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ABSTRACT 

 Determining salary increases of executive personnel is a challenging decision 

process for many companies. Salary administration policies that aid in the determination 

of salary increases and other compensation benefits have a wide variety of advantages for 

both a company and its employees. This thesis develops a mathematical programming 

approach to create a salary administration system that recognizes the importance of 

performance and potential of employees for future promotions as major components of a 

salary increase policy for executive personnel. A number of companies all over the world 

use salary administration systems that integrate work performance and potential for 

advancement to develop compensation packages that include benefits in addition to the 

base salary of their executive personnel. Some of these systems aid decision making 

concerning salary increase percentages, frequency of salary increases, and guidelines for 

promotion. The specific policy considered in this thesis assigns salary increase categories 

and intervals between successive salary increases based on performance and potential 

assessments. Two mixed integer linear programming models are formulated to assign 

personnel to salary increase categories and to determine intervals.  Solution procedures are 

clearly illustrated based on a hypothetical application. The optimization toolbox of the 

commercial software, MATLAB, is used as the problem solver. 
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CHAPTER I 

BACKGROUND AND GOALS 

 

1.1. Introduction 

A typical compensation package consists of a base salary and several benefits 

including bonus payments, health plans, retirement plans, and other perquisites. The term 

salary administration is often used, although not exclusively, to refer to the management 

of the base salary. A fundamental goal of salary administration is to compensate employees 

in such a way that the salary structure of a firm will exhibit both external and internal 

consistency. This means equity within the company and competitiveness within the 

geographic region where the company operates. More specifically, 

 Internal consistency exists when salary differentials reflect the differences in 

levels of importance of the positions held by the employees of an organization. 

 External consistency exists when the salaries of an organization are similar to 

those of another organization with similar positions in the same geographic 

region. 

 Milkovich & Newman [21] outline the importance of developing sound 

compensation policies for executive personnel.  Even though traditional ways of handling 

personnel salary increases are designed without using mathematical models, a handful of 

publications have proposed mathematical models to facilitate decision-making in this area. 

For example, Garcia-Diaz and Hogg [11], Garcia-Diaz et al. [10], Kwak et al. [15], Lal and 

Srinivasan [16], Fabozzi and Bachner [9], Bruno [5], Charnes et al. [7] developed OR 

techniques address important aspects of a salary administration. Additionally, Ronen et al. 

[23], Howard and Miller [14], and Loeb [19] used some other techniques to bring solutions 

to the same problem. 

 The main goal of this thesis is to develop a sound and realistic mathematical 

approach to develop a salary increase guide that recommends salary raises and intervals 

between successive raises as a function of both performance and potential assessments.  

Several assumptions are made to enhance the flexibility of the guide. For a given set of 
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data, MATLAB is used to solve the models. Specific data required for running the 

MATLAB solver includes employee performance ratings, employee potential assessment, 

current salaries, and some parameters needed to enhance the flexibility of the salary guide 

being developed.  Salary increases are determined considering external consistency as the 

measure of effectiveness and internal consistency as a main component of the constraint 

set of the model. 

 This study is an extension of the work by Garcia-Diaz and Hogg [11]. In their 

article, they introduced two separate models. The first model determines salary increase 

percentages based on performance and potential. Once the salary increase percentages are 

obtained, they are considered as input in the second model to determine a schedule of salary 

increase actions along a given period (say one year). They used mixed integer linear 

programming (MILP) to optimize both models. Thirteen years later, in 1996, Garcia-Diaz 

et al. [10] published a second paper on the same topic and proposed heuristic procedures 

to solve the models, to avoid the use of MILP, which requires rather large models for small 

problems. However, nowadays, microcomputers are capable of solving large-scale 

problems. Thus, a versatile review and an adaptation of those mathematical models into 

new computerized solvers can bring out a new compact and improved model to solve the 

problem more efficiently. To sum up with, a MATLAB (Matrix Laboratory) code to solve 

the problem in a more effective manner and in large dimensions is generated with improved 

mathematical models given in the article of Garcia-Diaz et al. [10].  

In addition to this introduction, this thesis has eight sections devoted to background 

material to facilitate discussions and formulations, goals, literature review, conceptual 

approach, formulations, computerization, applications, and a summary with conclusions 

and recommendations.  

 

1.2. Background 

 Operations Research techniques have solved many problems of industries, since 

1950s. Every year, many new ways of solving different types of problems through OR 

techniques are proposed. However, linear programming, which was introduced in 1827 by 

Joseph Fourier [25], developed in 1939 (during World War II) by Leonid Kantorovich [24], 

and took its place in the literature by the invention of the Simplex Method in 1947 by 

George Dantzig, has never lost its popularity among all those invented techniques. Mixed 
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Integer Linear Programming (MILP), which is the method used in this thesis, was 

constructed on the basis of Linear Programming (LP).  

 There are many different interpretations on terminologies used in this study. For 

this reason, in order for a better understanding of the study, following terms are defined: 

 Salary: a fixed amount of (usually monthly) payment made to employees by their 

employers in exchange for their service provided to employers. 

 Compensation: a more general term often used interchangeably in the HR literature 

covering all benefits (salary, vacation, insurance, etc.) employees receive. 

 Merit Increase: a growth in employees’ salary/wage based on the past performance 

and/or efficiency of employees. Also known as pay-for-performance in the 

literature. 

 Potential: likelihood of being promoted to an upper status in an organization. 

 Performance: a measurement result of employees’ exhibited quality and/or quantity 

of service. 

 Interval: elapsed time between two merit increases. 

 Internal incentive: a type of motivation (‘monetary’ in this context) given to 

employees so as to encourage them to increase their performance and potential. 

 Employee: in this study, the word ‘employee’ often refers to an executive 

employee, unless otherwise stated. 

 The importance of salary administration for executive personnel and PFP method 

to evaluate the both quantity and quality of work done by employees are mentioned in the 

previous part. Potential evaluation, which refers to the measure of behavioral reactions 

exhibited by employees in this study, is another method for appraisal plans. While PFP 

often measures both the quantity and quality of work done by employees at the end of 

evaluation period, potential evaluations measures behaviors of employees during the 

evaluation period.  

 In most manufacturing organizations, the numerical output of an employee’s 

contributions is a very crucial factor that determines the future of the employee in that 

company. However, in service industries, behaviors exhibited by employees may even take 

precedence over the quantitative results of employees. Nowadays, many large 

organizations run their businesses on both manufacturing and service industries. Even if 

they do not include both types of operations, they may still need to evaluate some of their 
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employees’ behaviors. For example, the behavior of a supervisor in a manufacturing 

company affects all sub-workers. Thus, in addition to performance evaluation, the potential 

evaluation may also improve the quality of employee performance evaluation systems. In 

this study, both evaluations are considered in the proposed salary administration guideline. 

 

1.3. Problem Statement 

 Baker et al. [3] emphasized the significant key role of internal incentives in firms 

on the grounds that they affect behaviors of personnel and pointed out the salary 

administration as a major growth research area in management and its related sciences.  

 Salary of executive personnel is one of the most obtrusive cost item in any typical 

organization’s balance-sheet. Arye Bebchuk and Fried [2] indicated the impact of 

executive personnel on their own salary increase determination process. According to 

authors, executive managers may tend to secure their positions in their companies and 

might have an effect on human resource departments, thus influence them on salary 

increase decisions. Basically, managers may create such an organization culture that can 

enable them to have authority on all decisions of their companies even their own 

compensation packages.  

 While managers may create a danger for their companies by having a possible 

effect on decisions of their salary increases, they also have a gear role for many businesses. 

Accordingly and apparently, creating a well-balanced incentive plan for executive 

employees is an essential duty for the future of many organizations. The main problem 

falls into place in this phase: in which way a well-balanced incentive plan should be 

organized so that both managers and company owners are satisfied? As explained in the 

previous sections, PFP method and potential appraisals play great roles in this problem’s 

solution process.  

 More specifically, many firms want to correlate their employees’ salaries with other 

employees who work for competitive companies and have similar work statuses. Another 

aspect is that some companies may want to increase their employees’ salaries earlier than 

the fiscal year because of their high performance. In this case, the question: “when is the 

best time to increase my employees’ salaries?” comes to the ground.  All these problems 

can be solved by using OR techniques as proposed in this study.   
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1.4. Study Goals 

 Garcia-Diaz et al. [10] stated that the package optimization software Linear 

Interactive and Discrete Optimizer, Classic LINDO, were used to solve the problem in their 

study. This software requires optimization problems to be typed manually on the computer. 

So, having a large scale problem requires an extensive amount of effort for adapting the 

problem to the use of Classic LINDO software. Additionally, this software has some 

restrictions on number of variables and constraints it can solve. According to LINDO’s 

website (www.lindo.com), the classic free version of LINDO software is capable of dealing 

with maximum 150 constraints, 300 variables, and 30 integer variables in an ordinary linear 

optimization problem. All these restraints unable users to solve the problem for high 

number of employees, thus, preclude possible application attempts of the proposed 

mathematical models in business life. 

 As mentioned in the introduction part, the main goal of this study is to adapt these 

mathematical formulations into a MATLAB software code format and use MATLAB 

software to solve the problem for a large number of executive employees. Another purpose 

of the study is to develop the formulation of these existing mathematical models. After 

doing so, companies will be able to use this MATLAB code so as to determine salary 

increase percentages of their executive personnel and adjust their salaries based upon 

results provided by the software. 

 

1.5. Approaches 

 In this section, solution approaches for the problem, mixed integer linear 

programming, MATLAB’s ‘intlinprog’ algorithm, branch and bound (B&B) method, 

cutting plane method (also known as cut generations and cutting plane algorithm), and 

MATLAB’s heuristics method are introduced. Mixed integer linear programming is used 

to formulate mathematical models given in the study. Branch and bound method is applied 

to solve mathematically modeled problems. Cutting-plane method and MATLAB’s 

heuristics method are also alternative methods that could be used for solving the MILP 

models. MATLAB’s intlinprog algorithm is the main solution package that covers B&B 

method, cutting-plane method, and heuristics. There are some options for applications of 
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these algorithms. For more detailed information regarding with options given in the 

subsections, please refer to MATLAB Optimization Toolbox User’s Guide (r2016a) [26]. 

 

1.5.1. Mixed Integer Linear Programming (MILP) 

 Mixed integer linear programming is constructed on the base of Dantzig’s Simplex 

Method. Bixby [4] claims that the first commercially used mixed integer linear 

programming code dates back to 1960s. Briefly, there are two types of variables in 

mathematical models, continuous and discrete. Continuous variables can take any real 

number value, while discrete variables only take integer values. MILP (also known as MIP) 

basically adds variables that only take a value of either 0 or 1. These variables are also 

known as binary variables. The following model is illustrated to specify the slight 

difference between LP and MILP languages. 

𝑚𝑖𝑛    𝑐𝑇𝑥 

𝑠. 𝑡.    𝐴𝑥 ≤ 𝑏 

𝑎𝑛𝑑 𝑥 ≥ 0 

 In this classical demonstration of LP model, min (or max) depicts the objective of 

creating the model. For example, the objective function of a cost problem usually aims to 

minimize the cost, while a profit problem often tends to maximize the objective function. 

‘c’ is a row vector that represents coefficients of unknowns in the objective function. ‘b’ is 

a column vector that demonstrates right hand side coefficients of constraints. ‘T’ is the 

transpose symbol that converts the row vector to a column vector. The abbreviation ‘s.t.’ 

stands for ‘subject to’ in optimization context, but, it is also known as ‘such that’ in 

mathematics literature. ‘A’ is a matrix that contains coefficients of unknowns in constraints. 

‘x’ is a column vector that symbolizes unknown variables which can take continuous or 

discrete values. At this point, MILP comes to the ground; if the problem assumes x as a 

continuous variable, then the problem is a LP problem, otherwise (x is discrete or integer), 

it is an MILP problem. Therefore, adding one more constraint, such as x∊Zn, would make 

the LP problem an MILP problem. 

 MILP is a broadly used optimization method for solving many types of business 

problems, such as travelling salesman problem (a very well-known problem as TSP), 

transportation problems etc.  Many optimization package programs exist, such as 
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MATLAB’s Optimization Toolbox, LINDO, Gurobi, Mathcad, MOSEK, GAMS, OptimJ, 

AMPL There are also many other packages that uses C, C++, CPLEX, Java, FORTRAN, 

Visual Basic, .net, MATLAB interfaces to solve optimization problems. Moreover, the 

Microsoft Excel has an Excel Solver add-on that is capable to deal with optimization 

problems. Branch and bound and cut generations are most commonly applied techniques 

to solve MILP problems. This study uses MATLAB’s intlinprog algorithm that enables its 

users to select the desired solving method among these existing techniques. It also has a 

heuristics procedure that may simplify the solution procedure and decrease solution time 

in some cases. This algorithm and its corresponding options will be explained with more 

details in upcoming parts. 

 

1.5.2. MATLAB’s ‘intlinprog’ Algorithm 

 MATLAB basically has many types of algorithms for a wide variety of 

optimization problems, such as linear, nonlinear, and quadratic programming problems in 

its optimization toolbox. MATLAB’s intlinprog algorithm is one of the tools involved in 

this toolbox for solving MILP problems. The word ‘intlinprog’ is the abbreviation of 

integer linear programming in the context. This algorithm was added into the optimization 

toolbox in 2014. Considering that MILP has become a known mathematical language in 

the literature since 1960s, the addition date of this algorithm might be labeled as a late 

release. However, there has already existed other codes for other programming languages 

to solve MILP problems among optimization software. The difference that attracts users to 

prefer this algorithm is its user-friendliness. This algorithm serves a considerably large 

variety of options that can be customized by its users to approach the solution ways of 

problems from different aspects. There are basically three methods that this algorithm uses 

so as to find optimal solutions for MILP problems. These are B&B method, cutting plane 

method, and MATLAB’s heuristics method. 

 The algorithm is designed as a minimizer and requires objective function to aim to 

minimize Thus, a maximization problem needs to be converted to a minimization problem 

by multiplying its objective function by ‘-1’ in order to be able fit this solver’s solution 

approach. Additionally, all inequality constraints of any problem (minimization or 

maximization) type which has greater than or equal to (≥) signs should be also converted 
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into a less than or equal to (≤) by multiplying both sides of constraints by ‘-1’. To sum up 

with, the intlinprog algorithm solves problems in the following form: 

𝑚𝑖𝑛 𝑓𝑇 𝑥 

𝑠. 𝑡.   𝐴 ∙ 𝑥 ≤ 𝑏 

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞 

𝑙𝑏 ≤ 𝑥 

𝑥 ≤ 𝑢𝑏 

𝑥(𝑖𝑛𝑡𝑐𝑜𝑛)  values are integers. 

 The intlinprog algorithm basically requires some matrices and vectors, such as ‘A’ 

matrix for coefficients of inequality constraints, ‘b’ column vector for inequality 

constraints’ corresponding right hand sides, ‘Aeq’ matrix for coefficients of equality 

constraints, ‘beq’ column vector for equality constraints’ corresponding right hand sides, 

‘f’ vector for coefficients of variables in the objective function, ‘ub’ and ‘lb’ column 

vectors to set upper bounds and lower bounds for values of variables given in the objective 

function, and ‘intcon’ row vector to differentiate binary variables from continuous 

variables. 

 After setting these matrices and vectors for a particular MILP problem, the 

intlinprog algorithm applies the mentioned three MILP solving procedures and detects the 

optimal solution. The algorithm intuitively selects the method among these options by 

targeting to solve the problem in the least time. In some cases, the algorithm can apply two 

or three of these options in a sequence. 

 Since this study is based on the application of B&B method, cut generations and 

heuristics options are set to ‘none’ implying that they are not being used in the solution 

procedure. Thus, sample data given in the study is basically solved by the application of 

B&B method. However, all methods are also set free to use in another application attempt 

for the same sample to investigate the running time difference between these implications. 

 

1.5.3. The Branch-and-Bound (B&B) Method 

 Branch-and-bound method first appeared in the literature for discrete programming 

in 1960 by contributions of Land and Doig [17]. Winston and Goldberg [27] asserts that 

most MILP problems are solved by using B&B method. They also describe this method by 
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stating: “Branch-and-bound methods find the optimal solution to an IP by efficiently 

enumerating the points in a sub-problem’s feasible region” in their book [27]. The method 

creates a tree involving subsets of the solution set and identifies branches of the tree. These 

branches are also named as nodes. Then, the method checks every node’s LP relaxation by 

using an estimated upper and lower bound on the variables. If the recent sub-problem’s 

solution is worse than preceding solutions, the method automatically discards that branch 

and explores the following branch so as to find the optimal solution. This iterative process 

continues until the method finds the integer optimal solution, which minimizes (or 

maximizes) the objective function. 

 In MATLAB’s intlinprog algorithm code, users are free to set options for branching 

rules. MATLAB’s intlinprog algorithm has following options for branching rules [26] 

(These options are quoted from MATLAB’s Optimization Toolbox User’s Guide): 

 ‘maxpscost’ – Choose the fractional variable with maximal pseudocost. 

 ‘mostfractional’ – Choose the variable with most fractional part. 

 ‘maxfun’ – Choose the variable with maximal corresponding absolute value in the 

objective vector. 

 After the branching process is done, two different nodes exist to select and proceed 

with one. The following options determine the method for node selection criterion [26] 

(These options are quoted from MATLAB’s Optimization Toolbox User’s Guide): 

 ‘minobj’ – Choose the node that has the lowest objective value. 

 ‘mininfeas’ – Choose the node with the minimal sum of integer infeasibilities. 

 ‘simplebestproj’ – Choose the node with the best projection. 

 

1.5.4. The Cutting Plane Method 

 The cutting plane method/algorithm is an alternative approach for branch-and-

bound method to solve MILP problems.  The cutting plane method was first introduced to 

solve MILP problems by Ralph E. Gomory in the late 1950s [13]. By imagining the feasible 

region as a plane, a cut means to narrow this plane with additional constraints which cuts 

and reduces the size of the plane so as to draw near and detect the integer optimal solution. 

So, every cut gets closer to the optimal solution for a typical MILP problem. 
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 There are several cutting methods applied in the literature. MATLAB’s intlinprog 

algorithm code provides several cut generation options to its users and collect these options 

under three heading: basic, intermediate, and advanced. These options involve following 

techniques to generate cuts [26] (These options are quoted from MATLAB’s Optimization 

Toolbox User’s Guide): 

 ‘basic’ cuts include: 

 Mixed-integer rounding cuts 

 Gomory cuts 

 Cliques cuts 

 Cover cuts 

 Flow cover cuts 

 ‘intermediate’ cuts include: 

 Simple lift-and-project cuts 

 Simple pivot-and-reduce cuts 

 Reduce-and-split cuts 

 ‘advanced’ cuts include: 

 Strong Chvatal-Gomory cuts 

 Zero-half cuts 

 

1.5.5. MATLAB’s Heuristics Method 

 The B&B method investigates feasible points in order to find an upper bound on 

the objective function; there are such techniques called heuristics that has a possibility of 

finding these upper bounds faster (these techniques may also fail) [26]. The intlinprog 

algorithm has the following heuristics methods options [26] (These options are quoted from 

MATLAB’s Optimization Toolbox User’s Guide): 

 ‘rins’ – intlinprog searches the neighborhood of the current best integer feasible 

solution point (if available) to find a new and better solution. 

 ‘rss’ – intlinprog applies a hybrid procedure combining ideas from ‘rins’ and local 

branching to search for integer feasible solutions. 
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 ‘round’ – intlinprog takes the LP solution to the relaxed problem at a node. It rounds 

the integer components in a way that attempts to maintain feasibility. 

 

1.5.6. Thesis Organization 

 In the Chapter 2, literature regarding with PFP based salary increases, performance 

determination processes, and OR approaches on creating salary increase guidelines are 

mentioned. Chapter 3 illustrates mathematical model development procedure which 

includes the conceptual approach, variables, and parameters to create these guidelines with 

an OR based approach. The consistently mentioned MATLAB computerization process is 

depicted in the Chapter 4. Afterwards, in Chapter 5, an application with a sample data is 

elaborately demonstrated. The final chapter infers the work done by the study and basically 

summarizes the whole study.  
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CHAPTER II 

LITERATURE REVIEW 

 

 In this chapter, an OR point of view for salary increase systems, how the 

performance of an employee is determined, and the role of PFP based salary increase 

systems in the business world are thoroughly explained. 

 

2.1. OR Perspective of Salary Administration 

 No more than a handful studies mentioned the use of OR techniques in the 

determination of executive personnel’s salary increase percentages and intervals. Garcia-

Diaz and Hogg [11], Garcia-Diaz et al. [10], Kwak et al. [15], Lal and Srinivasan [16], 

Fabozzi and Bachner [9], Bruno [5], Charnes et al. [7] used different OR methods so as to 

solve compensation problems. 

 Garcia-Diaz and Hogg [11] developed two separate mixed integer linear 

programming models to first assign executive personnel to salary increase categories and 

then determine number of months that they have to wait until they may obtain another 

salary increase. 13 years later, Garcia-Diaz et al. [10] published another article to suggest 

using a heuristic methodology to be able to solve the problem with less computation power.  

 Kwak et al. [15] contributed the topic by using goal programming model for 

analyzing annual merit salary adjustments in large organizations. Lal and Srinivasan [16] 

used dynamic and liner programming techniques by applying Holmstrom-Milgrom 

Method to construct compensation plans for salesforces. Fabozzi and Bachner [9] proposed 

a different perspective to civil service salary determination by using goal programming and 

linear programming. Bruno [5] explained how a linear programming model can be used 

for teachers’ salary evaluation. Charnes and et al. [7] also used linear programming for 

executive compensation.  

 Additionally, Ronen et al. [23] gave a salary compensation model example while 

mentioning the broad use of spreadsheet analysis. Howard and Miller [14] used data 

envelopment analysis for estimation of pay equity in professional baseball. Loeb [19] 
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offered use of some statistical methods, such as ordinary least square (OLS) and 

hierarchical linear modeling (HLM) to justify salaries of faculty members. 

 All these publications draw a remarkable attention on the applicability of OR 

techniques and mathematical approaches in the personnel salary administration subject of 

HR field. Even if HR personnel may have an exiguity of OR knowledge, a very well-known 

and broadly used software, MATLAB, would be able to eliminate these problems and 

allow them to easily apply the proposed method so as to administrate executive personnel 

salaries. 

 Since the salary increase percentage problem has a similar structure with an 

ordinary assignment problem, application of OR techniques in this study area would be 

appropriate to efficiently and quickly solve the problem in larger dimensions. Briefly 

stated, in this salary administration system, employees are assigned to salary increase 

categories and salary increase time intervals based on some constraints depending on the 

sector that the business runs. As an example of a constraint, some companies may not 

desire to make salary increases for all employees in one month, instead, they may want to 

distribute these salary increases equally among the planning horizon. Another example can 

be that companies may want to have a fair pay system which ensures that they pay to their 

workers similar salaries with other companies in the same region. In this manner, 

constraints such these would aggravate the salary administration problem for human 

resources departments. Despite the fact that OR techniques could easily deal with all these 

constraints and assign employees to optimal categories. 

  Nowadays, the availability of high potential microcomputers enable operations 

researchers to solve extremely large scale problems in incredibly short times. Thus, taking 

advantage of technologic developments and creating a single compact solution method for 

the salary administration problem has been undertaken as a duty in this study. 

  

2.2. PFP Based Salary Increase Systems 

 Pay-for-performance (PFP hereafter) was proposed as a solution for agency theory 

problem, which implies that a loss for companies may occur when company owners and 

managers have unbalanced targets regarding with their companies [6].  More clearly, some 

managers may pretend that their companies make so much profit by tuning balance sheet 
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a little bit in order to show themselves as successful leaders. However, this tuning increases 

the tax amount those companies pay to the government. In this situation, company owners 

become extremely unsatisfied, since their money goes to the government unnecessarily. 

Basically, managers sometimes may tend to deceive their companies’ stakeholders for their 

own profit. So as to pretend this conflict, pay-for-performance is suggested by business 

theorists. Pay for performance prescribes that employees would get salary increase 

percentages based on their performances. 

 In the HR literature, many techniques, such as self-evaluation method, weighted 

checklist method, and structured 360° feedback, to implement PFP based compensations 

are proposed. While some of the traditional techniques had some issues with regard to 

measurement quality, new innovative techniques, such as 360° feedback gained a 

considerable amount of attention from companies. Even though many employees do not 

favor PFP based measurement systems owing to the belief of unfairness or ruthlessness, 

these systems almost underlie the basic operations of HR departments. On the other hand, 

many firms consider these systems necessary to move their businesses to higher ranks in 

their industries. 

 PFP system has proven its applicability in many business fields. Indeed, many 

articles are published about the topic (e.g. Cadsby et al. [6], Abowd [1]). In recent years, 

many companies use PFP systems to reward their employees. For example, according to 

Millman[22], the technology leader Apple uses PFP systems successfully in their 

organization. Also, their criteria on the performance evaluation shows that Apple evaluates 

potential of employees too. Similar to many other companies, Apple wants to make sure 

that it pays its CEO a closer amount to its peers. Another company, the automotive giant 

General Motors which also uses PFP systems. The telecommunication company AT&T 

also used PFP and potential methods for appraising their employees. 

 Kuwait-Turkish Participation Bank (at where the author was a former sales 

assistant) in Turkey uses PFP to allocate their employees to increase categories. According 

to their system, the bank first evaluates their employees quarterly in every fiscal year. The 

bank measures all of their employees based on their expectations from their employees. 

These expectations vary for every other position. For example, they expect a sales assistant 

to market a certain number of credit cards, a certain amount of mortgage loans, and car 

loans. Actually, there are more than thirty different types of services that a sales assistant 

is required to market. So, the bank determines the relevant importance of each service, 
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weights all these services, and gives credit to each sales assistant for meeting these sales 

targets. In addition to these sales target evaluations, the bank also takes some other 

behaviors that their employees perform into consideration. For example, tardiness, loyalty, 

and passion of employees are some of these other criteria that the bank pays attention to. 

Even smiling to a customer matters. The bank has mystery shoppers that detects every 

branch in arbitrary times and these shoppers give credits to employees. At the end of the 

fiscal year, the bank’s human resources and related departments gather all these 

information and determine bonuses and salary increases that they are going to apply for 

employees. So, this company evaluates their employees based on their performance and 

potentials. 

 The mentioned example types of companies have become very common in the 

business life. Even small businesses take into consideration these types of applications in 

their management processes. In recent years, not only private sector companies, but also 

some public health care companies are also very interested in PFP and potential based 

incentive systems. This inclination indicates that most companies will be using PFP and 

potential appraisal systems for their employee rewarding policies, if not using right now. 

 

2.3. Performance Measurement Guide 

 Performance evaluation results often shape future careers of employees. For this 

reason, fairness of these evaluations is vitally essential. In the human resources literature, 

many papers were published about offering ways for establishing elegant personnel 

performance measurement systems. Gerhart et al. [12] examine performance measures in 

two sets of categories. First, results-oriented versus behavior-based performance criteria, 

which compares objective results (e.g., number of produced units or personal sales records) 

with subjective measures (e.g., traditional merit ratings). Second, individual and group 

performance measures. 

 The first measurement puts emphasis on evaluating employees not only with their 

numerical outputs, but also by their behaviors. Some work positions may not even have 

any numerical outputs. In this case, including behavioral measures may be effective in the 

determination of employee’s performance. These measurements are also covered in 
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potential appraisal, which predicts an employee’s capability to deal with the job 

requirements of a higher status.  

 Some positions may have more interest on number of outputs. In such a situation, 

objective criteria may be more useful on the performance evaluation. Indeed, these two 

evaluation aspects are complementary for each other. Therefore, including both objective 

and subjective measurement criteria can create a well-balanced evaluation form. 

 On the other hand, the second category implies the vital importance of evaluating 

employees with both their individual contributions and their group benefit for the work. 

Deming [8] explains the negative effects of considering individual performance evaluation 

solely by stating: “Everyone propels himself forward, or tries to, for his own good… The 

organization is the loser”. From this statement, the exiguity of merely individual 

evaluations is unfolded. Conversely, adding group performance into the measurement can 

obviously make the evaluation form more multifaceted. Adding potential evaluations as a 

third dimension into this measurement process, the quality of evaluation can be increased. 

Thus, employees can be evaluated based on their individual benefits, quality of work, and 

behaviors. 

 Among these options and more options from other studies, performance data for 

employees can be obtained. In this study, a mix of these measurement categories, which is 

believed to be widely comprehensive, is considered to determine performances of 

executive employees in the data set provided in the following chapters. Furthermore, this 

performance evaluation form, which was retrieved from Lead-Deadwood School’s website  

[18], is presented in Appendix A. This sample form does not involve the potential 

evaluations. Potential evaluations usually measure communication skills, flexibility, 

leadership, decision making abilities, and performance stability of employees. So, another 

similar form can also be prepared to measure the potential of employees, which plays a key 

role in the proposed models. 

 So as to have a single score for evaluation result (e.g., Performance Score: 5), 

unweighted average technique is used to calculate the final performance score of 

employees. Of course, some organizations may prefer using weighted or even additive 

weighting techniques to degrade all these score into one single score. For instance, some 

companies may value quantity more, while others might adopt behaviors as an essential 
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trait. For this reason, choice of using either evaluation techniques is up to a company’s 

objectives and desires. 

 In the application section of this study, the scale includes five levels except for the 

“Performance 1”, which is considered as an unsatisfactory performance result. This scale 

can be enlarged or narrowed down depending on how precise decisions companies want to 

make. However, it should be noted that enlarging the scale would increase number of 

performance categories, hence, increase number of variables in the model and 

overcomplicate the problem. For instance, using a scale which is out of 10 or 20 can create 

an extremely large size model. This model may exceed capabilities of linear programming 

software to optimize the problem. For this reason, setting a fair enough scale has a key role 

in the size of model creation.  
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CHAPTER III 

MODEL DEVELOPMENT 

 

3.1. Conceptual Approach 

 In this chapter, the mathematical models which were mentioned in the previous 

sections are illustrated with their main sketches, linearized forms, and simplifications.  

Figure 1 shows two phases of general procedure to apply the solution approach. 

Phase one: data collection & preparation 

 Companies willing to use this system should follow the steps given in Figure 3.1. 

In order for determining salary increase percentages and time intervals for salary increases, 

the first step is to collect performance evaluation results mentioned in the previous chapter 

and discard employees who have unsatisfactory performance results. Thus, these discarded 

executive employees will not be considered in both models and their increase percentages 

and salary increase intervals are not computed. The company may fire these employees or 

apply the minimum increase percentage and the longest increase interval, if there is a strong 

reason that avert their dismissal, such as a vast amount of gratuity or a key connection that 

may push the company to higher in the future. 

 After eliminating unsuccessful executive employees, salary data of evaluees should 

be gathered. Then, prevailing salary of each employee for his/her corresponding status at 

nearby companies should be investigated; averages for each salary should be calculated 

and taken its place in the source data. Based on the budget that was devoted for human 

resource department, upper and lower bounds for each employee’s new salary should be 

intuitively specified. 

 Every executive employee would often have the right to promote to a higher status 

based on position availability sooner or later in many cases as soon as he/she meets required 

proficiencies. In this solution procedure, only two numerical options are available for 

potential evaluations, 1 or 0. If an executive employee has enough capabilities to promote, 

his/her potential score can be noted as 1. In the averse situation, his/her score can be noted 

as 0. This evaluations should be reported for each evaluee and listed in the data source. 

 For the use of second mathematical model, which computes time intervals of salary 

increases, the elapsed time for each employee since the last salary increase should be listed 

in the source data. The purpose of this action is to be able to compute remaining months to 

the next salary increase for each employee.  
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Figure 1: Salary Optimization Guideline 
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 Once the input data is formed for the use of first mathematical model, the model 

can be shaped and prepared for the use of MATLAB. 

Phase two: model development & optimization process 

 After completing the first phase, the input data sheet which includes all parameters 

for the use of mathematical models should be ready. This data forms the first model which 

aims to assign employees to optimal salary increase categories. 

 The first step of the second phase is to create an MILP model so as to optimize 

salary increase assignments. Even though this process is illustrated in the salary 

optimization guideline figure as one single step, it is a whole difficult duty to create a 

concrete MILP model. This process will be comprehensively explained in the following 

sections. After the first model is created by defining variables and constraints, the MILP 

model should be oriented to intlinprog algorithm of MATLAB. This algorithm requires the 

creation of a bunch of matrices and vectors based on the input data obtained by the first 

phase. 

 Once the reformulation step is completed, the intlinprog algorithm should be run, 

thus, solution for the first model is computed by MATLAB. The output of the first 

mathematical model is considered to be an input for the second model because the second 

model aims to sort employees according to their assigned salary increase percentages. By 

having the result of the first model, a very similar process should be followed with the 

exception of names of vectors and matrices for the second model. The MATLAB code 

proposed in this study does not require a second effort to compute the second model. 

Therefore, by only running the code for the input data which includes desired employee 

increases and intervals to be optimized, MATLAB optimizer will directly show results for 

both models. Finally, results obtained from MATLAB can be reported to the respective 

department. 

 

3.2. Phase One: Data Collection & Preparation 

 As mentioned in the previous part, required data for the use of the mathematical 

models should be prepared in this phase. This process can be done via the collaboration of 

HR department of aforesaid company. Table 1 demonstrates an example of collected data. 

In order to use MATLAB code provided in this study, the input data should be prepared in 

the format illustrated in Table 1. 
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Table 1: Sample Data 

N C R U L E P K 

1 5900 7600 8000 6000 3 0 6 

2 9000 11000 12000 8500 2 1 3 

3 10500 13600 14000 10000 2 1 4 

4 7500 8700 10000 7500 5 0 2 

5 9100 11800 12000 8500 4 0 4 

6 6100 7600 8000 6000 5 1 2 

7 6700 6500 7900 5000 4 1 5 

8 5800 5900 7800 6200 3 1 1 

9 7900 6100 9300 8000 2 0 4 

10 9600 12000 14000 10000 5 1 2 

 

 Descriptions of headings of the sample data is given below: 

 N Number of employee 

 C Current salaries of employees 

 R Prevailing salaries for employees 

 U Upper bounds of salaries for employees 

 L Lower bounds of salaries for employees 

 E Performance evolution results gathered by HR department 

 P Potential of employees to promote 

 K Number of months elapsed since the last given salary increase  

 

3.2.1. Assumptions for Data Preparation 

 Following assumptions should be considered before formulating mathematical 

models: 
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 Upper bound of salary for each employee should be higher than the prevailing 

salary of corresponding employee. 

 Lower bound of salary for each employee should be lower than the prevailing salary 

of corresponding employee. 

 Employees who have unsatisfactory performance results (sample data assumes ‘1’ 

is an unsatisfactory performance result) should not be included in the input data. 

 

3.3. Phase Two: Model Development & Optimization Process 

 In this section, notations, variables, and constraints used in the models are provided 

with detailed information about what type of roles they play in the solution process of the 

problem. Then, adaptation of these models into MATLAB and their corresponding 

application procedures are explained. The consistently mentioned two models were 

explained under separate headings. 

3.3.1. Model I 

 The main purpose of this model is to reassign executive employees to optimal 

salary increase categories so that the total difference between their new salaries and 

prevailing salaries corresponding to their statuses is minimized. In this manner, the 

executive employees are already assigned to their salary categories based on their 

performance evaluation results by the related department (commonly human resources 

department). So, by using the word ‘reassign’, it is meant to distribute employees into 

salary increase categories based on their performance evaluation results with some 

additional constraints. For example, a company may want to assign one or several of their 

executive personnel into a lower salary increase category than the personnel’s own salary 

increase category because the overall sum of salaries given to personnel might be higher 

than the total amount of prevailing salaries. Thus, the company may want to make sure not 

to pay to their employees so much more than their rivals. Considering this concept, model 

I is borrowed from the article of Garcia-Diaz and Hogg [11] to design the optimal way of 

determining salary increase percentages for every categories. 

 

 



23 

 

Notations 

Variables 

Xm increase percentage corresponding to category m 

Zim = 1, if employee i is given salary treatment m; Zim = 0, otherwise 

Wit multiplication of Xm and Zim 

λi additional variable for linearization purposes 

δi additional variable for linearization purposes 

Subscripts (indices) 

i = 1, 2, …, N 

m = 1, 2, …, M 

Parameters 

N number of executive personnel qualified for salary increase 

M number of salary increase categories 

Ei current performance evaluation result of employee i 

Ci current salary of employee i 

Ri prevailing salary for the position of employee i 

Ui upper bound on the salary of position of employee i 

Li lower bound on the salary of position of employee i 

Pi potential of employee i to promote. It is assumed that potential is either 0 or 1 for 

 each employee. 

a1 lower bound on salary increase percentages (0 ≤ a1 ≤ 1) 

a2 upper bound on salary increase percentages (a1 ≤ a2 ≤ 1) 

a3 minimal difference between increase percentages of neighboring categories             

 (0 ≤ a3 ≤ a2) 

d maximal deviation, in increase categories, allowed between job performances and 

 salary treatments 
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q maximal position in salary range allowed to low-potential personnel (0 ≤ q ≤ 1) 

Mathematical Formulation 

Minimize 

∑|𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) − 𝑅𝑖|

𝑖

 (1) 

Subject to 

𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) ≤ 𝑃𝑖𝑈𝑖 + (1 − 𝑃𝑖)[𝐿𝑖 + 𝑞(𝑈𝑖 − 𝐿𝑖], for all i  (2) 

𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) ≥ 𝐿𝑖 , for all i  (3) 

𝑋1 ≥ 𝑎1, 𝑋𝑀 ≤ 𝑎2, 𝑋𝑀 − 𝑋𝑀−1 ≥ 𝑎3, for all m ≥ 2 (4) 

∑𝑚𝑍𝑖𝑚 ≤ 𝑒𝑖, for all i

𝑚

 (5) 

∑𝑚𝑍𝑖𝑚 ≤ 𝑒𝑖 − 𝑑, for all i

𝑚

 (6) 

∑𝑍𝑖𝑚 = 1, for all i  

𝑚

 (7) 

𝑍𝑖𝑚 = 0, 1, for all i and all m (8) 

 

 As mentioned in the introduction of this section, the objective function (1) aims to 

minimize the total deviation (including both positive and negative difference) between all 

new salaries of executive personnel and all prevailing salaries corresponding to these 

personnel. Thus, the objective function (1) ensures that the external consistency condition 

mentioned in the previous sections is met. Since the objective function (1) includes a 

multiplication of two variables, the elucidated model is a non-linear mathematical model. 

The linearization procedure of this type of non-linear objective function is explained in the 

following parts of the section. 

 Constraints (2) and (3) set upper bounds for all employees based on their potentials. 

Thus, these two constraints target to meet internal consistency condition, the importance 

of which was mentioned in previous sections. Companies using this mathematical model 
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can basically set upper and lower bounds based on their budget. Potential in constraint (2) 

affects the upper bound of salary for each employee. For instance, if an employee has a 

potential value of 1, then the employe gets a full upper bound. In averse situation, if an 

employee has a low (0) potential, then the employee’s upper bound of new salary is 

multiplied with a value between 0 and 1 in order to decrease the upper bound and allow 

the employee to get a salary increase within a lesser boundary. Hence, awarding employees 

is also assured by affecting their new salaries based on their high potentials, which can be 

a fair application in competitor working environments. 

 Set of constraints (4) create an interval for salary increase categories. The first 

constraint in the set assures that the lowest salary increase category should be at least a 

certain percetange determined by the model user company. The second constraint indicates 

the upper bound of the best salary increase category. Therefore, the best salary increase 

category cannot exceed the highest salary increase percentage that the model user company 

is willing to set. The last set of constraints define the minimal percentage between 

neighboring salary increase categories. Hence, the difference between salary increase 

categories would motivate employees to be more beneficial to the company.  

 Constraint (5) ensures that employees subject to consideration for assignment 

should not be assigned to a performance category higher than their predetermined 

perfomance results. Constraint (6) determines the range of new salary assignments of 

employees. So, this constraint limits the guideline to assign an employee to an extremely 

lower salary increase category. In other words, assuming d=1, a company confirms that all 

employees considered in the model will be assigned to either their predetermined or one 

category lower than their predetermined salary increase category. Increasing d can enlarge 

the range, thus, might create more possibilities for the solution set. 

 Constraints (7) and (8) ensures that every employee included in the guideline is 

assigned to only one salary increase category.  

 As a return of the model, X and Z values are obtained. X values are salary increase 

categories which determine the salary increase percentage of each employee. The 

parameter a1 and a2 define the bounds between the lowest and highest X percentages. Thus, 

the model determines X percentages based on the internal consistency of user companies. 

On the other hand, Z variables demonstrate matchings of employees with their 

corresponding optimal salary increase categories. In other words, the indices of Z variables 

illustrate the optimal salary increase category for each employee. For example, Z13 means 
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that the first employee in the evaluation is assigned to salary increase category 3. By 

assuming X3 to have an optimal value of 11%, it can be inferred that the first employee in 

the consideration would get 11% salary increase according to findings of Model I. Finally, 

in this section, the first mathmetical model is illustrated in a non-linear format. Besides, all 

constraints and their roles in the salary increase category assignment model are explained. 

Linearization Procedure 

 In mathematics and operations research literature, several methods for linearizing 

non-linear objective functions and constraints exist. One of these techniques is the 

linearization of minimization of the sum of absolute values, as McCarl et al. [20] explained 

in their book. According to their method, the new form of the objective function can be 

illustrated as following: 

Minimize 

∑𝜆𝑖 + 𝛿𝑖
𝑖

, for all i  (9) 

 Thus, the linearized objective function becomes a constraint as following: 

Subject to 

𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) − 𝜆𝑖 + 𝛿𝑖 = 𝑅𝑖, for all i  (10) 

where  

𝜆𝑖 ≥ 0 and 𝛿𝑖 ≥ 0, for all i (11) 

 Another expression that causes the problem to be non-linear is the multiplication 

of two variables, Z and X. So, this non-linear expression can be linearized by switching the 

multiplication with a new variable which covers the multiplication of both variables. As a 

result of this process, the following transformation is shown below: 

𝑊𝑖𝑚 = 𝑍𝑖𝑚𝑋𝑚, for all i and m (12) 

 After taking the above transformation into consideration, following constraints are 

added to hold the transformation: 

𝑊𝑖𝑚 ≤ 𝑍𝑖𝑚, for all i and m (13) 
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𝑊𝑖𝑚 ≥ 𝑍𝑖𝑚 + 𝑋𝑚 − 1, for all i and m (14) 

𝑊𝑖𝑚 ≤ 𝑋𝑚, for all i and m (15) 

 After applying all these linearization process, the problem became an MILP 

problem. Therefore, the final linearized form of the MILP problem is illustrated below: 

Minimize 

∑𝜆𝑖 + 𝛿𝑖
𝑖

, for all i (16) 

Subject to 

𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) − 𝜆𝑖 + 𝛿𝑖 = 𝑅𝑖, for all i (17) 

𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) ≤ 𝑃𝑖𝑈𝑖 + (1 − 𝑃𝑖)[𝐿𝑖 + 𝑞(𝑈𝑖 − 𝐿𝑖], for all i  (18) 

𝐶𝑖 (∑𝑍𝑖𝑚𝑋𝑚 + 1

𝑚

) ≥ 𝐿𝑖 , for all i (19) 

𝑋1 ≥ 𝑎1, 𝑋𝑀 ≤ 𝑎2, 𝑋𝑀 − 𝑋𝑀−1 ≥ 𝑎3, for all m ≥ 2 (20) 

∑𝑚𝑍𝑖𝑚 ≤ 𝑒𝑖, for all i 

𝑚

 (21) 

∑𝑚𝑍𝑖𝑚 ≤ 𝑒𝑖 − 𝑑, for all i

𝑚

 (22) 

∑𝑍𝑖𝑚 = 1, for all i

𝑚

 (23) 

𝑊𝑖𝑚 ≤ 𝑍𝑖𝑚, for all i and m (24) 

𝑊𝑖𝑚 ≥ 𝑍𝑖𝑚 + 𝑋𝑚 − 1, for all i and m (25) 

𝑊𝑖𝑚 ≤ 𝑋𝑚, for all i and m  (26) 

𝑍𝑖𝑚 = 0, 1, for all i and all m (27) 

𝑋𝑚 ≥ 0,𝑊𝑖𝑚 ≥ 0,  𝑍𝑖𝑚 ≥ 0, 𝜆𝑖 ≥ 0, and 𝛿𝑖 ≥ 0, for all i and m (28) 

Reformulation procedure 

 As mentioned earlier in the MATLAB’s ‘intlinprog’ algorithm section of Chapter 

I, the intlinprog algorithm only solves minimization problems. Since the objective function 

of the Model I is a minimization function, no further operation is needed. On the other 
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hand, both sides of some constraints, such as (19), (20), and (25) should be multiplied by 

‘-1’ in order to change greater than or equal to signs into less than or equal to signs. 

Moreover, simplifying inequalities as much as possible would also help for creating 

matrices and vectors. After doing these simple operations, the whole model would become 

as following (All variables are assumed to be positive): 

Minimize 

∑𝜆𝑖 + 𝛿𝑖
𝑖

, for all i (29) 

Subject to 

𝐶𝑖∑𝑊𝑖𝑚
𝑚

− 𝜆𝑖 + 𝛿𝑖 = 𝑅𝑖 − 𝐶𝑖, for all i (30) 

∑𝑍𝑖𝑚 = 1, for all i

𝑚

 (31) 

𝐶𝑖∑𝑊𝑖𝑚
𝑚

≤ 𝑃𝑖𝑈𝑖 + (1 − 𝑃𝑖)[𝐿𝑖 + 𝑞(𝑈𝑖 − 𝐿𝑖] − 𝐶𝑖, for all i (32) 

𝐶𝑖∑−𝑊𝑖𝑚
𝑚

≤ 𝐶𝑖 − 𝐿𝑖, for all i (33) 

−𝑋1 ≤ −𝑎1, 𝑋𝑀 ≤ 𝑎2, 𝑋𝑀−1 − 𝑋𝑀 ≤ −𝑎3, for all m ≥ 2  (34) 

∑𝑚𝑍𝑖𝑚 ≤ 𝑒𝑖, for all i

𝑚

 (35) 

∑−𝑚𝑍𝑖𝑚 ≤ 𝑑 − 𝑒𝑖, for all i

𝑚

 (36) 

𝑊𝑖𝑚 − 𝑍𝑖𝑚 ≤ 0, for all i and m (37) 

𝑋𝑚 + 𝑍𝑖𝑚 −𝑊𝑖𝑚 ≤ 1, for all i and m (38) 

𝑊𝑖𝑚 − 𝑋𝑚 ≤ 0, for all i and m (39) 

𝑍𝑖𝑚 = 0, 1, for all i and all m (40) 

Computerization procedure 

  This procedure contains creation of vectors and matrices illustrated in the salary 

optimization guideline figure. Even though an obligatory sequence does not exist in the 

creation of these vectors and matrices, starting with the creation of column vector f may 

ease the whole process. So, a column vector including coefficients of all variables in the 

objective function should be created first. The following illustration depicts in what 
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sequence variables can be listed in the vector and how an f vector is created for the 

mathematical model I. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜆1
𝜆2
⋮
𝜆𝑖
𝛿1
𝛿2
⋮
𝛿𝑖
𝑊11
𝑊12
⋮
𝑊𝑖𝑚
𝑍11
𝑍12
⋮
𝑍𝑖𝑚
𝑋1
𝑋2
⋮
𝑋𝑚 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
𝑦𝑖𝑒𝑙𝑑𝑠
→         𝑓 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
1
⋮
1
1
1
⋮
1
0
0
⋮
0
0
0
⋮
0
0
0
⋮
0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The sequence of variables in the vector is just an example; this sequence may also 

be changed. However, changing the sequence would also affect following steps of matrix 

and vector creation procedure. Thus, keeping the order of variables consistently in all other 

vector creations is necessary for many cases. Since the objective function only includes 

lambda and delta variables, zeros are placed for all other variables’ coefficients  in the f 

vector. After having an order for all variables given in the model, the next step can be 

determination of lower and upper bounds of variables and creating their corresponding 

column vectors. The following vectors elucidate how upper and lower bounds can be 

vectorized. 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜆1
𝜆2
⋮
𝜆𝑖
𝛿1
𝛿2
⋮
𝛿𝑖
𝑊11
𝑊12
⋮
𝑊𝑖𝑚
𝑍11
𝑍12
⋮
𝑍𝑖𝑚
𝑋1
𝑋2
⋮
𝑋𝑚 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        
𝑦𝑖𝑒𝑙𝑑𝑠
→         𝑢𝑏 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑖𝑛𝑓

𝑖𝑛𝑓
⋮
𝑖𝑛𝑓

𝑖𝑛𝑓
𝑖𝑛𝑓
⋮
𝑖𝑛𝑓

𝑖𝑛𝑓
𝑖𝑛𝑓
⋮
𝑖𝑛𝑓
1
1
⋮
1
𝑖𝑛𝑓

𝑖𝑛𝑓
⋮
𝑖𝑛𝑓]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 and  𝑙𝑏 = 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0
0
⋮
0
0
0
⋮
0
0
0
⋮
0
0
0
⋮
0
0
0
⋮
0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The above illustration means that all variables except for Z variables are 

continuous. Since Z variables are binary, their upper bounds are 1 meaning that maximum 
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value they could get is 1. On the other hand, all variables have a lower bound of 0, which 

also means that all variables are positive. 

 The next step is to create an intcon row vector which contains the sequence number 

of integer variables. The importance of starting with the creation of vector f arises here 

because intcon should be created accordingly to vector f. The following vectors theorically 

demonstrates how an intcon vector for this problem should be. 

[𝜆1 𝜆2 ⋯ 𝜆𝑖 𝛿1 𝛿2 ⋯ 𝛿𝑖 𝑊11 𝑊12 ⋯ 𝑊𝑖𝑚 𝑍11 𝑍12 ⋯ 𝑍𝑖𝑚 𝑋1 𝑋2 ⋯ 𝑋𝑚] 

𝑦𝑖𝑒𝑙𝑑𝑠 

[2𝑖 + 𝑖𝑚 + 1 2𝑖 + 𝑖𝑚 + 2 ⋯ 2𝑖 + 2𝑖𝑚] 

 Consider i = m = 3 as an example, then intcon vector becomes: 

[16 17 18 19 20 21 22 23 24] 

 The intcon vector is a very important component of the problem solution procedure 

owing to the fact that it determines which variables are considered as integers and conveys 

this information to the program. 

 After creating all these vectors, coefficients of constraints should be matricized and 

their corresponding right hand sides should be vectorized so as to fit MATLAB’s 

‘intlinprog’ algorithm. So as to be able to do this, inequality constraints and equality 

constraints can be separately categorized because matrix A should be created for 

coefficients of inequality constraints, while matrix Aeq needs to be created for coefficients 

of equality constraints. Briefly, dividing constraints into two categories as equality and 

inequality constraints, the application can be facilitated. Since matrix A is a number of 

constraints by number variables sized matrix, it can have extremely large dimensions with 

high number of employees and salary increase categories. As a simplistic visual example, 

the following matrix A can be set for the Model I by assuming N=M=1. 

𝜆1 𝛿1 𝑊11 𝑍11 𝑋1           

𝐴 =

[
 
 
 
 
 
 
 
0 0 𝐶1 0 0
0 0 −𝐶1 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 0 −1 0
0 0 1 −1 0
0 0 −1 1 1
0 0 1 0 −1]

 
 
 
 
 
 
 

     

}
 
 
 

 
 
 
(32)

(33)

(34)

(35)
(36)

(37)

(38)

(39)
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 In the above matrix, while parenthesized numbers on the right hand side of the 

matrix represent constraints, the variables are also indicated on the upper side of the matrix. 

It should be noted that constraint set (34) contains several constraints in it depending on 

number of m. All other constraints depend on number of i, which is the total number of 

employees considered in the first model. The size of matrix A can grow exponentially 

depending on numbers of i and m. For instance, while 2 employees and 2 salary increase 

categories create a 23x14 size matrix A, 3 employees and 3 salary increase categories yield 

a 43x27 size matrix A. Basically, the size of matrix A can be computed as 4N+M+3NM+1 

by 2N+2NM+M. 

 The corresponding b vector for matrix A, which includes right hand sides of 

inequality constraints is also needed to be created. Since right hand sides only involve 

parameters which can be obtained from input data, the creation of this vector is very simple. 

An example b vector by 1 employee and 1 salary increase category is demonstrated below: 

𝑏 =

[
 
 
 
 
 
 
 
𝑃1𝑈1 + (1 − 𝑃1)[𝐿1 + 𝑞(𝑈1 − 𝐿1] − 𝐶1

𝐶1 − 𝐿1
−𝑎1
𝑒1

𝑑 − 𝑒1
0
1
0 ]

 
 
 
 
 
 
 

     

}
 
 
 

 
 
 
(32)

(33)

(34)

(35)
(36)

(37)

(38)

(39)

 

 As it is seen, the dimension of vector b is the same as the row number of matrix A, 

since b includes only right hand sides of inequality constraints. 

 A similar process also holds for creating matrix Aeq and vector beq. Fortunately, 

this matrix and vector contain lower dimensions than matrix A and vector b, since the 

model only involves two equality constraints. Therefore, matrix Aeq and vector beq can 

be shown as the following for a very simplistic case of N=M=1. 

𝜆1 𝛿1 𝑊11 𝑍11 𝑋1      

𝐴𝑒𝑞 = [
−1 1 𝐶1 0 0
0 0 0 1 0

]     }
(30)
(31)

  

and 

𝑏𝑒𝑞 = [
𝑅1 − 𝐶1
1

]     }
(30)
(31)
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 Size of the matrix Aeq can be calculated as 2N by 2N+2NM+M. So, this matrix is a 

smaller dimension matrix compared to matrix A. However, it should be noted that both of 

the matrices can get a very large scale dimension by considering high number of employees 

and salary increase categories. Depending on these two factors, sizes change dynamically.  

 After doing all these operations, the only required task is to call MATLAB’s 

optimizer with a simple function and find the solution. By applying these operations, the 

company would be able to assign their employees to more optimal salary increase 

categories and compute new salaries of their employees. 

 Since creating all these matrices and vectors for every single problem takes so much 

time and effort, a concrete MATLAB code is a need to automatically meet all requirements 

of intlinprog algorithm. The challenge in the MATLAB coding is to dynamically create 

these matrices depending on number of employees, number of increase categories, and 

varieties of parameters, and then automatically sending it into optimizer with one single 

touch in a single MATLAB script. Moreover, combining the second model with the first 

one and reducing all these steps is the centerpiece of this thesis study. 

 The above mentioned one piece MATLAB script for solving both models is shared 

in Appendix B. If desired, the second model given in the script can be removed and 

solutions only for the first model can also be computed. So, removing the second model 

does not affect the solution of the first model. However, without solving the first model, 

second model cannot be computed. This is because the second model gets the input data 

from the solution of the first model. This situation is explained in the second model with 

more details. 

 

3.3.2. Model II 

 In recent years, some companies may not desire to apply salary increases for all 

employees in the same month owing to the fact that accumulation of a high expense in one 

month can negatively influence the cash flow of companies. Besides, the increasing 

competiveness in working environments may require companies to reward their successful 

employees earlier than their low performance employees. Thus, creating another 

assignment tool might be necessary for these type of applications. 
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 This model aims to distribute employees into salary increase intervals as evenly as 

possible. In other words, the model targets to assign employees into different salary 

increase time intervals depending on their salary increase category results obtained by the 

first model. The Model II is developed by using the model proposed in the article of Garcia-

Diaz and Hogg [11]. 

Notations 

Variables 

Yit = 1, if employee i gets a salary increase in period t; Yit = 0, otherwise, where i = 1, 

 2,…, N and t = 1, 2,…, T 

σt additional variable for linearization purposes 

ωi additional variable for linearization purposes 

Subscripts (indices) 

i = 1, 2, …, N 

t = 1, 2, …, T 

Parameters 

A lower bound on intervals 

B upper bound on intervals (B>A) 

Ki number of periods passed since the last given salary treatment to employee i 

 (B>Ki>A) 

T number of periods in the planning horizon 

gi salary treatment given to employee i by Model I, 𝑔𝑖 = ∑𝑚𝑍𝑖𝑚 

nt number of personnel desired to assign in period t 

αi = min{T; A – Ki} 

βi = min{T; B – Ki} 
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Mathematical Formulation 

Minimize 

∑|∑𝑌𝑖𝑡 − 𝑛𝑡

𝑁

𝑖=1

|

𝑇

𝑡=1

 (41) 

Subject to 

∑𝑌𝑖𝑡 = 1

𝑇

𝑡=1

, for all 𝑖 (42) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 = ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

+ 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 = 𝑔𝑗 (43) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≤ ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

+ 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 > 𝑔𝑗 (44) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≥ ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

+ 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 < 𝑔𝑗 (45) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≤ 𝐵, for corresponding to minimal 𝑔𝑖 (46) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≥ 𝐴, for corresponding to maximal 𝑔𝑖  (47) 

𝑌𝑖𝑡 = 0, 1, for all 𝑖 and 𝑡 (48) 

 The main goal of the objective function (41) is to assign employees into salary 

increase intervals with a minimal deviation. Thus, employees are assigned to their salary 

increase time intervals in such a way that does not jeopardize company by causing a cash 

flow problem regarding with salary increases. 

 Constraint (42) ensures each employee to be assigned to only one salary increase 

interval. Constraints (43), (44), and (45) assures that employees with same salary increase 

category assignments would get their salary increases in the same interval. If one of the 

employees has a better salary increase category than the other one, then this better 
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employee gets a salary increase earlier than or at least at the same time with the other 

employee. It should be noted that j = i +1, where i = 1, 2, …, N-1. This notation satisfies 

that all employees subject to consideration are compared one by one. Besides, these three 

(43), (44), and (45) constraints are conditional constraints depending on the result of the 

Model I. Thus, for every one comparison, only one constraint will be active. For example, 

if two employees have the same salary increase category result (obtained by the Model I), 

constraint (43) will be activated/used, while other two constraints are not used. 

 Constraints (46) and (47) defines the upper and lower bounds of salary increase 

intervals. Thus, exceeding these limits is assured to be restricted by these two constraints. 

Finally, constraint (48) satisfies both non-negativity and integrity conditions. 

Linearization Procedure 

 As it can be distinctly seen in the model, linearization of the Model II requires very 

similar steps applied in Model I. So, applying McCarl et al.’s [20] linearization procedure 

one more time would linearize the Model II as shown below: 

Minimize 

∑𝜎𝑡 + 𝜔𝑡
𝑡

 (49) 

Subject to 

∑𝑌𝑖𝑡 − 𝜎𝑡 + 𝜔𝑡 = 𝑛𝑡
𝑡

, 𝑡 = 1, 2, … , 𝑇 (50) 

𝜎𝑡 ≥ 0,𝜔𝑡 ≥ 0, 𝑡 = 1, 2, … , 𝑇 (51) 

 After the linearization procedure, the complete Model II takes a shape as 

demonstrated below: 

Minimize 

∑𝜎𝑡 + 𝜔𝑡
𝑡

 (52) 

Subject to 
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∑𝑌𝑖𝑡 − 𝜎𝑡 + 𝜔𝑡 = 𝑛𝑡
𝑡

, for all 𝑖 and 𝑡 = 1, 2, … , 𝑇 (53) 

∑𝑌𝑖𝑡 = 1

𝑇

𝑡=1

, for all 𝑖 (54) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 = ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

+ 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 = 𝑔𝑗 (55) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≤ ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

+ 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 > 𝑔𝑗 (56) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≥ ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

+ 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 < 𝑔𝑗 (57) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≤ 𝐵, for corresponding to minimal 𝑔𝑖 (58) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

+ 𝐾𝑖 ≥ 𝐴, for corresponding to maximal 𝑔𝑖 (59) 

𝑌𝑖𝑡 = 0, 1, for all 𝑖 and 𝑡 (60) 

𝑌𝑖𝑡 ≥ 0, 𝜎𝑡 ≥ 0,𝜔𝑡 ≥ 0, 𝑡 = 1, 2, … , 𝑇 and 𝑖 = 1, 2, … ,𝑁  (61) 

Reformulation procedure 

 In this procedure, a very similar approach used for Model I is applied to the Model 

II in order to prepare the problem for adapting MATLAB’s solver. Hence, the Model II is 

rewritten below by applying all required operations. 

Minimize 

∑𝜎𝑡 + 𝜔𝑡
𝑡

 (62) 

Subject to 

∑𝑌𝑖𝑡 − 𝜎𝑡 + 𝜔𝑡 = 𝑛𝑡
𝑡

, 𝑡 = 1, 2, … , 𝑇 (63) 
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∑𝑌𝑖𝑡 = 1

𝑇

𝑡=1

, for all 𝑖 (64) 

∑ 𝑡𝑌𝑖𝑡 − ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

= 𝐾𝑗 − 𝐾𝑖, for 𝑖 and 𝑗 such that 𝑔𝑖 = 𝑔𝑗 (65) 

∑ 𝑡𝑌𝑖𝑡 − ∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

≤ +𝐾𝑗 − 𝐾𝑖 , for 𝑖 and 𝑗 such that 𝑔𝑖 > 𝑔𝑗 (66) 

∑ 𝑡𝑌𝑗𝑡

𝛽𝑗=𝐵−𝑓𝑗

𝛼𝑗=𝐴−𝑓𝑗

− ∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

≤ 𝐾𝑖 − 𝐾𝑗 , for 𝑖 and 𝑗 such that 𝑔𝑖 < 𝑔𝑗 (67) 

∑ 𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

≤ 𝐵 − 𝐾𝑖, for corresponding to minimal 𝑔𝑖 (68) 

∑ −𝑡𝑌𝑖𝑡

𝛽𝑖=𝐵−𝑓𝑖

𝛼𝑖=𝐴−𝑓𝑖

≤ 𝐾𝑖 − 𝐴, for corresponding to maximal 𝑔𝑖 (69) 

𝑌𝑖𝑡 = 0, 1, for all 𝑖 and 𝑡 (70) 

Computerization procedure 

 Here, a very similar computerization procedure with Model I applies for this model. 

The only difference and challenge for Model II is to construct matrices and vectors 

dynamically changing with their correspondingly chosen constraints. So, the MATLAB 

code to solve this model is required to manage conditional constraints with their ‘if’ 

conditions. Since gi values bring an ‘if’ condition for constraints (65), (66), and (67), these 

selections should be managed in a manner that either creates a row in matrix A or Aeq. For 

example, if two employees have the same result from the Model I, then constraint (65) 

should be activated. Activating constraint (65) means to add a row containing coefficients 

of variables into matrix Aeq, since constraint (65) is an equality constraint. In a reverse 

situation, where one employee’s salary category is better or worse than another employee, 

their corresponding row including coefficients of variables should be added into matrix A. 

 As Model I and Model II are combined in one script on MATLAB, titles of matrices 

should be different to get results for both of the models. For this reason, matrices are named 

with an additional ‘2’ on their subsequences, such as A2, Aeq2, b2 etc. 
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 Owing to the fact that matrix creation procedure is explained in the previous 

section, repeating the same procedure is not considered necessary. In Appendix B, the 

whole coding can be found. Also, some additional explanations regarding what means what 

in the coding is provided between code lines. As computer coding has a wide variety ways 

of handling operations, the given code is just a working example of solution for these two 

models. Of course, a more effective code on MATLAB or another package program which 

requires less time to solve the problem may always be produced. 

 By using the produced MATLAB code, no further effort is required to compute 

solutions except for preparing the input data illustrated as in Table 1. After preparing input 

data and running the code, results should be evaluate for their accuracy. If there is any 

conflict regarding the computation results, the input data should be reviewed based on the 

assumptions provided in data collection and preparation section and any conflict causing 

data should be removed or changed with an appropriate one that allows the code work. 
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CHAPTER IV 

SAMPLE APPLICATION 

 

 In this chapter, a sample application is performed within using the aforementioned 

MATLAB code, which carries out two mathematical models respectively. The sample data 

given in section 3.2 is used in the application. In addition to application procedure, a 

comprehensive qualitative analysis of solution procedure and findings, comparison among 

other solution options and their corresponding solution speed are provided. 

 The first step that needs to be followed is to transfer the sample data into a 

MATLAB .mat file. To do this, the sample data excluding the headings and counters of 

employees is copied and pasted into a random sized matrix, and then, saved with a name 

of ‘input’. 

 After creating the input data for MATLAB, the code can be simply run with default 

settings of intlinprog algorithm. Selecting among three different solution methods can also 

be an optional step that might be done before running the provided code (provided code is 

in Appendix B). In this chapter, assumptions for parameters and findings with their analysis 

are provided for each method (B&B, cutting-plane, and heuristics). 

 

4.1. Assumptions for Parameters 

 Some parameters i.e. q, d, A, and B should be determined in addition to the 

information provided with sample data. These parameters tremendously affect the size of 

the problem. For instance, A and B set the upper and lower bound on salary increase 

intervals. The complexity and the size of the problem highly depends on the difference 

between these upper and lower bounds. Also, the parameter d creates another complexity 

by allowing one employee to be a candidate for many salary increase categories. If d is 

assumed to be 1, the new salary increase category assigned by the salary administration 

package should be either same as the predetermined salary increase category or one lower 

of the predetermined salary increase category. Thus, assuming d as a higher number would 



40 

 

enlarge the bound on this selection process and increases the duty of the program which is 

in charge of investigating all nodes. 

 From another perspective, user companies may feel free to use any numbers for 

these parameters due to the fact that these parameters are very attractive tools for them to 

manage their employees’ salaries and their salary increase frequencies. For example, the 

parameter q determines the upper bound of low potential employees’ salaries which means 

that low potential employees can maximum have a salary with their upper bounds 

multiplied with q. While assuming a very high percentage q (0<q<1) would punish low 

potential employees deficiently, a very low percentage q would over-punish them. So, 

setting a fairly balanced q percentage is an essential part of an ethic evaluation. 

 Table 2 shows the values used for parameters of both Model I and Model II in the 

sample problem. 

Table 2: Parameter Value Assumptions 

PARAMETERS VALUES 

𝑵 10 

𝑴 5 

𝒒 0.90 

𝒅 1 

𝒂𝟏 0.05 

𝒂𝟐 0.20 

𝒂𝟑 0.03 

𝑨 8 

𝑩 12 

𝑻 12 

𝒏 14 

 

 Due to the fact that 10 employees with 5 different salary increase categories are 

evaluated in these models, N and M are indicated as 10 and 5, respectively. The parameter 

q is assumed to be 0.90 in the sample application, which is thought to be a fair enough 
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penalizing for low potential employees. The parameter d is determined as 1, which is 

perceived to be both acceptable for employees and a fair enough deal for companies. The 

a1 is the lowest percentage that will be given to worst performing employees. In this 

sample, it is assumed to be 5%, which is believed to be the minimum amount of increase 

percentage to avoid leave of employment for low performance employees. It should be 

noted that executive personnel often are not ordinary type of employees that would connect 

to their companies with candid relationships. Aversely, executive employees are usually 

talented and well-educated people that would easily find another job sooner or later. For 

this reason, even the worst executive employee in any company should be valued by giving 

a reasonable enough salary increase percentage which is assumed to be 5% in this example. 

At the same time, while the highest salary increase percentage, a2, is set to be 20%, the 

difference between salary increase categories, a3, are determined as 3% in this sample 

application. These percentages may surely differ from an industry to another. Fortunately, 

the code is designed to be capable of handling the problem solution with different desired 

parameters determined by users. 

 As the lower bound of desired salary increase interval is designated as 8 months, 

while its upper bound is identified as 12 months. Additionally, the whole time interval for 

the salary increase period is also stated as 12 months. The desired number of assignments 

for each month in the time interval is determined to be 14. 

 

4.2. Sample Solution via Branch & Bound Method 

 The intlinprog algorithm’s default options are already set to use B&B method for 

solving MILP problems. The method has three different ways to handle the procedure of 

application. The best option for solving a problem as quickly as possible varies depending 

on the type of the problem. In the salary administratin problem, the fastest option is ‘most 

fractional’ for branching. Hence, the ‘most fractional’ option to carry out the B&B method 

is activated in the given code.  

 As mentioned earlier, B&B method involves investigation of nodes of the B&B 

tree. So as to practise these investigations for each node, the sub-problems are solved by 

using LP. Linear programming problems can be solved with either the simplex method or 

the dual-simplex method via intlinprog algorithm. The dual-simplex method option 

(RootLPAlgorithm) in the intlinprog algorithm is activated in the provided code because 
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of its effectiveness on the sample data. This effectiveness may vary for different data set. 

So, it should also be kept in mind that chnaging this option might also affect the solution 

speed for other types of problems. 

 Since the main purpose of this section is to test the efficiency of B&B method, the 

other two methods (cutting-plane and heuristics) are set to ‘none’, which disables the 

algorithm to use those methods, before running the code. Figure 2 illustrates the result of 

B&B method application via the screenshot of MATLAB software. 

 The optimal percentages of salary increases for their corresponding categories, the 

optimal assignments of employees into salary increase categories, and the optimal time 

intervals for salary increase applications of each employee are computed by using the B&B 

method in the provided code. 

 According to the results of both models, while the lowest salary increase percentage 

corresponds to 8%, the highest percentage is found 20%. This means that the total deviation 

between current salaries and prevailing salaries of 10 employees is a positive number. In 

other words, the sum of current salaries is lower than the sum of prevailing salaries. For 

this reason, the algorithm tends to give the highest possible percentage determined by the 

range of percentages, a1 and a2. After determining X5, which is the best salary increase 

category, the algorithm gives the most appropriate percentage for the following salary 

increase category X4 based on the percentage determined by a3. In an averse case, the 

algorithm would determine the worst salary increase category, X1, as the lowest possible 

percentage and would incrementally specify upper increase categories by using the a3 

percentage. 

 During the adjustments of percentages for salary increase categories, the algorithm 

also takes the internal consistency into consideration and assign employees to most 

appropriate salary increase categories based on their predetermined performance results. 

As shown in Figure 2, the first executive employee in the sample data is assigned to the 

salary increase category 3; the second personnel is assigned to category 2, and so forth. 

These can be understood by checking the indices of variables. According to the results of 

Model II shown in Figure 2, the first employee gets a salary increase 6 months later and 

the second employee gets a salary increase 9 months later. It can be distinctly seen in the 

results that any employees are not exposed to any unfair assignment. While the higher 

performance employee gets the salary increase in a shorter time, the lower performance 

employee gets the salary increase at most the same increase with the higher performance  
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Figure 2: Sample Data Solution via B&B Method 
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employee depending on the internal and external consistency policies and the desired 

number of salary increases allowed per specified months. 

 Figure 3 illustrates the B&B tree for the solution of two models.  According to ‘Run 

and Time’ function of MATLAB, the total time spent for the evalution of 10 employees is 

3.754 seconds. Besides, the optimal solution is found in 202th node of the B&B tree for 

the Model I, as it can be seen in Figure 3 Model 2 did not even need the B&B method to 

be proceeded; the solution was automatically found by one single LP relaxation The below 

Figure 3 explicitly illustrates the increase of optimal objective value by investigating the 

nodes. 

 

Figure 3: B&B Tree Nodes 

 According to ‘Run and Time’ function of MATLAB, the total time spent for the 

evalution of 10 employees is 3.754 seconds. Besides, the optimal solution is found in 202th 

node of the B&B tree for the Model I, as it can be seen in Figure 3.  

 In addition to sample application with 10 employees, computation times of more 

applications with different numbers of employees (ceteris paribus) are demonstrated in 

Table 3 to highlight the capabilities of the prepared code. 
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Table 3: Comparison Table via B&B Method 

Number of 

Employees 

Computation 

Time (seconds) 

Number of 

Branching Node 

10 3.754 202 

15 4.442 1,524 

20 6.013 10,186 

25 175.534 923,649 

30 937.598 4,259,723 

  

 As it can be seen in Table 3, the computation time tremendously boosts with the 

increase in number of employees. In addition, other elements of models would also affect 

the computation time. The application with higher number of employees are not carried 

out owing to the ineffectiveness of the method used by itself. 

 

4.3. Sample Solution via Cutting-Plane Method 

 As applied in the B&B method, the same procedure is carried out to justify the 

efficiency of cutting-plane method for solving the problem using sample data. The 

intlinprog algorithm does not allow users to disable the use of B&B method, since the 

method is considered as the essential method of solving MILP problems. Thus, two 

algorithms can be applied in the solution procedure based on the solution speed that the 

software foresees beforehand. If the algorithm estimates that the use of branching would 

shorten the computation time, the algorithm can use it; otherwise, the algorithm directly 

applies cuts to the problem and yields the solution. As it can be seen in the below Figure 

4, the software applied cut generations (cutting-plane method) to solve the problem owing 

to its rapidness. 

 The below Figure 4 clearly exhibits that the solution provided by the cutting-plane 

method is identical with the solution given by the B&B method. This situation does not 

have to hold for all applications due to the fact that different methods may give different 

solutions in the case of existence of the multiple optimal solutions. For instance, multiple 

optimal solution may occur when no employees are assigned to the highest or lowest salary 
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increase category. Some applications, such as the one mentioned in the instance may have 

multiple optimal solutions in which, for example, while one of the solutions produce X1 as 

8%, the other reveals 0% for the same variable. So, different results of different solution 

methods should also be accepted and the validity of both results should be investigated 

before the application of salary increases. 

 It should also be noted that enabling cutting-plane algorithm in the code expedited 

the computation speed by decreasing it to 2.834 seconds from 3.754 seconds. The 

computation times for different cases is also provided in the below Table 4. 

Table 4: Comparison Table via Addition of Cutting-Plane Method 

Number of 

Employees 

Computation 

Time (seconds) 

Number of 

Branching Node 

10 2.834 - 

15 3.272 5 

20 3.324 2 

25 3.261 3 

30 3.011 1 

50 4.362 4 

100 37.310 8 

 

 Table 4 proves that enabling cutting-plane method in the solution procedure 

extremely decrease the computation time and provide an opportunity to users for evaluation 

of high number of employees. 

 

4.4. Sample Solution via MATLAB’s Heuristics Method 

 Designed as an assistive additional method by MATLAB, heuristics method is 

activated in addition to B&B and cutting-plane methods so as to measure its effectiveness 

on the sample problem. It should be noted that this method cannot solve an MILP by itself; 

on the contrary, heuristics method facilitates the solution procedure in some cases. 
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Figure 4: Sample Data Solution via Addition of Cutting-Plane Method 
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After activating the method and running the code for the sample data, the following results 

depicted in Figure 5 are obtained. It is apparent from the findings that this method also 

produced an identically same solution as other options. 

 The findings reveal that the same solutions with other two methods are found. The 

comparisons table of computation times with higher number of employees are given below 

in Table 5. From this table, it is apparent that heuristics option can ease solution process in 

some cases. 

Table 5: Comparison Table via Addition of Heuristics Method 

Number of 

Employees 

Computation 

Time (seconds) 

Number of 

Branching Nodes 

Number of Heuristics 

Operations 

10 2.742 - - 

15 2.816 - 1 

20 2.920 2 - 

25 3.357 2 - 

30 3.021 - 1 

50 3.959 - 1 

100 36.794 - 1 

 

4.5. Overall Commentary on Solution Methods 

 After carrying out many trial and error operations on a considerably high number 

of sample applications with sample data, it is understood that the default settings of the 

intlinprog algorithm works best in many cases. According to the default settings, B&B, 

cutting-plane, and heuristics are applied when necessities occur. However, it should not 

also be ignored that tuning these options can also help the computation time in some 

instances. By comparing computations times of three methods, it is aimed to show the most 

convenient settings for users. 

 In the MATLAB Optimization Toolbox User’s Guide [26], much more options that 

can decrease the computation time for intlinprog are explained with details. So, it is crucial 
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to realize the fact that not only the solution options influence the computation time, but 

also there are other options that can affect the solution procedure of the algorithm. 

 As the main purpose of the thesis study was to focus on proposing a one-piece 

mathematical based computer programming tool to facilitate the decision process of human 

resources departments in business world, the computation time is not really considered as 

a substantial obstacle that needs to be overcame. The attention on the study should be paid 

to the presentation of a working code that conceives an easy computerizing approach to a 

complicated mathematics based salary administration guideline. 
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Figure 5: Sample Data Solution via Addition of Heuristics Method 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1. Summary 

 This thesis study focused on a proposal of a computer based mathematical model 

that carried out requirements of a salary administration guideline to facilitate the executive 

personnel compensation decisions of HR departments. Based on the assumptions for salary 

increasing salaries of executive personnel, two existing mathematical models were both 

developed and coded in a MATLAB script for easier application in industries. 

 Starting with data collection procedure, following with computerization process, 

and concluding with a hypothetical application with several different solution methods, the 

salary administration guide is explained throughout the study. From the findings, the 

default (except for changing the RootLPAlgorithm into ‘dual-simplex) options of 

MATLAB’s intlinprog algorithm is advised as the most suitable way of application in real 

cases. 

 As this study involves assumptions that shape two mathematical models, the coding 

of MATLAB script is a special (also common) case. If a company uses some other criteria 

for evaluating their employees and these criteria are not reflected to both the models and 

the code, the proposed code becomes useless. So, additional criteria should be situated into 

mathematical formulations and then these formulations should be converted into coding in 

order to have a successful computer-based evaluation tool. 

5.2. Conclusions 

 In this study, the importance of PFP based compensation systems and the role of 

potential evaluations in promotions are explained. Two mathematical models with their 

simplifications and linearization procedures are explained in detail. A sample code that can 

be applied in many firms based on its own assumption is provided. The adaptation 

procedure of mathematical models into the MATLAB software’s solver is examined. A 

sample application is carried out by using the prepared MATLAB code. Furthermore, 

different types of solving methods and their corresponding responses were illustrated to 

mention the importance of different settings for computation effectiveness.  
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5.3. Recommendations 

 A future work on this topic can be creating an OR based mathematical model in 

order to create a better evaluation form based on specifications of companies that HR 

departments can use while evaluating employees. The OR perspective on human resources 

department has a capability of changing future of employee performance evaluations. Since 

one of the main goals of OR studies is to minimize costs and maximize profits, HR 

departments can have significant appeal in achieving this goal. 

 Another future work on improving the effectiveness of the proposed code is 

necessary. The computation time is highly related with the quality of coding. Limits of 

better quality in coding is undefined. A better code that decreases the computation time 

and yields more accurate solutions always exists in some minds. The further step of this 

study will be focused on new and innovative ways of computer programming in order to 

achieve the goal.   



53 

 

BIBLIOGRAPHY 

 

 

 

 

 

 

  



54 

 

1. Abowd, J.M., Does performance-based managerial compensation affect corporate 

 performance? Industrial & Labor Relations Review, 1990. 43(3): p. 52S-73S. 

2. Arye Bebchuk, L. and J.M. Fried, Executive compensation as an agency problem. 

The Journal of Economic Perspectives, 2003. 17(3): p. 71-92. 

3. Baker, G.P., M.C. Jensen, and K.J. Murphy, Compensation and incentives: 

Practice vs. theory. The journal of Finance, 1988. 43(3): p. 593-616. 

4. Bixby, R.E., A brief history of linear and mixed-integer programming computation. 

5. Bruno, J.E., Using linear programming salary evaluation models in collective 

bargaining negotiations with teacher unions. Socio-Economic Planning Sciences, 

1969. 3(2): p. 103-117. 

6. Cadsby, C.B., F. Song, and F. Tapon, Sorting and incentive effects of pay for 

performance: An experimental investigation. Academy of management journal, 

2007. 50(2): p. 387-405. 

7. Charnes, A., W.W. Cooper, and R.O. Ferguson, Optimal estimation of executive 

compensation by linear programming. Management science, 1955. 1(2): p. 138-

151. 

8. Deming, W.E., Out of Crisis, Centre for Advanced Engineering Study. 

Massachusetts Institute of Technology, Cambridge, MA, 1986: p. 110. 

9. Fabozzi, F.J. and A.W. Bachner, Mathematical programming models to determine 

civil service salaries. European Journal of Operational Research, 1979. 3(3): p. 

190-198. 

10. Garcia-Diaz, A., B. Flores, and R. Noce, A computer based heuristic methodology 

for the development of salary administration guidelines. Omega, 1996. 24(5): p. 

583-595. 

11. Garcia-Diaz, A. and G.L. Hogg, A mathematical programming approach to salary 

administration. Computers & Industrial Engineering, 1983. 7(1): p. 7-13. 

12. Gerhart, B., S.L. Rynes, and I.S. Fulmer, 6 pay and performance: individuals, 

groups, and executives. The Academy of Management Annals, 2009. 3(1): p. 251-

315. 

13. Gomory, R., An algorithm for the mixed integer problem. 1960, DTIC Document. 



55 

 

14. Howard, L.W. and J.L. Miller, Fair pay for fair play: Estimating pay equity in 

professional baseball with data envelopment analysis. Academy of Management 

Journal, 1993. 36(4): p. 882-894. 

15. Kwak, N., T. Allen, and M. Schniederjans, A multilevel salary compensation model 

using goal programming. Revue française d'automatique, d'informatique et de 

recherche opérationnelle. Recherche opérationnelle, 1982. 16(1): p. 21-31. 

16. Lal, R. and V. Srinivasan, Compensation plans for single-and multi-product 

salesforces: An application of the Holmstrom-Milgrom model. Management 

Science, 1993. 39(7): p. 777-793. 

17. Land, A.H. and A.G. Doig, An automatic method of solving discrete programming 

problems. Econometrica: Journal of the Econometric Society, 1960: p. 497-520. 

18. Lead-Deadwood, S. Employee Performance Evaluation. Retrieved August 28, 

2016 from https://lead-deadwood.k12.sd.us/forms/classifiedeval.pdf:[ 

19. Loeb, J.W., Hierarchical linear modeling in salary equity studies. New Directions 

for Institutional Research, 2003. 2003(117): p. 69-96. 

20. McCarl, B.A. and T.H. Spreen, Applied mathematical programming using 

algebraic systems. Cambridge, MA, 1997. 

21. Milkovich, G., Compensation, J. Newman, Editor. 2008, Irwin McGraw Hill: 

Boston. 

22. Millman, G.J. Apple’s Pay-For-Performance Plan Works There, Not Elsewhere. 

Feb 27, 2015. The Wall Street Journal. Retrieved September 8, 2016 from 

http://blogs.wsj.com/riskandcompliance/2015/02/27/apples-pay-for-performance-

formula-works-there-not-elsewhere/. 

23. Ronen, B., M.A. Palley, and H.C. Lucas Jr, Spreadsheet analysis and design. 

Communications of the ACM, 1989. 32(1): p. 84-93. 

24. Schrijver, A., Theory of linear and integer programming. 1998: John Wiley & 

Sons. 

25. Sierksma, G., Linear and integer programming: theory and practice. 2001: CRC 

Press. 

https://lead-deadwood.k12.sd.us/forms/classifiedeval.pdf:%5b
http://blogs.wsj.com/riskandcompliance/2015/02/27/apples-pay-for-performance-formula-works-there-not-elsewhere/
http://blogs.wsj.com/riskandcompliance/2015/02/27/apples-pay-for-performance-formula-works-there-not-elsewhere/


56 

 

26. The MathWorks, I., MATLAB Optimization ToolboxTM User's Guide (r2016a). 

Retrieved July 24, 2016 from  

 http://uk.mathworks.com/help/pdf_doc/optim/optim_tb.pdf. 

27. Winston, W.L. and J.B. Goldberg, Operations research: applications and 

algorithms. Vol. 3. 2004: Duxbury press Belmont, CA. 

 

 

  

http://uk.mathworks.com/help/pdf_doc/optim/optim_tb.pdf


57 

 

APPENDICES 

 

 

 

 

 

 

  



58 

 

A. Performance Measurement Guide 

Retrieved from Lead-Deadwood School District’s Website [25].  

 

                                                      EMPLOYEE PERFORMANCE EVALUATION 

      DATE: _________________ 

 NAME: __________________________  JOB LOCATION: _________________________ 

 JOB TITLE: ______________________ DATE OF LAST EVALUATION: ____________ 

 

 Please complete this form carefully and thoroughly. Remember its purpose is to: 

  Provide objective criteria for personnel performance evaluations on a standard basis  

  within your organization. 

 

  Compel you to examine all of the individual traits affecting employee performance. 

 

  Help you to support your conclusion and recommendation for job classification and  

  compensation improvements. 

 

  Produce fairer evaluations of employees. 

 PROCEDURE: 

 Pages 59 and 60 describe Fifteen personal traits identified with job success or failure.  

 Decide for each, the level at which the employee performed for this rating period. 

 Write the corresponding value number in the rating column. Add the numbers to obtain a total 

 score. 

 

 Transfer this total to the rating scale on page 61. This will indicate, and support, your overall  

 opinion of the employee's performance. 

 

 Refer back to pages 59 and 60 to comment on the employee's principal strengths and weaknesses. 

 Your comments should be consistent with your rating of individual traits. 

 

 Finally, you should describe the employee's reaction to this evaluation, if you discuss it, and  

 make your recommendation for any changes in the employee’s job classification or rate of pay. 
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Retrieved from Lead-Deadwood School District’s Website [25].  
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B. Salary Administration Problem Solution Code 

function [ ] = SalaryCombinedModels(input) 

%SALARYOPT Summary of this function goes here 

%Detailed explanation goes here 

 

%%%PART 1: EMPLOYEE-SALARY PERCENTAGE ASSIGNMENTS BASED ON PERFORMANCE 

 

 

 

%First, define number of employees and number of performance categories, i and 

m, respectively 

 

i = size(input,1); 

m = max(input(:,5)); 

 

%Compute total number of variables 

ps = 2*i + m + 2*i*m; 

 

%Define parameters 

C = input(:,1); 

R = input(:,2); 

U = input(:,3); 

L = input(:,4); 

E = input(:,5); 

P = input(:,6); 

a = zeros(m+1,1); 

a(1) = -0.05; 

a(2) = 0.20; 

a(3:end) = -0.03; 

q = 0.90; 

d = 1; 

 

%Create Column Vector 'b' which denotes right hand side of inequality 

constraints 

b = [(C - L) ; (-C  + P.*U + (1-P).*(L + q.*(U - L))) ; a; E; d-E; 

zeros(i*m,1); zeros(i*m,1); ones(i*m,1) ]; 

 

%Create Column Vector 'beq' which denotes right hand side of equality 

constraints 

beq = [R-C ; ones(i,1)]; 

 

%Create Column Vector 'lb' which denotes lower bounds for all variables 
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lb = zeros(ps,1); 

 

%Create Column Vector 'ub' which denotes upper bounds for all variables. 

%Here, 'h' and 't' represent lambda and delta, respectively. 

ubh = inf(i,1); 

ubt = inf(i,1); 

ubw = inf(i*m,1); 

ubz = ones(i*m,1); 

ubx = inf(m,1); 

ub = [ubh; ubt; ubw; ubz; ubx]; 

 

%Create Column Vector 'f' which denotes coefficients of variables in 

%objective function. Here, 'h' and 't' represent lambda and delta, 

respectively. 

fht = ones(2*i,1); 

fwzx = zeros(2*i*m+m,1); 

f = [fht; fwzx]; 

 

%Create Row Vector 'intcon' which denotes integer variables 

intcon = linspace(2*i+i*m+1,2*i+i*m+i*m,i*m); 

 

%Create Matrix 'Aeq' which denotes coefficients of variables in equality 

constraints 

%Here, 'h' and 't' represent lambda and delta, respectively. 

Aeq = zeros(i*2,ps); 

 

    %Constraint #30 

for j = 1:i 

    h = zeros(1,i); 

    r = zeros(1,i); 

    h(1,j) =  -1; 

    r(1,j) = 1; 

    W = zeros(1, i*m); 

    W(1,(j-1)*m+1:(j-1)*m+m) = C(j); 

    Z = zeros(1,i*m); 

    X =  zeros(1,m); 

    temp = [h, r, W, Z, X]; 

    Aeq(j,:)= temp; 

 

    %Constraint #31 

    h = zeros(1,i); 

    r = zeros(1,i); 

    W = zeros(1, i*m); 

    Z = zeros(1, i*m); 
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    Z(1,(j-1)*m+1:(j-1)*m+m) = 1; 

    X =  zeros(1,m); 

    temp = [h, r, W, Z, X]; 

    Aeq(j+i,:)= temp; 

end 

 

%Create Matrix 'A' which denotes coefficients of variables in inequality 

constraints 

%Here, 'h' and 't' represent lambda and delta, respectively. 

ss = i + i + m + 1 + i + i + (3*(i*m)); 

A =  zeros(ss,ps); 

 

    %Constraint #32 

for j = 1:i 

    h = zeros(1,i); 

    alpha = zeros(1,i); 

    W = zeros(1, i*m); 

    W(1,(j-1)*m+1:(j-1)*m+m) = -C(j); 

    Z = zeros(1, i*m); 

    X =  zeros(1,m); 

    temp = [h, alpha, W, Z, X]; 

    A(j,:)= temp; 

 

    %Constraint #33 

    W = zeros(1, i*m); 

    W(1,(j-1)*m+1:(j-1)*m+m) = C(j); 

    temp = [h, alpha, W, Z, X]; 

    A(j+i,:)= temp; 

end 

ind=2*j; 

row = zeros(1,ps); 

row(1,end-m+1) = -1; 

ind=ind+1; 

A(ind,:)=row; 

 

    %Constraint #34 

row = zeros(1,ps); 

row(1,end) = 1; 

ind=ind+1; 

A(ind,:)=row; 

for j = 1:m-1 

    ind = ind + 1; 

    row = zeros(1,ps); 

    row(1,end-m+j) = 1; 
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    row(1,end-m+j+1) = -1; 

    A(ind,:) = row; 

end 

 

    %Constraint #35 

for j = 1: i 

    ind = ind + 1; 

    h = zeros(1,i); 

    r = zeros(1,i); 

    W = zeros(1, i*m); 

    Z = zeros(1, i*m); 

    Z(1,(j-1)*m+1:(j-1)*m+m) = 1:m; 

    X =  zeros(1,m); 

    temp = [h, r, W, Z, X]; 

    A(ind,:)= temp; 

 

end 

    %Constraint #36 

ind = ind+1; 

A(ind:ind+i-1,:)=-1.*A(ind-i:ind-1,:); 

    %Constraint #37 

ind = ind + i; 

A(ind:ind+(i*m)-1,:)=[zeros(i*m, i), zeros(i*m,i), eye(i*m), -1*eye(i*m), 

zeros(i*m,m)]; 

    %Constraint #38 

ind = ind + (i*m); 

A(ind:ind+(i*m)-1,:)=[zeros(i*m, i), zeros(i*m,i), eye(i*m), zeros(i*m), 

repmat(-1.*eye(m),i,1)]; 

    %Constraint #39 

ind = ind + (i*m); 

A(ind:ind+(i*m)-1,:)=[zeros(i*m, i), zeros(i*m,i), -1.*eye(i*m), eye(i*m),  

repmat(1.*eye(m),i,1)]; 

 

    %Branch & Bound Solution Algorithm 

options=optimoptions('intlinprog'); 

options = 

optimoptions(@intlinprog,'OutputFcn',@savemilpsolutions,'PlotFcn',@optimplotmil

p); 

options.BranchingRule='mostfractional'; 

options.CutGeneration='none'; 

options.Heuristics='none'; 

options.RootLPAlgorithm='dual-simplex'; 

[X,FVAL,EXITFLAG,OUTPUT] = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,options); 

Zvalues = round(X(2*i+i*m+1:2*i+i*m+i*m)); 
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Xpercentages = (X((2*i+i*m+1+i*m):ps)); 

[Xtnr] = transpose(1:m); 

Xtitle = [Xtnr(:), Xpercentages(:)]; 

fprintf('   X%d      %.2f\n',Xtitle.') 

[Z1,Z2] = meshgrid(1:i,1:m); 

Ztitle = [Z1(:),Z2(:),Zvalues(:)]; 

fprintf('   Z%d%d     %d\n',Ztitle(Ztitle(:,3)~=0,:).') 

 

%%%PART 2: EMPLOYEE-INTERVAL ASSIGNMENTS BASED ON PERFORMANCE 

 

 

 

%Define parameters 

%Lower Bound for Time Intervals 

Alb = 8; 

 

%Upper Bound for Time Intervals 

Bub = 12; 

 

%Number of personnels allowed for assigning to any month 

n = 14; 

 

%Number of months since employee i has gotten the last increase 

K = input(:,7); 

 

%Define time periods, s, t, and beta, respectively. 

s = 1:12; 

alpha = Alb-K; 

beta = Bub-K; 

 

%Define Total Number of Variables 

tnv = i*max(s)+2*max(s); 

 

%Create Column Vector 'f2' which denotes coefficients of variables in 

%objective function. 

Ys = zeros(i*max(s), 1); 

sigma = ones(max(s), 1); 

omega = ones(max(s), 1); 

 

f2 = [Ys; sigma; omega]; 

%Create Column Vector 'lb2' which denotes lower bounds for all variables 

lb2 = zeros(tnv, 1); 

 

%Create Column Vector 'ub2' which denotes upper bounds for all variables 
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Yss = ones(i*max(s), 1); 

sigmaandomega = inf(2*max(s), 1); 

ub2 = [Yss; sigmaandomega]; 

 

%Create Row Vector 'intcon2' which denotes integer variables 

intcon2 = [1:i*max(s)]; 

 

%Create Matrix 'Aeq2' which denotes coefficients of variables in equality 

constraints 

Aeq2 = zeros(i*2,tnv); 

 

    %Constraint #63 

Cons2 = [repmat(eye(max(s)),1,i), -1*eye(max(s)), eye(max(s))]; 

 

    %Constraint #64 

Cons3sub = zeros(i,i*max(s)); 

for nnn = 1:i 

    Cons3sub(nnn,(nnn-1)*max(s)+1:nnn*max(s))=1; 

end 

Cons3 = [Cons3sub, zeros(i,max(s)),zeros(i,max(s))]; 

    %COnstraint #65 

si=1; 

for ii=1:m:length(Zvalues) 

    scalar(si)=[1:m]*Zvalues(ii:ii+m-1); 

    si=si+1; 

end 

 

beq2new=[]; 

Cons4=[]; 

for ii=1:i-1 

    for jj=ii+1:i 

        if scalar(ii)==scalar(jj) 

            aeq2newrow=zeros(1,i*max(s)); 

            beq2new=[beq2new; K(jj)-K(ii)]; 

            months=alpha(ii):beta(ii); 

            iis=ones(1,length(months))*ii; 

            jjs=ones(1,length(months))*jj; 

            yind=sub2ind([max(s) i],months,iis); 

            aeq2newrow(yind)=months; 

            months2=alpha(jj):beta(jj); 

            yind2=sub2ind([max(s) i],months2,jjs); 

            aeq2newrow(yind2)=-1*(months2); 

            aeq2newrow=[aeq2newrow zeros(1,max(s)) zeros(1,max(s))]; 

            Cons4=[Cons4;aeq2newrow]; 



68 

 

        end 

    end 

end 

 

    %Constraint #5 

b2cons5=[]; 

Cons5=[]; 

for ii=1:i-1 

    for jj=ii+1:i 

        if scalar(ii)>scalar(jj) 

            a2newrow=zeros(1,i*max(s)); 

            b2cons5=[b2cons5; K(jj)-K(ii)]; 

            months5=alpha(ii):beta(ii); 

            iis=ones(1,length(months5))*ii; 

            jjs=ones(1,length(months5))*jj; 

            yind3=sub2ind([max(s) i],months5,iis); 

            a2newrow(yind3)=months5; 

            months6=alpha(jj):beta(jj); 

            yind4=sub2ind([max(s) i],months6,jjs); 

            a2newrow(yind4)=-1*(months6); 

            a2newrow=[a2newrow zeros(1,max(s)) zeros(1,max(s))]; 

            Cons5=[Cons5;a2newrow]; 

        end 

    end 

end 

    %Constraint #6 

b2cons6 = []; 

Cons6 = []; 

for ii=1:i-1 

    for jj=ii++1:i 

        if scalar(ii)<scalar(jj) 

            a2cons6=zeros(1,i*max(s)); 

            b2cons6=[b2cons6; K(ii)-K(jj)]; 

            months01=alpha(ii):beta(ii); 

            iiss=ones(1,length(months01))*ii; 

            jjss=ones(1,length(months01))*jj; 

            yind5=sub2ind([max(s) i],months01,iiss); 

            a2cons6(yind5)=-1*months01; 

            months02=alpha(jj):beta(jj); 

            yind6=sub2ind([max(s) i],months02,jjss); 

            a2cons6(yind6)=months02; 

            a2cons6=[a2cons6 zeros(1,max(s)) zeros(1,max(s))]; 

            Cons6 = [Cons6;a2cons6]; 

        end 
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    end 

end 

 

si2=1; 

for iii=1:m:length(Zvalues) 

    scalar2(si2)=[1:m]*Zvalues(iii:iii+m-1); 

    si2=si2+1; 

end 

 

    %Constraint #7 

b2cons7 = []; 

a2new = []; 

const6=find(scalar2==min(scalar2)); 

for iii=1:length(const6) 

    a2newrow5=zeros(1,i*12); 

    monthss=alpha(iii):beta(iii); 

    iisss=ones(1,length(monthss))*const6(iii); 

    yind7=sub2ind([max(s) i],monthss,iisss); 

    a2newrow5(yind7)=monthss; 

    a2newrow5=[a2newrow5 zeros(1,max(s)) zeros(1,max(s))]; 

    a2new=[a2new; a2newrow5]; 

    b2cons7=[Bub-K(const6)]; 

end 

 

    %Constraint #8 

b2cons8 = []; 

a2new2 = []; 

const7=find(scalar==max(scalar)); 

for iiii=1:length(const7); 

    a2newrow9=zeros(1,i*12); 

    months=alpha(iiii):beta(iiii); 

    iiis=ones(1,length(months))*const7(iiii); 

    yind8=sub2ind([max(s) i],months,iiis); 

    a2newrow9(yind8)=months; 

    a2newrow9=[a2newrow9 zeros(1,max(s)) zeros(1,max(s))]; 

    a2new2=[a2new2; -1*a2newrow9]; 

    b2cons8=[K(const7)-Alb]; 

end 

 

%Create Column Vector 'beq2' which denotes right hand side of equality 

constraints 

nbeq = ones(max(s), 1)*n; 

beq2 = [nbeq; ones(i,1); beq2new]; 
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%Combine all matrices to create the whole 'Aeq2' matrix 

Aeq2 = [Cons2; Cons3; Cons4]; 

 

%Create 'A2' matrix 

A2 = [Cons5; Cons6; a2new; a2new2]; 

 

%Create 'b2' matrix 

b2 = [b2cons5; b2cons6; b2cons7; b2cons8]; 

options2=optimoptions('intlinprog'); 

options2.BranchingRule='mostfractional'; 

options2.CutGeneration='none'; 

options2.Heuristics='none'; 

options2.RootLPAlgorithm='primal-simplex'; 

[Y,FVAL2,EXITFLAG2,OUTPUT2] = 

intlinprog(f2,intcon2,A2,b2,Aeq2,beq2,lb2,ub2,options2); 

Yvalues = round(Y(1:i*max(s))); 

[Y1,Y2] = meshgrid(1:i,1:max(s)); 

Ytitle = [Y1(:),Y2(:),Yvalues(:)]; 

fprintf('   Y%d%d     %d\n',Ytitle(Ytitle(:,3)~=0,:).') 

Published with MATLAB® R2015b 

  

http://www.mathworks.com/products/matlab/
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