
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

12-2004

Hardware Acceleration of the Embedded Zerotree Wavelet Hardware Acceleration of the Embedded Zerotree Wavelet

Algorithm Algorithm

Suresh S. Polisetty
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Polisetty, Suresh S., "Hardware Acceleration of the Embedded Zerotree Wavelet Algorithm. " Master's
Thesis, University of Tennessee, 2004.
https://trace.tennessee.edu/utk_gradthes/2322

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2322&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Suresh S. Polisetty entitled "Hardware Acceleration

of the Embedded Zerotree Wavelet Algorithm." I have examined the final electronic copy of this

thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Electrical Engineering.

Donald W. Bouldin, Major Professor

We have read this thesis and recommend its acceptance:

Gregory D. Peterson, Mohammad Ferdjallah

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Suresh S. Polisetty entitled "Hardware
Acceleration of the Embedded Zerotree Wavelet Algorithm." I have examined the final
electronic copy of this thesis for form and content and recommend that it be accepted in
partial fulfillment of the requirements for the degree of Master of Science, with a major
in Electrical Engineering.

Donald W. Bouldin
Major Professor

We have read this thesis and
recommend its acceptance:

Gregory D. Peterson

Mohammad Ferdjallah

Accepted for the Council:

Anne Mayhew
Vice Chancellor and
Dean of Graduate Studies

(Original signatures are on file with official student records.)

HARDWARE ACCELERATION

OF THE EMBEDDED ZEROTREE WAVELET

ALGORITHM

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Suresh S. Polisetty

December 2004

 ii

Dedicated to my family, teachers and friends

 iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my deepest gratitude to my advisor,

Dr.Bouldin, for his excellent guidance and enormous support during my graduate study

at The University of Tennessee, Knoxville.

Many thanks to Dr.Gregory Peterson and Dr. Mohammed Ferdjallah for

serving on my thesis committee.

 I personally thank Dr. Gregory Peterson for his great motivation and for

providing me with financial assistance during the first semester, which were the critical

days being in a far-off land.

I am grateful to Dr. A.J. Baker, Director, UT CFD Laboratory and the

Radiation Safety Department for assisting me financially during my graduate study.

I am deeply indebted to my parents for the support and the motivation

they provided me to explore higher levels of education.

My special thanks to Mrs. Marilyn Schmeichel for her valuable time

spent in proofreading and providing valuable suggestions to my documentation. I also

thank Dr.Chandra Tan, Sidd, Mahesh, Sampath, for their helpful suggestions. I thank all

my buddies especially Seeram for their endless support. Nothing would be possible

without their good wishes.

Last, and surely not the least, my heart full thanks to my dearest friend

and soon to be wife, Aruna, for her unrelenting support and being there for me.

 iv

ABSTRACT

The goal of this project was to gain experience in designing and

implementing a microelectronic system to acclerate the execution of a time-consuming

software algorithm, the Embedded Zerotree Wavelet (EZW), which is used in

multimedia applications. The algorithm was implemented using MATLAB to be

certain it was fully understood and to serve as a validation reference. Then, the

algorithm was mapped into a hardware description language, VHDL, and its resulting

implementation verified with the golden reference. The hardware description was then

targeted to a field-programmable gate array (FPGA).

Significant acceleration was achieved since the hardware implementation

in a FPGA (Xilinx Virtex-1000E using a 8.315 MHz clock) ran 10,000 times faster than

the MATLAB implementation on a SUN-220 workstation. Additional speedup

exploiting the parallel capabilities of the FPGA was not achieved since the EZW

algorithm utilizes only sequential operations.

 v

TABLE OF CONTENTS

CHAPTER 1..1

INTRODUCTION...1
1.1 GOAL AND APPROACH ...1

1.2 ALGORITHM SELECTION ..1

CHAPTER 2..3

BACKGROUND ...3
2.1 VHDL – DESIGN FLOW ...3

2.2 PILCHARD – A RECONFIGURABLE COMPUTING PLATFORM6

2.3 EMBEDDED CODING...10

2.4 ZEROTREE STRUCTURE ..11

2.5 WAVELET DECOMPOSITION: DISCRETE WAVELET TRANSFORM (DWT)13

2.5.1 DCT Vs DWT ..18

CHAPTER 3..21

APPROACHES & IMPLEMENTATION ...21
3.1 CONCEPTS OF EZW ...21

3.2 EZW – THE ALGORITHM...23

3.2.1 Dominant Pass ..26
3.2.1 Subordinate Pass ..29

3.3 EZW – AN EXAMPLE..30

3.4 SOFTWARE IMPLEMENTATION..40

3.4.1 EZW specifications..41
3.4.2 Deviations from EZW specifications...41
3.4.3 Decoding the Bitstream generated by EZW..44

3.5 HARDWARE IMPLEMENTATION ..46

3.5.1 Explicit Design Flow of the Pilchard RC Platform46
3.5.2 Design Details...50

 vi

3.5.2.1 Encoder ...52
3.5.2.2 Controller ..52
3.5.2.3 Dual Port – RAM..58

3.5.3 Pre-Synthesis Simulations...59
3.5.4 Synthesis..59
3.5.5 Place and Route (PAR) ...59
3.5.6 Bit file generation ...59

CHAPTER 4..64

RESULTS ..64
4.1 SOFTWARE ...64

4.1.1 Test Image – Lena...64
4.1.2 Test Image – Barbara ...67
4.1.3 Test Image – Goldhill..73

4.2 HARDWARE..79

4.2.1 Area and Speed ...85
4.2.2 Limitations ..85

4.2.2.1 Limitaion#1...85
4.2.2.2 Limitaion#2...86

4.3 HARDWARE VS. SOFTWARE...86

4.4 SPEEDUP AND DESIRED ARCHITECTURE ..87

4.4.1 Speedup Including the Time for Data Transfer88
4.4.2 Other Possibilities to Achieve Speedup ..89

CHAPTER 5..93

CONCLUSIONS AND FUTURE WORK..93
5.1 CONCLUSIONS..93

5.2 FUTURE WORK ...93

REFERENCES..94

VITA...98

 vii

LIST OF TABLES

Table 1 Xilinx® Virtex™ FPGA Device XCV1000E Product Features [13]8

Table 2 Features of the Pilchard RC platform [12]...8

Table 3 First Dominant Pass ...38

Table 4 First Subordinate Pass..38

Table 5 Arithmetic Coding of Symbols for Dominant Pass43

Table 6 Arithmetic Coding of Symbols for Subordinate Pass....................................43

Table 7 Detailed operations of each State of the Encoder ..55

Table 8 Detailed operations of each State of the Controller.......................................57

Table 9 Experimental results of Lena ...67

Table 10 Experimental results of Barbara ..73

Table 11 Experimental results of Goldhill..79

Table 12 Area and Speed ..86

Table 13 Comparison between DCT and EZW on ASIC. ..92

Table 14 Possible EZW Speed-ups on Different Platforms..92

 viii

LIST OF FIGURES

Figure 1 Digital Design Flow ..4

Figure 2 The Pilchard Board [12] ...7

Figure 3 Block Diagram of Pilchard [12] ...9

Figure 4 Parent-Childe Dependencies [1]...12

Figure 5 Scanning Order [1] ...14

Figure 6 First Stage of Discrete wavelet Transformation [1]15

Figure 7 Second-Stage Wavelet Decomposition [1]...15

Figure 8 Original image Lena 512 x 512 ..16

Figure 9 One-Scale DWT Decomposition..17

Figure 10 Two scale-Dimensional DWT Decomposition ..19

Figure 11 DCT Vs DWT [14]...20

Figure 12 Typical Flows of Data of Image Encoder...21

Figure 13 Flow-chart of EZW Encoder ..25

Figure 14 Flow-chart of Dominant Pass ...27

Figure 15 Flow-chart of Subordinate Pass..31

Figure 16 An 8x8 Sample Image ..31

Figure 17 Step#1 of Dominant Pass Figure 18 Step#2 of Dominant Pass............33

Figure 19 Step#3 of Dominant Pass Figure 20 Step#4 of Dominant Pass............33

Figure 21 Step#5 of Dominant Pass..34

Figure 22 Step#6 of Dominant Pass..35

Figure 23 Step#7 of Dominant Pass..35

 ix

Figure 24 Step#8 of Dominant Pass..37

Figure 25 Step#9 of Dominant Pass..37

Figure 26 Morton-Scan Order...42

Figure 27 Flow-chart for the Decoder ..45

Figure 28 Block Diagram of the EZW Implementation ...46

Figure 29 Explicit design Flow for Pilchard RC (Courtesy: Dr. Chandra Tan)48

Figure 30 Flow of Design in the PAR tools..49

Figure 31 Hierarchy of the modules ...51

Figure 32 A sample FSM..53

Figure 33 VHDL Representation of a sample FSM..53

Figure 34 FSM of the Encoder..54

Figure 35 FSM of the Controller ..56

Figure 36 Read/Write Operations of Xilinx Dual-Port RAM [17]58

Figure 37 Waveform indicating inputs of encoder module ..60

Figure 38 Waveform showing done signal becoming 1 at 49558 ns............................60

Figure 39 Waveform showing parith and pcore signals, and start becoming 1............61

Figure 40 Waveform indicating done signal becoming 1 at 31740062

Figure 41 Layout of the Design using Synplify- Pro..63

Figure 42 Test Image – Lena 512 x 512 Original...65

Figure 43 Lena 512 x 512, 6-scale DWT Decomposition ..66

Figure 44 L-Compr. Ratio 1024 : 1 ..68

Figure 45 L-Compr. Ratio 512 : 1 ..68

Figure 46 L-Compr. Ratio 256 : 1 ...68

 x

Figure 47 L-Compr. Ratio 128 : 1 ...68

Figure 48 L-Compr. Ratio 64 : 1 ...69

Figure 49 L-Compr. Ratio 32 : 1 ...69

Figure 50 L-Compr. Ratio 16 : 1 ...69

Figure 51 L-Compr. Ratio 8 : 1 ...69

Figure 52 Reconstructed Lena Image using all 42848 bytes ..70

Figure 53 Test Image – Lena 512 x 512 Original...71

Figure 54 Barbara 512 x 512, 6-scale DWT Decomposition..72

Figure 55 B-Compr. Ratio 1024 : 1 ..74

Figure 56 B-Compr. Ratio 512 : 1 ..74

Figure 57 B-Compr. Ratio 256 : 1 ..74

Figure 58 B-Compr. Ratio 128 : 1 ..74

Figure 59 B-Compr. Ratio 64 : 1 ...75

Figure 60 B-Compr. Ratio 32 : 1 ...75

Figure 61 B-Compr. Ratio 16 : 1 ...75

Figure 62 B-Compr. Ratio 8 : 1 ...75

Figure 63 Reconstructed Barbara Image using all 45504 bytes76

Figure 64 Test Image – Goldhill 512 x 512 Original..77

Figure 65 Goldhill 512 x 512, 6-scale DWT Decomposition.......................................78

Figure 66 G-Compr. Ratio 1024 : 1 ..80

Figure 67 G-Compr. Ratio 512 : 1 ..80

Figure 68 G-Compr. Ratio 256 : 1 ..80

Figure 69 G-Compr. Ratio 128 : 1 ..80

 xi

Figure 70 G-Compr. Ratio 64 : 1 ...81

Figure 71 G-Compr. Ratio 32 : 1 ...81

Figure 72 G-Compr. Ratio 16 : 1 ...81

Figure 73 G-Compr. Ratio 8 : 1 ...81

Figure 74 Reconstructed Goldhill Image using all 45428 bytes...................................82

Figure 75 MATLAB Implementation for Multiple Compression Ratios83

Figure 76 Verification of the Hardware Implementation ...84

Figure 77 An example system-on-chip platform [26]...91

 1

CHAPTER 1
INTRODUCTION

1.1 Goal and Approach

The goal of this project was to gain experience in designing and

implementing a microelectronic system to acclerate the execution of a time-consuming

software algorithm used in numerous applications. The project began with the selection

of a candidate algorithm and its implementation using MATLAB to be certain it was

fully understood and to serve as a validation reference. Then, the algorithm was

mapped into a hardware description language, VHDL, and its resulting implementation

verified with the golden reference. The hardware description could then be targeted to

either a field-programmable gate array (FPGA) or an application-specific integrated

circuit (ASIC).

1.2 Algorithm Selection

Many evolving multimedia applications require transmission of high

quality images over the network, which in turn need efficient image coding methods to

meet challenges such as coding efficiency, scalability, target compression rates, low

delay, low power consumption and implementation simplicity. Image processing is

normally done using different software packages like PhotoShop and MATLAB. These

software applications execute on a central processing unit (CPU) of a computer, which

executes image manipulation routines sequentially. Because the CPU must be shared

with other applications and is not able to execute the image manipulations in parallel,

 2

performance suffers. The research described in this thesis involves implementing

image-processing functions in a FPGA, which serves as a CPU coprocessor to speed up

processing times. This can be accomplished by taking advantage of pipelining and/or

parallel processing implemented on dedicated hardware. Such extreme parallelism is

almost impossible with traditional CPU architectures.

A decade ago, a group of efficient image coders based on wavelet

hierarchical decomposition was developed and resulted as one of the most promising

techniques to meet the aforementioned challenges for image coding. The idea of

grouping wavelet coefficients at different scales and predicting zero coefficients across

scales was introduced. In [1], Shapiro proposed an Embedded Zerotree Wavelet (EZW)

coding scheme that not only has provided excellent coding performance, but also has a

fully embedded bit stream. The EZW algorithm is a simple, easy to implement, and an

effective image compression technique. The EZW algorithm uses the concepts of

Discrete Wavelet Transform, Embedded Coding, Zerotree Coding and loss-less

Arithmetic Coding.

 3

CHAPTER 2
BACKGROUND

2.1 VHDL – Design Flow

Hardware can be described by programming languages like VHDL,

which stands for VHSIC (Very High Speed Integrated Circuit) Hardware Description

Language. VHDL modules can be simulated to test the functional behavior of the

hardware implementations of the design as well as its timing constraints. VHDL

descriptions can be “synthesizable” which means the behavioral description can be

translated into physically realizable circuits, such as NAND gates, XOR gates and Flip-

flops, using CAD (Computer Aided Design) tools. Synthesis can be targeted to

programmable logic devices, such as FPGAs or to application-specific integrated

circuits (ASICs). FPGAs are commonly designed to be reprogrammable, so they are

often used to test algorithms. ASICs are chips that are designed with a specific purpose

in mind, and are generally not reprogrammable, but they are usually faster than FPGAs.

However, FPGAs available in recent days are made of circuits with millions of

transistors, and are extensively used for the applications like prototyping and high

performance reconfigurable computing.

Figure 1 shows the basic flow for the design of digital circuits in

ASICs/FPGAs. The problem statement specifies the requirements of the design. Then

code is generated to meet the specifications. Any hardware description language, for

example VHDL, is used for the coding. Now the code is simulated to achieve the

correct functionality. If the code needs any changes, then it is repaired, and again

 4

Figure 1 Digital Design Flow

Specifications

VHDL Description
 (Code)

Pre-Synthesis Simulations
 (Testing for functionality)

Synthesis
 (Targeting to FPGA/ASIC)

 Pre-layout Testing

Place and Route
(Positioning the logic and connecting

the logic functions in the targeted
FPGA/ASIC)

 Post-layout Testing

Fabrication of ASIC/
Downloading the design to FPGA

 Hardware Testing

Functional VHDL

Gate Level Netlist

Hardware Description

 5

simulated. This process continues till the required functionality is achieved. Once the

code is functional, then it is synthesized using synthesizing CAD tools, which can take

care of priority design constraints like delay, area and power. There is always a tug-

of-war between performance (area and delay) and power-consumption. For example,

think about the demand for a “Notebook PC (laptop)”, which can easily fit in a

backpack. It is desirable that the laptop weight and power be reduced in half yet run

twice as fast and cost the same as an existing model.

Coming to the point, synthesis is an automatic method of converting a

higher-level abstraction, such as a behavioral description, to a lower level abstraction,

such as a gate-level netlist. But, all the VHDL statements are not synthesizable. Another

VHDL module apart from the actual design modules, known as the “test-bench”, is used

in the simulations. The port structure, which specifies the input-output pins, of the test-

bench is exactly opposite to the port structure of the top module of the design. The

purpose of a test-bench is limited to provide test vectors to the input pins, and to receive

the responses from the output pins. A test-bench cannot be synthesized.

Once the design is synthesized and the timing constraints are met, then

the design is ready for the next step, i.e., Place and Route (PAR). PAR can be defined

as the process of mapping a synthesized netlist in terms of physical location (place) and

the interconnection of the corresponding blocks (route) [11]. At this stage the exact

timing constraints of the design will be revealed and the area of the design can be a

accurately measured. If there are any failed constraints, then the design has to be

modified from the beginning. In the case of a FPGA, if the PAR is successful, an .ncd

(Native Circuit Description) file is generated, which will be used to create a layout and

 6

configuration or .bit file. In case of an ASIC, a GDSII file is generated, which can be

used in the fabrication process.

2.2 Pilchard – A Reconfigurable Computing Platform

The Pilchard Reconfigurable Computing (RC) board (Figure 2)

developed at the Chinese University of Hong Kong [12] is the hardware system used for

the implementation of this design. This RC board accommodates a million-gate FPGA,

the Xilinx® Virtex™1000E (XCV1000E). The product features of the XCV1000E, as

obtained from the manufacturer’s website, are listed in the Table 1. The Pilchard uses

133MHz synchronous dynamic RAM Dual In-line Memory Modules (DIMMs)

interfacing with the CPU. Compared to the usual commercially available RC boards

with traditional Peripheral Component Interconnect (PCI) interface, the DIMM

interface offers higher bandwidth for communication between the host processor and

the RC board and lower latency, yet, is easier to interface.

The block diagram of the Pilchard board is shown in the Figure 3. The

Table 2 gives the features of the board. This advantage of the communication between

the host processor and the RC board is accomplished by a software interface program

executing on the host processor. There are four API functions of the software interface:

I. void read64(int64, char *) - To read 64 bits from Pilchard

II. void write64(int64, char *) - To write 64 bits to Pilchard

III. void read32(int, char *) - To read 32 bits from Pilchard

IV. void write32(int, char *) - To write 32 bits from Pilchard

 7

Figure 2 The Pilchard Board [12]

 8

Table 1 Xilinx® Virtex™ FPGA Device XCV1000E Product Features [13]

Feature Specification

Package used in Pilchard HQ240 (32mm × 32mm)
CLB Array (Row × Col.) 64×96
Logic Cells 27,648
System Gates 1,569,178
Max. Block RAM Bits 393,216
Max. Distributed RAM Bits 393,216
Delay Locked Loops (DLLs) 8
I/O Standards supported 20
Speed Grades 6,7,8
Available User I/O 158 pins (for package PQ240) max.660

Table 2 Features of the Pilchard RC platform [12]

Feature Specification

Host Interface DIMM Interface
64-bit Data I/O
12-bit Address Bus

External (Debug) Interface 27 – Bits I/O
Configuration Interface X-checker, MultiLink and JTAG
Maximum System Clock Rate 133 MHz
Maximum External Clock Rate 240 MHz
FPGA Device XCVE1000E-HQ240-6
Dimension 133mm × 65mm × 1mm
OS Supported GNU/LINUX
Configuration Time 16s Using Linux download program

 9

Figure 3 Block Diagram of Pilchard [12]

 10

“int64” is a data type provided by “iflib.h” as a two-element integer array. The FPGA is

configured with the design bit-stream by " download.c.”

2.3 Embedded Coding

An “Embedded Coding” can be defined as representing a sequence of

binary decisions that distinguish an image from the “null”, or all gray, image. During

the image encoding, all lower frequency codes are “embedded” at the beginning of the

bit stream, and the bits are arranged in order of importance. An encoder following the

embedded coding technique can terminate the encoding at any point thereby allowing a

target bit rate to be met exactly. Some target parameters can be monitored to stop the

encoding exactly when the target rate is met. A decoder is also capable of stopping

decoding at any point and can reconstruct the image corresponding to all lower

frequency encoding.

Binary finite precision representation of real numbers is a proper

example of embedded coding. Binary representation of all real numbers is possible

using a string of binary digits. If a bit is added to the right of a floating-point binary

string, the precision of the decimal equivalent of the binary string will be increased. It is

obvious that, the addition of the bits can cease at any time and provide the “best”

representation of the real number achievable within the framework of the binary digit

representation. Similarly, the embedded coder can cease at any time and can provide the

“best” representation of an image achievable within its frame work [1].

 11

2.4 Zerotree Structure

An image-based data structure arranged in parent-child order, called

simply a tree, is a set of wavelet coefficients corresponding to the same spatial location

and orientation. The zerotree-based image coders are based on the assumption that if

there are insignificant coefficients in low frequency subbands in a tree, then the

probability of corresponding coefficients in the higher frequency subbands being

insignificant is higher. If all the coefficients of a tree are insignificant with respect to a

given threshold, then the tree is called a zerotree. When encoding an image, fewer bits

are sufficient to represent the zerotree, whereas the non-zerotree structures require

substantial number of bits [8]. In the zerotree-based system, every coefficient at any

lower frequency subband has a relationship with a group of coefficients at the next

higher frequency subband at the same spatial location, except the highest frequency

subbands. The coefficient at the lower frequency subband is called the parent, and all

coefficients corresponding to the same spatial location at the next higher frequency

subband of analogous orientation are called children. Also, the set of all the coefficients

corresponding to the same spatial location, relating to a parent, at the subsequent higher

frequency subbands are called descendants. Similarly, the set of all the coefficients

corresponding to the same spatial location, relating to a child, at the subsequent lower

frequency subbands are called ancestors. The parent-child dependencies are shown in

Figure 4 [1]. The coefficients are scanned in a particular order, which assures the fact

that all the parent nodes must be scanned before their children. For a 2-scale wavelet

transform, the scanning of the coefficients begins with LL2, the lowest frequency band,

and follows to the HL2, LH2 and HH2. After finishing the coarser scale, it moves to the

 12

Figure 4 Parent-Childe Dependencies [1]

LL3 HL3

LH3 HH3

HL2

LH2 HH2

LH1

HL1

HH1

(Note) Parent-Child dependencies of subbands: Note that the arrow points from the
subband of the parents to the subband of the children. The lowest frequency subband is
the top left, and the highest frequency subband is at the bottom right. Also shown is a
wavelet tree consisting of all of the dependencies of a single coefficient in subband
HH3. The coefficient in HH3 is a zerotree root if it is insignificant and all of its
descendents are insignificant.

 13

next finer scale, which is the 1-scale in this case. So, the order of scanning moves from

HH2 to HL1, HL1 to LH1 and finally ends at the highest frequency subband HH1. The

scanning order is shown in Figure 5 [1].

2.5 Wavelet Decomposition: Discrete Wavelet Transform (DWT)

The discrete wavelet transform used in the EZW algorithm, proposed by

Shapiro, is similar to a hierarchical subband system, in which the subbands are

logarithmically spaced in frequency and represent octave-band decomposition. The

original image is split into subbands and sub-sampled as shown in Figure 6 [1]. Each

coefficient represents a spatial area corresponding to approximately ¼ of the area of the

original image. The four subbands are formed from the vertical and horizontal filtering

process. The subbands labeled LH1, HL1 and HH1 represent the higher frequency

wavelet coefficients. The subband LL1 is decomposed again and critically sampled as

shown in Figure 7 [1], to obtain the next coarser scale of wavelet coefficients. This

process is recurrent until the target scale is reached. The coarser the scale, the larger

will be the representation of the spatial area of the coefficients of images, but the

frequencies are narrower. There are three subbands at each scale. The fourth and lowest

frequency subband is located at the left top and contains the information of all coarser

scales [1].

Here is an example of the original image “Lena” of size 512x512 shown

in Figure 8, undergoing dyadic decomposition into subbands. The image shown in

Figure 9 is after a one- scale DWT Decomposition. It can be noticed that the image in

the subband LL1 is better than the image in HL1, so that HL1’s is better than LH1’s

 14

Figure 5 Scanning Order [1]

LL3 HL3

LH3 HH3

HL2

LH2 HH2

LH1

HL1

HH1

(Note) Scanning Order: Scanning order of the subbands for encoding a
significance map: Note that parent must be scanned before children. Also note
that all positions in a given subband are coded before moving to he next.
in a given subband are scanned before the scan moves to the next subband

 15

Figure 6 First Stage of Discrete wavelet Transformation [1]

Figure 7 Second-Stage Wavelet Decomposition [1]

(Note) First stage of discrete wavelet transformation: The image is divided into four
subbands using separable filters. Each coefficient represents a spatial area
corresponding to approximately a 2x2 area of the original picture. The low
frequencies represent a bandwidth approximately corresponding to 0< |ω | < π/2,
whereas the high frequencies represent the band from to π/2 < |ω | < π. The four
subbands arise from separable application of vertical and horizontal filters.

LL HL

LH HH

(Note) Two-scale wavelet decomposition: The image is divided into four subbands
using separable filters. Each coefficient in the subbands LL2, LH2, HL2 and HH2
represents a spatial area corresponding to approximately a 4x4 area of the original
picture. The low frequencies at this scale represent a bandwidth approximately
corresponding to 0< |ω | < π/4, whereas the high frequencies represent the band from
to π/4 < |ω | < π/2.

LL2

HL1

LH1 HH1

HL2

HH2LH2

 16

Figure 8 Original image Lena 512 x 512

 17

Figure 9 One-Scale DWT Decomposition

 18

and LH1’s is better than HH1,which is due to the fact that the most significant

information of the image will be stored in the lowest frequency subband. The least

significant information of the image is stored in the highest frequency subband and the

order of significance follows the same order as the order shown previously in Figure 5

[1]. The two-scale DWT decomposition into subbands is shown in Figure 10.

2.5.1 DCT Vs DWT

The Discrete Cosine Transform (DCT) is the traditional transformation

method used in image compression techniques such as Joint Photographic Experts

Group (JPEG) and Moving Picture Experts Group (MPEG1 & MPEG2). Developed in

the early 1990’s, the Discrete Wavelet Transform (DWT) has gained popularity over the

DCT. The latest compression techniques like JPEG2000 and MPEG4 use DWT.

Unlike the DCT, coefficients from the DWT are stable under the presence of

discontinuities in the signal to be coded. The DWT only requires a piecewise smooth

signal, where as the DCT requires a globally smooth signal. Most video and image

compression implemented using the Discrete Wavelet Transform does not exhibit the

blocking, also known as tiling, artifacts seen with the block Discrete Cosine Transform.

DWT-based image compression often outperforms block DCT compression if evaluated

using the Peak Signal to Noise Ratio (PSNR) or Mean Squared Error (MSE) metric

(these are mathematically equivalent). The subjective quality of images compressed

with the DWT can appear better than block DCT methods for the same compression

ratio. Figure 11 [14] shows the comparison between JPEG and JPEG2000 compressed

images.

 19

Figure 10 Two scale-Dimensional DWT Decomposition

 20

Figure 11 DCT Vs DWT [14]

 21

CHAPTER 3
APPROACHES & IMPLEMENTATION

3.1 Concepts of EZW

The EZW image encoder follows the typical flow of data as shown in the

Figure 12, and has three basic steps: 1) Transformation, 2) Quantization and 3)

Compression.

(Step 1) Transformation. EZW uses the Discrete Wavelet Transform

(DWT) to transform the original image. In order to perform the DWT, the image has to

be a square image, and its row/column size must be an integer power of 2. So,

technically, the EZW is applicable to the square images of sizes in integer powers of 2

(for example, image sizes like 128 x 128 or 512 x 512).

This transformation is theoretically lossless, although this may not

always be the case. The purpose of the transformation is to generate decorrelated

coefficients, which means it removes all the dependencies between samples.

Figure 12 Typical Flows of Data of Image Encoder

Image
Samples

Transformation Compression Quantization

Presumably
Lossless

Decorrelates

Samples

All
Information

Loss Occurs
Here

Efficient
Lossless

Representation
Of Symbol

Stream

Transform
Coefficients

Symbol
Stream

Bit
Stream

 22

(Step 2) Quantization. This step involves the quantization of

transformed coefficients. Thus, the entropy of the resulting distribution of the bin

indexes is small enough that the symbols can be entropy coded at some low target bit

rate. Quantizers are symmetrically read. Assuming the central index is zero, which

treats positive or negative indexes alike, all quantizers are set to be symmetric. The

main advantage of symmetry is that it saves the bits needed to represent the symbols

since encoding of a non-zero coefficient requires at least one bit per sign. An entropy

code can be designed using the probabilities of the bin indices as the fraction of

coefficients in which the only absolute values of bin indexes are involved. Entropy of

the symbols H can be expressed as

 H = -p log2p – (1 - p) log2 (1 - p) + (1-p) [1 + HNZ],

 where p = probability that a transform coefficient is quantized to zero, and

 HNZ = conditional entropy of the absolute values of the quantized coefficients

conditioned on them being non-zero.

The EZW uses Successive Approximation Quantization (SAQ). SAQ is

chosen to achieve a multiprecision representation of the coefficients and to facilitate the

embedded coding. The significance of the wavelet coefficients with respect to a

monotonically decreasing series of thresholds, Ti, is determined by using SAQ. For each

threshold, Ti, the positions of the significant and the insignificant coefficients are

indicated in significance maps.

(Step 3) Compression. The concept of a zerotree data structure is applied

in the compression process of the significance map. Each wavelet coefficient is

compared with the threshold, Ti, to determine its significance. In addition to encoding

 23

the significance map, further encoding of significant coefficients is done using signs.

All the significant coefficients are encoded into only four signs: 1) zerotree root, 2)

isolated zero, 3) positive significant, and 4) negative significant. Encoding into symbols

makes embedded coding handy. EZW follows adaptive arithmetic coding for

compression. The main advantage of arithmetic coding in this algorithm is that it

contains a maximum of four symbols at any time. For instance, the encoder contains

two symbols for subordinate passes, three symbols for dominant passes with no zerotree

symbol and four symbols for dominant passes with zerotree symbol (the terms dominant

pass and subordinate pass will be explained later). Because the maximum number of

symbols is set to four, the occurrence of the possible symbols can be measured with less

effort. This advantage lets the algorithm use a short memory to learn quickly and

constantly changing symbol probabilities. Zerotree coding has a self-similarity

property, which helps cost reduction for encoding significant coefficients. There is still

a chance of dependency among the significant coefficients, though the coefficients are

decorrelated before using the DWT decomposition.

3.2 EZW – The Algorithm

The output of the EZW encoder starts with the header, which contains

information needed for the decoder to reconstruct the image. The basic information

required by an EZW decoder is the size of the image, the number of levels used for the

wavelet decomposition and the initial threshold value. The header can be avoided if we

provide the correct information for the decoder. However, any incorrect information

may result in a bad reconstruction of the image, as well as a higher PSNR value. For

 24

the encoder to begin the encoding of the wavelets (which are already decomposed using

the DWT), the threshold value is evaluated. The threshold value (T0) must obey the

rule Xi < 2T0, where Xi represents all the transform coefficients. Thus, the maximum

valued coefficient, Xi_max among all the transform coefficients is calculated.

Xi_max = max (max (N_N_image))

As stated previously, the EZW follows Successive Approximation

Quantization, which uses a sequence of thresholds in the process of quantization, such

as T0, T1, … TN, where Ti = Ti-1 / 2. To reduce the complexity of the implementation,

care should be taken that the threshold values are always a power of 2. This can be

qualitatively explained as

)((log
0

max_22 iXabsT =

With this available information, the encoder can proceed to the main

loop. The flowchart for the EZW encoder is shown in Figure 13. The EZW algorithm

maintains two separate lists for the encoding, known as the Dominant List and the

Subordinate List. For each threshold it passes through, the Subordinate Pass follows the

Dominant Pass. The pseudo-code of the EZW encoder is given below. Initialization of

the all variables is done as follows. The main loop calls both the Dominant Pass and the

Subordinate Pass.

Initialize:

k=0;T0=2|log2 (max_ coeff)|

Dominant List = same as the image

Subordinate List = Null

 25

Figure 13 Flow-chart of EZW Encoder

 START

Take 2D DWT of Image

T = Largest power of 2 less than
max absolute value of coefficients

 DOMINANT PASS

SUBORDINATE PASS

T = T/2

T = 1?

Y

STOP

N

 26

Main loop

Do {

DominantPass (Image)

SubordinatePass (Image)

Tk+1 = Tk/2

k=k+1

} while (Threshold = target lower value)

3.2.1 Dominant Pass

In the dominant pass, each wavelet-decomposed pixel value is compared

with a threshold, and the significance of the pixel value is determined. As said earlier,

the initial threshold value is chosen to be an integer power of two and less than the

maximum valued pixel, i.e., Xi_max /2 < T0 (=2n) < Xi_max, where n is an integer. If the

coefficient is larger than the threshold, a P (positive) is coded, whereas, if the

coefficient is a negative number and the absolute value of the coefficient is larger than

the threshold, an N (negative) is coded. When an insignificant value is found, it means

the coefficient is smaller than the threshold. If the comparison of all the coefficient’s

descendants (or children) in the subsequent bands with the same threshold also

insignificant, then it is feasible the parent pixel and all of its children can be encoded

with only one symbol, ZT (zero-tree), thus achieving compression. If a coefficient is

smaller than the threshold and it is not the root of a tree, then an IZ (isolated-zero) is

coded. This happens when significant children exist for an insignificant parent. Figure

14 shows the flow chart for the encoding procedure of the dominant pass.

 27

Figure 14 Flow-chart of Dominant Pass

Previously
Significant? No Output

Yes

No

Significant?

Append to
Sub-ordinate List

Yes No

What
Sign?

Output “P” Output “N”

Descends from
zerotree root?

No
Output

Has a significant
descendant?

Output “ZT” Output “IZ”

Yes

Yes
+ -

No

 28

According to the above explanation, in order to conclude that a

coefficient is the root of a zerotree or an isolated zero, the encoder has to scan the whole

tree. This is the time-consuming operation in the encoding. The encoder keeps track of

the encoded symbols for coefficients to prevent re-coding of the coefficients that are

already identified and encoded as zerotrees. If coefficients are found to be significant

with a threshold, i.e., if they are coded as positive (P) or negative (N), then they are

removed from the image and their positions are replaced by zeros. This will prevent

them from being coded again with lesser threshold values in the next iterations. The

absolute values of the removed significant coefficients are placed in the subordinate list.

Dominant pass is also called significance pass, as the significance of the coefficients are

determined in this pass. Any suitable scanning order can be used which will ensure that

no child element is scanned before its parent element. Dominant pass can be represented

in the form of pseudo code as shown below [3].

Dominant Pass:

For each entry Xi in the dominant list

 If | Xi| ≥ Tk [i.e. Xi is significant]

 If Xi is positive

 Encode symbols P

 Else [i.e. Xi is negative]

 Encode symbols N

End if [for positive/negative confirmation]

 Add | Xi| to the subordinate list

 Remove Xi from the Dominant list

 29

 Else [i.e. | Xi| < Tk, that means Xi is insignificant]

 Case # 1: Xi is non-root part of a zerotree

 Don’t code – it is predictably insignificant

Case # 2: Xi is a root of the zerotree with all insignificant quad-tee

elements – Encode symbol ZT

Case # 3: Xi is a root of the zerotree with one or more significant quad-

tee elements – Encode symbol IZ

 End if [for the significance]

 Entropy coding of the symbols using Adaptive Arithmetic Coding [Optional]

 Save the encoded bits.

End loop through the Dominant Pass

3.2.1 Subordinate Pass

The Subordinate Pass, also known as the Refinement Pass, is conducted

on the subordinate list (containing the previously found significant coefficients)

immediately after the Dominant Pass. The Subordinate Pass performs the pixel value

quantization, i.e. assigns the pixel value a symbol, by which the decoder can roughly

estimate the pixel value while reconstructing the image. Since the initial threshold is

one-half the maximum pixel value of the image during the first Dominant Pass, the

uncertainty of the significant value lies in the interval [T0, 2T0]. Thus, the first

Subordinate Pass specifies only two ranges in which the significant value could lie:

upper range, which is between [3T0/2, 2T0] or lower range, which is between [T0,

3T0/2]. If the significant coefficient falls in the upper range, it is encoded as H or it is

 30

encoded as L.

The flow chart of the Subordinate Pass is shown in Figure 15. The

Subordinate Pass is not really an essential operation in terms of the reconstruction, as

the decoder can reconstruct the image with the bits generated by the Dominant Pass.

However, the Subordinate Pass will help to increase the quality of the reconstructed

image by supplying adequate image data. The Subordinate Pass can be represented in

the form of pseudo code, as seen below [3].

Subordinate Pass

For each entry Xi in the Subordinate List

 If Xi ∈ [3T0/2, 2T0]

 Encode H (“H” for “high”)

 Else [i.e., Xi ∈ [T0, 3T0/2]]

 Encode L (“L” for “low”)

 End if

 Entropy code H’s and L’s using Adaptive Arithmetic coding

 Save the encoded bits.

End loop through the Subordinate List

3.3 EZW – an example

The example of a 2-scale wavelet transformation of an 8x8 image is used

to explain the algorithm. The image values are shown in Figure 16. The initial

threshold (T0) is determined according to the equation, T0=2|log2 (max_ coeff)|, and so the

first step is to find the maximum image value, seen to be 125 in Figure 3.5. Then the

initial threshold can be set to 64. The Dominant List is actually the same as the image,

which is an 8x8 array of pixel values. The Subordinate List is a one-dimensional

 31

 Figure 15 Flow-chart of Subordinate Pass

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

 Figure 16 An 8x8 Sample Image

1.5T < Coefficient < 2T

YN

Output “L” Output “H”

Coefficient from
Subordinate List

 32

row matrix, initially a null matrix. The first Dominant Pass is then conducted using the

initial threshold 64 and is explained as follows.

1) The first coefficient, 125, which is in level 3, subband LL3, is greater

than the threshold 64 and is positive. Therefore, a positive symbol P is

coded. [See Figure 17]

2) The scanning order of the coefficients is –78, 15 and 9, which belong to

the 3rd level subbands HL3, LH3 and HH3, respectively. Compared to the

threshold 64, -78 is greater but negative, and so N is coded. [See Figure

18]

3) The coefficient 15 is insignificant compared with coefficient 64. The 2nd

level subband LH2 coefficients {11, 10, 8, -6) are also insignificant

compared to coefficient 64. However, the 1st level subband LH1 has a

significant coefficient 95, and so the root of the zerotree 15 is coded as

insignificant zero, IZ. [See Figure 19]

4) The coefficient 9 is less than 64, and the next finer subband coefficients

{4, 8, -5, 14} and {4, 6, -2, , 3, -4, 4} are also insignificant.

Therefore, 9, the root of the zerotree is coded as ZT. [See Figure 20]

5) The scanning of the coefficients follows the order 99, -5, 1, -3 then 11,

10, 8, -6 and 4, 8, 5, -14. These coefficients’s location can be

represented as the second level subbands, which are HL2, LH2 and HH2

[See Figure 21]

 33

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 17 Step#1 of Dominant Pass Figure 18 Step#2 of Dominant Pass

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 19 Step#3 of Dominant Pass Figure 20 Step#4 of Dominant Pass

 34

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 21 Step#5 of Dominant Pass

6) Since coefficient 99 is greater than 64 and positive, it is coded as P. The

next four coefficients, -5, 1, –3 and 11, are coded as ZT, because they

are not descendants of any other zerotree root and their own descendants

are insignificant compared to coefficient 64. The preceding statement

can also be illustrated as follows: because -78, the parent coefficient of –

5, 1 and –3, was significant and 15, the parent coefficient of 11, was

coded as isolated zero. [See Figure 22, also see Figure 18 and 19]

7) The coefficient 10 is less than 64, but it has a significant descendant 95

in the next generation. So, it is coded as isolated zero IZ. 8 and –6 are

coded as ZTs (zerotree) as explained in the previous step. [See Figure

23]

 35

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 22 Step#6 of Dominant Pass

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 23 Step#7 of Dominant Pass

 36

8) The next coefficients to be coded are 4, 8, -5 and –14. All four are

insignificant compared to 64 and they are in the non-root part of the

zerotree, as their ancestor 9 is the root of the zerotree. Therefore, all four

coefficients are left un-encoded. [See Figure 24]

9) Until now, all the coefficients, except the coefficients in the subbands

LH1, HL1, HH1, are encoded. Usually, most of the higher frequency

subband coefficients are not encoded at higher threshold values, as they

are often descendants of roots of zerotree or usually insignificant. For

the level-1 subbands (HL1, LH1 and HH1), the encoder uses only 3

symbols (P, N, Z), because these subband coefficients do not have any

descendents and cannot be the roots of a zerotree. The final significance

map is shown in Figure 25.

During the first Dominant Pass of reconstruction, if the decoder sees a

symbol P and already knows the initial threshold value to be 64, the decoder outputs 96,

the midpoint of the range [64, 128], as the reconstructed value [see Table 3]. However,

the actual value of the coefficient in the original image is 125. The difference between

the original and the reconstructed coefficient is higher, and so EZW uses another pass

i.e. Subordinate Pass to refine the encoding information of the already found significant

coefficients. Subordinate Pass is performed immediately after each Dominant Pass.

The following comments explain the first subordinate pass [see Table 4].

 37

125 -78 99 -5 7 13 -12 7

15 9 1 -3 -3 4 6 -1

11 10 4 8 5 -7 3 9

8 -6 5 -14 4 -2 3 -2

-5 9 -1 95 4 6 -2 2

3 0 -3 2 3 -2 0 4

2 -3 6 -4 3 6 3 6

5 11 5 6 0 3 -4 4

Figure 24 Step#8 of Dominant Pass

P N P ZT Z Z * *

IZ ZT ZT ZT Z Z * *

ZT IZ * * * * * *

ZT ZT * * * * * *

* * Z P * * * *

* * Z Z * * * *

* * * * * * * *

* * * * * * * *

Figure 25 Step#9 of Dominant Pass

 38

Table 3 First Dominant Pass

Scanning

Order Subband Coefficient
Value Symbol Reconstruction

Value
1 LL3 125 P 96
2 HL3 -78 N -96
3 LH3 15 IZ 0
4 HH3 9 ZT 0
5 HL2 99 P 96
6 HL2 1 ZT 0
7 HL2 -5 ZT 0
8 HL2 -3 ZT 0
9 LH2 11 ZT 0

10 LH2 10 IZ 0
11 LH2 -8 ZT 0
12 LH2 6 ZT 0
13 HL1 7 Z 0
14 HL1 13 Z 0
15 HL1 -3 Z 0
16 HL1 4 Z 0
17 LH1 -9 Z 0
18 LH1 95 P 96
19 LH1 -3 Z 0
20 LH1 2 Z 0

Table 4 First Subordinate Pass

Coefficient Absolute Value Arithmetic Coding
of the Symbol Reconstruction value

125 1 112

-78 0 80

99 1 112

95 0 80

 39

1) During the first dominant pass, a subordinate list is created containing

only significant coefficients, which are encoded either as P or as N.

Thus, for the above example, the subordinate list is {125, -78, 99, 95}.

2) Two intervals, upper and lower, exist for each subordinate pass,

depending on the threshold value. For threshold 64, the upper interval is

defined between [96, 128], and the lower interval between [64, 96].

3) The first coefficient of the subordinate list, 125, belongs to the upper

level, and so it is encoded as H. The reconstruction value is the center of

the upper interval, or 112.

4) The next coefficient is 78, which is placed in the lower interval and

encoded as L. The reconstruction value is the center of the lower

interval, or 80.

5) The third entry, 99, is encoded as H and has a reconstruction value of

112. Finally, the last entry, 95, is encoded as L, and its reconstruction

value is set to 80.

Notice that the reconstruction value after the subordinate pass of the

coefficient 95 is changed from 96 to 80, which results in an increase of reconstruction

error from 1 to 15. However, the uncertainty interval is decreased from 32

(64<96<128) to 16 (64<80<96), which will ensure overall improvement of

reconstruction error. The subordinate list from the first subordinate pass is carried over

to the second subordinate pass, and the significant values generated are placed next to

the previously found significant values. In addition, the subordinate list’s coefficients

 40

are reordered based on decreasing order of the reconstruction values. Initially, the

subordinate list follows the same order as the scanning order, which is {125, 78, 99,

95}, and the reconstruction values of the respective coefficients are given as {112, 80,

112, 80}. After the first subordinate pass, the reconstructed values, in descending order,

are {112, 112, 80, 80}. They make coefficient 99 precede coefficient 78, and so, the

new order for future subordinate passes is {125, 99, 78, 95}. Notice that coefficient 99

still precedes coefficient 78, which is smaller, because the decoder considers both the

coefficients alike since their reconstructed values are same.

3.4 Software Implementation

It was discovered during an Internet search that the EZW algorithm was

developed as a course project by a group of students at Rice University, TX, in 1999

[4]. The documentation of their work was very limited. Even though many enthusiastic

researchers in the field of image compression using wavelets have already developed

the software implementation of this algorithm using MATLAB, C, and C++, the

present research work takes its inspiration principally from the aforementioned course

project. The course project source code was written in MATLAB and was not bug-free,

as it was generated using older versions of the software package available half a decade

ago. However, most of the MATLAB functions were corrected and updated to comply

with the latest version of the software package used. Quite a few functions were added

to achieve some specific functionality, and few of the existing functions were removed.

Compilation and validation were done using the MATLAB 6.1 package. The following

subsection will give an overview of how the implementation was done.

 41

3.4.1 EZW specifications

According to the EZW algorithm, the image has to be decomposed using

the Discrete Wavelet Transform. A system-defined, built-in DWT function was used

here, as the implementation of the DWT is itself very complicated. The quantization

and the compression blocks were implemented manually. No particular order for

scanning of the wavelet coefficients was stated in the original EZW specifications, and

so the Morton-Scan order shown in Figure 26 was used here. For the compression, the

Adaptive Arithmetic Coder was used. The basic idea behind the arithmetic coder is to

represent the symbols in binary numbers. Arithmetic coding achieves the compression

by the probabilities of the occurrence of the symbol, but the simple Arithmetic Coding

followed here was not really concerned about the probabilities of the symbols. The

arithmetic coding procedure is briefly explained in Table 5 and Table 6, respectively,

for the dominant pass and subordinate pass.

3.4.2 Deviations from EZW specifications

In the original EZW specifications proposed by Shapiro [1], the

subordinate list should be rearranged depending on the tentative reconstructed values

after each subordinate pass, so that the future subordinate pass uses the renewed

subordinate list. The sorting of the subordinate list is found to have little influence on

the quality of the reconstructed image. When any efficient sorting algorithm is used,

the execution time of the algorithm depends on the number of elements, N, to be sorted.

If the number N is large, the execution time of the sorting algorithm will show an effect

 42

Figure 26 Morton-Scan Order

 43

Table 5 Arithmetic Coding of Symbols for Dominant Pass

Table 6 Arithmetic Coding of Symbols for Subordinate Pass

Dominant List Symbols

Binary Representation

P “11”

N
 “10”

IZ “01”

ZT “00”

Subordinate List Symbols Binary Representation

H “1”

L “0”

 44

on the overall execution time of the encoder. However, because of the meager

improvement achieved through the sorting of the subordinate list in the EZW, it was not

implemented in the present work [4].

3.4.3 Decoding the Bitstream generated by EZW

The decoding process follows the same steps as the encoder. The

flowchart of the decoder is shown in Figure 27. The decoder also uses two passes,

Dominant Pass II and Subordinate Pass II, during the reconstruction process, similar to

the dominant pass and subordinate pass of the encoder. In the beginning, the image to

be reconstructed is initialized to all zeros, and then the encoded bitstream is passed

through the dominant pass II. The bitstream comes with a header that contains the

essential information needed for the decoder, such as initial threshold value, image

dimensions, and the number of levels used for the DWT decomposition. As the

bitstream is in binary 1’s and 0’s, the decoder reads two bits from the bitstream and

turns them into symbols. If the decoder finds a positive or negative symbol, it places

the reconstruction value of that particular pass, which is 3/2 times the threshold value, at

the corresponding location. If the symbol is zerotree root (ZT) or insignificant zero

(IZ), the corresponding coefficient positions are filled with the suitable values. The

Dominant Pass II ends after scanning all coefficients of the image. The scanning order

must be same for both encoder and decoder. Subordinate Pass II reads one bit from the

bitstream. As discussed in earlier sections, if the bit is “1”, then the corresponding

coefficient’s reconstruction value is reorganized to a higher value; if “0”, then to a

lower value. The term “embedded” is justified in the decoding process, as the decoder

 45

Figure 27 Flow-chart for the Decoder

STOP

Inverse Discrete Wavelet Transform

 START

Get Header from the bit stream

Set the number of Bytes (B) to be used

 DOMINANT PASS II

SUBORDINATE PASS II

T = T/2

B < 2?

Y

 46

Figure 28 Block Diagram of the EZW Implementation

can stop at any time. The quality of the reconstructed image is directly proportional to

the number of bits decoded. If the image is encoded until the least value is recognized,

and if the bitstream is decoded until the last bit, then the resulting reconstructed image

will be the same as the original image.

3.5 Hardware Implementation

The block diagram of the implementation (software and hardware) of the

EZW algorithm is shown in Figure 28. The following subsections will give a brief

explanation of how it is implemented in FPGA.

3.5.1 Explicit Design Flow of the Pilchard RC Platform

The Pilchard Reconfigurable Computing Platform, explained in the

previous chapter, was used for hardware implementation. The design flow described in

DWT Decoder Dominant
Pass

Subordinate
Pass

Dominant
Pass

Subordinate
Pass

Software

Hardware

Image
Reconstructed
Image

 47

this section is explicit for the above stated platform. Figure 29 depicts the design flow

for implementation of any design on the Pilchard RC platform. The behavior of the

encoder is coded using VHDL. The process of testing the module’s functionality before

translating it to the circuit level design through synthesis is technically known as pre-

synthesis simulation. These simulations are performed with the aid of a “test-bench”

written in VHDL. The VHDL simulator used here is Mentor Graphic’s Modelsim®

version 5.8d. Modelsim allows viewing all the signals and I/O ports with the help of a

waveform viewer during the simulations. This helps debug the design. After successful

pre-synthesis simulations, the design moves to the next step, synthesis. In this step, the

design is synthesized using synthesis tools targeting to Xilinx® VirtexTM 1000E FPGA.

Two different synthesis tools, Synopsis® FPGA Compiler II and Synplicity® Sinplify-

Pro, were used. The inputs to these synthesis tools are VHDL modules, and the

outcome is a structural netlist in EDIF format, which contains the gate level circuit

descriptions. Some of the VHDL descriptions are not synthesizable. In that case, the

synthesis tool immediately gives an error message. The synthesis tools partially report

timing violations because the gates are not yet completely routed. All these problems

have to be fixed before moving to the next step, i.e., Place and Route (PAR). Xilinx®

ISE tools are used for PAR and Figure 30 shows the sequence of operations during

PAR. An EDIF file generated in the synthesis and a pin constraint file (PCF) are the

inputs of the PAR tools. First, the input information is passed through NGDBUILD,

where the EDIF format is translated to Xilinx’s Native Generic Database (NGD)

format, then, the NGD file is mapped to primitives inside the particular target FPGA,

which is Xilinx’s VirtexTM 1000E. The output file format after the mapping

 48

 VerificationImplementation

Functional Design Specification

Design Entry

IP Cores from Synopsys
DesignWare

VHDL Coding
Any Text Editor

Testbench
Development

Any Text Editor

Functional Simulation
Modelsim

Synthesis Synopsys
FPGA Compiler II

Placement & Routing
Xilinx ISE Tools

.vhdl design files

.edf netlist file &
.pcf constraint

file

.bit bitstream file

Post-Route Simulation
ModelsimBack-Annotated

vhdl and sdf
files

.vhdl
testbench

file

Power Estimation

Xilinx XPOWER

.ncd design file
.vcd Switching

Activity file

Hardware Simulation FPGA
Prototyping Board

(Pilchard)

Delay Estimation

Post-Route Static
Timing Analysis

Xilinx Timing
Analyzer

C Host Program

Xilinx
Simprims

Library

Xilinx
Unisims
Library

IBM Compatible

Post-Route Area
Report

Pre-Route Delay &
Area Report

Post-Route
DelayReport

Post-Route
Power Report

Figure 29 Explicit design Flow for Pilchard RC
(Courtesy: Dr. Chandra Tan)

 49

Figure 30 Flow of Design in the PAR tools

NGD Build

NGD

MAP

NCD & PCF

PAR

NCD

BitGen

 BIT

 50

operations is Native Circuit Description (NCD) format, which is a physical

representation of the design mapped to the components in the Xilinx FPGA. The PAR

takes the NCD file as input, place and routes the design, and outputs another NCD file.

After this step the timing constraints are revealed. If the design fails to meet the

required timing, then the design has to be changed. After successful PAR, the design

moves to the bitstream generator (BitGen). PAR tools can generate a post route

simulation netlist in HDL and a timing file with .SDF (Standard Delay Format)

extension if the user desires to perform post-layout simulations. BitGen takes a fully

routed NCD file as its input and produces a configuration bitstream, a binary file with a

.BIT extension. The BIT file contains both all of the configuration information from the

NCD file which defines the internal logic and interconnections of the FPGA, plus

device-specific information from other files associated with the target device [17].

3.5.2 Design Details

The EZW encoder consists of four main modules: encoder, parith, DP-

RAM and pcore. The hierarchy of the modules is shown in the Figure 31. Each of the

main components were implemented using VHDL and were simulated using Modelsim.

Simulations were performed at each level of the hierarchy and the results were

compared with the known values to confirm that the project is heading in the right

direction. The RAM module was generated using Xilinx’s Coregen. The Encoder uses

a package that contains descriptions of all arithmetic operations done in the module.

Parith, the next higher-level module, connects the controller and the encoder.

 51

 Figure 31 Hierarchy of the modules

DPRAM

Controller

Encoder

Mypkg

PARITH

PCORE

INTERFACE

EZW CORE

 52

 3.5.2.1 Encoder

Genuine encoding happens in this module. The inputs are standard logic

vectors, but the logic inside actually utilizes decimal numbers. Thus, several binary-to-

decimal converters were written into the package part of the module, which can be

called up by the entity part of the module. The outputs, too, are standard logic vectors,

and so decimal-to-binary converters were also written into the package part of the

module. VHDL needs synchronization of the process, unlike high-level software

programming. That means the logic cannot be implemented sequentially, as the logic

will be translated to physically realizable circuits later. This brings up the Finite State

Machine (FSM) modeling. Finite State Machine (FSM) modeling is very common in

RTL design and, therefore, deserves special attention. Figure 32 shows a sample state

machine, and the VHDL representation of the FSM can be seen in Figure 33. The Finite

State Machine of the ENCODER is shown in Figure 34 and the brief information about

the operations of each state can be seen in Table 7.

3.5.2.2 Controller

The controller is the connecting unit of the DP_RAM and the encoder. It

controls the action of the encoder, supplying the inputs and collecting results. The

intermediate-level top module PARITH wraps up the CONTROLLER and the

ENCODER. The Finite State Machine of the CONTROLLER is shown in Figure 35,

and brief information about the operations of each state can be seen in Table 8. Pcore is

top module of the design, which hooks up dual-port RAM and Parith (Controller +

Encoder) modules. This concludes the explanation of the modules.

 53

Figure 32 A sample FSM

FSM_SAMPLE: process (CLK, RESET)
begin
 if RESET='1' then
 STATE <= START ;
 elsif CLK'event and CLK='1' then
 case STATE is
 when START => if X=GO_INTERMEDIATE then
 STATE <= INTERMEDIATE ;
 end if ;
 when INTERMEDIATE => if X=GO_STOP then
 STATE <= STOP ;
 end if ;
 when STOP => if X=GO_START then
 STATE <= START ;
 end if ;
 when others => STATE <= START ;
 end case ;
 end if ;
end process FSM_SAMPLE ;

Figure 33 VHDL Representation of a sample FSM

INTERMEDIA

STOP

STAR
X = go_intermediate

X = go_stop X = go_start

RESET

 54

Figure 34 FSM of the Encoder

c

b

m

GetData = 1

k

h

i

j

f

g

d
e

a
Go = 0

Reset = 1

Done = 1

l

 55

Table 7 Detailed operations of each State of the Encoder

State Operation

a If (go =1) then initialize all the required signals DominantList,
SubordinateList, SignificanceMap
State = a;
Else, wait for go signal to become 1

b If (GetData =0) then
State = c or State=d (for first DominantPass);
Else, compare the input data with initial threshold update the
SignificanceMap and Subordinate List.

c Match the SignificanceMap with DominantList;
State = d;

d Finding the Descendants (coarser subband) i.e., Low-Low
State = e;

e Finding the Descendants (finer subbands) i.e., High-Low; Low-
High; High-High;
State = f;

f Finding the Ancestors (coarser subband) and finalizing Zerotrees
State = g;

g Finding the Ancestors (finer subband) and finalizing Zerotrees
State = h or State =i;

h Check if the coefficient is already coded or not.
Previously coded coefficients will not be coded again.
State = i;

i If (|Coeff |> T)
 If positive output “11”;Else output “10”;
 End if;
Else
 If root of zerotree Output “00”Else output “01”
End if;
State=j;

j If (3T/2 < Coefficient < 2T)
Output ‘1’; Else, output ‘0’
End if;
State=k;

k Store the results in a buffer; the outputs are chunks of 16 bits.
State=l;

l Correct the Dominant List; Remove the coefficients that are found
significant;
State=m;

m Update the information; T= T/2;
If (T>1) State = a; Else State=State; End if;

 56

Figure 35 FSM of the Controller

1

2

3

4

5

6
GetData=1

Result ready=0

GetData=1

GetData=1

start=0

Finish=1

 57

Table 8 Detailed operations of each State of the Controller

State Operation

1

If (start = 1)
Initialize Read_Address
Initialize Write_Address
State=2;
Else
State=1;
End if;

2

If (GetData=0) then
State=3; reset the Read_Address to initial value;
Go signal becomes 0;
Else
Go signal will be released for the ENCODER
Read data from the RAM;
update the Read_Address;
State=2;
End if;

3

If (result_ready=1) then,
State=5;
Elseif (GetData=1) then,
State=4;
Else
State=3
End if;

4 Disable the Write
State=2;

5
Update the Write_Address;
Write result to the RAM;
State=5;

6

If (Done=1) then,
Write the final result to the RAM;
State=5;
Elsif (GetData=1) then,
State=2;
Elsif (Finish=1) then,
State=1;
Else
State=3;
End if;

 58

Figure 36 Read/Write Operations of Xilinx Dual-Port RAM [17]

3.5.2.3 Dual Port – RAM

The main advantage of using Dual-Port RAM is that read and write

operations can be performed at the same port. The dual-port RAM used here is

generated by the Xilinx® Core Generator TM. The RAM module is implemented on-

chip by mapping the RAM design to physically separate the RAM blocks, thus, the

CLBs inside the FPGA are not consumed by it. A picture explaining read-write

operations of the DPRAM is shown in the Figure 36. It takes two clock cycles to read

from the RAM and one clock cycle to write to the RAM. Thus, to keep the

synchronization intact, care should be taken while reading or writing from the RAM.

When reading from the RAM, the controller issues the address of the data location first,

and the relevant data is received after two clock cycles. When writing to the RAM, the

controller issues the address and ‘write-mode’ is enabled. Data is updated in the next

cycle. The ‘write-mode’ must be disabled in the subsequent cycle.

 59

3.5.3 Pre-Synthesis Simulations

The pre-synthesis simulations are performed at all the levels of the

design. Test-benches were generated for each level. Initially, the encoder was tested

for the correctness, and then it was wrapped up with the controller and the DP-RAM.

The top-level module of the design is the pcore module. The encoder’s simulation

waveforms are shown in Figure 37 and Figure 38. The pcore’s simulations results are

in Figure 39 shows I/O signals and Figure 40 showing done signal becoming 1 at

317400ns.

3.5.4 Synthesis

The synthesis of the VHDL descriptions was performed following

successful simulations. Synthesis of the design was done using appropriate synthesis

tools.

3.5.5 Place and Route (PAR)

Xilinx ISE tools were used for Place and Route. The layout of the

design can be viewed at this step. Figure 41 show the layout generated Synplify Pro.

3.5.6 Bit file generation

If the design meets the timing constraints after PAR step, the design is

ready to be downloaded on to the FPGA. A .bit file is generated using Xilinx ISE tools.

This step also performs the Design Rule Check on the layout of the design (DRC).

 60

Figure 37 Waveform indicating inputs of encoder module

 Figure 38 Waveform showing done signal becoming 1 at 49558 ns

 61

Figure 39 Waveform showing parith and pcore signals, and start becoming 1

 62

Figure 40 Waveform indicating done signal becoming 1 at 317400

 63

Figure 41 Layout of the Design using Synplify- Pro

 64

CHAPTER 4
RESULTS

4.1 Software

The EZW algorithm was applied to three different test images, Lena,

Barbara and Goldhill. The results obtained were tabulated. The entire input image files

used here are in PGM format, which stands for Portable Gray Map. The PGM format is

a lowest common denominator grayscale file format. The following subsections explain

the procedure in detail.

4.1.1 Test Image – Lena

The original Lena image in PGM format is shown in Figure 42. First,

with the help of Daubechies Wavelet Filters, the input image is transformed into

wavelet coefficients using Discrete Wavelet Transform (DWT) at six levels. The

decomposed image is shown in Figure 43. The Encoder has generated a bitstream file

containing 42848 bytes, or at a bit rate of 0.1634 bpp (bits per pixel). The Decoder is

able to recognize the bitstream file and can reconstruct the image using any target bit

rate, i.e., using any number of bytes out of the total 42848 bytes. Various images were

reconstructed using an assortment of number of bytes. At a compression ratio 1024 to

1, the image was not recognizable. However, at the compression ratio of 512 to 1 the

image could be recognized even though the image quality was poor. Still, the

compression ration of 512 to 1 is very high compared to the conventional block coding

(DCT-based). At such high compression, any DCT-based compression techniques even

fails to reconstruct the Image.

 65

Figure 42 Test Image – Lena 512 x 512 Original

 66

Figure 43 Lena 512 x 512, 6-scale DWT Decomposition

 67

The compressed images can be seen from Figure 44 to 51. The

reconstructed image using all the 42848 bytes is shown in Figure 52. The compression

ratios and PSNR (Peak-to-Signal Noise Ratio) values are tabulated and can be seen in

Table 9.

4.1.2 Test Image – Barbara

The original Barbara image in PGM format is shown in Figure 53. The

wavelet-decomposed image is shown in Figure 54. The Encoder has generated a

bitstream file containing 45504 bytes, or at a bit rate of 0.1736 bpp (bits per pixel).

Here also, various images were reconstructed using an assortment of number of bytes.

At a compression ratio 1024 to 1, the image “Barbara” also was not recognizable.

However, at the compression ratio of 512 to 1, it could be recognized even though the

image quality was poor.

Table 9 Experimental results of Lena

Number of
Bytes used

Bpp
(bits per pixel)

Compression
Ratio PSNR

32768 1.0 8:1 15.7464
16384 0.5 16:1 15.7446
8192 0.25 32:1 15.6687
4096 0.125 64:1 15.5962
2048 0.0625 128:1 15.5508
1024 0.03125 256:1 15.5293
512 0.015625 512:1 15.4013
256 0.0078125 1024:1 15.3440

 68

Figure 44 L-Compr. Ratio 1024 : 1

Figure 45 L-Compr. Ratio 512 : 1

Figure 46 L-Compr. Ratio 256 : 1

Figure 47 L-Compr. Ratio 128 : 1

 69

Figure 48 L-Compr. Ratio 64 : 1

Figure 49 L-Compr. Ratio 32 : 1

Figure 50 L-Compr. Ratio 16 : 1

Figure 51 L-Compr. Ratio 8 : 1

 70

Figure 52 Reconstructed Lena Image using all 42848 bytes

 71

Figure 53 Test Image – Lena 512 x 512 Original

 72

Figure 54 Barbara 512 x 512, 6-scale DWT Decomposition

 73

Table 10 Experimental results of Barbara

Number of
Bytes used

Bpp
(bits per pixel)

Compression
Ratio PSNR

32768 1.0 8:1 16.6070
16384 0.5 16:1 16.4393
8192 0.25 32:1 16.1832
4096 0.125 64:1 15.9655
2048 0.0625 128:1 15.8896
1024 0.03125 256:1 15.7872
512 0.015625 512:1 15.6036
256 0.0078125 1024:1 15.2585

The compressed images can be seen from Figure 55 to 62. The reconstructed Image

using all the 45504 bytes is shown in Figure 63. The compression ratios and PSNR

(Peak-to-Signal Noise Ratio) values are tabulated and can be seen in Table 10.

4.1.3 Test Image – Goldhill

The original Goldhill image in PGM format is shown in Figure 64. The

wavelet-decomposed image is shown in Figure 65. The Encoder has generated a

bitstream file containing 45528 bytes, or at a bit rate of 0.1737 bpp (bits per pixel).

Here also, various images were reconstructed using an assortment of number of bytes.

At a compression ratio 1024 to 1, the image, “Goldhill,” also was not recognizable.

Even at the compression ratio of 512 to 1, it was not recognizable. This might be due to

the broken edge information and also the other two images were human faces in close-

up shot. However, at the compression ratio of 256 to 1, it could be recognized even

 74

Figure 55 B-Compr. Ratio 1024 : 1

Figure 56 B-Compr. Ratio 512 : 1

Figure 57 B-Compr. Ratio 256 : 1

Figure 58 B-Compr. Ratio 128 : 1

 75

Figure 59 B-Compr. Ratio 64 : 1

Figure 60 B-Compr. Ratio 32 : 1

Figure 61 B-Compr. Ratio 16 : 1

Figure 62 B-Compr. Ratio 8 : 1

 76

Figure 63 Reconstructed Barbara Image using all 45504 bytes

 77

Figure 64 Test Image – Goldhill 512 x 512 Original

 78

Figure 65 Goldhill 512 x 512, 6-scale DWT Decomposition

 79

though the image quality was poor. The compressed images can be seen from Figure

66 to 73. The reconstructed image using all the 45528 bytes is shown in Figure 74.

The compression ratios and PSNR (Peak-to-Signal Noise Ratio) values are tabulated

and can be seen in Table 11.

4.2 Hardware

The results obtained from software and hardware implementations are

found to be identical. The flow explained in the Figure 75 is used for the test Images,

Lena, Barbara and Goldhill. This part of the work was fully implemented using

MATLAB to be certain the EZW algorithm was fully understood and to serve as a

validation reference. The validation of the MATLAB code is done when the

reconstructed images are found to be visually matching to the original images. The

flow explained in the Figure 76 is used for the hardware implementation of the EZW

algorithm on an 8x8 image, which was given as an example in [1].

Table 11 Experimental results of Goldhill

Number of
Bytes used

Bpp
(bits per pixel)

Compression
Ratio PSNR

32768 1.0 8:1 16.5982
16384 0.5 16:1 16.5625
8192 0.25 32:1 16.4782
4096 0.125 64:1 16.3260
2048 0.0625 128:1 16.2759
1024 0.03125 256:1 16.2174
512 0.015625 512:1 15.8473
256 0.0078125 1024:1 15.6303

 80

Figure 66 G-Compr. Ratio 1024 : 1

Figure 67 G-Compr. Ratio 512 : 1

Figure 68 G-Compr. Ratio 256 : 1

Figure 69 G-Compr. Ratio 128 : 1

 81

Figure 70 G-Compr. Ratio 64 : 1

Figure 71 G-Compr. Ratio 32 : 1

Figure 72 G-Compr. Ratio 16 : 1

Figure 73 G-Compr. Ratio 8 : 1

 82

Figure 74 Reconstructed Goldhill Image using all 45428 bytes

 83

Figure 75 MATLAB Implementation for Multiple Compression Ratios

EZW
Encoder

 DWT

512 x 512 x 8
Images

Wavelet
Coefficients

EZW
Decoder

Bit Stream

Peak
Signal to
Noise
Ratio

0.0078125

1024 : 1

0.015625 0.0325 512x512x1

8 : 1 512 : 1 256 : 1

512x512x8

Original
Vs.

Decoded

 84

Figure 76 Verification of the Hardware Implementation

 DWT

8 x 8 Image
(Shapiro’s
Example)

EZW
Encoder
MATLAB

Wavelet
Coefficients

Bit Stream

Software Hardware
Simulations

EZW
Encoder

VHDL

Bit Stream

Shapiro’s
Result

Bitstream

Pilchard
RC Board

EZW
Encoder

VHDL

Bit Stream

Comparison
(Will be)

 HW & SW
Results are
Identical

 85

4.2.1 Area and Speed

The EZW encoder occupies about 81 % of the Virtex™ 1000E FPGA.

The circuit can operate at a maximum speed of 11.5 MHz. The design was tested on the

Pilchard board at a speed of 8.315 MHz.

4.2.2 Limitations

The hardware implementation of the EZW encoder on Pilchard RC

platform has certain limitations. The following subsections can explain the details.

4.2.2.1 Limitaion#1

At the beginning of the design while setting up the specifications, the

hurdle comes in the form of memory, as the EZW algorithm requires the whole image at

a time for encoding. The typical Dual-Port RAM used for the Pilchard board was

limited to a maximum of 256 memory-lines. This is due to the fact that, on Pilchard,

only 8 address bits are available. The maximum width of each row is limited to 64 bits

because of the 64-bit I/O Data-BUS interfacing. Unlike the regular

image, the representation of the pixel values of the input image containing wavelet

coefficients needs more than 8 bits. It is expected that, including the extra bit for

denoting the sign, each pixel can be represented with 16 bits. Thus, the maximum size

of the image that can be encoded at one time is restricted to 32x32, since the number

32x32x16 is equal to 256x64.

 86

Table 12 Area and Speed

Size of the Image Maximum Speed Area Success/Failure
32x32 Failed at Synthesis - Failure

16x16 Failed at Synthesis - Failure

8x8 11.5 MHz 81% Success

4.2.2.2 Limitaion#2

After the design was simulated successfully, it was then arranged for

synthesis for a 32x32 image. However, the synthesis failed as the design was too big

for the particular target FPGA, which is Xilinx’s VirtexTM 1000E. Then the next

possible image size that is 16x16 was arranged for synthesis and the result was also

failure. Finally, the design was set up for synthesis for an 8x8 block. This time the

outcome was successful. When placed and routed, the design used 81% of the

resources of the Xilinx’s VirtexTM 1000E FPGA. The consequences were tabulated and

can be seen in Table 12.

4.3 Hardware Vs. Software

For an image size of 8x8, the software implementation took

approximately 1 second. For the same image, the time taken for the hardware

implementation was calculated using the results obtained. The total time taken by the

simulations was noted as 317400 ns, whereas the “clk” and “clk_div” frequencies were

 87

set up at 5 MHz and 2.5 MHz during the simulations. The “clk” denotes the system

clock and the “clk_div” denotes the reduced clock rate. Thus, the total number of clock

cycles can be calculated as below.

 1 clock cycle (clk_div of Modelsim) = 1 / (2.5 MHz) => 400 ns.

Total number of clock cycles for EZW Encoder = 317400 / 400 => 793.5

The Virtex EZW Encoder uses a clock rate of 8.315 MHz. Thus,

1 clock cycle (clk_div of Pilchard) = 1 / (8.315 MHz) = 120.26 ns.

The expected total time could be taken by the EZW Encoder for an image size of 8 x 8

is calculated as below.

 TSoftware = 1 x 109 ns

 THardware = Total Number of Clock Cycles x Clock Delay

 = 793.5 x 120.26 ns

 = 95,426.31 ns

Speed-up = TSoftware / THardware

 = 1 x 109 ns / 95426.31 ns

 = 10,479

4.4 Speedup and Desired Architecture

The following subsections are intended to discuss the data transfers

involved in the hardware/software implementations and also the other possibilities to

achieve speedup.

 88

4.4.1 Speedup Including the Time for Data Transfer

The speedup achieved through hardware was previously calculated

without considering the time taken for the data transfer between the Pentium III and the

Virtex 1000e on the Pilchard. Also, the total time taken by MATLAB to load data on

the SPARC 280 was included in the previous speedup calculations. Thus, new speed-

ups achieved were calculated with the new times, including and excluding data transfer

times both in the hardware and software implementations.

Case 1: Excluding data transfer

The time taken for MATLAB to read the inputs and to write the outputs

with no operations involved was observed to be approximately 300 milliseconds. This

time of data transfer was subtracted from the total time, previously noted as

approximately one second. However, the time estimated previously on the Virtex

hardware was only for the operations, not for the data handling. Therefore, the new

speedup excluding data transfer is calculated as below:

TSoftware = (1-0.3) x 109 ns = 7x 108 ns

THardware = 95,426.31 ns

Speed-up = TSoftware / THardware

 = 7 x 108 ns / 95426.31 ns

 = 7,335

Case 2: Including data transfer

In this case, the time taken for the MATLAB to read the inputs and to

write the outputs is included in the software implementation time. Also, the time taken

for the C routine to read and write the inputs and outputs (time for data transfer between

 89

the Pentium III and the Virtex 1000e on the Pilchard) from the FPGA was included in

the hardware implementation time. Therefore, the new speedup including data transfer

is calculated to be:

TSoftware = 1 x 109 ns

THardware = 95426.31+50000 ns

 = 145,426.31

Speed-up = TSoftware / THardware

 = 1x 109 ns / 145426.31 ns

 = 6,876

It is obvious that the speedup achievable is decreased with the inclusion

of data transfer. However, the speedup of 6,876 is still substantial.

4.4.2 Other Possibilities to Achieve Speedup

If the MATLAB functions were converted to C routines, then the

software speedup could be at least 10x. This conversion can be done with the aid of

software automatic converters. For example, the MATLAB descriptions could be

converted to FORTRAN using the converter matlab2fmex and the resulting FORTRAN

could then be converted to the C descriptions using a converter such as F2C.

When the EZW algorithm is implemented on an ASIC with an internal

RAM, even better performance than the FPGA using DIMM interfacing can be

achieved due to the faster clock frequency possible with the ASIC. Thus, the VHDL

model of the EZW algorithm was implemented on an ASIC targeting the TSMC-0.18

process. Though the post-layout simulations were not conducted due to personal time

 90

constraints, interesting results were obtained. The ASIC containing the EZW and the

required RAMs could resemble Figure 77, which shows a system-on-chip developed by

other graduate students in our UTK Microelectronic Systems Laboratory [26]. The

number of transistors was determined from the resulting netlist of the EZW design. The

EZW design which can handle an 8 x 8 image requires 157,419 transistors, not

counting the RAM. If the design were scaled for an image of size 512 x 512 (4096

times larger than the 8 x 8), the total number of transistors would be 644,788,224

(almost 650 million) transistors, again not including the RAM. This shows the fact that

the EZW algorithm in its present formulation is not amenable to a cost-effective

hardware implementation.

The EZW hardware implementation results are compared below with the

results for the DCT, which was implemented on hardware by previous graduate students

in our Laboratory [27]. The DCT algorithm was formulated to handle 8 x 8 blocks of

an image. The DCT hardware design is insensitive to the size of the image so it can be

applied to any image irrespective of the size. When targeted to the TSMC-0.18 process,

the DCT design required 33,112 transistors. From these results, it is noticeable that the

hardware implementation of the DCT is much more cost-effective than the EZW. Table

13 gives a brief summary of the comparison between the ASIC feasibility of the DCT

and the EZW. The results presented above were tabulated and can be seen in Table 14.

 91

Figure 77 An example system-on-chip platform [26]

 92

Table 13 Comparison between DCT and EZW on ASIC.

Algorithm Number of
Transistors Comments

for 8x8 images 33,112
DCT

for 512x512 images 33,112 (1x)
Could be applied to any

image irrespective of the size

for 8x8 images 157,419
EZW

for 512x512 images 644,788,224 (4096x)
Exclusively designed to target

images of particular size.

Table 14 Possible EZW Speed-ups on Different Platforms

Platform Specifications Speed-up Comments

MATLAB Couple of hundreds
lines of Code 1x

Easy to implement.
DWT and IDWT (inverse DWT)
can be performed using MATLAB
built-in functions.

C

Couple of hundreds
lines of Code but
complexity level is
higher compared to
the MATLAB Code

10x

DWT and IDWT have to be
implemented before EZW Encoder
and after EZW Decoder
respectively. Alternatively, the
wavelet transformations can be
performed separately using
MATLAB so that input to the C
platform are the wavelet
coefficients and the output is a
stream of binary bits.

FPGA

81% or 9955/12288
Slices of the Xilinx
Virtex 1000e.
Memory interfacing
unit.

6876x

Maximum speed achieved was
11.5 MHz and the design was
tested at a clock frequency of
8.315 MHz on Pilchard
Reconfigurable Computing
System.

ASIC
157,419 transistors,
not counting an
internal RAM.

20,628x
to

41,256x

If the design works at a clock
frequency of 25MHz to 50MHz
then 3 times the FPGA to 6 times
the FPGA speed-up can be
achieved.

 93

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

A VHDL model for the Embedded Zerotree Wavelet algorithm has been

developed. Significant acceleration was achieved since the hardware implementation in

a FPGA (Xilinx Virtex-1000E using a 8.315 MHz clock) ran 10,000 times faster than

the MATLAB implementation on a SUN-220 workstation. Additional speedup

exploiting the parallel capabilities of the FPGA was not achieved since the EZW

algorithm utilizes only sequential operations.

5.2 Future work

What has been discussed and implemented in this work is just an

initiation for hardware acceleration of the Embedded Zerotree Wavelet algorithm. The

design is confined to only 8x8 size images due to the fact that EZW algorithm requires

whole image while encoding and also due to the hardware limitations. The design could

be targetted to a bigger FPGA with enough memory to implement images of different

sizes or an application-specific integrated circuit (ASIC) with a RAM capable of

holding huge images. Additional speedup can be possible if the EZW algorithm is

formulated in a manner that some operations can be done parallel.

 94

REFERENCES

 95

1. J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, Dec. 1993, pp. 3445–3462.

2. Charles D. Creusere, “A New Method of Robust Image Compression Based on
the Embedded Zerotree Wavelet Algorithm.” pp. 1436-1441

3. J. M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet
Coefficients”, IEEE Trans. Signal Processing, December 1993 . [Online] available:
http://www.ws.binghamton.edu/fowler/fowler personal page/EE523_files/Embedded
Image Coding Using Zerotrees.pdf

4. Image compression using transformations, ELEC 539 PROJECT REPORT.
[Online] available:
http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj1/report/index.html

5. “Zerotree Wavelet Using Fractal Prediction.” [Online] available:
http://www.f4.fhtw-berlin.de/~barthel/paper/BBHH97.pdf

6. “An Improved Embedded Zerotree Wavelet Image Coding Method Based On
Coefficient Partitioning using morphological Operation.” [Online] available:
http://www.worldscinet.com/ijprai/14/preserveddocs/1406/S0218001400000490.pdf

7. Image Compression - from DCT to Wavelets: A Review by Subhasis Saha.
[Online] available: http://www.acm.org/crossroads/xrds6-3/sahaimgcoding.html

8. Taekon Kim, Robert E. Van Dyck, and David J. Miller. “Hybrid Fractal
Zerotree Wavelet Image Coding.” [Online] available:
http://w3.antd.nist.gov/pubs/fzw_2002.pdf

9. Jie Liang. Highly Scalable Image Coding for Multimedia Applications, [Online]
available: http://www.acm.org/sigs/sigmm/MM97/papers/liang/acm97.html

10. Iraj Sodagar, Hung-Ju Lee, Paul Hatrack, and Ya-Qin Zhang. “Scalable
Wavelet Coding for Synthetic/Natural Hybrid Images.” [Online] available:
http://research.microsoft.com/china/papers/Scalable_Wavelet_Coding_Synthetic_Image
s.pdf

11. Mike Goldsmith, VHDL Tutorial [Online] available:
http://www.asic.uwaterloo.ca/groups/digital/mgoldsmith/VHDL_Tutorial_1.pdf

12. 4. P. H. W. Leong, M. P. Leong, O. Y. H. Cheung, T. Tung, C. M. Kwok, M. Y.
Wong, and K. H. Lee, “Pilchard - A Reconfigurable Computing Platform With
Memory Slot Interface”, Proc. of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM), April 2001.

 96

13. “Frequently Asked Questions and Answers on Virtex-E.” [Online] available:
http://www.xilinx.com/prs_rls/vtxefaq.htm

14. JPEG2000 Versus JPEG “Classic”. [Online] available:
http://www.microimages.com/documentation/cplates/67jpeg2000versus.pdf

15. Marcin Kociołek1, Andrzej Materka1, Michał Strzelecki1, Piotr Szczypiński,
“Discrete Wavelet transform – Derived features for digital Image texture Analysis.”
[Online] available: http://www.eletel.p.lodz.pl/cost/pdf_9.pdf

16. C. Valens, “Embedded Zerotree Wavelet Encoding.” [Online] available:
http://perso.wanadoo.fr/polyvalens/clemens/ezw/ezw.html

17. Xilinx Inc., [Online] available: http://www.xilinx.com/

18. “VHDL Tutorial,” [Online] available:
http://www.vhdlonline.de/tutorial/englisch/t_219.htm

19. Eui-Sung Kang1, Toshihisa Tanaka2, Tae-Hyung Lee1, and Sung-Jea Ko1, “A
Multi-threshold Embedded Zerotree Wavelet Coder.” [Online] available: http://sip-
www.ei.tuat.ac.jp/~tanaka/publications/mapaper.pdf

20. Taekon Kim, Member, IEEE, Seungkeun Choi, Robert E. Van Dyck, Member,
IEEE, and Nirmal K. Bose, Fellow, IEEE, “Classified Zerotree Wavelet Image Coding
andAdaptive Packetization for Low-Bit-Rate Transport.” [Online] available:
http://w3.antd.nist.gov/pubs/vandyck01.pdf

21. Jon K. Rogers and Pamela C. Cosman, Member, IEEE, “Wavelet Zerotree
ImageCompression with Packetization.” [Online] available:
http://code.ucsd.edu/~pcosman/web-11.pdf

22. S. Areepongsa, N. Kaewkamnerd, Y. F. Syed and K. R. Rao, “Wavelet Based
Compression for Image Retrieval Systems.” [Online] available: http://www-
ee.uta.edu/dip/paper/CHC-RIOT_11.PDF

23. Xiaoyan Xu, “Embedded Zero Tree as Image Coding.” [Online] available:
http://www.uoguelph.ca/~xux/courses/ENGG6560.pdf

24. Zixiang Xiong, Kannan Ramchandran, Michael T. Orchard, and Ya-Qin Zhang,
“A Comparative Study of DCT- and Wavelet-Based Image Coding.” [Online]
available:
http://research.microsoft.com/china/papers/Comparative_Study_DCT_WaveletBased_I
mage_Coding.pdf

 97

25. N. J. Mitra, P. K. Biswas, T. Acharya, “Modified Embedded Zerotree Scheme
for Efficient Coding of Discrete Wavelet Coded Frames.” [Online] available:
http://www.iiit.net/research/cvit/icvgip00/I-56.pdf

26. R. Srivastava, ``Development of an Open Core System-on-Chip Platform’’,
M.S. Thesis, University of Tennessee, August 2004. [Online] available:
http://vlsi1.engr.utk.edu/ece/rishi-thesis.pdf

27. Gabi Chereches, Kamesh Ramani, Madhan, Mardav Wala, “Discrete Cosine
Transform”, ECE552 Course Project, University of Tennessee, May 2003. [Online]
available: http://vlsi1.engr.utk.edu/~gabi/552/dct/report/home.html

 98

VITA

Suresh Polisetty was born in Tallapuram, India. He grew up and did his

schooling in Kakinada, India. He went to P.R.G Jr College, Kakinada, for his post-

school education. He then went to the J.N.T.U College of Engineering, Kakinada, and

obtained his Bachelor of Technology degree in Electrical and Electronics Engineering

in 2001. He joined the University of Tennessee, Knoxville to pursue his graduate

studies. Subsequently he has been doing his research under the guidance of Prof.

Donald W. Bouldin. He plans to graduate with a Master’s degree in Electrical

Engineering in December 2004.

	Hardware Acceleration of the Embedded Zerotree Wavelet Algorithm
	Recommended Citation

	Microsoft Word - Suresh_Thesis.doc

