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ABSTRACT 

 
Campylobacter is the leading bacterial cause of human enteritis in developed 

countries.  Human campylobacteriosis is commonly associated with consumption of 

undercooked, contaminated chicken, a natural host of Campylobacter. Thus, control of 

Campylobacter colonization in poultry at the farm level would reduce the risk of human 

exposure to this pathogen. Vaccination is an attractive intervention measure to mitigate 

Campylobacter in poultry.  Our recent studies have demonstrated that the outer 

membrane proteins CmeC (an essential component of CmeABC multidrug efflux pump) 

and CfrA (ferric enterobactin receptor) are feasible candidates for immune intervention 

against Campylobacter.   By targeting these two promising vaccine candidates, three 

novel vaccines were developed for different vaccination strategies in this study.  To 

construct DNA vaccines for in ovo and intranasal immunization, cfrA and cmeC genes 

were cloned into the eukaryotic expression vector pCAGGS; sequencing of the 

recombinant vectors confirmed the success of cloning.  Transfection was also performed 

to determine the production of CfrA or CmeC in NIH 3T3-L1 and HEK-293 cell lines.  

To develop effective subunit vaccines for intranasal or oral vaccination, purification of 

recombinant CfrA (rCfrA) and CmeC (rCmeC) was optimized.  Substantial quantities of 

highly purified rCfrA and rCmeC were produced through nickel-nitrilotriacetic acid (Ni-

NTA) affinity chromatography.  The purified rCfrA and rCmeC were further 

encapsulated into chitosan microsphere.  Various encapsulation conditions were 

explored.  To construct the attenuated Salmonella-vectored vaccine, cfrA and cmeC genes 

were cloned into vector pYA3493 and transferred into S. enterica serovar Typhimurium 

χ8914 [strain 8914], the USDA licensed live attenuated vaccine strain.   The oral live 
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Salmonella vaccines producing CfrA or CmeC (full length or truncated) were 

successfully constructed; expression of the target protein was confirmed by 

immunoblotting using specific antiserum.  The efficacies of two live vaccines that 

produce CfrA or CmeC were evaluated using broiler chickens.  Specific systemic and 

intestinal mucosal response was not significantly stimulated upon oral vaccination of 

chickens with the attenuated Salmonella derivatives.  Together, three novel 

Campylobacter vaccines were developed in this study, which provides us a solid 

foundation to further develop and evaluate different vaccination regimens for effective 

mitigation of Campylobacter in poultry in the future.  
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CHAPTER ONE: Introduction 

 

Thermophilic Campylobacter species including Campylobacter jejuni and 

Campylobacter coli are one of the most commonly recognized bacterial causes of 

foodborne illnesses in the United States and other developed countries (Friedman et al., 

2000). As a foodborne pathogen of animal origin, Campylobacter is commonly present in 

livestock and poultry, and contaminated poultry meat is a significant source of infection 

for human campylobacteriosis (Allos et al., 2001). The importance of Campylobacter in 

food safety is further indicated by the fact that USDA FSIS recently established 

performance standards for Campylobacter in broiler and turkey slaughter establishments 

to reduce carcass contamination with this pathogenic organism (Food Safety and 

Inspection Service, USDA, 2011). Thus, there is an urgent need for enhanced efforts to 

develop effective intervention strategies that can be applied to control Campylobacter in 

poultry.  

 

It has been well established that prior infection with C. jejuni can induce 

protective immunity against Campylobacter infections in poultry, strongly supporting the 

feasibility for development of vaccines for Campylobacter control in poultry (Lin et al., 

2009). Thus, vaccination of poultry against Campylobacter is regarded as an effective 

intervention strategy to protect food safety (Lin et al., 2009; Jagusztyn-Krynicka et al., 

2009). A successful chicken vaccine should prevent colonization or cause a strong 

reduction of Campylobacter numbers in chickens (> 2 log units) (Rosenquist et al., 
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2002).  However, there is still no vaccine available to date to control Campylobacter 

infections in poultry; vaccinations of chickens against C. jejuni have had only partial 

success (Lin et al., 2009; Jagusztyn-Krynicka et al., 2009), primarily due to a lack of 

understanding of pathogenesis mechanisms, the antigenic complexity of this organism, 

and ineffective vaccination regimen (Lin et al., 2009; Hermans et al, 2011). 

 

The goal of this project is to develop effective, safe, inexpensive, and convenient 

vaccination strategies that could be practically used in poultry for mitigation of C. jejuni. 

To achieve this goal, in the past 10 years, we have been actively involved in elucidation 

of immunogenic and protective antigens in C. jejuni, a primary and critical step towards 

the design of protective poultry vaccines.  Specifically, we have identified and 

characterized two surface-exposed proteins, CfrA and CmeC, that play an essential role 

in C. jejuni colonization in the chicken intestine (briefly reviewed in Chapter 1 above).  

CfrA is a surface-exposed ‘gatekeeper’ that is essential for C. jejuni colonization by 

mediating ferric enterobactin high affinity iron acquisition (Zeng et al., 2009; Lin et al., 

2009).  CmeC is an essential outer membrane protein component of CmeABC multidrug 

efflux that plays a critical role in multidrug resistance and C. jejuni colonization (Lin et 

al., 2002a, 2003; Luo et al., 2003; Akiba et al., 2006; Martinez and Lin 2006; Zeng et al., 

2010).  The following findings from our previous studies showed that both CmeC and 

CfrA have significant advantages compared to other immunogenic/protective antigens 

identified in C. jejuni (e.g. flagellin, capsule polysaccharide, MOMP): 1) CfrA and CmeC 

specific antibodies greatly inhibited the function of corresponding target and significantly 

reduced growth of C. jejuni (Zeng et al., 2009; Lin et al., 2003; Martinez and Lin, 2006; 
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Zeng et al., 2010); 2) both CfrA and CmeC are prevalent and highly conserved in diverse 

C. jejuni strains with sequence identity of 89% - 98% for CfrA and 97.3% - 100% for 

CmeC (Zeng et al., 2009, 2008); 3) CfrA and CmeC are highly induced and produced in 

the intestinal tract (Lin et al., 2002a, 2003; Zeng et al., 2010, 2009); 4) both CfrA and 

CmeC are immunogenic in poultry and elicit a specific antibody response during C. jejuni 

infection in poultry (Zeng et al., 2009; Lin et al., 2002a, 2003); and 5) inhibition of 

CmeABC efflux pump by a pump inhibitor increased susceptibility of C. jejuni to 

multiple antimicrobials and reduced in vivo colonization of C. jejuni in chickens 

(Martinez and Lin, 2006).  Clearly, these comprehensive molecular, immunogenic, 

functional studies have provided compelling evidence that CmeC and CfrA are promising 

candidates for developing an effective vaccine against C. jejuni in poultry.   

To develop effective and practical vaccination strategies for induction of rapid 

and strong immune response against CfrA and CmeC in poultry, in this project, following 

specific objectives were pursued:  

1. Construct DNA vaccines that will be used for in ovo and intranasal 

vaccination.  

2. Develop subunit mucosal vaccines by purification and encapsulation of rCfrA 

or rCmeC into a chitosan microsphere carrier and adjuvant.  

3. Construct oral Salmonella-vectored vaccines. 

4. Evaluate the immunogenicity and protective efficacy of the live Salmonella-

vectored vaccines in broilers. 
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CHAPTER TWO: Review of Literature 
 
 

2.1- Campylobacter as a foodborne threat  
 

 Based on The Foodborne Illness Risk Ranking Model (FIRRM) generated by the 

Emerging Pathogens Institute, Campylobacter remains at the top of the most common 

bacterial pathogen associated with foodborne illness in the United States (Batz et al., 

2011). Susceptible populations are focused in industrialized countries such as those in 

North America and northern Europe due to the infrequency of exposure (Friedman et al, 

2000). First recognized as a significant food-borne threat in 1972 (Dekeyser et al, 1972), 

this pathogen has been actively monitored since. The majority of human infections are 

caused by Campylobacter jejuni (90%) and C. coli (10%) (Park, 2002; Lee, 2006).  

Annually, it is estimated that there are 2 million cases of Campylobacter infection 

(Friedman et al 2000), approximately 840,000 cases reported, over 8,000 resulting in 

hospitalization, and 76 cases resulting in death (Batz et al, 2011). Campylobacter 

infection within the United States leads to an approximate $1.3 billion a year  (Batz et al., 

2011) in medical and productivity costs, demonstrating this pathogen’s tumultuous 

impact both clinically and financially. The dose of Campylobacter to cause human 

infection has been reported to be as little as 500-800 colony forming units (CFU) 

(Robinson, 1981; Black et al., 1988), and the onset of symptoms can occur within days 

and last up to two weeks (Reviewed by Young et al, 2007). Symptoms of Campylobacter 

enteric disease consist of severe diarrhea, with or without hemorrhagic colitis, fever, and 

abdominal cramping. Patients infected with antibiotic resistant strains often experience a 

more severe clinical course (Helms et al., 2005). In severe, but rare cases, commonly 

associated with antibiotic resistant strains, Campylobacter infection can lead to Guillain-
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Barre syndrome, classified by flaccid paralysis and the possibility of death (van Gerwe, 

2009; 2012).  

 Human infection is linked to the ingestion of contaminated animal products, 

cross-contaminated food products, the water or soil that has come in contact with infected 

animals, or through direct contact with infected animals (Blaser, 1997; Schonberg-Norio 

et al., 2004). Transmission to humans can also come from infected pets (Evans, 1993), or 

the presence of flies acting as a vector (Ekdahl et al., 2005). Campylobacter is a 

commensal organism within the gastrointestinal tract of poultry, sheep, goats, pigs, and 

cattle (Humphrey et al., 2007). While a variety of sources for Campylobacter spread 

exists, investigations of outbreaks and epidemiological studies have pointed to under 

cooked, contaminated poultry as the main source of human campylobacteriosis (Batz, 

2011; Studahl and Andersson, 2000; Frost et al., 2002; Friedman et al., 2004).  In Iceland, 

chicken was frozen prior to 1996, until increased demand created a change to the sale of 

chilled chicken. Following this change, Campylobacter infections within the country 

peaked in 1999 (Stern et al., 2003).  At the same time, in 1999 in Belgium, the presence 

of dioxins within poultry and eggs resulted in withdrawal in sale. A subsequent 40% drop 

in human campylobacteriosis was observed (Vellinga and Van Loock, 2002). Moreover, 

a study in England in which 1,231 patient isolates were analyzed through multi-locus 

sequence typing (MLST) against 1,145 animal and environmental isolates demonstrated 

that 97% percent of Campylobacter-associated sporadic disease stemmed from poultry or 

meat sources (Wilson et al., 2008). A more recent study involving MLST in the 

Netherlands, resulted in a majority (66%) of the 696 cases, linked to poultry (Mughini et 

al., 2012).  
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2.2- The need for Campylobacter control in commercial broilers 

 It is estimated that domesticated poultry cause 50-70% of human 

campylobacteriosis (Allos, 2001). Campylobacter is considered a commensal organism 

within the intestinal tracts of poultry including broilers, layers, turkeys, geese and ducks 

(Sahin et al., 2002; Yogasundram et al, 1989). Approximately 100% of broilers are 

colonized with C. jejuni at time of slaughter (Jacobs-Reitsma, 1995).  Horizontal 

transmission can occur through a numerous possibility of sources such as fecal 

contamination of food and water (Shanker et al., 1990), flies (Shane et al., 1995), or other 

farm animals (van de Giessen et al., 1992). Once a contaminated chicken is present, all 

chickens within the flock can be colonized within a few days (Shanker et al., 1990). 

Although the infective dose can be as little as 35 CFU (Stern et al., 1988), Campylobacter 

can colonize in the chicken intestine at levels as high as 1010 CFU/ g feces (Shreeve et al., 

2000).  Chickens remain colonized until slaughter, thereby leading to contamination of 

poultry meat within the processing plants and onto human consumption (Jacobs-Reitsma, 

1995).  The likelihood of colonization can vary depending on age (Evans and Sayers, 

2000). Campylobacter is rarely found in chicks at ages of 2-3 weeks (Evans and Sayers 

2000; Stern et al., 2001). This delay can be due to many factors in addition to factors of 

age and intestinal development because young chicks can be colonized through 

experimental infection via oral gavage (Stern et al., 1988). The presence of maternal 

antibodies may also contribute to this lag phase (Sahin et al. 2002).  

It has been widely accepted that vertical transmission is rare for Campylobacter 

infection in poultry, which is based on following evidence. First, as mentioned above, 
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chicks are not colonized with C. jejuni within the first 2-3 weeks of life even if the layers 

were contaminated with Campylobacter (Shaker et al., 1986; van de Giessen et al., 1992). 

Second, broiler flocks are usually colonized with strains differing from parental flocks 

(van de Giessen et al., 1998; Petersen et al., 2001). In addition, for the eggs from C. 

jejuni-positive layers, only a low percentage of eggs (2 out of 266) were found to have C. 

jejuni on the surface of eggshells (Shanker et al., 1986). When the inner membrane of 

167 eggs was experimentally infected with C. jejuni, only 2 of the 12 hatched were C. 

jejuni positive (Doyle et al., 1984). Sahin and colleagues (2003) investigated vertical 

transmission by the experimental infection of 50 eggs. Of the 17 hatched chicks, none of 

them shed C. jejuni for as long as 6 weeks. Additionally, of 500 freshly layed eggs from 

experimentally infected specific-pathogen free (SPF) layers, only 3 of 65 pooled eggs 

were positive for C. jejuni. No C. jejuni was isolated from 800 eggs stored for 7 days at 

18°C, or from 95 newly hatched chicks (Sahin et al., 2003).  

These studies suggest that vertical transmission of C. jejuni into broiler flocks is 

an unlikely and rare event. Introduction of C. jejuni into broiler flocks is predominantly 

through horizontal transmission. Thus, measures to stop the spread within the broiler 

flocks, rather than hatcheries, are necessary to decrease C. jejuni presence at time of 

slaughter.  Reducing colonization in chickens by 2 log units could potentially reduce the 

likelihood of human exposure by as much as 33% (Rosenquist et al., 2002). 

 

2.3- Campylobacter Colonization Factors 

Post ingestion, Campylobacter can encounter numerous stressors that could 

potentially inhibit optimal growth in the intestine (Murphy et al., 2006). The presence of 
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high-levels of Campylobacter in the chicken cecum suggests that Campylobacter has 

evolved effective strategies for successful survival and growth within the harsh 

environment in the intestine. Several factors play a role in Campylobacter colonization 

within the cecum and these factors are required for chemotaxis, motility, adhesion, 

temperature regulation, oxidative stress responses, iron regulation, resistance to bile salts 

and antibiotics (Hermans et al., 2011). It is with these multifactorial processes that 

Campylobacter can enhance its survival within the intestinal environment and flourish, 

colonizing at high numbers. 

 C.jejuni is attracted by glycoprotein found within mucin, and L-fucose within 

mucin and bile (Hugdahl et al., 1988, Hermans et al., 2011). Certain amino acids, such as 

aspartate, glutamate, serine, proline and cysteine also attract C. jejuni (Szymanski and 

Gaynor, 2012; Hughdal et al., 1988). Chemoattractants, such as these, are sensed by 

transmembrane methyl-accepting chemotaxis proteins (MCP) (Vegge et al., 2009).  

Genes such as chemoreceptor transducer-like protein 1 (tlp1) as well as tlp4 and tlp10 

encoding MCPs, have been shown to be rather important for invasion (Vegge et al., 

2009). Moreover, Campylobacter chemotaxis regulatory gene cheY, when mutated, 

affected colonization levels (Hendrixson et al., 2004). These studies show that factors 

involved in chemotaxis are also involved in colonization of C. jejuni in the intestine.  

C. jejuni navigates its way through the intestinal mucous not only through 

chemotaxis but through the presence of polar flagella on the bacterium’s surface. 

Flagellum filament consists of the protein flagellin, encoded by flaA and flaB. 

Chemotactic stimuli modify the expression of these genes (Alm et al. 1993).  Moreover, 

when flaA is mutated, colonization decreased (Jones et al., 2004). Besides chemotaxis 
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and adhesion, upon exposure to intestinal mucus, the flagella secrete Cia, Campylobacter 

invasion antigens, which allows for chicken colonization through in vitro cell invasion 

(Konkel et al., 1999, 2004; Ziprin et al., 2001; Biswas et al., 2007).  

Adhesion of Campylobacter to epithelial cells can be considered a step in 

colonization. Some studies have shown that genes capA, encoding autotransporter 

lipoprotein, may or may not be important to colonization (Ashgar et al., 2007; Flanagan 

et al., 2009).  Other adhesins such as FlpA, or fibronectin-like protein A, have been 

identified in achieving binding to chicken epithelial cells and successful colonization 

(Flanagan et al., 2009).  

Campylobacter has the ability to survive body temperature of the chicken, 42°C, 

as compared to humans, 37°C (Hermans et al., 2011). Approximately 15 to 20 proteins 

were found to be differentially expressed when C. jejuni was grown at temperatures of 

37°C and 42°C (Zhang et al., 2009). All of these proteins were identified as significant 

antigens and involved in pathogenicity within different hosts (Zhang et al., 2009).  

Moreover, the heat shock protein, DnaJ, when mutated, reduced colonization in chicks 

(Konkel et al. 1998; Ziprin et al., 2001).  

Campylobacter species are thermophilic, thriving at a temperature range of 37-

42°C in microaerophilic conditions (e.g. 10% CO2, 5% O2 and 85% N2); indicating they 

grow best in environments with reduced oxygen levels (Teufel et al., 2002; Hermans et 

al., 2011). However, Campylobacter has the capacity to resist oxidative stressors arising 

from either incomplete oxygen reduction from C. jejuni itself, or, more importantly from 

the chicken immune system (Atack et al., 2009). Within the chicken host, C. jejuni, must 

survive cytotoxic nitric oxide (NO) produced by immune cells (Shepherd et al., 2011; 



 10 

Hermans et al 2011). Campylobacter harbors NO-detoxifying mechanisms such as Cgb, 

Campylobacter globin, and a nitrite reductase (Pittman et al., 2005; Smith et al., 2011; 

reviewed by Hermans et al., 2011). C. jejuni converts NO to oxygen through a Cgb-

catalyzed dioxygenase pathway (Shepherd et al., 2011; Hermans et al., 2011). 

Iron is a necessary cofactor for many enzymes and is required for electron transfer 

mechanisms. Regulation of iron, especially within the iron-limited environment of the 

intestinal tract, is needed for colonization (Hermans et al 2011). Mutants in fur, cfrA, and 

ceuE, all associated with either ferric uptake or ferric enterobactin (FeEnt) binding and 

uptake, had diminished colonizing effects (Palyada et al., 2004). Inactivation of another 

FeEnt receptor, CfrB, also abolished colonization of Campylobacter in the chicken 

intestine (Xu et al., 2010). Altogether, iron-acquisition systems are important for C. jejuni 

survival and colonization.  

Within the intestinal tract, the presence of bile can be toxic to invading organisms. 

The CmeABC multi-drug efflux pump is induced in the presence of bile salts and plays a 

critical role in bile resistance in Campylobacter (Lin et al., 2003,2005b).  Inactivation of 

CmeABC efflux pump completely abolished C. jejuni colonization in the chicken 

intestine (Lin et al., 2003,2005b).  

It is evident that Campylobacter has adapted mechanisms to successfully colonize 

within the intestinal or cecal environment and withstand such harsh elements as 

temperature change, oxidative stress,  and antimicrobials.  While several factors and 

regulation processes within Campylobacter allow for optimal colonization against 

environmental stressors, many mechanisms are still unknown; however, it is within these 
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mechanisms that Campylobacter can colonize within the chicken cecum without 

generation of a strong immune response as seen in humans.  

 

 2.4- Immune responses to Campylobacter infection 

In humans, Campylobacter infection is considered self-limiting. Symptoms 

resolve within a week, with systemic IgG, IgA and IgM antibodies peaking from 1-2 

weeks after infection, while intestinal secretory IgA (sIgA) peak 16-20 days post 

infection (Hebrink et al. 1988; Lane et al. 1987). Breast milk containing IgA along with 

increased antibody titers due to continuous Campylobacter exposure; offer some 

explanation for subclinical symptoms experienced in developing countries (Ruiz et al. 

1990; Renom et al. 1992; Blaser et al. 1985). In a volunteer study, re-challenge of 

previously infected volunteers could not reproduce the disease via ingestion of C. jejuni 

81-176, suggesting that immunity can be induced to protect Campylobacter infections in 

humans (Black et al, 1988) 

While Campylobacter generates a strong immune response within humans, the 

same is not true in poultry.  Instead, systemic IgG, IgA and IgM along with intestinal 

secreted IgA antibodies specific to C. jejuni gradually rise 2-3 weeks and 3-4 weeks, 

respectively, post ingestion and persist for a duration of 8 weeks (Cawthraw et al. 1994). 

Campylobacter-specific antibodies levels coincide with decreased colonization. As 

mentioned above, chicks are typically not colonized within the first 2 weeks post hatch.  

Sahin et al (2001) observed that the Campylobacter maternal antibodies could also be 

vertically transferred from infected layer hens to newly hatched chicken.  Later Sahin et 

al (2003) demonstrated that the high-level of Campylobacter maternal antibodies in 
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young chickens delayed Campylobacter infection using laboratory challenge 

experiments. Altogether, this evidence demonstrated the protective nature of 

Campylobacter-specific antibodies and supported feasibility for immunization strategies 

against Campylobacter colonization in poultry.   

 

2.5- Campylobacter Vaccine Development 

Many Campylobacter vaccine studies have been published and vaccinations 

against C. jejuni using chicken and other animal models have had only partial success 

(Lin, 2009; Jagusztyn-Krynicka et al., 2009).  However, there is no vaccine available to 

date to control Campylobacter infections. The ultimate goal of an efficient 

Campylobacter vaccine used in poultry should trigger potent and specific mucosal 

immune response, have broad spectrum in regards to numerous strains, and be easily 

applicable and cost effective for the poultry farmer. A successful chicken vaccine is 

expected to prevent colonization or cause a strong reduction of Campylobacter numbers 

in chickens (> 2 log units) (de Zoete et al., 2007).  Following vaccination approaches 

have been explored for developing effective and safe vaccine against Campylobacter in 

poultry. 

  Killed whole-cell vaccine. The killed-whole Campylobacter cells can initiate an 

immune response without concern with respect to potential pathogenesis to humans. 

Vaccination with killed C. jejuni whole cells (WCV) has been shown to enhance the 

mucosal immune responses and partly reduced colonization of C. jejuni  (Noor et al. 

1995; Widders et al., 1996; Rice et al., 1997).  There are different routes of 

administration of this type of vaccine in chickens, which include an in ovo route (Noor et 
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al. 1995), a subcutaneous (s.c.) (Glünder et al., 1998), and an oral route (Rice et al., 

1997).  Different vaccination routes produced different results. The in ovo WCV 

generated increased serum IgG, IgA, IgM, and bile IgA antibodies. Increased systemic 

antibodies were stimulated in chickens administered s.c. formalin C. jejuni WCV with 

Freund’s adjuvant (Glünder et al. 1998).  As for protective efficacy, the oral WCV with 

E.coli heat-labile toxin (LT) vaccine lead to a reduction in C. jejuni 1.5 log CFU, while 

the s.c. WCV reduced colonization for the first 2 weeks only (Rice et al., 1997; Glünder 

et al. 1998). There was no subsequent challenge in the in ovo study; therefore protective 

efficacy of mucosal antibodies on colonization could not be assessed (Noor et al., 1995). 

Altogether, C. jejuni WCVs may not generate an overall protective immune response (de 

Zoete, 2007).  

Subunit vaccine. Another class of vaccines used for Campylobacter colonization 

is the subunit approach. At the present time, flagellin and other outer membrane proteins 

of Campylobacter, CjaA, have been tested. Poultry vaccination with a portion of the C. 

jejuni FlaA fused to a portion of the heat-labile toxin of E. coli (as an adjuvant) generated 

flagellin-specific antibodies while reducing Campylobacter colonization (Khoury and 

Meinersmann, 1995).  Another study (Widders et al., 1996; 1998) included immunization 

with flagellin alone or in conjunction with heat-killed whole cells through intraperitoneal 

injection (i.p.) followed by i.p. or oral booster. The concomitant vaccination of flagellin 

and heat-killed whole cells, with i.p. booster, proved to elicit high systemic IgG and IgM 

and intestinal IgG antibodies and a 1-2 log CFU reduction in C. jejuni colonization. 

While subunit vaccination with flagellin proteins produced some promising results, the 

exposed portion of flagellin is subject to modified glycosylation in effort of immune 
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evasion. Moreover, there exists variation in flagellin across Campylobacter strains 

limiting cross-protection (Power et al., 1994; Logan et al., 2002). One promising subunit 

vaccine target, CmeC, recently has been tested in broiler chickens (Zeng et al, 2009) and 

will be detailed in the section below. 

Live attenuated Salmonella-vectored vaccine. Attenuated Salmonella-based 

vaccines are another attractive strategy to develop inexpensive and practical oral vaccines 

for chickens to prevent Campylobacter infections (Curtiss et al., 1996). A study using an 

attenuated Salmonella vector vaccine carrying the ABC transporter and lipoprotein, 

CjaA, reduced colonization by 6 log10. (Wyszynska et al., 2004). Chickens orally 

vaccinated with a heterologous Salmonella Typhimurium ΔaroA strain carrying the cjaA 

gene fused to tetanus toxin, elicited CjaA-specific systemic IgY and intestinal IgA 

antibodies and also reduced C. jejuni colonization 1.4 log10 (Buckley et al., 2010). 

Additionally, Layton and colleagues used Salmonella-vectored vaccines carrying 

Omp18/CjaD, ACE393, and CjaA that produced elevated systemic IgG and intestinal IgA 

along with reduced C. jejuni presence by 4.8 log10 in the ileum as compared to the control 

group (Layton et al., 2011).  

DNA vaccine. DNA vaccination could induce both humoral and cellular immune 

responses and reduce some of the safety concerns associated with live vaccines 

(Gurunathan et al., 2000).  Chickens intranasally vaccinated with chitosan-DNA vaccine 

expressing the flagellin gene flaA, stimulated C. jejuni-specific IgG in the serum and IgA 

within the intestinal mucosa and reduced C. jejuni colonization 2-3 log10 within the 

cecum (Huang et al., 2010). Chitosan was used as an adjuvant to increase mucosal 
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absorption (Huang et al., 2010). Overall the study provided chitosan encapsulated DNA 

as a feasible approach for inducement of an effective immune response against C. jejuni.  

 

2.6- Campylobacter Antigenic Components 

Vaccination studies on many Gram-negative pathogens utilize three particular 

components of the bacterial cell due to their accessibility to the host’s immune system: 

polysaccharide capsules, lipopolysaccharides (LPS), and outer membrane proteins 

(OMPs). Campylobacter polysaccharide capsules (CPS) have shown to play a role in 

colonization (Maue et al., 2013; Grant et al., 2005). Moreover, a recent study conducted 

by Maue and colleagues showed that wild-type C. jejuni 81-176 colonized Balb/C mice 

better than both isogenic mutants lacking CPS (kpsM mutant) and those with a CPS 

lacking sugar O-methyl phosphoramidate (Maue et al., 2013). This study also showed 

that toll-like receptor (TLR) signaling was seen with these CPS mutants as compared 

wild-type strains and their complements (Maue et al., 2013). While CPS demonstrates a 

role in colonization and harbors immunoregulatory properties, expression is highly 

variable among strains due to slip strand mismatch repair, which ultimately, alters the 

frequency of sugar composition within CPS (Maue et al., 2013). Campylobacter 

possesses lipooligosaccharides (LOS) rather than lipopolysaccharides (LPS) on the cell 

surface (Jeon et al., 2008). LOS have been associated with Campylobacter virulence, 

such as, for example, molecular mimicry of human gangliosides implicated within 

Guillian-barre syndrome (Karlyshev et al., 2005). However, much like Campylobacter 

CPS, LOS are exceedingly variable across Campylobacter strains (Parkhill et al., 2000) 

and subjected to phase variations modifications and differences in sugar composition 
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(Guerry and Szymanski, 2008).  Overall, even though much of the Campylobacter 

genome is directed toward carbohydrate synthesis (Parkhill et al., 2000), and CPS and 

LOS play roles within virulence and pathogenesis, much remains unknown about the 

mechanisms in their variability as well as their roles and interaction with the host (Guerry 

and Szymanski, 2008; Maue et al., 2013).  

Due to the limitation of the surface-exposed polysaccharide structures for vaccine 

development as discussed above, Campylobacter OMPs are the more promising 

candidates for vaccine development. The most studied OMP is Fla, the protein involved 

in motility of flagella. Studies have shown that Fla is required for Campylobacter 

colonization and is immunogenic in vivo (Wassenaar et al., 1993; Guerry et al., 1997); 

however, glycosylation regarding this protein is highly variable. Fla is subjected to phase 

and antigenic variation, making it an unlikely candidate to confer cross-protection as a 

vaccine candidate (Caldwell et al., 1985; Logan et al., 1989).  Major outer membrane 

protein (MOMP) is a surface porin, which remains stable under various growth and 

culture environments (Zhang et al., 2000).  Moreover, MOMP may be involved in 

adherence of C. jejuni to host cells depending on its conformational state (Moser et al., 

1997; Schroder et al., 1997). While MOMP is a predominant OMP of Campylobacter, 

immunogenic characteristics have yet to be defined (Zhang et al., 2000). An intriguing 

study using the ABC transporter and OMP CjaA for vaccination via an attenuated 

Salmonella vector reduced colonization by 6 logs, but did not include an empty vector 

control (Wyszynska et al., 2004). Interestingly, when the same vaccines were repeated in 

Light Sussex chickens, the colonization levels were reduced by an insignificant 0.75 log10 

CFU/g cecal contents versus the control group (Buckley et al., 2010). As mentioned 
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earlier, more recent results using heterologous CjaA vaccines produced 1.4 log and 4.8 

log reductions (Buckley et al., 2010; Layton et al., 2011). Overall, the protective efficacy 

of this antigen is ambiguous. Moreover, CjaA is localized to the inner membrane of C. 

jejuni, thereby being difficult for CjaA-specific antibodies to access (Wyszynska et al., 

2008; Lin, 2009).  

Two OMPs, CfrA and CmeC, are promising candidates for developing 

Campylobacter vaccine, which are discussed in sections below.  

 

2.7- CfrA: ferric enterobactin receptor  

Iron acquisition systems are critical for bacterial pathogenesis and thus have been 

proposed as attractive targets for iron-dependent pathogen control (Miethke and 

Marahiel, 2007). Of these systems, high affinity iron acquisition mediated by 

siderophore, a small iron chelator, is the most efficient iron scavenging mechanism in 

Gram-negative bacteria. In Campylobacter, the high affinity enterobactin (Ent)-mediated 

iron scavenging is tightly linked to Campylobacter pathogenesis (Miller et al., 2009; 

Butcher et al., 2010). Thus, FeEnt receptors function as a “gatekeeper” for FeEnt 

acquisition and have been extensively studied in different organisms (e.g. FepA in E. 

coli) (Klebba, 2003).  Although CfrA was identified as an iron-regulated OMP in C. coli 

as early as 1997 (Guerry et al., 1997), its function as a FeEnt receptor was not established 

until 2004 by using C. jejuni NCTC 11168 strain (Palyada et al., 2004).  Strikingly, 

inactivation of the cfrA gene alone not only impaired Ent-mediated iron assimilation in C. 

jejuni but also completely abolished colonization of C. jejuni in chickens even if the 

parent strain colonized all chickens (Palyada et al., 2004). This finding indicates that 
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other iron-uptake system(s) in C. jejuni cannot compensate the function of CfrA and 

CfrA play an essential role in colonization of chickens.  Therefore, the surface-exposed 

CfrA is likely a promising vaccine candidate against C. jejuni.  To test this, Zeng et al 

(2009) further examined molecular, antigenic, and functional characteristics of CfrA in C. 

jejuni.  

CfrA is induced under iron-restricted conditions and is prevalent in 

Campylobacter strains from various sources and geographic locations (Zeng et al., 2009). 

Alignment of 15 isolates demonstrated that CfrA is 87-98% identical in amino acid 

sequence and was expressed in 32 geographically varied Campylobacter strains (Zeng et 

al., 2009). Moreover, the sera from C. jejuni-infected chickens can react with CfrA, 

indicating that CfrA is expressed and immunogenic in chicken hosts (Zeng et al., 2009).  

Specifically, purified CfrA antibodies may block the function of CfrA and diminish 

FeEnt-mediated growth promotion under iron-restricted conditions (Zeng et al., 2009).   

 

2.8- CmeC: the OMP of CmeABC multuidrug efflux pump  

   Recently, we have characterized a unique OMP CmeC, an essential component 

of the multidrug efflux pump CmeABC that contributes C. jejuni resistance to a broad 

spectrum of antimicrobials and is also essential for C. jejuni colonization of the animal 

intestine by mediating bile resistance (Lin et al., 2002a; 2002b; 2003; 2005; Martinez and 

Lin, 2006). CmeABC is encoded by the cmeABC operon (Lin et al., 2002a). CmeABC 

shares significant sequence and structural homology with known tri-partite multidrug 

efflux pumps in other Gram-negative bacteria, and consists of a periplasmic fusion 

protein (CmeA), an inner membrane efflux transporter belonging to the Resistance-
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Nodulation-cell Division superfamily (CmeB), and an outer membrane protein 

(CmeC)(Lin et al, 2002a). Compared to wild-type 81-176, cmeABC mutant showed 2 to 

4000 fold decrease in resistance to a range of antibiotics, heavy metals, bile salts, and 

other antimicrobial agents. Notably, cmeABC mutant is hyper-susceptible to bile salts, a 

group of detergent-like compounds in intestine (Lin et al., 2002a; 2002b; 2003; 2005a; 

2005b).  PCR and immunoblotting analysis showed that cmeABC was broadly distributed 

in various C. jejuni isolates and constitutively expressed in wild-type strains (Lin et al., 

2002a).   

 Notably, inactivation of CmeC alone completely resulted in malfunction of the 

CmeABC pump and drastically increased susceptibilities of C. jejuni to various bile salts, 

a group of natural antimicrobials present in intestinal tract (Lin et al., 2002a; 2002b; 

2003; 2005a; 2005b). Consistent with this finding, when inoculated into chickens, the 

wild-type strain colonized the birds as early as day 2 post-inoculation with a density as 

high as 107 CFU/g feces; in contrast, the CmeC mutant failed to colonize any of the 

inoculated chickens throughout the study (Lin et al., 2003).  In addition, immunoblotting 

analysis also demonstrated that CmeC is expressed during Campylobacter infection of 

chickens and elicited a specific antibody response in the host (Lin et al., 2003).  

Inhibition of CmeABC by the efflux pump inhibitor (EPI), Phe-Arg β-naphthyl-amide 

dihydrochloride (MC-207,110), increased C. jejuni susceptibility to antimicrobials 

including bile salts (Martinez and Lin, 2006). Consistent with this in vitro result, MC-

207,110 also reduced in vivo colonization of C. jejuni in chickens, signifying the 

importance of CmeABC in C. jejuni colonization and the feasibility for controlling 

Campylobacter colonization by targeting CmeC (Lin and Martinez, 2006). Together, 
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these early findings clearly showed that the CmeABC efflux pump is an attractive target 

for developing intervention strategies against C. jejuni. However, our animal study (Lin 

and Martinez) indicated that several key issues (e.g. toxicity, in vivo stability, production 

cost of EPI) challenge the clinical application of EPIs.  Thus, alternative ways, such as 

vaccination, to inhibit the MDR efflux pump should also be explored.  

Recently, Zeng et al. (2008) showed the amino acid sequences of CmeC were 

98.6% to 100% identical to each other and no “hot spot” of point mutation was observed. 

This finding provides direct evidence showing that CmeC is a highly conserved OMP and 

is a promising subunit vaccine candidate. In addition, Zeng et al (2008) also showed 

CmeC-specific antibodies could specifically inhibit the function of CmeABC efflux 

pump and increase susceptibility of C. jejuni to bile salts.  Using purified full-length 

CmeC, Zeng et al (2010) developed a subunit vaccine and evaluated it in chickens.  

CmeC doses of 50 and 200 µg were administered subcutaneously or orally, alone or with 

co-administration of adjuvant modified E. coli heat-labile enterotoxin (mLT) with booster 

immunization (Zeng et al., 2010). Following immunization, serum IgG titers were 

significantly higher in chickens that subcutaneously received 200 µg CmeC plus mLT 

than the control; however, neither route of administration stimulation led to stimulation 

of local secretory IgA (Zeng et al., 2010). Overall, these results indicate that CmeC has 

great immunogenic potential. While the adjuvant mLT was shown previously to be 

effective at stimulating an immune response when administered orally to animals (Yuan 

et al., 2001), the possibility exists that CmeC, mLT, or both components of this subunit 

vaccine could be degraded within the upper gastrointestinal tract before stimulation of the 

host immune system could occur (Zeng et al., 2010). To avoid this issue and further 
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enhance mucosal immunity, encapsulation systems such as chitosan microspheres, as 

described later, may be a promising adjuvant and carrier (Artursson et al., 1994; Van der 

Lubben et al., 2001; Arca et al., 2009).  

Taken together, these studies clearly show that CmeC is widely conserved, critical 

in colonization and antimicrobial resistance, and is immunogenic in vivo. Overall, CmeC 

is a promising vaccine candidate.  

 

2.9- The Mucosal Immune System 

The approach, delivery route, and adjuvants used for vaccination are important to 

stimulate protective immunity against mucosal pathogens.  Decreasing the quantity of 

colonization in the intestine of poultry can decrease the probability of human exposure 

upon consumption. Since Campylobacter colonizes the chicken intestine in high 

numbers, generation of protective immunity in the gut mucosa is an essential goal of 

vaccination.  Mucosal sites contain lymphoid tissue either within the mucosal 

environment or within the underlying draining lymph nodes because these environments 

are the typical gateway for pathogen access into the body and are usual sites of high 

microbial density (Brandtzaeg et al., 1999). Epithelial barriers, such as tight junctions in 

the gastrointestinal tract, protect mucosal surfaces. These epithelial barriers and 

associated glands yield innate defenses including antimicrobial peptides and mucins 

(Neutra et al., 2005).  Besides these innate defenses, lymphoid and antigen presenting 

cells (APCs) are generous in quantity within the intestinal mucosa. Mucosal epithelial 

cells sense the presence of pathogens through Toll-like receptors (TLRs) that recognize 

pathogen associated molecular patterns (PAMPs) like flagella or LPS. In response to 
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PAMP recognition, chemokine and cytokines are stimulated to signal to immune cells 

underlying the epithelium: dendritic cells (DCs), lymphocytes, and macrophages to 

generate innate immune responses and adaptive immune responses (Neutra et al., 2005; 

Kagnoff and Eckmann, 1997). These cells are found within the Gut-Associated 

Lymphoid Tissue, or GALT, and in Peyer’s Patches in the intestinal mucosa. Dendritic 

cells and M cells from within the follicle-associated epithelium, sample the epithelium 

surface at these mucosal sites for antigens and present these antigens to T cells 

(Fujkuyama et al., 2012). Mucosal B cells differentiate into plasma cells, which produce 

dimeric secretory IgA to combat pathogens and halt invasion through entrapment of 

antigens in mucus and consequent blocking of pathogens from epithelium adhesion 

(Lamm et al., 1997). In contrast to other antibody isotopes, sIgA are resistant to protease 

degradation in the mucosal environments (van Egmond et al., 2001). Secretory IgG is 

secreted by 5-15% of mucosal plasma cells within the intestine (Brandtzaeg et al., 1999); 

however, sIgG is subject to protease degradation. IgG, whether mucosal or systemic, has 

the potential to neutralize pathogens within the mucosa to detain from initiation of 

systemic infection (Neutra et al., 2006). Mucosal vaccine delivery can induce both 

systemic antibody in peripheral lymphoid tissue and secretory antibody responses within 

nasal, oral, small intestine, and large intestine or cecum. Injected vaccines, in contrast, 

are poor generators of mucosal immunity (Lamm et al., 1997).  

 

2.10- Challenges for developing mucosal vaccines 

While the intention for mucosal vaccines is to stimulate mucosal immunity within 

the environment of pathogen access to the host, some challenges for administration, 



 23 

similarly faced by these pathogens, exist. The vaccines administered orally, nasally, or 

directly to the site of the mucosal surface can be diluted by mucosal secretions, degraded 

by proteases, or are unable to access the epithelium barrier. This implies that large 

quantities of vaccine are required; however, the exact dose that reaches the mucosa is 

unable to be determined. Ideally, vaccines would be most effective if they act in similar 

fashion to invading pathogens. This means that the ideal vaccine would be able to consist 

of several protein subunits, adhere to epithelial cells, and establish innate and adaptive 

immunity (Neutra et al., 2006).  One vaccine approach to achieve such mimicking is 

through use of live attenuated pathogen vaccine vectors.  Live attenuated bacterial 

vectors that replicate in vivo, such as Salmonella enterica serovar Typhimurium, could be 

very effective for antigen presentation and elicit specific antibody production and T cell 

responses (Darji et al., 1997).  

Protein, peptide and DNA vaccines, including live attenuated vaccines, can 

abstain from degradation during oral administration through delivery via microsphere 

encapsulation.  Plasmid DNA or protein subunit can be trapped within polymers such as 

chitosan. Poly (DL-lactide co-glycolide)-encapsulated plasmid DNA has been shown to 

generate immune responses both systemically and mucosally (Jones et al., 1997). 

Biodegradable polymers such as these are natural, non-toxic, easy to prepare, and time-

released adjuvants to aid in eliciting an immune response and protection of the vaccine. 

Another challenge to vaccination lies within timing of administration. Chicks 

require immune protection at an early age. While macrophages have been detected during 

embryonic development, the adaptive immune response of the chicken progresses from 

two weeks of age through 6 weeks of age or time of slaughter. During the first week post 
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hatching, the quantity of T cells and natural killer cells increases within the intestine. 

During the second week, most likely as a consequence to colonization of commensal gut 

microflora, B and T cell populations increase again (Bar-Shira et al., 2003; Muir et al., 

2000). The late maturity of the immune system in the chicken can be challenging for 

vaccination since the generation of antibodies is limited prior to 10 days post-hatch (Bar-

Shira et al., 2003; Mast and Goddeeris, 1999). Thus, vaccination strategies may include a 

booster to further stimulate an optimal immune response. 

Finally, besides eliciting an immune response, vaccination for Campylobacter in 

poultry needs to be easy to administer and cost-effective. Oral, intranasal, and in ovo 

vaccination are all routes of administration that can be appropriate for this purpose. Oral 

and intranasal vaccination is used with many commercial vaccines and can be easily 

applied to drinking water or through aerosol. In ovo vaccination is a new, automatic 

method that can vaccinate 20,000 to 30,000 eggs per hour. It has been the route of 

administration for viral diseases such as Newcastle, Marek’s, and infectious bursitis 

(Johnston et al., 1997). Eggs are injected through the shell at 18 days of incubation. 

While the immune system of chicks post-hatch matures slowly, a study of in ovo versus 

post-hatch vaccination for infectious bursal disease demonstrated that in ovo vaccination 

might elicit a higher innate and adaptive immune response than post-hatch vaccination 

(Negash et al., 2004). In ovo vaccination against bacterial pathogens has not been 

thoroughly explored as of yet.  
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CHAPTER THREE: Material and Methods 

 

3.1. Bacterial strains, plasmids and growth conditions 
  

The bacterial strains and plasmids used in this study, and their sources, are listed 

in Table 1. Campylobacter jejuni NCTC 11168 (JL241) was used for amplification of 

cfrA and cmeC genes. JL241 was routinely grown in Mueller Hinton (MH) broth (BD 

Difco, Sparks, MD) or on MH agar plates under microaerophilic conditions (5% O2, 10% 

CO2, 85% N2) at 42°C. If needed, MH agar was supplemented with Campylobacter 

Growth and Preston Campylobacter Supplements (Oxoid, Bashingstoke, Hampshire, 

England). E. coli χ6097 and Salmonella enterica serovar Typhimurium UK-1 χ8914 were 

grown in Luria-Bertani broth (LB) (BD Difco) broth with shaking (250 rpm) or on LB 

agar plates containing 50 µg/ml diaminopimelic (DAP) acid at 37°C overnight.  When 

necessary, LB media were supplemented with 50 µg/ml of tetracycline or 50 µg/ml of 

ampicillin.  

 
3.2. PCR 
 

 Primers used in this study and the expected sizes of the products are listed in 

Table 2, 3, and 4. Each PCR was performed with a 50 µL mixture containing 200 µM 

deoxynucleoside triphosphates, 200 nM of each primer, 50 ng of JL241 template DNA, 

2.5 mM MgSO4, and 5 U PfuUltra II high-fidelity DNA Polymerase (Stratagene).  The 

temperature-cycling parameters are typically as follows: 95°C for 5 min for denaturation, 

32 cycles of 1 min. at 94°C, 1 min at 58°C, 90 sec at 72°C, and a final extension step of 

45 sec at 72°C, though cycling conditions varied according to annealing temperatures of 
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primers and estimated product sizes. PCR products were further purified with the 

QIAquick Purification Kit (Qiagen) for cloning procedures or sequencing analysis.  

 
3.3. Sequence analysis of plasmid constructs.  
  
   Plasmid DNA was extracted from host cells using Qiagen QIAprep Spin 

Miniprep Kit (Qiagen, Hilden, Germany). Primer pairs of pYA3493_F/pYA3493_R 

(Table X) and pCAGGS_F/pCAGGS_R (Table X) were used to sequence pYA3493 and 

pCAGGS derivatives, respectively. Sequencing was performed in the Molecular Biology 

Resource Facility at the University of Tennessee (Knoxville, TN).  For recombinant 

plasmids, proper insertion of cfrA or cmeC was confirmed by comparing the sequences to 

those from parent plasmids and the genome of C. jejuni NCTC 11168.  

 

3.4. SDS-PAGE and Western Blot analysis  

SDS-PAGE and Immunoblotting were performed as described previously with 

slight modifications (Lin et al., 2002; Zeng et al., 2009). Typically, 5 mL of overnight 

cultures of E. coli or Salmonella were centrifuged and resuspended in 50 µL of 1X PBS 

and 50 µL of 2X sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) sample buffer. Five to 15 µL of such whole cell lysate suspension or purified 

protein sample was loaded in each lane and separated by SDS-PAGE with a 12% (w/v) 

polyacrylamide gel at 80V for 40 minutes followed by 160V for 40 minutes. After SDS-

PAGE, proteins in gels were then electrophoretically transferred to nitrocellulose 

membranes (Bio-Rad) at 90V for 1 hour. The membranes were incubated with blocking 

buffer (5% Nestle skim milk powder in PBS) overnight at 4°C prior to 1 hour incubation 

at 25°C with primary antibodies (1:2000 diluted rabbit anti-CfrA sera or 1:1000 diluted 
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rabbit anti-CmeC sera in blocking buffer). After incubation, the membranes were washed 

three times with PBS containing 0.05% Tween 20 and incubated with secondary antibody 

(goat anti-rabbit immunoglobulin G-horseradish peroxidase, diluted 1:2000 for CfrA and 

1:1000 for CmeC) for 1 hour at 25°C. After incubation the membranes were washed as 

described above. The membranes were then developed with the 4CN Membrane 

Peroxidase Substrate System (KPL, Gaithersburg, MD).  

 

 
3.5. Construction of DNA Vaccines.  

 The pCAGGS vector (Fig.1A) is a eukaryotic expression vector containing the 

chicken β-actin promoter, the CMV immediately early enhancer (CMV-IE), the SV40 

origin of replication (SV40 OriC), and the ampicillin resistance cassette (AmpR) for 

selection (a kind gift from Dr. Miyazaki, University of Tokyo, Japan) (Niwa et al., 1991). 

The full-length cfrA (2109 bp) and cmeC (1472 bp) fragments from C. jejuni NCTC 

11168 were PCR amplified using primer pairs of pCAGGS_CfrA_F/pCAGGS_CfrA_R 

and pCAGGS_CmeC_F/ pCAGGS_CmeC_R, respectively (Table 2). All these primers 

have a XhoI site at the 5’ end.  The PCR product was digested by XhoI and ligated into 

pCAGGS, which previously has been digested with the same enzyme. The ligation 

mixture was introduced into Top10 cells via electroporation for 4-5 ms at 2.5 kV. 

Transformants were selected on LB agar plates containing ampicillin.  The plasmids from 

randomly selected transformants were extracted and analyzed by agarose gel 

electrophoresis. The recombinant plasmids with insertion were further subjected to PCR 

screening for identification of the recombinant plasmids with correct orientation of 

specific inserted gene.  The identified desired constructs (DNA vaccines) were finally 
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subjected to sequence analysis to confirm the orientation and integrity of the inserted 

fragment.  

Transfection was then performed to validate the production of CfrA or CmeC by 

the DNA vaccine in eukaryotic cells.   Briefly, 4 µg of recombinant plasmid were 

transfected into 50-70% confluent NIH-3T3-L1 or HEK-293 cells in a 6-well dish 

(Corning) using the Lipofectamine 2000 kit (Invitrogen Life Technologies) according to 

the manufacturer’s instructions. Cells transfected with PBS, the pR-M02 plasmid 

expressing eGFP, and the empty pCAGGS vector served as controls. After 5-6 hours of 

incubation, Lipofectamine was removed and replaced with complete media (1X DMEM 

plus Glutamax, 10% heat-inactivated fetal calf serum, 1% Penicillin/Streptomycin 

[Gibco]). After 24-48 hours incubation at 37°C in 5% CO2, efficacy of transfection was 

evaluated by examining the transfection rate of the control pR-M02 plasmid bearing 

eGFP using fluorescent confocal microscopy, which was performed at the Advanced 

Microscopy and Imaging Center facility at UTK. In addition, the cells from each well 

were trypsinized, centrifuged, and resuspended in 100 µL of SDS-PAGE sample buffer. 

The samples were subjected to SDS-PAGE and Immunoblotting for examining the 

production of CfrA or CmeC in the transfected cells as described above.  Both the 4CN 

Membrane Peroxidase Substrate System and the Chemiluminescent Substrate kit (KPL, 

Gaithersburg, MD) were used for immunoblotting. Transfections were performed in 

duplicate.  
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3.6. Production of Subunit vaccines 
Production of high-purity rCfrA and rCmeC. Production and purification of histidine-

tagged rCfrA and rCmeC were performed as described previously with modifications 

(Zeng et al., 2009, 2010). The E. coli constructs for producing full-length, histidine-

tagged rCfrA or rCmeC were obtained from our recent studies (Zeng et al., 2009, 2010). 

The His-tagged rCfrA and rCmeC were purified from the E. coli culture using Ni-NTA 

affinity chromatography. Briefly, approximately 2.5 mL of nickel nitrilotriacetic acid 

(Ni2+-NTA) agarose resin (Qiagen, Hilden, Germany) was equilibrated with lysis buffer 

(50 mM sodium phosphate [pH 8.0], 300 mM NaCl, 10 mM imidazole with 5 mM of 

ATP-Mg2+ to eliminate GroEL contamination). Bacterial lysate from 1 liter of IPTG-

induced culture was mixed with the equilibrated Ni-NTA resin with gentle rocking for 1 

hour at 4°C. The mixture was then loaded into a column and flow through was collected. 

The column was washed with 5 volumes of wash buffer (50 mM sodium phosphate 

buffer, 300 mM NaCl, 60mM imidazole, 10% glycerol, pH 7.0 supplemented with 2mM 

β-mercapthanol, 5 mM of ATP, and 5mM of MgCl2). The proteins bound to Ni-NTA 

were eluted with 5 volumes of elution buffer (50mM sodium phosphate buffer, 300mM 

NaCl, 300mM imidazole, 10% glycerol, pH 7.0 and 2mM β-mercapthanol). Eluent was 

collected into 1.5mL tubes. SDS-PAGE was performed to determine the purity and 

quantity of purified proteins in elution fractions. The rCfrA- and rCmeC-containing 

fractions were combined and dialyzed against PBS buffer with 0.1% Empigen BB 

(Sigma) to aid in solubilization of the recombinant proteins. Dialyzed protein was 

aliquoted into sterile tubes and stored at -80°C. Protein concentration was measured 

through the bicinchoninic acid (BCA) protein assay kit (Pierce).  
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Encapsulation of rCfrA and rCmeC in chitosan microspheres (CMs). To best 

evaluate different methods of chitosan encapsulation, two different procedures were 

performed. In the first method, chitosan (Sigma, prod. No: 448869, low molecular 

weight) was completely suspended in 1% of acetic acid solution to produce a 2% stock 

solution. In one set of chitosan solutions, Pluronic F127 (Sigma) was further added at a 

final concentration of 1.25%.  The chitosan or chitosan/Pluronic F127 was then mixed 

with purified rCfrA or rCmeC to achieve final chitosan: protein ratio of 3:1 and 1:1, 

respectively. Subsequently, the mixture was vortexed and adjusted to a pH of  ~5 due to 

the pI values of rCfrA and rCmeC both being around ~5. Samples were incubated at 50°C 

with continuous shaking at 250 rpm for 15 minutes, followed by overnight incubation 

with shaking at 250 rpm at 37°C. After incubation, samples were subjected to SEM 

examination. 

The second preparation method of chitosan microspheres (CM) was performed by 

a procedure as described by Kang et al. (2006) with modifications.  Briefly, 0.125 g of 

chitosan was dissolved in 50 mL 1% acetic acid to make a 0.25% (w/v) solution. To 25 

mL of this solution, 1.25% wt. of Pluronic F127 (Sigma) was added and sonicated for 10 

minutes.  Both chitosan and chitosan/ Pluronic F127 were added dropwise through a 

needle into 1 mL of 15 % of tripolyphosphate (TPP) (in ddH2O). The CM-TPPs, as these 

will be referred to, were separated through centrifugation at 4000 rpm for 15 min. The 

CM-TPPs were resuspended in 500 µL PBS. The CM-TPPs were adjusted to make a 3:1 

concentration ration (CM: protein) and mixed with the purified rCfrA (311 µg/mL 

original concentration) or rCmeC (639 µg/mL original concentration). The mixture was 

incubated overnight at 37°C with continuous shaking at 250 rpm. After incubation, 2mL 
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of each mixture was centrifuged at 3000 rpm for 10 minutes. Supernatant containing 

unloaded rCfrA or rCmeC was then aliquoted to separate tubes for quantification through 

the BCA protein assay method. The loaded content was calculated according to the 

following formula (Kang et al. 2007; Xu et al 2003): 

Loading content (%) = 

Total amount protein (rCfrA or rCmeC) – free protein   x 100 
  Total protein 
 

 After incubation, one drop of protein loaded and unloaded control CM-TPPs were 

placed on observation studs for SEM observation and allowed to air dry for 

approximately 6 hrs. The samples were visualized using a Leo 1525 field emission SEM 

or Auriga field emission SEM at the Advanced Microscopy and Imaging Center at the 

University of Tennessee, Knoxville, TN.  

 

3.7. Construction of Salmonella-vectored vaccines 

 The plasmid pYA3493 (Zekarias et al., 2008) was used for preparation of desired 

recombinant plasmids that were then transferred to the attenuated S. enterica serovar 

Typhimurium χ8914 (Zekarias et al., 2008) for live vaccine construction. The pYA3493 

is an expression plasmid containing the Ptrc promoter upstream of the β-lactamase signal 

peptide, and the asdA gene for natural selection (see Fig. 1B). The primer pairs of 

pYA3493_CfrA_F/pYA3493_CfrA_R and pYA3493_CmeC_F/pYA3493_CmeC_R 

(Table 3) were designed to amplify full-length cfrA and cmeC genes (with removal of 

signal peptide) from NCTC 11168 genomic DNA.  Specific PCR product was digested 

with EcoRI and SalI for directional cloning of the fragment into the pYA3493 that has 
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been digested with EcoRI and SalI. The ligation mixtures were introduced into competent 

E. coli χ6097 via electroporation at 4-5 ms and 2.5kV; preparation of the competent cells 

is detailed in the section below. Transformants were selected on LB agar plates.  The 

empty vector, pYA3493 was electroporated into E. coli χ6097 to create strain JL1070. 

After positive identification through plasmid extraction and gel electrophoresis, 

pYA3493 was then transferred into S. enterica serovar Typhimurium UK-1 χ8914 to 

create strain JL1059.  

Because of failure to obtain desired recombinant plasmids that bear full-length of 

cfrA or cmeC gene despite extensive efforts, a panel of alternative primer pairs were 

designed, which included 1) pYA3493_CfrA_F/pYA3493_CfrA_R (EcoRI) and 

pYA3493_CmeC_F/pYA3493_CmeC_R (EcoRI) that contain a single restriction enzyme 

site (EcoRI) for bidirectional cloning (Table X); 2) pYA3493_CfrA_F/CfrA_B1_R, 

pYA3493_CfrA_F/CfrA_B7_R, CfrA_B3_F/CfrA_B14_R, and CfrA_B14_F/CfrA_C_R 

(Table 4) for amplifying different truncated cfrA fragments. The EcoRI and PstI were 

attached to the 5’ end of the primers for directional cloning; and 3) 

pYA3493_CmeC_F/CmeC_TM2_R, CmeC_TM2_F/CmeC_TM3_R, 

CmeC_TM3_F/CmeC_C_R (Table X) for amplifying different truncated cmeC 

fragments. The cloning and transformation procedure are the same as described above.  

Upon identification of the recombinant plasmid of interest in E. coli transformant, 

JL1060 and JL1061 (containing pYA3493_tCfrA and pYA3493_tCmeC, respectively) 

via sequencing confirmation, the specific plasmid was extracted from the corresponding 

E. coli host and electroporated into competent S. enterica serovar Typhimurium UK-1 

χ8914. Salmonella strains harboring pYA3493_tCfrA and pYA3493_tCmeC are referred 
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to as JL1062 and JL1063.  Preparation of Salmonella competent cells is detailed in the 

section below. The Salmonella transformants were also selected on LB plates. The 

plasmids from Salmonella transformants were further extracted for sequencing analysis 

(section 3.3).  In addition, production of the specific inserted protein (CfrA or CmeC) in 

both E. coli (the intermediate host) and Salmonella (the final live vaccine host) was 

confirmed in by immunoblotting using specific antibodies as described in section 3.4. 

 To overcome any potentially lethal effect of full-length CfrA or CmeC on E. coli 

host, the plasmid pBR232 (lacIq) was transferred to the E. coli χ6097 to create strain 

JL1080 (Table1) in which the promoter activity of pYA3493 was greatly suppressed.  In 

addition, primer pairs were redesigned for directional cloning (Table 3, 

pYA3493_CfrA_F/pYA3493_CfrA_R for cfrA gene and 

pYA3493_CmeC_F/pYA3493_CmeC_R for cmeC gene).  The EcoRI and PstI digested 

PCR fragment was ligated into the pYA3493 that has been digested with the same 

enzymes.  Ligation mixture was electroporated into JL1080 (the E. coli χ6097 containing 

plasmid pBR232). Transformants were screened and confirmed as described above.  The 

recombinant plasmids that bear full-length cfrA or cmeC gene within E. coli, JL1109 and 

JL1110, were transferred into Salmonella host strain, creating JL1104 and JL1105, and 

subsequently validated by sequencing and immunoblotting as described above.   

 

3.8. Competent cell preparation.  

A single colony of E. coli χ6097 or S. enterica serovar Typhimurium χ8914 were 

inoculated into 50 mL LB broth supplemented with 50 µL of DAP (50mg/mL stock 

concentration) and incubated overnight at 37°C with constant shaking at 250 rpm. 
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Following incubations, a 25 ml aliquot of the overnight culture was inoculated into flasks 

containing 500 mL of pre-warmed LB broth containing DAP. Flasks were incubated at 

37°C with agitation at 300 rpm for about 2.5 hours so that the cultures reached an OD600 

value of 0.35 to 0.4. The flasks were transferred to an ice water bath and swirled to 

ensure proper and even cooling for 15 minutes. The cultures were then centrifuged at 

1000 x g for 20 min at 4oC. Pellets were then resuspended in 500 mL ice-cold Milli-Q 

water and centrifuged under the same conditions. Pellets were further washed with 250 

mL and 10 mL of ice-cold 10% glycerol successively. The pellets were finally 

resuspended in 1 mL ice-cold GYT media (10% glycerol, 0.125% yeast extract, 0.25% 

tryptone). The suspension was then diluted with GYT media so that the concentration of 

cells was equivalent to 2-3 x 1010 cells/mL (based on 1.0 OD600 = ~2.5 x 108 cells/mL). 

After diluting, 40 µL of specific competent cells was placed in a 0.2cm electroporation 

cuvette (Bio Rad) and tested at 4.5 ms and 2.5 kV to ensure no arcing occurred. After 

testing, microcentrifuge tubes containing 40 µL aliquots of competent cell suspensions 

were flash frozen (placing them briefly in ethanol at a temperature of -80°C) and stored at 

-80°C until use.  

   
3.9. Chicken Vaccination Trial 
 

Inoculum preparation. The two vaccine strains, JL1104 (Live-CfrA) and JL1105 

(Live-CmeC) (Table 1), were evaluated in this vaccination trial. Three to 5 colonies of 

each live vaccine strain as well as the vector control  JL1059 (Table 1) were randomly 

picked up from LB agar plate and inoculated into 50 mL LB broth for overnight, static 

growth in 37oC incubator. Subsequently, 10 mL of the overnight culture was inoculated 

into 90 mL LB broth and grown statically for about 6 hours to reach an OD600 value 
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between 0.8 and 1.0. Bacteria cultures were then centrifuged and resuspended in PBS to 

an OD600 of 1.0. The inoculums were serially diluted in PBS for CFU enumeration. 

Chickens were inoculated orally with 200 µL of the respective inoculum.   

Chicken immunization and sample collection. One day-old Cornish x Rock 

(commercial broiler) chicks (n = 80) were obtained from Hubbard Hatchery (Pikeville, 

TN) and allocated into 4 treatment groups (20 birds per group, 2 cages per group). Upon 

arrival, cloacal swabs from 5 randomly selected birds from each group were collected for 

determining the presence of Salmonella spp. and C. jejuni in the intestine. Specifically, 

cloacal swabs were placed in 2 mL of PBS containing 1% of gelatin (PBS-G). To 

examine Salmonella contamination, 100 µL of the suspension was spread on MacConkey 

(BD Difco) plates and incubated overnight at 37°C. The next day, colonies matching the 

expected phenotype (non-lactose fermenting, gray colonies) of Salmonella on 

MacConkey plates were re-streaked on XLT-4 agar plates (XLT Agar base [BD Difco] 

and 2.4 mL [per 500 mL] Tergitol [Sigma]) that were incubated for 24-48 h for 

identifying H2S-producing colonies.  To isolate Campylobacter, 100 µL of the suspension 

was spread on MH agar plates that contain Campylobacter-specific selective 

supplements, followed by incubation at 42°C under microaerophilic condition for 48 hrs.  

All chickens were managed in a sanitized wire-floor cage and provided with water 

and antibiotic-free feed ad libitum. Chicks were maintained at 32°C in the first week and 

at 25°C thereafter. As shown in Table 5, at 7 days of age, chickens were orally 

immunized with 200 µL of Live-CfrA (group 3) or Live-CmeC (group 4). Two control 

groups received either PBS (group 1) or the Live-empty vector (group 2). At 28 days of 

age, each group was orally challenged with C. jejuni NCTC 11168 with dose of 
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approximately 102 CFU/bird; the choice of this dosage is based on the publication by 

Knudsen et al. (2006) and our previous challenge experience using the same strain (Zeng 

et al., 2010). After challenge, cloacal swabs were collected every 2-3 days for 10 days.  

Swabs were placed in 1 mL MH broth and 100 µL were plated on MH agar containing 

selective supplement for enumeration of C. jejuni. 

Blood samples were collected via the wing vein of 10 chickens from each group 

on days 7, 18, 28, and 38 to evaluate systemic IgG and IgA antibodies. Intestinal lavage 

was taken from each euthanized chick (5 birds per group) on days 18, 28, and 38, and 

diluted 1:4 in lavage extraction buffer (PBS containing 0.05% Tween 20, 0.05g/mL of 

EDTA, and cOmplete mini protease inhibitor (Roche, prod. No: 04693159001)), which 

were used to determine specific mucosal IgA and IgG antibodies.  

Spleen, liver, and cecum were also taken to evaluate the presence of inoculated 

Salmonella live vaccine following oral vaccination. Briefly, at days 18, 28, and 38, 

spleen, liver, and cecum were asceptically collected (5 birds per group), diluted 1:9 in 

PBS-G, and homogenized using the Stomacher-80 and filter stomacher bags (Fisher). 

Tissue homogenates (100 µL) were spread on MacConkey plates. Non-lactose fermenting 

colonies were then isolated on XLT-4 and re-isolated on MacConkey. Pink colonies 

containing H2S production on XLT-4 were selected and the identities of the selected 

colonies were examined by plasmid profile as well as PCR using cfrA or cmeC specific 

primers.   

 ELISA. CfrA-, CmeC-, and S. enterica Typhimurium χ8914 membrane-specific 

antibodies in serum and intestinal lavage samples were measured by indirect ELISA as 

described previously with modifications (Zeng et al., 2010). Briefly, microtiter plates 
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(Nunc-Immuno Plate, Thermo Fisher Scientific) were coated with 100 µL of highly 

purified rCmeC, rCfrA, or S. Typhimurium χ8914 membrane protein (as obtained 

through sonication and ultracentrifugation, see section 3.11) (30ng/well) in coating buffer 

(1M ammonium acetate and ammonium carbonate, pH 8.2) overnight at room 

temperature. Plates were washed three times with washing solution (0.05% Tween 20, 1X 

PBS). Plates were then blocked with blocking buffer (1X PBS, 1% BSA, 0.1% Tween 

20) for 1 h at 37°C.  Chicken serum and intestinal lavage samples were diluted 1:100 and 

1:4 in blocking buffer, respectively, and 100 µL was added, in duplicate, to 

corresponding wells, followed by 1 h incubation. Next, plates were washed five times 

with washing solution. To measure systemic IgG, IgA, and mucosal IgG and IgA, 

secondary anti-chicken IgG and IgA was diluted 1:2000 in blocking buffer and 100 µL 

was added to each well.  After 1 h incubation, plates were washed three times. Plates 

were developed using the ABTS Peroxidase Substrate Kit (KPL, Gaithersburg, MD) and 

the reaction was stopped after 10 minutes using 100 µL stopping solution (1X PBS, 1% 

SDS). Absorbance was measured at OD405 nm.  

Statistical analysis. Differences in serum and intestinal lavage OD405 nm readings 

among treatment groups were analyzed by least square analysis of covariance with the 

data at day 7 (day of vaccination) as the covariant; main effects were day of sample 

collection and treatment. Comparison of OD405 nm readings within treatment groups 

across time was tested by ANOVA. Levels of significance for P value were 5% (0.05). 

All statistical analyses were performed using SAS software (v9.03, SAS Institute Inc., 

Cary, NC). 
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3.10. Minimum infective dose determination.  

Sixty day-old commercial broilers (Hubbard Hatchery) were assigned into 6 

groups (10 birds per group) and maintained in the same environmental conditions as 

those in the chicken trial described above. By two weeks of age, in addition to the control 

group that received MH broth, five groups of chickens were orally inoculated with 

various doses of wild-type C. jejuni NCTC 11168 (JL241) (approximately 5, 50, 5 x102, 

5 x 103, and 5 x 104 CFU per chicken as determined by colony enumeration of 

inoculums). After inoculation, cloacal swabs were collected from the chickens every 2-3 

days for two weeks and cultured for Campylobacter. The minimum infective dose was 

defined as the lowest dose at which at least one chicken of the inoculated group was 

colonized within two weeks after inoculation.  

3.11. Preparation of membrane fraction. To measure antibody responses against S. 

enterica serovar Typhimurium χ8914, the membranes were isolated from a culture of 

JL1059, the S. enterica serovar Typhimurium χ8914 containing empty vector pYA3493 

(Table 1). One liter of overnight culture (37°C, 250 rpm, in LB broth) was subjected to 

centrifugation at 2500 x g for 30 minutes at 4°C, then washed with PBS. Pellets were 

resuspended in 20 mL ddH2O and sonicated for 30 seconds three times with a 1-minute 

rest period on ice bath. Sonicated culture was then centrifuged at 5,000 x g and the 

supernatant was further centrifuged at 30,000 x g for 60 minutes. The pellet, representing 

the membrane fraction, was resuspended in 1 mL ddH2O and stored at -20°C.   

The live Salmonella vaccines that express CfrA or CmeC (truncated or full 

length) were also subjected to membrane fractionation in order to evaluate if the cloned 
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foreign proteins were localized in the membrane. Membrane samples were evaluated by 

immunobloting analysis as described previously in an earlier section.  
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CHAPTER FOUR: Results 

 

4.1. Development of DNA Vaccines 

 The XhoI-digested cfrA and cmeC PCR fragments were cloned into the vector 

pCAGGS, which previously had been digested with XhoI (Figure 2A). PCR screening 

identified potentially desired transformants containing recombinant plasmid bearing 

correct orientation of specific inserted gene, as reflected by the presence specific PCR 

fragment (Figure 2B and 2C).  The recombinant plasmids were further extracted from the 

selected transformants and were compared to the parental pCAGGS. As shown in Fig. 

2D, the recombinant plasmids from the transformants with positive PCR results 

(pCAGGS_CfrA and pCAGGS_CmeC), displayed a significant shift in size, confirming 

the cfrA and cmeC fragments had been successfully cloned into the parent plasmid 

pCAGGS. The extracted pCAGGS_CfrA and pCAGGS_CmeC plasmids were also 

sequenced, and no frameshift or mutations in the coding sequences of cfrA and cmeC 

were detected, indicating that desired DNA vaccines expressing CfrA or CmeC were 

successfully constructed. 

To confirm the production of CfrA and CmeC by the DNA vaccines in eukaryotic 

cells, pCAGGS_CfrA and pCAGGS_CmeC were used to transfect NIH-3T3-L1 and 

HEK-293 cell lines.  The control plasmid, pR-M02 encoding eGFP, successfully 

transfected both NIH-3T3-L1 (Fig. 3A) and HEK-293 (data not shown) cells, as 

visualized through fluorescent microscopy.  However, immunoblotting using specific 
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antibodies failed to detect CfrA and CmeC from the cells transfected with 

pCAGGS_CfrA and pCAGGS_CmeC, respectively (Fig. 3B & 3C).  

 

4.2. Development of Subunit Vaccines 

 Large quantities of high-purity rCfrA and rCmeC are needed for preparation of 

the subunit vaccine as well as for an ELISA test in this project.  After 3 hours of 

induction with IPTG, the amount of rCfrA and rCmeC were dramatically increased (Fig. 

4A & B, lane 2). High purity of rCfrA (Fig. 4A, lane 3) and rCmeC (Fig. 4B, lane 3) 

were successfully obtained after one-step Ni-NTA chromatography purification. Notably, 

5 mM of ATP and Mg2+ were added in the lysis buffer, which successfully removed 

contaminated proteins during purification.  From 1 L of IPTG-induced culture, the 

protein purification procedure yielded approximately 2.5 mg rCfrA and 8 mg rCmeC.  

 Chitosan encapsulation of rCfrA and rCmeC was performed with two different 

methods to determine optimal conditions for preparation of the chitosan encapsulated 

subunit vaccine. The first method entailed mixing chitosan or Pluronic F127-treated 

chitosan with the purified proteins to create chitosan-protein microspheres. Since 

chitosan has the tendency to aggregate, Pluronic-F127, a copolymer, was added to keep 

the aggregation to a minimum. Morphology of the chitosan/Pluronic F127 microsphere 

(no protein loaded) is shown in Figure 5A. Morphology of chitosan/Pluronic F127-CfrA 

is pictured in Figure 5B and C. These microspheres are caused by the interaction of 

chitosan, Pluronic F127, and CfrA. Size of random chitosan/Pluronic F127 microspheres 

were measured (Fig. 5D), which were in the range of 1 to 7 µm. The chitosan-PBS 

control, chitosan-CfrA, chitosan-CmeC, and chitosan/Pluronic F127-CmeC are not 
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pictured as these samples were not diluted and SEM proved difficult to image these 

microspheres.  

The second method of chitosan encapsulation entailed mixing chitosan with 

tripolyphosphate, TPP, which ionically crosslinks chitosan fibers via electrostatic forces 

to create a more stable chitosan microsphere (CM) (Desai and Park et al., 2005; Aral and 

Akbuga, 1998). Once the CM-TPPs or CM/Pluronic F127-TPPs, (to be referred to here) 

were produced, they were incubated with rCfrA or rCmeC. After incubation, average 

antigen loading efficiencies of CM-CfrA were 49%, while 55% and 77% for CM-CmeC 

and CM-Pluronic-F127-CmeC, respectively. Morphology of CM-TPPs with loaded rCfrA 

or rCmeC were not as expected. While CM-TPPs could be visualized, they appear to 

have crystallization on the surface (Fig. 6A) or appear desiccated (6B & C). Moreover, 

visualization was confounded by the visualization of larger crystal formations (Fig 6D), 

and was suggestive of an improper chitosan: TPP ratio. Since the first method of chitosan 

microsphere lead to the production of well-formed microspheres, future work will consist 

of testing the antigen-loading efficiency for comparison to the second method.  

 

4.3. Development of Salmonella-vectored vaccines 

 The full-length cfrA and cmeC fragments were successfully amplified for 

directional cloning into the pYA3493 plasmid (Fig. 7A).  However, despite extensive 

efforts for modification of molecular cloning conditions, no E. coli transformants 

containing the desired recombinant plasmids were obtained; all selected transformants 

were false positives as reflected by the equivalent size of the extracted plasmids to the 

parental pYA3493 vector (Fig. 7B & C). This finding suggested that expression of the 
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full-length cfrA or cmeC gene was lethal to the E. coli host. To test this hypothesis, the 

cloning process was repeated using bidirectional cloning. As expected, PCR analysis 

showed that the cloned gene (e.g. cfrA, Fig. 7D) in all selected transformants was in the 

reverse orientation within the vector. As an alternative approach, truncated cfrA or cmeC 

with correct orientation in pYA3493 were successfully obtained (Fig. 8B) and cloned into 

the vector (Fig. 8C). Immunoblotting using whole cell lysate demonstrated that the 

truncated CfrA and CmeC proteins were also produced in their corresponding E.coli 

(JL1060 and JL1061, respectively) or Salmonella hosts (JL1062 and JL1063, 

respectively) with approximate molecular masses of 15.7 kDa and 19.8 kDa, respectively 

(Fig. 9).  

Production of the full-length target proteins has advantages for triggering strong 

and specific immune response in vivo.  In addition, it was not clear if production of full-

length CfrA or CmeC protein was toxic to Salmonella, the final live vaccine strain. 

Therefore, delicate molecular manipulation was then performed to overcome the 

challenge by using the original E. coli host strain.   The pBR232 plasmid was 

successfully transferred into the previous E. coli χ6097 host, creating a new cloning host 

JL1080 (Table 1). In this new host, due to the presence of the lacIq repressor system in 

pBR232 plasmid, the Ptrc promoter and downstream antigens were repressed. With the 

repression from pBR232, the recombinant plasmids bearing full-length cfrA or cmeC 

genes were successfully obtained by using this new cloning system (Fig. 10). These 

recombinant plasmids were then extracted from E. coli (strains JL1109 and JL1110, 

respectively) and successfully transferred into the Salmonella live vaccine host, creating a 

new Salmonella-vectored vaccine Live-CfrA (JL1104) and Live-CmeC (JL1105) (Table 
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1).  Immunoblotting using specific antibodies confirmed that both the full-length CfrA 

(76 kDa) and CmeC (53kDa) were produced in Salmonella (Fig. 11). However, numerous 

bands of lower molecular weight appeared for both CfrA and CmeC within the 

Salmonella host and were suggestive of degradation of these proteins.  

 

4.4. Evaluation of Salmonella-vectored vaccines in commercial broiler chickens 

S. enterica serovar Typhimurium vaccine strain recovery.  S. Typhimurium 

vaccine strains were recovered and from cecum, spleen and liver samples and identified 

through PCR and plasmid profiling. Table 6 clearly shows the low percentage of S. 

Typhimurium vaccine strains recovered from each group at different time points. The 

average quantity of S. Typhimurium isolated from the cecum and spleen 11 days (day 18) 

post-immunization was 104 CFU/g (range: 6 x 102 – 2.8 x 104 CFU/g) and 10 CFU/g 

(range: 10 -1.375 x 102 CFU/g) sample, respectively. At day 28 (21 days post oral 

vaccination), the inoculated S. Typhimurium vaccine strains could be isolated from 

cecum, spleen, and liver samples; however, Salmonella cells were still isolated from a 

low percentage of euthanized chickens (Table 6).  Recovery quantity also varied with 

1.42 x 104 – 2.5 x 104 CFU/g of cecal contents, 3 x 102 – 1.1 x 103 CFU/g of spleen, and 

10 CFU/g of liver (1 bird). No S. Typhimurium cells were recovered from the cecum, 

spleen, or liver samples at day 38 (31 d post vaccination).  

Systemic and local immune responses. Oral vaccination of chickens with Live-

pYA3493 (empty vector), Live-CfrA, and Live-CmeC produced elevated, but not 

significant, antibody responses in regards to Salmonella membrane proteins (Fig 12 & 

13). In terms of CfrA- and CmeC-specific antibody responses, there was no significant 
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enhancement of systemic IgG or IgA or local mucosal IgG or IgA in intestinal lavage 

samples at different time points post immunization (Fig. 14-17). All groups displayed 

relatively higher CfrA- or CmeC-systemic IgG prior to immunization, indicating the 

possibility of maternal antibody presence (Sahin et al., 2001; Sahin et al., 2003).  

C. jejuni challenge. For C. jejuni challenge, all chickens were orally gavaged with 

approximately 100 CFU on day 28. Cloacal swabs were used to determine C. jejuni 

colonization every 2-3 days for 10 days. Only one of two cages in both group 2 and group 

4 were colonized with an average of 106 CFU/g feces from two days post-challenge (day 

30) and persisting without change through the end of the experiment (day 38).  The other 

cages of these groups and all of group 1 and 4 were not colonized, as no C. jejuni was 

recovered from cloacal swabbings. Although an amount of 102 CFU has previously been 

reported in successful colonization of the cecum in 2 week-old chickens (Knudson et al., 

2006), colonization with this quantity did not produce consistent colonization in this 

study and the effect of immunization with the S. Typhimurium vaccines on C. jejuni 

colonization levels could not be effectively determined.  

Minimum infective dose. C. jejuni was not recovered from the cloacal swabs in the 

chickens that received a dose of 5 CFU/chick  or 50 CFU/chick at all time points. 

However, the chickens that were challenged with 5 x 102 CFU/chick or higher doses shed 

C. jejuni 2 days after challenge. The minimum infective dose of NCTC 11168 for a 14-

day old chicken was 5 x 102 CFU/chicken. 

Membrane localization. Full-length and truncated CfrA (76 KDa and 15.7 KDa, 

respectively) proteins were expressed within the S. Typhimurium membrane (Fig. 18). 
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Figure 19 shows full-length and truncated CmeC was also expressed (53 kDa and 19.8 

KDa, respectively) and localized within the S. Typhimurium membrane.  
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CHAPTER FIVE: Conclusion and Discussion 

 

 Campylobacter can quickly infect an entire commercial poultry flock and 

establish itself at high quantities within the cecum of broilers until time of slaughter 

(Sahin et al., 2002). Horizontal transmission from numerous potential environmental 

sources is the major route of Campylobacter introduction into commercial flocks (Sahin 

et al., 2002). Intervention strategies at the poultry farm level to reduce Campylobacter 

colonization within poultry creates a challenge, but is necessary to reduce its presence at 

human consumption (Lin et al., 2009). Three general strategies to reduce Campylobacter 

presence include: 1) Biosecurity measures are reducing environmental exposure, 2) 

improve host resistance to Campylobacter colonization within the cecum (e.g., host 

genetic selection, vaccination), 3) introduce antimicrobial alternatives to reduce or 

eliminate Campylobacter from the host (e.g., through bacteriophage therapy) (Lin et al., 

2009). It is difficult to implement biosecurity measure, such as hygiene, and understand 

the efficiency of such measures since risks factors, or horizontal transmission, of 

Campylobacter remains ambiguous (Sahin et al., 2002). Bacteriophages are a type of 

antimicrobial alternative, however, these virus-like particles entail high specificity, the 

potential transfer for virulence genes, and a complicated bulk production (Lin et al., 

2009; Connerton et al., 2008). Bacteriocins, antimicrobial peptides, also fall into the 

category of antimicrobial alternatives. While some studies have shown a reduction in 

Campylobacter colonization (Stern et al., 2005; 2006; 2008; reviewed by Lin, 2009), 

many bacteriocins are still under development and much is still unknown about their 

mechanisms (Lin et al., 2009). The remaining overall strategy, improving host resistance 
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to Campylobacter, includes host genetic selection, competitive exclusion (CE), and 

vaccination (Lin, 2009).   Competitive exclusion products, also known as probiotics, 

should establish protective gastrointestinal microbiota to prevent Campylobacter 

colonization (Wagner, 2006; reviewed by Lin, 2009). However, success with competitive 

exclusion products has been limited and acceptance by regulatory agencies could prove 

challenging (reviewed by Mead, 2000; Lin, 2009).  While chicken lines have shown 

differences in susceptibility (Stern et al., 1990a), much is still unknown about the 

mechanisms behind Campylobacter establishment in chickens (Lin, 2009).   

Vaccination is a promising strategy. When C. jejuni was incubated with anti-

Campylobacter immunoglobulin, the dose to establish colonization was increased by 

50% (Stern et al., 1990b; de Zoete, 2007). Moreover, chickens administered colonization-

attenuated Campylobacter strains had unchanged levels of colonization upon challenge 

with parent strain, as compared to naïve animals (Ziprin et al., 2002; de Zoete et al., 

2007). These data demonstrate a protective response of Campylobacter-specific 

antibodies elicited upon colonization and re-colonization and justify how vaccination can 

be effective for Campylobacter control. To date, there is no commercially available 

vaccine for Campylobacter control in poultry (de Zoete et al., 2007; Lin, 2009; 

Jagusztyn-Krynicka et al., 2009).  

 The short life span of the commercial broiler, slaughter age of 6 weeks, creates a 

challenge for induction of an immune response against Campylobacter and a subsequent 

reduction in colonization. The strongest immune response generated by a vaccine is 

generally at the entry site itself or within the adjacent mucosal epithelium (Lycke, 2012).  

Since most of the Campylobacter load is within the cecum of poultry, it seems feasible 
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that the generation of a strong immune response from the mucosal environment would be 

the most effective at targeting colonization.  However, mucosal vaccines face several 

challenges such as dilution and entrapment by mucosal secretions, degradation by 

proteases, and exclusion by the epithelial barriers (Neutra and Kozlowski, 2006). 

Moreover, as in our CmeC subunit vaccination trial (Zeng et al., 2010), protein-based 

subunit vaccines stimulate weak mucosal immune responses when administered orally 

without optimized vaccination regimen (Neutra and Kozlowski, 2006). Choice of an 

optimal vaccine adjuvant is essential to “alert” the host’s immune system (Neutra and 

Kozlowski, 2006). Another important requirement in chicken vaccination that needs to be 

addressed is the ease of mass administration and cost-effectiveness (de Zoete, 2007). Oral 

and in ovo administration routes are the most suitable and often used for this purpose (de 

Zoete et al., 2007).   In order to address this requirement, and challenges faced by 

mucosal vaccines, we planned to incorporate optimized vaccination strategies using 

immunogenic CfrA or CmeC, by including:  1) different vaccination routes (in ovo, 

intranasal and oral routes), 2) vaccine formulations (DNA and subunit vaccines), and 3) 

delivery/adjuvant systems (chitosan microsphere encapsulation and USDA licensed live 

attenuated Salmonella enterica serovar Typhimurium strain). 

DNA vaccines can effectively stimulate an immune response in terms of humoral 

and cell-mediated immunity, even challenging the influence of maternal antibodies.  The 

DNA vaccine approach has been studied in the prevention of numerous pathogens such 

as hepatitis B4, rabies, papilloma and malaria (Davis et al., 1993; Xiang et al., 1994; 

Donnelly et al., 1994; Hoffman et al., 1994). As for DNA vaccines in chickens, when 

injected intramuscularly with plasmid DNA expressing hemagluttin A (HA), chickens 
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were protected from the lethal influenza virus (Robinson et al., 1993). A heterologous 

DNA vaccine encoding viral nucleoprotein (NP) also demonstrated protective immunity 

(Ulmer et al., 1993). Sakaguchi and colleagues injected chickens with the eukaryotic 

expression vector, pCAGGS expressing the F protein of Newcastle Disease virus; The 

chickens that received the circularized plasmid did not stimulate a significant immune 

response, while 2 of 5 chickens injected with the linearized plasmid generate a strong 

response (Sakaguchi et al., 1996). Huang and colleagues produced a DNA vaccine also 

using the pCAGGS plasmid, expressing C. jejuni protein, FlaA (Huang et al., 2010). In 

this study, the recombinant plasmid, pCAGGS-flaA was encapsulated in a chitosan 

adjuvant and intranasally administered into White Leghorn chickens one day of age 

(Huang et al., 2010). Increased C. jejuni-specific IgG and mucosal IgA were observed 

along with a 2-log reduction in colonization within the cecum (Huang et al., 2010).  In 

our study, we also used same plasmid vector pCAGGS for producing pCAGGS_CfrA 

and pCAGGS_CmeC DNA vaccines. Like the study conducted by Sakaguchi and 

colleagues, we transfected NIH 3T3 (L1) cells and the highly transfectable HEK-293 cell 

line (Graham et al., 1977) with these DNA vaccines as well as a control GFP-expressing 

plasmid.  Although the transfection was successful as shown by the transfection of the 

GFP-expressing plasmid, CfrA and CmeC expression could not be detected by western 

blot analysis. An alternative approach is needed to confirm the production of CfrA and 

CmeC in the transfected eukaryotic cells. For example, an immunofluorescent assay 

using specific antibodies in conjunction with fluorescent (e.g. fluorescein isothiocyanate, 

FITC) conjugated anti-IgG antibody may make CfrA- or CmeC-producing cells 

visualized through fluorescent microscopy or through flow cytometry. Upon validation, 
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efficiency of these DNA vaccines expressing CfrA and CmeC will be evaluated in ovo in 

the future.  

Subunit vaccines have been widely used overall (Hansson et al., 2000). Subunit 

vaccination with an effective immunogenic protein and immune-stimulating adjuvant can 

trigger systemic and mucosal immunity, especially when administered intranasally or 

orally. In this study, we optimized a purification procedure to obtain high purity rCfrA 

and rCmeC for developing subunit vaccines. The key to formulating a subunit vaccine is 

to select an adjuvant that enhances the delivery of the subunit to the mucosal environment 

and avoid degradation in the process. The choice of adjuvant that can adhere to epithelial 

surfaces is essential for enhanced immune responses and can promote admission into cell 

transport pathways (McNeela et al., 2000; reviewed by Neutra and Kozlowski, 2006). 

One such adjuvant is chitosan, which was used to encapsulate rCfrA and rCmeC in two 

different methods in this study. Chitosan is a natural, linear polysaccharide derived from 

shrimp (Agnihotri et al., 2004).  It is bioavailable, biocompatible, cost-effective and has 

adhesive properties, which could extend retention time in the mucosal environment and 

create a time-released effect (Artursson et al., 1994; Quan et al., 2008). Furthermore, 

chitosan microspheres (CM) can reduce vaccine degradation from gastrointestinal 

proteases and possess the potential to loosen tight junctions between epithelial cells 

(Thanou et al., 2001). Studies have shown that chitosan has minimal toxicity (Arai et al., 

1968).  No changes in mucosal cell morphology were seen with intranasal administration 

of chitosan solution (Illum et al., 1994). A study performed by van der Lubben et al. 

(2001) using CMs for mucosal vaccine delivery in mice, showed that CMs smaller than 

10 µm are suitable for absorption by M cells. In this study, chitosan-protein particles 
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visualized via SEM were measured to be between 1 µm and 7 µm, being ideal for 

adsorption. Huang and colleagues’ vaccine, pCAGGS-flaA, as described earlier, which 

had a 90% successful chitosan encapsulation efficiency, productively reduced 

colonization levels of C. jejuni (Huang et al., 2010).   

While there are some limitations to chitosan, such as aggregation, this can be 

avoided, as demonstrated by Kang and colleagues (2007), by the addition of Pluronic-

F127, a copolymer of polyethylene oxide and polypropylene oxide. The hydrophilic 

nature of the polyethylene component of Pluronic-F127 is believed to decrease the 

aggregation of CMs (Kang et al., 2007). Moreover, Pluronic-F127 is water-soluble and 

has numerous applications in pharmaceuticals (Kang et al., 2009; Wang et al., 1993). 

Additionally, Pluronic F127 has immune enhancing capabilities and a synergistic 

relationship with chitosan (Westerink et al., 2002).  

In this study, we assessed two different methods of using the chitosan adjuvant 

with CfrA and CmeC. In the first method, we mixed chitosan or chitosan/Pluronic F127 

with rCfrA and rCmeC to create chitosan- or chitosan/Pluronic F127- proteins. These 

microspheres were created by electrostatic interactions of chitosan, a positively charged 

polysaccharide (Desai and Park et al., 2005), with the negative charges on the proteins. 

The strength of interaction in this specific scenario remains unclear. In the future, it will 

be important to analyze the zeta potential through laser Doppler anemometry (LDA). 

In order to evaluate a method that would be able to be mass-produced and 

efficiently and stably transport the antigenic proteins into the mucosal environments, we 

tried an alternative method of CM encapsulation with the addition of tripolyphosphate 
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(TPP) as described by Kang et al (2006). Kang and colleagues used this method in order 

to evaluate immune stimulating characteristics of vaccine delivery systems in production 

of a subunit vaccine for the antigen Bordatella bronchiseptica dermonecrotoxin (BDD) in 

swine (Kang et al., 2006).  TPP is non-toxic polyanion that interacts with chitosan 

through electrostatic interactions in acidic medium (Aral and Akbuga, 1998). 

Specifically, TPP cross-links with chitosan fibers, creating a more stable microsphere 

(Desai and Park et al., 2005). Due to the potential of aggregation as mentioned before, we 

prepared chitosan and TPP with and without Pluronic F127, to create CM-TPPs and 

CM/Pluronic F127-TPPs. Upon antigen loading, at least 49% and as much as 77% of the 

protein, was loaded into these CMs. This is comparable to the loading efficiency 

observed previously (Kang et al., 2006). However, SEM visualization to assess 

morphology proved difficult due to the presence of crystallization. This problem may 

have arisen due to an improper ratio of chitosan to TPP. The chitosan used by Kang and 

colleagues had a molecular weight of 10 KDa; while the molecular weight of our chitosan 

(Sigma, low molecular weight, prod. No: 448869) was 50-190 KDa (Liang et al., 2007).  

Desai and Park and colleagues discovered in their study of CM-TPP encapsulation of 

acetaminophen, that as the chitosan concentration increases, the size of the microspheres 

decreases (Desai and Park et al., 2005). Additionally, chitosan molecular weight can 

affect antigen loading/ encapsulation capacity (Desai and Park et al., 2005).  Moreover, 

their study demonstrated that as the volume of TPP increases, the swelling capacity of the 

chitosan microspheres decreases (Desai and Park et al., 2005). Therefore, in the future, 

we will need to optimize the ratio of chitosan to TPP to aid in the visualization, 

characterization, and encapsulation efficiency of these microspheres and to avoid 
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crystallization and aggregate production. With these promising and attractive 

characteristics of chitosan as an adjuvant, future work will be comprised of intranasal 

vaccination with these chitosan CfrA- or CmeC-loaded Pluronic-F157/CMs and analysis 

of both systemic and mucosal immune responses specific to these proteins as well as the 

effect on C. jejuni colonization. 

 The use of live attenuated mucosal vaccine vectors can generate substantial innate 

immune responses that bolster adaptive immune responses (Neutra and Kozlowski, 

2006). The most commonly used bacterial vectors include attenuated Salmonella spp. to 

carry antigens against viral, bacterial, and parasitic pathogens (Jazayeri et al 2012; 

Zekarias et al., 2008; Jenikova et al., 2011). Salmonella is an ideal organism to invade 

and colonize effector lymphoid tissues and induce T cells (Kong et al., 2013).  In our 

study, we chose live, attenuated Salmonella enterica serovar Typhimurium χ8914 as a 

vector to carry our immunogenic CfrA and CmeC proteins. Attenuation in this strain was 

achieved with deletion in pabA and pabB genes, which encode for 4-amino-4-

deoxychorismate synthase required for production of folic acid in Salmonella; which the 

organism is unable to obtain from the environment (Wang et al., 2011). This strain carries 

a deletion in the asdA gene, creating a deficiency in diaminopimelic acid (DAP), a key 

component of Salmonella peptidoglycan. Deficiency in DAP causes lysis of the cell and 

since DAP is not found within mammalian tissues, the need for DAP is dire. The 

expression plasmid used to carry CfrA and CmeC, pYA3493, carries the asdA gene 

allowing for retention of the plasmid to be an absolute requirement for the Salmonella 

vaccine vector survival (Curtiss et al., 1989; Galan et al., 1990). The advantage to this 

complementation system is the absence of drug-resistant gene markers while achieving 
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selective pressure for retention of the plasmid within the vaccine cells in vivo. A study 

conducted by Ma and colleagues, used a recombinant S. choleraesuis vaccine strain 

carrying the pYA3493 vector expressing p36, p46, p65 and p97R1-Nrdf genes of 

Mycosplasma hyopneumonaie. These recombinant S. choleraesuis vaccines, when orally 

administered, produced significantly higher Mycoplasma-specific antibodies as compared 

to the group intramuscularly injected with the p36, p46, p65-expressing strains (Ma et al., 

2011). Finally, a study using the pYA3493 vector expressing Streptococcus Pneumonaie 

protein PspA in a S. Typhimurium χ8501 (Δcrp, ΔasdA), produced significantly (104-

fold) higher PspA-specific antibodies as compared to the antibody response from a 

recombinant strain using pYA3496 (including His6-tagged PspA instead of the β-

lactamase signal peptide) (Kang et al., 2003). This study demonstrated that the type II 

secretion system within pYA3493 is important for secretion of the antigenic protein into 

the periplasm and mounting a higher immune response as compared to other expression 

plasmids (Kang et al., 2003). Additionally, our chosen vector strain, Salmonella enterica 

serovar Typhimurium χ8914 is USDA licensed, allowing for a vaccine with proven 

systemic and mucosal immune enhancement in regards to Campylobacter to be approved 

in an expedied time frame. Zekarias and colleagues used this plasmid and Salmonella 

vector combination previously to generate S. Typhimurium vectored vaccines expressing 

the carboxy-terminal domain of the alpha toxin from Clostridium perfringens, PlcC 

(Zekarias et al., 2007). Upon immunization with these vaccines, IgG and IgA antibody 

titers were low; however, upon intranasal booster administration with a purified rPlcC 

protein, serum IgG and bile IgA titers increased. Moreover, intestinal pathology 

decreased upon C. perfringens challenge (Zekarias et al., 2007).  



 56 

 In this study, commercial broilers were vaccinated with the Salmonella enterica 

serovar Typhimurium χ8914 vaccine strain carrying pYA3493_CfrA (Live-CfrA) or 

pYA3493_CmeC (Live-CmeC) at one week of age. However, Salmonella vaccine 

recovery was limited and ELISA analysis showed systemic and local immune responses 

were weak and did not vary between experimental groups and the controls. Moreover, 

CfrA- and CmeC-specific systemic IgG and IgA levels specific to CfrA and CmeC were 

higher prior to vaccination, suggesting the presence of maternal antibodies. Studies have 

shown that the stability of the pYA3493 vector is roughly 95% over 50 generations, 

indicating that antigen synthesis and delivery are not compromised (Xin et al., 2012). 

Initial construction of our recombinant expression vector demonstrated that 

overexpression of CfrA and CmeC were likely toxic to the E.coli host and required the 

lacIq repression system from within plasmid pBR232. Membrane fractionation of these 

vaccines showed both CfrA and CmeC are localized in membrane. Therefore, the lack of 

immunogenicity likely exists within the Salmonella enterica serovar Typhimurium χ8914 

vector and the metabolic burden that it endures due to overexpression of the antigenic 

protein. Over-expression of the heterologous protein can lead to hyperattenuation, 

modified or poorly expressed antigenic proteins, and reduction in viability and colonizing 

ability, finally leading to poor immunogenicity overall (Galen et al., 2001). This could 

explain the low recovery rate of our S. Typhimurium vaccine strains from orally 

immunized chickens, indicative of poor colonization efficiency. The pYA3493 plasmid 

used in this study contains the Ptrc promoter. The Ptrc promoter is constitutively expressed 

in the absence of LacI within Salmonella, and can be subjected to LacI repression as seen 

in combination with the pBR232 plasmid used in this study. This repressor system was 
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also used with the Salmonella vaccine vector and pYA3493 vector. Conceivably, the 

reasoning behind the hyperattenuation of the S. Typhimurium strain in our case was due 

to the presence of full-length proteins, instead of a portion as was used in the Zekarias 

study. Additionally, perhaps booster administration with rCfrA or rCmeC would have 

been needed to see similar results in terms of specific-antibody response.  

The attenuated Salmonella carrier used in this study has been further modified to 

relieve the metabolic burden experienced by overexpression of antigenic proteins. Dr. 

Roy Curtiss III and his team have created strains to incorporate the araC PBAD 

arabinose-promoter, which regulates lacI transcription levels when the strain is grown in 

the presence of arabinose (Wang et al., 2010).  Under the araC PBAD promoter, Ptrc is 

repressed in vitro in the presence of arabinose allowing for rapid growth. Once in vivo 

due to the lack of arabinose within the environment, transcription from the araC PBAD 

promoter halts, and the Ptrc is gradually repressed in vivo until it, and downstream 

antigens, are constitutively expressed (Wang et al., 2010). These recombinant strains are 

promising for induction of immune responses in regards to antigens that are particularly 

toxic to the vaccine vector strain. However, a study conducted by Kulkarni and 

colleagues using a S. Typhimurium strain including PBAD and harboring the pYA3493 

plasmid expressing either the alpha toxin (AT) or hypothetical protein (HP) of C. 

perfringens, showed low levels of colonization of the recombinant S. Typhimurium 

strain within peripheral tissues, marked by ~30% vaccine strain recovery from chickens 

(Kulkarni et al., 2010). Kulkarni and colleagues comment on previous issues with 

toxicity leading to the use of truncated proteins. They also suggest the lack of effective 

colonization led to a decreased immune response (Kulkarni et al., 2010).  Additionally, 
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different nutritional attenuation strategies in Salmonella vaccine vectors have been 

produced and tested to enhance immunogenicity (Wang et al., 2013).  Mutations within 

nutrition-associated ΔaroA, ΔaroC, ΔaroD (aromatic acids and essential vitamins) along 

with Δcya and Δcrp (elimination of cyclic-AMP synthesis, the latter is arabinose 

regulated) and lipopolysaccharide (LPS) associated Δrfc (arabinose regulated O-antigen 

synthesis) have demonstrated immune enhancing properties (Wang et al., 2013). 

Alternatively, studies using S. enteritidis ΔaroA have also proven successful (Layton et 

al., 2011). Use of a strain without USDA licensure can hinder production and 

availability of a commercial vaccine.  

Future studies with Salmonella enterica serovar Typhimurium vaccine vectors 

expressing CfrA or CmeC may include vaccination of specific pathogen-free (SPF) 

chicks to eliminate the possibility of maternal antibody presence. Commercial broilers, 

however, are the best model for evaluation of Campylobacter vaccines. Future 

vaccination trials with commercial broilers may include vaccination at two weeks of age, 

typically the end of the lag phase of intestinal development and maternal antibody 

presence; however, on the poultry farm, this would allow more time for potential 

exposure and less time for generation of an optimal immune response within time of 

slaughter at 6 weeks. Moreover, as results from the minimum infective dose indicated, a 

higher dose of C. jejuni, specifically 5 x 102 CFU/chick may be needed.  In addition, 

modified Salmonella carrier strains will be evaluated for their ability to trigger specific 

and strong immune response against CfrA or CmeC.    
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Table 1: Bacterial plasmids and strains used in this study 
Plasmids or 
Strains 

Description Source or Reference 

Plasmids   
pCAGGS SV40 ori, β-actin promoter, CMV IE, 

ampR  
Dr. Miyazaki (Faculty of Medicine, 
University of Tokyo, Japan) 

pCAGGS-CfrA 2031 bp of full-length cfrA in pCAGGS 
vector 

This study 

pCAGGS-CmeC 1413 bp of full-length cmeC in pCAGGS 
vector 

This study 

pR-M02 Control vector (with EGFP) for pReceiver-
M02 

Genecopoeia 

pYA3493 Ptrc, asd, pBRori, bla SS; parent vector Dr. Roy Curtiss III (Biodesign Institute, 
Arizona State University, Tempe, AZ)   

pYA3493_tCfrA 429 bp encoding a 21-143 of cfrA protein 
in pYA3493 vector 

This study 

pYA3493_tCmeC 540 bp encoding aa 188-368 of cmeC 
protein in pYA3493 vector 

This study 

pYA3493_CfrA 2031 bp DNA encoding full length cfrA in 
pYA3493 vector 

This study 

pYA3493_CmeC 1413 bp DNA encoding full length cmeC 
in pYA3493 vector  

This study 

pBR232 TcR , lacIq Dr. Roy Curtiss III (Biodesign Institute, 
Arizona State University, Tempe, AZ)  

Strains   

JL241 C. jejuni NCTC 11168, human isolate (Gundogdu et al. 2007)  

JL1102 E.coli Top10 cells carrying 
pCAGGS_CfrA 

This study 

JL1103 E. coli Top10 cells carrying 
pCAGGS_CmeC 

This study 

JL243 E. coli JM109 containing pCmeC-NHIS  Zeng et al., 2010 

JL275 E.coli JM109 containing pCFRA-NHIS  Zeng et al., 2009  

E. coli K12 χ6097 F- araD139 Δ(proAB-lac) λ-Φ80dlacZ 
ΔM15 rpsL ΔasdA4 Δ(zhf-2::Tn10) thi-1 

(Zekarias et al., 2009;Nakayama et al., 
1998) 

JL1080 E. coli K12 χ6097 containing pBR232 
plasmid 

This study (Zekarias et al., 2009) 

S. enterica serovar 
Typhimurium 
χ8914 

ΔpabA1516 ΔpabB232 ΔasdA16; vaccine 
vector 

(Zekarias et al., 2009; Kang et al., 
2003)  

JL1070 E. coli K12 χ6097 containing pYA3493 This study 

JL1060 E. coli K12 χ6097 containing 
pYA3493_tCfrA 

This study 

JL1061 E. coli K12 χ6097 containing 
pYA3493_tCmeC 

This study 
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Table 1: Bacterial plasmids and strains used in this study (continued)  
 Strains Description Source or Reference 

JL1109 E. coli K12 χ6097 containing 
pYA3493_CfrA 

This study 

JL1110 E. coli K12 χ6097 containing 
pYA3493_CmeC 

This study 

JL1062  S. enterica serovar Typhimurium χ8914 
carrying pYA3493_tCfrA 

This study 

JL1063 S. enterica serovar Typhimurium χ8914 
carrying pYA3493_tCmeC 

This study 

JL1059  S. enterica serovar Typhimurium χ8914 
carrying empty pYA3493 expression vector 

This study 

JL1104   
(Live-CfrA) 

S. enterica serovar Typhimurium χ8914 
carrying pYA3493_CfrA 

This study 

JL1105  
(Live-CmeC) 

S. enterica serovar Typhimurium χ8914 
carrying pYA3493_CmeC 

This study 
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Table 2: Primers used in construction of the DNA vaccines 

Primer DNA Sequence (5’-3’) Product  
Size Target gene 

pCAGGS_F 
 
pCAGGS_R 

GAGCCTCTGCTAACCATGTTC 
 
TTTTGGCAGAGGGAAAAAGA 

N/A The sequence 
upstream and 
downstream of 
multiple cloning 
site 

pCAGGS_CfrA_F 
 
pCAGGS_CfrA_R 

CCGCTCGAGATGAAAAAAATATGTCTATC
AGTTTGC 
CCGCTCGAGTTAAAAGTTACCATTGATAG
AAATATACATTC 

2091 bp Full-length cfrA 

pCAGGS_CmeC_F 
 
pCAGGS_CmeC_R 

CCGCTCGAGATGAATAAAATAATTTCAAT
TAGTGCTATAGC 
CCGCTCGAGCTATTCTCTAAAAGACATAT
CTAAATTTTTTGA 

1479 bp Full-length 
cmeC  
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Table 3: Primers used in construction of full-length CfrA and CmeC Salmonella 
vectored vaccines 
Primer DNA Sequence (5’-3’) Product  

Size 
Target gene 

pYA3493_F 
 
pYA3493_R 

CAATTAATCCGGCTCGT 
 
CGCTTCTGCGTTCTGATTTA 

N/A The sequence 
upstream and 
downstream of 
multiple cloning 
site 

pYA3493_CfrA_F 
(EcoRI) 
pYA3493_CfrA_R 
(SalI) 

CCGGAATTCCAAAATGTAGAACTAGA
TAGCTCAATCG 
ACGCGTCGACTTAAAAGTTACCATTG
ATAGAAA TATACATTC 

2025 bp Full-length cfrA 
without signal 
peptide 

pYA3493_CmeC_F 
(EcoRI) 
pYA3493_CmeC_R 
(SalI) 

CCGGAATTCCCAAATTTAAATATTCC
CGAAGC 

 
ACGCGTCGACCTATTCTCTAAAAGAC
ATATCTA AATTTTTTGA 
 

1419 bp Full-length cmeC 
without signal 
peptide 

pYA3493_CfrA_F 
(EcoRI) 
pYA3493_CfrA_R 
(EcoRI) 

CCGGAATTCCAAAATGTAGAACTAGA
TAGCTCAATCG 
CCGGAATTCTTAAAAGTTACCATTGA
TAGAAATATACATTC 

2025 bp Full-length cfrA 
without signal 
peptide 

pYA3493_CmeC_F 
(EcoRI) 
pYA3493_CmeC_R 
(EcoRI) 

CCGGAATTCCCAAATTTAAATATTCC
CGAAGC 

 
CCGGAATTCCTATTCTCTAAAAGACA
TATCTAAATTTTTTGA 

1419 bp Full-length cmeC 
without signal 
peptide 

pYA3493_CfrA_F 
(EcoRI) 
pYA3493_CfrA_R 
(PstI) 

CCGGAATTCCAAAATGTAGAACTAGA
TAGCTCAATCG 
 
AAACTGCAGTTATAAAGATGTCTCTT
CTTTTAAATCAGGA 

2025 bp Full-length cfrA 
without signal 
peptidc 

pYA3493_CmeC_F 
(EcoRI) 
pYA3493_CmeC_R 
(PstI) 

CCGGAATTCCCAAATTTAAATATTCC
CGAAGC 

 
AAACTGCAGTTACTTGGCTAAATTTA
CATTTTGGTAAA 

1419 bp Full-length cmeC 
without signal 
peptide 
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Table 4: Primers used in construction of truncated CfrA and CmeC Salmonella 
vectored vaccines 
Primer DNA Sequence (5’-3’) Product  

Size 
Target product 

pYA3493_CfrA_F 
 
CfrA_B1_R 

CCGGAATTCCAAAATGTAGAACTAGAT
AGCTCAATCG 
 
AAACTGCAGTTACCATTTATCACTTAC
TTTTTTGGTAATG 
 

429 bp cfrA after signal 
peptide to first beta 
loop 

pYA3493_CfrA_F 
 
CfrA_B7_R 

CCGGAATTCCAAAATGTAGAACTAGAT
AGCTCAATCG 
 
AAACTGCAGTTAATTTTCATAAACACC
CTCATGACTT 

870 bp cfrA plug domain 
and loops 4-6 

CfrA_B3_F 
 
 
CfrA_B14_R 

CCGGAATTCTTGATGAATGACAAATTG
GGT 
 
AAACTGCAGTTATAAAGATGTCTCTTC
TTTTAAATCAGGA 

870 bp Middle region of 
cfrA 

CfrA_B14_F 
 
 
CfrA_C_R 

CCGGAATTCGAGACATCTTTAAACTAT
GAAATAGCAGC 
 
AAACTGCAGTTAAAAGTTACCATTGAT
AGAAATATACATTC 

657 bp Amplify the C-
terminal region of 
cfrA 

pYA3493_CmeC_F 
 
CmeC_TM2_R 

CCGGAATTCGCTTATGAAAATGAAAAT
GCTCTT 
 
AAACTGCAGTTACTTGGCTAAATTTAC
ATTTTGGTAAA 

516 bp Through the 2nd 
transmembrane 
region of cmeC 

CmeC_TM2_F 
 
 
CmeC_TM3_R 

CGGGAATTCGCTTATGAAAATGAAAA
TGCTCTT 
AAACTGCAGTTACTTGGCTAAATTTAC
ATTTTGGTAAA 

540 bp 2nd transmembrane 
portion through 3rd 
transmembrane of 
cmeC 

CmeC_TM3_F 
 
 
CmeC_C_R 

CCGGAATTCAATTTAGCCAAGCTTAAT
AAAGATGAA 
 
AAACTGCAGCTATTCTCTAAAAGACAT
ACTAAATTTTTTGA 

390 bp C-terminal region  
of cmeC 
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Table 5: Evaluation of the live Salmonella-vectored vaccines in chickens.   

Group Number of 
Chickens Immunization at 7d Sample collection 

1 20 200 µL PBS 

Blood: 7d, 18d, 28d, 38d; 
Intestinal lavage: 18d, 

28d, 38d; Spleen: 18d, 28d, 
38d; Liver: 18d, 28d, 38d 

2 20 200 µL vector control 
(χ8914/pYA3493, JL1059) 

3 20 200 µL Live_CfrA 
(JL1104) 

4 20 200 µL Live_CmeC 
(JL1105) 
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Table 6: Recovery of S. Typhimurium vaccine strains from euthanized chickens at 
different time points.  
Sampling site/ 
Group 

Number of positive chickens (5/group/time point) 
18 d 28 d 38 d 

Cecum 

Group 2 2 0 0 
Group 3 1 2 0 
Group 4 0 0 0 
Spleen 
Group 2 1 0 0 
Group 3 2 1 0 
Group 4 0 1 0 

Liver 

Group 2 0 0 0 
Group 3 0 1 0 
Group 4 0 0 0 
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Figure 1-Plasmid vectors used in this study. (A) DNA vaccine parental vector. 
Eukaryotic expression vector, pCAGGS contains chicken β-actin promoter, SV40 origin 
of replication, the CMV-immediate early enhancer (CMV-IE) and the ampicillin 
resistance cassette. (B) Salmonella-vectored vaccine parental vector. Expression vector 
pYA3493 harbors the Ptrc promoter upstream of the beta-lactamase signal peptide and 
also contains the asdA gene for selection. Restriction sites used in the final cloning 
procedures are encircled.  
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Figure 2- Construction of DNA Vaccines. (A). Molecular Cloning. Std is a 1kb 
molecular marker (Phenix, as pictured on the left), lane 1 is the parental, undigested 
pCAGGS, lane 2 is XhoI digested pCAGGS, lane 3 is XhoI digested and 
dephosphorylated pCAGGS, lane 4 is XhoI digested CfrA PCR product, lane 5 is XhoI 
digested CmeC PCR product. (B) Screening for transformants expressing CmeC. PCR 
screening for identification of the transformants bearing pCAGGS_CmeC with correct 
orientation. Presence of the positive PCR band (~1500 bp) indicates the desired construct 
with correct orientation of inserted gene. (C). Screening for transformants expressing 
CfrA. PCR screening for identification of the transformants bearing pCAGGS_CfrA with 
correct orientation of inserted cfrA gene. (D). Profile of extracted plasmids. Lane 1: 
pCAGGS; Lane 2: plasmid from a false positive transformant for pCAGGS_CfrA 
(negative PCR in panel C), Lane 3: pCAGGS_CfrA (positive PCR in panel C); Lane 4: 
plasmid from a false positive transformant for pCAGGS-CmeC (negative PCR in panel 
B); and Lanes 6 & 7: pCAGGS_CmeC (positive PCR in panel B).  
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Figure 3.  Expression of CfrA and CmeC from the corresponding DNA vaccine in 
transfected eukaryotic cells. (A). Fluorescent microscopy of control transfected cells. 
NIH 3T3-L1 cells transfected with eGFP expressing plasmid. (B). Immunoblot analysis  
of CfrA expression by pCAGGS_CfrA in HEK-293 cells. Lane 1:HEK-293 cells (negative 
control); Lane 2: the HEK-293 cells transfected with pCAGGS (negative control); Lane 
3:  the HEK-293 cells transfected with pCAGGS_CfrA. (C). Immunoblot analysis of 
CmeC expression by pCAGGS_CmeC.  Lane 1:HEK-293 cells; Lane 2: the HEK-293 
cells transfected with pCAGGS; Lane 3: the pCAGGS_CmeC transfected HEK-293 cells. 
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Figure 4- SDS-PAGE analysis of purified recombinant proteins  (A). Production of 
rCfrA. Lane 1: whole cell lysate of non-induced E. coli (JL275); Lane 2: whole cell lysate 
of IPTG-induced E. coli; Lane 3: rCfrA purified by Ni-NTA affinity chromatography. 
(B). Production of rCmeC. Lane 1: whole cell lysate of noninduced E. coli (JL243); Lane 
2, whole cell lysate of induced E. coli; Lane 3: rCmeC purified by Ni-NTA affinity 
chromatography. 
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Figure 5- SEM of Chitosan/Pluronic-F127-protein. (A). Chitosan/Pluronic-F127-PBS 
control. (B).1:1 Chitosan/Pluronic-F127-CfrA (C). 3:1 Chitosan/Pluronic-F127-CfrA. 
(D). measurement of Chitosan-CfrA microsphere. Magnification at 5,000Χ (panels A-C) 
or 10,000X (panel D).  
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Figure 6- SEM of chitosan or chitosan/ Pluronic F127 with tripolyphosphate (TPP). 
(A) CM-TPP showing crystallization of the surface, Magnification at 5,000X. (B),(C) 
The CM/Pluronic F127-TPP were shown with magnification at 700X (Panel B) and 
2,000X (Panel C). (D) Surface of CM/Pluronic F127-TPP showing crystallization, 
Magnification at 5,000X 
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Figure 7- Construction of S. Typhimurium vaccines expressing full-length CfrA or 
CmeC. (A) Molecular cloning. Lane 1: EcoRI/SalI digested pYA3493; Lane 2: digested 
cmeC; Lane 3: digested cfrA. (B) Screening for transformants. Lane 1: original amplified 
cfrA PCR product control; remaining lanes are negative for cfrA insert. (C) Profile of 
extracted plasmids. Lane 1: parental pYA3493; Lanes 2-5: screened plasmids showing 
same size (negative). (D) PCR screening of birdirectional cloning. The representative 
figure here shows cfrA was inserted only in the reverse orientation in all selected 
tranformants. When using specific PCR primers for desired forward orientation, all were 
negative (figure not shown). 
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Figure 8- Construction of S. Typhimurium vaccines expressing truncated proteins. 
(A) PCR amplification. Truncated CfrA and truncated CmeC products. (B) PCR 
screening of transformants. All randomly selected colonies contain insert. (C) Profile of 
extracted plasmids. The parental plasmid pYA3493 (Lane 1) with the plasmid bearing 
truncated cfrA (Lane 2-4) and truncated cmeC (Lanes 5-8).  
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Figure 9 -Expression of truncated CfrA and CmeC in the E. coli and S. 
Typhimurium constructs. (A) Immunoblot analysis of truncated CfrA. Lanes 1 & 3: 
empty vector pYA3493 in E. coli and S. enterica serovar Typhimurium, respectively; 
Lanes 2 & 4: pYA3493_tCfrA within E. coli and S. Typhimurium (JL1062), respectively. 
(B) Immunoblot analysis of truncated CmeC. Lanes 1 & 3: empty vector in E.coli and S. 
Typhimurium, respectively; Lanes 2 & 4: pYA3493_tCmeC within E.coli and S. 
Typhimurium (JL1063), respectively.  
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Figure 10- Construction of S. Typhimurium vaccines expressing full-length CfrA or 
CmeC with optimized molecular cloning strategy. (A) Amplified PCR products with 
EcoRI and PstI restriction sites.  Lane 1: amplified and treated cfrA; Lane 2: amplified 
and treated cmeC (B) Molecular cloning, Lane 1:digested cmeC; Lane 2: cfrA; Lane 3: 
pBR232; Lanes 4 & 5: pYA3493. (C) Profile of extracted plasmids. Lane 1: parental 
pYA3493; Lane 2:pBR232; Lanes 4 & 5: plasmids extracted from transformed 
pYA3493_CfrA colonies; Lanes 6 & 7: plasmids extracted from transformed 
pYA3493_CmeC colonies; Lane 3: no sample loaded.  
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Figure 11-Expression of full-length CfrA and CmeC in the S. Typhimurium vaccine 
(A) Immunoblot analysis for full-length CfrA production. Lane 1: the host starin 
containing empty vector pYA3493; Lane 2: the host strain containing pYA3493_CfrA 
(JL1104). (B) Immunoblot analysis for full-length CmeC production. Lane 1: the host 
strain containing empty vector pYA3493; Lane 2: the host strain containing 
pYA3493_CmeC (JL1105).  
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Figure 12- Systemic Immune Responses to S. Typhimurium.  Indirect ELISA analysis 
of systemic antibody level to the S. enterica serovar Typhimurium strain membrane. 
Serum was collected prior to oral vaccination (7 d), 18 d, 28 d, and 38 d. Group 1:PBS 
control; Group 2: the empty vector control; Group 3:Live-CfrA; Group 4: Live-CmeC. 
Error bars represent standard deviation.  
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Figure 13. Mucosal immune response to S. Typhimurium. Indirect ELISA analysis of 
mucosal antibody level to the S. enterica serovar Typhimurium strain membrane. 
Intestinal lavage was collected at 18 d, 28 d, and 38 d. Group 1: PBS; Group 2: the empty 
vector control; Group 3:Live-CfrA; Group 4: Live-CmeC. Error bars represent standard 
deviation. 
  

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

18d 28d 38d 

A
ve

. A
bs

or
ba

nc
e 

40
5 

nm
. 

sIgA  

Group 1 

Group 2 

Group 3 

Group 4 

Age of chickens (days) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

18d 28d 38d 

A
ve

. A
bs

or
ba

nc
e 

40
5 

nm
. 

sIgG  

Group 1 

Group 2 

Group 3 

Group 4 

Age of chickens (days) 



 96 

 

 

Figure 14- Systemic Immune response specific to CfrA. Indirect ELISA analysis of 
systemic antibody level to the CfrA. Serum was collected prior to vaccination (7 d), 18 d, 
28 d, and 38 d. Group 1: PBS; Group 2: pYA3493, the empty vector control; Group 
3:Live-CfrA; Group 4: Live-CmeC. Error bars represent standard deviation. 
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Figure 15- Mucosal immune response specific to CfrA. Indirect ELISA analysis of 
mucosal antibody level to the CfrA. Intestinal lavage was collected at 18 d, 28 d, and 38 
d. Group 1: PBS; Group 2: the empty vector control; Group 3:Live-CfrA; Group 4: Live-
CmeC. Error bars represent standard deviation. 
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Figure 16- Systemic immune response specific to CmeC. Indirect ELISA analysis of 
systemic antibodies to the CmeC. Serum was collected prior to vaccination (7 d), 18 d, 28 
d, and 38 d. Group 1: PBS; Group 2: the empty vector control; Group 3:Live-CfrA; 
Group 4: Live-CmeC. Error bars represent standard deviation. 
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Figure 17- Mucosal immune response Specific to CmeC. Indirect ELISA analysis of 
mucosal antibody levelto the CfrA. Intestinal lavage was collected at 18 d, 28 d, and 38 d. 
Group 1: PBS; Group 2: the empty vector control; Group 3:Live-CfrA; Group 4: Live-
CmeC. Error bars represent standard deviation. 
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Figure 18- Immunoblotting demonstrating membrane localization of CfrA in 
Salmonella-vectored vaccines. Membrane fractions were extracted and subjected 
to immunoblotting using CfrA-specific antibodies. Lane 1: the host strain 
containing pYA3493 (negative control); Lane 2: the host strain containing 
pYA3493_CfrA (Live-CfrA, full-length CfrA); Lane 3: the host strain containing 
pYA3493_tCfrA (truncated CfrA). 
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Figure 19- Immunoblotting demonstrating membrane localization of CmeC in 
Salmonella-vectored vaccines.  S. Typhimurium carrying pYA3493_CmeC 
(Live-CmeC) or pYA3493_tCmeC. Lane 1: the host strain containing pYA3493 
(negative control); Lane 2: the host strain containing pYA3493_CmeC (Live-
CmeC, full-length CmeC); Lane 3: the host strain containing pYA3493_tCmeC 
(truncated CmeC).  
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