as compared to 

±20 Angstrom (±2 nm) using the spectrophotometer. This type of measurement system, 

using the tunable dye laser in conjunction with the monochromator may help reduce the 
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background blackbody radiation, since it is a pulsed measuring system as opposed to a 

continuous measuring system. The photomultiplier tube in the case of the pulsed 

measuring system would only "see " the fluorescence when the laser is pulsed and the 

blackbody would therefore be a smaller part of the total acquired signal. 

Another experimental lifetime decay calibration system could possibly be configured 

with a liquid crystal display (LCD) optical window to help reduce the blackbody 

radiation. The LCD widow, when placed in front of the monochromator or before the 

photomultiplier tube, can be synchronized with the timing of the laser trigger to open only 

during the emission of fluorescence from the phosphor sample. The overall pulse width 

of the timing window can be adjusted with a pulse delay generator. The properties of a 

usable LCD window would include high optical transmission with no absorption of 

fluorescence and a very fast rise and fall time such that the window could be 

synchronized to the 10  Hz pulse rate of the Nd:YAG laser trigger. Another technique 

similar to the LCD optical window may include the use of mechanical choppers to 

produce the same effect of reducing acquired blackbody background emission. One may 

even choose to experiment with a hybrid configuration coupling the LCD window along 

with the mechanical chopper. 

All of the high temperature lifetime measurements performed in this thesis were 

constrained to the upper temperature limits of the Linberg oven. This oven has a 

maximum temperature output of approximately 1200°C. Since the Oak Ridge National 

laboratory facility has ovens that achieve internal temperatures to 1700°C, it is suggested 

that lifetime decay measurements be performed within the range of 1200°C to 1700°C. In 

particular, the lifetimes of the orthophosphates LuPO4 :E u 3 + , YPO4 : Eu3 + , and 

LuPO4:Dy3+, and the powder Y 2O3 :Eu3+ should be characterized above 1200°C until 

their fluorescence is entirely quenched. Other phosphors, both powders and single 
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crystals can be investigated for higher temperatures. Special attention and care should be 

given to the lifetime measurements above the onset quenching temperature point so that 

more accurate data may be acquired in the temperature sensing region of the calibration 

curve. Once again, care must be taken to reduce the blackbody radiation generated by the 

ovens at these higher temperatures. 

Another addition to past experimentation would be a thorough analysis of 

temperature cycling phenomena associated with lifetime measurements. As mentioned 

previously in this thesis, the need for this data will be most useful to applications which 

utilize the thermophosphor technique. There are many factors involved in the 

fluorescence process, and small variations is the ion/dopant concentration or physical and 

chemical changes in the phosphor structure can change the phosphor's temperature 

dependence slightly or even drastically. Temperature cycling experiments would provide 

important data that may determine the useful life of a thermophosphor in a high 

temperature environment and would generate information related to the reproducibility of 

the lifetime decay and temperature measurement. 

It may become necessary to further understand the chemical composition of the 

thermophosphors used in high temperature measurements and therefore a complete and 

thorough chemical analysis of certain phosphors should be undertaken. Phosphor 

manufacturers usually don't list complete chemical constituents of their products due 

partially to proprietary protection. The researcher may find that impurities in 

commercially-manufactured phosphors have an effect on spectral or lifetime 

measurements since it is known that these unwanted or unknown impurities do affect the 

spectral properties. Several techniques such as x-ray diffraction, electron spectrometry 

for chemical analysis (ESCA) and other similar methods can be used to determine 

phosphor binding energies, elemental composition, and purity. Continued collaborative 
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efforts with the Solid State Division of Oak Ridge National Laboratory can further 

provide custom-grown, high-purity powder and crystal phosphors for use in future 

research and development of high temperature thermophosphor experiments. Bonding 

techniques and methods, specifically for orthophosphate crystals, need further 

investigation for potential use in thermophosphor applications. 

To further elucidate the lifetime decay measurements, it may be interesting to 

develop a reflectance experiment where the intensity ratio of two emission lines is 

measured as a function of temperature. Although the lifetime technique has been 

thoroughly investigated and is most reliable, this reflectance experiment may generate 

data which can be compared to lifetime measurements as an alternate method of checking 

experimental calibration and consistency. This experiment can be performed by selecting 

two dominant emission lines in a phosphor, one being temperature-dependent and the 

other not being temperature-dependent and measuring the ratio of the intensities of the 

two lines as the temperature is increased. Other possible advantages of reflectance-based 

thermometry are that it may work at higher temperatures and may enable transient 

measurements to be made. 

Several orthophosphate crystals in particular should be investigated and 

characterized as soon as possible. Europium-doped scandium phosphate should be 

thoroughly characterized for lifetime decay along with its excitation and emission spectra 

measured as a function of increasing temperature. As mentioned in previous chapters, 

since the ionic radius of the scandium host is smaller than that of lutetium and yttrium 

(although these three crystals maintain the same crystal structure), one should find_ that 

the charge-transfer band of scandium phosphate lies deep in the ultraviolet or at higher 

energies in the phosphor's excitation spectra. Because of this factor, scandium 

phosphate should thus yield a higher onset quenching temperature than the onset 
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quenching temperatures observed in yttrium and lutetium phosphate. Using the same 

experimental configurations detail in this work, scandium phosphate can and should be 

fully characterized and investigated for these phenomena. 

Dysprosium-doped ytnium and scandium phosphate phosphors are available and are 

in need of spectral and lifetime characterization. Since dysprosium-doped lutetium 

phosphate has been characterized, it would be of interest to investigate the effects of the 

variable host cation radii of dysprosium-doped yttrium and scandium phosphate with 

respect to the onset quenching temperature and spectral shift of the excitation spectra. It 

is possible that the dysprosium-doped orthophosphate phosphors may parallel the cation 

host radius theory as was observed in the europium-doped orthophosphate phosphors. 

Hence it may be observed that dysprosium-doped lutetium phosphate could have a higher 

onset quenching temperature than that of dysprosium-doped yttrium phosphate if the 

theory holds true. 

It may be of interest to perform spectral and lifetime experiments on a phosphor with 

variable dopant levels or dopant concentration. Since dopant concentration tends to 

increase the fluorescent intensity of phosphors in most cases, the effect of this variable 

should be observed in the excitation and emission spectra and lifetime decay 

measurements. In addition to varying the dopant concentration of the phosphor, it would 

be of interest to vary the phosphor particle size while holding the dopant concentration 

constant. It may be possible that the varying particle size of the phosphor may change the 

host-dopant coupling or shift the charge-transfer band to lower or higher energies. If this 

is found to be true, researchers can design phosphors to meet specific temperature 

sensing regions simply by varying the particle size and consequently relocating the 

charge-transfer energy location. Hence one can develop "tunable thermographic 

phosphors", if such terminology is applicable. The possibilities for creating and 
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constructing usable thermophosphors could then be multiplied. 

In addition to the europium- and dysprosium-doped orthophosphates, a large variety 

of other rare-earth activated orthophosphate crystals developed by the ORNL Solid State 

Division are available to the thermophosphor program. Lifetime decay and excitation and 

emission spectra can be measured at both room and elevated temperatures to further 

characterize the phosphors. Some of these single crystals may someday find potential 

application in high or possibly low temperature measurements. These meticulous and 

sometimes laborious research efforts simply must be continued in search of an optimum 

and potentially useful phosphor material. 
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APPENDIX B 

A listing of a Tektronix 7854 oscilloscope program used for analyzing the lifetime 
value of an exponential fluorescence signal. 

EXP.PRO 

LNN 0 0 NEXT 
VMDL HMDB NEXT 
BOTH NEXT 
lOO AVG NEXT 
9 >WFM NEXT 
LNN 0 1 NEXT 
STOP NEXT 
lOO AVG NEXT 
8 >WFM NEXT 
0 WFM 9 WFM - NEXT 
7 >WFM NEXT 
7 WFM NEXT 
0.6 SMOOTH NEXT 
CRSl NEXT 
STOP NEXT 
VCRD NEXT 
2.718 / NEXT 
STOP NEXT 
CRS2- 1  NEXT 
STOP NEXT 
1 LBL GOTO NEXT 



10 
20 
30 
40 
50 
(i() 
70 
80 
90 
100 
1 10 
120 
130 
140 
150 
l(i() 
170 
180 
190 
200 
210 
220 
230 
240 
250 
2(i() 
270 
280 
290 
300 
310 
320 
330 
340 
350 
3(i() 
370 
380 
390 
400 
410 
420 
430 
440 
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APPENDIX C 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 
REM *** 

This program will detennine the onset quenching temperature 
of a thennographic phosphor from the analysis of its lifetime 
calibration curve. The analysis uses linear regression and 
a best-fit line to the calibration curve. The intersection of 
the two lines is defined as the onset quenching temperature. 

Alan R. Bugos 

Oak Ridge National Laboratory 

January 1989 

*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 
*** 

REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 

CALQUEN.BAS Version 1 .00 *** 
*** 

REM ************************************************************************ 
REM 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Setting up the Screen Graphics Routine 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

CLS:SCREEN 2:CLS:FOR T= l TO 700 STEP 5 
LINE (O,O)-(T,200),4 
IF T>200 THEN LINE (O,O)-(T-200,200),0 ELSE 330 
NEXT T 
CLS:SC==4:FOR T = 700 TO 1 STEP -7 
LINE (0,0)-(T,200),SC 
NEXT T:FOR D=l TO 1000:NEXT D:CLS:SCREEN 0 

REM 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Beginning of the Main Program 
*** 
*** 
*** 

REM ************************************************************************ 
REM 



450 
460 
470 
480 
490 
500 
510 
520 
530 
540 
550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
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REM 
REM **"'************ Define variables, parameters, and other values **************** 
REM 

KEY OFF:CLS:DEFS1R S 
DIM Xl ( lOO), Y l(lOO), XX(lOO), YY(lOO), XY(lOO) 
DIM M(30), B(30), Dl(lOO), D2(100), X2(100),Y2(100) 
DIM YlA(lOO), Y2A(100) 
XSUM = 0:YSUM = 0:XXSUM = 0:YYSUM = 0:XYSUM = 0 

REM 
REM ************* Display the first screen and link the HELP program 
REM 

************* 

CLS:COLOR 9 
LOCATE 3,6:FOR P = 1 TO 35:PRINT "**";:NEXT P 
LOCATE 4,6:FOR P = 1 TO 35:PRINT "**";:NEXT P:COLOR 13  

REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Screen Data and Routine for the Main Menu 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

LOCATE 6,15:PRINT"Welcome to CALQUEN.BAS, a program which approximates 
LOCATE 7,15:PRINT"the onset quenching temperature of a thermographic 

LOCATE 8,15:PRINT"phosphor given its temperature and lifetime calib­
LOCATE 9,15:PRINT"ration data.":COLOR 9 
LOCATE 1 1 ,6:FOR P = 1 TO 35:PRINT "**"; :NEXT P 
LOCATE 12,6:FOR P = 1 TO 35:PRINT "**"; :NEXT P:COLOR 12 
LOCATE 14,15 :PRINT"******************* Main Menu ******************* 

REM 
REM 

COLOR 1 1  
LOCATE 16,20:PRINT"l .) Help 
LOCATE 17,20:PRINT"2.) Load Data Manually (Sequential Input) 
LOCATE 18,20:PRINT"3.) Load External Data Files 
LOCATE 19,20:PRINT"4.) Quit":COLOR 10 
LOCATE 21 ,20,1 :PRINT" What is your selection?";:S$= INPUT$(!) 

IF INS1R(" 1234" ,S$) THEN K = V AL(S$) ELSE 780 
ON K GOTO 830,1070,2840,940 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 
REM *** 

Linking the CALHELP.BAS program 
for help and introduction information 

*** 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

COMMON ALL:CHAIN "CALHELP.BAS" 
REM 
REM 
REM ************************************************************************ 
REM *** *** 



960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1 100 
1 1 10 
1 120 
1 130 
1 140 
1 150 
1 160 
1 170 
1 180 
1 190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 

REM *** 
REM *** 
REM *** 

Quitting the CALQUEN.BAS program 
and retuming back to DOS. 

228 

*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

REM 
REM 

CLS:FOR T = 1 TO 2000:NEXT T:BEEP:COLOR 10 
LOCATE 12,15:PRINT"********** Leaving CALQUEN.BAS 
FOR T =  1 TO 10000:NEXT T:CLS:END 

**********" 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Routine for manual sequential data input 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

CLS:BEEP:COLOR 9 
FOR P=l TO 38:PRINT"**";:NEXT P:COLOR 12 

LOCATE 3 ,22:PRINT"********* Phosphor Name *********" :COLOR 10 
LOCATE 7 ,9:INPUT"What is the name of the phosphor? " ,PHOSNAME$:COLOR 1 1  
LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 

RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T 
REM 
REM 

CLS:BEEP:COLOR 9 
FOR P=l TO 38:PRINT"**" ;:NEXT P:COLOR 12 

LOCATE 3,22:PRINT"****** Temperature Scale *****":COLOR 10 
LOCATE 7 ,9:INPUT"What are the temperature units <C or F>? ",DG$:COLOR 1 1  
LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 

RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T 
REM 
REM 

CLS:BEEP:COLOR 9 
FOR P=l TO 38:PRINT"**"; :NEXT P:COLOR 12 

LOCATE 3,22:PRINT"******* Manual Data Input *******":COLOR 1 1  
LOCATE 5,9:PRINT"Data Input for Calibration Line 1 " :COLOR 13  
LOCATE 7,9:INPUT"Number of  Data Points for Line 1 :  " ,  Nl  

FOR M =  1 TO Nl:COLOR 10 
LOCATE 10,9:PRINT"Temp. point" ;M;:INPUT" : '' ,X l(M) 
IF Xl(M)<=0 THEN GOSUB 1460:GOTO 1360 
LOCATE 1 1 ,9:PRINT"Lifetime point" ;M;:INPUT": ",YlA(M) 
IF YlA(M)<=0 THEN GOSUB 1460:GOTO 1380 

LOCATE 10,9:PRINT"Temp. point";M;" : 
LOCATE 1 1 ,9:PRINT"Lifetime point";M;" :  

BEEP:NEXT M:COLOR 1 1 :GOTO 1560 
REM 
REM ************************************************************************ 
REM *** 
REM *** Less than zero input subroutine 

*** 
*** 
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1470 REM *** *** 
1480 REM ************************************************************************ 
1490 REM 
1500 COLOR 13 
1510 LOCATE 14,9:PRINT"Value must be greater than zero!" :BEEP:COLOR 10 
1520 FOR T=l TO 10000:NEXT T:LOCATE 14,9:PRINT STRING$(50," ") 
1530 RETURN 
1540 REM 
1550 REM 
1560 LOCATE 14,9:PRINT"Number of data points input for Line 1: " ;Nl :COLOR 12 
1570 LOCATE 20,10:PRINT"***** Press any key to verify data for Line 1 ***** 
1580 RET$=1NPUT$(1):FOR T = 1 TO 1500:NEXT T:CLS:COLOR 9 
1590 LOCATE 3,12:PRINT"************** DATA FOR LINE 1 ****************" 
1600 PRINT:COLOR 10:FOR M = 1 TO Nl 
1610 PRINT" Temp:";Xl(M),"Lifetime:";YlA(M) 
1620 NEXT M:COLOR 1 1  
1630 PRINT:INPUT"Is your data correct? [Y or N]: ",ANS$ 
1640 IF ANS$="Y" OR ANS$="y" THEN 1680 ELSE 1 100 
1650 REM 
1660 REM ************************************************************************ 
1670 REM *** *** 
1680 REM *** Writing data to an external file *** 
1690 REM *** *** 
1700 REM ************************************************************************ 
1710 REM 
1720 REM LINEl .DAT Data file for the raw data of the 1st calibration line 
1730 REM 
1740 REM 
1750 CLS 
1760 LOCATE 4,4:PRINT"This data will be stored on disk in filename:" :COLOR 13 
1770 LOCATE 4,50:PRINT" LINEl.DAT ":COLOR 1 1  
1780 LOCATE 4,62:PRINT"for future use.":COLOR 10 
1790 LOCATE 22,18:PRINT""'******* PRESS ANY KEY TO CONTINUE *********" 
1800 RET$=INPUT$(1):BEEP:FOR T = 1 TO 1000:NEXT T:CLS 
18 10 OPEN "LINEl .DAT" FOR OUTPUT AS #1 :FOR M = 1 TO NI 
1820 PRINT#l ,X l(M),YlA(M):NEXT M:CLOSE #1 
1830 REM 
1840 REM ************************************************************************ 
1850 REM *** *** 
1860 REM *** End of Calibration Line 1 Input *** 
1870 REM *** *** 
1880 REM ************************************************************************ 
1890 REM 
1900 REM 
1910 CLS:BEEP:COLOR 9 
1920 FOR P=l TO 38:PRINT"**";:NEXT P:PRINT:COLOR 12 
1930 LOCATE 3 ,22:PRINT"******* Manual Data Input *******" :COLOR 1 1  
1940 LOCATE 5,9:PRINT"Data Input for Calibration Line 2":COLOR 13 
1950 LOCATE 7,9:INPUT"Number of Data Points for Line 2: ", N2 
1960 FOR M =  1 TO N2:COLOR 10 
1970 LOCATE 10,9:PRINT"Temp. point" ;M;:INPUT" : '' ,X2(M) 



1980 F X2(M)<=0 THEN GOSUB 2040:GOTO 1970 
1990 LOCATE 1 1,9:PRINT"Lifetime point" ;M;:INPUT": " ,Y2A(M) 
2000 IF Y2A(M)<=O THEN GOSUB 2040:GOTO 1990 
2010 LOCATE 10,9:PRINT"Temp. point" ;M;" : 
2020 LOCATE 1 1 ,9:PRINT"Lifetime point" ;M;" :  
2030 BEEP:NEXT M:COLOR 1 1 :GOTO 2150 
2040 REM 

230 

2050 REM ************************************************************************ 
2060 REM *** *** 
2070 REM *** Less than zero input subroutine *** 
2080 REM *** *** 
2090 REM ************************************************************************ 
2100 REM 
21 10 COLOR 13 
2120 LOCATE 14,9:PRINT"Value must be greater than zero! " :BEEP:COLOR 10 
2130 FOR T=l TO 10000:NEXT T:LOCATE 14,9:PRINT STRING$(50," ") 
2140 RETURN 
2150 LOCATE 14,9:PRINT"Number of Data Points Input for Line 2: " ;N2:COLOR 12 
2160 LOCATE 20, 10:PRINT"****** Press Any Key to Verify Data for Line 2 ****** 
2170 RET$=1NPUT$(1):BEEP:FOR T =  1 TO 1500:NEXT T:CLS:COLOR 9 
2180 LOCATE 3,12:PRINT"************** DATA FOR LINE 2 ****************" 
2190 PRINT:COLOR 10:FOR M = 1 TO N2 
2200 PRINT" Temp:";X2(M),"Lifetime: ";Y2A(M) 
2210 NEXT M:COLOR 1 1  
2220 PRINT:INPUT"Is your data correct? [Y or N]: " ,ANS$ 
2230 IF ANS$="Y" OR ANS$="y" THEN 2240 ELSE 1910 
2240 REM 
2250 REM 
2260 REM ************************************************************************ 
2270 REM *** *** 
2280 REM *** Writing data to an external file *** 
2290 REM *** *** 
2300 REM ************************************************************************ 
23 10 REM 
2320 REM LINE2.DAT Data file for the raw data of the 2nd calibration line 
2330 REM 
2340 REM 
2350 CLS 
2360 LOCATE 4,4:PRINT"This data will be stored on disk in filename: " :COLOR 13 
2370 LOCATE 4,50:PRINT" LINE2.DAT ":COLOR 1 1  
2380 LOCATE 4 ,62:PRINT" for future use." :COLOR 10 
2390 LOCATE 22,18:PRINT"******** PRESS ANY KEY TO CONTINUE *********" 
2400 RET$=1NPUT$(1):BEEP:FOR T = 1 TO 1000:NEXT T:CLS 
2410 OPEN "LINE2.DA T" FOR OUTPUT AS #2:FOR M = 1 TO N2 
2420 PRINT#2,X2(M), Y2A(M):NEXT M:CLOSE #2 
2430 REM 
2440 REM 
2450 REM ************************************************************************ 
2460 REM *** *** 
2470 REM *** End of Calibration Line 2 Input *** 
2480 REM *** *** 
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REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 
REM *** 

Printing the raw data on the line printer 
and continuing the calculations. 

*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

CLS:COLOR 9:PRINT:PRINT 
FOR P = 1 TO 38:PRINT "**";:NEXT P:COLOR 10 
LOCATE 7,15:PRINT"The raw data has been stored in the following files: "  
COLOR 13:LOCATE 9,35:PRINT"LINEl .DAT":LOCATE 10,35:PRINT"LINE2.DAT" 
COLOR 10 

REM 

LOCATE 13,15:PRINT "Select an option:":COLOR 1 1  
LOCATE 15,20:PRINT " 1 .) Continue with calculations" 
LOCATE 16,20:PRINT "2.) Print Raw Data Files 
LOCATE 17,20:PRINT "3.) Quit the program":COLOR 10 
LOCATE 19,15:PRINT" What is your selection?":S$=INPUT$(1) 

IF INSTR(" 123"  ,S$) THEN K = V AL(S$) ELSE 2660 
ON K GOTO 4920,2720,940 

REM ************************************************************************ 
REM *** *** 
REM *** Printing the raw data *** 
REM *** *** 
REM ************************************************************************ 
REM 
REM 

LPRINT:LPRINT: 
LPRINT"Raw Data for Calibration Line 1 and Line 2":LPRINT:LPRINT 

FOR N = 1 TO Nl :LPRINT"Temp. =";Xl(N),"Lifetime = " ;YlA(N):NEXT N 
FOR M =  1 TO N2:LPRINT"Temp. =";X2(M),"Lifetime = ";Y2A(M) 

NEXT M:LPRINT:LPRINT:LPRINT"End of Data" :GOTO 2570 
REM 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 
REM *** 

Routines for reading in calibration data 
from an external data file. 

*** 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

CLS:BEEP:COLOR 9 
FOR P=l TO 38:PRINT"**" ;:NEXT P:COLOR 12 

LOCATE 3 ,22:PRINT"********* Phosphor Name *********":COLOR 10 
LOCATE 7,9:INPUT"What is the name of the phosphor? " ,PHOSNAME$:COLOR 1 1  
LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 

RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T 
REM 
REM 



3000 CLS:BEEP:COLOR 9 
3010 FOR P=l TO 38:PRINT"**" ;:NEXT P:COLOR 12 
3020 LOCATE 3 ,22:PRJNT"****** Temperature Scale *****" :COLOR 10 
3030 LOCATE 7 ,9:INPUT"What are the temperature units <C or F>? " ,DG$:COLOR 1 1  
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3040 LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
3050 RET$=1NPUT$(1):FOR T = 1 TO 5000:NEXT T 
3060 REM 
3070 REM 
3080 REM ************************************************************************ 
3090 REM *** *** 
3100 REM *** External Data File Menu *** 
3 1 10 REM *** *** 
3 120 REM ************************************************************************ 
3 130 REM 
3140 REM 
3150 CLS:COLOR 9:LOCATE 3 ,6:FOR P = 1 TO 35:PRINT"**";:NEXT P:COLOR 12 
3 160 LOCATE 5,23:PRJNT"Loading Data From An External Data File":COLOR 10 
3 170 LOCATE 7,9:PRINT "Select an Option:":COLOR 1 1  
3180 LOCATE 9,12:PRJNT"l .) Read Data Files for Line 1 and Line 2" 
3190 LOCATE 10,12:PRINT"2.) Return to the Main Menu" 
3200 LOCATE l l ,12:PRINT"3.) Quit the program":COLOR 10 
3210 LOCATE 15,12:PRJNT"What is your selection?"; :E$=1NPUT$(1) 
3220 IF INSTR(" 123",E$) THEN K=VAL(E$) ELSE 3210 
3230 ON K GOTO 3280,540,940 
3240 REM 
3250 REM 
3260 REM ************************************************************************ 
3270 REM *** *** 
3280 REM *** Reading the External Data Files *** 
3290 REM *** *** 
3300 REM ************************************************************************ 
33 10 REM *** *** 
3320 REM *** Data for LINE 1 of the Calibration Curve *** 
3330 REM *** *** 
3340 REM ************************************************************************ 
3350 REM 
3360 REM 
3370 
3380 
3390 
3400 
3410 
3420 
3430 
3440 
3450 
3460 
3470 
3480 
3490 
3500 

REM 
REM 

CLS:COLOR 9:LOCATE 3,6:FOR P = 1 TO 35:PRINT"**";:NEXT P:COLOR 12 
LOCATE 5,23 :PRINT"Loading Data From an External Data File":COLOR 10 
LOCATE 7, 10:PRJNT"Do you want to inspect the files on disk? < Y or N>"; 

A$=1NPUT$(1):PRINT:PRJNT:IF A$="y" OR A$="Y" THEN FILES ELSE 3460 
COLOR 1 1  
LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
RET$=1NPUT$(1):FOR T = 1 TO 5000:NEXT T 

J = l :ERRORCHK = 0 
CLS:COLOR 9:LOCATE 3 ,6:FOR P = 1 TO 35:PRINT"**";:NEXT P:COLOR 12 
LOCATE 5,23:PRINT"Loading Data From an External Data File":COLOR 10 
LOCATE 7 ,9:PRINT "What is the filename and extension for Line 1 ?" 
COLOR 1 1 :LOCATE 9,20:PRINT "Example: TEST.DAT":COLOR 10 
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ON ERROR GOTO 6500 
LOCATE 1 1,9:INPUT"Filename: ", FI$ 
OPEN Fl$ FOR INPUT AS #1 :COLOR 13 
LOCATE 14,26:PRINT"***** Reading Data File 1 ******" 

FOR T= 1 TO 4000:NEXT T:CLS 
FOR P=l TO 38:PRINT"**";:NEXT P:PRINT:COLOR 1 1 :PRINT 

PRINT " No. Temp. Lifetime":PRINT 
IF EOF(l) THEN CLOSE #1 :GOTO 3620 

INPUT#l ,  Xl (J),YlA(J) 
PRINT TAB(3) J,Xl (J),YlA(J) 
J = J + 1 :GOTO 3580 

COLOR 10:LOCATE 20,22:PRINT" ***** End of Data 1 *****" 
SOUND 500,5:FOR T=l TO 2000:NEXT T:SOUND 500,7 
COLOR 1 1  
LOCATE 23,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T 

REM 
REM 
REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 

End of External Data for LINE 1 *** 
*** 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Data for LINE 2 of the Calibration Curve 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

REM 
REM 

CLS:COLOR 9:LOCATE 3,6:FOR P =  1 TO 35:PRINT"**";:NEXT P:COLOR 12 
LOCATE 5,23:PRINT"Loading Data From an External Data File":COLOR IO 
LOCATE 7,10:PRINT"Do you want to inspect the files on disk? <Y or N>" ; 
A$=INPUT$(1):PRINT:PRINT:IF A$="y" OR A$="Y" THEN FILES ELSE 3890 
COLOR 1 1  
LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T 

L = 1 :ERRORCHK = 1 
CLS:COLOR 9:LOCATE 3,6:FOR P = 1 TO 35:PRINT"**";:NEXT P:COLOR 12 
LOCATE 5,23 :PRINT"Loading Data From an External Data File":COLOR IO 
LOCATE 7,9:PRINT "What is the filename and extension for Line 2?" 
COLOR 1 1 :LOCATE 9,20:PRINT "Example: TEST2.DAT":COLOR 10 
ON ERROR GOTO 6500 
LOCATE 1 1 ,9:INPUT"Filename: " ,  FFI$ 
OPEN FFI$ FOR INPUT AS #1 :COLOR 13 
LOCATE 14,26:PRINT"***** Reading Data File 2 *****" 

FOR T= 1 TO 8000:NEXT T:CLS 
FOR P=l TO 38:PRINT"**";:NEXT P:PRINT:COLOR 1 1 :PRINT 

PRINT " No. Temp. Lifetime" :PRINT 
IF EOF(l)  THEN CLOSE #1 :GOTO 4050 



4020 
4030 
4040 
4050 
4060 
4070 
4080 
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4100 
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4120 
4130 
4140 
4150 
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4170 
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4200 
4210 
4220 
4230 
4240 
4250 
4260 
4270 
4280 
4290 
4300 
43 10 
4320 
4330 
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4350 
4360 
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4380 
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4420 
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4480 
4490 
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INPUT#l ,  X2(L),Y2A(L) 
PRINT TAB(3) L,X2(L),Y2A(L) 

L = L + l :GOTO 4010 
COLOR 10:LOCA TE 20,22:PRINT" ***** End of Data 2 *****" 
SOUND 500,5:FOR T=l TO 2000:NEXT T:SOUND 500,7 
COLOR 1 1  
LOCATE 23,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T 

REM 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

End of External Data for LINE 2 
*** 
*** 
*** 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 
REM *** 

Printing out the data read in from a file 
and setting up the date verification menu. 

*** 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

N l  = J-l :N2 = L-1 
CLS:COLOR 9:LOCATE 3,6:FOR P = 1 TO 35:PRINT"**" ;:NEXT P 

LOCATE 4,6:FOR P = 1 TO 35:PRINT"**"; :NEXT P:COLOR 12 
LOCATE 9,15 :PRINT "EXTERNAL DATA VERIFICATION":COLOR 11 
LOCATE 13,15:PRINT "Select an option:":COLOR 11 
LOCATE 15,20:PRINT " l .) Continue with calculations" 
LOCATE 16,20:PRINT "2.) Verify Line 1 data on the screen 
LOCATE 17,20:PRINT "3.) Verify Line 2 data on the screen 
LOCATE 18,20:PRINT "4.) Print both data files on the printer" 
LOCATE 19,20:PRINT "5.) Quit the program":COLOR 10 
LOCATE 22,15:PRINT" What is  your selection?":P$=INPUT$(1) 

IF INSTR(" 12345" ,P$) THEN I =  V AL(P$) ELSE 4340 
ON ERROR GOTO 4370 
ON I GOTO 4920,4400,4550,4710,940 

REM 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Line 1 data printed to the screen 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

CLS:COLOR 10 
PRINT TAB(21)"****** DATA FOR LINE 1 ******" :PRINT:PRINT 
Nl = J-l :N2 = L- 1 :COLOR 1 1  
FOR N = 1 TO N l :PRINT"Temp. =";Xl (N),"Lifetime = " ;YlA(N):NEXT N 
PRINT:PRINT:PRINT"End of Data":COLOR 12 
LOCATE 22, 16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 



4530 RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T:GOTO 4 180 
4540 REM 
4550 REM 
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4560 REM ************************************************************************ 
4570 REM *** *** 
4580 REM *** Line 2 data printed to the screen *** 
4590 REM *** *** 
4600 REM ************************************************************************ 
4610 REM 
4620 REM 
4630 CLS:COLOR 10 
4640 PRINT TAB(21) "****** DATA FOR LINE 2 ******":PRINT:PRINT 
4650 Nl  = J- l :N2 = L-1 :COLOR 1 1  
4660 FOR M =  1 TO N2:PRINT"Temp. =";X2(M),"Lifetime = ";Y2A(M) 
4670 NEXT M:PRINT:PRINT:PRINT"End of Data":COLOR 12  
4680 WCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
4690 RET$=INPUT$(1):FOR T = 1 TO 5000:NEXT T:GOTO 4 180 
4700 REM 
4710 REM 
4720 REM ************************************************************************ 
4730 REM *** *** 
4740 REM *** Printing the data for Lines 1 and 2 to the line printer *** 
4750 REM *** *** 
4760 REM ************************************************************************ 
4770 REM 
4780 REM 
4790 LPRINT:LPRINT: 
4800 LPRINT"Raw Data for Calibration Line 1 and Line 2":LPRINT:LPRINT 
4810 Nl = J:N2 = L 
4820 FOR N = 1 TO Nl-1 :LPRINT"Temp. =";Xl(N),"Lifetime = ";YlA(N):NEXT N 
4830 FOR M =  1 TO N2-1 :LPRINT"Temp. =";X2(M),"Lifetime = " ;Y2A(M) 
4840 NEXT M:LPRINT:LPRINT:LPRINT"End of Data" :GOTO 4180 
4850 REM 
4860 REM 
4870 REM ************************************************************************ 
4880 REM *** *** 
4890 REM *** *** 
4900 REM ******************* PROGRAM CALCULATIONS ********************* 
4910 REM *** *** 
4920 REM *** Calculating least-fit values and constants *** 
4930 REM *** *** 
4940 REM ************************************************************************ 
4950 REM 
4960 REM 
4970 FOR A =  1 TO Nl:LET Yl (A) = LOG(YlA(A)):NEXT A 
4980 FOR A =  1 TO N2:LET Y2(A) = LOG(Y2A(A)):NEXT A 
4990 REM 
5000 REM 
5010 REM ************************************************************************ 
5020 REM *** *** 
5030 REM *** Performing calculations for the Line 1 *** 
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REM *** *** 

REM ************************************************************************ 

REM 

REM 

XSUM = 0:YSUM = 0:XXSUM = 0:YYSUM = 0:XYSUM = 0 
FOR A =  1 TO NI 

XSUM = Xl(A) + XSUM 
YSUM = Yl(A) + YSUM 
XX(A) = Xl(A) * Xl(A):XXSUM = XX(A) + XXSUM 
YY(A) = Yl(A) * Yl(A):YYSUM = YY(A) + YYSUM 
XY(A) = Xl (A) * Yl(A):XYSUM = XY(A) + XYSUM 

NEXT A 

REM 

REM ************************************************************************ 

REM *** 

REM *** 

REM *** 

Calculating linear regression parameters for Line 1 
*** 

*** 

*** 

REM ************************************************************************ 

REM 

Ml = (Nl *XYSUM - XSUM*YSUM)/(Nl *XXSUM - XSUM*XSUM) 
B 1 = (YSUM*XXSUM - XSUM*XYSUM)/(Nl *XXSUM - XSUM*XSUM) 

REM 

REM ************************************************************************ 

REM *** 

REM *** 

REM *** 
End of calculations for Line 1 

*** 

*** 

*** 

REM ************************************************************************ 

REM 

REM 

REM 
REM ************************************************************************ 

REM *** *** 

REM *** 

REM *** 
Performing calculations for the Line 2 *** 

*** 

REM ************************************************************************ 

REM 

XSUM = 0:YSUM = 0:XXSUM = 0:YYSUM = 0:XYSUM = 0 
FOR A =  1 TO N2 

XSUM = X2(A) + XSUM 
YSUM = Y2(A) + YSUM 
XX(A) = X2(A) * X2(A):XXSUM = XX(A) + XXSUM 
YY(A) = Y2(A) * Y2(A):YYSUM = YY(A) + YYSUM 
XY(A) = X2(A) * Y2(A):XYSUM = XY(A) + XYSUM 

NEXT A 

REM 

REM ************************************************************************ 

REM *** 

REM *** 

REM *** 
Calculating linear regression parameters for Line 1 

*** 

*** 

*** 

REM ************************************************************************ 

REM 
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M2 = (N2*XYSUM - XSUM*YSUM)/(N2*XXSUM - XSUM*XSUM) 
B2 = (YSUM*XXSUM - XSUM*XYSUM)/(N2*XXSUM - XSUM*XSUM) 

REM 
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REM ************************************************************************ 
REM *** *** 
REM *** End of calculations for Line 2 *** 
REM *** *** 
REM ************************************************************************ 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 
REM *** 

Solving the 2x2 detenninant to find 
the onset quenching temperature 

*** 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 

Solving for the temperature point TMP *** 
*** 

REM ************************************************************************ 
REM 

TMP = (B2 - B l)/(Ml - M2) 
REM 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Solving for the lifetime point L 1P 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

L1P = ((B l*-M2) - (B2*-Ml))/(Ml - M2) 
REM 
REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 

Printing the results of the calculations to the screen *** 
*** 

REM ************************************************************************ 
REM 

CLS:COLOR 9:FOR T = 1 TO 5000:NEXT T 
FOR P=l TO 38:PRINT"**";:NEXT P:PRINT:COLOR 26 

LOCATE 12,25:PRINT"Perfonning Calculations . . . .  " 
FOR T =  1 TO 15000:NEXT T:BEEP:CLS:COLOR 9 
FOR P=l TO 38:PRINT"**";:NEXT P:PRINT:COLOR 1 1  

LOCATE 4,25:PRINT"Results of the Calculations" :COLOR 10 
LOCATE 10,15:PRINT"Thennographic Phosphor:" :COLOR 13 
LOCATE 10,40:PRINT PHOSNAME$:COLOR 10 
LOCATE 12,15:PRINT "The Onset Quenching Temperature:":COLOR 13 
LOCATE 12,48:PRINT TMP:COLOR 10 
LOCATE 12,60:PRINT "degrees "+DG$:COLOR 12 
LOCATE 21,16:PRINT"******** *********" 
LOCATE 23,16:PRINT"******** *********" 
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REM 
REM 

COLOR 1 1  
LOCATE 21 ,26:PRINT"Press P to print the, results" 
LOCATE 23,26:PRINT" or any other key to continue" 
RET$ =INPUT$(1):IF RET$="p" OR RET$ ="P" THEN 6130 
BEEP:FOR T = 1 TO 1000:NEXT T:CLS:GOTO 540 
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REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Printing the results of the calculations to the line printer 
*** 
*** 
*** 

REM ************************************************************************ 
REM 
REM 

CLS:COLOR 9:FOR P=l TO 38:PRINT"**";:NEXT P:COLOR 1 1  
LOCATE 4,25:PRINT"*** PRINTING ROUTINE ***":COLOR 26:BEEP 
LOCATE 1 1,21 :PRINT"Make sure your printer is turned on!" :COLOR 1 1  
LOCATE 22,16:PRINT"********* PRESS ANY KEY TO CONTINUE **********" 
RET$=1NPUT$(1):FOR T = 1 TO 5000:NEXT T 
CLS:COLOR 9:FOR P = 1 TO 38:PRINT"**";:NEXT P:COLOR 26 
LOCATE 12,23:PRINT"Printing Data and Results ... " :COLOR 1 3  
FOR P = 1 TO 35:LPRINT"**";:NEXT P 
LPRINT:LPRINT: 
LPRINT TAB( 4) "Thermographic Phosphor: ";PHOSNAME$:LPRINT 
LPRINT TAB(4) "Data for Calibration Line 1 ":LPRINT 
FOR N=l TO Nl :LPRINT TAB(7) "Temp. =";Xl(N),"Lifetime = ";YlA(N):NEXT N 
LPRINT:LPRINT T AB(4) "Data for Calibration Line 2":LPRINT 

REM 

FOR M=l TO N2:LPRINT TAB(7) "Temp. =";X2(M),"Lifetime = " ;Y2A(M) 
NEXT M:LPRINT:LPRINT:LPRINT 
LPRINT TAB(4) "Onset Quenching Temperature: ";TMP;" degrees C":LPRINT 
LPRINT:FOR P = 1 TO 35:LPRINT"**"; :NEXT P:LPRINT:LPRINT:LPRINT 
LOCATE 12,23:PRINT" Returning to Main Menu ..... ":GOSUB 6400 
GOSUB 6400:GOSUB 6400:GOTO 530 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Timing Subroutine 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

REM 

FOR T =  1 TO 6000:NEXT T:BEEP:RETURN 
END 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Error Trapping Subroutine 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

COLOR 1 1 :PRINT:BEEP 
IF ERR = 53 THEN PRINT T AB(6)"The file was not found" 
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REM 

FOR T =  l TO 7000:NEXT T 
IF ERRORCHK = 0 THEN RESUME 3460 
IF ERRORCHK = 1 THEN RESUME 3890 
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REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

End of Error Trapping Subroutine 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

END 
REM 
REM ************************************************************************ 
REM *** *** 
REM *** End of Program (CALQUEN.BAS) *** 
REM *** *** 
REM ************************************************************************ 

REM ************************************************************************ 
REM *** *** 
REM *** Help file for CALQUEN .BAS *** 
REM *** *** 
REM *** This file is linked to the main program and is used *** 
REM *** specifically for help and program information. *** 
REM *** *** 
REM *** *** 
REM *** Alan R. Bugos *** 
REM *** *** 
REM *** Oak Ridge National Laboratory *** 
REM *** *** 
REM *** January 1989 *** 
REM *** *** 
REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

CALHELP.BAS Version 1 .00 
*** 
*** 
*** 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Screen 1 Information 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

CLS:COLOR 9:PRINT 
FOR P = l TO 38:PRINT"**"; :NEXT P:PRINT 
FOR P = l TO 38:PRINT"**";:NEXT P:PRINT:PRINT:COLOR 13 
LOCATE 5,19:PRINT "Welcome to the Help File for CALQUEN.BAS":COLOR 10 
LOCATE 9,7:PRINT "This program was written to find the onset quenching temperature" 
LOCATE 10,7:PRINT "of a thermographic phosphor given its calibration data curve." 
LOCATE 12,7:PRINT 
GOSUB 1380 
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REM 
REM ************************************************************************ 
REM "'** *** 
REM *** Screen 2 Information *** 
REM *** *** 
REM ************************************************************************ 
REM 

REM 

COLOR IO 
FOR R = 22 TO 6 STEP -1 :LOCATE R,1 :PRINT STRING$(79,32):NEXT R 
LOCATE 9,7:PRINT "The analysis uses a best-fit line interpolation on two lines" 
LOCATE 10, 7 :PRINT "of the calibration curve. The program will perform the linear" 
LOCATE 1 1 ,7:PRINT "interpolation on the two lines and then determine the intersection" 
LOCATE 12,7:PRINT "of these lines. We define this intersection point to be the" 
LOCATE 13,7:PRINT "onset quenching temperature of the thermographic phosphor." 
GOSUB 1380 

REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 

Screen 3 Information *** 
*** 

REM ************************************************************************ 
REM 

REM 

COLOR 10 
FOR R = 22 TO 6 STEP - 1 :LOCATE R,1 :PRINT STRING$(79,32):NEXT R 
LOCATE 9,7 :PRINT"Using this menu-driven program is rather easy. It is recommended 
LOCATE 10,7:PRINT"that you have the calibration curve of the thermophosphor 
LOCATE 1 1 , 7 :PRINT" available so that you may get a rough idea as to how to input the 
LOCATE 12, 7 :PRINT"Line 1 and Line 2 data. On the calibration curve, find the knee 
LOCATE 13,7:PRINT"or breaking point and separate the two individual lines of the" 
LOCATE 14,7:PRINT"curve from there." 
GOSUB 1380 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Screen 4 Information 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

REM 

COLOR 10 
FOR R = 22 TO 6 STEP -1 :LOCATE R,1 :PRINT STRING$(79,32):NEXT R 
LOCATE 9,7 :PRINT"You have the option to either input data manually or you can access 
LOCATE 10, 7:PRINT"an ASCII data (text) file from a disk. If you input data manually, 
LOCATE 1 1 ,7:PRINT"you will have the option to save it for later use. Make sure the 
LOCATE 12,7:PRINT"data are broken into two separate lines and are stored as two" 
LOCATE 13,7:PRINT"separate files. You also have the option to verify and print" 
LOCATE 14,7:PRINT"data and results on a line printer. 
GOSUB 1380 

REM ************************************************************************ 
REM *** 
REM *** Screen 5 Information 

*** 
*** 



840 
850 
860 
870 
880 
890 
900 
units 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1 100 
1 1 10 
1 120 
1 130 

1 140 
1 150 
1 160 
1 170 
1 180 
1 190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
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REM *** *** 
REM ****************************�******************************************* 
REM 

REM 

COLOR 10 
FOR R = 22 TO 6 STEP -1 :LOCATE R,l :PRINT STRING$(79,32):NEXT R 
LOCATE 8,7 :PRINT"If you input your data manually, the two lines will be stored 
LOCATE 9,7:PRINT"on the active disk as LINEl .DAT and LINE2.DAT. Make sure the 

LOCATE 1 1,7:PRINT"are consistent, i.e. temperature in degrees C or F and lifetime are" 
LOCATE 12,7:PRINT"all in usec or milliseconds. Be sure to use the RENAME command" 
LOCATE 13,7:PRINT"in DOS to rename the filenames for these lines. An example of' 
LOCATE 14,7:PRINT"this command is as follows:":COLOR 9 
LOCATE 16,24:PRINT"RENAME LINEl.DAT YP04EU1.DAT" 
GOSUB 1380 

REM ************************************************************************ 
REM *** *** 
REM *** 
REM *** 

Screen 6 Information *** 
*** 

REM ************************************************************************ 
REM 

REM 
REM 

COLOR 10 
FOR R = 22 TO 6 STEP -1 :LOCATE R,1 :PRINT STRING$(79,32):NEXT R 
LOCATE 9,7 :PRINT"You may also want to create external data files using EDLIN," 
LOCATE 10,7:PRINT"a DOS Line Editor or a wordprocessor such as WordPerfect" 
LOCATE 1 1 ,  7 :PRINT"Make sure the word processor saves the data file as a DOS text" 
LOCATE 12,7:PRINT"file. Remember to create two individual data files for each" 
LOCATE 13,7:PRINT"line of the calibration curve." 
GOSUB 1380 

REM ************************************************************************ 
REM *** 
REM *** 
REM *** 

Screen 7 Information 
*** 
*** 
*** 

REM ************************************************************************ 
REM 

COLOR 10 
FOR R = 22 TO 6 STEP -1 :LOCATE R,1 :PRINT STRING$(79,32):NEXT R 
LOCATE 9,7 :PRINT"If you have any questions or comments concerning this program" 
LOCATE 10,7:PRINT"or method of onset quenching temperature analysis for thermo­
LOCA TE 1 1 ,7:PRINT"graphic phosphors, please contact:":COLOR 1 1  
LOCATE 13,22:PRINT"Alan R. Bugos or Stephen W. Allison" :COLOR 10 
LOCATE 14,25:PRINT"Applied Technology Division 
LOCATE 15,25:PRINT"Oak Ridge National Laboratory 
LOCATE 16,25:PRINT"MS 7280, Building K-1220 
LOCATE 17,25:PRINT"Oak Ridge, Tennessee 37831 
LOCATE 18,25:PRINT"Phone: (615) 576-2821 or 
LOCATE 19,25:PRINT" (615) 576-2726 
GOSUB 1380 
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1330 GOTO 1550 

1340 REM 

1350 
1360 
1370 

1380 
1390 
1400 
1410 
1420 

1430 
1440 
1450 

1460 
1470 

1480 
1490 
1500 
1510 
1520 

1530 
1540 
1550 
1560 
1570 
1580 

1590 

1600 
1610 
1620 
1630 

1640 

1650 
1660 

1670 

1680 

1690 

REM 
REM ************************************************************************ 

REM *** 

REM *** 

REM *** 
Continue Subroutine 

*** 
*** 
*** 

REM ************************************************************************ 

REM 
COLOR 12 

LOCATE 23,20:PRINT"***** PRESS ANY KEY TO CONTINUE *****":COLOR 1 1  
LOCATE 23,27:PRINT"PRESS ANY KEY TO CONTINUE":RET$=INPUT$(1) 

BEEP:GOSUB 1490:COLOR 10:RETURN 
REM 
REM ************************************************************************ 

REM *** *** 

REM *** 

REM *** 
Timing Subroutine *** 

*** 

REM ************************************************************************ 

REM 
FOR T = 1 TO 2000:NEXT T:RETURN 

REM 
REM ************************************************************************ 

REM *** 

REM *** 

REM *** 
Linking the help routine back to the Main Program 

*** 
*** 

*** 

REM ************************************************************************ 

REM 

REM 

CLS:COLOR 30 

LOCATE 12,25:PRINT" Returning to the main program . . . .  " 
COMMON ALL:CHAIN "calquen.bas" ,400:END 

REM ************************************************************************ 

REM *** 

REM *** 

REM *** 
End of Program (CALHELP.BAS) 

*** 

*** 

*** 

REM ************************************************************************ 
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