
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2002

ASIC Technology Migrations: A Design Guide for First Pass ASIC Technology Migrations: A Design Guide for First Pass

Success Success

Marc Edward Royer
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Royer, Marc Edward, "ASIC Technology Migrations: A Design Guide for First Pass Success. " Master's
Thesis, University of Tennessee, 2002.
https://trace.tennessee.edu/utk_gradthes/2162

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Marc Edward Royer entitled "ASIC Technology

Migrations: A Design Guide for First Pass Success." I have examined the final electronic copy of

this thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Electrical Engineering.

Don Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Danny Newport, Gregory Peterson

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Marc Edward Royer entitled “ASIC
Technology Migrations: A design guide for first pass success“. I have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Master of Science, with a major in
Electrical Engineering.

Major Professor

Accepted for the council:

Vice Provost and
Dean of Graduate Studies

We have read this thesis and
recommend its acceptance:

Gregory Peterson

Don Bouldin

Dr. Anne Mayhew

Danny Newport

(Original Signatures are on file in the Graduate Student Services Office)

ASIC Technology Migrations:
A design guide for first pass success

A Thesis
Presented for the
Master of Science

Degree

The University of Tennessee, Knoxville

Marc Edward Royer
May 2002

ii

Dedicated to my family.

iii

Acknowledgements

I would like to thank Dr. Bouldin, Dr. Newport, and Dr. Peterson for agreeing to be on my

thesis committee and guiding the development of this thesis.

I would like to thank Erin Miller for her proof-reading effort.

I would also like to thank the original founders of ASIC International, Inc. Vig Sherrill,

Mark Goode, Nancy Hahne, and Dan Lincoln for offering me the opportunity to learn and

grow as an ASIC designer.

Last, I would like to thank my wife, Melissa, for her love and support throughout my Mas-

ters program.

iv

Abstract

This thesis presents a study of Application Specific Integrated Circuit (ASIC) technology

migrations. An overview of the design flow methodology used for completing a ASIC

design from concept to silicon is presented. The design flow is then augmented with

special considerations specifically for ASIC technology migrations. An ASIC technology

migration design example, using the special considerations, is preseted. Finally, a

summary is presented with considerations regarding future work.

v

Table of Contents

Chapter 1: Overview . 1
1.1: Introduction . 1
1.2: ASIC Migration Definition . 1
1.3: Scope of Thesis . 3

Chapter 2: Traditional ASIC Design Flow . 5
2.1: System Architecture and Planning . 5
2.2: RTL Coding and Validation . 6
2.3: Synthesis . 7
2.4: Testability . 8
2.5: Static Timing Analysis . 9
2.6: Floorplanning . 10
2.7: Layout . 11
2.8: Functional and Factory Testing . 12
2.9: Data Preparation and Physical Verification 12
2.10: Delivery to the Customer and Customer Support 13

Chapter 3: ASIC Migration Design Considerations . 14
3.1: System Architecture and Planning . 14
3.2: RTL Coding, Validation, and Netlist Translation 15

3.2.1: Verilog or VHDL RTL Netlist . 15
3.2.2: Verilog, VHDL, or EDIF Gatelevel Netlist 16
3.2.3: Other Gatelevel Netlist . 17
3.2.4: Other Considerations . 18

3.3: Synthesis Logic Optimization . 19
3.4: Testability . 20
3.5: Static Timing Analysis . 22
3.6: Physical Design: Floorplanning and Layout 27
3.7: Post-Layout Analysis and Data Preparation 29

Chapter 4: A Migration Design Example . 30
4.1: Netlist Translation . 30
4.2: Test Fixture Generation and Initial Simulation 32
4.3: Synthesis Logic Optimization . 35
4.4: Design For Test: Fault Simulation . 37
4.5: Floorplanning Preparation: Pinout and Base Array Fit 38
4.6: Pre-Layout Analysis . 38
4.7: Layout . 39
4.8: Post-Layout Analysis . 40
4.9: Release to FAB . 40

vi

4.10: Prototype Test . 40

Chapter 5: Conclusions and Future Work . 41

References . 43

Appendices . 45

Appendix A: Design Example Code . 46
A.1: 1.2um SILOS Netlist . 47
A.2: 1.2um SPICE Netlist . 50
A.3: 1.2um Initial Verilog Netlist With Mapped I/O 54
A.4: 1.2um to 0.8um Verilog Mapping File . 63
A.5: 1.2um Original Test Vector File . 65
A.6: 0.8um Verilog Test Fixture . 69
A.7: 0.8um Verilog Testfixture Test Vectors 71
A.8: Synthesis Logic Optimization Script . 75
A.9: 0.8um Optimized Synthesized Netlist . 75
A.10: Pin File . 76

Vita . 78

vii

List of Figures

Figure 2.1: 2-bit RTL Verilog counter. 6
Figure 2.2: 2-bit counter schematic. 8
Figure 3.1: Conversion types. 15
Figure 3.2: RTL flow.. 16
Figure 3.3: Verilog or VHDL gatelevel flow . 17
Figure 3.4: Verilog or VHDL gatelevel flow using original wrapper modules 18
Figure 3.5: Synchrouos counter schematic and waveform. . 24
Figure 3.6: Ripple counter schematic and waveform. 25
Figure 3.7: Clock spine and clock tree models. . 28
Figure 4.1: 1.2um SILOS to 0.8um Verilog netlist translation methodology 30
Figure 4.2: Schematic of P_OBS8 output buffer. . 31
Figure 4.3: Block diagram of test fixture.. 33
Figure 4.4: NRZ and DNRZ signal representation. 35

1

Chapter 1
Overview

1.1 Introduction

Application Specific Integrated Circuits (ASIC), are integrated circuits designed to

perform a specific function. An example of an ASIC would be a communications chip in

an internet router designed to route millions of internet data packets per second. An

example of an integrated circuit which is not an ASIC, would be an Intel Pentium

processor, which is a general purpose microprocessor. When ASICs are designed, they

are targeted to specific technologies, described as feature size, which is the size of a

single transistor inside the ASIC. ASICs can be classified into two categories:

programmable and non-programmable. The programmable ASIC category contains one

type of ASIC, a Field Programmable Gate Array (FPGA). There are two types of non-

programmable ASICs: masked gate array and standard cell.

This thesis contains a discussion of design methodologies and design examples for ASIC

design conversions, or ASIC technology migrations, from one type of ASIC to another.

The reasons for migrating from one technology to another as well as the many subtle

challenges involved are discussed.

1.2 ASIC Migration Definition

Semiconductor manufacturing technology changes approximately every 18 months. A

designer can expect that approximately every 18 months, the feature size of a transistor

2

will shrink by one-quarter. The current smallest feature size available is 0.13 um. As the

technology size decreases, semiconductor manufactures (otherwise known as FAB's) are

forced to close down production lines of much older technologies due to lessening

demand of chips manufactured in older, larger technologies. Although many applications

require the latest and greatest technology, there are many older system designs, still

being manufactured today, having long term future demand, which could survive

indefinitely using parts manufactured in several year-old technology. Once the FAB's

decide to cease production of an older technology the companies, which use products

from that particular FAB line, are faced with a problem. It is only a matter of time until

their current supply of ASICs run out.

Fortunately, there is a solution to this problem. The solution is an end of life (EOL) ASIC

technology migration or conversion. The purpose of an ASIC technology migration is to

take a design in an older technology and exactly replicate it, preferably as a drop in

replacement part, in a newer, smaller technology.

Fabricating a design using the latest process technology can be very expensive. The

Non-Recurring Engineering (NRE) fee to create a set of masks for an ASIC can cost over

$1M alone. The NRE fee includes all of the services required to generate a set of masks

to be delivered to the FAB. The NRE fee coupled with the fact that the number of first-

pass successful ASIC designs is very small makes the barrier of entry to an ASIC,

specifically when prototyping a product, very large.

3

Companies faced with quickly prototying a product will often use an FPGA as their ASIC

solution. Because the FPGA is programmable, it allows the designer to reprogram the

part quickly, and as many times as needed, if the design attempt fails. If after successful

prototyping, the product is released to market, companies look to reduce the cost of the

electronic components inside the product as a way to increase profit margin. One way to

increase the profit margin of the product is to convert the FPGA to an equivalent gate

mask ASIC, a cost reduction ASIC conversion. Since the design has been prototyped the

chances for first pass success are greatly increased. Additionally, although the NRE fee

is large, if the ASIC is purchased in high enough volumes, the NRE fee in addition to the

cost per chip will be lower than the cost of the FPGA in the long term.

An ASIC migration can be very simple or very complex. The complexity of the migration

depends highly on the quality and completeness of the original design database as well

as the quality of the original design. A high quality, complete database will contain

elements such as the captured design in netlist format, a complete set of test vectors, a

design specification, and a technology data book. A database missing one or more of the

above items drastically increases the complexity of the migration – as well as reduces the

chances for design success. Additionally, completely synchronous designs are rather

simple to convert, where as asynchronous designs can pose unique challenges.

1.3 Scope of Thesis

This thesis presents ASIC migration design flows applied specifically to ASIC

conversions. It details considerations one needs to take into account in order to ensure

design success. Chapter 2 contains a discussion of a traditional ASIC design

4

methodology. Chapter 3 presents detailed design methodologies for EOL and cost

reduction conversions. Chapter 4 contains a design example with the application of the

design methodologies presented in Chapter 3. Chapter 5 contains conclusions as well as

considerations of ideas for further improvement. The contribution of this thesis is to

provide a guide to first pass success for ASIC technology mirations.

5

Chapter 2
Traditional ASIC Design Flow

2.1 System Architecture and Planning

An important first step in developing an ASIC is to develop a complete specification. The

process of defining the specification may involve performing detailed analysis of the

algorithms to be implemented and performing software simulations to verify the concepts.

For example, a bit accurate software model of an image compression/decompression

ASIC may be necessary to demonstrate that the algorithms will work well in hardware

with an acceptable throughput.

After the specification for the ASIC is defined, a schedule and budget can be estimated.

A well-defined specification enables realistic goals for milestones to be established. It

also eliminates the temptation to add new features to the design once the development

process has started (“feature creep”), since the impact on the schedule can be clearly

understood. “Feature creep” is often responsible for unexpected additional development

costs and missed delivery dates. A complete specification enables effective planning to

be done resulting in better management of resources including people, computers, and

tools. It is more cost effective to take the time to develop a sound specification than to

begin the ASIC development effort prematurely.

6

2.2 RTL Coding and Validation

The implementation of a digital ASIC can begin soon after the architecture has been

defined. Based on the overall system architecture, a Register Transfer Level (RTL)

model is developed with a Hardware Description Language (HDL), such as Verilog or

VHDL. Both software languages provide the necessary constructs to model the parallel

nature of hardware systems. RTL code emulates the process of transferring data

between registers through combinational logic. Memory and other macro cells included

on the chip must also be modeled – behavioral models are provided by the macro cell

vendor. The result is a behavioral model of the entire ASIC. Figure 2.1 shows a simple

Verilog RTL example: a 2-bit positive edge triggered, positive synchronous reset counter.

The behavioral model must be validated to ensure it performs correctly. Model validation

is performed by the application of test vectors to the model. Test vectors refer to a

sequence of inputs applied to the model, for which an expected response is known. By

comparing the expected and actual response of the model, the validity of the RTL model

can be determined and corrected as needed. There are many different simulators, the

module counter(clk,reset,out);

input clk,reset;
output [1:0] out;

reg [1:0] out;

always @(posedge clk)
 if (reset)
 out <= 2’b00;
 else out <= out + 2’b01;

endmodule

Figure 2.1: 2-bit RTL Verilog counter.

7

Electronic Design Automation (EDA) software tools used to validate RTL models,

available. These include Synopsys VCS and VSS, Mentor Graphics ModelSim, Avant!

Polaris, and others.

2.3 Synthesis

After the behavioral model has been validated, logic synthesis software is used to map

the RTL code to logic gates in the targeted foundry library. The synthesizer looks for

specific constructs in the RTL code, and infers registers or combinational logic functions.

The resulting "netlist" is composed of registers, combinational logic, interconnects, and

macro cell instantiations. The synthesized netlist should be simulated using the same

test vectors used to validate the RTL. In addition, formal verification software can be

used to compare the RTL implementation to the synthesized result. Any simulation or

formal verification errors need to be resolved since this may indicate a problem with the

library of hardware components used by the synthesizer, a synthesis error, or improperly

written RTL. Additionally, it is important the synthesized design exceeds the final timing

requirements, as once the design is physically implemented additional timing delays will

be introduced due to the interconnect. It is good design practice to synthesize with

additional timing margin, 20% as a rule of thumb, as well as wire load models to ensure

that the design will be able to meet timing after place and route. There are several

synthesis EDA tools available. These include Synopsys Design Compiler as well as

Cadence’s BuildGates. Figure 2.2 shows a schematic of the synthesized 2-bit counter

used in the previous example.

8

2.4 Testability

An important part of the ASIC design process is Design For Test (DFT). After the ASIC is

fabricated at the foundry, it needs to be tested to determine if there are internal faults

inflicted during the manufacturing process. If any of these tests fail, ASICs, and at times

entire wafers, are discarded by the foundry. If the faults are not detected at the foundry,

the customer can receive defective parts. Test logic is inserted into the design to

enhance controllability and observability of internal nodes. Automatic Test Pattern

Generation (ATPG) software is then used, in conjunction with the inserted test logic, to

determine the number of faults, or fault coverage, the generated patterns can detect.

High fault coverage results in a reduced chance of receiving defective parts.

Figure 2.2: 2-bit counter schematic.

9

A design containing macro cells should have additional test logic, such as RAM Built In

Self-Test (RAMBIST) for testing of RAMs, inserted to verify the manufacturability of the

macro cells. If the design allows sufficient controllability and observability to effectively

verify the proper operation of the macro cells, additional test logic may not need to be

inserted to test them. Additionally, boundary scan logic (JTAG) should be inserted to

accommodate board level testing. Although test logic insertion has some associated

overhead, such as an increase in the overall gate count of the design as well as the use

of additional I/O resources, the benefit of reducing the risk of receiving bad silicon

outweighs the overhead. After the test logic is inserted, it is good design practice to do a

formal verification of the pre-test inserted netlist and post-test inserted netlist, with the

test logic disabled, to ensure that the insertion of the test logic did not effect the

functionality of the design.

2.5 Static Timing Analysis

Static timing analysis (STA) is used to ensure that the design meets the required timing

constraints on primary input paths, primary output paths, and register to register paths. In

a register to register transfer, although there can be many possible paths, the STA tool

finds the longest path, applying worst case parasitics, to ensure that the setup time on the

destination register is met. To ensure that the hold requirement on the destination

register is met, the STA tool finds the shortest path using best case parasitics. Setup and

hold calculations are also performed on the primary input paths. Output required time

calculations are performed on primary output paths.

10

STA can be used to check timing at various points in the design phase. It is most often

performed after synthesis (before place and route) using estimated parasitic data, and

after place and route using actual parasitic data. However, it is only critical that STA be

performed after place and route where actual parasitic data is available.

2.6 Floorplanning

Once the design has been synthesized and all of the test logic has been inserted, the

physical design process can begin. The first step in the physical design process is floor

planning. Floor planning involves partitioning the design into groupings of cells and

placement of the groups as well as macrocells contained in the design on the silicon die.

Depending upon the instance count of the design, the design may have to be partitioned

such that each of the partitions are placed and routed individually as if each partition is a

single, stand alone, design. If the instance count is small enough, the entire design can

be placed and routed without partitioning. The estimated instance count of a design is an

important item to consider when allocating resources in the design planning stage.

Larger chips, which require partitioning, require additional place and route software

licenses as well as additional place and route engineers to allow the work to be

parallelized.

Other floorplanning considerations are the creation of I/O macros and the power bussing

structure. I/O macros contain, at a minimum, the I/O pad and a flip flop. This helps to

ensure minimal skew across system interface busses. Additionally, the I/O macros could

contain other logic such as the logic to support JTAG. As feature size shrinks and die

sizes increase, an important physical design consideration is IR drop – voltage drop

11

across the die due to insufficient power. Therefore, the power bussing structure must be

well planned so that all areas of the die are provided with sufficient power.

2.7 Layout

Once the design is floor planned, place and route can begin. The library components in

the netlist are first placed then the interconnect is routed. Traditionally, once the place

and route is complete, parasitic data from the place and route tool is back-annotated into

the STA tool. If there are any timing violations, an engineering change order (ECO) will

need to be completed. To complete an ECO, the netlist and parasitics from the place and

route tool are read into a synthesis tool. Design rule violations, such as setup time

violations, capacitance violations, and transition time violations among others, are fixed.

The updated netlist from the synthesis tool is then read back into the place and route tool

(the ECO). Once the updates to the physical database from the synthesis tool are

implemented, STA is performed again – if there are still problems the entire loop is

repeated.

In deep sub-micron technologies, the amount of delay through interconnect is

approaching the amount of delay through the logic gates. Timing closure has become a

significant issue in the industry due to this. In other words, what was once a simple

process has become extremely complex. Over the past several years, layout tools have

been enhanced to provide ”timing driven layout” to help with timing closure in deep sub-

micron designs. Using timing driven layout, it is possible to eliminate having to go outside

of the place and route tool to perform an ECO loop. Timing driven layout tools have the

software engines built into them to perform both STA as well as design rule fixes. The

12

tools have the ability to fix design rule violations using buffer insertion, gate sizing, and

even logic restructuring in real time.

2.8 Functional and Factory Testing

Tests to verify the functionality of the ASIC can be written which can then be run on silicon

using the automated test equipment (ATE), or tester, at the foundry. Due to the limitations

of the speed and complexity of the ATE, often the ASIC cannot be completely functionally

tested, or even tested at speed on the ATE. A subset of functional tests, which satisfy the

ATE requirements, are chosen to be run on the ATE. However, if the tests used to

validate the RTL model pass, the STA using parasitics passes, and the formal verification

of the RTL model to the physical design database netlist compares, one can be fairly

confident of silicon success without even running functional tests on the ATE.

In addition to the scan test and RAMBIST, another factory test, which is often required, is

the IDDQ test. The IDDQ test measures the static current draw of the chip – it should be

minimal, on the order of microamps for a CMOS ASIC. A large current draw is an

indication of a short circuit inside the ASIC – a faulty part.

2.9 Data Preparation and Physical Verification

Typically, the place and route libraries only contain the top layers of the cells – poly and

the metal layers. Once the place and route database is complete, the place and route

database is merged with the base layers of the cells. After the merge, a physical design

rule check (DRC), a layout versus schematic check (LVS), and an electrical rule check

(ERC) are run. DRC is run to ensure that no physical design rules, such as metal layer

13

spacing, are violated. LVS is run to ensure that the connectivity of the physical database

matches that of the netlist, checking for shorted and open nets. ERC is run to ensure that

no electrical rules, such as charge collecting antenna violations, are violated. Once the

database has passed physical verification, it is ready for fabrication.

2.10 Delivery to the Customer and Customer Support

Once the wafer has been fabricated, each individual site on the wafer is tested. Any

faulty sites on the wafer are discarded. Sites on the wafer, which pass wafer test, are

then packaged and tested again on the ATE equipment. Upon passing all of the ATE

tests, parts are shipped to the customer. The moment of truth arrives when the customer

places the delivered part in their system, and turns the power on. If everything works fine,

the celebration can begin. However, if there is a problem, depending on the severity of

the problem, an entire re-spin encompassing performing some or all of the above steps

must be repeated. A solid ASIC specification, appropriate project planning, and careful

attention to detail at every step in the design process is the formula for first pass success.

14

Chapter 3
ASIC Migration Design Considerations

3.1 System Architecture and Planning

Since an ASIC migration deals with an already existing design, there is usually minimal if

not any system architecture design. However, there are definitely system architecture

issues as well as ASIC architecture issues which must be taken into consideration to

ensure success. The first step is to examine all of the files associated with the original

design. A complete design database consists of a captured design, test fixtures, timing

constraints, and target technology requirements. In most cases, due to varying

circumstances, there is usually something missing from the original database. Although

this does not mean that the design will not be successful, it does make the conversion

process more difficult as well as increases the risk of failure.

Figure 3.1 shows there are three categories of ASIC conversions: 1. Gate array or

standard cell to gate array or standard cell. 2. FPGA to gate array or standard cell. 3.

Gate array or standard cell to FPGA. The first two categories are the most commonly

encountered. The first type is usually due to an EOL process situation – the ASIC is

fabricated in a process which is being phased out by the FAB. The second type can be

encountered in two situations: cost reduction or performance increase. For the third type,

the only reason why a gate array or standard cell part would be converted to an FPGA is

if the original test fixtures or test vectors were missing, the original designer was unable to

be located for consultation, and there is still demand for the part but the part is being

15

discontinued by the FAB. As a result of these situations, the risk would be too great to

target a masked part. It makes much more sense to target a reconfigurable solution

where the design can be implemented, tested in the target system, and modified as

needed.

In planning for the migration, it is important to take into careful consideration the

information presented in the following sections.

3.2 RTL Coding, Validation, and Netlist Translation

The two most important items required for the migration design to begin are the design

captured in some form of netlist – either gatelevel or RTL, and Verilog or VHDL RTL test

fixtures or some format of test vectors.

3.2.1 Verilog or VHDL RTL Netlist

The ideal and simplest starting point is a Verilog or VHDL RTL netlist. In this case, the

designer should first validate the RTL code by performing a simulation using either the

Figure 3.1: Conversion types.

Gate Array
or

Standard Cell

Gate Array
or

Standard Cell

FPGA

FPGA

Original Technology

Target Technology

16

provided RTL test fixtures or test vectors to ensure that the provided RTL netlist is 100%

complete (“golden”). A simple diagram of this flow is shown in figure 3.2. If the simulation

passes, the design process can move to synthesis. Simulation failures can be attributed

to something as simple as an incorrect mapping of a logic cell in the map file or incorrect

formatting/translation of the test vectors. However, the failure could be something as

difficult to fix as incorrect timing through an asynchronous logic path. Regardless, if the

simulation fails, the cause must be determined and resolved before going any further.

3.2.2 Verilog, VHDL, or EDIF Gatelevel Netlist

Another common starting point is a Verilog, VHDL, or EDIF gatelevel netlist. This flow is

shown in Figure 3.3. A Verilog gatelevel netlist in the target technology can be generated

by one of two methods, both involve the use of a synthesis tool. If the synthesis and

simulation libraries are available for the original technology, the original design can simply

be read into the synthesis tool, linked with the original technology libraries and re-

targeted to the target libraries resulting in a gatelevel netlist written out of the tool. The

Figure 3.2: RTL flow.

RTL Netlist

RTL Test FixturesSimulator

Pass/Fail

17

original and resulting netlists should be simulated to verify functionality. Any mismatches

should be resolved before proceeding.

In the absence of the original technology synthesis libraries, RTL wrappers can be

created such that the instantiated cells in the netlist behave according to the datasheets

in the databook. This allows the simulator to resolve all module calls. This flow is shown

in Figurfe 3.4.

3.2.3 Other Gatelevel Netlist

A gatelevel netlist can be represented in many formats. The three most commonly seen

formats are Verilog, VHDL, and EDIF. The translation can be done with a synthesis tool

or netlist translation software – if the synthesis tool or netlist translation software supports

Figure 3.3: Verilog or VHDL gatelevel flow
using original technology synthesis libraries.

Synthesizer

Verilog or VHDL Gatelevel
Netlist

Verilog Gatelevel Netlist

Target Technology
Synthesis Library

Original Technology
Synthesis Library

Simulator RTL Test Fixtures

Pass/Fail

18

the input netlist format – or if all else fails, manually with a text editor. In any case, once

the netlist is in gatelevel format a functional simulation should be run to verify

functionality. Any simulation mismatches need to be resolved before proceeding further.

3.2.4 Other Considerations

Gatelevel translation of standard logic cells, combinational gates, and sequential

elements such as latches and flip-flops is rather straight forward. The challenge is in the

translation of macrocells such as random access memories (RAMs), read only memories

(ROMs), phase locked loops (PLLs), digital to analog converters (DACs), analog to digital

converters (ADCs), microprocessors, and other intellectual property (IP) blocks. One

needs to be sure that the functionality of required blocks is avaliable in the target

technology. The easiest solution is a direct replacement with the exact same

implementation in the new technology. For example, if a 32x32 2-port synchronous RAM

is used in the original technology, and if one is available in the target technology, it is

used. If one is not availabe in the target technology, the functionality of the RAM could

easily be implemented in RTL and synthesized with registers to the target technology.

Figure 3.4: Verilog or VHDL gatelevel flow using original wrapper modules

Verilog Gatelevel Netlist

 Verilog Wrapper Modules Simulator

Pass/Fail

RTL Testfixtures

19

This is an acceptable soultion only if the implementation can meet or exceed the timing

and power requirements of the original RAM. The same thing can be done with a ROM.

All other macrocells and IP blocks are not as straightforward to implement. It is important

that a direct replacement is available, as the development effort required or cost to obtain

what is needed could be considerable.

Another item which needs to be addressed is I/O selection. Proper I/O selection is

extremely important. Even if all of the core logic functions properly, if the signals cannot

get on and off of the chip as needed, the chip is rendered useless. If there are special I/O

requirements such as PCI, PECL, ECL, and LVDS one needs to be sure that these I/O

are available in the target technology library. If a particular special I/O is not available in

the target technology, one can be developed – however, it will incur an increase in cost

and development schedule. For standard I/O, such as CMOS and TTL, it is important to

match input and output driver types from the original design to the target design.

Additionally, it is as important to match output drive strengths. An output driver which is

too weak will not be able to properly drive the signal and can cause system timing

problems. An output driver which is too strong can introduce unwanted problems into the

system such as ground bounce, unneeded extra current draw meaning an increase in

power draw, and increased heat.

3.3 Synthesis Logic Optimization

Once the netlist has passed initial functional simulation, synthesis logic optimization

should be performed on the gatelevel translated netlist. Synthesis logic optimization is

performed to do optimization steps such as logic reduction and restructuring and

20

maximum transition and capacitance design rule violation fixing. Because the cells in

each process are designed differently, a logic path which is optimial in area and timing in

one technology may not be optimal in the target technology. Synthesis optimization

addresses this.

3.4 Testability

Testability is an important, and often overlooked, consideration for a migration. If the

manufactured part cannot be sufficiently tested for manufacturing defects at the FAB, the

customer cannot be guaranteed to receive parts which are tested to be free of

manufacturing defects – the customer is paying for parts which will be tested at their site,

in their system, fail, and be immediately discarded. This situation is a blatant waste of

money, which is easily preventable, in advance, through testability methods.

Depending on the system constraints and internal logic structure of the design, several

avenues of testability are available to the designer. The most ideal situation, which is

rarely encountered, is a design which is completely synchronous, is designed for test,

and has extra I/O available for scan insertion. In this case, internal scan can be easily

inserted and ATPG run to obtain manufacturing test patterns which provide sufficient fault

coverage.

Another design situation is one where there are extra I/O available for scan insertion, but

the design is not completely synchronous and is not designed for test. In this case, test

logic can be inserted to make the design testable such that internal scan can be inserted

and ATPG performed on the design to obtain sufficient fault coverage. Situations where

21

test logic may need to be inserted include: gated clocks, clocks used as data, data used

as clocks, and any other signals which have priority on sequential elements (such as

asynchronous sets and resets) but are not controllable from a primary input pin.

Another design situation is one where there are no extra I/O available for scan insertion.

In this case two approaches can be used. The functional tests used to verify the design

can be fault graded, using fault simulation software, to determine the fault coverage

provided by the functional tests. In most cases the functional tests alone will not provide

sufficient fault coverage. To increase the coverage, additional tests can be manually

written and then fault graded. However, this may not be the best approach due to the fact

that it may take many, many vectors and a considerable amount of man hours to increase

the coverage manually. Another approach would be to use a full-sequential ATPG tool. A

fulll-sequential ATPG tool can analyze the existing functional test vectors and generate

additional vectors automatically to increase coverage.

Although the full-sequential ATPG choice sounds like a silver bullet solution to the

problem, it may not prove to provide sufficient results. The algorithms used by the

software to generate the full-sequential patterns are geared towards sequential

datapaths, like those found in a microprocessor, which are extremely timing critical paths

and are therefore not good candidates for scan insertion. Because of the nature of the

logic often found in migrations (gated clocks, clocks used as data, asynchronous loops,

etc.) full-sequential ATPG may not be able to provide as high a fault coverage as one

would have hoped. In this case, pursuing full-sequential ATPG must be abandoned and

another testability methodology, like one of those discussed above, must be used.

22

3.5 Static Timing Analysis

Static timing analysis is a requirement for all new designs today no matter the target

technology. Very often with migrations, the only designs which are ever analyzed are

conversions from FPGAs and designs for which timing specifications have been provided

and are relatively synchronous. All other designs can be difficult, even impossible, to

analyze for two reasons: missing timing constraints and/or the design methodology used

to implement the original design. Missing timing constraints is self explanatory.

Older design methodologies, particularly those used throughout the 1980’s and early

1990’s, differ greatly from those used today. This is mainly due to the effects associated

with decreasing transistor feature sizes and the method used for design entry. In feature

sizes above 1um, the delay through logic gates was considerably more than the delay

through the interconnect. As the feature size continues to decrease, the delay through

the interconnect becomes much more significant, in some cases, so much so that the

delay through the interconnect can approach or even exceed the delay through a logic

gate.

In older technologies, typically the design was captured using a schematic capture tool.

Because of the nature of logic design, a particular design can be implemented several

different ways. All logically equivalent implementations perform the same logic function,

but will have different power consumptions and timing through the logic. As a result of

this, ease of design entry and timing requirements typically took priority over what is

considered today to be good design methodology practices. As a result, many older

designs contain gated clocks, clocks used as data, internally generated clocks, pulse or

23

sliver generators, and other logic implementations which are not friendly to today’s EDA

STA to enable them to easily analyze the design.

A good example is a counter. Figure 3.5 shows a waveform and schematic for a

synchronous counter. Figure 3.6 shows a waveform and schematic for a ripple counter.

It is obvious that the schematics of these two designs are different. Specifically, in the

synchronous counter, both registers are fed from the same clock. In the ripple counter,

one register is fed a clock and the clock to the second register is generated directly from

the output of the first register. The synchronous counter is comprised of six instances.

The ripple counter is comprised of three instances. In terms of ease of design entry using

a schematic editor, it is obvious that the ripple counter is more easily entered compared to

the synchronous counter. Additionally, from a power consumption point of view, because

the ripple counter consists of fewer gates, and has a lower switching activity factor (due to

the clocking structure), the ripple counter will consume slightly less power than the

synchronous counter.

The waveforms of the two counters are almost identical. However, there are subtle

differences. At 50.01ns, when the synchronous counter switches from 01 to 10, both

outputs switch at the same time. After layout, the only time difference between the most

significant bit (MSB) and least significant bit (LSB) switching will be due to clock skew,

which is usually less than 500ps. On the other hand, at 50.01ns, when the ripple counter

should switch from 01 to 10, the actual output sequence is: 01, 00, 10. This is due to the

clocking structure.

24

Figure 3.5: Synchrouos counter schematic and waveform.

25

Figure 3.6: Ripple counter schematic and waveform.

26

After layout, the time difference between the MSB and LSB switching will be due to the

clock to output propagation of the MSB flip flop in addition to the wire delay from the

output of the LSB flip flop connected to the clock pin of the MSB flip flop. This can take

greater than 1ns, which is much higher than 500ps for the synchronous counter. For a 2-

bit counter this may seem insignificant. However, each bit added to the width of the

counter increases the output stable time of the counter, which can be considerable for

large counters. A solution to this problem is to reimplement the ripple counter to be a

synchronous counter.

From a STA standpoint, a synchronous counter is much easier to analyze. It has is only

one clock which needs to be defined. The ripple counter has as many clocks to be

defined as there are bits, making it very tedious to setup the STA software. As a last

point, because of their architecture, ripple counters are prone to hold time problems.

In earlier technologies, a ripple counter implementation would be acceptable. Today, due

to the increase in path delay due to the interconnect (which increases the possibility of

hold time problems), and the steps required to set up the STA, a ripple counter

implementation is no longer acceptable.

In the event that STA can not be performed, post-layout backannotated simulation is often

used as a substitute. Although this method will not provide nearly as comprehensive an

analysis as STA, a design with no timing constraints or a design implemented in a way

that cannot be easily analyzed with a STA tool leaves no other choice in method for timing

27

verification. Using this method, the analysis is only as complete as the percentage of

logic toggled by the simulations run on the design.

3.6 Physical Design: Floorplanning and Layout

The first item to consider in physical design is I/O location and bonding. Since the usual

motivating factor behind a migration is cost reduction, it is important that the original I/O

pinout is preserved. Not preserving the pinout would result in a modification to the printed

circuit board the ASIC is mounted on, thereby incurring cost and reducing the

effectiveness of the cost reduction. Although it would seem that preserving the pinout is a

simple task, there are several matters which need to be analyzed to be sure that the

pinout can be preserved.

For larger pin designs, typically FPGAs, in array type packages, such as pin grid array

(PGA) or ball grid array (BGA) the locations of power and ground pins are usually

predetermined by the package vendor. In the case of a cost reduction migration, pin for

pin compatibility is of utmost importance. If the target package selected does not support

pin for pin compatibility, a custom substrate can be designed. However, the downside is

an increase in NRE cost as well as the additional time which must be added to the

schedule to accommodate the design and fabrication of the custom substrate. Although

pinout considerations are presented late in the design flow (because it is part of the

physical design process) pinout must be addressed early in the design flow to ensure on-

time delivery of prototypes.

28

Two other issues which need to be addressed in this stage of the design phase are

clocking and power strategy. Clocking strategy is very important. The goal of the

clocking strategy is to try to achieve a reasonable amount of clock insertion delay while

maintaining low clock skew. The clocking strategy used in the old technology may be

quite different from that which is required in the new technology. Changes to the netlist

may have to be made to accommodate this. For example, the old technology may have

used several clock driving buffers in parallel, often called a clock spine, to drive the clock

net to all of the flip flops, whereas the new technology may require a tree of clock buffers,

often called a clock tree. Figure 3.7 shows the architectural difference between a clock

spine structure and a clock tree structure. The required clock structure implementation

for the target technology is usually determined by the FAB.

A proper power strategy is important to ensure that sufficient power is available to all cells

at all times, across the entire area of the chip. Special consideration needs to be taken

into account for powering of macrocells and any other special cells. Suggestions for the

Figure 3.7: Clock spine and clock tree models.

clock
source

Clock Spine
registers

clock
buffers

Clock Tree

clock
source

clock
buffersregisters

29

minimum width, minimum spacing, and metal layers for the power mesh to power the

logic cells are usually provided by the FAB.

3.7 Post-Layout Analysis and Data Preparation

Upon completion of layout, parasitic data is provided back to the designer. Simulations

should be back-annotated with the parasitic data and run to ensure that the functionality

is still met with the timing increase in path delays due to interconnect. Additionally, if all

required information is available for STA, it should be run, back-annotated with the

parasitic data to verify that the design still meets the required timing constraints. If either

the simulations or STA fail, the appropriate modifications need to be made to the design

to fix the problem. The loop through layout and post-layout verification must be gone

through again until all timing problems, post-layout, are resolved.

Since the layout tool is only responsible for inserting interconnect consisting of metal and

vias on the top layers of the chip, the data contained in the layout tool is only

representative of the silicon layers from poly up. Therefore, once the design is verified,

post-layout, the physical data must be streamed out of the layout tool, in graphical data

stream II format (GDSII) and then merged with the full GDSII files of all of the library cells

(which contain the layers below poly and the metal pins). Final DRC and LVS is run on

the full chip GDSII file which, if clean, will be sent to the FAB for manufacturing. Any

problems which appear in the LVS and DRC runs must be resolved before releasing the

design to FAB. If any problems are found, once they are fixed, parasitic data should

again be outputout of the layout tool, and back-annotated STA and simulations should be

run to verify that the fixes did not adversely effect the timing.

30

Chapter 4
A Migration Design Example

The design example chosen was a 1.2um gate array to 0.8um gate array conversion.

The 1.2um gate array to 0.8um gate array conversion consisted of converting a 1.2um

ORBIT Semiconductor process gate array to a 0.8um Chartered process gate array. The

1.2um design was captured in a gatelevel SILOS netlist. The migration target netlist

format was a 0.8um gatelevel Verilog netlist. The original test vectors were provided.

However, no timing information was provided or was able to be obtained.

4.1 Netlist Translation

The netlist translation from 1.2um to 0.8um takes several steps. A block diagram of the

methodology is shown in Figure 4.1. The first step is to translate the netlist from 1.2um

Figure 4.1: 1.2um SILOS to 0.8um Verilog netlist translation methodology
block diagram.

SILOS to
SPICE

Translation
"sil2sp"

SPICE to
Verilog

Translation

I/O Mapping

1.2um SILOS
Netlist

0.8um Verilog
Netlist

31

SILOS format to 1.2um SPICE format. This can be done manually with a text editor, or

can be automated using either a scripting language or C. Appendix A.1 contains the

1.2um SILOS netlist. Appendix A.2 contains the 1.2um SPICE netlist. The second step

is to convert the SPICE netlist to a Verilog netlist. This can be done manually with a text

editor or commercially available netlist translation software, such as Avant! Nettran.

Once the netlist is in Verilog gatelevel format, the final step of netlist translation is to

properly translate the input and output drivers.

In ORBIT 1.2um technology the input and output drivers consist of two library cells, the

pre-driver cell and the driver cell. For example, the INBUFX3 input buffer consists of two

parts: an input protection circuit, P_IP, and the TTL input driver circuit, P_ITX3. The input

protection circuit is connected to the pad which is then connected to the input of the TTL

input driver circuit. The output of the TTL input driver circuit is then connected to the core

logic. The two cells map into a single input buffer in 0.8um, a ITX3 TTL input buffer. The

input protection circuity and the TTL input driver is contained within the ITX3 TTL input

buffer library cell.

Figure 4.2: Schematic of P_OBS8 output buffer.

VDD

GND

P

NA NB

O

32

The mapping of the output buffers is similar to that of the input buffers, but not quite as

straight forward. The OUTBUF8X cell consists of two cells, an inverter (P_I1) driving an

output buffer (P_OBS8). The schematic of the P_OBS8 cell is shown in Figure 4.2.

From the schematic in Figure 4.2, the truth table, shown in Table 4.1, for the P_OBS8

output buffer is easily obtained. Just as with the input driver cells, the pre-driver and

driver cells for the output drivers are combined into a single output driver cell. Therefore,

the proper translation of the OUTBUF8X 1.2um cell, is a ob8 cell in 0.8um. With all inputs

and outputs properly mapped, the initial translation to a 0.8um gatelevel Verilog netlist is

complete and is shown in Appendix A.3.

4.2 Test Fixture Generation and Initial Simulation

Upon completion of the initial Verilog netlist translation, the netlist must be simulated to

verify functionality to prove that the netlist was properly translated. A Verilog test fixture,

shown in Appendix A.6, was written using the 1.2um test vectors to prove the functionality

of the design. A block diagram of the test fixture is shown in Figure 4.3. The test fixture

Table 4.1: P_OBS8 output buffer truth table.

NA NB P O
1 1 1 0
0 0 1 Z
0 0 0 1
1 X 0 not allowed
X 1 0 not allowed

33

is comprised of five sections: a register and wire declaration section, an initialization

section, the for loop, the chip instantiation, and the tasks.

The register and wire declaration section is used to declare register values, which are

applied to the inputs of the structure under test, and wire values, which are connected to

the outputs of the structure under test. Each test cycle consists of input stimulus being

assigned to the registers and output response being sampled on the wires and then

compared to the expected output response.

The initialization section is used for initializing the test, performing such functions as:

reading in the back-annotation parasitic data when appropriate, setting up the filename

and structures to record waveform data for debug purposes, and loading the test vectors

from a file into an array. Appendix A.5 shows the original 1.2um test vector file. Each

vector column in the file corresponds to a pin on the design. Valid values applied to input

pins are logic 0 and logic 1. Valid expected response values are: logic 0 denoted as ‘L’,

logic 1 denoted as ‘H’, and don’t care denoted as ‘X’. Appendix A.7 shows the input

Figure 4.3: Block diagram of test fixture.

device
under test

01010011
10101101

vector array

register

index

=

comparator

34

stimulus and output expected response, read by the test fixture, on a cycle by cycle basis

– one cycle per line. The input stimulus and expected response file was created directly

from the original 1.2um test vector file using a text editor. The header and left column

were removed, all ‘H’ output values were converted to ‘1’, and all ‘L’ output values were

converted to ‘0’.

The actual testing of the chip, assigning inputs and comparing the actual response with

the expected response, is done in the for loop. Each iteration through the for loop

corresponds to a single tester cycle. The entire test consists of 244 iterations through the

for loop, which is exactly the number of tester cycles required to test the chip as well as

the number of test vectors provided. The simulation time for each iteration of the for loop

is 10,000 ns.

The chip instantiation section instantiates the design into the test fixture, making the

actual logical connections between the registers and wires declared in the test fixture and

the inputs and outputs of the device under test.

Finally, the task section consists of two tasks called by the for loop: assign_inputs and

strobe. The assign_inputs task uses the increment value of the for loop to index into the

array to assign input values from the array to the registers. All input signals, except the

clocks, REG_CLK and INP_CLK, are non-return to zero (NRZ) signals, meaning that they

only change at the beginning of the cycle. REG_CLK and INP_CLK are 15ns delayed

non-return to zero signals (DNRZ), meaning that they only change 15ns into the cycle. A

graphical representation of NRZ and DNRZ signals is shown in Figure 4.4. The strobe

35

task is executed near the very end of each test cycle. It compares the simulated

response of the device outputs with the expected response values. The expected

response values are located by the index number, provided by the for loop, into the array.

If a simulation mismatch occurs, an error message is displayed on the screen with the

following information: the mismatched signal name, the failing test vector number, the

expected value and the simulated value. Any signal mismatches can be debugged using

the waveform data.

4.3 Synthesis Logic Optimization

After the initial simulation is complete, the netlist is then processed with synthesis

software to perform logic reduction, optimization, flattening, and ungrouping. Due to the

manual logic mapping process from 1.2um to 0.8um, unused extra gates can be

introduced into the design. For example, the P_OR3 cell has an inverting and non-

inverting output. The inverting output is made by directly inverting the non-inverting

output, adding an additional gate. However, both outputs may not be used in the circuit.

If the inverting output is not used it will be removed by the optimization process.

Figure 4.4: NRZ and DNRZ signal representation.

Tester Cycle

NRZ Signal

DNZ Signal

t

d

0

36

The synthesis optimization script is shown in Appendix A.8. The final optimized netlist is

shown in Appendix A.9. Comparing the pre-optimized and optimized netlists side by side,

the most obvious difference between them is that the optimized netlist contains a single

level of hierarchy. From a size standpoint, the number of blocks contained in the pre-

optimized and optimized netlists differ considerably. The pre-optimized netlist contained

197 blocks compared to 152 blocks in the optimized netlist, a 22% reduction in area.

After the first attempt at logic optimization was complete, it was discovered that the power

on reset cell was modeled incorrectly in the synthesis library. This discovery was made

when the functional simulation of the optimized netlist failed. The problem was easy to

find, as the chip primary outputs were miscomparing, expecting a logic zero or one value,

but were simulating a logic unknown. The problem was traced back from the primary

outputs to the flip flops, which were driving a logic unknown because the flip flops were

missing the asynchronous reset pin and they had not yet been clocked. The netlist prior

to optimization contained active low asynchronous reset flip flops. The asynchronous

reset pin on all of the flip flops was directly connected to the output of the power on reset

cell. The power on reset cell provides an active low signal for approximately 10ms after

power is applied to the device, thereby eliminating the need for the target system to reset

the ASIC. Because the synthesis model of the power on reset cell was written such that

the power on reset cell was always driving an inactive value, or logic high value, the

synthesis tool replaced the asychronous reset flip flops with regular flip flops. The

synthesis model is a logical model and does not have any provision for time relationship.

Because the output of the POR cell is time dependent, it is impossible to write a model

which exactly mimics the behavior of the cell. The model was re-written such that the cell

37

always drives a logic unknown. Although this does not exactly mimic the time dependent

behavior of the POR cell, it prevents the POR cell and forward logic cone from being

optimized out of the netlist.

With the synthesis library updated, the synthesis optimization was re-run. The netlist was

then re-verified with a functional simulation and found to be correct.

4.4 Design For Test: Fault Simulation

The scope of the work on the design did not call for DFT in the form of scan insertion and

ATPG. The functional vectors, run on the tester, were used to test for manufacturing

faults. SimuCad HyperFault software was used to fault grade the functional vectors using

the optimized netlist. The functional test vectors provide 85% fault coverage. The fault

simulation log is shown in Appendix A.9.

For the majority of designs, 85% fault coverage is considered unacceptable. The usual

target number is on the order of 95% or greater. In cases where fault coverage falls

below an acceptable level, typically the customer has to sign a waiver which releases the

manufacturer of financial responsibility for shipping parts which are found not to work in

the target system due to manufacturing defects.

In this case, 85% fault coverage was acceptable because the scope of the work did not

allow for additional measures to be taken to increase fault coverage. However, if the

scope of the work did call for additional measures to be taken to increase fault coverage

scan could have been inserted and ATPG run to generate additional fault coverage or

38

additional test vectors could have been manually developed. Scan insertion and ATPG

would have been easily facilitated, physically, through the use of several of the many pins

which are not connected on the package. Attempting to increase the fault coverage by

manually developing additional vectors would be much more cumbersome and time

consuming than the coverage which could be easily achieved through scan insertion and

ATPG.

4.5 Floorplanning Preparation: Pinout and Base Array Fit

Because the design contains only combinational and sequential logic cells and no

macrocells, the only floorplanning effort required was to determine the location of the I/O

pads on the die and to be sure that the design would fit in the assigned base array. Since

the intention is that the 0.8um part is to be a drop-in replacement of the 1.2um part, the

pin locations on the 0.8um part cannot differ from the 1.2um part. The pinfile, which

shows the I/O signal pad and pin assignments, is shown in Appendix A.10. The design

easily fits in the assigned base array: the design contains 152 blocks, the base array can

accommodate up to 2100 blocks.

4.6 Pre-Layout Analysis

Before the design can be released to layout, the design must be simulated with estimated

parasitic back-annotation information. The estimated parasitic data is obtained by

processing the netlist with a delay calculator. The estimated parasitic data is calculated

using wireload models in conjunction with the area of the design. In addition to parasitic

data as an output file, the delay calculator provides a logfile which details if nets are

39

underdriven. If a net is underdriven, either the drive strength of the cell driving the net

must be increased, or a buffer must be inserted between the driving cell and the net.

After running the delay calculator on the design, the logfile was checked. No underdriven

nets were reported. Additionally, the design was simulated with the estimated parasitics.

The simulation passed and no timing violations were reported by the simulator.

If the design methodology is complete, STA would be performed at this point in the design

flow to ensure that the design is meeting timing before layout. Input setup and hold times,

output required times, and register to register setup and hold times would be checked. In

this case, the timing information was not provided. Therefore, a STA run could not be

completed. In lieu of STA, the simulator was used to verify the timing of the design. The

simulator can only check setup, hold, and width violations on registers. It cannot check

output required times. Unlike a STA tool, the simulator will only check timing on paths

which are exercised by the vectors. Therefore, it is possible that a setup or hold problem

may exist if the absolute longest or shortest paths are not exercised by the simulator.

This method of verifying the timing of the design provides nowhere near as

comprehensive an analysis as using STA. However, since the original timing information

was not available, this method was the second best choice.

4.7 Layout

Upon successful completion of the pre-layout analysis, the design was released to layout.

The design was laid out by a Flextronics Semiconductor layout engineer using the Avant!

Apollo-GA software tool. Because of the very small size of the design, the layout was

40

completed quickly with no routing congestion problems. The actual parasitic data was

then output for processing by the delay calculator.

4.8 Post-Layout Analysis

The parasitic data provided from layout was input into the delay calculator. No post-route

underdriven nets were reported. A final back-annotated simulation was run using the

back-annotation files output from the delay calculator. No timing errors were reported

and the simulation passed.

4.9 Release to FAB

Once the post-layout analysis was complete, the design was released to FAB. The parts

were fabricated and prototypes shipped back for testing on the ATE.

4.10 Prototype Test

The fabricated prototypes were tested using the original 1.2um test vector file on the ATE

and passed. The prototype parts were then shipped to the customer for in system test.

41

Chapter 5
Conclusions and Future Work

This thesis presented an overall ASIC design flow methodology, ASIC design flow

methodology considerations specifically for ASIC technology migrations, and an ASIC

technology migration design example. There are many situations which can cause

difficulty in the migration process. Detailing every example possible is out of the scope of

this thesis. However, enough information has been presented to help a person unfamiliar

with ASIC technology migrations avoid common pitfalls in the design flow which can

result in a negative impact on schedule, delivery of a defective part, or both. The

contribution of this thesis is to provide a guide to first pass success for ASIC technology

migrations.

The information presented in this thesis has been gathered through the process of

performing many ASIC technology migrations, all of which were successful. It should be

pointed out that every design which was encountered presented unique problems.

Additionally, it is expected that in the future problems not seen in prior migrations may be

encountered.

Looking forward, the ASIC design industry may be starting to follow a new trend. The

mask costs for the latest fabrication technology, 0.13um, cost as much as $1M. The cost

is significant compared to what the mask costs were for what the cutting edge process

was several years ago. Therefore, companies may be hesitant to invest the large amount

of capital required without initial proof of the concept in silicon. This can be done using a

42

very large FPGA and may or may not run at the target speed for the application. Once

the concept is proven, the design will then be targeted to a masked part, in the form of a

migration, thereby reducing the risk. The difference between this migration process and

those done to date is several fold.

The process of translating a gatelevel netlist in one technology to a gatelevel netlist in

another technology is now being termed as a migration. Because the latest FPGAs are

so large, over two million gates, and typically include various propriatarey intellectual

property blocks it is impractical to use a gatelevel netlist as a starting point for the

translation. Therefore, the starting point is the RTL code, in either Verilog or VHDL

format, and the act of the translation process is now termed a ‘re-targeting’ rather than a

migration.

Another difference between a migration and a re-target is in the initial development effort.

The initial development effort put into the FPGA is done with the intention that the part will

eventually be fabricated into a masked part. Therefore, DFT, issues relating to testing the

final masked part on the tester, and other design issues applicable for a masked part but

not for an FPGA are considered and accounted for during the FPGA development effort.

Because of this, when it is time to ‘re-target’ the ASIC, the process will require minimal

rework.

43

References

44

1. ASIC International, Inc. “Design Process” poster.

2. Marc Royer and Mark Goode, “FPGA to ASIC Migration”, ISD Magazine,
November 2001.

3. Ravi Thummarukady, “Design Methodologies for DSM ASIC Designs”, ISD
Magazine, March 1999.

4. Michael John Sebastian Smith, Application Specific Integrated Circuits, Addison
Wesley, 1997.

45

Appendices

46

Appendix A: Design Example Code

47

A.1: 1.2um SILOS Netlist

.GLOBAL VDD VSS GLOBAL_IN7

.MACRO INBUFX1 O PAD
(M1 P_IP PAD
(M2 P_IT O PAD
.EOM

.MACRO INBUFUX1 O PAD
(M1 P_IPR PAD
(M2 P_IT O PAD
.EOM

.MACRO INBUFDX1 O PAD
(M1 P_IPD PAD
(M2 P_IT O PAD
.EOM

.MACRO INBUFX3 O PAD
(M1 P_IP PAD
(M2 P_ITX3 O PAD
.EOM

.MACRO INBUFX3_D O PAD
(M1 P_IP PAD
(M2 P_IT O1 PAD
(M3 P_ID2 O2 O1
(M4 P_ID2 O3 O2
(M5 P_ID3 O4 O3
(M6 P_I3 O O4
.EOM

.MACRO OUTBUFX8 PAD IN
(M1 P_OBS8 PAD O O O
(M2 P_I3 O IN
.EOM

.MACRO AND2 O A B
(M1 P_AA2 O X A B
.EOM

.MACRO AND3 O A B C
(M1 P_AA3 O X A B C
.EOM

.MACRO AND4 O A B C D
(M1 P_AA4 O X A B C D
.EOM

.MACRO AND5 O A B C D E
(M1 P_AF5 O A B C D E
.EOM

.MACRO AND8 O A B C D E F G H
(M1 P_AF8 O A B C D E F G H
.EOM

.MACRO NAND3 O A B C
(M1 P_NA3 O A B C
.EOM

.MACRO OR3 O A B C
(M1 P_OR3 O X A B C
.EOM

.MACRO OR2 O A B
(M1 P_OR2 O X A B
.EOM

.MACRO NOR2 O A B
(M1 P_NO2 O A B
.EOM

48

.MACRO NOR3 O A B C
(M1 P_NO3 O A B C
.EOM

.MACRO DFF Q D CLK CLR SET GLOBAL_IN7
(M1 P_DPRS Q QN CLK D R SET
(M2 AND2 R CLR GLOBAL_IN7
.EOM

.MACRO CHIP OUT1 OUT2 OUT3 OUT4
+ IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN12
+ IN9 IN10 IN11 IN13 IN14 IN15

(OUT1 OUTBUFX8 OUT1 OUT1C
(OUT2 OUTBUFX8 OUT2 OUT2C
(OUT3 OUTBUFX8 OUT3 OUT3C
(OUT4 OUTBUFX8 OUT4 OUT4C

(IN1 INBUFX3 IN_IN1 IN1
(IN2 INBUFDX1 IN_IN2 IN2
(IN3 INBUFUX1 IN_IN3 IN3
(IN4 INBUFX1 IN_IN4 IN4
(IN5 INBUFX1 IN_IN5 IN5
(IN6 INBUFUX1 IN_IN6 IN6
(IN7 INBUFX1 IN_IN7 IN7
(IN8 INBUFX1 IN_IN8 IN8
(IN12 INBUFX3_D IN_IN12 IN12
(IN9 INBUFX1 IN_IN9 IN9
(IN10 INBUFX1 IN_IN10 IN10
(IN11 INBUFX1 IN_IN11 IN11
(IN13 INBUFX1 IN_IN13 IN13
(IN14 INBUFX1 IN_IN14 IN14
(IN15 INBUFX1 IN_IN15 IN15

(INV_IN7 P_I1 N_IN7 IN_IN7
(INV_IN2 P_I1 N_IN2 IN_IN2
(INV_IN3 P_I1 N_IN3 IN_IN3
(INV_IN4 P_I1 N_IN4 IN_IN4
(INV_IN5 P_I1 N_IN5 IN_IN5
(INV_IN6 P_I1 N_IN6 IN_IN6
(INV_IN8 P_I1 N_IN8 IN_IN8
(INV_IN9 P_I1 N_IN9 IN_IN9
(INV_IN10 P_I1 N_IN10 IN_IN10
(INV_IN11 P_I1 N_IN11 IN_IN11
(INV_IN13 P_I1 N_IN13 IN_IN13
(INV_IN14 P_I1 N_IN14 IN_IN14
(INV_IN15 P_I1 N_IN15 IN_IN15

$ DFF Q D CLK CLR SET GLOBAL_IN7

(C01 DFF IN5_S1 IN_IN5 IN_IN12 VDD VDD GLOBAL_IN7
(C02 DFF IN5_S2F IN5_S1 IN_IN1 VDD VDD GLOBAL_IN7
(C03 DFF LIN5F IN5_EDD IN_IN1 N_IN5_ACK VDD GLOBAL_IN7
(C030 P_I1 N_LIN5F LIN5F

(C04 DFF IN4_S1 IN_IN4 IN_IN12 VDD VDD GLOBAL_IN7
(C05 DFF IN4_S2F IN4_S1 IN_IN1 VDD VDD GLOBAL_IN7
(C06 DFF LIN4F IN4_EDD IN_IN1 N_IN4_ACK VDD GLOBAL_IN7
(C060 P_I1 N_LIN4F LIN4F

(C07 DFF IN2_S1 IN_IN2 IN_IN12 VDD VDD GLOBAL_IN7
(C08 DFF IN2_S2F IN2_S1 IN_IN1 VDD VDD GLOBAL_IN7
(C09 DFF LIN2F IN2_EDD IN_IN1 N_IN2_ACK VDD GLOBAL_IN7
(C090 P_I1 N_LIN2F LIN2F

(C10 NAND3 OUT4C IN_IN13 IN_IN14 IN_IN15

(C110 P_I1 N_IN5_S1 IN5_S1
(C111 AND2 IN5_ N_IN5_S1 IN5_S2F
(C112 OR2 IN5_EDD IN5_ LIN5F

(C120 P_I1 N_IN4_S1 IN4_S1
(C121 AND2 IN4_ N_IN4_S1 IN4_S2F
(C122 OR2 IN4_EDD IN4_ LIN4F

49

(C130 P_I1 N_IN2_S2F IN2_S2F
(C131 AND2 IN2_ IN2_S1 N_IN2_S2F
(C132 OR2 IN2_EDD IN2_ LIN2F

(C140 AND8 IN5ACK N_IN11 IN_IN13 IN_IN14 IN_IN15 IN_IN10 N_IN9 N_IN8 VDD
(C141 NOR2 N_IN5_ACK N_IN7 IN5ACK

(C150 AND8 IN4ACK N_IN11 IN_IN13 IN_IN14 IN_IN15 N_IN10 IN_IN9 IN_IN8 VDD
(C151 NOR2 N_IN4_ACK N_IN7 IN4ACK

(C160 AND8 IN2ACK N_IN11 IN_IN13 IN_IN14 IN_IN15 IN_IN10 N_IN9 IN_IN8 VDD
(C161 NOR2 N_IN2_ACK N_IN7 IN2ACK

(C170 AND5 OUT1C1 N_LIN2F N_LIN5F N_LIN4F IN_IN3 N_IN6
(C171 AND3 OUT1C2 N_LIN2F N_LIN5F LIN4F
(C172 NOR3 OUT1C LIN2F OUT1C1 OUT1C2

(C180 AND4 OUT2C1 N_LIN2F N_LIN5F N_LIN4F N_IN3
(C181 AND3 OUT2C2 N_LIN2F N_LIN5F LIN4F
(C182 NOR2 OUT2C OUT2C1 OUT2C2

(C190 AND2 OUT3C1 N_LIN2F LIN5F
(C191 NOR2 OUT3C LIN2F OUT3C1

(PWR_IN7 P_POR GLOBAL_IN7

.EOM

(TOP CHIP OUT1 OUT2 OUT3 OUT4
+ IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN12
+ IN9 IN10 IN11 IN13 IN14 IN15

.TABLE OUT1 OUT2 OUT3 OUT4
+ IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN12
+ IN9 IN10 IN11 IN13 IN14 IN15

50

A.2: 1.2um SPICE Netlist

.GLOBAL VDD VSS GLOBAL_IN7

.SUBCKT INBUFX1 O PAD
XM1 PAD
+ P_IP
XM2 O PAD
+ P_IT
.ENDS
.SUBCKT INBUFUX1 O PAD
XM1 PAD
+ P_IPR
XM2 O PAD
+ P_IT
.ENDS
.SUBCKT INBUFDX1 O PAD
XM1 PAD
+ P_IPD
XM2 O PAD
+ P_IT
.ENDS
.SUBCKT INBUFX3 O PAD
XM1 PAD
+ P_IP
XM2 O PAD
+ P_ITX3
.ENDS
.SUBCKT INBUFX3_D O PAD
XM1 PAD
+ P_IP
XM2 O1 PAD
+ P_IT
XM3 O2 O1
+ P_ID2
XM4 O3 O2
+ P_ID2
XM5 O4 O3
+ P_ID3
XM6 O O4
+ P_I3
.ENDS
.SUBCKT OUTBUFX8 PAD IN
XM1 PAD O O O
+ P_OBS8
XM2 O IN
+ P_I3
.ENDS
.SUBCKT AND2 O A B
XM1 O X A B
+ P_AA2
.ENDS
.SUBCKT AND3 O A B C
XM1 O X A B C
+ P_AA3
.ENDS
.SUBCKT AND4 O A B C D
XM1 O X A B C D
+ P_AA4
.ENDS
.SUBCKT AND5 O A B C D E
XM1 O A B C D E
+ P_AF5
.ENDS
.SUBCKT AND8 O A B C D E F G H
XM1 O A B C D E F G H
+ P_AF8
.ENDS
.SUBCKT NAND3 O A B C
XM1 O A B C
+ P_NA3
.ENDS

.SUBCKT OR3 O A B C

51

XM1 O X A B C
+ P_OR3
.ENDS
.SUBCKT OR2 O A B
XM1 O X A B
+ P_OR2
.ENDS
.SUBCKT NOR2 O A B
XM1 O A B
+ P_NO2
.ENDS
.SUBCKT NOR3 O A B C
XM1 O A B C
+ P_NO3
.ENDS
.SUBCKT DFF Q D CLK CLR SET GLOBAL_IN7
XM1 Q QN CLK D R SET
+ P_DPRS
XM2 R CLR GLOBAL_IN7
+ AND2
.ENDS

.SUBCKT CHIP OUT1 OUT2 OUT3 OUT4
+ IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN12
+ IN9 IN10 IN11 IN13 IN14 IN15

XOUT1 OUT1 OUT1C
+ OUTBUFX8
XOUT2 OUT2 OUT2C
+ OUTBUFX8
XOUT3 OUT3 OUT3C
+ OUTBUFX8
XOUT4 OUT4 OUT4C
+ OUTBUFX8

XIN1 IN_IN1 IN1
+ INBUFX3
XIN2 IN_IN2 IN2
+ INBUFDX1
XIN3 IN_IN3 IN3
+ INBUFUX1
XIN4 IN_IN4 IN4
+ INBUFX1
XIN5 IN_IN5 IN5
+ INBUFX1
XIN6 IN_IN6 IN6
+ INBUFUX1
XIN7 IN_IN7 IN7
+ INBUFX1
XIN8 IN_IN8 IN8
+ INBUFX1
XIN12 IN_IN12 IN12
+ INBUFX3_D
XIN9 IN_IN9 IN9
+ INBUFX1
XIN10 IN_IN10 IN10
+ INBUFX1
XIN11 IN_IN11 IN11
+ INBUFX1
XIN13 IN_IN13 IN13
+ INBUFX1
XIN14 IN_IN14 IN14
+ INBUFX1
XIN15 IN_IN15 IN15
+ INBUFX1

XINV_IN7 N_IN7 IN_IN7
+ P_I1
XINV_IN2 N_IN2 IN_IN2
+ P_I1
XINV_IN3 N_IN3 IN_IN3
+ P_I1
XINV_IN4 N_IN4 IN_IN4
+ P_I1
XINV_IN5 N_IN5 IN_IN5
+ P_I1

52

XINV_IN6 N_IN6 IN_IN6
+ P_I1
XINV_IN8 N_IN8 IN_IN8
+ P_I1
XINV_IN9 N_IN9 IN_IN9
+ P_I1
XINV_IN10 N_IN10 IN_IN10
+ P_I1
XINV_IN11 N_IN11 IN_IN11
+ P_I1
XINV_IN13 N_IN13 IN_IN13
+ P_I1
XINV_IN14 N_IN14 IN_IN14
+ P_I1
XINV_IN15 N_IN15 IN_IN15
+ P_I1

* DFF Q D CLK CLR SET GLOBAL_IN7

XC01 IN5_S1 IN_IN5 IN_IN12 VDD VDD GLOBAL_IN7
+ DFF
XC02 IN5_S2F IN5_S1 IN_IN1 VDD VDD GLOBAL_IN7
+ DFF
XC03 LIN5F IN5_EDD IN_IN1 N_IN5_ACK VDD GLOBAL_IN7
+ DFF
XC030 N_LIN5F LIN5F
+ P_I1

XC04 IN4_S1 IN_IN4 IN_IN12 VDD VDD GLOBAL_IN7
+ DFF
XC05 IN4_S2F IN4_S1 IN_IN1 VDD VDD GLOBAL_IN7
+ DFF
XC06 LIN4F IN4_EDD IN_IN1 N_IN4_ACK VDD GLOBAL_IN7
+ DFF
XC060 N_LIN4F LIN4F
+ P_I1

XC07 IN2_S1 IN_IN2 IN_IN12 VDD VDD GLOBAL_IN7
+ DFF
XC08 IN2_S2F IN2_S1 IN_IN1 VDD VDD GLOBAL_IN7
+ DFF
XC09 LIN2F IN2_EDD IN_IN1 N_IN2_ACK VDD GLOBAL_IN7
+ DFF
XC090 N_LIN2F LIN2F
+ P_I1

XC10 OUT4C IN_IN13 IN_IN14 IN_IN15
+ NAND3

XC110 N_IN5_S1 IN5_S1
+ P_I1
XC111 IN5_ N_IN5_S1 IN5_S2F
+ AND2
XC112 IN5_EDD IN5_ LIN5F
+ OR2

XC120 N_IN4_S1 IN4_S1
+ P_I1
XC121 IN4_ N_IN4_S1 IN4_S2F
+ AND2
XC122 IN4_EDD IN4_ LIN4F
+ OR2

XC130 N_IN2_S2F IN2_S2F
+ P_I1
XC131 IN2_ IN2_S1 N_IN2_S2F
+ AND2
XC132 IN2_EDD IN2_ LIN2F
+ OR2

XC140 IN5ACK N_IN11 IN_IN13 IN_IN14 IN_IN15 IN_IN10 N_IN9 N_IN8 VDD
+ AND8
XC141 N_IN5_ACK N_IN7 IN5ACK
+ NOR2

53

XC150 IN4ACK N_IN11 IN_IN13 IN_IN14 IN_IN15 N_IN10 IN_IN9 IN_IN8 VDD
+ AND8
XC151 N_IN4_ACK N_IN7 IN4ACK
+ NOR2

XC160 IN2ACK N_IN11 IN_IN13 IN_IN14 IN_IN15 IN_IN10 N_IN9 IN_IN8 VDD
+ AND8
XC161 N_IN2_ACK N_IN7 IN2ACK
+ NOR2

XC170 OUT1C1 N_LIN2F N_LIN5F N_LIN4F IN_IN3 N_IN6
+ AND5
XC171 OUT1C2 N_LIN2F N_LIN5F LIN4F
+ AND3
XC172 OUT1C LIN2F OUT1C1 OUT1C2
+ NOR3

XC180 OUT2C1 N_LIN2F N_LIN5F N_LIN4F N_IN3
+ AND4
XC181 OUT2C2 N_LIN2F N_LIN5F LIN4F
+ AND3
XC182 OUT2C OUT2C1 OUT2C2
+ NOR2

XC190 OUT3C1 N_LIN2F LIN5F
+ AND2
XC191 OUT3C LIN2F OUT3C1
+ NOR2

XPWR_IN7 GLOBAL_IN7
+ P_POR

.ENDS
XTOP OUT1 OUT2 OUT3 OUT4
+ IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 IN12
+ IN9 IN10 IN11 IN13 IN14 IN15
+ CHIP

54

A.3: 1.2um Initial Verilog Netlist With Mapped I/O

// Verilog output file ‘test.v’
module NOR3 (
 O ,
 A ,
 B ,
 C);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 P_NO3 XM1 (
 .O(O),
 .A1(A),
 .A2(B),
 .A3(C));
endmodule
module NOR2 (
 O ,
 A ,
 B);
 inout O ;
 inout A ;
 inout B ;
 P_NO2 XM1 (
 .O(O),
 .A1(A),
 .A2(B));
endmodule
module NAND3 (
 O ,
 A ,
 B ,
 C);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 P_NA3 XM1 (
 .O(O),
 .A1(A),
 .A2(B),
 .A3(C));
endmodule
/*module INBUFX3 (
 O ,
 PAD);
 inout O ;
 inout PAD ;
 P_ITX3 XM2 (
 .O(O),
 .A(PAD));
 P_IP XM1 (
 .O(PAD));
endmodule
module INBUFX1 (
 O ,
 PAD);
 inout O ;
 inout PAD ;
 P_IT XM2 (
 .O(O),
 .A(PAD));
 P_IP XM1 (
 .O(PAD));
endmodule
module INBUFUX1 (
 O ,
 PAD);
 inout O ;
 inout PAD ;
 P_IT XM2 (
 .O(O),
 .A(PAD));
 P_IPR XM1 (

55

 .O(PAD));
endmodule
module INBUFDX1 (
 O ,
 PAD);
 inout O ;
 inout PAD ;
 P_IT XM2 (
 .O(O),
 .A(PAD));
 P_IPD XM1 (
 .O(PAD));
endmodule
module OUTBUFX8 (
 PAD ,
 IN);
 inout PAD ;
 inout IN ;
 P_I3 XM2 (
 .O(O),
 .A(IN));
 P_OBS8 XM1 (
 .O(PAD),
 .NA(O),
 .NB(O),
 .P(O));
endmodule
module INBUFX3_D (
 O ,
 PAD);
 inout O ;
 inout PAD ;
 P_I3 XM6 (
 .O(O),
 .A(O4));
 P_ID3 XM5 (
 .O(O4),
 .A(O3));
 P_ID2 XM4 (
 .O(O3),
 .A(O2));
 P_ID2 XM3 (
 .O(O2),
 .A(O1));
 P_IT XM2 (
 .O(O1),
 .A(PAD));
 P_IP XM1 (
 .O(PAD));
endmodule
*/
module OR3 (
 O ,
 A ,
 B ,
 C);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 P_OR3 XM1 (
 .O(O),
 .X(X),
 .A(A),
 .B(B),
 .C(C));
endmodule
module OR2 (
 O ,
 A ,
 B);
 inout O ;
 inout A ;
 inout B ;
 P_OR2 XM1 (
 .O(O),
 .X(X),

56

 .A(A),
 .B(B));
endmodule
module AND5 (
 O ,
 A ,
 B ,
 C ,
 D ,
 E);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 inout D ;
 inout E ;
 P_AF5 XM1 (
 .O(O),
 .A(A),
 .B(B),
 .C(C),
 .D(D),
 .E(E));
endmodule
module AND8 (
 O ,
 A ,
 B ,
 C ,
 D ,
 E ,
 F ,
 G ,
 H);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 inout D ;
 inout E ;
 inout F ;
 inout G ;
 inout H ;
 P_AF8 XM1 (
 .O(O),
 .A(A),
 .B(B),
 .C(C),
 .D(D),
 .E(E),
 .F(F),
 .G(G),
 .H(H));
endmodule
module AND4 (
 O ,
 A ,
 B ,
 C ,
 D);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 inout D ;
 P_AA4 XM1 (
 .O(O),
 .X(X),
 .A(A),
 .B(B),
 .C(C),
 .D(D));
endmodule
module AND3 (
 O ,
 A ,
 B ,

57

 C);
 inout O ;
 inout A ;
 inout B ;
 inout C ;
 P_AA3 XM1 (
 .O(O),
 .X(X),
 .A(A),
 .B(B),
 .C(C));
endmodule
module AND2 (
 O ,
 A ,
 B);
 inout O ;
 inout A ;
 inout B ;
 P_AA2 XM1 (
 .O(O),
 .X(X),
 .A(A),
 .B(B));
endmodule
module DFF (
 Q ,
 D ,
 CLK ,
 CLR ,
 SET ,
 GLOBAL_IN7);
 inout Q ;
 inout D ;
 inout CLK ;
 inout CLR ;
 inout SET ;
 inout GLOBAL_IN7 ;
 AND2 XM2 (
 .O(R),
 .A(CLR),
 .B(GLOBAL_IN7));
 P_DPRS XM1 (
 .Q(Q),
 .XQ(QN),
 .C(CLK),
 .D(D),
 .XR(R),
 .XS(SET));
endmodule
module CHIP (
 OUT1 ,
 OUT2 ,
 OUT3 ,
 OUT4 ,
 IN1 ,
 IN2 ,
 IN3 ,
 IN4 ,
 IN5 ,
 IN6 ,
 IN7 ,
 IN8 ,
 IN12 ,
 IN9 ,
 IN10 ,
 IN11 ,
 IN13 ,
 IN14 ,
 IN15);
 output OUT1 ;
 output OUT2 ;
 output OUT3 ;
 output OUT4 ;
 input IN1 ;
 input IN2 ;
 input IN3 ;

58

 input IN4 ;
 input IN5 ;
 input IN6 ;
 input IN7 ;
 input IN8 ;
 input IN12 ;
 input IN9 ;
 input IN10 ;
 input IN11 ;
 input IN13 ;
 input IN14 ;
 input IN15 ;
 P_POR XPWR_IN7 (
 .O(GLOBAL_IN7));
 NOR2 XC191 (
 .O(OUT3C),
 .A(LIN2F),
 .B(OUT3C1));
 AND2 XC190 (
 .O(OUT3C1),
 .A(N_LIN2F),
 .B(LIN5F));
 NOR2 XC182 (
 .O(OUT2C),
 .A(OUT2C1),
 .B(OUT2C2));
 AND3 XC181 (
 .O(OUT2C2),
 .A(N_LIN2F),
 .B(N_LIN5F),
 .C(LIN4F));
 AND4 XC180 (
 .O(OUT2C1),
 .A(N_LIN2F),
 .B(N_LIN5F),
 .C(N_LIN4F),
 .D(N_IN3));
 NOR3 XC172 (
 .O(OUT1C),
 .A(LIN2F),
 .B(OUT1C1),
 .C(OUT1C2));
 AND3 XC171 (
 .O(OUT1C2),
 .A(N_LIN2F),
 .B(N_LIN5F),
 .C(LIN4F));
 AND5 XC170 (
 .O(OUT1C1),
 .A(N_LIN2F),
 .B(N_LIN5F),
 .C(N_LIN4F),
 .D(IN_IN3),
 .E(N_IN6));
 NOR2 XC161 (
 .O(N_IN2_ACK),
 .A(N_IN7),
 .B(IN2ACK));
 AND8 XC160 (
 .O(IN2ACK),
 .A(N_IN11),
 .B(IN_IN13),
 .C(IN_IN14),
 .D(IN_IN15),
 .E(IN_IN10),
 .F(N_IN9),
 .G(IN_IN8),
 .H(VDD));
 NOR2 XC151 (
 .O(N_IN4_ACK),
 .A(N_IN7),
 .B(IN4ACK));
 AND8 XC150 (
 .O(IN4ACK),
 .A(N_IN11),
 .B(IN_IN13),
 .C(IN_IN14),

59

 .D(IN_IN15),
 .E(N_IN10),
 .F(IN_IN9),
 .G(IN_IN8),
 .H(VDD));
 NOR2 XC141 (
 .O(N_IN5_ACK),
 .A(N_IN7),
 .B(IN5ACK));
 AND8 XC140 (
 .O(IN5ACK),
 .A(N_IN11),
 .B(IN_IN13),
 .C(IN_IN14),
 .D(IN_IN15),
 .E(IN_IN10),
 .F(N_IN9),
 .G(N_IN8),
 .H(VDD));
 OR2 XC132 (
 .O(IN2_EDD),
 .A(IN2_),
 .B(LIN2F));
 AND2 XC131 (
 .O(IN2_),
 .A(IN2_S1),
 .B(N_IN2_S2F));
 P_I1 XC130 (
 .O(N_IN2_S2F),
 .I(IN2_S2F));
 OR2 XC122 (
 .O(IN4_EDD),
 .A(IN4_),
 .B(LIN4F));
 AND2 XC121 (
 .O(IN4_),
 .A(N_IN4_S1),
 .B(IN4_S2F));
 P_I1 XC120 (
 .O(N_IN4_S1),
 .I(IN4_S1));
 OR2 XC112 (
 .O(IN5_EDD),
 .A(IN5_),
 .B(LIN5F));
 AND2 XC111 (
 .O(IN5_),
 .A(N_IN5_S1),
 .B(IN5_S2F));
 P_I1 XC110 (
 .O(N_IN5_S1),
 .I(IN5_S1));
 NAND3 XC10 (
 .O(OUT4C),
 .A(IN_IN13),
 .B(IN_IN14),
 .C(IN_IN15));
 P_I1 XC090 (
 .O(N_LIN2F),
 .I(LIN2F));
 DFF XC09 (
 .Q(LIN2F),
 .D(IN2_EDD),
 .CLK(IN_IN1),
 .CLR(N_IN2_ACK),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 DFF XC08 (
 .Q(IN2_S2F),
 .D(IN2_S1),
 .CLK(IN_IN1),
 .CLR(VDD),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 DFF XC07 (
 .Q(IN2_S1),
 .D(IN_IN2),

60

 .CLK(IN_IN12),
 .CLR(VDD),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 P_I1 XC060 (
 .O(N_LIN4F),
 .I(LIN4F));
 DFF XC06 (
 .Q(LIN4F),
 .D(IN4_EDD),
 .CLK(IN_IN1),
 .CLR(N_IN4_ACK),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 DFF XC05 (
 .Q(IN4_S2F),
 .D(IN4_S1),
 .CLK(IN_IN1),
 .CLR(VDD),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 DFF XC04 (
 .Q(IN4_S1),
 .D(IN_IN4),
 .CLK(IN_IN12),
 .CLR(VDD),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 P_I1 XC030 (
 .O(N_LIN5F),
 .I(LIN5F));
 DFF XC03 (
 .Q(LIN5F),
 .D(IN5_EDD),
 .CLK(IN_IN1),
 .CLR(N_IN5_ACK),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 DFF XC02 (
 .Q(IN5_S2F),
 .D(IN5_S1),
 .CLK(IN_IN1),
 .CLR(VDD),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 DFF XC01 (
 .Q(IN5_S1),
 .D(IN_IN5),
 .CLK(IN_IN12),
 .CLR(VDD),
 .SET(VDD),
 .GLOBAL_IN7(GLOBAL_IN7));
 P_I1 XINV_IN15 (
 .O(N_IN15),
 .I(IN_IN15));
 P_I1 XINV_IN14 (
 .O(N_IN14),
 .I(IN_IN14));
 P_I1 XINV_IN13 (
 .O(N_IN13),
 .I(IN_IN13));
 P_I1 XINV_IN11 (
 .O(N_IN11),
 .I(IN_IN11));
 P_I1 XINV_IN10 (
 .O(N_IN10),
 .I(IN_IN10));
 P_I1 XINV_IN9 (
 .O(N_IN9),
 .I(IN_IN9));
 P_I1 XINV_IN8 (
 .O(N_IN8),
 .I(IN_IN8));
 P_I1 XINV_IN6 (
 .O(N_IN6),
 .I(IN_IN6));
 P_I1 XINV_IN5 (

61

 .O(N_IN5),
 .I(IN_IN5));
 P_I1 XINV_IN4 (
 .O(N_IN4),
 .I(IN_IN4));
 P_I1 XINV_IN3 (
 .O(N_IN3),
 .I(IN_IN3));
 P_I1 XINV_IN2 (
 .O(N_IN2),
 .I(IN_IN2));
 P_I1 XINV_IN7 (
 .O(N_IN7),
 .I(IN_IN7));
 it IN13_pad (.pad(IN13),.z(IN_IN13));
 it IN14_pad (.pad(IN14),.z(IN_IN14));
 it IN15_pad (.pad(IN15),.z(IN_IN15));
/*
 INBUFX1 XIN15 (
 .O(IN_IN15),
 .PAD(IN15));
 INBUFX1 XIN14 (
 .O(IN_IN14),
 .PAD(IN14));
 INBUFX1 XIN13 (
 .O(IN_IN13),
 .PAD(IN13));
*/
 it IN11_pad (.pad(IN11),.z(IN_IN11));
/*
 INBUFX1 XIN11 (
 .O(IN_IN11),
 .PAD(IN11));
*/
 it IN10_pad (.pad(IN10),.z(IN_IN10));
/*
 INBUFX1 XIN10 (
 .O(IN_IN10),
 .PAD(IN10));
*/
 it IN9_pad (.pad(IN9),.z(IN_IN9));
/*
 INBUFX1 XIN9 (
 .O(IN_IN9),
 .PAD(IN9));
*/
 itx3 IN12_pad (.pad(IN12),.z(IN_IN12));
/*
 INBUFX3_D XIN12 (
 .O(IN_IN12),
 .PAD(IN12));
*/
 it IN8_pad (.pad(IN8),.z(IN_IN8));
/*
 INBUFX1 XIN8 (
 .O(IN_IN8),
 .PAD(IN8));
*/
 it IN7_pad (.pad(IN7),.z(IN_IN7));
/*
 INBUFX1 XIN7 (
 .O(IN_IN7),
 .PAD(IN7));
*/
 it IN6_pad (.pad(IN6),.z(IN_IN6));
/*
 INBUFUX1 XIN6 (
 .O(IN_IN6),
 .PAD(IN6));
*/
 it IN5_pad (.pad(IN5),.z(IN_IN5));
/*
 INBUFX1 XIN5 (
 .O(IN_IN5),
 .PAD(IN5));
*/
 it IN4_pad (.pad(IN4),.z(IN_IN4));

62

/*
 INBUFX1 XIN4 (
 .O(IN_IN4),
 .PAD(IN4));
*/

 it IN3_pad (.pad(IN3),.z(IN_IN3));
/*
 INBUFUX1 XIN3 (
 .O(IN_IN3),
 .PAD(IN3));
*/
 it IN2_pad (.pad(IN2),.z(IN_IN2));
/*
 INBUFDX1 XIN2 (
 .O(IN_IN2),
 .PAD(IN2));
*/
 itx3 IN1_pad (.pad(IN1),.z(IN_IN1));
/*
 INBUFX3 XIN1 (
 .O(IN_IN1),
 .PAD(IN1));
*/
 ob8 OUT1_pad (.pad(OUT1),.a(OUT1C));
 ob8 OUT2_pad (.pad(OUT2),.a(OUT2C));
 ob8 OUT3_pad (.pad(OUT3),.a(OUT3C));
 ob8 OUT4_pad (.pad(OUT4),.a(OUT4C));

/* OUTBUFX8 XOUT4 (
 .PAD(OUT4),
 .IN(OUT4C));
 OUTBUFX8 XOUT3 (
 .PAD(OUT3),
 .IN(OUT3C));
 OUTBUFX8 XOUT2 (
 .PAD(OUT2),
 .IN(OUT2C));

 OUTBUFX8 XOUT1 (
 .PAD(OUT1),
 .IN(OUT1C));
*/
endmodule
/*module NT_TOP_61373lvs (
);
 CHIP XTOP (
 .OUT1(OUT1),
 .OUT2(OUT2),
 .OUT3(OUT3),
 .OUT4(OUT4),
 .IN1(IN1),
 .IN2(IN2),
 .IN3(IN3),
 .IN4(IN4),
 .IN5(IN5),
 .IN6(IN6),
 .IN7(IN7),
 .IN8(IN8),
 .IN12(IN12),
 .IN9(IN9),
 .IN10(IN10),
 .IN11(IN11),
 .IN13(IN13),
 .IN14(IN14),
 .IN15(IN15));
endmodule
*/

63

A.4: 1.2um to 0.8um Verilog Mapping File

module P_POR(O);
output O;

por i_1(.zn(O));

endmodule

module P_NO3(O, A1, A2, A3);
input A1, A2, A3;
output O;

no3 M01 (.zn(O), .c(A3), .b(A2), .a(A1));
endmodule

module P_NA3(O, A1, A2, A3);
input A1, A2, A3;
output O;

na3 M01 (.zn(O), .a(A1), .b(A2), .c(A3));
endmodule

module P_NO2(O, A1, A2);
input A1, A2;
output O;

no2 M01 (.zn(O), .b(A2), .a(A1));
endmodule

module P_OR3(O, X, A, B, C);
input A, B, C;
 output O, X;

or3 MO1 (.z(O), .a(A), .b(B), .c(C));
i1 M02 (.zn(X), .a(O));
endmodule

module P_OR2(O, X, A, B);
input A, B;
output O, X;

or2 M01 (.z(O), .a(A), .b(B));
i1 M02 (.zn(X), .a(O));
endmodule

module P_AF5(O,A,B,C,D,E);

input A,B,C,D,E;
output O;

an5 i_1 (.z(O),.a(A),.b(B),.c(C),.d(D),.e(E));
endmodule

module P_AF8(O,A,B,C,D,E,F,G,H);

input A,B,C,D,E,F,G,H;
output O;

an8 i_1 (.z(O),.a(A),.b(B),.c(C),.d(D),.e(E),.f(F),.g(G),.h(H));
endmodule

module P_AA4(O, X, A, B, C, D);
input A, B, C, D;
output O, X;

an4 M01 (.z(O), .a(A), .b(B), .c(C), .d(D));
i1 M02 (.zn(X), .a(O));
endmodule

module P_AA3(O, X, A, B, C);
input A, B, C;
output O, X;

an3 MO1 (.z(O), .a(A), .b(B), .c(C));

64

i1 M02 (.zn(X), .a(O));
endmodule

module P_AA2(O, X, A, B);
input A, B;
output O, X;

an2 M01 (.z(O), .a(A), .b(B));
i1 M02 (.zn(X), .a(O));
endmodule

module P_DPRS(Q, XQ, C, D, XR, XS);
input C, D, XR, XS;
output Q, XQ;

dpbrs M01(.q(Q), .qn(XQ), .c(C), .d(D), .rn(XR), .sn(XS));
endmodule

module P_I1(O, I);
input I;
output O;

i1 M01 (.zn(O), .a(I));
endmodule

65

A.5: 1.2um Original Test Vector File

$$$
$ S I L O S I I I ver 97.1 Tue Dec 30 14:00:21 1997
$$$

 viviiiiivvviivviiiviiiioooov
 dnsnnnnnsssnnssnnnsnnnnuuuud
 d1s23456sss78ss191s1111ttttd
 2 0 13451234

 TIME
 4999 10001111000000000001000HHHH1
 9999 10001111000000000001000HHHH1
 14999 11001111000000010001000HHHH1
 19999 10001111000000000001000HHHH1
 24999 11001111000000010001000HHHH1
 29999 10001111000000000001000HHHH1
 34999 11001111000000010001000HHHH1
 39999 10001111000000000001000HHHH1
 44999 11001111000000010001000HHHH1
 49999 10001111000000000001000HHHH1
 54999 11001111000000010001000HHHH1
 59999 10001111000000000001000HHHH1
 64999 11001111000000010001000HHHH1
 69999 10001111000000000001000HHHH1
 74999 11001111000000010001000HHHH1
 79999 10001111000000000001000HHHH1
 84999 11001111000000010001000HHHH1
 89999 10001111000100000001000HHHH1
 94999 11001111000100010001000HHHH1
 99999 10001111000100000001000HHHH1
 104999 11001111000100010001000HHHH1
 109999 10001111000100000001000HHHH1
 114999 11001111000100010001000HHHH1
 119999 10001111000100000001001HHHH1
 124999 11011111000100010001010HHHH1
 129999 10011111000100000000011HHHH1
 134999 11011111000100010000100LHLH1
 139999 10011111000100000000101LHLH1
 144999 11011111000100010000110LHLH1
 149999 10011111000100000000000LHLH1
 154999 11011111000100010001000LHLH1
 159999 10011111000100000001000LHLH1
 164999 11011111000100010001000LHLH1
 169999 10011111000100000001000LHLH1
 174999 11011111000100010001111LHLL1
 179999 10011111000100000001111LHLL1
 184999 11011111000110010101111LHLL1
 189999 10011111000110000100111HHHL1
 194999 11011111000110010100111HHHL1
 199999 10011111000110000100111HHHL1
 204999 11011111000110010100111HHHL1
 209999 10011111000110000101111HHHL1
 214999 11001111000110010101111HHHL1
 219999 10001111000100000001000HHHH1
 224999 11001111000100010001000HHHH1
 229999 10001111000100000001000HHHH1
 234999 11001011000100010001000HHHH1
 239999 10001011000100000000000HHHH1
 244999 11001011000100010000000LLHH1
 249999 10001011000100000000000LLHH1
 254999 11001011000100010000000LLHH1
 259999 10001011000100000000000LLHH1
 264999 11001011000100010001000LLHH1
 269999 10001011000100000001000LLHH1
 274999 11001011000100010001000LLHH1
 279999 10001011000100000001000LLHH1
 284999 11001011000100010001111LLHL1
 289999 10001011000100000001111LLHL1
 294999 11001011000110011001111LLHL1
 299999 10001011000110001000111HHHL1

66

 304999 11001011000110011000111HHHL1
 309999 10001011000110001000111HHHL1
 314999 11001011000110011000111HHHL1
 319999 10001011000110001001111HHHL1
 324999 11001111000110011001111HHHL1
 329999 10001111000100000001000HHHH1
 334999 11001111000100010001000HHHH1
 339999 10001111000100000001000HHHH1
 344999 11001101000100010001000HHHH1
 349999 10001101000100000000000HHHH1
 354999 11001101000100010000000HHLH1
 359999 10001101000100000000000HHLH1
 364999 11001101000100010000000HHLH1
 369999 10001101000100000000000HHLH1
 374999 11001101000100010001000HHLH1
 379999 10001101000100000001000HHLH1
 384999 11001101000100010001000HHLH1
 389999 10001101000100000001000HHLH1
 394999 11001101000100010001111HHLL1
 399999 10001101000100000001111HHLL1
 404999 11001101000100010101111HHLL1
 409999 10001101000100000100111HHHL1
 414999 11001101000100010100111HHHL1
 419999 10001101000100000100111HHHL1
 424999 11001101000100010100111HHHL1
 429999 10001101000100000101111HHHL1
 434999 11001111000100010101111HHHL1
 439999 10001111000100000001000HHHH1
 444999 11001111000100010001000HHHH1
 449999 10001111000100000001000HHHH1
 454999 11001111000100010001000HHHH1
 459999 10000111000100000000000HLHH1
 464999 11000111000100010000000HLHH1
 469999 10000111000100000000000HLHH1
 474999 11000111000100010000000HLHH1
 479999 10000111000100000000000HLHH1
 484999 11000111000100010001000HLHH1
 489999 10000111000100000001000HLHH1
 494999 11000111000100010001000HLHH1
 499999 10000111000100000001000HLHH1
 504999 11000111000100010001111HLHL1
 509999 10000111000100000001111HLHL1
 514999 11000111000100011001111HLHL1
 519999 10000111000100001000111HLHL1
 524999 11000111000100011000111HLHL1
 529999 10000111000100001000111HLHL1
 534999 11000111000100011000111HLHL1
 539999 10000111000100001001111HLHL1
 544999 11001111000100011001111HHHL1
 549999 10001111000100000001000HHHH1
 554999 11001111000100010001000HHHH1
 559999 10001111000100000001000HHHH1
 564999 11001111000100010001000HHHH1
 569999 10001110000100000000000LHHH1
 574999 11001110000100010000000LHHH1
 579999 10001110000100000000000LHHH1
 584999 11001110000100010000000LHHH1
 589999 10001110000100000000000LHHH1
 594999 11001110000100010001000LHHH1
 599999 10001110000100000001000LHHH1
 604999 11001110000100010001000LHHH1
 609999 10001110000100000001000LHHH1
 614999 11001110000100010001111LHHL1
 619999 10001110000100000001111LHHL1
 624999 11001110000110010001111LHHL1
 629999 10001110000110000000111LHHL1
 634999 11001110000110010000111LHHL1
 639999 10001110000110000000111LHHL1
 644999 11001110000110010000111LHHL1
 649999 10001110000110000001111LHHL1
 654999 11001111000110010001111HHHL1
 659999 10001111000100000001000HHHH1
 664999 11001111000100010001000HHHH1
 669999 10001111000100000001000HHHH1
 674999 11010000000100010001000HLHH1
 679999 10010000000100000000000HLHH1
 684999 11010000000100010000000LHLH1

67

 689999 10010000000100000000000LHLH1
 694999 11010000000100010000000LHLH1
 699999 10010000000100000000000LHLH1
 704999 11010000000100010001000LHLH1
 709999 10010000000100000001000LHLH1
 714999 11010000000100010001000LHLH1
 719999 10010000000100000001000LHLH1
 724999 11010000000100010001111LHLL1
 729999 10010000000100000001111LHLL1
 734999 11010000000110010101111LHLL1
 739999 10010000000110000100111HHLL1
 744999 11010000000110010100111HHLL1
 749999 10010000000110000100111HHLL1
 754999 11010000000110010100111HHLL1
 759999 10010000000110000101111HHLL1
 764999 11000000000110010101111HHLL1
 769999 10000000000100000001000HHLH1
 774999 11000000000100010001000HHLH1
 779999 10000000000100000001000HHLH1
 784999 11000000000100010001000HHLH1
 789999 10000000000100000000000HHLH1
 794999 11000000000100010000000HHLH1
 799999 10000000000100000000000HHLH1
 804999 11000000000100010000000HHLH1
 809999 10000000000100000000000HHLH1
 814999 11000000000100010001000HHLH1
 819999 10000000000100000001000HHLH1
 824999 11000000000100010001000HHLH1
 829999 10000000000100000001000HHLH1
 834999 11000000000100010001111HHLL1
 839999 10000000000100000001111HHLL1
 844999 11000000000100010101111HHLL1
 849999 10000000000100000100111LLHL1
 854999 11000000000100010100111LLHL1
 859999 10000000000100000100111LLHL1
 864999 11000000000100010100111LLHL1
 869999 10000000000100000101111LLHL1
 874999 11000010000100010101111LLHL1
 879999 10000010000100000001000LLHH1
 884999 11000010000100010001000LLHH1
 889999 10000010000100000001000LLHH1
 894999 11000010000100010001000LLHH1
 899999 10000010000100000000000LLHH1
 904999 11000010000100010000000LLHH1
 909999 10000010000100000000000LLHH1
 914999 11000010000100010000000LLHH1
 919999 10000010000100000000000LLHH1
 924999 11000010000100010001000LLHH1
 929999 10000010000100000001000LLHH1
 934999 11000010000100010001000LLHH1
 939999 10000010000100000001000LLHH1
 944999 11000010000100010001111LLHL1
 949999 10000010000100000001111LLHL1
 954999 11000010000110011001111LLHL1
 959999 10000010000110001000111HLHL1
 964999 11000010000110011000111HLHL1
 969999 10000010000110001000111HLHL1
 974999 11000010000110011000111HLHL1
 979999 10000010000110001001111HLHL1
 984999 11000110000110011001111HLHL1
 989999 10000110000100000001000HLHH1
 994999 11000110000100010001000HLHH1
 999999 10000110000100000001000HLHH1
 1004999 11000110000100010001000HLHH1
 1009999 10000110000100000000000HLHH1
 1014999 11000110000100010000000HLHH1
 1019999 10000110000100000000000HLHH1
 1024999 11000110000100010000000HLHH1
 1029999 10000110000100000000000HLHH1
 1034999 11000110000100010001000HLHH1
 1039999 10000110000100000001000HLHH1
 1044999 11000110000100010001000HLHH1
 1049999 10000110000100000001000HLHH1
 1054999 11000110000100010001111HLHL1
 1059999 10000110000100000001111HLHL1
 1064999 11000110000100011001111HLHL1
 1069999 10000110000100001000111HLHL1

68

 1074999 11000110000100011000111HLHL1
 1079999 10000110000100001000111HLHL1
 1084999 11000110000100011000111HLHL1
 1089999 10000110000100001001111HLHL1
 1094999 11001110000100011001111LHHL1
 1099999 10001110000100000001000LHHH1
 1104999 11001110000100010001000LHHH1
 1109999 10001110000100000001000LHHH1
 1114999 11001110000100010001000LHHH1
 1119999 10001110000100000000000LHHH1
 1124999 11001110000100010000000LHHH1
 1129999 10001110000100000000000LHHH1
 1134999 11001110000100010000000LHHH1
 1139999 10001110000100000000000LHHH1
 1144999 11001110000100010001000LHHH1
 1149999 10001110000100000001000LHHH1
 1154999 11001110000100010001000LHHH1
 1159999 10001110000100000001000LHHH1
 1164999 11001110000100010001111LHHL1
 1169999 10001110000100000001111LHHL1
 1174999 11001110000110010001111LHHL1
 1179999 10001110000110000000111LHHL1
 1184999 11001110000110010000111LHHL1
 1189999 10001110000110000000111LHHL1
 1194999 11001110000110010000111LHHL1
 1199999 10001110000110000001111LHHL1
 1204999 11001111000110010001111HHHL1
 1209999 10001111000100000001000HHHH1
 1214999 11001111000100010001000HHHH1
 1219999 10001111000100000001000HHHH1

69

A.6: 0.8um Verilog Test Fixture

‘timescale 1ns/1ps
module test;

 reg IN1_reg ;
 reg IN2_reg ;
 reg IN3_reg ;
 reg IN4_reg ;
 reg IN5_reg ;
 reg IN6_reg ;
 reg IN7_reg ;
 reg IN8_reg ;
 reg IN12_reg ;
 reg IN9_reg ;
 reg IN10_reg ;
 reg IN11_reg ;
 reg IN13_reg ;
 reg IN14_reg ;
 reg IN15_reg ;
 wire OUT1,OUT2,OUT3,OUT4 ;

 reg [1:28] test_vector[1:244];
 wire [1:28] current_vector;
integer vector_count;

 // Current Test Vector IN11signment
 assign current_vector = test_vector[vector_count];

 // Load Test Vectors Into Memory
 initial begin
‘ifdef SD1 $sdf_annotate(“../../sdf/chip.sd1”,test.dut,,”sdf.log”,);
‘endif
‘ifdef SD2 $sdf_annotate(“../../sdf/chip.sd2”,test.dut,,”sdf.log”,);
‘endif
‘ifdef SST
 begin
 $recordfile(“verilog”);
 $recordvars;
 end
‘endif
 $display(“--> Loading test vectors...”);
 $readmemb(“../testfixtures/CHIPF.vec”, test_vector);
 $display(“--> Test vectors successfully loaded”);

 for(vector_count=1; vector_count<244; vector_count=vector_count+1) begin
 ‘ifdef FAULT
 $fs_strobe(OUT1,OUT2,OUT3,OUT4);
 ‘endif
 // assign Test Vectors
‘ifdef FAULT
#0.1
‘endif

 assign_inputs;
 #9999

 // Log Signals and Determine Errors
strobe;
 #1
 // Display Status
 if((vector_count%(244/10)==0)) begin
 $write(“%.0f percent complete...\n”,((vector_count/(244/
10))*10));
 end
 end

$finish;
end
 CHIP dut (
 .OUT1(OUT1),
 .OUT2(OUT2),

70

 .OUT3(OUT3),
 .OUT4(OUT4),
 .IN1(IN1_reg),
 .IN2(IN2_reg),
 .IN3(IN3_reg),
 .IN4(IN4_reg),
 .IN5(IN5_reg),
 .IN6(IN6_reg),
 .IN7(IN7_reg),
 .IN8(IN8_reg),
 .IN12(IN12_reg),
 .IN9(IN9_reg),
 .IN10(IN10_reg),
 .IN11(IN11_reg),
 .IN13(IN13_reg),
 .IN14(IN14_reg),
 .IN15(IN15_reg));

task assign assign_inputs;
begin
 IN1_reg <= #15 current_vector[2] ;
 IN2_reg <= current_vector[4] ;
 IN3_reg <= current_vector[5] ;
 IN4_reg <= current_vector[6] ;
 IN5_reg <= current_vector[7] ;
 IN6_reg <= current_vector[8] ;
 IN7_reg <= current_vector[12] ;
 IN8_reg <= current_vector[13] ;
 IN12_reg <= #15 current_vector[16] ;
 IN9_reg <= current_vector[17] ;
 IN10_reg <= current_vector[18] ;
 IN11_reg <= current_vector[20] ;
 IN13_reg <= current_vector[21] ;
 IN14_reg <= current_vector[22] ;
 IN15_reg <= current_vector[23] ;
end
endtask

task strobe;
begin

 if (OUT1 !== current_vector[24]) $write(“\t...ERROR vector %d @ OUT1\t%x should be
%x\n”,vector_count,OUT1,current_vector[24]);
 if (OUT2 !== current_vector[25]) $write(“\t...ERROR vector %d @ OUT2\t%x should be
%x\n”,vector_count,OUT2,current_vector[25]);
 if (OUT3 !== current_vector[26]) $write(“\t...ERROR vector %d @ OUT3\t%x should be
%x\n”,vector_count,OUT3,current_vector[26]);
 if (OUT4 !== current_vector[27]) $write(“\t...ERROR vector %d @ OUT4\t%x should be
%x\n”,vector_count,OUT4,current_vector[27]);

end
endtask

endmodule

71

A.7: 0.8um Verilog Testfixture Test Vectors

1000111100000000000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100000000000100011111
1100111100000001000100011111
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100111111
1101111100010001000101011111
1001111100010000000001111111
1101111100010001000010001011
1001111100010000000010101011
1101111100010001000011001011
1001111100010000000000001011
1101111100010001000100001011
1001111100010000000100001011
1101111100010001000100001011
1001111100010000000100001011
1101111100010001000111101001
1001111100010000000111101001
1101111100011001010111101001
1001111100011000010011111101
1101111100011001010011111101
1001111100011000010011111101
1101111100011001010011111101
1001111100011000010111111101
1100111100011001010111111101
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1100101100010001000100011111
1000101100010000000000011111
1100101100010001000000000111
1000101100010000000000000111
1100101100010001000000000111
1000101100010000000000000111
1100101100010001000100000111
1000101100010000000100000111
1100101100010001000100000111
1000101100010000000100000111
1100101100010001000111100101
1000101100010000000111100101
1100101100011001100111100101
1000101100011000100011111101
1100101100011001100011111101
1000101100011000100011111101
1100101100011001100011111101
1000101100011000100111111101
1100111100011001100111111101
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1100110100010001000100011111
1000110100010000000000011111
1100110100010001000000011011
1000110100010000000000011011
1100110100010001000000011011
1000110100010000000000011011

72

1100110100010001000100011011
1000110100010000000100011011
1100110100010001000100011011
1000110100010000000100011011
1100110100010001000111111001
1000110100010000000111111001
1100110100010001010111111001
1000110100010000010011111101
1100110100010001010011111101
1000110100010000010011111101
1100110100010001010011111101
1000110100010000010111111101
1100111100010001010111111101
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1100111100010001000100011111
1000011100010000000000010111
1100011100010001000000010111
1000011100010000000000010111
1100011100010001000000010111
1000011100010000000000010111
1100011100010001000100010111
1000011100010000000100010111
1100011100010001000100010111
1000011100010000000100010111
1100011100010001000111110101
1000011100010000000111110101
1100011100010001100111110101
1000011100010000100011110101
1100011100010001100011110101
1000011100010000100011110101
1100011100010001100011110101
1000011100010000100111110101
1100111100010001100111111101
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1100111100010001000100011111
1000111000010000000000001111
1100111000010001000000001111
1000111000010000000000001111
1100111000010001000000001111
1000111000010000000000001111
1100111000010001000100001111
1000111000010000000100001111
1100111000010001000100001111
1000111000010000000100001111
1100111000010001000111101101
1000111000010000000111101101
1100111000011001000111101101
1000111000011000000011101101
1100111000011001000011101101
1000111000011000000011101101
1100111000011001000011101101
1000111000011000000111101101
1100111100011001000111111101
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111
1101000000010001000100010111
1001000000010000000000010111
1101000000010001000000001011
1001000000010000000000001011
1101000000010001000000001011
1001000000010000000000001011
1101000000010001000100001011
1001000000010000000100001011
1101000000010001000100001011
1001000000010000000100001011
1101000000010001000111101001
1001000000010000000111101001
1101000000011001010111101001
1001000000011000010011111001
1101000000011001010011111001
1001000000011000010011111001
1101000000011001010011111001

73

1001000000011000010111111001
1100000000011001010111111001
1000000000010000000100011011
1100000000010001000100011011
1000000000010000000100011011
1100000000010001000100011011
1000000000010000000000011011
1100000000010001000000011011
1000000000010000000000011011
1100000000010001000000011011
1000000000010000000000011011
1100000000010001000100011011
1000000000010000000100011011
1100000000010001000100011011
1000000000010000000100011011
1100000000010001000111111001
1000000000010000000111111001
1100000000010001010111111001
1000000000010000010011100101
1100000000010001010011100101
1000000000010000010011100101
1100000000010001010011100101
1000000000010000010111100101
1100001000010001010111100101
1000001000010000000100000111
1100001000010001000100000111
1000001000010000000100000111
1100001000010001000100000111
1000001000010000000000000111
1100001000010001000000000111
1000001000010000000000000111
1100001000010001000000000111
1000001000010000000000000111
1100001000010001000100000111
1000001000010000000100000111
1100001000010001000100000111
1000001000010000000100000111
1100001000010001000111100101
1000001000010000000111100101
1100001000011001100111100101
1000001000011000100011110101
1100001000011001100011110101
1000001000011000100011110101
1100001000011001100011110101
1000001000011000100111110101
1100011000011001100111110101
1000011000010000000100010111
1100011000010001000100010111
1000011000010000000100010111
1100011000010001000100010111
1000011000010000000000010111
1100011000010001000000010111
1000011000010000000000010111
1100011000010001000000010111
1000011000010000000000010111
1100011000010001000100010111
1000011000010000000100010111
1100011000010001000100010111
1000011000010000000100010111
1100011000010001000111110101
1000011000010000000111110101
1100011000010001100111110101
1000011000010000100011110101
1100011000010001100011110101
1000011000010000100011110101
1100011000010001100011110101
1000011000010000100111110101
1100111000010001100111101101
1000111000010000000100001111
1100111000010001000100001111
1000111000010000000100001111
1100111000010001000100001111
1000111000010000000000001111
1100111000010001000000001111
1000111000010000000000001111
1100111000010001000000001111
1000111000010000000000001111

74

1100111000010001000100001111
1000111000010000000100001111
1100111000010001000100001111
1000111000010000000100001111
1100111000010001000111101101
1000111000010000000111101101
1100111000011001000111101101
1000111000011000000011101101
1100111000011001000011101101
1000111000011000000011101101
1100111000011001000011101101
1000111000011000000111101101
1100111100011001000111111101
1000111100010000000100011111
1100111100010001000100011111
1000111100010000000100011111

75

A.8: Synthesis Logic Optimization Script

verilogout_no_tri=true

define_name_rules flex_migration -restricted “#[]/”

read -format verilog ./.2_to_0.8_maplib.vs
read -format verilog ../net/chip.rtl.v

current_design CHIP

link

uniquify
ungroup -all

set_dont_touch i_por
set_dont_touch GLOBAL_IN7

set_max_area 0
set_operating_conditions -max WCMIL

/* library is e8v5s */

compile -ungroup_all

report_area

change_names -rules flex_migration -verbose

write -format verilog -hierarchy -output ../net/chip.syn.v

exit

A.9: 0.8um Optimized Synthesized Netlist

module CHIP (OUT1, OUT2, OUT3, OUT4, IN1, IN2, IN3, IN4, IN5,
 IN6, IN7, IN8, IN12, IN9, IN10, IN11, IN13, IN14, IN15);
input IN1, IN2, IN3, IN4, IN5, IN6, IN7, IN8, IN12, IN9, IN10, IN11,
 IN13, IN14, IN15;
output OUT1, OUT2, OUT3, OUT4;
 wire IN_IN13, IN5_S1, n136, LIN4F, IN_IN8, n135, IN4_S1, IN2_EDD, IN_IN6,
 LIN2F, IN_IN12, IN_IN7, IN_IN11, IN_IN14, IN_IN2, IN2_S1,
 IN4_EDD, IN_IN1, LIN5F, n133, IN_IN10, IN5_EDD, IN2_S2F, n134,
 IN_IN9, IN_IN4, IN_IN3, IN_IN5, IN_IN15, XC03_R, XC01_R, n96, n97, n98,
 n99, n100, n101, n102, n103, n104, n105, n106, n107, n108, n109, n110,
 n111, n112, n113, n114, n115, n116, n117, n118, n119, n126, n127, n128,
 n129, n130, n131, n132, net48, net47, net45;
 por i_por (.zn(XC01_R));
 it IN9_pad (.pad(IN9), .z(IN_IN9));
 it IN5_pad (.pad(IN5), .z(IN_IN5));
 it IN3_pad (.pad(IN3), .z(IN_IN3));
 it IN4_pad (.pad(IN4), .z(IN_IN4));
 it IN13_pad (.pad(IN13), .z(IN_IN13));
 it IN15_pad (.pad(IN15), .z(IN_IN15));
 rd25K i_IN2_pd (.pad(IN2));
 ru50K i_IN3_pu (.pad(IN3));
 it IN8_pad (.pad(IN8), .z(IN_IN8));
 it IN7_pad (.pad(IN7), .z(IN_IN7));
 it IN11_pad (.pad(IN11), .z(IN_IN11));
 it IN10_pad (.pad(IN10), .z(IN_IN10));
 it IN6_pad (.pad(IN6), .z(IN_IN6));
 it IN14_pad (.pad(IN14), .z(IN_IN14));
 ru50K i_IN6_pu (.pad(IN6));
 it IN2_pad (.pad(IN2), .z(IN_IN2));
 an2 U4 (.b(n96), .a(n97), .z(n128));
 no2 U5 (.b(IN_IN11), .a(IN_IN9), .zn(n96));
 no2 U6 (.b(n136), .a(n131), .zn(n97));
 oai21 U7 (.b(n119), .a2(n130), .a1(LIN4F), .zn(n134));
 or2 U8 (.b(n102), .a(n115), .z(n101));
 or2 U9 (.b(n114), .a(n113), .z(n102));
 or2 U10 (.b(n112), .a(n111), .z(n103));
 or2 U11 (.b(LIN2F), .a(n108), .z(n104));

76

 or2 U12 (.b(IN_IN6), .a(n132), .z(n105));
 or3 U13 (.c(IN_IN10), .b(IN_IN11), .a(n136), .z(n106));
 i1 U14 (.a(n106), .zn(n107));
 no2 U15 (.b(n105), .a(n130), .zn(n108));
 b1 U16 (.a(XC03_R), .z(n109));
 aoi21x2 U17 (.b(n127), .a2(n129), .a1(n128), .zn(XC03_R));
 b1 U18 (.a(n134), .z(n110));
 no2 U19 (.b(n127), .a(n128), .zn(n111));
 no2 U20 (.b(n127), .a(IN_IN8), .zn(n112));
 na2x2 U21 (.b(XC01_R), .a(IN_IN7), .zn(n127));
 no2 U22 (.b(n127), .a(n107), .zn(n113));
 no2 U23 (.b(n127), .a(IN_IN8), .zn(n114));
 no2 U24 (.b(n127), .a(IN_IN9), .zn(n115));
 na2 U25 (.b(n117), .a(n116), .zn(n133));
 i1 U26 (.a(n104), .zn(n118));
 na2 U27 (.b(LIN5F), .a(n118), .zn(n116));
 na2 U28 (.b(n98), .a(n118), .zn(n117));
 b2 U29 (.a(n135), .z(n119));
 na3x2 U30 (.c(IN_IN13), .b(IN_IN15), .a(IN_IN14), .zn(n136));
 cvdd U31 (.z(n126));
 itx3 U32 (.pad(IN12), .z(IN_IN12));
 itx3 U33 (.pad(IN1), .z(IN_IN1));
 ob8 U34 (.a(n136), .pad(OUT4));
 ob8 U35 (.a(n119), .pad(OUT3));
 ob8 U36 (.a(n110), .pad(OUT2));
 ob8 U37 (.a(n133), .pad(OUT1));
 oai21 U38 (.b(n99), .a2(net45), .a1(IN2_S2F), .zn(IN2_EDD));
 oai21 U39 (.b(n100), .a2(net48), .a1(IN5_S1), .zn(IN5_EDD));
 oai21 U40 (.b(n98), .a2(net47), .a1(IN4_S1), .zn(IN4_EDD));
 i1 U41 (.a(IN_IN3), .zn(n130));
 no2 U42 (.b(LIN5F), .a(LIN2F), .zn(n135));
 i1 U43 (.a(IN_IN8), .zn(n129));
 i1 U44 (.a(n119), .zn(n132));
 i1 U45 (.a(IN_IN10), .zn(n131));
 dpbrs XC04_XM1_M01 (.sn(n126), .rn(XC01_R), .d(IN_IN4), .c(IN_IN12),
 .q(IN4_S1));
 dpbrs XC03_XM1_M01 (.sn(n126), .rn(n109), .d(IN5_EDD), .c(IN_IN1),
 .qn(n100), .q(LIN5F));
 dpbrs XC02_XM1_M01 (.sn(n126), .rn(XC01_R), .d(IN5_S1), .c(IN_IN1),
 .qn(net48));
 dpbrs XC05_XM1_M01 (.sn(n126), .rn(XC01_R), .d(IN4_S1), .c(IN_IN1),
 .qn(net47));
 dpbrs XC07_XM1_M01 (.sn(n126), .rn(XC01_R), .d(IN_IN2), .c(IN_IN12),
 .qn(net45), .q(IN2_S1));
 dpbrs XC09_XM1_M01 (.sn(n126), .rn(n103), .d(IN2_EDD), .c(IN_IN1),
 .qn(n99), .q(LIN2F));
 dpbrs XC08_XM1_M01 (.sn(n126), .rn(XC01_R), .d(IN2_S1), .c(IN_IN1),
 .q(IN2_S2F));
 dpbrs XC06_XM1_M01 (.sn(n126), .rn(n101), .d(IN4_EDD), .c(IN_IN1),
 .qn(n98), .q(LIN4F));
 dpbrs XC01_XM1_M01 (.sn(n126), .rn(XC01_R), .d(IN_IN5), .c(IN_IN12),
 .q(IN5_S1));
endmodule

A.10: Pin File

CHIP Pin File - 8/29/2001
BASE84- ; Package PLCC028
PadPinSignal TypeComment

15IN3 Iw/ Pull Up 50K Input Buffer, TTL,
2.NC XNo Connect
3.NC XNo Connect
46IN4 IInput Buffer, TTL,
5.NC XNo Connect
6.NC XNo Connect
7.NC XNo Connect
87IN5 IInput Buffer, TTL,
9.NC XNo Connect
10.NC XNo Connect
11.NC XNo Connect
128IN6 Iw/ Pull Up 50K Input Buffer, TTL,
13.NC XNo Connect
14.NC XNo Connect
159VSS SSupply

77

16.NC XNo Connect
17.NC XNo Connect
1810VSS SSupply
19.NC XNo Connect
20.NC XNo Connect
2111NC XNo Connect
2212IN7 IInput Buffer, TTL,
23.NC XNo Connect
24.NC XNo Connect
2513IN8 IInput Buffer, TTL,
26.NC XNo Connect
27.NC XNo Connect
28.NC XNo Connect
2914VSS SSupply
30.NC XNo Connect
31.NC XNo Connect
32.NC XNo Connect
3315VSS SSupply
34.NC XNo Connect
35.NC XNo Connect
3616IN12 IInput Buffer, TTL, 3X Strength
37.NC XNo Connect
38.NC XNo Connect
3917IN9 IInput Buffer, TTL,
40.NC XNo Connect
41.NC XNo Connect
4218IN10 IInput Buffer, TTL,
4319NC XNo Connect
44.NC XNo Connect
45.NC XNo Connect
4620IN11 IInput Buffer, TTL,
47.NC XNo Connect
48.NC XNo Connect
4921IN13 IInput Buffer, TTL,
50.NC XNo Connect
51.NC XNo Connect
52.NC XNo Connect
5322IN14 IInput Buffer, TTL,
54.NC XNo Connect
55.NC XNo Connect
56.NC XNo Connect
5723IN15 IInput Buffer, TTL,
58.NC XNo Connect
59.NC XNo Connect
6024OUT1 OOutput Buffer, 8 mA.
61.NC XNo Connect
62.NC XNo Connect
6325OUT2 OOutput Buffer, 8 mA.
6426OUT3 OOutput Buffer, 8 mA.
65.NC XNo Connect
66.NC XNo Connect
6727OUT4 OOutput Buffer, 8 mA.
68.NC XNo Connect
69.NC XNo Connect
7028VDD SSupply
71.NC XNo Connect
72.NC XNo Connect
73.NC XNo Connect
741VDD SSupply
75.NC XNo Connect
76.NC XNo Connect
77.NC XNo Connect
782IN1 IInput Buffer, TTL, 3X Strength
79.NC XNo Connect
80.NC XNo Connect
813VSS SSupply
82.NC XNo Connect
83.NC XNo Connect
844IN2 IInput Buffer, TTL, w/ Pull Down 25K

78

Vita

Marc Royer was born in Manchester, NH in 1974. He graduated from Manchester

Memorial Highschool in Manchester, NH in 1992 and The Northfield Mount Hermon

School in Northfield, MA in 1993. In September of 1993, he began studying Music

Engineering Technology at the University of Miami School of Music in Coral Gables, FL

in pursuit of a B.A degree. In 1995 he transferred to the Audio Engineeing program at

the University of Miami School of Engineering to complete a B.S.E.E. degree. Marc

obtained his B.S.E.E. degree in May 1997. In September 1997 he was employed by

ASIC International, Inc. in Knoxville, Tennessee as an ASIC design engineer. ASIC

International was aquired by Flextronics Semiconductor, a business unit of Flextronics

International, Inc., in May 2001.

	ASIC Technology Migrations: A Design Guide for First Pass Success
	Recommended Citation

	thesis.book

