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ABSTRACT 

The goal of this project was  to gain  experience in designing and 

implementing a microelectronic system to acclerate the execution of a time-consuming 

software algorithm, the Embedded Zerotree Wavelet (EZW),  which is used in 

multimedia applications.  The algorithm was implemented using MATLAB to be 

certain it was fully understood and to serve as a validation reference.  Then, the 

algorithm was mapped into a hardware description language, VHDL, and its resulting 

implementation verified with the golden reference.  The hardware description was then 

targeted to a field-programmable gate array (FPGA). 

Significant acceleration was achieved since the hardware implementation 

in a FPGA (Xilinx Virtex-1000E using a 8.315 MHz clock) ran 10,000 times faster than 

the MATLAB implementation on a SUN-220 workstation.  Additional speedup 

exploiting the parallel capabilities of the FPGA was not achieved since the EZW 

algorithm utilizes only sequential operations.  
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CHAPTER 1 
INTRODUCTION 

 

1.1 Goal and Approach 

The goal of this project was  to gain  experience in designing and 

implementing a microelectronic system to acclerate the execution of a time-consuming 

software algorithm used in numerous applications.  The project began with the selection 

of a candidate algorithm and its implementation using MATLAB to be certain it was 

fully understood and to serve as a validation reference.  Then, the algorithm was 

mapped into a hardware description language, VHDL, and its resulting implementation 

verified with the golden reference.  The hardware description could then be targeted to 

either a field-programmable gate array (FPGA) or an application-specific integrated 

circuit (ASIC). 

1.2 Algorithm Selection 

Many evolving multimedia applications require transmission of high 

quality images over the network, which in turn need efficient image coding methods to 

meet  challenges such as coding efficiency, scalability, target compression rates, low 

delay, low power consumption and implementation simplicity. Image processing is 

normally done using different software packages like PhotoShop and MATLAB. These 

software applications execute on a central processing unit (CPU) of a computer, which 

executes image manipulation routines sequentially. Because the CPU must be shared 

with other applications and is not able to execute the image manipulations in parallel, 
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performance suffers.  The research described in this thesis involves implementing 

image-processing functions in a FPGA, which serves as a CPU coprocessor to speed up 

processing times. This can be accomplished by taking advantage of pipelining and/or 

parallel processing implemented on dedicated hardware. Such extreme parallelism is 

almost impossible with traditional CPU architectures.  

A decade ago, a group of efficient image coders based on wavelet 

hierarchical decomposition was developed and resulted as one of the most promising 

techniques to meet the aforementioned challenges for image coding. The idea of 

grouping wavelet coefficients at different scales and predicting zero coefficients across 

scales was introduced. In [1], Shapiro proposed an Embedded Zerotree Wavelet (EZW) 

coding scheme that not only has provided excellent coding performance, but also has a 

fully embedded bit stream.  The EZW algorithm is a simple, easy to implement, and an 

effective image compression technique. The EZW algorithm uses the concepts of 

Discrete Wavelet Transform, Embedded Coding, Zerotree Coding and loss-less 

Arithmetic Coding. 
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CHAPTER 2 
BACKGROUND 

 
 
2.1 VHDL – Design Flow 
 

Hardware can be described by programming languages like VHDL, 

which stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description 

Language. VHDL modules can be simulated to test the functional behavior of the 

hardware implementations of the design as well as its timing constraints. VHDL 

descriptions can be “synthesizable” which means the behavioral description can be 

translated into physically realizable circuits, such as NAND gates, XOR gates and Flip-

flops, using CAD (Computer Aided Design) tools. Synthesis  can be targeted to 

programmable logic devices, such as FPGAs or to application-specific integrated 

circuits (ASICs). FPGAs are commonly designed to be reprogrammable, so they are 

often used to test algorithms. ASICs are chips that are designed with a specific purpose 

in mind, and are generally not reprogrammable, but they are usually faster than FPGAs. 

However, FPGAs available in recent days are made of circuits with millions of 

transistors, and are extensively used for the applications like prototyping and high 

performance reconfigurable computing.  

Figure 1 shows the basic flow for the design of digital circuits  in 

ASICs/FPGAs.  The problem statement specifies the requirements of the design. Then 

code is generated to meet the specifications. Any  hardware description language, for 

example VHDL, is used for the coding. Now the code is simulated to achieve the 

correct functionality.  If the code needs any changes, then it is repaired, and again 
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Figure 1      Digital Design Flow 
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simulated. This process continues till the required functionality is achieved. Once the 

code is functional, then it is synthesized using synthesizing CAD tools, which can take 

care of priority design constraints like  delay,  area   and power.  There is always a tug-

of-war between performance (area and delay) and power-consumption.    For example, 

think about the demand for a “Notebook PC (laptop)”, which can easily fit in a  

backpack.   It is desirable that the laptop weight and power be reduced in half yet run 

twice as fast and cost the same as an existing model.    

Coming to the point, synthesis is an automatic method of converting a 

higher-level abstraction, such as a behavioral description, to a lower level abstraction, 

such as a gate-level netlist. But, all the VHDL statements are not synthesizable. Another 

VHDL module apart from the actual design modules, known as the “test-bench”, is used 

in the simulations. The port structure, which specifies the input-output pins, of the test-

bench is exactly opposite to the port structure of the top module of the design.  The 

purpose of a test-bench is limited to provide test vectors to the input pins, and to receive 

the responses from the output pins.  A test-bench cannot be synthesized.  

Once the design is synthesized and the timing constraints are  met, then 

the design is ready for the next step, i.e., Place and Route (PAR).  PAR can be defined 

as the process of mapping a  synthesized netlist in terms of physical location (place) and 

the interconnection of the corresponding blocks (route) [11].  At this stage the exact 

timing constraints of the design will be revealed and  the area of the design can be a 

accurately measured.  If there are any failed constraints, then the design has to be 

modified from the beginning. In the case of a FPGA, if the PAR is successful, an .ncd 

(Native Circuit Description) file is generated, which will be used to create a layout and 
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configuration or .bit file. In case of an ASIC, a GDSII file is generated, which can be 

used in the fabrication process. 

 

2.2 Pilchard – A Reconfigurable Computing Platform 
 

The Pilchard Reconfigurable Computing (RC) board (Figure 2) 

developed at the Chinese University of Hong Kong [12] is the hardware system used for 

the implementation of this  design. This RC board accommodates a million-gate FPGA, 

the Xilinx® Virtex™1000E (XCV1000E). The product features of the XCV1000E, as 

obtained from the manufacturer’s website, are listed in the Table 1.  The Pilchard uses 

133MHz synchronous dynamic RAM Dual In-line Memory Modules (DIMMs) 

interfacing with the CPU.  Compared to the usual commercially available RC boards 

with traditional Peripheral Component Interconnect (PCI) interface, the DIMM 

interface offers higher bandwidth for communication between the host processor and 

the RC board and lower latency, yet, is easier to interface.   

The block diagram of the Pilchard board is shown in the Figure 3. The 

Table 2 gives the features of the board.  This advantage of the communication between 

the host processor and the RC board is accomplished by a software interface program 

executing on the host processor.  There are four API functions of the software interface: 

 

I. void read64(int64, char *) - To read 64 bits from Pilchard 

II. void write64(int64, char *) - To write 64 bits to Pilchard 

III. void read32(int, char *) - To read 32 bits from Pilchard 

IV. void write32(int, char *) - To write 32 bits from Pilchard 
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Figure 2     The Pilchard Board [12] 
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Table 1     Xilinx® Virtex™ FPGA Device XCV1000E Product Features [13] 

 
 
 

Feature Specification 

Package used in Pilchard HQ240 (32mm × 32mm) 
CLB Array (Row × Col.) 64×96 
Logic Cells 27,648 
System Gates 1,569,178 
Max. Block RAM Bits 393,216 
Max. Distributed RAM Bits 393,216 
Delay Locked Loops (DLLs) 8 
I/O Standards supported 20 
Speed Grades 6,7,8 
Available User I/O 158 pins (for package PQ240) max.660 

 

 

Table 2     Features of the Pilchard RC platform [12] 

 
 

 
Feature Specification 

Host Interface DIMM Interface 
64-bit Data I/O 
12-bit Address Bus 

External (Debug) Interface 27 – Bits I/O 
Configuration Interface X-checker, MultiLink and JTAG 
Maximum System Clock Rate 133 MHz 
Maximum External Clock Rate 240 MHz 
FPGA Device XCVE1000E-HQ240-6 
Dimension 133mm × 65mm × 1mm 
OS Supported GNU/LINUX 
Configuration Time 16s Using Linux download program 
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Figure 3     Block Diagram of Pilchard [12] 
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“int64” is a data type provided by “iflib.h” as a two-element integer array. The FPGA is 

configured with the design bit-stream by " download.c.” 

 

2.3 Embedded Coding  
 

An “Embedded Coding” can be defined as representing a sequence of 

binary decisions that distinguish an image from the “null”, or all gray, image.  During 

the image encoding, all lower frequency codes are “embedded” at the beginning of the 

bit stream, and the bits are arranged in order of importance. An encoder following the 

embedded coding technique can terminate the encoding at any point thereby allowing a 

target bit rate to be met exactly. Some target parameters can be monitored to stop the 

encoding exactly when the target rate is met. A decoder is also capable of stopping 

decoding at any point and can reconstruct the image corresponding to all lower 

frequency encoding. 

Binary finite precision representation of real numbers is a proper 

example of embedded coding. Binary representation of all real numbers is possible 

using a string of binary digits.  If a bit is added to the right of a floating-point binary 

string, the precision of the decimal equivalent of the binary string will be increased. It is 

obvious that, the addition of the bits can cease at any time and provide the “best” 

representation of the real number achievable within the framework of the binary digit 

representation. Similarly, the embedded coder can cease at any time and can provide the 

“best” representation of an image achievable within its frame work [1].  
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2.4 Zerotree Structure  
 

An  image-based data structure arranged in parent-child order, called 

simply a tree, is a set of wavelet coefficients corresponding to the same spatial location 

and orientation.  The zerotree-based image coders are based on the assumption that if 

there are insignificant coefficients in low frequency subbands in a tree, then the 

probability of corresponding coefficients in the higher frequency subbands being 

insignificant is higher. If all the coefficients of a tree are insignificant with respect to a 

given threshold, then the tree is called a zerotree. When encoding an image, fewer bits 

are sufficient to represent the zerotree, whereas the non-zerotree structures require 

substantial number of bits [8]. In the zerotree-based system, every coefficient at any 

lower frequency subband has a relationship with a group of coefficients at the next 

higher frequency subband at the same spatial location, except the highest frequency 

subbands. The coefficient at the lower frequency subband is called the parent, and all 

coefficients corresponding to the same spatial location at the next higher frequency 

subband of analogous orientation are called children. Also, the set of all the coefficients 

corresponding to the same spatial location, relating to a parent, at the subsequent higher 

frequency subbands are called descendants. Similarly, the set of all the coefficients 

corresponding to the same spatial location, relating to a child, at the subsequent lower 

frequency subbands are called ancestors. The parent-child dependencies are shown in 

Figure 4 [1]. The coefficients are scanned in a particular order, which assures the fact 

that all the parent nodes must be scanned before their children. For a 2-scale wavelet 

transform, the scanning of the coefficients begins with LL2, the lowest frequency band, 

and follows to the HL2, LH2 and HH2. After finishing the coarser scale, it moves to the  
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Figure 4     Parent-Childe Dependencies [1] 
 

 

 

 

 

 

 

LL3 HL3

LH3 HH3

HL2

LH2 HH2

LH1 

HL1 

HH1 

(Note) Parent-Child dependencies of subbands: Note that the arrow points from the 
subband of the parents to the subband of the children. The lowest frequency subband is 
the top left, and the highest frequency subband is at the bottom right. Also shown is a 
wavelet tree consisting of all of the dependencies of a single coefficient in subband 
HH3. The coefficient in HH3 is a zerotree root if it is insignificant and all of its 
descendents are insignificant. 
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next finer scale, which is the 1-scale in this case. So, the order of scanning moves from 

HH2 to HL1, HL1 to LH1 and finally ends at the highest frequency subband HH1. The 

scanning order is shown in Figure 5 [1].  

 

2.5 Wavelet Decomposition:  Discrete Wavelet Transform (DWT) 
 

The discrete wavelet transform used in the EZW algorithm, proposed by 

Shapiro, is similar to a hierarchical subband system, in which the subbands are 

logarithmically spaced in frequency and represent octave-band decomposition. The 

original image is split into  subbands and sub-sampled as shown in Figure 6 [1]. Each 

coefficient represents a spatial area corresponding to approximately ¼ of the area of the 

original image. The four subbands are formed from the vertical and horizontal filtering 

process. The subbands labeled LH1, HL1 and HH1 represent the higher frequency 

wavelet coefficients. The subband LL1 is decomposed again and critically sampled as 

shown in Figure 7 [1], to obtain the next coarser scale of wavelet coefficients. This 

process is recurrent until the target scale is reached. The coarser the scale, the larger 

will be the representation of the spatial area of the coefficients of images, but the 

frequencies are narrower. There are three subbands at each scale.  The fourth and lowest 

frequency subband is located at the left top and contains the information of all coarser 

scales [1]. 

Here is an example of the original image “Lena” of size 512x512 shown 

in Figure 8, undergoing dyadic decomposition into subbands. The image shown in 

Figure 9 is after a one- scale DWT Decomposition. It can be noticed that the image in 

the subband LL1 is better than the image in HL1, so that  HL1’s is better than LH1’s  
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Figure 5     Scanning Order [1] 
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(Note) Scanning Order: Scanning order of the subbands for encoding a     
significance map: Note that parent must be scanned before children. Also note 
that  all positions in a given subband are coded before moving to he next. 
in a given subband are scanned before the scan moves to the next subband 
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Figure 6     First Stage of Discrete wavelet Transformation [1] 
 
 

 

 

 

 

 

 

 

 

 

Figure 7     Second-Stage Wavelet Decomposition [1] 
 

(Note) First stage of discrete wavelet transformation: The image is divided into four
subbands using separable filters. Each coefficient represents a spatial area
corresponding to approximately a 2x2 area of the original picture. The low
frequencies represent a bandwidth approximately corresponding to 0< |ω | < π/2,
whereas the high frequencies represent the band from to π/2 < |ω | < π. The four
subbands arise from separable application of vertical and horizontal filters. 
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(Note) Two-scale wavelet decomposition: The image is divided into four subbands
using separable filters. Each coefficient in the subbands LL2, LH2, HL2 and HH2
represents a spatial area corresponding to approximately a 4x4 area of the original
picture. The low frequencies at this scale represent a bandwidth approximately
corresponding to 0< |ω | < π/4, whereas the high frequencies represent the band from
to π/4 < |ω | < π/2.  
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Figure 8     Original image Lena 512 x 512 
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Figure 9     One-Scale DWT Decomposition 
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and LH1’s is better than HH1,which is due to the fact that the most significant 

information of the image will be stored in the lowest frequency subband. The least 

significant information of the image is stored in the highest frequency subband and the 

order of significance follows the same order as the order shown previously in Figure 5 

[1].   The two-scale DWT decomposition into subbands is shown in Figure 10. 

2.5.1 DCT Vs DWT 

The Discrete Cosine Transform (DCT) is the traditional transformation 

method used in  image compression techniques such as  Joint Photographic Experts 

Group  (JPEG) and Moving Picture Experts Group (MPEG1 & MPEG2).  Developed in 

the early 1990’s, the Discrete Wavelet Transform (DWT) has gained popularity over the 

DCT.  The latest compression techniques like JPEG2000 and MPEG4 use DWT.  

Unlike the DCT, coefficients from the DWT are stable under the presence of 

discontinuities in the signal to be coded.  The DWT only requires a piecewise smooth 

signal, where as the  DCT requires a globally smooth signal.  Most video and image 

compression implemented using the Discrete Wavelet Transform does not exhibit the 

blocking, also known as tiling, artifacts seen with the block Discrete Cosine Transform. 

DWT-based image compression often outperforms block DCT compression if evaluated 

using the Peak Signal to Noise Ratio (PSNR) or Mean Squared Error (MSE) metric 

(these are mathematically equivalent).  The subjective quality of images compressed 

with the DWT can appear better than block DCT methods for the same compression 

ratio.  Figure 11 [14] shows the comparison between JPEG and JPEG2000 compressed 

images. 
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Figure 10   Two scale-Dimensional DWT Decomposition 
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Figure 11   DCT Vs DWT [14] 
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CHAPTER 3 
APPROACHES & IMPLEMENTATION 

 
 
3.1 Concepts of EZW 
 

The EZW image encoder follows the typical flow of data as shown in the 

Figure 12, and has three basic steps:  1) Transformation, 2) Quantization and 3) 

Compression. 

(Step 1) Transformation.  EZW uses the Discrete Wavelet Transform 

(DWT) to transform the original image. In order to perform the DWT, the image has to 

be a square image, and its row/column size must be an  integer power of 2.  So, 

technically, the EZW is applicable to the square images of sizes in integer powers of 2 

(for example, image sizes like 128 x 128 or 512 x 512).  

This transformation is theoretically lossless, although this may not 

always be the case.  The purpose of the transformation is to generate decorrelated 

coefficients, which means it removes all the dependencies between samples.  

 

 

  

 

 

 

Figure 12   Typical Flows of Data of Image Encoder 
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(Step 2) Quantization.  This step involves the quantization of 

transformed coefficients.  Thus, the entropy of the resulting distribution of the bin 

indexes is small enough that the symbols can be entropy coded at some low target bit 

rate. Quantizers are symmetrically read. Assuming the central index is zero, which 

treats positive or negative indexes alike, all quantizers are set to be symmetric. The 

main advantage of symmetry is that it saves the bits needed to represent the symbols 

since encoding of a non-zero coefficient requires at least one bit per sign.  An entropy 

code can be designed using the probabilities of the bin indices as the fraction of 

coefficients in which the only absolute values of bin indexes are involved. Entropy of 

the symbols H can be expressed as  

 H = -p log2p – (1 - p) log2 (1 - p) + (1-p) [1 + HNZ], 

 where  p = probability that a transform coefficient is quantized to zero, and 

 HNZ = conditional entropy of the absolute values of the quantized coefficients 

conditioned on them being non-zero. 

The EZW uses Successive Approximation Quantization (SAQ).  SAQ is 

chosen to achieve a multiprecision representation of the coefficients and to facilitate the 

embedded coding.   The significance of the wavelet coefficients with respect to a 

monotonically decreasing series of thresholds, Ti, is determined by using SAQ. For each 

threshold, Ti, the positions of the significant and the insignificant coefficients are 

indicated in significance maps. 

(Step 3) Compression.  The concept of a zerotree data structure is applied 

in the compression process of the significance map.  Each wavelet coefficient is 

compared with the threshold, Ti, to determine its significance. In addition to encoding 
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the significance map, further encoding of significant coefficients is done using signs. 

All the significant coefficients are encoded into only four signs: 1) zerotree root, 2) 

isolated zero, 3) positive significant, and 4) negative significant. Encoding into symbols 

makes embedded coding handy.  EZW follows adaptive arithmetic coding for 

compression. The main advantage of arithmetic coding in this algorithm is that it 

contains a maximum of four symbols at any time.  For instance, the encoder contains 

two symbols for subordinate passes, three symbols for dominant passes with no zerotree 

symbol and four symbols for dominant passes with zerotree symbol (the terms dominant 

pass and subordinate pass will be explained later). Because the maximum number of 

symbols is set to four, the occurrence of the possible symbols can be measured with less 

effort.  This advantage lets the algorithm use a short memory to learn quickly and 

constantly changing symbol probabilities.  Zerotree coding has a self-similarity 

property, which helps cost reduction for encoding significant coefficients. There is still 

a chance of dependency among the significant coefficients, though the coefficients are 

decorrelated before using the DWT decomposition.  

 
 
3.2 EZW – The Algorithm 
 

The output of the EZW encoder starts with the header, which contains 

information needed for the decoder to reconstruct the image.  The basic information 

required by an EZW decoder is the size of the image, the number of levels used for the 

wavelet decomposition and the initial threshold value.  The header can be avoided if we 

provide the correct information for the decoder.  However, any incorrect information 

may result in a bad reconstruction of the image, as well as a  higher PSNR value.  For  
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the encoder to begin the encoding of the wavelets (which are already decomposed using 

the DWT), the threshold value is evaluated.  The threshold value (T0) must obey the 

rule Xi < 2T0, where Xi represents all the transform coefficients. Thus, the maximum 

valued coefficient, Xi_max among all the transform coefficients is calculated. 

Xi_max = max (max (N_N_image)) 

As stated previously, the EZW follows Successive Approximation 

Quantization, which uses a sequence of thresholds in the process of quantization, such 

as T0, T1, … TN, where Ti = Ti-1 / 2.  To reduce  the complexity of the implementation, 

care should be taken that the threshold values are always a power of 2.  This can be 

qualitatively explained as 

)((log
0

max_22 iXabsT =  

With this available information, the encoder can proceed to the main 

loop.  The flowchart for the EZW encoder is shown in Figure 13.  The EZW algorithm 

maintains two separate lists for the encoding, known as the Dominant List and the 

Subordinate List. For each threshold it passes through, the Subordinate Pass follows the 

Dominant Pass.  The pseudo-code of the EZW encoder is given below.  Initialization of 

the all variables is done as follows.  The main loop calls both the Dominant Pass and the 

Subordinate Pass.  

Initialize: 

k=0;T0=2|log2 (max_ coeff)|  

Dominant List = same as the image  

Subordinate List = Null 
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Figure 13   Flow-chart of EZW Encoder 
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Main loop 

Do { 

DominantPass (Image) 

SubordinatePass (Image) 

Tk+1 = Tk/2 

k=k+1 

} while (Threshold = target lower value) 

 

3.2.1 Dominant Pass 

In the dominant pass, each wavelet-decomposed pixel value is compared 

with a threshold, and the significance of the pixel value is determined.  As said earlier, 

the initial threshold value is chosen to be an integer power of two and less than the 

maximum valued pixel, i.e., Xi_max /2 < T0 (=2n) < Xi_max, where n is an integer. If the 

coefficient is larger than the threshold, a P (positive) is coded, whereas, if the 

coefficient is a negative number and the absolute value of the coefficient is larger than 

the threshold, an N (negative) is coded. When an insignificant value is found, it means 

the coefficient is smaller than the threshold.  If the comparison of all the coefficient’s 

descendants (or children) in the subsequent bands with the same threshold also 

insignificant, then it is feasible the parent pixel and all of its children can be encoded 

with only one symbol, ZT (zero-tree), thus achieving compression. If a coefficient is 

smaller than the threshold and it is not the root of a tree, then an IZ (isolated-zero) is 

coded. This happens when significant children exist for an insignificant parent.  Figure 

14 shows the flow chart for the encoding procedure of the dominant pass.  
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Figure 14   Flow-chart of Dominant Pass 
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According to the above explanation, in order to conclude that a 

coefficient is the root of a zerotree or an isolated zero, the encoder has to scan the whole 

tree. This is the time-consuming operation in the encoding. The encoder keeps track of 

the encoded symbols for coefficients to prevent re-coding of the coefficients that are 

already identified and encoded as zerotrees. If coefficients are found to be significant 

with a threshold, i.e., if they are coded as positive (P) or negative (N), then they are 

removed from the image and their positions are replaced by zeros. This will prevent 

them from being coded again with lesser threshold values in the next iterations. The 

absolute values of the removed significant coefficients are placed in the subordinate list.  

Dominant pass is also called significance pass, as the significance of the coefficients are 

determined in this pass.  Any suitable scanning order can be used which will ensure that 

no child element is scanned before its parent element. Dominant pass can be represented 

in the form of pseudo code as shown below [3]. 

Dominant Pass: 

For each entry Xi in the dominant list 

 If | Xi| ≥ Tk [i.e. Xi is significant] 

  If Xi is positive 

   Encode symbols P 

  Else [i.e. Xi is negative] 

   Encode symbols N 

End if [for positive/negative confirmation] 

  Add | Xi| to the subordinate list 

  Remove Xi from the Dominant list 
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 Else [i.e. | Xi| < Tk, that means Xi is insignificant] 

  Case # 1: Xi is non-root part of a zerotree 

   Don’t code – it is predictably insignificant 

Case # 2: Xi is a root of the zerotree with all insignificant quad-tee   

elements – Encode symbol ZT 

Case # 3: Xi is a root of the zerotree with one or more significant quad-

tee elements – Encode symbol IZ 

 End if [for the significance] 

 Entropy coding of the symbols using Adaptive Arithmetic Coding [Optional] 

 Save the encoded bits. 

End loop through the Dominant Pass 

 

3.2.1 Subordinate Pass  

The Subordinate Pass, also known as the Refinement Pass, is conducted 

on the subordinate list (containing the previously found significant coefficients) 

immediately after the Dominant Pass.  The Subordinate Pass performs the pixel value 

quantization, i.e. assigns the pixel value a symbol, by which the decoder can roughly 

estimate the pixel value while reconstructing the image. Since the initial threshold is 

one-half the maximum pixel value of the image during the first Dominant Pass, the 

uncertainty of the significant value lies in the interval [T0, 2T0]. Thus, the first 

Subordinate Pass specifies only two ranges in which the significant value could lie: 

upper range, which is between [3T0/2, 2T0] or lower range, which is between [T0, 

3T0/2]. If the significant coefficient falls in the upper range, it is encoded as H or it is 
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encoded as L.  

The flow chart of the Subordinate Pass is shown in Figure 15.  The 

Subordinate Pass is not really an essential operation in terms of the reconstruction, as 

the decoder can reconstruct the image with the bits generated by the Dominant Pass. 

However, the Subordinate Pass will help to increase the quality of the reconstructed 

image by supplying adequate image data.  The Subordinate Pass can be represented in 

the form of pseudo code, as seen below [3]. 

Subordinate Pass 

For each entry Xi in the Subordinate List 

 If Xi ∈ [3T0/2, 2T0] 

  Encode H (“H” for “high”) 

 Else [i.e., Xi ∈ [T0, 3T0/2]] 

  Encode L (“L” for “low”) 

 End if 

 Entropy code H’s and L’s using Adaptive Arithmetic coding 

 Save the encoded bits. 

End loop through the Subordinate List 

 
 
3.3 EZW – an example 
 

The example of a 2-scale wavelet transformation of an 8x8 image is used 

to explain the algorithm. The image values are shown in Figure 16.  The initial 

threshold (T0) is determined according to the equation, T0=2|log2 (max_ coeff)|, and so the 

first step is to find the maximum image value, seen to be 125  in Figure 3.5.  Then the 

initial threshold can be set to 64. The Dominant List is actually the same as the image, 

which is an 8x8 array of pixel values.  The Subordinate List is a one-dimensional 
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 Figure 15   Flow-chart of Subordinate Pass 
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row matrix, initially a null matrix.  The first Dominant Pass is then conducted using the 

initial threshold 64 and is explained as follows.   

 

1) The first coefficient, 125, which is in level 3, subband LL3, is greater 

than the threshold 64 and is positive.  Therefore, a positive symbol P is 

coded.  [See Figure 17] 

2) The scanning order of the coefficients is –78, 15 and 9, which belong to 

the 3rd level subbands HL3, LH3 and HH3, respectively.  Compared to the 

threshold 64, -78 is greater but negative, and so N is coded.   [See Figure 

18] 

3) The coefficient 15 is insignificant compared with coefficient 64.  The 2nd 

level subband LH2 coefficients {11, 10, 8, -6) are also insignificant 

compared to coefficient 64.  However, the 1st level subband LH1 has a 

significant coefficient 95, and so the root of the zerotree 15 is coded as 

insignificant zero, IZ.  [See Figure 19] 

4) The coefficient 9 is less than 64, and the next finer subband coefficients 

{4, 8, -5, 14} and {4, 6, -2, . . . . , 3, -4, 4} are also insignificant. 

Therefore, 9, the root of the zerotree is coded as ZT.  [See Figure 20] 

5) The scanning of the coefficients follows the order 99, -5, 1, -3 then 11, 

10, 8, -6 and 4, 8, 5, -14.  These coefficients’s location can be 

represented as the second level subbands, which are HL2, LH2 and HH2 

[See Figure 21]  
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Figure 17   Step#1 of Dominant Pass    Figure 18   Step#2 of Dominant Pass 
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Figure 19   Step#3 of Dominant Pass    Figure 20   Step#4 of Dominant Pass 
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Figure 21   Step#5 of Dominant Pass 
 
 

6) Since coefficient 99 is greater than 64 and positive, it is coded as P.  The 

next four coefficients, -5, 1, –3 and 11, are coded as ZT, because they 

are not descendants of any other zerotree root and their own descendants 

are insignificant compared to coefficient 64.  The preceding statement 

can also be illustrated as follows: because -78, the parent coefficient of –

5, 1 and –3, was significant and 15, the parent coefficient of 11, was 

coded as isolated zero. [See Figure 22, also see Figure 18 and 19] 

7) The coefficient 10 is less than 64, but it has a significant descendant 95 

in the next generation.  So, it is coded as isolated zero IZ.  8 and –6 are 

coded as ZTs (zerotree) as explained in the previous step.  [See Figure 

23] 
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Figure 22   Step#6 of Dominant Pass 
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Figure 23   Step#7 of Dominant Pass 
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8) The next coefficients to be coded are 4, 8, -5 and –14.  All four are 

insignificant compared to 64 and they are in the non-root part of the 

zerotree, as their ancestor 9 is the root of the zerotree. Therefore, all four 

coefficients are left un-encoded.  [See Figure 24] 

9) Until now, all the coefficients, except the coefficients in the subbands 

LH1, HL1, HH1, are encoded.  Usually, most of the higher frequency 

subband coefficients are not encoded at higher threshold values, as they 

are often descendants of roots of zerotree or usually insignificant.  For 

the level-1 subbands (HL1, LH1 and HH1), the encoder uses only 3 

symbols (P, N, Z), because these subband coefficients do not have any 

descendents and cannot be the roots of a zerotree.  The final significance 

map is shown in Figure 25. 

 

During the first Dominant Pass of reconstruction, if the decoder sees a 

symbol P and already knows the initial threshold value to be 64, the decoder outputs 96, 

the midpoint of the range [64, 128], as the reconstructed value [see Table 3].  However, 

the actual value of the coefficient in the original image is 125.  The difference between 

the original and the reconstructed coefficient is higher, and so EZW uses another pass 

i.e. Subordinate Pass to refine the encoding information of the already found significant 

coefficients.  Subordinate Pass is performed immediately after each Dominant Pass.  

The following comments explain the first subordinate pass [see Table 4]. 
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Figure 24   Step#8 of Dominant Pass 
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Figure 25   Step#9 of Dominant Pass 
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Table 3     First Dominant Pass 
 

 
Scanning 

Order Subband Coefficient 
Value Symbol Reconstruction 

Value 
1 LL3 125 P 96
2 HL3 -78 N -96
3 LH3 15 IZ 0
4 HH3 9 ZT 0
5 HL2 99 P 96
6 HL2 1 ZT 0
7 HL2 -5 ZT 0
8 HL2 -3 ZT 0
9 LH2 11 ZT 0

10 LH2 10 IZ 0
11 LH2 -8 ZT 0
12 LH2 6 ZT 0
13 HL1 7 Z 0
14 HL1 13 Z 0
15 HL1 -3 Z 0
16 HL1 4 Z 0
17 LH1 -9 Z 0
18 LH1 95 P 96
19 LH1 -3 Z 0
20 LH1 2 Z 0

 
  

Table 4     First Subordinate Pass 
 

Coefficient Absolute Value Arithmetic Coding  
of the Symbol Reconstruction value 

125 1 112 

-78 0 80 

99 1 112 

95 0 80 
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1) During the first dominant pass, a subordinate list is created containing 

only significant coefficients, which are encoded either as P or as N. 

Thus, for the above example, the subordinate list is {125, -78, 99, 95}. 

2) Two intervals, upper and lower, exist for each subordinate pass, 

depending on the threshold value.  For threshold 64, the upper interval is 

defined between [96, 128], and the lower interval between [64, 96].   

3) The first coefficient of the subordinate list, 125, belongs to the upper 

level, and so it is encoded as H. The reconstruction value is the center of 

the upper interval, or 112. 

4) The next coefficient is 78, which is placed in the lower interval and 

encoded as L.  The reconstruction value is the center of the lower 

interval, or 80. 

5) The third entry, 99, is encoded as H and has a reconstruction value of 

112. Finally, the last entry, 95, is encoded as L, and its reconstruction 

value is set to 80.  

 

Notice that the reconstruction value after the subordinate pass of the 

coefficient 95 is changed from 96 to 80, which results in an increase of reconstruction 

error from 1 to 15.  However, the uncertainty interval is decreased from 32 

(64<96<128) to 16 (64<80<96), which will ensure overall improvement of 

reconstruction error.   The subordinate list from the first subordinate pass is carried over 

to the second subordinate pass, and the significant values generated are placed next to 

the previously found significant values.  In addition, the subordinate list’s coefficients 
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are reordered based on decreasing order of the reconstruction values.  Initially, the 

subordinate list follows the same order as the scanning order, which is {125, 78, 99, 

95}, and the reconstruction values of the respective coefficients are given as {112, 80, 

112, 80}.  After the first subordinate pass, the reconstructed values, in descending order, 

are {112, 112, 80, 80}.  They make coefficient 99 precede coefficient 78, and so, the 

new order for future subordinate passes is {125, 99, 78, 95}.  Notice that coefficient 99 

still precedes coefficient 78, which is smaller, because the decoder considers both the 

coefficients alike since their reconstructed values are same. 

 

3.4 Software Implementation 
 

It was discovered during an Internet search that the EZW algorithm was 

developed as a course project by a group of students at Rice University, TX, in 1999 

[4].  The documentation of their work was very limited.  Even though many enthusiastic 

researchers in the field of image compression using wavelets have already developed 

the software implementation of this algorithm using  MATLAB, C, and C++, the 

present research work takes its inspiration principally from the aforementioned course 

project.  The course project source code was written in MATLAB and was not bug-free, 

as it was generated using older versions of the software package available half a decade 

ago.  However, most of the MATLAB functions were corrected and updated to comply 

with the latest version of the software package used.  Quite a few functions were added 

to achieve some specific functionality, and few of the existing functions were removed.   

Compilation and validation were done using the MATLAB 6.1 package.  The following 

subsection will give an overview of how the implementation was done. 
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3.4.1 EZW specifications 

According to the EZW algorithm, the image has to be decomposed using 

the  Discrete Wavelet Transform.   A system-defined, built-in DWT function was used 

here, as the implementation of the DWT is itself very complicated.  The quantization 

and the compression blocks were implemented manually.  No particular order for 

scanning of the wavelet coefficients was stated in the original EZW specifications, and 

so the Morton-Scan order shown in Figure 26 was used here.  For the compression, the 

Adaptive Arithmetic Coder was used.  The basic idea behind the arithmetic coder is to 

represent the symbols in binary numbers.  Arithmetic coding achieves the compression 

by the probabilities of the occurrence of the symbol, but the simple Arithmetic Coding 

followed here was not really concerned about the probabilities of the symbols. The 

arithmetic coding procedure is briefly explained in Table 5 and Table 6, respectively, 

for the dominant pass and subordinate pass. 

 

3.4.2 Deviations from EZW specifications 

In the original EZW specifications proposed by Shapiro [1], the 

subordinate list should be rearranged depending on the tentative reconstructed values 

after each subordinate pass, so that the future subordinate pass uses the renewed 

subordinate list.  The sorting of the subordinate list is found to have little influence on 

the quality of the reconstructed image.  When any efficient sorting algorithm is used, 

the execution time of the algorithm depends on the number of elements, N, to be sorted.  

If the number N is large, the execution time of the sorting algorithm will show an effect  
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Figure 26   Morton-Scan Order 
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Table 5     Arithmetic Coding of Symbols for Dominant Pass 
 

 

 

 

 

 

 

 

 

 
 
 
 
 

Table 6     Arithmetic Coding of Symbols for Subordinate Pass 
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P “11” 

N 
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on the overall execution time of the encoder.  However, because of the meager  

improvement achieved through the sorting of the subordinate list in the EZW, it was not 

implemented in the present work [4]. 

3.4.3 Decoding the Bitstream generated by EZW  

The decoding process follows the same steps as the encoder.  The 

flowchart of the decoder is shown in Figure 27.  The decoder also uses two passes, 

Dominant Pass II and Subordinate Pass II, during the reconstruction process, similar to 

the dominant pass and subordinate pass of the encoder.  In the beginning, the image to 

be reconstructed is initialized to all zeros, and then the encoded bitstream is passed 

through the dominant pass II.  The bitstream comes with a header that contains the 

essential information needed for the decoder, such as initial threshold value, image 

dimensions, and the number of levels used for the DWT decomposition.   As the 

bitstream is in binary 1’s and 0’s, the decoder reads two bits from the bitstream and 

turns them into symbols.  If the decoder finds a positive or negative symbol, it places 

the reconstruction value of that particular pass, which is 3/2 times the threshold value, at 

the corresponding location.  If the symbol is zerotree root (ZT) or insignificant zero 

(IZ), the corresponding coefficient positions are filled with the suitable values.  The 

Dominant Pass II ends after scanning all coefficients of the image.  The scanning order 

must be same for both encoder and decoder.  Subordinate Pass II reads one bit from the 

bitstream. As discussed in earlier sections, if the bit is “1”, then the corresponding 

coefficient’s reconstruction value is reorganized to a higher value; if “0”, then to a 

lower value.  The term “embedded” is justified in the decoding process, as the decoder  
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Figure 27   Flow-chart for the Decoder 
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Figure 28   Block Diagram of the EZW Implementation 
 
 
can stop at any time.  The quality of the reconstructed image is directly proportional to 

the number of bits decoded.  If the image is encoded until the least value is recognized, 

and if the bitstream is decoded until the last bit, then the resulting reconstructed image 

will be the same as the original image. 

 

3.5 Hardware Implementation 
 

The block diagram of the implementation (software and hardware) of the 

EZW algorithm is shown in Figure 28.  The following subsections will give a brief 

explanation of how it is implemented in FPGA. 

 

3.5.1 Explicit Design Flow of the Pilchard RC Platform 

The Pilchard Reconfigurable Computing Platform, explained in the 

previous chapter, was used for hardware implementation.  The design flow described in 
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this section is explicit for the above stated platform.   Figure 29 depicts the design flow 

for implementation of any design on the Pilchard RC platform.  The behavior of the 

encoder is coded using VHDL.  The process of testing the module’s functionality before 

translating it to the circuit level design through synthesis is technically known as pre-

synthesis simulation.  These simulations are performed with the aid of a “test-bench” 

written in VHDL.  The VHDL simulator used here is Mentor Graphic’s Modelsim® 

version 5.8d.  Modelsim allows viewing all the signals and I/O ports with the help of a 

waveform viewer during the simulations.  This helps debug the design.  After successful 

pre-synthesis simulations, the design moves to the next step, synthesis.  In this step, the 

design is synthesized using synthesis tools targeting to Xilinx® VirtexTM 1000E FPGA.  

Two different synthesis tools, Synopsis® FPGA Compiler II and Synplicity® Sinplify-

Pro, were used.  The inputs to these synthesis tools are VHDL modules, and the 

outcome is a structural netlist in EDIF format, which contains the gate level circuit 

descriptions.  Some of the VHDL descriptions are not synthesizable.  In that case, the 

synthesis tool immediately gives an error message.  The synthesis tools partially report 

timing violations because the gates are not yet completely routed.  All these problems 

have to be fixed before moving to the next step, i.e., Place and Route (PAR).  Xilinx® 

ISE tools are used for PAR and Figure 30 shows the sequence of operations during 

PAR.  An EDIF file generated in the synthesis and a pin constraint file (PCF) are the 

inputs of the PAR tools.  First, the input information is passed through NGDBUILD, 

where the EDIF format is translated to Xilinx’s Native Generic Database (NGD) 

format, then, the NGD file is mapped to primitives inside the particular target FPGA, 

which is Xilinx’s VirtexTM 1000E.  The output file format after the mapping  
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Figure 29   Explicit design Flow for Pilchard RC 
(Courtesy: Dr. Chandra Tan) 
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Figure 30   Flow of Design in the PAR tools 
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operations is Native Circuit Description (NCD) format, which is a physical 

representation of the design mapped to the components in the Xilinx FPGA.  The PAR 

takes the NCD file as input, place and routes the design, and outputs another NCD file.  

After this step the timing constraints are revealed.  If the design fails to meet the 

required timing, then the design has to be changed.  After successful PAR, the design 

moves to the bitstream generator (BitGen).  PAR tools can generate a post route 

simulation netlist in HDL and a timing file with .SDF (Standard Delay Format) 

extension if the user desires to perform post-layout simulations.  BitGen takes a fully 

routed NCD file as its input and produces a configuration bitstream, a binary file with a 

.BIT extension. The BIT file contains both all of the configuration information from the 

NCD file which defines the internal logic and interconnections of the FPGA, plus 

device-specific information from other files associated with the target device [17]. 

 

3.5.2 Design Details 

The EZW encoder consists of four  main modules: encoder, parith, DP-

RAM and pcore. The hierarchy of the modules is shown in the Figure 31.  Each of the 

main components were implemented using VHDL and were simulated using Modelsim.  

Simulations were performed at each level of the hierarchy and the results were 

compared with the known values to confirm that the project is heading in the right 

direction.  The RAM module was generated using Xilinx’s Coregen.  The Encoder uses 

a package that contains descriptions of all arithmetic operations done in the module.  

Parith, the next higher-level module, connects the controller and the encoder.   
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 Figure 31   Hierarchy of the modules 
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 3.5.2.1 Encoder 
 

Genuine encoding happens in this module.  The inputs are standard logic 

vectors, but the logic inside actually utilizes decimal numbers.  Thus, several binary-to-

decimal converters were written into the package part of the module, which can be 

called up by the entity part of the module.  The outputs, too, are standard logic vectors, 

and so decimal-to-binary converters were also written into the package part of the 

module.  VHDL  needs synchronization of the process, unlike high-level software 

programming.  That means the logic cannot be implemented sequentially, as the logic 

will be translated to physically realizable circuits later.  This brings up the Finite State 

Machine (FSM) modeling.  Finite State Machine (FSM) modeling is very common in 

RTL design and, therefore, deserves special attention. Figure 32 shows a sample state 

machine, and the VHDL representation of the FSM can be seen in Figure 33. The Finite 

State Machine of the ENCODER is shown in Figure 34 and the brief information about 

the operations of each state can be seen in Table 7. 

 

3.5.2.2 Controller 
 

The controller is the connecting unit of the DP_RAM and the encoder.  It 

controls the action of the encoder, supplying the inputs and collecting results.  The 

intermediate-level top module PARITH wraps up the CONTROLLER and the 

ENCODER.  The Finite State Machine of the CONTROLLER is shown in Figure 35, 

and brief information about the operations of each state can be seen in Table 8.  Pcore is 

top module of the design, which hooks up dual-port RAM and Parith (Controller + 

Encoder) modules.  This concludes the explanation of the modules. 
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Figure 32   A sample FSM 

 
 

FSM_SAMPLE: process (CLK, RESET) 
begin 
 if RESET='1' then 
         STATE <= START  ; 
    elsif CLK'event and CLK='1' then 
        case  STATE  is 
                when  START   => if  X=GO_INTERMEDIATE  then 
                                 STATE <= INTERMEDIATE  ; 
                             end if ; 
                when  INTERMEDIATE  => if  X=GO_STOP  then 
                                 STATE <= STOP  ; 
                             end if ; 
                when  STOP    => if  X=GO_START  then 
                                 STATE <= START  ; 
                             end if ; 
                when  others  =>  STATE <= START  ; 
            end case ; 
    end if ; 
end process FSM_SAMPLE ; 

 
 

Figure 33   VHDL Representation of a sample FSM 
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Figure 34   FSM of the Encoder 
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Table 7     Detailed operations of each State of the Encoder 
 
 
State Operation 

a If (go =1) then initialize all the required signals DominantList, 
SubordinateList, SignificanceMap 
State = a; 
Else, wait for go signal to become 1 

b If (GetData =0) then  
State = c or State=d (for first DominantPass); 
Else, compare the input data with initial threshold update the 
SignificanceMap and Subordinate List. 

c Match the SignificanceMap with DominantList; 
State = d; 

d Finding the Descendants (coarser subband) i.e., Low-Low 
State = e; 

e Finding the Descendants (finer subbands) i.e., High-Low; Low-
High; High-High;  
State = f; 

f Finding the Ancestors (coarser subband) and finalizing Zerotrees 
State = g; 

g Finding the Ancestors (finer subband) and finalizing Zerotrees 
State = h or State =i; 

h Check if the coefficient is already coded or not. 
Previously coded coefficients will not be coded again.  
State = i; 

i If (|Coeff |> T) 
     If positive output “11”;Else output “10”; 
     End if; 
Else  
     If root of zerotree Output “00”Else output “01” 
End if; 
State=j; 

j If (3T/2 < Coefficient < 2T) 
Output ‘1’; Else, output ‘0’ 
End if; 
State=k; 

k Store the results in a buffer; the outputs are chunks of 16 bits. 
State=l; 

l Correct the Dominant List; Remove the coefficients that are found 
significant; 
State=m; 

m Update the information; T= T/2; 
If (T>1) State = a; Else State=State; End if; 
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Figure 35   FSM of the Controller 
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Table 8     Detailed operations of each State of the Controller 
 
 
State Operation 

1 

If (start = 1) 
Initialize Read_Address 
Initialize Write_Address  
State=2; 
Else 
State=1; 
End if; 

2 

If (GetData=0) then 
State=3; reset the Read_Address to initial value;  
Go signal becomes 0; 
Else 
Go signal will be released for the ENCODER 
Read data from the RAM;  
update the Read_Address; 
State=2; 
End if; 

3 

If (result_ready=1) then,  
State=5; 
Elseif (GetData=1) then,  
State=4; 
Else  
State=3 
End if; 

4 Disable the Write  
State=2; 

5 
Update the Write_Address; 
Write result to the RAM; 
State=5; 

6 

If (Done=1) then, 
Write the final result to the RAM; 
State=5; 
Elsif (GetData=1) then, 
State=2; 
Elsif (Finish=1) then, 
State=1; 
Else 
State=3; 
End if; 
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Figure 36   Read/Write Operations of Xilinx Dual-Port RAM  [17] 
 
 
3.5.2.3 Dual Port – RAM 
 

The main advantage of using Dual-Port RAM is that read and write 

operations can be performed at the same port.  The dual-port RAM used here is 

generated by the Xilinx® Core Generator TM.  The RAM module is implemented on-

chip by mapping the RAM design to physically separate the RAM blocks, thus, the 

CLBs inside the FPGA are not consumed by it.  A picture explaining read-write 

operations of the DPRAM is shown in the Figure 36.  It takes two clock cycles to read 

from the RAM and one clock cycle to write to the RAM.  Thus, to keep the 

synchronization intact, care should be taken while reading or writing from the RAM.  

When reading from the RAM, the controller issues the address of the data location first, 

and the relevant data is received after two clock cycles.  When writing to the RAM, the 

controller issues the address and ‘write-mode’ is enabled.   Data is updated in the next 

cycle.  The ‘write-mode’ must be disabled in the subsequent cycle.     
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3.5.3 Pre-Synthesis Simulations 

The pre-synthesis simulations are performed at all the levels of the 

design.  Test-benches were generated for each level.  Initially, the encoder was  tested 

for the correctness, and then it was  wrapped up with the controller and the DP-RAM.  

The top-level module of the design is the pcore module.  The encoder’s simulation 

waveforms are shown in Figure 37 and Figure 38.  The pcore’s simulations results are 

in Figure 39 shows I/O signals and Figure 40 showing done signal becoming 1 at 

317400ns. 

3.5.4 Synthesis 

The  synthesis of the VHDL descriptions was performed following 

successful simulations.  Synthesis of the design was done using appropriate synthesis 

tools.  

3.5.5 Place and Route (PAR) 

Xilinx ISE tools were used for Place and Route.  The layout of the 

design can be viewed at this step.  Figure 41 show the layout generated Synplify Pro. 

3.5.6 Bit file generation 

If the design meets the timing constraints after PAR step, the design is 

ready to be downloaded on to the FPGA.  A .bit file is generated using Xilinx ISE tools. 

This step also performs the Design Rule Check on the layout of the design (DRC).   
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Figure 37   Waveform indicating inputs of encoder module 

 

 
 

 
 
 

 Figure 38   Waveform showing done signal becoming 1 at 49558 ns 
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Figure 39   Waveform showing parith and pcore signals, and start becoming 1 
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Figure 40   Waveform indicating done signal becoming 1 at 317400 



 63

 

 

 

 

 
 
 

Figure 41   Layout of the Design using Synplify- Pro  
 

 
 
 
 

 
 
 
 
 
 



 64

CHAPTER 4 
RESULTS 

 
 
4.1 Software 
 

The EZW algorithm was applied to three different test images, Lena, 

Barbara and Goldhill.  The results obtained were tabulated.  The entire input image files 

used here are in PGM format, which stands for Portable Gray Map.  The PGM format is 

a lowest common denominator grayscale file format.  The following subsections explain 

the procedure in detail. 

4.1.1 Test Image – Lena 

The original Lena image in PGM format is shown in Figure 42.  First, 

with the help of Daubechies Wavelet Filters, the input image is transformed into 

wavelet coefficients using Discrete Wavelet Transform (DWT) at six levels.  The 

decomposed image is shown in Figure 43.  The Encoder has generated a bitstream file 

containing 42848 bytes, or at a bit rate of 0.1634 bpp (bits per pixel).  The Decoder is 

able to recognize the bitstream file and can reconstruct the image using any target bit 

rate, i.e., using any number of bytes out of the total 42848 bytes.  Various images were 

reconstructed using an assortment of number of bytes.  At a compression ratio 1024 to 

1, the image was not recognizable.  However, at the compression ratio of 512 to 1 the 

image could be recognized even though the image quality was poor.  Still, the 

compression ration of 512 to 1 is very high compared to the conventional block coding 

(DCT-based).  At such high compression, any DCT-based compression techniques even 

fails to reconstruct the Image.   
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Figure 42   Test Image – Lena 512 x 512 Original 
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Figure 43   Lena 512 x 512, 6-scale DWT Decomposition 
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The compressed images can be seen from Figure 44 to 51.  The 

reconstructed  image using all the 42848 bytes is shown in Figure 52.  The compression 

ratios and PSNR (Peak-to-Signal Noise Ratio) values are tabulated and can be seen in 

Table 9. 

4.1.2 Test Image – Barbara 

 
The original Barbara image in PGM format is shown in Figure 53.  The 

wavelet-decomposed image is shown in Figure 54.  The Encoder has generated a 

bitstream file containing 45504 bytes, or at a bit rate of 0.1736 bpp (bits per pixel).  

Here also, various images were reconstructed using an assortment of number of bytes.   

At a compression ratio 1024 to 1, the image “Barbara” also was not recognizable.  

However, at the compression ratio of 512 to 1, it could be recognized even though the  

image quality was poor.   

 

 

Table 9     Experimental results of Lena 
 
 

Number of  
Bytes used 

Bpp  
(bits per pixel) 

Compression 
Ratio PSNR 

32768 1.0 8:1 15.7464 
16384 0.5 16:1 15.7446 
8192 0.25 32:1 15.6687 
4096 0.125 64:1 15.5962 
2048 0.0625 128:1 15.5508 
1024 0.03125 256:1 15.5293 
512 0.015625 512:1 15.4013 
256 0.0078125 1024:1 15.3440 
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Figure 44   L-Compr. Ratio 1024 : 1 

 

 

 
 

Figure 45   L-Compr. Ratio 512 : 1 

 

 

 
 

Figure 46   L-Compr. Ratio  256 : 1 

 

 

 
 

Figure 47   L-Compr. Ratio  128 : 1 
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Figure 48   L-Compr. Ratio  64 : 1 

 

 

 
Figure 49   L-Compr. Ratio  32 : 1 

 

 

 
 

Figure 50   L-Compr. Ratio  16 : 1 

 

 
 

Figure 51   L-Compr. Ratio  8 : 1 
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Figure 52   Reconstructed Lena Image using all 42848 bytes 
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Figure 53   Test Image – Lena 512 x 512 Original 
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Figure 54   Barbara 512 x 512, 6-scale DWT Decomposition 
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Table 10   Experimental results of Barbara 
 

Number of  
Bytes used 

Bpp  
(bits per pixel) 

Compression 
Ratio PSNR 

32768 1.0 8:1 16.6070 
16384 0.5 16:1 16.4393 
8192 0.25 32:1 16.1832 
4096 0.125 64:1 15.9655 
2048 0.0625 128:1 15.8896 
1024 0.03125 256:1 15.7872 
512 0.015625 512:1 15.6036 
256 0.0078125 1024:1 15.2585 

 
 

 

The compressed images can be seen from Figure 55 to 62.  The reconstructed Image 

using all the 45504 bytes is shown in Figure 63.  The compression ratios and PSNR 

(Peak-to-Signal Noise Ratio) values are tabulated and can be seen in Table 10. 

 

4.1.3 Test Image – Goldhill 

The original Goldhill image in PGM format is shown in Figure 64.  The 

wavelet-decomposed image is shown in Figure 65.  The Encoder has generated a 

bitstream file containing 45528 bytes, or at a bit rate of 0.1737 bpp (bits per pixel).  

Here also, various images were reconstructed using an assortment of number of bytes.  

At a compression ratio 1024 to 1, the image, “Goldhill,” also was not recognizable.  

Even at the compression ratio of 512 to 1, it was not recognizable.  This might be due to 

the broken edge information and also the other two  images were human faces in close-

up shot.  However, at the compression ratio of 256 to 1, it could be recognized even  
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Figure 55   B-Compr. Ratio 1024 : 1 
  

 

 

 

Figure 56   B-Compr. Ratio 512 : 1 

 

 

 
Figure 57   B-Compr. Ratio 256 : 1 

 
 

 
Figure 58   B-Compr. Ratio 128 : 1 

 

 

 



 75

 
 

 

Figure 59   B-Compr. Ratio  64 : 1 

 

 

 

Figure 60   B-Compr. Ratio  32 : 1 

 

 

 

Figure 61   B-Compr. Ratio  16 : 1 

 

 

 

Figure 62   B-Compr. Ratio  8 : 1 
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Figure 63   Reconstructed Barbara Image using all 45504 bytes 
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Figure 64   Test Image – Goldhill 512 x 512 Original 
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Figure 65   Goldhill 512 x 512, 6-scale DWT Decomposition 
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though the  image quality was poor.  The compressed images can be seen from Figure 

66 to 73.  The reconstructed  image using all the 45528 bytes is shown in Figure 74.  

The compression ratios and PSNR (Peak-to-Signal Noise Ratio) values are tabulated 

and can be seen in Table 11. 

 

4.2 Hardware 
 

The results obtained from software and hardware implementations are 

found to be identical.  The flow explained in the Figure 75 is used for the test Images, 

Lena, Barbara and Goldhill.  This part of the work was fully implemented using 

MATLAB to be certain the EZW algorithm was fully understood and to serve as a 

validation reference.  The validation of the MATLAB code is done when the 

reconstructed images are found to be visually matching to the original images.  The 

flow explained in the Figure 76 is used for the hardware implementation of the EZW 

algorithm on an 8x8 image, which was given as an example in [1]. 

 

Table 11   Experimental results of Goldhill 
 
 

Number of  
Bytes used 

Bpp  
(bits per pixel) 

Compression 
Ratio PSNR 

32768 1.0 8:1 16.5982 
16384 0.5 16:1 16.5625 
8192 0.25 32:1 16.4782 
4096 0.125 64:1 16.3260 
2048 0.0625 128:1 16.2759 
1024 0.03125 256:1 16.2174 
512 0.015625 512:1 15.8473 
256 0.0078125 1024:1 15.6303 
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Figure 66   G-Compr. Ratio 1024 : 1 

 

 

 
Figure 67   G-Compr. Ratio 512 : 1 

 

 

 

Figure 68   G-Compr. Ratio 256 : 1 
 

 

 

Figure 69   G-Compr. Ratio 128 : 1 
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Figure 70   G-Compr. Ratio  64 : 1 

 

 

 

Figure 71   G-Compr. Ratio  32 : 1 

 

 

 

Figure 72   G-Compr. Ratio  16 : 1 

 

 

 

Figure 73   G-Compr. Ratio  8 : 1 
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Figure 74   Reconstructed Goldhill Image using all 45428 bytes 
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Figure 75   MATLAB Implementation for Multiple Compression Ratios 
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Figure 76   Verification of the Hardware Implementation 
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4.2.1 Area and Speed 

The EZW encoder occupies about 81 % of the Virtex™ 1000E FPGA. 

The circuit can operate at a maximum speed of 11.5 MHz. The design was tested on the 

Pilchard board at a speed of 8.315 MHz. 

 

4.2.2 Limitations 

The hardware implementation of the EZW encoder on Pilchard RC 

platform has certain limitations.  The following subsections can explain the details. 

 

 
4.2.2.1 Limitaion#1 
 

At the beginning of the design while setting up the specifications, the 

hurdle comes in the form of memory, as the EZW algorithm requires the whole image at 

a time for encoding.  The typical Dual-Port RAM used for the Pilchard board was 

limited to a maximum of 256 memory-lines.  This is due to the fact that, on Pilchard, 

only 8 address bits are available.  The maximum width of each row is limited to 64 bits 

because of the 64-bit I/O Data-BUS interfacing.  Unlike the regular  

image, the representation of the pixel values of the input image containing wavelet 

coefficients needs more than 8 bits.  It is expected that, including the extra bit for 

denoting the sign, each pixel can be represented with 16 bits.  Thus, the maximum size 

of the image that can be encoded at one time is restricted to 32x32, since the number 

32x32x16 is equal to 256x64. 
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Table 12   Area and Speed 

 
 

Size of the Image Maximum Speed Area Success/Failure 
32x32 Failed at Synthesis - Failure 

16x16 Failed at Synthesis - Failure 

8x8 11.5 MHz 81% Success 

 
 
 
 
 
4.2.2.2 Limitaion#2 
 

After the design was simulated successfully, it was then arranged for 

synthesis for a 32x32 image.  However, the synthesis failed as the design was too big 

for the particular target FPGA, which is Xilinx’s VirtexTM 1000E.  Then the next 

possible image size that is 16x16 was arranged for synthesis and the result was also 

failure.  Finally, the design was set up for synthesis for an 8x8 block.  This time the 

outcome was successful.  When placed and routed, the design used 81% of the 

resources of the Xilinx’s VirtexTM 1000E FPGA.  The consequences were tabulated and 

can be seen in Table 12.   

 

4.3 Hardware Vs. Software 
 

For an image size of 8x8, the software implementation took 

approximately 1 second.  For the same image, the time taken for the hardware 

implementation was calculated using the results obtained.  The total time taken by the 

simulations was noted as 317400 ns, whereas the “clk” and “clk_div” frequencies were 
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set up at 5 MHz and 2.5 MHz during the simulations.  The “clk” denotes the system 

clock and the “clk_div” denotes the reduced clock rate.  Thus, the total number of clock 

cycles can be calculated as below. 

 1 clock cycle (clk_div of Modelsim) = 1 / (2.5 MHz) => 400 ns. 

Total number of clock cycles for EZW Encoder = 317400 / 400 => 793.5 

The Virtex EZW Encoder uses a clock rate of 8.315 MHz. Thus, 

1 clock cycle (clk_div of Pilchard) =  1 / (8.315 MHz) = 120.26 ns.  

The expected total time could be taken by the EZW Encoder for an image size of 8 x 8 

is calculated as below. 

  TSoftware  = 1 x 109 ns 

  THardware  =  Total Number of Clock Cycles x Clock Delay 

        =  793.5 x 120.26 ns 

        =  95,426.31 ns 

Speed-up  =  TSoftware  / THardware   

     = 1 x 109 ns / 95426.31 ns 

     = 10,479 

 

4.4 Speedup and Desired Architecture 
 

The following subsections are intended to discuss the data transfers 

involved in the hardware/software implementations and also the other possibilities to 

achieve speedup.  
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4.4.1 Speedup Including the Time for Data Transfer 

The speedup achieved through hardware was previously calculated 

without considering the time taken for the data transfer between the Pentium III and the 

Virtex 1000e on the Pilchard.  Also, the total time taken by MATLAB to load data on 

the SPARC 280 was included in the previous speedup calculations.  Thus, new speed-

ups achieved were calculated with the new times, including and excluding data transfer 

times both in the hardware and software implementations. 

Case 1: Excluding data transfer 
 

The time taken for  MATLAB to read the inputs and to write the outputs 

with no operations involved was observed to be approximately 300 milliseconds.  This 

time of data transfer was subtracted from the total time, previously noted as 

approximately  one second.  However, the time estimated previously on the Virtex 

hardware was only for the operations, not for the data handling. Therefore, the new 

speedup excluding data transfer is calculated as below: 

TSoftware  = (1-0.3) x 109 ns = 7x 108 ns 

THardware  =  95,426.31 ns 

Speed-up  =  TSoftware / THardware   

   = 7 x 108 ns / 95426.31 ns 

   = 7,335 

Case 2: Including data transfer 

In this case, the time taken for the MATLAB to read the inputs and to 

write the outputs is included in the software implementation time. Also, the time taken 

for the C routine to read and write the inputs and outputs (time for data transfer between 
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the Pentium III and the Virtex 1000e on the Pilchard) from the FPGA was included in 

the hardware implementation time. Therefore, the new speedup including data transfer 

is calculated to be: 

TSoftware  = 1 x 109 ns  

THardware  =  95426.31+50000 ns 

 = 145,426.31 

Speed-up  =  TSoftware  / THardware   

   = 1x 109 ns / 145426.31 ns 

   = 6,876 

It is obvious that the speedup achievable is decreased with the inclusion 

of data transfer.  However, the speedup of 6,876 is still substantial. 

4.4.2 Other Possibilities to Achieve Speedup 

If the MATLAB functions were converted to C routines, then the 

software speedup could be at least 10x.  This conversion can be done with the aid of 

software automatic converters.  For example, the MATLAB descriptions could be 

converted to FORTRAN using the converter matlab2fmex and the resulting FORTRAN 

could then be converted to the C descriptions using a converter  such as F2C. 

When the EZW algorithm is implemented on an ASIC with an internal 

RAM, even better performance than the FPGA using DIMM interfacing can be 

achieved due to  the faster clock frequency  possible with the ASIC.  Thus, the VHDL 

model of the EZW algorithm was implemented on an ASIC targeting the TSMC-0.18 

process.  Though the post-layout simulations were not conducted due to personal time 
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constraints, interesting results were obtained.  The ASIC containing the EZW and the 

required RAMs could resemble Figure 77, which shows a system-on-chip developed by 

other graduate students in our UTK Microelectronic Systems Laboratory [26].  The 

number of transistors was determined from the resulting netlist of the EZW design.  The 

EZW design which can handle an 8 x 8 image  requires 157,419 transistors, not 

counting the RAM.  If the design were scaled for an image of size 512 x 512 (4096 

times larger than the 8 x 8), the total number of transistors would be 644,788,224  

(almost 650 million) transistors, again not including the RAM.  This shows the fact that 

the EZW algorithm in its   present formulation is not amenable to a cost-effective 

hardware implementation.   

The EZW hardware implementation results are compared below with the 

results for the DCT, which was implemented on hardware by previous graduate students 

in our Laboratory [27].  The DCT algorithm was formulated to handle 8 x 8 blocks of 

an image.   The DCT hardware design is insensitive to the size of the image so it can be 

applied to any image irrespective of the size.  When targeted to the TSMC-0.18 process, 

the DCT design required  33,112 transistors.  From these results, it is noticeable that the 

hardware implementation of the DCT is much more cost-effective than the EZW.  Table 

13 gives a brief summary of the comparison between the ASIC feasibility of the DCT 

and the EZW. The results presented above were tabulated and can be seen in Table 14. 
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Figure 77   An example system-on-chip platform [26] 
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Table 13   Comparison between DCT and EZW on ASIC. 
 

Algorithm Number of 
Transistors Comments 

for 8x8 images 33,112 
DCT 

for 512x512 images 33,112 (1x) 
Could be applied to any 

image irrespective of the size 

for 8x8 images 157,419 
EZW 

for 512x512 images 644,788,224 (4096x) 
Exclusively designed to target 

images of particular size. 

 
 
 

Table 14   Possible EZW Speed-ups on Different Platforms 
 

Platform Specifications Speed-up Comments 

MATLAB Couple of hundreds 
lines of Code 1x 

Easy to implement. 
DWT and IDWT (inverse DWT) 
can be performed using MATLAB 
built-in functions. 

C 

Couple of hundreds 
lines of Code but 
complexity level is 
higher compared to 
the MATLAB Code 

10x 

DWT and IDWT have to be 
implemented before EZW Encoder 
and after EZW Decoder 
respectively. Alternatively, the 
wavelet transformations can be 
performed separately using 
MATLAB so that input to the C 
platform are the wavelet 
coefficients and the output is a 
stream of binary bits. 
 

FPGA 

81% or 9955/12288 
Slices of the Xilinx 
Virtex 1000e. 
Memory interfacing 
unit. 
 

6876x 

Maximum speed achieved was 
11.5 MHz and the design was 
tested at a clock frequency of 
8.315 MHz on Pilchard 
Reconfigurable Computing 
System. 

ASIC 
157,419 transistors, 
not counting an 
internal RAM. 

20,628x 
to  

41,256x 

If the design works at a clock 
frequency of 25MHz to 50MHz 
then 3 times the FPGA to 6 times 
the FPGA speed-up can be 
achieved. 
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CHAPTER 5 
CONCLUSIONS AND FUTURE WORK 

 
 
 
5.1 Conclusions 
 

A VHDL model for the Embedded Zerotree Wavelet algorithm has been 

developed.  Significant acceleration was achieved since the hardware implementation in 

a FPGA (Xilinx Virtex-1000E using a 8.315 MHz clock) ran 10,000 times faster than 

the MATLAB implementation on a SUN-220 workstation.  Additional speedup 

exploiting the parallel capabilities of the FPGA was not achieved since the EZW 

algorithm utilizes only sequential operations. 

 

5.2 Future work 
 

What has been discussed and implemented in this work is just an 

initiation for hardware acceleration of the Embedded Zerotree Wavelet algorithm.  The 

design is confined to only 8x8 size images due to the fact that EZW algorithm requires 

whole image while encoding and also due to the hardware limitations. The design could 

be targetted to a bigger FPGA with enough memory to implement images of different 

sizes or an application-specific integrated circuit (ASIC) with a RAM capable of 

holding huge images.  Additional speedup can be possible if the EZW algorithm is 

formulated in a manner that some operations can be done parallel. 

 
 
 
 
 



 94

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 95

1. J. M. Shapiro, “Embedded image coding using zerotrees of wavelet 
coefficients,” IEEE Trans. Signal Processing, vol. 41, Dec. 1993, pp. 3445–3462. 
 
2. Charles D. Creusere, “A New Method of Robust Image Compression Based on 
the Embedded Zerotree Wavelet Algorithm.” pp. 1436-1441 
 
3.  J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet 
Coefficients”, IEEE Trans. Signal Processing, December 1993 . [Online] available: 
http://www.ws.binghamton.edu/fowler/fowler personal page/EE523_files/Embedded 
Image Coding Using Zerotrees.pdf 
 
 
4.  Image compression using transformations, ELEC 539 PROJECT REPORT.  
[Online] available: 
http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj1/report/index.html 
 
5.  “Zerotree Wavelet Using Fractal Prediction.” [Online] available: 
http://www.f4.fhtw-berlin.de/~barthel/paper/BBHH97.pdf 
 
6.  “An Improved Embedded Zerotree Wavelet Image Coding Method Based On 
Coefficient Partitioning using morphological Operation.” [Online] available: 
http://www.worldscinet.com/ijprai/14/preserveddocs/1406/S0218001400000490.pdf 
 
7.  Image Compression - from DCT to Wavelets: A Review by Subhasis Saha. 
[Online] available: http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html 
 
8.  Taekon Kim, Robert E. Van Dyck, and David J. Miller. “Hybrid Fractal 
Zerotree Wavelet Image Coding.” [Online] available: 
http://w3.antd.nist.gov/pubs/fzw_2002.pdf 
 
9.  Jie Liang. Highly Scalable Image Coding for Multimedia Applications, [Online] 
available: http://www.acm.org/sigs/sigmm/MM97/papers/liang/acm97.html 
 
10.  Iraj Sodagar, Hung-Ju Lee, Paul Hatrack, and Ya-Qin Zhang.  “Scalable 
Wavelet Coding for Synthetic/Natural Hybrid Images.” [Online] available: 
http://research.microsoft.com/china/papers/Scalable_Wavelet_Coding_Synthetic_Image
s.pdf  
 
11.  Mike Goldsmith, VHDL Tutorial [Online] available: 
http://www.asic.uwaterloo.ca/groups/digital/mgoldsmith/VHDL_Tutorial_1.pdf 
 
12.  4. P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y. 
Wong, and K. H. Lee, “Pilchard - A Reconfigurable Computing Platform With 
Memory Slot Interface”, Proc. of the IEEE Symposium on Field-Programmable 
Custom Computing Machines (FCCM), April 2001. 



 96

13.  “Frequently Asked Questions and Answers on Virtex-E.” [Online] available: 
http://www.xilinx.com/prs_rls/vtxefaq.htm 
 
14.  JPEG2000 Versus JPEG “Classic”. [Online] available: 
http://www.microimages.com/documentation/cplates/67jpeg2000versus.pdf 
 
15.  Marcin Kociołek1, Andrzej Materka1, Michał Strzelecki1, Piotr Szczypiński, 
“Discrete Wavelet transform – Derived features for digital Image texture Analysis.” 
[Online] available: http://www.eletel.p.lodz.pl/cost/pdf_9.pdf 
 
16. C. Valens, “Embedded Zerotree Wavelet Encoding.” [Online] available: 
http://perso.wanadoo.fr/polyvalens/clemens/ezw/ezw.html 
 
17.  Xilinx Inc., [Online] available: http://www.xilinx.com/  
 
18.  “VHDL Tutorial,” [Online] available:  
http://www.vhdlonline.de/tutorial/englisch/t_219.htm 
 
19. Eui-Sung Kang1, Toshihisa Tanaka2, Tae-Hyung Lee1, and Sung-Jea Ko1, “A 
Multi-threshold Embedded Zerotree Wavelet Coder.” [Online] available: http://sip-
www.ei.tuat.ac.jp/~tanaka/publications/mapaper.pdf 
 
20. Taekon Kim, Member, IEEE, Seungkeun Choi, Robert E. Van Dyck, Member, 
IEEE, and Nirmal K. Bose, Fellow, IEEE, “Classified Zerotree Wavelet Image Coding 
andAdaptive Packetization for Low-Bit-Rate Transport.” [Online] available: 
http://w3.antd.nist.gov/pubs/vandyck01.pdf 
 
21. Jon K. Rogers and Pamela C. Cosman, Member, IEEE, “Wavelet Zerotree 
ImageCompression with Packetization.”  [Online] available: 
http://code.ucsd.edu/~pcosman/web-11.pdf 
 
22. S. Areepongsa, N. Kaewkamnerd, Y. F. Syed and K. R. Rao, “Wavelet Based 
Compression for Image Retrieval Systems.”  [Online] available: http://www-
ee.uta.edu/dip/paper/CHC-RIOT_11.PDF 
 
23. Xiaoyan Xu, “Embedded Zero Tree as Image Coding.”  [Online] available: 
http://www.uoguelph.ca/~xux/courses/ENGG6560.pdf 
 
24. Zixiang Xiong, Kannan Ramchandran, Michael T. Orchard, and Ya-Qin Zhang, 
“A Comparative Study of DCT- and Wavelet-Based Image Coding.”  [Online] 
available: 
http://research.microsoft.com/china/papers/Comparative_Study_DCT_WaveletBased_I
mage_Coding.pdf 
 



 97

25. N. J. Mitra, P. K. Biswas, T. Acharya, “Modified Embedded Zerotree Scheme 
for Efficient Coding of Discrete Wavelet Coded Frames.”  [Online] available:  
http://www.iiit.net/research/cvit/icvgip00/I-56.pdf 
 
26. R. Srivastava, ``Development of an Open Core System-on-Chip Platform’’, 
M.S. Thesis, University of Tennessee, August 2004.  [Online] available: 
http://vlsi1.engr.utk.edu/ece/rishi-thesis.pdf 
 
27. Gabi Chereches, Kamesh Ramani, Madhan, Mardav Wala, “Discrete Cosine 
Transform”, ECE552 Course Project, University of Tennessee, May 2003.  [Online] 
available: http://vlsi1.engr.utk.edu/~gabi/552/dct/report/home.html 
 
 
 



 98

VITA 
 
 

Suresh Polisetty was born in Tallapuram, India.  He grew up and did his 

schooling in Kakinada, India.  He went to P.R.G Jr College, Kakinada, for his post-

school education.  He then went to the J.N.T.U College of Engineering, Kakinada, and 

obtained his Bachelor of Technology degree in Electrical and Electronics Engineering 

in 2001. He joined the University of Tennessee, Knoxville to pursue his graduate 

studies.  Subsequently he has been doing his research under the guidance of  Prof. 

Donald W. Bouldin. He plans to graduate with a Master’s degree in Electrical 

Engineering in December 2004. 

 
 


	Hardware Acceleration of the Embedded Zerotree Wavelet Algorithm
	Recommended Citation

	Microsoft Word - Suresh_Thesis.doc

