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Abstract: 
 
 
Urbanization alters watershed hydrology, which leads to degradation of physical 

and biological components of urban streams.  A part of this scenario is thought to 

be a product of increased storm water runoff due to excessive impervious 

surface.  Impervious surface runoff increases the peak discharge in urban 

streams, causing a flushing or rapid flooding effect to occur.  This flushing effect 

can overwhelm the natural pattern and profile of a stream channel, causing 

degradation of habitat and the fish population.  This study investigates 

urbanization effects on habitat structure and fish communities in a rapidly 

urbanizing watershed in East Tennessee.   

 

Field measures of habitat complexity and fish indices of biotic integrity (IBI) were 

gathered for twenty-four stream reaches in the Beaver Creek watershed, Knox 

County, Tennessee.  Habitat inventory produced 291 Channel Geomorphic Units 

(CGU) with up to 20 measurements taken in each unit.   Average width and 

depth measurements were performed on 10 different types of pools.  IBI 

sampling produced 7185 fish, yielding 21 species of 7 families in the 24 sites.  A 

combination of Pearson correlations, multiple and simple linear regression, and 

Analysis of Variance (ANOVA) means separation techniques were used to see if 

changes in measured habitat and fish metrics occurred in relation to increased 

urbanization.  Potential urbanization effects on physical habitat structure and fish 

communities were first considered at the (p< .10) significance, using the Pearson 
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correlation technique.  Multiple and linear regressions were used to explain the 

strongest relationships found for fish and habitat, to increase in urbanization (p< 

0.05).  ANOVA means separation was used to examine and validate 

relationships found using the six sub-watersheds as treatments, and the four 

reaches within each sub-watershed as replicates. 

 

Mosaics of urban land use varied from 1 to 54% in the watershed catchments.  

The statistical techniques described earlier were employed to gather 

relationships found between fish and habitat sites relative to an urbanization 

gradient.  Measures of physical habitat structure were weakly correlated with 

percent urbanization.  As percent urbanization increased, IBI scores decreased 

(p = 0.0004), and the number of darters decreased (p = 0.0041).  Sub-

watersheds significantly differed for IBI scores (p = 0.0015), and for curve 

number values (p = 0.0048).   

 

Results suggest that within the range of urbanization used for this study (1 to 

54% total urban and 1 to 18% commercial/ industrial) channel geomorphic units 

such as scour pools and riffles are not significantly altered.  However, fish 

community assemblages did show a shift towards impairment as quantified by 

the IBI.    This indicates that a stressor other than physical habitat degradation 

causes a negative effect on fish in the Beaver Creek watershed.  
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Chapter 1:  Introduction 
 
 
Urbanization alters watershed land use, and in turn causes change in watershed 

hydrology, ultimately leading to degradation in stream ecosystems (Schmidt and 

Talmage 2001; Wang et al. 2001; Walters et al. 2005; Kennen et al. 2005).  

When rain falls on rooftops and concrete it accumulates, forms runoff, and can 

quickly become water that feeds directly into streams (Lee and Heaney, 2003).  

Impervious ground cover such as concrete have a trickle down effect on water 

quality, peak flows, and ground water storage released during base flow (Leopold 

1968; Booth and Jackson 1997).  This excess water is often due to impervious 

ground cover, and it creates a flashy rise in streams and may negatively impact 

habitat and fish communities (Schmidt and Talmage 2001).  Impervious surfaces 

such as compacted soil, roads, sidewalks, and rooftops contribute the most to 

excess runoff (Arnold and Gibbons 1996).   Urban areas tend to shed excess 

runoff efficiently via storm drains that allow water to flush rapidly into adjacent 

streams.  Even relatively low levels of urbanization, in the range of 10 to 25%, 

have been found to alter hydrology, geomorphology, water quality, and stream 

communities (Booth and Jackson 1997; Paul and Meyer 2001).   

 

Approximately 90,000 miles of streams and rivers in the United States have been 

impacted by urbanization (USEPA, 2000).  In Tennessee 538,000 lake acres and 

more than 15,000 miles of our streams are listed as not supporting designated 

uses (TDEC, 2006).  Furthermore, 24% of these waters are impaired due to 
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habitat alterations, accounting for more than 4,000 miles of impairment.  The 

primary impairments include loss of biological integrity due to siltation, the 

problem of pathogens and the degradation of stream banks (TDEC, 2006b).  

Many of the causes for habitat loss occur in urban areas.  For this reason, local, 

state and federal government entities are interested in characterizing local 

impacts of urbanizing watersheds.   

 

A study has linked change in stream geomorphology and habitat structure to 

increases of urbanization (Wang et al., 2001).  In some urban streams, the key 

loss of stream habitat structure is the simplification of pool-riffle sequences, 

where it has been observed that glide habitat dominates (MacRae, 1996; 

Schwartz and Herricks 2006).  Numerous studies have successfully proven that 

stream fishes depend on a diversity of habitat structure, such as those found in 

scour pools and riffles (Wichert and Rapport, 1998; Newson and Newson, 2000).  

For this reason it is important to monitor physical habitat such as pools in 

streams adjacent to or prone to future urbanization (Scholz and Booth, 2001).   

 

Specific anthropogenic stressors causing pollution in streams are often difficult to 

tease out with observations (Kohler and Hubert 1993).  Stream fishes are 

dependent on water and of other living aquatic organisms within the stream 

allowing fish to be a reliable indicator of stream health (Karr et al. 1986).  Fish 

have the ability to live in all but the most polluted streams but have also been 
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found very sensitive to environmental stressors (Karr et al. 1986).  A better 

understanding of urban impacts to watersheds is essential if city planners and 

watershed managers are to meet the growing need for preservation and 

improvement (Arnold and Gibbons 1996).  However, the key component or 

mechanism causing degradation is not easily identifiable to watershed managers 

and investigators.   

 

Effects of urbanization on the biological integrity of watersheds have not been 

fully characterized in the southern Appalachian region.  Beaver Creek in the 

Ridge and Valley Eco-region (67) was selected for this study.  Objectives of this 

study were to address the following questions: 

1.  Is physical habitat structure found in ridge and valley streams altered by 

urbanization as a function of drainage area?  

2.  Does urbanization in this watershed alter fish assemblages? 

In general, information derived by exploring these questions should improve our 

understanding of the degradation of ecosystems in urbanized watersheds of 

ridge and valley streams in East Tennessee.   
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Chapter 2: Literature Review 
 

2.1 Watershed Management: 

In East Tennessee, degraded streams are listed on the mandated EPA 303d list 

determined by the Tennessee Department of Environment and Conservation 

(TDEC).  TDEC has stated that common sources of stream impairment are 

related to silt and sediment.  Total maximum daily loads (TMDL’s) are being 

developed to reduce and, or prevent the impact that silt and sediment have on 

stream ecosystems (TMDL, 2005).  Watershed managers can use TMDL’s to 

facilitate better decisions about 303d listed waters such as found in Beaver 

Creek watershed.  A better understanding of impacts from urban land use on 

stream systems is crucial for protection of our water resources (Choi et al., 2003; 

Walters et al., 2005).   

 

Beaver Creek and three of the tributary watersheds studied for this study are 

listed in the final version of the Tennessee 303d list (TDEC, 2005).  These 

streams are listed as category 5, for one or more uses impaired.  Causes of 

impairment for Beaver Creek watershed include habitat alteration and the loss of 

biological integrity (TDEC, 2005).  Impairment due to habitat alteration such as 

tree removal can denude a stream bank and lead to excess sediment in the 

stream channel (see Figure 1).  TDEC list streams as impaired for low biological 

integrity if they fall below a score of fair/ good.   

 



 

Figure 1. Denuded stream bank.  June 22, 2005; Site14, Hines Branch. 

 

2.2. Geographical Information Systems and Urbanization: 

An abundance of recent studies have shown degradation of fish communities as 

urbanization increased (Walters et al. 1995; Wang et al. 2000; Jennings and 

Jarnagin 2002; Angermeier et al. 2004; Kennen et al. 2005).  This degree of 

urbanization has become less complicated to determine as effective spatial 

measurement tools such as Geographic Information Systems (GIS) have 

become easier to use.  Easily accessible spatial relationships have sparked 

newfound interest in urbanization studies.  Previous studies have drawn 

information from areas as large as the entire contributing watershed to as small 

as 50 square feet from a specific point of interest (Lammert et al. 1999).  The 

majority of these studies, including one by Walters et al. (2005), have used entire 

 5



 6

catchments to measure percent urbanization.  However, a study in Wisconsin 

discovered that urban measurements taken within buffer zones significantly 

differed in contribution of urban land use (Wang et al. 2001).  McBride and Booth 

(2005) found that when measuring percent urbanization relative to a stream site 

that affects of buffered urban land did not differ for impervious surfaces.   

 

Typical urban land uses have one key component in common: they all include 

some amount of impervious surface.  Impervious surfaces have been loosely 

defined as any surface that does not allow water to infiltrate into soil (Booth and 

Jackson 1997), which typically includes rooftops, driveways, sidewalks, roads, 

and highways.  The effects of impervious surfaces on stormwater differs 

depending if it is connected directly to other impervious surface.  The degree to 

which impervious surface is connected may be referred to as its “effective 

imperviousness surface” (Booth and Jackson 1997).  Commercial and Industrial 

urban land uses have been found to contain the highest percentage of effective 

impervious surface (Booth and Jackson 1997).   

 

Pollutant loads have shown to increase as the amount of watershed impervious 

surface increases (Angermeier et al. 2004; Carle et al 2005).  Further, at least 

one study found watershed imperviousness to be the primary gauge of 

ecosystem health (Jennings and Jarnagin 2002) (see Figure 2).  A threshold of  



 

Figure 2. Construction site runoff.  April 10, 2004; Wee Williams Golf Course, 
Knoxville, TN. 
 

10 to 20 percent imperviousness has been found sufficient to alter ecosystem 

health as measured by IBI scores (Schueler 1994; Booth and Jackson 1997; 

Jennings and Jarnagin 2002).   

 

Urban effects on watersheds include increased sediment, non-point pollution, 

increased runoff temperature, and a change in hydrology.  This change in 

hydrology acts as the primary delivery mechanism for sediment, excess water, 

and chemicals that travel with runoff (Jennings and Jarnagin 2002), as shown in 

Figure 2. 
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2.3 Fish Community Change and Habitat Alterations: 

Change in physical habitat structure does not necessarily respond rapidly to 

human impact, so degraded habitat characteristics may not be found until long 

after the causal human impact has occurred.  In addition, researchers have had a 

difficult time connecting the quality of physical habitat units to land-use change.  

Scholz and Booth (2001) found that only pools are suitable for monitoring habitat 

comparisons over time.  Pools have shown some crude but consistently inverse 

correlations to human disturbance.  For this reason it is important to use a habitat 

inventory procedure that captures a lot of information about pools and pool 

formation.  Further, pool-forming properties such as woody debris are important 

for biological integrity in that wood formed pools can provide cover for fish 

(Angermeier et al., 2004).  Trees and woody debris create scour pools and act to 

provide habitat for terrestrial and aquatic insects (Angermeier et al., 2004).   

 

Trees within riparian areas along stream banks are often removed for urban 

development reasons.  This removal is one example of how urbanization can 

alter stream physical habitat structure, which in turn can impact aquatic species 

diversity.  The removal of stream-side vegetation such as trees can create a void 

in the shade canopy, enabling more sunlight to penetrate, which raises the 

temperature of the water.  This elevated temperature can change the ecological 

function of a stream system (Vannote et al. 1980).  Removal of trees can also 
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reduce the possibility for beaver dam creation that further inhibits ecological 

functions such as wetland creation. 

 

2.4 Utility of Habitat Inventory: 

The USDA forest service standard habitat inventory procedure uses the Basin 

Visual Estimation Technique (BVET) for delineating fish habitat (Hankin and 

Reeves, 1988; Overton et. al., 1997).  Delineated habitat units defined by 

channel geomorphic units (CGU) are used to characterize stream channel form 

and function.  CGU’s were developed by Hawkins et al. (1993) to better 

understand fish habitat usage, while providing a method to inventory habitat 

changes occurring from environmental impacts.  The field observer walks 

upstream while delineating units, first by either fast or slow type water.  Second, 

fast water units such as riffles, runs and glides are quickly classified, while slow 

water or pools are examined in greater detail.  Pools act to dissipate energy in a 

stream channel which is facilitated by elements of roughness found in wood, 

rock, roots, and meander bends.  For this reason the field observer looks for a 

defined drop in stream channel elevation, and then identifies the roughness 

forming structure.  Weighted measurements of each and every type of pool may 

then be compared from one stream to another stream (Hawkins et al., 1993).  

 

BVET type inventory procedures remain the most common methodology used for 

fish habitat assessment, but have limitations (Williams et al. 2004).  One of the  



 

Figure 3. Bedrock formed step-pool complex.  June 21, 2005; Site 6, Cox Creek. 
 

limitations noted by Williams et al. (2004) is that streams comprised of sand and 

gravel substrate often lack bed controlling structures (see Figure 3).  Streams  

lacking structure such as bedrock and large woody debris shift easily, not 

allowing for formation of scour units and thus comparability of pool 

measurements.  For this reason the CGU approach is not recommended in eco-

regions where streams typically lack bed control substrate such as bedrock, 

boulders, or large woody debris.  However, wood and bedrock-control structures 

that often form pools are typical of the Ridge and Valley eco-region (Etnier and 

Starnes 1993).   

 10

 
The watershed used for this study was found to be similar to other Ridge and 

Valley watersheds with abundant bedrock and large woody debris.  Replication of 
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ds, 

tion 

ay 

 are more cost-effective than chemical monitoring 

 that they may be quickly identified in the field and are less expensive to 

 more 

a facilitated by physical 

abitat quality.  Physical habitat such as rock and large woody debris act to 

  

site-specific criteria used to identify CGU’s was another concern raised by 

Williams et al. (2004).  Williams et al. (2004) found there to be a wide variation in 

opinions between field observers when looking at the same stream.  Fortun

for this study, one field observer identified all habitat units, thus reducing 

potential bias.  CGU’s commonly found during this study included variations of 

riffles, runs, pools, and glides.  Pools found were formed by meander ben

large woody debris, bedrock, boulders, rootwads, or by some combination of 

these.  Pools were measured at the deepest portion and at the shallowest por

where they crested.  An example of a pool formed by lateral meander scour m

be viewed in Figures 4 and 5. 

 

Physical habitat measurements

in

analyze in the office (Scholz and Booth 2001). Further, Scholz and Booth (2001) 

showed that physical habitat measurements can usually tell the researcher

about the potential causes of stream degradation. 

 

The health of stream fishes is dependent upon biot

h

provide structure in streams (see Figures 6).  Streams maintain a state of 

dynamic equilibrium, in part by scouring pools around these structures, which



 

Figure 4. Crest depth measurement taken at the “tail-out” portion of the thalwag. 
June 24, 2005; Site 11, Grassy Creek. 
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Figure 5. Maximum pool depth measurement taken in the thalwag.  June 24, 
2005; Site 11, Grassy Creek. 
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Figure 6. Wood-formed, mid-channel pool.  June 25, 2005; Site 20, Knob Fork. 
 

ither directly or indirectly provides refuge and ecological medium to fish and 

.5 Utility of IBI Method 

ted that may be used for assessment of urbanizing 

tic 

and 

.  The 

indicators of stream degradation.  Metrics one through four assess species  

e

other aquatic organisms (Angermeier et al. 2004).  

 

2

The IBI is a well-documen

watersheds USEPA (1999).  The IBI developed by Karr (1981) is used to 

examine fish communities.  The IBI method uses 12 metrics to assess bio

integrity (Karr 1986).  These include 6 metrics that describe species richness 

composition, 3 that relate to trophic composition, and 3 that measure fish 

abundance and condition.  Scores of 1, 3, or 5 are possible for each metric

six metrics used to describe species richness and compositions are good 
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evice stuns fish that are 
 a downstream seine net. June 22, 2005; 

 

 

tolerant fish. Metrics seven through nine assess the energy base within the 

generalized foraging that typically increase 

 degraded streams, while metrics ten through twelve measure fish abundance 

6).   

 

 

Figure 7: Depicts the use of a backpack shocker.  This d
either immediately netted or swept to
Site 11, Williams Creek. 

richness.  Metrics five and six are used to determine the presence of tolerant or

in

community food web (see Figure 7).   

 

They help identify shifts towards more 

in

and condition.  The sums of the 12 metric scores result in an overall score that 

ranges from 12 to 60 (very poor to excellent).  Metric two through five are of 

particular interest for studies related to urban impacts, as the fish that comprise 

these metrics are among the first to be decimated after perturbation (Karr 198
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gions of the country.  The State of Tennessee guidelines recognize 

, 

 

The IBI sampling method was first developed and tested in the mid-western 

United States, but has since undergone adjustments by local biologist in differing 

re

adjustments developed by the Tennessee Wildlife Resource Agency (TWRA)

the University of Tennessee (UT) and the Tennessee Valley Authority (TVA) 

(Saylor and Ahlstedt 1990).   
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Chapter 3: Methods 

 

3.1 Study Design: 

This study characterizes effects of urbanization on physical and fish habitat in an 

East Tennessee watershed.  Two study questions have been drawn: 

1.  Is physical habitat structure found in ridge and valley streams altered by 

urbanization as a function of drainage area?  

2.  Does urbanization in this watershed alter fish assemblages? 

These questions were addressed by first selecting sites that represented a range 

of urban land uses within six subwatersheds.  Fish habitat was surveyed using 

both physical and visual measurements.  Fish community measurements 

required the use of electro-shocking equipment and identification of fish species 

to establish IBI scores.   

 

Statistical power calculations were performed using a significance level of 5%.  

These showed that with an R2 of 40%, 24 sites were needed to provide a 97% 

statistical power.  An R2 of 40% was used in reference to relationships 

discovered in several similar studies (Walters et al., 1995; Schleiger, 2000; Wang 

et al., 2000; Schmidt and Talmage, 2001; Wang et al., 2001; Jennings and 

Jarnagin, 2002; Angermeier et al., 2004; Rashleigh, 2004; Kennen et al., 2005).  

The analysis established the number of sites needed for the study (see Figure 8) 

(SAS, 2004).   



Computed N Total Alpha: .05   With an R2 of .4 
 
                                         Nominal    Actual        N 
                                Index      Power     Power    Total 
 
                                    1      0.800     0.801       14 
                                    2      0.900     0.901       18 
                                    3      0.965     0.969       24  

Figure 8. Statistical Power Calculations performed using a significance level of 
5% with an R2 of 40%.  Calculations showed that 24 sites would provide 97% 
statistical power. 
 

3.2 Site Selection: 

Twenty-four stream sites were found in six sub-watersheds within the Beaver 

Creek watershed, each with a different mosaic of land use types in its 

contributing area.  Land use within Beaver Creek Watershed played a key role in 

determining suitable subwatersheds during the preliminary site selection process.  

The entire 90-mi2 Beaver Creek watershed was found to be approximately 23% 

urban.  Knowing this overall percentage allowed for visual estimation of 

contributing areas within subwatersheds so as to select sub-watersheds with 
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varying degrees of urbanization relative to the overall.  Fish and habitat inventory 

sites were selected from six sub-watersheds of Beaver Creek watershed as 

shown in Chapter 4.  Four sites within each sub-watershed were located, and 

global positioning system (GPS) points were taken (see Table 1).  Sites were 

spaced far enough apart to capture a broad range of urban effects, and were 

limited to 3rd order or smaller streams having less than 15 square miles of 

drainage area.  This size restriction was put in place to make sure that each site 

was wadeable for both habitat inventory and for backpack electro-shocking.  This 

not only simplified field work, but allowed researchers to use the same 

techniques and equipment at each site.  

 

3.3 Land Use: 

High quality 4-meter resolution aerial photography taken in August 2003 was 

used to delineate Beaver Creek land uses for this study.  A land use database 

was created using 2003 aerial photographs obtained from KGIS (Knoxville, TN) 

and was digitized by the UT Geography Department using ArcMap, GIS software 

version 9.1.  Land use delineation was performed by overlaying aerial 

photographs of Beaver Creek watershed into Arc Map, geo-rectifying the image 

as necessary, and drawing polygons to form a spatially correct layer.  The 

original layer contained over two hundred classifications for land use types.  Land 

use types were consolidated based on similarities into eleven types (see Table  

 



Table 1. GPS locations taken for each site (Trimble GPS-132). 
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2).  Five of these types were considered urban and thus used for this project (see 

Table 2).   

 

All spatial data and hydrologic analysis for drainage area to each site was 

compiled and analyzed using ArcMap 9.1 software (see Table 3).  Procedures 

were followed as listed below. 

 

1. Acquired Digital Elevation Model for Beaver Creek Watershed  

2. Acquired 2003 Land Use data layers created by the UT Geography 

Department (Dr. Carol Hardin) 

3. Acquired Tennessee Wildlife Resource Agency (TWRA) Streams of 

Tennessee layer from the state website.   

4. Imported GPS location points into ArcMap and checked to make sure they 

made sense. 

5. Performed watershed tool pre-requisites: a. filled sinks b. flow 

accumulation c. stream network d. flow direction. 

6. Activated interactive watershed tool bar in hydrology tools.   

7. Delineated each site using the watershed tool by referencing GPS points 

taken in the field. 

8. Changed the newly delineated sub-watersheds from raster files to feature 

files using spatial analyst. 
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Table 2. Consolidated land use layers designating the urban (U) and non-urban 
(NU) groups.  
 
Land Use Urban CN Description 

Residential (High Density) U 85 
Single family, high density (more than 
6/acre) Apartment/condominium complex 

Residential (Medium 
Density) U 75 Single family, medium density (2-5/acre) 

Residential (Low Density) NU 68 
Single family, low density (fewer than 
2/acre) 

Commercial U 92 

Central business district; Strip 
development; Shopping center; Service 
areas; Community complex; Water 
treatment plant; Institutional  
other; Airport; Major highway right of way 

Industrial U 88 Light industry; Heavy industry 

Disturbed/Transitional U 81 

Quarry; Disturbed area without sediment 
control structures/practices; Disturbed area 
with  
sediment control structures/practices 

Agricultural NU 79 

Cropland; Good pasture, well maintained; 
Fair pasture, uneven growth and condition 
with  
minimal maintenance; Heavily overgrazed  
pasture; Poor pasture, sparse cover, 
shallow  
soils, steep slopes, often gullies; Feedlot of  
loafing areas; Specialty crops; Hay land 

Open Land (Good) NU 69 

Golf course; Park; Medium brush (10'-20'); 
High brush (greater than 20'); Shrub and 
brush 

Woods (Thick) NU 55 Woods (Thick) 
Woods (Thin) NU 66 Woods (Thin) 
Water NU 100 Streams and canals; Detention Ponds 
 

 

 

 

 

 

 



Table 3. SCS Curve Numbers derivation (Chow et al. 1988). 

 

 

9. Opened the updated database table from each site and exported the file 

into Microsoft Excel format. 

10. Sorted and broke out urban and forested land uses associated with each 

site. 

11. Compiled all urban and forested land use totals into separate Microsoft 

Excel spreadsheets. 

 

3.4 SCS Curve Numbers: 

The Soil Conservation Service (SCS) curve numbers were used to describe 

runoff potential for all land use types associated with each fish and habitat site 

(SCS 1986).  Soils data were clipped and spatially joined for each site using 

ArcMap, GIS 9.1.  Site percentages of land use types were summarized for each 
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soil type and then multiplied by the corresponding curve number coefficient 

relative to each land use (see Tables 3 and 4).  SCS Curve number coefficients 

were weighted to account for the mix of soil groups B, C and D soil types.  Using 

spatially correct combinations of B, C and D soil groups, relative to total 

contributing area, CN values were calculated for each site (see Tables 4 and 

Figure 9). 

 

3.5 Habitat Inventory: 

A USDA Forest Service “Fish Habitat Standard Inventory Procedure” was 

performed at each site (Overton et al. 1997).  Habitat Inventory was conducted 

starting June 1, 2005 and ending July 10, 2005.  The field crew consisted of 

three individuals, including one who has been trained by the Forest Service to 

use this technique.  Stream length sampled was a minimum of 30 times the 

average stream width, or at least 150 meters.   Field equipment included a 50-

meter drag chain, a two-meter measuring rod, waders, clipboard, camera and 

other necessary items as described in the Forest Service field manual (Overton 

et al. 1997).  The field observers started at the downstream end of each site and 

proceeded up stream while dragging a fiberglass measuring chain along the 

deepest part of the channel or thalwag.  Habitat units such as pools, glides, riffles 

and runs were delineated in meters, and photographed in accordance to Forest 

Service guidelines (see Table 5).  Habitat units were also flagged to be located 

for later fish IBI surveys.   



Table 4. Weighted Curve Numbers calculated for each site 
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Weighted SCS Curve Number Values
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Figure 9. Sites sub-watershed, runoff potential values based on the SCS Curve 
Numbers.  Land use coefficients used for calculation were derived from Chow et 
al. (1988). 
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Table 5.  Stream habitat delineation criteria.  Derived from USDA Forest Service 
Habitat Inventory standard protocol (Overton et al. 1997). 
 
 
Habitat Inventory 

 
Notes: 

Habitat Units 
 
 
 
 
 
 
 
 
 
 
Habitat Unit Dimensions (m) 
 
 
 
 
 
 
 
 
Large Woody Debris (m) 
 
 
 
 
Wood Aggregates 
 
 
Root Wads 
 
 
Intact Riparian 
 
 
Riparian Trees 

Riffle: broken surface, fast water, shallow, 
usually wide, narrows into runs. 
Run: Smooth surface, fast water, trough shaped, 
not uniform in depth, changing slope, drops into 
pools. 
Pool:  Smooth surface, slow water, deep, not 
uniform in depth, up wells and tails out to glides. 
Glide:  Smooth surface, fast water, shallow, 
uniform in depth, changing slope, wide, changes 
into riffle. 
 
Length: measured along thalwag, depicting 
longitudinal distance. 
Width: average of wetted, low-flow channel 
width, one to three measurements taken. 
Depth: average water depth, low-flow channel 
depth, one to three measurements taken. 
Maximum Depth. max depth at low flow, one 
measurement taken. 
 
At least 0.1 meter in diameter, greater than 1 
meter  long.  Length, width and % of wood 
submerged were measured with a measuring 
rod. 
 
At least 2 pieces intertwined within the bankfull 
width.  Numbers of pieces were recorded. 
 
Not attached to live tree stem and within the 
bankfull width. 
 
Where as woody vegetation extended to at least 
40 feet to the side of an adjacent stream bank. 
 
Trees counted had to be at least 8 inches in 
diameter and growing immediately adjacent to 
the streambank. 
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The Forest Service habitat inventory method was originally designed to compare 

stream attributes to a reference stream condition.  A DOS based-program called 

FBASE has been developed by the USDA Forest Service to compare fish habitat 

inventory attributes (Wollrab 1999).  Key relationships found in FBASE were 

used for this project but analyzed using a Microsoft Access Database.  This 

DBASE program was created to query attributes of all variables recorded from 

each field site into a series of tables.  Variables such as length, depth, average 

depth, width/depth ratio, max depth, percent length, area, and volume were 

queried and pasted back into Excel spreadsheets.  Excel spreadsheets were 

used to weight numerical data to the relative length or area of each electro-

shocked habitat unit.  Tables used for statistical comparison may be found in 

Appendix C.  IBI data as well as raw fish data were also fit into the database.  

Fish data were queried based on various physical attributes.  All weighted and 

extracted data were then sorted, organized, and prepared for copying into 

statistical software (SAS 2004). 

 

3.6 Fish Sampling 

Fish biotic integrity surveys were conducted at each of the twenty-four sites using 

techniques based on those of the Tennessee Valley Authority (TVA, 2005) 

(Appendix A).  Site sample areas were measured to later calculate the total 

number of fish captured per site, or catch per unit effort as discussed below.  IBI 
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surveys were conducted during base stream flow months for East Tennessee, 

July 15 through August 30, 2005. 

 

IBI’s were conducted using two dipnets, a twenty-foot seine, and a Smith-Root 

LR-24, battery powered backpack electro-shocker.  This backpack electro-

shocker is unique in that it has a setup option to automatically adjust voltage, 

frequency and duty cycle based on the conductivity of the water.  The LR-24 

uses a small built-in computer to calibrate on-site how much electricity is needed 

to effectively shock and stun fish (Smith-Root, LR-24 Manual).   Conductivity and 

temperature were measured separately using an YSI unit so as to justify any 

additional tweaking of the electrical field being used (see Figures 10 and 11).  

The shock-to-seine method was used in all habitat units to stun fish into a seine 

net; fish were retrieved from the seine, identified to species and then released.  

Fish that could not be identified to species in the field were sacrificed and taken 

to the UT Ichthyology Lab, Knoxville TN. 

 

The IBI method uses 12 metrics to assess biotic integrity (see Figure 12).  The 

sum of the 12 metrics score results in a range from 12 to 60, very poor to 

excellent (see Figure 12 and Table 6).  Calculation of these scores was facilitated 

by recent technology developed by the TVA.   
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Figure 10.  Chart depicting conductivity (mS) found for each fish and habitat site.   
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Figure 11.  Chart depicting temperature (degrees C) found for each fish and 
habitat site. 
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_________________________________________________________________________________
 
 1.  Number of native species 
 
 2.  Number of native darter species or (headwater streams)** Number of riffle species 
 
 3.  Number of native sunfish species (less Micropterus sp.) or (headwater streams) Number of pool 
 species 
 
 4.  Number of native sucker species or (headwater streams) Percent composition by two most 
 dominate species 
 
 5.  Number of intolerant species or (headwater streams) Number of headwater intolerant species 
 
 6.  Percentage of fish as tolerant species 
 
 7.  Percentage of fish as omnivores and stoneroller species 
 
 8.  Percentage of fish as specialized insectivores 
 
 9.  Percentage of fish as piscivores 
 
10.  Catch rate (average number/300 Sq. Ft.  or 5 minutes of boat shocking) 
 
11.  Percentage of fish as hybrids or (headwater streams) Percentage of fish as simple lithophilic 
spawners 
 
12.  Percentage of fish with disease, tumors, fin damage, and other anomalies 
 
_________________________________________________________________________________
 
*Each is assigned a value as follows:  1-poor, 3-intermediate, 5-the best to be expected.  The IBI 
for a given site is the sum of those values. 
 
**Headwater streams include perennial streams with drainage areas of less than five to one square 
miles (Central Appalachian Ridges and Valleys, and Interior Plateau Eco-regions), <10 to one square 
miles (Blue Ridge Mountains Eco-region), or <100 to 10 square miles (Southwestern Appalachians 
Eco-region).   

Figure 12.  List of metrics used in calculating Index of Biotic Integrity* 
 

 
 

 31



 
Table 6.  Index of Biotic integrity scoring classes with attribute descriptions 
originally developed by Karr (Karr et al. 1986). 
_________________________________________________________________________________
 
    Class                                                              Attributes                                                IBI Range 
_________________________________________________________________________________
 
Excellent                     Comparable to the best situations without influence of man;          58-60 
   all regionally expected species for the habitat and stream size, 
   including the most intolerant forms, are present with full 
   array of age and sex classes; balanced trophic structure. 
 
Good   Species richness somewhat below expectation, especially due        48-52 
   to loss of most intolerant forms; some species with less than 
   optimal abundances or size distribution; trophic structure shows 
   some signs of stress. 
 
Fair   Signs of additional deterioration include fewer intolerant         40-44 
   forms, more skewed trophic structure (e.g., increasing 
   frequency of omnivores); older age classes of top 
   predators may be rare. 
 
Poor   Dominated by omnivores, pollution-tolerant forms, and                  28-34 
   habitat generalists; few top carnivores; growth rates and 
   condition factors commonly depressed; hybrids and diseased 
   fish often present. 
 
Very Poor  Few fish present, mostly introduced or tolerant forms; hybrids        12-22 
   common; disease, parasites, fin damage, and other anomalies 
   regular. 
 
No fish   Repetitive sampling fails to turn up any fish. 
 
_________________________________________________________________________________
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TVA has improved IBI scoring quality and efficiency with a computer program 

they call the Stream Survey Recording System (see Appendix A).  The Stream 

Survey Recording System version 2.02 (SSurvey) criteria were set using the 

trisection method described by Karr (1981). 

 

The SSurvey software was used in this study to produce an IBI score for each 

site (TVA 2005) (see Appendix B).  SSurvey contains up-to-date information for 

fish species and metrics.  The metric scoring criteria change at various drainage 

area size classes.  Drainage area adjustments and other programming language 

for SSurvey specifications may be found in (Appendix A). 

 

3.7 Statistical Analysis: 

A combination of correlation, multiple regression, simple regression, and ANOVA 

mean separation techniques were run with SAS for this study (SAS 2004).  The 

Pearson correlation was used to examine over 1000 numbers representing data 

collected for fish and habitat attributes.  Correlations had to show a 90% 

confidence, (p< 0.10), level to be considered for further statistical analysis.   

 

Further statistical analysis was performed by first using multiple linear 

regressions to narrow down potential relationships to fewer and more powerful 

combinations.  Combinations of independent variables often weeded out all but 

one variable, leading to a linear regression model.  Multiple and linear regression 
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models had to show 95% confidence, p< .0.05, level to be considered 

explanatory.  Likewise, multiple and linear regressions were used to explain the 

strongest relationships found between fish and habitat parameters, and percent 

urbanization.  Data such as fish abundance per 100 m2 required a log 

transformation to ensure normality.  Weaker and more general correlations were 

needed to separate differences between watersheds. 

 

Means separation was used to compare differences among watersheds because 

there were four sites located in each of six sub-watersheds.  Sub-watersheds 

were set up as treatments, with sites acting as replicates.  It is important to note 

that the sites themselves can not be considered true replicates because they are 

expected to differ in drainage area, geology, aspect, and slope.  However, it is 

commonly thought to be impossible to find two natural stream reaches that are 

exact replicates of one another.  Replication comparison was performed using 

data independent of natural variability, such as the IBI score.  Measured site 

attributes were weighted to accommodate for stream size differences and for this 

reason could be compared under the assumption of replication.  The Tukey 

means separation technique was used to determine differences for variables 

found in the six sub-watersheds.   
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Chapter 4: Study Area 

 

4.1 Watershed Overview 

Beaver Creek watershed contains ninety mile2 (233 km2) of drainage area and is 

located in the ridge and valley eco-region of East Tennessee (see Figure 13).  

Beaver Creek watershed is part of the 628 mile2 Lower Clinch River Watershed 

(TDEC, 2006b).  Beaver Creek flows southwest, meandering 48 miles through 

northwest Knox County, Tennessee, and emptying into the Clinch River about 40 

miles upstream of its confluence with the Tennessee River.  This watershed is 

currently only 23% urban (as of August 2003), but is in the process of becoming 

much more urbanized in the next few years (see Figure 14).   

Three of the tributary watersheds studied for this project are listed in the final 

version of the Tennessee 303d list (TDEC, 2005).  Hines Branch, Grassy Creek, 

and Knob Fork are listed as category 5, designated for one or more impaired 

uses.  The primary impairments include loss of biological integrity due to siltation 

and habitat loss from altered stream-side vegetation.  This alteration of stream 

habitat structure and fish community structure may be related to current and 

increasing urban land use found in Beaver Creek sub-watersheds.  For this 

reason local, state and federal government organizations are interested in a 

thorough assessment of impacts in this urbanizing watershed.   

 



 

Figure 13. Beaver Creek watershed located in north Knox County, East 
Tennessee.  Also provides a visual representation of the 23% urban land use 
(2003 data) found for the entire Beaver Creek watershed.  The 24 fish and 
habitat sites are denoted by black stars. 
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Figure 14. A visual representation of Beaver Creek watershed topography.  The 
six sub-watersheds studied are outlined in black and 24 study sites identified with 
black stars. 
 

4.2 Upper Beaver Creek Sites 

Four of twenty-four sites (sites 1 through 4) are located on the main channel of 

Beaver Creek, starting at mile 38.5.  These sites are on stream sections that may 

be characterized as low-gradient, with the land adjacent to them becoming low to 

medium density residential.  The floodplain is accessible for sites one, two, and 

four.  Both active and washed out remains of beaver dams are scattered 

throughout upper Beaver Creek.  Beaver dams acted as a natural barrier 

blocking the up stream boundary for all four sites.  Inundation of the floodplain 
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near several of the beaver dams was found near each site, indicating that 

beavers have used the low gradient and wide floodplain to their advantage.   

 

A brief summary of site measurements may be found in Table 7.  All habitat and 

riparian metrics values for each site in upper Beaver Creek may be found in 

Appendix C.  Land use composition changed for each location with respect to 

delineated drainage areas (see Figure 15 and Table 8). 

 

4.3 Cox Creek Sites: 

Four of twenty-four sites are located on Cox Creek (mile 0.05), a tributary to 

Beaver Creek.  These sites (sites 5 through 8) are on stream sections that may 

be characterized as low-gradient, with an average slope of less than 1%.  The 

floodplain was accessible for all sites in this stream.  Washed out remains of 

beaver dams but no active beaver dams were found in Cox Creek.  Cox Creek 

has been named an unofficial reference stream by the TDEC because of its 

pristine condition relative to others in this area.   

 

A brief summary of site measurements may be found in Table 7.  All habitat and 

riparian metrics values for each site in Cox Creek may be found in Appendix C.  

Land use composition changed for each location with respect to delineated 

drainage areas (see Figure 16 and Table 8). 



Table 7. Summarizes parameters for each sub-watershed. 

 

 

Table 8.  Depicts land use percentages found for the 24 fish and habitat sites. 

Site 
Stream 
Names

Contributing 
Area of Site 

(miles2)

High 
Density 
Residential

Medium 
Density 
Residential Commercial Industrial

Disturbed/ 
Transitional

Total 
Urban

1.00 Beaver 1 14.16 1.02% 9.21% 1.07% 0.26% 2.00% 13.56%
2.00 Beaver 2 9.88 1.21% 8.41% 1.17% 0.19% 2.74% 13.72%
3.00 Beaver 3 8.20 0.04% 6.38% 1.35% 0.24% 2.17% 10.18%
4.00 Beaver 4 4.93 0.00% 7.47% 2.17% 0.32% 2.48% 12.44%
5.00 Cox 1 3.68 0.68% 10.64% 0.97% 0.50% 0.35% 13.13%
6.00 Cox 2 2.75 0.04% 5.31% 0.52% 0.60% 0.38% 6.85%
7.00 Cox 3 2.20 0.05% 5.07% 0.53% 0.68% 0.47% 6.74%
8.00 Cox 4 1.59 0.00% 4.44% 0.24% 0.09% 0.00% 4.78%
9.00 Grassy 1 5.79 0.68% 5.64% 4.56% 1.80% 3.44% 16.12%
10.00 Grassy 2 5.26 0.80% 4.53% 5.38% 1.46% 3.43% 15.60%
11.00 Grassy 3 2.32 1.34% 3.28% 11.38% 2.38% 4.65% 23.03%
12.00 Grassy 4 1.84 1.68% 2.47% 14.31% 2.54% 5.70% 26.70%
13.00 Hines 1 2.33 9.39% 27.66% 3.90% 6.67% 1.08% 48.71%
14.00 Hines 2 2.17 9.87% 26.42% 4.02% 7.15% 1.16% 48.62%
15.00 Hines 3 2.09 10.27% 26.20% 3.77% 7.23% 6.85% 54.32%
16.00 Hines 4 1.65 13.02% 31.58% 2.11% 4.18% 0.52% 51.41%
17.00 Knob 1 5.89 0.20% 13.88% 4.67% 5.76% 3.16% 27.67%
18.00 Knob 2 5.65 0.21% 14.03% 4.47% 5.94% 3.20% 27.85%
19.00 Knob 3 3.31 0.15% 16.04% 2.10% 2.72% 3.68% 24.70%
20.00 Knob 4 2.84 0.18% 18.07% 1.31% 1.84% 4.26% 25.65%
21.00 Willow 1 3.71 0.06% 2.18% 0.53% 0.11% 0.58% 3.46%
22.00 Willow 2 3.30 0.00% 0.41% 0.15% 0.06% 0.30% 0.92%
23.00 Willow 3 3.20 0.00% 0.42% 0.06% 0.00% 0.31% 0.79%
24.00 Willow 4 1.25 0.00% 0.26% 0.00% 0.00% 0.00% 0.26%  
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Figure 15.  Forested and urban land use (in 2003) found for sites one through 
four in upper Beaver Creek.  Site statistics may be found in tables 7 and 8. 
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Figure 16.  Forested and urban land use (in 2003) found for sites five through 
eight in Cox Creek.  Site statistics may be found in tables 7 and 8. 
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4.4 Grassy Creek Sites: 

Four of twenty-four sites (sites 9 through 12) are located in Grassy Creek, a 

tributary to Beaver Creek, starting at mile 0.5.   

 

These sites are on stream sections that may be characterized as low-gradient, 

with an average slope of less than 0.5%.  The floodplain was accessible to the 

stream for all but one of the four sites.  Site 10 had stream banks that were highly 

incised, indicating that the stream at bankfull flow is not able to over-top and 

spread out into the floodplain.  There were no washed out remains of beaver 

dams nor active beaver dams found in Grassy Creek.  Grassy Creek has been 

listed on Tennessee’s 303d list as a category 5, not supporting due to more than 

one impaired uses.   

 

A brief summary of site measurements may be found in Table 7.  All habitat and 

riparian metrics values for each site in Grassy Creek may be found in Appendix 

C.  Land use composition changed for each location with respect to delineated 

drainage areas (see Figure 17 and Table 8). 

 

4.5 Hines Branch Sites: 

Four of twenty-four sites (sites 13 through 16) are located in Hines Branch, a 

tributary to Beaver Creek, starting at mile 0.  These sites are on stream sections 

that may be characterized as low-gradient with an average slope of less than  



 

Figure 17.  Forested and urban land use (in 2003) found for sites nine through 
twelve in Grassy Creek.  Site statistics may be found in tables 7 and 8. 
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0.5%.  The floodplain was not accessible for any of the sites measured in this 

stream.  There were no washed out remains of beaver dams nor active beaver 

dams found in Hines Branch.  Hines Branch has been listed on Tennessee’s 

303d list as a category 5, not supporting due to more than one impaired uses. 

 

A brief summary of site measurements may be found in Table 7.  All habitat and 

riparian metrics values for each site in Hines Branch may be found in Appendix 

C.  Land use composition changed for each location with respect to delineated 

drainage areas (see Figure 18 and Table 8). 

 

4.6 Knob Fork Sites: 

Four of twenty-four sites (sites 17 through 20) are located in Knob Fork, a 

tributary to Beaver Creek, starting at mile 0.4.   

 

These sites are on stream sections that may be characterized as low-gradient, 

with an average slope of less than 1%.  The floodplain was accessible for all 

sites in this stream.  There were no washed out remains of beaver dams nor 

active beaver dams found in Knob Fork. 

 

A brief summary of site measurements may be found in Table 7.  All habitat and 

riparian metrics values for each site in Knob Fork may be found in Appendix C.   

 



 

Figure 18.  Forested and urban land use (in 2003) found for sites thirteen through 
sixteen in Hines Branch.  Site statistics may be found in tables 7 and 8. 
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Land use composition changed for each location with respect to delineated 

drainage areas (see Figure 19 and Table 8). 

 

4.7 Willow Fork Sites: 

Four of twenty-four sites (sites 21 through 24) are located in Willow Fork, a 

tributary to Beaver Creek, starting at mile 1.1.  These sites are on stream 

sections that may be characterized as low-gradient with an average slope of less 

than 1%, and one site having a slope of less than 2%.  The floodplain was 

accessible for all sites in this stream.  There were no washed out remains of 

beaver dams nor active beaver dams found in Willow Fork.  Willow Fork has not 

yet been listed on the state of Tennessee’s 303d list.   

 

A brief summary of site measurements may be found in Table 7.  All habitat and 

riparian metrics values for each site in Willow Fork may be found in Appendix C.  

Land use composition changed for each location with respect to delineated 

drainage areas (see Figure 20 and Table 8). 

 

 



 

Figure 19:  Forested and urban land use (in 2003) found for sites seventeen 
through twenty in Knob Fork.  Site statistics may be found in tables 7 and 8. 
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Figure 20:  Forested and urban land use (in 2003) found for sites twenty-one 
through twenty-four in Willow Creek.  Site statistics may be found in tables 7 and 
8. 
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Chapter 5: Results 
 
5.1 Urban: 

IBI scores ranged from 28 to 50 out of a possible score range of 12 to 60.  A 

significant correlation was found between fish IBI scores and watershed 

urbanization.  Five different urban land uses were used to sum percent total 

urban land use for each of twenty four sites surveyed in Beaver Creek 

watershed.  Total urban land use explained 29% of the variability (R2 = 0.29) that 

correlated to a decline in the IBI (see Figure 21).  Using multiple and simple 

linear regression, IBI scores were further tested to see if correlations were more 

strongly related to some specific urban land use or combinations of two or more 

of the five urban land uses (see Figure 22).   

Total Urban effect on IBI
R2 = 29 %
P= .0062
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Figure 21. Simple linear regression depicting total urban land use effect on IBI 
Scores. 
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Urbanization influence on fish IBI Scores

0.15

0.09

0.34

0.40

0.31 0.29

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

HD Residential

MD Residential

Commercial
Industria

l
Disturbed

Total Urban

R2

 
 
Figure 22. R2 values found for urban land use types and P values.  Industrial 
showing the lowest P value of 0.0010 (SAS 2004). 
 

Commercial and Industrial land uses were more highly correlated to a decline in 

IBI scores.  Multiple regression relating Commercial and Industrial to IBI scores 

showed an R2 of 53% and a p < 0.0004 (see Figure 23).  Therefore, the 

combination of Industrial and Commercial urban land use was used as the 

surrogate for total percent urban land use within each watershed.  An analysis of 

variance means separation showed sites in Hines Branch to have the highest 

percent urban land use (see Appendix C). 
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Figure 23. A multiple regression depicting Commercial and Industrial land use 
effects on IBI Scores. 
 

5.2 Fish: 

In 24 sites 7185 fish were shocked and identified, yielding 21 species of 7 

families (see Table 9 and see Appendix C).  Multiple regression using Industrial 

and Commercial percentages per sub-watershed showed the highest 

significance to decline in fish IBI scores (p= 0.0004) (see Figure 23).  Families of 

darters, number of native fish, and the trophic guild of specialized insectivores 

also showed significant decline with increased percent urbanization (see 

Appendix D). 
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Table 9. Total fish collected numbered 7185 representing 21 species of 7 
families.  Introduced Species *. 
 

Scientific Name Common Name
Occurance 
Frequency

Total 
Abundance Tolerance

Trophic 
Guild

Reproductive 
Guild

Catostomidae
   Catostomus commersonii White sucker 18 225 tolerant omnivore Lithophilic
   Hypentelium nigricans Northern hog sucker 20 158 HW intol insectivore Lithophilic
Centrarchidae
   Ambloplites rupestris Rock bass 8 34 intolerant Top Carniv
   Lepomis auritus Redbreast sunfish * 19 265 n/r insectivore
   Lepomis cyanellus Green sunfish 14 78 tolerant insect
   Lepomis macrochirus Bluegill 19 340 n/r insect
   Micropterus puntulatus Spotted bass 1 2 n/r Top Carniv
   Micropterus salmoides Largemouth bass 11 52 n/r Top Carniv
Cottidae
   Cottus carolinae Banded sculpin 20 294 n/r insect
Cyprinidae
   Campostoma oligolepis Largescale stoneroller 23 1354 n/r omnivore
   Luxilus chrysocephalus Striped shiner 23 1640 tolerant omnivore Lithophilic
   Luxilus cocogenus Warpaint shiner 1 1 HW intol spec insect Lithophilic
   Lythrurus lirus Mountain shiner 8 342 HW intol spec insect Lithophilic
   Pimephales notatus Bluntnose minnow 2 9 n/r omnivore
   Rhinichthys atratulus Blacknose dace 22 1321 n/r insect Lithophilic
   Semotilus atromaculatus Creek chub 23 588 tolerant insect  
Ictaluridae
   Ameritus natalis Yellow bullhead 6 34 tolerant omnivore
Percidae
   Etheostoma blennioides Greenside darter 12 51 n/r spec insect Lithophilic
   Etheostoma flaballare Fantail darter 13 79 intolerant spec insect
   Etheostoma jessiae Blueside darter 9 39 intolerant spec insect Lithophilic
   Etheostoma simoterum Snubnose darter 16 147 n/r spec insect Lithophilic
Poeciliidae
   Gambusia affinis Western mosquitofish * 7 132 tolerant insectivore  

 

 52



 53

5.3 Habitat: 

Pearson correlation analysis between urban land use and all other variables 

showed only a few potential relationships with physical habitat (see Appendix D).  

Potential habitat relationships with urban land area included percent run length, 

average steam width, crest to max depth ratio, average riffle width, percent 

boulders and max pool depth.  Run length, average steam width, pool crest to 

pool max depth ratio, average riffle width and percent boulders decreased in 

response to increased urban land use.  To narrow down the best habitat 

indicator, multiple regressions were run comparing the five correlated values to 

percent Commercial and Industrial land use.  Pool crest to pool max depth ratio 

and average riffle width could not be used due to covariance between attributes.  

The remaining three (percent run length, average stream wetted width and 

percent boulders) showed an R2 of 36% and a p-value of 0.0285. 

Of these three, average stream wetted width (p= 0.0259) and percent boulders 

(p= 0.0038) also correlated with IBI scores (see Appendix D).   

 

Several anticipated physical habitat relationships did not correlate to either 

percent urbanization or IBI scores, including percent riffle length, pool length, 

pool average and max depth, intact riparian and percent gravel (Table 10). 

 

The number of native fish, greenside darters per 100 square meters, and percent 

specialized insectivores all showed positive correlations with average wetted 



Table 10.  Physical habitat relationships that correspond with correlations for 
both percent urbanization and IBI scores.  Also listed are several non-significant 
variables that have been found to correlate with increased urbanization. 
 

 

 

stream width.  A negative correlation was found between percent Industrial and 

Commercial urban land use and average wetted stream width.  The majority of 

these habitat variables also correlated to drainage area, indicating that many are 

related as a function of drainage area (discussed below).  The index of biotic 

integrity was scored, in part, based on drainage area and therefore showed 

correlations independent of drainage area.   

 

A multiple regression run using wood aggregates and percent boulders revealed 

a weak relationship that may connect urbanization to both fish and habitat.  

Wood aggregates and percent boulders had a direct positive correlation with IBI 

scores (p = .0038), and a direct negative correlation with percent Industrial/ 

Commercial urban land use (p = 0.0453). 
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5.4 Drainage Area: 

Drainage area showed typical effects on habitat measurements relative to the 

size of each stream.  Drainage area was not directly related to percent 

urbanization or IBI scores.  Drainage area did correlate with fish abundances 

such as number of darters, as anticipated by the developers of the IBI (Karr et al. 

1986) (see Figure 24).  

 

5.5 SCS Curve Numbers: 

Curve Number (CN) values, as described in Chapter 3, were used to test if the 

runoff potential of each sub-watershed could be linked to stream health.  CN 

values were also used because they took into account the entirety of all the land 

uses found within each sub-watershed.  The Pearson correlation analysis 

between CN values and all other variables did show some potential relationships.  

However, upon trying regression analysis the weighted CN values did not have 

enough variation in value to provide meaningful information.  A less powerful 

analysis of variance was used to see if CN values differed by watershed (SAS 

2004).  Tukey means separation showed CN values to not significantly differ for 

one individual watersheds but Cox Creek did show the lowest average CN value 

(p= 0.0048).  Cox Creek and all other sub-watersheds did differ significantly from 

upper the Beaver Creek sub-watershed (see Figure 25).  Cox Creek sub-

watershed showed an average CN value of 68.9 (see Table 11). 
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Figure 24. Drainage area influence on darter abundances.  Relationship derived 
from 24 sites of Beaver Creek watershed, July 2005.  Note: drainage areas are 
used to organize the field sites from left to right (low to high). 
 

 

 

Figure 25. CN values mean differences found using six sub-watersheds as 
treatments. 
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Table 11.  ANOVA, Tukey means separation results showing differences found 
between the six sub-watersheds. 
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Chapter 6:  Discussion 
 

Fish biological integrity was significantly affected by two measures of 

urbanization: total percent urban and percent Commercial/ Industrial.  Total 

percent urban land use explained 29% of the variability in IBI scores (p= 0.0062), 

while Industrial and Commercial urban land use explained 53% of the variability 

in IBI scores (p = 0.0004).  A threshold of approximately 10 to 15% impervious 

surface (Industrial and Commercial land use) was found to drop IBI scores into 

the poor category in Beaver Creek watershed.  This finding matched results 

found in similar studies conducted nationwide (Walters et al. 1995; Schleiger 

2000; Wang et al 2000; Schmidt and Talmage 2001; Wang et al. 2001; Jennings 

and Jarnagin 2002; Angermeier et al. 2004; Rashleigh 2004; Kennen et al. 2005; 

Snyder et al. 2005). 

 

The combination of Industrial and Commercial urban land has shown to have the 

highest amount of connected impervious surface of any other urban category 

(Booth and Jackson 1997).  Furthermore, connected imperviousness was the 

best single indicator of stream health for a study conducted in Wisconsin (Wang 

et al. 2001).  Land uses with high amounts of connected impervious surface 

showed a similar connection for the Beaver Creek watershed, in this study.  This 

means that connected impervious surfaces should be of primary interest to 

watershed managers or those involved in mitigating the effects of localized urban 

growth.   



 59

 

Connected impervious cover conversely showed the weakest relationship to 

measures of habitat structure in the same study by Wang et al. (2001).  In 

comparison, habitat structure for this study showed a weak to insignificant 

correlation for both impervious cover (Industrial and Commercial land use) and 

for total urban land use (see Appendix D). 

 

One study has shown a higher significance of urbanization effects on IBI scores 

when measured in close proximity (within 50 meters of either stream bank) to the 

stream (Wang et al. 2001).  However, this study used entire catchments for each 

site, and found a higher correlation between percent urbanization and IBI scores 

than were found by Wang et al. (2001).   

 

The strongest relationship found was with the combination of Industrial and 

Commercial urban land.  However, the percentage Industrial and Commercial did 

not exceed 18% for any of the 24 catchments used for regression analysis.  This 

left, at the very least, 82% of contributing areas out of the model.  For this reason 

weighted SCS curve numbers were calculated for each of the 24 sites and then 

compared using means separation.  Cox Creek differed significantly having the 

highest IBI scores (p= 0.0015).  Means separation also showed Cox Creek 

watershed to have the lowest CN but was not statistically different than the CN 

for Willow Creek sub-watershed.  Willow and Cox Creek sub-watersheds, 
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together, differed significantly from upper Beaver Creek sub-watershed which 

showed significantly higher weighted CN’s (p= 0.0048).  Upper Beaver Creek 

sub-watershed likely showed high CN’s due to its larger size, hence having more 

rock out-croppings and other land uses associated with D soil types. 

 

Relationships between habitat structure and urbanization were very few, and of 

the few most were only weakly correlated to either urbanization, indicating no 

significant relationships (see Table 5.2).  This lack of significant connection 

between urbanization and physical habitat matched findings in the study by 

Wang et al. (2001), but these results contradict studies that have shown 

significant change to occur to in-stream physical habitat structure with 

urbanization (Arnold and Gibbons 1996, Booth and Jackson 1997).  Further 

investigation of physical habitat structure at the sub-watershed scale showed 

Cox Creek watershed to differ for percent boulders (p= .001).  This difference 

likely occurred not as product of urbanization, but rather due to the fact that Cox 

Creek had some of the lowest percent urbanization values and the highest 

percent boulders.  This further implies that no relationship was found between 

percent urbanization and physical habitat structures.  In spite of this, fish 

communities calculated as part of the IBI and also separate from the IBI showed 

a decline in the presence of higher percent urbanization.  Fish are dependent 

upon physical habitat to thrive, but because no specific habitat altering 

component was identified, there must be some other element due to urbanization 
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that was not measured, such as sediment load, chemical runoff, from velocity or 

some other environmental stressor(s).     

 

This study showed that there is a unique and largely undefined environmental 

stressor affecting fish communities in the urbanized areas of Beaver Creek 

watershed.   This validated similar results found in other studies nationwide.  

Why urbanization only affected aquatic biota and not physical structure is likely 

due to some component of urban runoff not yet explored in the Beaver Creek 

watershed.   
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Scoring Criteria for Total Number of Native Fish Species by Ecoregion and Watershed.  Values Indicate X/Y Coordinates 
of Plots Describing the Relationship Between Maximum Expected Number of Fish Species and Drainage Area. 
 
1   Total Number of Native Species 

 
 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All <1000 Varies with drainage area  1 7 1000 35 
BR        All >1000 <12  12-23 >23 35 >1000 35
IP All <1000       Varies with drainage area 1 6 1000 68 
IP        All >1000   <23 23-45 >45 68 >1000 68
RV All <1000 Varies with drainage area  1 3 1000 63 
RV       All >1000 <21  21-42 >42 63 >1000 63  
SA All <1000       Varies with drainage area <10  Not Scored 
SA       All >1000  Not Scored 10 9 1000 38
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2   Number of Darter Species 

 
 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All 10-1000 Varies with drainage area  10 4 1000 7 
BR        All >1000 <3  3-4 >4 7
IP All 5-1000       Varies with drainage area 5 5 1000 13 
IP        All >1000   <5 5-8 >8 13
RV CP, CN, HI 5-1000 Varies with drainage area  5 4 1000 12 
RV       CP, CN, HI >1000 <4  4-8 >8 12  
RV HO 5-1000       Varies with drainage area 5 2 1000 11 
RV      HO >1000   <4 4-7.5 >7.5 11  
SA All <1000       Varies with drainage area <10  Not scored 
SA       All >1000  Not Scored 10 1 1000 11

         
2a.  Number of Riffle  
       Species 

       

BR All <10 Varies with drainage area  1 1 10 7.5 
IP        All <2 0  >0 
IP All 2-5 Varies with drainage area  2 2 5 5 
RV All <5 Varies with drainage area  1 1 5 5 
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3   Number of Sunfish Species, less Micropterus 
   

 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All          >10 <1 1 >1 2
IP All 5-10 Varies with drainage area  5 4 10 6 
IP All 10-40       Varies with drainage area 10 6 40 7 
IP        All >40   <3 3-4 >4 7
RV CN, HI 5-40       Varies with drainage area  5 3.5 40 7 
RV        CN, HI >40   <3 3-4 >4 7  
RV CP, HO 5-20       Varies with drainage area 5 2 20 4 
RV      CP, HO >20   <2 2 >2 4  
SA          All >100 <2 2 >2 4

         
3a.  Number of Pool  
       Species 

       

BR All <10 Varies with drainage area  1 3 10 11 
IP All <5 Varies with drainage area  1 2 5 14 
RV        All <2 0  >0 
RV All 2-5 Varies with drainage area  2 3 5 11 
SA All 10-100 Varies with drainage area  10 5 100 15 
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4   Number of Sucker Species 

 
 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All 10-60       <1 1 >1 2   
BR All 60-500 Varies with drainage area  60 2 500 6 
BR         All >500 <2  2-4 >4 6
IP All 5-10 Varies with drainage area  5 2 10 3 
IP         All 10-60 <2  2 >2 3
IP All 60-1000 Varies with drainage area  60 3 1000 12 
IP         All >1000 4  4-8 >8 12
RV All 5-10 Varies with drainage area  5 2 10 3 
RV       All 10-60 <2  2 >2 3  
RV All 60-1000 Varies with drainage area  60 3 1000 12 
RV        All >1000 <4  4-8 >8 12
SA All 100-1000 Varies with drainage area  100 3 1000 4 

        
4a.  Dominance        

BR All <10 Varies with drainage area  1 60 10      40    * 
IP         All <5 <60  60-80 >80 40
RV All <5 Varies with drainage area  1 70 5     50    *    
SA All 10-100 Varies with drainage area  10 50 100 40 

                                * Trisect between these points and 100% 
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5   Number of Intolerant Species 
 
 
 

Ecoregion 

 
 
 

Watershed 

  
 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All 10-50 Varies with drainage area  10 3 50 4 
BR         All >50 <2  2 >2 4
IP All 5-1000 Varies with drainage area  5 3 1000 10 
IP         All >1000 <4  4-6 >6 10
RV CN, HI, HO 5-1000 Varies with drainage area  5 3 1000 8 
RV CN, HI, HO >1000 <3 3-5 >5 8     
RV CP 5-1000 Varies with drainage area  5 3.5 1000 10 
RV         CP >1000 <4  4-6 >6 10
SA All 100-1000 Varies with drainage area  100 3 1000 6 

        
5a.  Number of   
       Headwater Intolerant 
       Species 

       

BR All <10 Varies with drainage area  1 1 10 8    
IP        All <2 0  >0 
IP All 2-5 Varies with drainage area  2 2 5 6 
RV All <5 Varies with drainage area  1 1 5 5.5 
SA All 10-100 Varies with drainage area  10 2 100 5 
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6   Percent of Individuals as Tolerant Species 

  
 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All          <5 >40 20-40 <20 60
BR All 5-400 Varies with drainage area  5 60 400 30 
BR         All >400 >20  10-20 <10 30
IP           All <5 >40 20-40 <20 60
IP All 5-400 Varies with drainage area  5 60 400 30 
IP         All >400 >20  10-20 <10 30
RV           All <5 >40 20-40 <20 60
RV All 5-400 Varies with drainage area  5 60 400 30 
RV       All >400 >20  10-20 <10 30  
SA All 10-400 Varies with drainage area  5 60 400 30 
SA         All >400 >20  10-20 <10 30
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7   Percent of Individuals as Omnivores 

  
 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All <5     >33 17-33 <17 50     
BR All 5-400 Varies with drainage area  5 50 400 25 
BR         All >400 >16  9-16 <9 25
IP           All <5 >50 25-50 <25 75
IP All 5-400 Varies with drainage area  5 75 400 30 
IP         All >400 >20  10-20 <10 30
RV           All <5 >50 25-50 <25 75
RV All 5-400 Varies with drainage area  5 75 400 30 
RV         All >400 >20  10-20 <10 30
SA All 10-400 Varies with drainage area  5 60 400 30 
SA         All >400 >20  10-20 <10 30
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8   Percent of Individuals as Specialized Insectivores 
 
 
 

Ecoregion 

 
 
 

Watershed 

  
 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All 1-10 Varies with drainage area  1 20 10 75 
BR         All >10 <25  25-50 >50 75
IP           All All <22 22-44 >44 66
RV All 1-100 Varies with drainage area  1 15 100 75 
RV         All >100 <25  25-50 >50 75
SA All 10-1000 Varies with drainage area  10 35 1000 75 
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9   Percent of Individuals as Piscivores 

  
 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All           <3 0 >0
BR All 3-10 Varies with drainage area  3 4 10 6 
BR         All >10 <2  2-4 >4 6
IP           All <3 0 >0
IP All 3-10 Varies with drainage area  3 2 10 5 
IP All 10-100 Varies with drainage area  10 5 100 6 
IP    All >100 <2  2-4 >4 6     
RV           All <3 0 >0
RV All 3-10 Varies with drainage area  3 4 10 6 
RV All >10 <2 2-4 >4 6         
SA        All <10 Not Scored 
SA         All >10 <2  2-4 >4 6
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10   Catch Rate (number of fish per 300 sq. ft.) 
  

 
 

Ecoregion 

 
 
 

Watershed 

 
 

1 

 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR All All Varies with drainage area  1 120 5000 20 
IP All All Varies with drainage area  1 200 5000 20 
RV All 1-5000 Varies with drainage area  1 200 5000 20 
RV All 5000-10000 Varies with drainage area  5000 20 10000 16 
SA All All Varies with drainage area  10 32 1000 20 
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11  Percent of Individuals as Hybrids 
 
 
 

Ecoregion 

 
 
 

Watershed 

  
 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

BR           All 10-5000 >1 Tr.-1 0
IP           All 5-5000 >1 Tr.-1 0
RV           All 5-5000 >1 Tr.-1 0
SA          All 100-1000 >1 Tr.-1 0

        
11a.  Percent Individuals   
         Lithophylic 
         Spawners 

       

BR All          <10 <20 20-40 >40 60
IP All <5 Varies with drainage area  1 45 5 70 
RV         All <5 <25  25-50 >50 75
SA        All 10-100 <23.3 23.3-46. >46.6 70
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12 Percent of Individuals with Anomalies 
 
 
 

Ecoregion 

 
 
 

Watershed 

  
 
 

1 

 
 
 

3 

 
 
 

5 

 
 
 

Max 

 
Minimum
Drainage 

Area 

Maximum
Number 

of 
Species 

 
Minimum
Drainage 

Area 

Maximum 
Number 

of 
Species 

All           All All >5 2-5 >2
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Site 1 

 
 
Site 2 
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Site 4 
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Site 7 
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Site 9 
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Site 11 
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Site 13 

 
 
Site 14 
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APPENDIX C 

 

 

 

 

 

 

 

 

 

 
 



Land Use Table: Land use was broken into seven categories with five contributing to the percentage of total 
urban, and with two contributing to the percentage of total forested land use.   
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Habitat Metrics: Shows Physical measurements taken in the field for twenty-four sites in six sub-watersheds 
of Beaver Creek drainage.   
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Habitat Metrics (continued): Shows Physical measurements taken in the field for twenty-four sites in six sub-
watersheds of Beaver Creek drainage.   
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Fish Survey Numbers:  Shows fish metrics calculated from samples taken in the field for twenty-four sites in 
six sub-watersheds of Beaver Creek drainage.  This table shows IBI Scores, SWDI Scores, and species 
abundance per 100 square meters. 
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Fish Survey Numbers (Continued): Shows fish metrics calculated from samples taken in the field for twenty-
four sites in six sub-watersheds of Beaver Creek drainage.  This table shows IBI Scores, SWDI Scores, and 
species abundance per 100 square meters. 
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APPENDIX D 

 

 

 

 

 

 

 

 

 



Pearson Correlations used to find relationships for further statistical analysis.  R values shown for values with P<.10; boxed values for P<.05 and 
for bolded values = P<.0001 
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Fish Abundance and Diversity  Urban Indicators Habitat Characteristics and Landscape Influences
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IBI Scores 1.00
fish / m2  1.00
native fish 0.62 0.35 1.00
anomolies   1.00
Fantail dar/ 100m2 0.59 0.40 0.41  1.00
Blueside/ 100m2  0.55 0.62   1.00
Greenside/ 100m2 0.39  0.53    1.00
Snubnose/ 100m2 0.38 0.83 0.47  0.51 0.70  1.00
Mt. Shiner/ 100m2  0.70    0.43  0.43 1.00
centrarchids/ 100m2  0.65    0.37  0.43 0.93 1.00
darters/ 100m2 0.54 0.78 0.60  0.71 0.70  0.95   1.00
cyprinids/ 100m2  0.96   0.49 0.53  0.84 0.51 0.42 0.80 1.00
suckers / 100m2 0.37 0.79 0.63  0.40 0.71  0.84 0.54 0.50 0.81 0.76 1.00
sculpins/ 100m2 0.45   0.42          1.00
% Omnivores   0.43          0.42  1.00
% Specialized insect 0.55 0.59 0.72   0.70 0.47 0.58 0.78 0.72 0.60 0.44 0.63  1.00
% Top Carnivores            -0.39   1.00
S.W.D.I. 0.38  0.74   0.39 0.53   0.40     0.48 0.57 0.57 1.00
Industrial urban land -0.72  -0.44   -0.36 -0.42 -0.35   -0.44     -0.45   1.00
total urban land -0.54  -0.44    -0.46    -0.37     -0.36   0.72 1.00
drainage area   0.67   0.75 0.44 0.43 0.50 0.45 0.43  0.57   0.79  0.49   1.00
lar patch/ tot forest   -0.47 0.41  -0.47 -0.45         -0.43   0.50 0.66 -0.46 1.00
SCS CN Numbers -0.35     0.43       0.35 -0.47     0.38    1.00
% Point Bar to tot                        1.00
% riffle length       -0.51    0.73 1.00
% run length           -0.37     1.00
% pool length   0.43     -0.56 -0.57 1.00
% glide length                            1.00
avg pool depth   0.48   0.43 0.37      0.37  0.49      0.71     -0.35 1.00
avg riffle depth       0.50              0.43    0.36  0.38 1.00
average depth   0.54   0.39 0.49      0.36  0.42 0.35     0.64 -0.38     0.90 0.48 1.00
average width   0.53    0.45         0.46   -0.38  0.57      0.55 0.36 0.68 1.00
max pool depth                    0.45    0.37  -0.42     1.00
crest to max ratio   0.36    0.49            -0.47 -0.54 0.39 -0.65  -0.46  0.51  0.48 0.43 0.56 0.35 -0.43 1.00
average riffle width   0.45   0.38 0.52         0.38   -0.45 -0.35 0.56 -0.47    0.61 0.42 0.66 0.84  0.51 1.00
# of riparian trees  -0.38          -0.37           -0.39 0.63 0.63  -0.46         1.00
% of intact riparian     -0.37      -0.40                          1.00
# of wood pieces      0.39          0.45     0.57     0.39 0.67 0.36 0.44   0.45   1.00
Avg wood length    0.45         -0.36            0.45  -0.36          0.39 0.53 1.00
Avg wood diameter                                0.35   0.36  0.59 0.54 0.59 1.00
% wood submerged              -0.39                       0.36   0.51 1.00
avg wood volume      0.47          0.42     0.69      0.64 0.65 0.54 0.46  0.48 0.57   0.74 0.37   1.00
wood agg/ 100m2 0.44    0.37                                      1.00
% Boulders 0.42             0.41     -0.39    -0.45 -0.53                    1.00
% Cobble   -0.36                     -0.42      -0.37 -0.37  -0.36    0.45       0.44 1.00
% Gravel                        0.55 0.44              0.35     -0.59  1.00
% Fines   0.36   0.46  0.41     0.49 -0.41 0.45      0.41  0.46      0.46  0.35      -0.48  -0.38     -0.59 -0.47  1.00  



Pearson Correlations that show potential relationships.  R values shown for values with P<.10; boxed values for P<.05 and for bolded values = 
P<.0001.  Note that IBI Scores correlated with several fish metrics, percent industrial/ commercial land, and two physical habitat measures.  Also 
apparent is the relationships found for the individual fish metrics.  Several of these fish metrics corresponded with drainage area, urban land use, 
and average wetted stream width.  Average wetted stream width, in turn, may be the only potential connection found between physical habitat, fish 
abundance, and urbanization. 
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