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Abstract 

The building sector consumes a large part of the energy used in the United States and is 

responsible for nearly 40% of greenhouse gas emissions.  Therefore, it is economically and 

environmentally important to reduce the building energy consumption to realize massive energy 

savings.  Commercial buildings are complex, multi-physics, and highly stochastic dynamic 

systems.  Recent work has focused on integrating modern modeling, simulation, and control 

techniques to solving this challenging problem.  The overall focus of this thesis is directed 

toward designing an energy efficient building by controlling room temperature.  One approach is 

based on a distributed parameter model represented by a three dimensional (3D) heat equation in 

a room with heater/cooler located at ceiling. The finite element method is implemented as part of 

a novel solution to this problem.  A reduced order model of only few states is derived using 

Proper Orthogonal Decomposition (POD).  A Linear Quadratic Regulator (LQR) is computed 

based on the reduced model, and applied to the full order model to control room temperature.  

Also, a receding horizon constrained linear quadratic Gaussian (LQG) controller is developed by 

minimizing energy cost of heating and cooling while satisfying hard and probabilistic 

temperature constraints. A stochastic receding horizon controller (RHC) is employed to solve the 

optimization problem with the so-called chance constraints governed by probability temperature 

levels.  Furthermore, a constrained stochastic linear quadratic control (SLQC) approach was 

developed for such purposes. The cost function to be minimized is quadratic, and two different 

cases are considered. The first case assumes the disturbance is Gaussian and the problem is 
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formulated to minimize the expected cost subject to a linear constraint and a probabilistic 

constraint. The second case assumes the disturbance is norm-bounded with distribution unknown 

and the problem is formulated as a min-max problem. By using SLQC, both problems are 

reduced to semidefinite optimization problems, where the optimal control may be computed 

efficiently. Later, some discussions on solving more requirements by SLQC are provided. 

Simulation and numerical results are given to demonstrate the validity of the proposed 

techniques shown in this thesis. 
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Chapter 1 

Introduction 

BACKGROUND AND OVERVIEW 

For centuries the heat equation has been one of the foremost problems focused on by the 

scientific community.  Fourier’s solution to the heat equation is a central component to the 

analysis of numerous problems throughout mathematics and engineering.  Now, nearly 2 

centuries later, the heat equation continues to constitute the conceptual foundation on which rests 

the analysis of many physical, biological, and social systems [1]. 

The impact of his solution has led to the development of many control engineering 

applications.  The study of the heat equation with respect to the parameters defined within the 

problem by the scientific community has produced many tools and results that can be applied to 

the physical nature of thermodynamic systems. This includes control, estimation, optimization, 

system identification, modeling, and simulation techniques coupled with advanced 

computational methods. 

According to the statistics compiled by United Technology Corporation in 2009, the 

building sector consumes about 40% of the energy used in the United States and is responsible 
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for nearly 40% of greenhouse gas emissions [5, 6]. Thus, in order to save energy, an important 

task is to reduce the building energy cost. One key issue for this purpose is the performance of 

building service systems, which can affect the climate and energy inside buildings. The control 

objective of buildings’ climate is to keep the room temperature in a predefined comfort zone. 

The sensor in each room samples the temperature and sends back to the control center in the 

building, from where the control action (cool or heat) is made and then realized by a set of 

actuators. The goal is thus to optimally design controller which can realize the temperature 

requirement and minimize energy consumptions. 

Buildings are complex multi-scale, multi-physics, and highly uncertain dynamic systems 

with many sources of disturbances [21]. Whole building simulation presents a formidable 

computational challenge making the development of design, optimization, and control tools of 

whole buildings difficult. At a fundamental level, there are several possible approaches to the 

design and control of high performance buildings. These include: (1) Simulation Based Design, 

(2) Holistic Fully Integrated Design, and (3) Hybrid Design Methods [5]. Optimal design and 

control of these systems are very challenging problems and are often done by a simulation based 

design.  This technique first develops a reduced order model on which the design is based and 

then an optimal solution is pursued [21].  

Fundamentally, this problem can be viewed as a complex thermodynamic system 

composed of heat transfer and heat flow physics.  When one considers the heat equation coupled 

with laminar flow (including boundary conditions, parameters, etc.) they are faced with a 

computationally expensive problem.  So not only is there an immense interest in finding an 

optimized solution for the heat equation but also on model reduction methods which simplify the 

solution.   
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Many engineering applications focus on boundary control problems because of sensor 

placement restrictions.  Employing this knowledge combined with control theory and modeling 

techniques allow engineers to develop effective solutions for a real time control process in a 

building environment.  It is necessary to consider these restrictions since this physical system 

have boundary surfaces such as walls, floors, ceilings, etc. exist, and other spatial limitations 

corresponding to observing a given system.  Therefore, it is necessary to implement a boundary 

control based solution.    

Reduction of building energy requires the development of highly efficient heating and 

cooling systems, which are more challenging than conventional systems [24]. The control task is 

to keep the room temperature as well as CO2 and illuminance levels within a predefined comfort 

range, which can be fulfilled with a set of different actuators. The actuators differ in terms of 

response time and effectiveness, in their dependence on weather conditions (e.g. cooling tower or 

blinds), and in energy costs.  The goal is to optimally choose the actuator settings depending on 

weather conditions in order to fulfill the comfort requirements and minimize energy costs [5]. 

Many studies have implemented LQR Control, LQG Control, PID, and adaptive control 

among many other methods by utilizing the states, estimates, and other parameters of HVAC 

systems.  For example, it is common for PID controllers to be used as an effective control for 

these systems.  In recent work, robust controllers with tuned cascading or neural network PID 

based controllers can be designed to enhance the performance of HVAC systems [1].  Other 

studies have shown that an algorithm that uses simple user input and adapts to changing office 

occupancy or ambient temperature in real time adaptive HVAC control can save a significant 

amount of energy [2].   However, since LQR is a control scheme that provides the best possible 
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performance with respect to some given measure of performance[4] it is widely implemented in 

optimized, linear or nonlinear dynamic systems. 

In addition to the many different control practices developed, modified, and applied to 

this problem there also exists a variety of model reduction and system identification methods 

used in this area.  Among the multitude of model reduction techniques, the proper orthogonal 

decomposition (POD) [13] is arguably the most popular method used in deriving reduced models 

for fluid flows governed by partial differential equations (PDEs) for simulation or control 

purposes.  The approach is based on simplifying the PDE into an approximating system of 

ordinary differential equations, which are then numerically integrated using standard techniques 

such as Euler's method, Runge-Kutta, etc.  In solving PDEs, the main challenge is to create an 

equation that approximates the equation to be studied, but is numerically stable, such that errors 

in the input and intermediate calculations do not accumulate and make the resulting output to be 

meaningless. The finite element model comprises thousands of states (18182) and therefore is 

not directly amenable to control design. This is due to the fact that the systematic design of 

optimal controllers based on the full order model results in the former having the same 

dimension, i.e., thousands of states. This is computational expensive and not feasible in real time. 

The order of the model needs to be first reduced and then a controller is designed based on the 

reduced model, and applied to the full order system to control the heat/cooling systems.     

To operate buildings more efficiently so that they are energy and cost effective, 

predictive integrated room automation can be used instead of conventional room automation.  

For instance, a predictive integrated room automation controllers can operate the buildings’ 

passive thermal storages based on predicted future disturbances (e.g. weather forecast) by 

making use of low cost energy sources [22].  One objective of this work is to design a receding 
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horizon predictive controller in order to minimize cost of heating and cooling a building’s rooms, 

while satisfying temperature constraints, imposed for occupants’ comfort.  The use of receding 

horizon control for building climate control is motivated by the fact that the plant is heavily 

influenced by external factors that can, to some extent, be forecast, e.g. the weather and 

occupants’ behavior. 

Model-based predictive control (MPC) has the ability to anticipate future events and can 

take control actions accordingly.  PID and LQR controllers do not have the predictive ability to 

dynamically react to system changes in this fashion.  Model predictive controllers rely on 

dynamic models of the process obtained by system identification.  MPC utilizes the system 

constraints that can be implemented in the controller, and effectively and efficiently control the 

system, and therefore it is ideal to incorporate this method here.   

In addition to the references cited above several other studies have focused on control of 

energy costs in building systems by applying a model-based predictive control (MPC) of thermal 

energy storage in building cooling systems [20].  The cooling systems are modeled as a nonlinear 

state-space model, and the cost function is quadratic in both energy price and control variables. 

Also, some studies have considered the estimation and control for a distributed parameter model 

of a multi-room building [25].  The goal in that study was to implement a control design in the 

room by using distributed parameter control theory. The system was governed by the Navier-

Stokes equation and a linear quadratic regulator (LQR) controller was designed. Moreover, [27] 

employed stochastic MPC technique to compute the control strategy for a cost function which 

was linear in the control variable for the thermal dynamics in a linear state-space model which 

described thermal energy and temperatures. Rule based control and performance bound methods 
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are also used in [27] as benchmarks to MPC schemes. Previous works [24] used a simplified 

building climate plant proposed by [22] and employed periodic MPC control law design. 

The model given in [24] was validated and compared to simulations with a well-known 

software for buildings and HVAC systems, TRNSYS.  The methods for constrained quadratic 

control of room temperature on a building climate dynamical were employed for this model.  

Constrained LQR and RHC techniques were developed to solve stochastic optimization 

problems.  Stochastic RHC is used to solve the problem with chance constraints. The problem 

was first formulated with hard constraints, then the constraint was relaxed with a predefined 

probability as formulated in [23].  In contrast to the periodic MPC developed in [24], the 

controllers here are developed by minimizing the cost of heating and cooling, while satisfying 

temperature constraints imposed for occupants’ comfort.   

In this work, further consideration is given to the same building climate plant in [24].  We 

study a quadratic cost function in terms of temperature errors and control inputs, which is subject 

to several constraints on the room temperature and control input. In particular, we consider two 

different cases. The first case assumes the disturbance is Gaussian and the problem is formulated 

to minimize the expected cost subject to a linear constraint on control input and a probabilistic 

constraint on the state. The latter constraint can be reduced to a hard constraint on control input 

exactly [31]. The second case assumes the disturbance is norm-bounded with distribution 

unknown and the problem is formulated as a min-max problem. By using the SLQC approach 

proposed in [31], the optimal solutions of problems in both cases may be solved via semidefinite 

programming exactly. Moreover, we also provide some discussions such that some other 

requirements related to energy efficient buildings may be augmented without introducing any 

complexity to the problems.  
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Additionally, [30] proposed a tractable approximation method for the problem. Both 

schemes in [27] and [30] considered chance constraints and solved them by using affine 

disturbance feedback.  However, unlike [27] and [30], the chance constraint is simplified to a 

hard constraint exactly without using affine disturbance feedback.  Furthermore, this work 

considers a stochastic quadratic cost function, which is taken expectation with respect to 

Gaussian disturbances in the first case, and is maximized over the bounded set of disturbances in 

the second case. The disturbance is non-convex and hard to resolve directly, but it can be 

approximated and formulated as a min-max problem.   Moreover, the cost function includes both 

quadratic forms of temperature errors and control input, which means the optimal control is 

designed to find a compromise between them.  Lastly, the problems are formulated into 

semidefinite optimization problems which may be solved through SDP for the optimal solutions 

efficiently. 
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CONTRIBUTIONS 

Contributions of the research in this work are summarized here:  

1. Developed a modeling and control approach for room temperature in buildings by 

employing a distributed parameter model coupled with high performance computing, and modern 

control theory to regulate room temperature.   

2. Numerically solved the heat transfer problem for the room geometry using the Finite 

Elements technique to formulate the full order model of the problem.  

3. The full order model for the room temperature is controlled by implementing Linear 

Quadratic Regulator (LQR).  

4. Derivation of the reduced model using Proper Orthogonal Decomposition (POD) and 

then apply the control to the reduced model.  These results are compared with the full order model 

control.  

5. A linear quadratic Guassian (LQG) controller and receding horizon controller (RHC) 

for with linear and probabilistic constraints are designed with an optimal solution and applied to 

HVAC systems and building model. 

6. SLQC method was developed to solve stochastic optimization problems by 

semidefinite programming.  This approach is considered for a stochastic quadratic cost function 

with Gaussian disturbances, and in the second case assumes the disturbance is norm-bounded 

with distribution unknown.   
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THESIS ORGANIZATION 

Chapter 2 introduces the existing concepts of proper orthogonal decomposition (POD) and 

The heat transfer problem for the room geometry was solved numerically solve the by using the 

Finite Elements technique to formulate the full order model of the problem.  Attention is given to 

the boundary conditions, basis function, and derivations for the finite element solution of the 3D 

heat equation problem.  Optimal sensor location is addressed for the control design.  Also, in this 

section we controlled the full order model for the room temperature using the Linear Quadratic 

Regulator (LQR). 

Chapter 3 extends the techniques of Chapter 2 for reduced order systems.  This chapter 

presents the design methodology for the linear-quadratic regulator controller using the boundary 

feedback control laws for the resultant finite dimensional system described by the heat equation 

and shows how the Finite Element Method of snapshots and the analytical computation of the 

POD modes for systems described by partial differential equation can be implemented in this 

system.  Distributed parameter theory is shown to provide useful information about building 

design and control.  In this chapter, we reduce the model using Proper Orthogonal Decomposition 

(POD) and then apply the control to the reduced model.  The step response for both full and 

reduced controlled system is shown, and we compare the results from reduced order with the full 

order model control. 

Chapter 4 focuses on constrained quadratic control of room temperature on a building 

climate dynamical model.  The building climate model is described and we introduced the 

constrained quadratic control techniques used in this work.  Constrained LQR and RHC are 

employed to solve stochastic optimization problems, and stochastic RHC is used to solve the 
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problem with chance constraints. Simulation results are given and show the performance of the 

methods in controlling the building climate. 

Chapter 5 introduces the concept of constrained stochastic linear quadratic control 

(SLQC) and show how implementing a semidefinite programming approach yields optimal 

control to this problem.  SLQC is used to compute the optimal control solution for the building 

model subject to linear inequality constraints and additional case with disturbance that is norm-

bounded with an unknown distribution.  The SLQC approach is used to solve the optimal 

solutions of problems in both cases via semidefinite programming. The second problem is 

formulated as a min-max problem and the SDP is compared with LQR. Simulation results to 

show the performance of the methods in controlling the building climate.  

Chapter 6 discusses the thesis contributions, and recommendations for future research. 

Concluding thoughts on extending a rigorous study of air flow dynamics and optimal sensor 

location are provided.  Additional notes on applying constrained quadratic control in future work 

that focuses on robust control strategy with chance constraints are also given. Moreover, 

discussions on SLQC such that some other requirements related to energy efficient buildings are 

presented. 
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Chapter 2 

Control and Room Temperature 

Optimization of Energy Efficient 

Buildings 
 

Many modern technologies employ a control method from a wide variety of sophisticated 

approaches to address energy efficiency and financial costs.  In recent years, the control 

community has placed significant interest placed in the science of whole building simulation, and 

reducing building energy consumption.  However, this is a very challenging problem due to the 

complexity of these dynamic systems.  The finite element technique is a numerical method that 

creates a mathematical representation of a physical system and finds approximate solutions of 

partial differential equations.  The Finite Element Method solves PDEs by dividing the model 

into a mesh and captures the behavior of each element that is stable.  It is an extremely valuable 

tool engineers can use to evaluate complex domains when precision varies or the solution lacks 

smoothness [8], [9], [10].  This analytical tool is widely used in vibration analysis, fluid 

dynamics, and thermodynamic analysis.  Also, in this section we controlled the full order model 

for the room temperature using the Linear Quadratic Regulator (LQR). 
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HEAT TRANSFER PROBLEM 

In this section, we formulate the problem and numerically solve the heat transfer problem 

for the room geometry using the Finite Elements technique to formulate the full order model of 

the problem.   

 

 

PROBLEM FORMULATION 

The cooling and heat flow are modeled by a 3-dimensional (3D) heat equation [11] 

    
           

  
   (             )       (2.1) 

where t denotes time, x, y, z are spatial coordinated assumed to belong to a domain Ω which 

represents the room geometry  

ρ is the density in lb/ft
3 

Cp is the specific heat capacity at constant pressure in J / lb ∙ F 

T is absolute temperature in F 

k is thermal conductivity in w / lb ∙ F 

Q is the heat source in w/ft
3
 

The initial temperature is 40 F.  Boundary condition at the center of the top surface is a fixed 

temperature at 150 F. 

The domain of the 3D heat equation   is the room geometry,  

 The initial conditions at ot t is 

                             (2.2) 
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 Dirichlet type boundary condition: 

             ̂               (2.3) 

 Neumann type boundary condition  

             ̂               (2.4 ) 

where         is the heat flux,     and      are Dirichlet and Neumann boundaries 

respectively as shown in Figure 1.1 where                . 

 

 

 

Figure 2.1. Room Geometry. 
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FINITE ELEMENT SOLUTION OF THE 3D HEAT EQUATION PROBLEM 

The 3D heat equation is multiplied by a basis function T  and integrated over the 

domain   as follows: 

∫         
 

  ∫           
 

     (2.5) 

The basis function T has the following property: 

                 (2.6) 

Using the divergence theorem 

∫          

 

  ∫         

 

  ∫          

 

 

   ∫             
  ∫          

 
    (2.7) 

Using the Neumann boundary condition (2.4) and the basis function property (2.6) we have: 

∫          

  

  ∫          

   

  ∫           

   

 

   ̂          (2.8) 

Then the weak formulation of the problem follows 

∫      ̇   
 

  ∫     
 

  ∫  ̂   
   

     (2.9) 

The spatial approximation of solution in the domain Ω is performed by a linear combination of 

shape functions            , where 

                                       (2.10) 
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where N is the total number of solution nodes and       is the time dependent coefficients. The 

basis function is also approximated: 

                         (2.11) 

Since the basis function is time independent,   coefficients will only be numbers. Substitute in 

the weak form (2.8) and after some derivations; we get the system of ordinary differential 

equations (ODEs) as follows 

     ̇          ∫  ̂    
     (2.12) 

where 

     ∫               

 

 

is the thermal capacity matrix and 

     ∫(               )         

 

 

is the heat transfer matrix. The system in (2.12) can then be written in state space form as 

 ̇             (2.13) 

where          
               

                . 

The plot of one snapshot of the 3D heat diffusion in the room using finite element 

analysis with the corresponding mesh is shown in Fig 3. One heating/cooling element is assumed 

to be installed in the room ceiling. Finite element solution at different times is shown in figures 

2.3, 2.4, 2.5 and 2.6. 
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Figure 2.2. The 3D heat equation with corresponding finite element mesh. Number of mesh 

nodes = number of states = 18182 nodes. 

 

 

 

 

 

Figure  2.3. Temperature distribution (in  ) after 1 minute. 
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Figure  2.4. Temperature distribution (in  ) after 20 minutes. 

 

 

 

Figure  2.5. Temperature distribution (in  ) after 40 minutes. 
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Figure  2.6. Temperature distribution (in  ) after 60 minutes. 

 

 

TEMPERATURE CONTROL 

A linear quadratic regulator (LQR) controller [12] is designed to keep the room 

temperature at the desired value. The control design is based on the reduced order model and 

applied to the full order system of the form 

 ̇        

where x is the states vector that contains 18182 temperature values at the nodes shown in the 

mesh figure. The sensor location is chosen at (04, 0, 0.5), so the measurement equation has the 

following form: 
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where                is a vector of zeros everywhere except for the sensor location node 

where the value is 1. Note that we assumed the temperature is measured by only one sensor.  One 

of the main issues arising in automatic control of room temperature is the best location of sensors 

in order to effectively estimate the temperature, especially in the context of using distributed 

parameter models. From a general point of view, the problem of optimal sensor location can be 

viewed as the problem of maximizing the output generated by a given state [15], [16]. In room 

temperature control it is no possible to sense inside the flow domain and full state estimation is 

not practical. For such problems, the sensors must be located on the boundary, in our case, 

somewhere on the room walls. In this work, we rely on a search over the domain boundary δΩ 

for candidate locations to determine the best sensor position. In our simulation the best sensor 

location is represented in Figure 2.7. 

 

 

 

Figure. 2.7. Sensor Location. 
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LQR controller is used as follows: the state-feedback law u Kx   minimizes the quadratic cost 

function: 

      ∫                  (3.1) 

Subject to the system dynamics  ̇        figure 3.2 shows the step response for two 

different desired values of 70 F and 83 F . 

 

 

 

Figure 2.8. Step response for 2 desired set points 70 F and 83 F . 
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Note that the closed-loop response is stable and tracks the set points.  The corresponding 

control input is plotted in the Figure 3.3. A constraint for the input signal to be bounded between 

40 F and 150 F is added to account for heating/cooling systems’ saturation. 

 

 

 

Figure 2.9. Control Input. 
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Chapter 3 

 

Boundary Feedback Control from 

Reduced Order Systems 
 

 
A great deal of research in model reduction and POD for reduced-order modeling has 

been performed and they are both well-established areas of research in the scientific community.  

It is arguably the most popular method used in deriving reduced models for simulation or control 

of PDEs [17].  The goal of any model reduction technique is to accurately and efficiently identify 

a reduced-order model with the least number of states possible while keeping the representation 

within a given error tolerance.  Many studies have shown that POD models can be used to 

construct a new reduced-order state space representation of a physical system.  This is 

accomplished by obtaining snapshots from experiments or simulations, and constructing basis 

modes.  Then a boundary feedback controller can be designed from reduced-order POD model, 

and applied to the system. 
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PROBLEM FORMULATION 

With   snapshots in hand the     correlation matrix   is defined by [14]: 

     〈     〉      (3.1) 

is constructed, where 〈  〉 denoted the usual Euclidean inner product of snapshots  . 

With   denoting the number of POD modes to be constructed, the first   eigenvalues of 

largest magnitude, {  }   
  of   are found. They are sorted in descending order, and their 

corresponding eigenvectors {  }   
  are calculated. Each eigenvector is normalized so that 

‖  ‖
    

 

  
      (3.2) 

The orthonormal POD basis set {  }   
  is constructed according to [12]: 

    ∑       
 
        (3.3) 

where      is the     component of   . With a POD basis in hand, the solution    of the 

distributed parameter model is approximated as a linear combination of POD modes, i.e., 

    ∑     
 
        (3.4) 

This shows that POD finds a low dimensional embedding of the snapshots that preserve most of 

the energy as measured in a much higher dimensional solution space. It is found that taking only 

the largest 50 eigenvalues keeps 98% of the energy of the full order system. Figures 4.1 and 4.2 

show the full order model compared to the reduced order model of 50 modes respectively, both 

after 40 minutes. Figures 4.3 and 4.4 show the full order model compared to the reduced order 

model of 50 modes respectively, both after 60 minutes.  It is shown from the figures that the 

reduced order is so close to the full order which means that working with the reduced order is 

acceptable and reliable. 

 



 

24 
 

 

Figure 3.1. Full order model at t = 40 minutes. 

 

 

Figure 3.2. Reduced order model at t = 40 minutes. 
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Figure 3.3. Full order model at t = 60 minutes. 

 

 

 

Figure 3.4. Reduced order model at t = 60 minutes. 
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Step response for both full and reduced controlled system is shown in figure 3.3. The 

difference lies between 1 or 2   which is very acceptable considering the large reduction ration 

from 18182 states to 50. Figure 3.4 shows the input signal for full and reduced order systems. 

The reduced order controlled input signal leads or lags the full order controlled input signal by 1 

or 2 minutes. 

 

Figure 3.5. Step response for full and reduced order models. 

 

 

Figure 3.6. Controlled input signal for full order and reduced order controlled systems. 
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Chapter 4 

Constrained Quadratic Control of Energy 

Efficient Buildings 
 

In order to operate buildings more efficiently so that they are energy and cost effective, 

predictive integrated room automation has been developed to replace conventional room 

automation.  For instance, a predictive integrated room automation controller can operate based 

on a buildings’ passive thermal storages based on predicted future disturbances (e.g. weather 

forecast) by making use of low cost energy sources [22].  Model-based predictive control (MPC) 

has the ability to anticipate future events and can take control actions accordingly.  MPC utilizes 

the system constraints that can be implemented in the controller, and effectively and efficiently 

control the system, and therefore it is ideal to incorporate this method here.  A receding horizon 

constrained linear quadratic Gaussian (LQG) controller is developed by minimizing the energy 

cost while satisfying hard and probabilistic temperature constraints imposed for occupants’ 

comfort. A stochastic receding horizon controller (RHC) is employed to solve the optimization 

problem with the so-called chance constraints governed by probability temperature levels.  
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BUILDING SYSTEM MODEL 

The system model used in this work was proposed in [22] and employed in [23].  The 

continuous-time dynamics of the room temperature, interior-wall surface temperature, and 

exterior-wall core temperature, can be represented as follows: 

    
 

  
                                                             

    
 

  
                        

    
 

  
                           

where the parameters in the model above are: 

t1: Room air temperature   

t2: Interior wall surface air temperature   

t3: Exterior wall core temperature   

 uh : Heating power (  ) kW 

uc : Cooling power (≤ ) kW 

δ1: Outside air temperature   

 δ2: Solar radiation kW 

 δ3: Internal heat sources kW 

 

C1               kJ/  

C2              kJ/  

C3             kJ/  

K1         kW/  

K2         kW/  

K3     kW/  

K4        kW/  

K5         kW/  

 

The system states are the room air temperature t1, interior wall surface temperature t2, and 

exterior wall core temperature t3. The control signals uh and uc represent heating and cooling 

power, and they can be combined as one variable u = uh +uc because heating and cooling are not 

simultaneous. For more details about this model, please refer to [22, 23]. 
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Define the state vector x, the control signal vector u, and the environment stochastic 

disturbance vector d as: 

   [
  
  
  

] ,    [
  

  
] ,    [

  

  

  

] 

The state-space model can then be written compactly as: 

 ̇                (4.1) 

where 

     

 
 

   
                

 

   
        

  

  

      

  

         

  
 

  

  
 

         

  

 

      

 

  
  

 

  

 
 

 

      

  

  

 

  

 

  

 
 

  
 

  

  
  

 

The following constraints are imposed on the temperatures during a day to satisfy the 

requirement: 

   {
                        
                                   

      (4.2a) 

   {
                        
                                 

      (4.2b) 
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Thus, the control constraint can be written in terms of u as: 

                   (4.3) 

From above constraints, we can observe that both the room air temperature and control signal are 

constrained. In the next section, the control problem is formulated. 

 

 

PROBLEM FORMULATION 

We consider the problem where the temperature t1 is required to remain within certain 

bounds of a constant reference tr in the presence of the disturbance vector d.  And we can also 

assign set points for both t2 and t3, but without any other constraint on them.  Thus, we can 

regulate the output error e := x−xr, where xr is the set point vector of x.  Our objective is to find 

for the system (1) discretized, the M-control sequence {u0; · · · ; uM−1}, where ui := u(ti),i = 0; · · · 

; M; ti = iΔT, where △T is the sampling period; and corresponding state sequence {x0; · · · ; xM−1 

} and error sequence {e0; · · · ; eM−1}, that minimize the finite horizon objective function: 

    {  } {  } {  }   
 

 
          

            ∑   
    

   

   

  ∑   
    

   

   

   

where E(•) denotes the expectation operator, P ≥ 0; Q ≥ 0 (i.e., semi-definite positive matrices), 

R > 0 (i.e., positive definite matrix), N is the prediction horizon, M ≤ N is the control horizon, 

subject to the constraints. 

The cost function in this form can be explained as minimizing the temperature errors as 

well as saving energy. The first problem is formulated with hard constraints (2) and (3). 
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Problem 1 

                  

subject to (2), (3), and discretized version of (1)          (4.4) 

 

The second problem is formulated with the constraints under the predefined probability to further 

reduce the energy consumption as temperature comfort is a little relaxed. The constraints with 

probability can be defined as [23]: 

                 

                 

(4.5) 

where 

       
      

    

       
        

    

(4.6) 

Gi;gi;Fi; fi are matrices with proper dimensions; and αi;βi ∈ [0;1] denote the probability level.  

 

Based on this, we can formulate the second problem as: 

 

Problem 2 

                  

(4.7) 

subject to (5) and discretized version of (1). 

Problem 1 will be addressed with both LQG and RHC methods, while for Problem 2, we will 

transform it to a convex deterministic second-order cone program (SOCP) and solve it with RHC 

later. 
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CONTROL STRATEGIES 

In this section, we will introduce the control techniques used in this work. We assume 

that the control center of the building has full state information, i.e., reading from sensors or 

using a Kalman Filter providing the system is observable. 

Then, the control signal will be a function of states. 

 

Linear Quadratic Gaussian Regulator  

First, the discretized system can be written as follows: 

 ̇                 

(4.8) 

 

The LQG controller designed here employs a simple strategy, first compute the LQG 

control signal which minimizes the cost function, after which the control constraint (3) is 

applied. That is, if the LQG control signal exceeds the range of the constraint, then it will be cut 

off from above or below. The discrete-time LQG can be computed as follows [25]: 

  
               

(4.9) 

where 

         
          

      

(4.10) 

and Pk is calculated iteratively backwards in time by the dynamic Riccati equation:  

          
          

      
           

       

(4.11) 

from initial condition PN = P. 

Then, the constrained control input based on LQG is: 
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   {

  
                 

                      
    

                     
    

 

 (4.12) 

where β1;β2 are the lower and upper bound of the control signal. 

 

 

RECEDING HORIZON CONTROL (RHC) 

The idea of RHC is to start with a fixed optimization horizon, of length N, with the 

current state as initial state. The steps of RHC are summarized as follows [26]: 

• At some time k, with the state xk as initial state, solve the optimal control problem over a 

fixed length N, from [k;k+N −1], taking the current and future constraints into account. 

• Apply the control signal uk corresponding to xk to the system. 

• Compute the state obtained at time k+1. 

• Repeat the previous three steps from time k+1. 

One method to solve the RHC problem is to utilize geometric arguments. The essential 

idea depends on the nice geometric interpretation in the control-space [26]. The optimal 

constrained control depends on which partition the state vector lies in. That is, in different 

partitions, the control is different. Please refer to [26] for more details. 

Note that the different between the RHC used in this work and the periodic MPC in [24] 

is that the latter requires a periodicity of the room temperature, thus only one day (24 hours) 

needs to be considered; while in this work, the RHC applied mainly focuses minimizing the 

energy cost (control power) and temperature errors (e). 
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Thus, control inputs can be written as [23]: 

   ∑                                      
     (4.13) 

In the matrix form it leads to 

  u = Md+h  

    

    
       

         
                

 

      
         

    

      
         

    

Also define    ̅     ̅ 
      ̅

   
   . And write the prediction dynamics in the form: 

              .  Thus, follow [23], the constraints with probability can be equivalently 

formulated as deterministic second order cone constraints. Moreover, 

Problem 2 can be reformulated as a SOCP: 

(           )              (  ̅   )
 
          ̅   

(      ̅)
 
     (  ̅   )   (  ̅   )

 
        (  ̅   )   (4.14) 

subject to  

          ‖        ‖                  

          ‖   ‖              (4.15) 

where Φ is the Gaussian cumulative probability corresponding to di. 

Note that the cost function considered in this thesis is quadratic function in contrast to the 

one used in [27] which is a linear function of u. Moreover, the objective here includes not only 
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minimizing the control power, but also reducing the error between room temperature and the 

default value.  Furthermore, the SOCP problem is a nonlinear convex optimization problem. 

There are several algorithms that can provide a solution, i.e., interior point method [27]. 

 

 

SIMULATION RESULTS 

In this section, simulation results are given to illustrate the proposed methods. The 

parameters of the climate model are given in section 2. The continuous-time system (1) is 

sampled with a zero-order hold and a sample-period of 10 minutes, resulting 144 samples per 

day. The initial temperatures are set to be [72:5 ;69:8 ;64:4 ]. The temperature reference 

trajectory is xr = [74:3 ;74:3 ;68:0 ]. 

The cost matrices Q; R are chosen: Q = diag(1;0;0) and R = 0:00002. Note that the 

smaller the R is, the faster the response will be but with more cost on inputs. The disturbance d in 

one day (assume it is periodic with period 24 hours) in this example is plotted: 

 

 

 

LQG Performance 

First, we apply the constrained LQR controller (12). The temperature t1 and control 

power in 10 days are plotted in Figure  2. It is obvious that t1 fluctuates around the set point 

temperature and in the range of constraint. However, some control inputs exceeds the range of 

the requirement and thus cut off at the boundaries. 

 



 

36 
 

 

Figure 4.1. Disturbance to the building climate system. 

 

We perform one more simulation in Figure 3 which removes the constraint on the control power 

for comparison. We can observe without the control constraints, t1 fluctuates around the set point 

with a smaller fluctuation magnitude compared with Figure 2, but the price is more power cost. 

 

 

RHC Performance 

The RHC controller can be written in the linear form: 

             

where the super index r denotes the active region, i.e. the region which contains the given state 

xk. To calculate the solution, we employ the Multi-Parametric Toolbox [28]. We increase R = 

0:001, and compute the optimal solution to the finite horizon control problem with N = 5. The 

solution consists of 51 regions, and the result is plotted in Figure 4 which shows that the room 
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temperature stays within the required range with less energy consumption than the preceding 

control. 

 

 

Stochastic RHC for Problem 2 

Next, we focus on Problem 2. The probability levels for the temperature and control 

power are chosen as: αi = 0:2 and βi = 0:2. The disturbances to the system are the same as in 

Figure 1, while approximately considered as Gaussian. 

The optimization problem is solved by interior point method and then applied RHC with 

finite horizon N = 2 and R = 0:00002. t1 and u are plotted in Figure  5 which shows that the room 

temperature is within the desired range with additional energy savings. 

 

 

Figure 4.2. Room temperature t1 and control power in 10 days using LQR. 
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Figure 4.3. Room temperature t1 and control power in 10 days  

without control constraints using LQR. 

 

 

 

Figure 4.4. Room temperature t1 and control power in 10 days using RHC. 
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Figure 4.5. Room temperature t1 and control power in 10 days  

                using stochastic RHC corresponding to Problem 2. 
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Chapter 5 

Stochastic Linear Quadratic Control of 

Energy Efficient Buildings: A 

Semidefinite Programming Approach 
 

The previous chapter discussed receding horizon constrained linear quadratic Gaussian 

controllers that minimized the cost of heating and cooling.  This chapter introduces the concept 

of constrained stochastic linear quadratic control (SLQC) and show how implementing a 

semidefinite programming approach yields optimal control to this problem.  SLQC is used to 

compute the optimal control solution for the building model subject to linear inequality 

constraints and additional case with disturbance that is norm-bounded with an unknown 

distribution.  The SLQC approach is used to solve the optimal solutions of problems in both 

cases via semidefinite programming. The second problem is formulated as a min-max problem 

and the SDP is compared with LQR.  Moreover, the cost function includes both quadratic forms 

of temperature errors and control input, which means the optimal control is designed to find a 

compromise between them.  Lastly, the problems are formulated into semidefinite optimization 

problems which may be solved through SDP for the optimal solutions efficiently. 
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BUILDING SYSTEM MODEL 

The continuous-time dynamics of the room temperature, interior-wall surface 

temperature, and exterior-wall core temperature, can be represented as follows: 

    
 

  
                                                             

    
 

  
                        

    
 

  
                           

where the parameters in the model above are: 

t1: Room air temperature   

t2: Interior wall surface air temperature   

t3: Exterior wall core temperature   

 uh : Heating power (  ) kW 

uc : Cooling power (≤ ) kW 

δ1: Outside air temperature   

 δ2: Solar radiation kW 

 δ3: Internal heat sources kW 

 

C1               kJ/  

C2              kJ/  

C3             kJ/  

K1         kW/  

K2         kW/  

K3     kW/  

K4        kW/  

K5         kW/  

 

The system states are the room air temperature t1, interior wall surface temperature t2, and 

exterior wall core temperature t3. The control signals uh and uc represent heating and cooling 

power, and they can be combined as one variable u = uh +uc because heating and cooling are not 

simultaneous. For more details about this model, please refer to [22, 23]. 
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Define the state vector x, the control signal vector u, and the environment stochastic 

disturbance vector d as: 

   [
  
  
  

] ,    [
  

  
] ,    [

  

  

  

] 

The state-space model can then be written compactly as: 

 ̇                (5.1) 

where 

     

 
 

   
                

 

   
        

  

  

      

  

         

  
 

  

  
 

         

  

 

      

 

  
  

 

  

 
 

 

      

  

  

 

  

 

  

 
 

  
 

  

  
  

 

The following constraints are imposed on the temperatures during a day to satisfy the 

requirement: 

   {
                        
                                   

      (5.2a) 

   {
                        
                                 

      (5.2b) 
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Thus, the control constraint can be written in terms of u as: 

                   (5.3) 

From above constraints, we can observe that both the room air temperature and control signal are 

constrained. In the next section, the control problem is formulated. 

 

 

PROBLEM FORMULATION 

We consider the problem where the temperature t1 is required to remain within certain 

bounds of a constant in the presence of the disturbance vector d.  Moreover, we can assign 

setpoints for t1, t2 and t3, but without any other constraint on t2 and t3.  Thus, we can regulate the 

output error ek := xk −xr at time k, where xr is the setpoint vector of x. We hope to minimize the 

error e to keep the temperature t1 close to the desired value. Meanwhile, we also hope to use as 

less power as we can to save energy.  It follows then that our objective is to find for the system 

(1) discretized, the M-control sequence {u0; · · · ;uM−1} , where ui := u(ti), i = 0; · · · ; M; M is an 

integer large enough, ti = iΔT, where ΔT is the sampling period; and corresponding state 

sequence {x0; · · · ;xM−1} and error sequence {e0; · · · ;eM−1} , that minimize the finite horizon 

objective function: 

             
 

 
         

            ∑   
    

   

   

  ∑   
    

   

   

   

 (5.5) 

where P ≥ 0; Q ≥ 0 (i.e., semi-definite positive matrices), R > 0 (i.e., positive definite matrix),  N 

is the prediction horizon, Gaussian disturbance ω, and 
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The differences between the cost function above and those considered in [27] and [30] are that 

[27] used a linear cost function in the control input and [30] assumed the disturbance was 0 in the 

cost function which simplified the problem. 

 

 

Constraints on Temperature:  

In this work, we consider two cases: The disturbance is known to be Gaussian and the 

disturbance belongs to some norm-bounded set while its distribution is unknown. 

Since the disturbance dk is random, the state xk is not exactly known and any constraints 

on the state could be formulated in a probabilistic sense [31].  Thus, similar as [27] and [30], the 

constraint on xk can be described by the so-called chance constraint as follows: 

               

The above constraint is non-convex and hard to resolve directly. In the first case when the 

disturbance is Gaussian, as shown in [27] and [30], the authors took uk as affine disturbance 

feedback to approximate and simplify this constraint.  However, if we do not assume any form of 

the control input, we can still simplify the chance constraint to a hard constraint exactly as 

already shown in [31]. 

Assume the ω are independent and normally distributed, i.e.,      N        where Σ > 0. 

Then, we have the following theorem from [31]. 
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Theorem 5.1: Consider a linear system with the state written as: 

    ̃     ̃    ̃     (5.8) 

Then, the constraint 

            (5.9) 

where      ̃             ̃       ̃   ‖∑
 

 
  ̃  ‖

 
             implies the chance 

constraint (7). 

It follows then that the problem corresponding to the first case can be formulated as 

follows: 

 

Problem 5.1:   Find 

                         (5.10) 

subject to (4), (9), and discretized version of (1). where Eω (•) denotes the expectation operator 

with respect to the Gaussian disturbance ω. 

In the second case, assume the disturbance w belongs to a norm bounded set, e.g., 

    {    ‖ ‖     } 

In this case, the chance constraint can not be transformed to a hard constraint as shown 

above. Thus, in this work, we use a hard constraint to approximate it. First, recall that we hope 

Gix > gi to be satisfied. Then, by (8), we reach that 

   ̃       ̃       ̃       

which is implied by 

   ̃           ̃    ‖ ̃   ‖ 
      (5.11) 
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Note that (11) will introduce some conservativeness comparing to the desired constraint.  

Thus, the problem of the second case can be formulated as a min-max problem: 

Problem 5.2: Find 

                      
        (5.12) 

subject to (4), (11), and discretized version of (1). 

This problem can be explained as follows: First, search out the worst value of ω that 

maximizes the cost, then, find an optimal control that minimizes the cost in the worst situation. 

In the next section, we employ the technique developed in [31] to transform both problems to 

semidefinite optimization problems, where they can be solved efficiently. 

 

 

CONTROL STRATEGIES 

If there is no constraint, the optimization problem under Gaussian disturbance can be 

solved by linear quadratic regular (LQR) through Bellman’s recursion. However, with 

constraints, this approach involves a huge amount of computation to find the optimal solution. 

To find the optimal values for each problem, we employ the stochastic linear quadratic control 

(SLQC) to formulate the problems as semidefinite optimization problems. 

 

 

LQR Control 

First, it is important to discuss the LQR control strategy for the first problem briefly.  The 

LQG controller designed here employs a simple strategy, first compute the LQG control signal 

which minimizes the cost function, after which the control constraint (3) is applied. That is, if the 
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LQG control signal exceeds the range of the constraint, then it will be cut off from above or 

below. 

The discrete-time finite horizon LQR can be computed by dynamic programming and 

written as follows [25]: 

  
                   (4.9) 

where 

         
          

        (4.10) 

and Pk is calculated iteratively backwards in time by the dynamic Riccati equation:  

          
          

      
           

       

(4.11) 

from initial condition PN = P. 

Using a simple saturation method, the constrained control input based on LQG can be written as 

the following: 

   {

  
                 

                      
    

                     
    

 

 (4.12) 

where u1;u2 are the lower and upper bound of the control signal from constraints. If the control 

computed by LQR exceeds either the lower or upper bound, then the control input is cut off to be 

the bound that it exceeds. Note that from the analysis in the previous section, the chance 

constraint on states can be reduced to the hard constraint on the control input represented by (9). 
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SDP Approach for Problem 5.1 

In this section, we applied the technique in [31] to formulate Problem 5.1 as a 

semidefinite optimization problem. An obvious result about the cost function is given in the 

following proposition. 

 

Proposition 5.1: The cost function (5) can be written as: 

                       
                                    ̂ 

 (5.17) 

for vectors a, b, c and matrices A, B, C, D with appropriate dimensions.  We also have the 

following for matrices B and C such that B > 0, C    0 (positive definite and semi-definite 

positive matrices, respectively). 

 

Proof: The original system can be written in terms of error dynamics, at time k,  

     ̃       ̃       ̃           

where          
            and from (1),         are 3×1 and    is a scalar so that 

 ̃       
  

 ̃       
                      

 ̃       
                       

 (5.18) 
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Then, after some manipulations, the error state term in cost function becomes: 

  
        

     
            

     
  ( ̃       ̃    )      ̃   

   ̃    

    ̃   
   ̃         ̃   

   ̃          
  ( ̃       ̃       ̃    )

      
        

(5.19) 

Thus, we reach the formula of the cost function stated above with 

   ∑  ̃   
   ̃   

 

   

 

               ∑  ̃   
   ̃   

 

   

 

   ∑  ̃   
   ̃   

 

   

 

   ∑     
   ̃   

 

   

 

  ( ∑  ̃   
   ̃   

 

   

)    ∑  ̃   
      

 

   

  

   ∑  ̃   
      

 

   

 

 ̂   ∑     
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  (∑  ̃   
   ̃   

 

   

)     ∑  ̃   
      

 

   

  

(5.20) 

Similarly as [31], let              and          , then by eliminating the constant terms 

and take                , the cost function above can be further reduced to be: 

 ̃                                

(5.21) 

Taking the expectation of the above cost, we have 

 ̂                                  ∑  

(5.22) 

Again, taking away constant terms, the cost to be minimized is  ̂                    . 

Then, the Problem 5.1 is equivalent to find                ̂ . This problem can be solved 

through SDP to obtain the optimal solution, as shown in the next theorem. 

 

Theorem 5.2: Problem 5.1 may be solved by the following semidefinite optimization problem: 

           

                   

      

                
    

            (5.23) 

in decision variables   and  .  

. 
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Proof: The proof is given below by following the technique in Theorem 3 in [31].  First, note the 

minimization of  ̂           can be rewritten as 

           

                              (5.24) 

The constraint (24) can be further written as 

                                     

   

                              (5.25) 

Then, by Schur complement lemma, (25) can be formulated as (26). Moreover, note that (4) and 

(9) are linear constraints on the control input, which can be added without increasing the 

complexity type. Thus, we obtain the statement. 

 

 

SDP Approach for Problem 5.2 

In the last section, we provided an exact solution for Problem 5.1 under the assumption 

that the disturbance is Gaussian. However, in the real world, this assumption does not hold most 

of the time, rather, the disturbance does not follow a regular probability distribution. Usually, it 

is assumed that the disturbance is bounded (e.g., temperatures will not go unbounded) in a given 

set. Thus, the problem was formulated as Problem 5.2. It can be viewed as finding the optimal 

control that minimizes the worst cost in searching in the disturbance bound. The advantage of 

solving this problem is that it is not necessary to know the distribution of the disturbance, which 

is used to compute the expected cost. Moreover, by minimizing the maximum of the cost, it can 
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be guaranteed that the overall cost will be limited in an appropriate range. The solution of 

Problem 5.2 can be represented by the following semidefinite optimization problem by directly 

applying the approach in [31] and stated in the next theorem. 

 

Theorem 5.3: Problem 5.2 may be solved by: 

           

                    

    

           

               

     

(5.26) 

in decision variables       and λ . 

The optimal control input can be obtained by the transformation                

after solving the above problem. 

 

Additional Discussion 

Although in the previous sections, we proposed to use SLQC to compute the optimal 

control solution for the building model subject to linear inequality constraints, we also would 

like to claim that this technique may solve more requirements in the building climate control. 
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1) Closed-Loop Control  

Theorem 5.2 and 5.3 solve the problems by providing open-loop control, they can be 

extended to closed-loop control easily.  For example, after solving Theorem 5.2 and obtaining 

the control vector u, consider the first component as the current control applied on the building.  

Then, with the next temperature information coming (assume a full state feedback), use it as x0 

and compute the control vector again through Theorem 5.2.  If the states are not measured 

accurately, e.g., corrupted by noise, then, by assuming the state estimate  ̂       , the form 

of the cost function is unaltered by [31]. 

 

2) Constraints on the Input Power 

 One interesting restriction in building energy control is the power of the control signal, 

which is the power injected to the building for control purposes. This power is expected to be as 

small as possible to save energy. One constraint of the control input for such purpose is 

represented by (4). Another constraint that may be interesting is the total power of the 

consumption, which may be represented by ‖ ‖ 
     (note the input can be 

positive or negative). Such a constraint may be added to either problem without increasing the 

complexity type since it is only a second-order cone constraint. 

 

3) Chance Constraints on the Performance  

Another interesting requirement is the performance guarantee. The work in [31] has 

demonstrated that the probability 
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may be implied by a convex quadratic constraint, which can be added to either problem without 

raising the complexity type. 

 

 

SIMULATION RESULTS 

In this section, we present simulation results which demonstrate validity of the SLQC 

method in the above problems. The desired temperature or reference temperature of the room air 

temperature is set as            . The temperature was sampled every 10 minutes, and seen 

below is the plot t1 and the control input. 

 

 

Figure 5.1. Disturbance to the building climate system. 
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Figure 5.2. Room temperature t1 and control power in 10 days using LQR. 

  

 

for each method during a period of 10 days in the sequel. The disturbances is shown in Fig. 1 

First, we plot the trend of t1 using LQR control (15) in Fig. 2, and using SDP through (26) in 

Figure 5.3. It is observed that both LQR and SDP techniques can keep t1 in the desired range and 

close to the reference temperature. To further illustrate the difference between them, we compute 

‖ ‖   for both methods.  For LQR, ‖ ‖        , while for SDP, ‖ ‖        , which 

shows that the proposed SDP technique computes a better control by reducing the power. 

Moreover, we plot the trend of t1 using SDP for Theorem 5.3 in Fig.               It is 

obvious that even we do not know the distribution of the disturbance; we still can control the 

temperature within the desired range. However, we should also note, the controlled temperature 

has some distance from the reference signal. 
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Figure 5.3. Room temperature t1 and control power in 10 days using SDP in Theorem 5.2. 

 

 

 

Figure 5.4. Room temperature t1 and control power in 10 days using SDP in Theorem 5.3. 
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Chapter 6  

Conclusion 

In this thesis, we developed a modeling and control approach for room temperature in 

buildings.  The goal of any model reduction technique is to accurately and efficiently identify a 

reduced-order model with the least number of states possible while keeping the representation 

within a given error tolerance.  The approach was based on a distributed parameter model 

coupled with high performance computing, and modern control theory to regulate room 

temperature. This theory allows us to study optimal sensor location. Here we developed a 

modeling and control approach for room temperature in buildings by employing a distributed 

parameter model coupled with high performance computing, and modern control theory to 

regulate room temperature.   Furthermore, a numerical solution of the heat transfer problem for 

the room geometry using the Finite Elements technique to formulate the full order model of the 

problem was given.  The full order model for the room temperature was controlled by 

implementing Linear Quadratic Regulator (LQR).  

It was also shown that the derivation of the reduced model using Proper Orthogonal 

Decomposition (POD) was effectively applied to the control to the reduced model.  These results 

were compared with the full order model control.  Constrained LQR and RHC were employed to 
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solve stochastic optimization problems, and stochastic RHC was used to solve the problem with 

chance constraints. Future work in this area should focus on a robust control strategy with chance 

constraints.  The results obtained showed excellent performance and are promising for practical 

implementation.  Future research includes coupling the 3D heat equation here with the Boussinesq 

equation to account for room air flow dynamics. A rigorous study of optimal sensor location 

should also be investigated in future work. 

A linear quadratic Guassian (LQG) controller and receding horizon controller (RHC) 

with linear and probabilistic constraints are designed with an optimal solution and applied to 

HVAC systems and building model.  MPC utilized the system constraints that can be 

implemented in the controller, and effectively and efficiently control the system, and therefore it 

was ideal to incorporate this method here.  A receding horizon constrained linear quadratic 

Gaussian (LQG) controller was developed by minimizing the energy cost while satisfying hard 

and probabilistic temperature constraints. 

In this work, we also studied a constrained SLQC approach to solve stochastic 

optimization problems with chance constraints by SDP. The problems were formulated into 

semidefinite optimization problems and solved through SDP for the optimal solutions efficiently.  

The SLQC method was developed to solve stochastic optimization problems by semidefinite 

programming.  This approach was considered for a stochastic quadratic cost function with 

Gaussian disturbances, and in the second case assumes the disturbance is norm-bounded with 

distribution unknown.  SLQC was used to compute the optimal control solution for the building 

model subject to linear inequality constraints and additional case with disturbance that is norm-

bounded with an unknown distribution.  The second problem is formulated as a min-max 

problem and the SDP is compared with LQR.  Moreover, the cost function includes both 
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quadratic forms of temperature errors and control input, and the optimal control was designed to 

satisfy these parameters.  The SLQC approach was used to solve the optimal solutions of 

problems in both cases via semidefinite programming. Simulation results were given to 

demonstrate the effectiveness of this method. Future work should focus on the optimal solution 

using affine disturbance feedback.   
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