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Abstract 

Mali is a country in sub–Saharan Africa where monitoring of cropped land area 

would greatly benefit food security initiatives and aid organizations. More importantly 

village-scale studies on cropped land are fundamental to making a difference in the way 

we look at cropped land area and food availability in this region of the world. Using 

Landsat surface reflectance imagery and World View-2 derived labeled data, this study 

focuses on accuracy of supervised classification methods while addressing various levels 

of scale. Several classification methods are taken into account to determine the best 

method possible to produce cropped area estimates using these data. The relationship 

between classification and scale was addressed by taking into account how distance and 

proximity affect accuracy. Accuracy is measured by kappa coefficients, and results 

among the different methods vary. Kappa coefficients generated are very low and 

results suggest that estimates between labels are more accurate than estimates far from 

labels.  
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Chapter 1 

Introduction 
 

Mali is an arid to semi-arid country in sub-Saharan Africa that suffers from extreme 

environmental, political, and economic stress and experiences severe food security hazards. In 

this and other sub-Saharan countries, the identification and monitoring of cropland is crucial to 

the international efforts aimed at monitoring food availability and preparing for food shortages. 

Furthermore, land cover classification is a valuable resource for assessing the extent of 

environmental degradation and its effect on agricultural productivity. The use of satellite-based 

land cover classifications is a safe and low-cost method for assessing changes in agricultural 

development and degradation. The accurate and rapid evaluation of agriculturally productive 

land is vital to the improvement of land use practices and food security in developing countries 

(Barrett, 2010; Grace et al., 2012). 

1.1 Research Question and Objectives 

Previous land cover classification studies in sub-Saharan Africa have been performed using 

coarse resolution MODIS or AVHRR imagery (Lobel, 2004; Wardlow, 2007; Wessels, 2004; Xiao, 

2003). However, the concern is that the granularity of the agriculture in this region of the world 

is too fine to be detected by coarse resolution imagery. The goal of this research is to determine 

whether or not accurate cropped land classifications can be established using WorldView-2 

(WV2) and Landsat data. Given the fine granularity of subsistence cropland in sub-Saharan 

Africa, I focus this thesis on village-scale cropland monitoring while also asking: Can we 

produce an accurate classification using 30-meter Landsat surface reflectance data that are 
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trained using labeled data from WV2 data? How will classification accuracy vary with scale? 

How far from labels can we accurately classify data? Can we be confident about classifications 

far from labels, and if so, how far? Finally, can we be confident in classifications between labels? 

1.2 Background and Historical Methods 

While remote sensing tools for land cover classification are important, the historical 

standard for estimating cropped area at large scales is not based on remote sensing data 

techniques, but on the statistical technique of area-frame studies. In area-frame sampling, an 

area is equally divided into a grid of squares and (agricultural) information is collected from 

each using certain field survey techniques (Tsiligirides, 1998). Many agricultural assessments 

have previously been conducted using area-frame sampling (Fecso, 1985; Pradhan, 2001; 

Tsiligirides, 1998).  These field-based survey methods can take up a great deal of time and 

resources.  Area-frame sampling is considered most effective when considering a 15–20 year 

time frame, which adds additional expense to already pricey techniques (Pradhan, 2001; 

Tsiligirides, 1998).  This makes area-frame studies less appropriate for producing timely and 

low cost crop area estimates.  

1.3 Physical Environment in Mali 

One of the chief concerns in this study is that classification accuracy will depend not only on 

the distance from the training data, but also on the physical environment, and particularly on 

the geographic scale of agriculture. Mali represents an interesting case study in this regard 

because it contains a strong physical gradient. Herrmann et al. (2005) described the 

environment in northern Mali (approximately 16° N to 24° N) as part of the Saharan desert, 
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with southern Mali (approximately 10° N to 16° N) ranging from the arid to semiarid zone 

below the Sahara desert, to the humid-subtropical savannas in the south. Geographical regions 

based on rainfall time series data include: Sahelo-Sahara (approximately 18° N to 25° N), Sahel 

(approximately 13–15° N to 18° N), and Soudan (approximately 10° N to 15° N) (Nicholson, 

2001). The 2005 Vulnerability Profile of Mali (Simonsson, 2005) summarized that precipitation 

in Mali varies greatly and considers the existence of four “eco-climate” regions: Sahara, 

Sahelian, Sudanian, and Sudanian–Guinean, with rainfall throughout these regions averaging 

from 100 to 1,700 mm/year. To further illustrate the great range in climatic variability in Mali, 

climate profiles generated for each province by The World Bank characterize the northern-most 

province of Timbuktu as having maximum temperatures in June of approximately 44 °C, 

minimum temperatures in January of approximately 11 °C, and maximum rainfall averages 

reaching 27 mm in August. Conversely, the southern-most province of Mali, Sikasso, has 

maximum temperatures in March and April of approximately 37 °C, minimum temperatures in 

December and January of approximately 15 °C, and maximum rainfall averages reaching 282 

mm in August (WorldBank 2013).  

The size and climatic variability of Mali allow it to have very distinct vegetative and 

productive zones that are attributed to specific livelihood regions in Mali. Productive regions 

are influenced by both human–induced and environmental factors. The severe level of 

desertification of the Sahel region of Mali since at least the 1980s (Nicholson, 2001) is an 

example of these contributing factors. Following a prominent north-south aridity gradient 

pattern, livelihood regions in Mali range from nomadic pastoralism in the far northern region 

just south of the Sahara desert, to herding, to increasingly rain dependent crops as you travel 
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further south. The majority of the population in Mali depends heavily on agro-pastoral 

resources, however only 25% of Mali is capable of supporting such practices (Simonsson, 2005). 

1.4 Brief Review of Classification Methods 

Classification is a method of extracting meaningful information from data, with land 

cover/land use classification of multispectral imagery being one of the most common 

applications (Jensen, 2004). By combining the pixel values from multispectral imagery with a 

priori knowledge about how measured pixel characteristics correspond to land cover types, each 

individual pixel of a given study area can be categorized into a specific land cover class 

(Campbell and Wynne, 2011).  Methods that use this a priori knowledge are called “supervised 

classification,” as distinct from “unsupervised classification methods,” which attempt to make 

classifications without a priori knowledge.  Typically, unclassified methods operate by 

identifying “natural clusters” of data that share similar multispectral values and are therefore 

easily divided into classes with little to no additional knowledge (Jones and Vaughan, 2010).  

Although supervised classification traditionally requires a priori knowledge of the region 

being classified, at a near countrywide scale, knowledge of the entire region to be classified is an 

impractical requirement. A remedy for the problem of large-scale supervised classification may 

include the incorporation of training data such as those used in this analysis.  Such training data 

are used in to create this a priori knowledge about the relationship between pixel value and land 

cover type. 
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1.5 Resolution 

Despite the high historical accuracy of area-frame studies for agricultural assessment, 

remotely sensed data and their classification are regularly used to reduce the costs of land cover 

estimation (Fecso et al., 1985; Hammond, 1975). These studies have used various resolutions of 

remotely sensed data for cropped area estimation and monitoring, including those using low 

resolution (greater than 100 m) imagery such as AVHRR (NOAA) and MODIS (ASTER or 

TERRA), medium resolution (between 5 m and 100 m) imagery such as Landsat MSS, TM, and 

ETM+ and SPOT 1, 2, 3 and 4 (Frolking et al., 1999; Gonzalez-Alonso et al., 1997; MacDonald et 

al., 1975; Pax-Lenney and Woodcock, 1997; Richards and Jia, 1999) and high resolution (less 

than 5 m) imagery such as WorldView-2, IKONOS, and SPOT 5, 6 and 7 (Grace et al., 2012; 

Husak et al., 2008; Launay and Guerif, 2005; Ozdogan and Woodcock, 2006; Pradhan, 2001). 

Comparisons of remote sensing to ground-based methods note that the remote sensing-based 

crop estimate techniques tend to be both less expensive and time consuming (Frolking et al., 

1999; Pradhan, 2001; Tsiligirides, 1998). Some of these studies also note that the estimates 

resulting from these combinations of ground-based area-frame techniques and remote sensing 

techniques give higher degrees of accuracy than either as stand alone methods (Gonzalez-

Alonso et al., 1997; Tsiligirides, 1998).  Studies that incorporate the use of low to medium 

resolution in their assessments of agriculture using Landsat MSS (MacDonald et al., 1975), TM 

(Gonzalez-Alonso et al., 1997; Pax-Lenney et al., 1996; Shalaby and Tateishi, 2007; Tsiligirides, 

1998), and ETM+ (Lobel and Asnew, 2004; Lobell et al., 2003; Marshall et al., 2011; Shalaby and 

Tateishi, 2007) are common. Some even attempted to determine crop distribution at a finer local 

or regional scale (Lobell, 2003 et al.; Moulin et al., 1998; Ozdogan and Asnew, 2006). However, 
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many more studies apply coarse resolution MODIS (Lobel and Asnew, 2004; Lobell et al., 2003; 

Wardlow et al., 2007; Yuping et al., 2008) or AVHRR (Frolking et al., 1999; Tottrup and 

Rasmussen, 2004; Xiao et al., 2003) to conduct cropped land classification at the country-wide 

scale. Lobell and Asner (2004) and Launay and Guerif (2005), among others, even combined 

different resolutions in their studies, with Lobell and Asner using an unmixing technique with 

Landsat ETM+ and MODIS, and Launay and Guerif using a combination of SPOT and aerial 

imagery.  

1.6 Accuracy and Uncertainty 

Classification methods for crop estimates come in many different forms and there are 

degrees of uncertainty exist for each. Some studies compared these different methods, or at least 

specific aspects of different models, in an effort to understand the uncertainties associated with 

their crop estimates (Lobell et al., 2003; Ozdogan and Woodcock, 2006; Tao et al., 2005; Xiao et 

al., 2003). Many more studies added satellite-borne data to existing crop models to increase 

their accuracy and decrease uncertainty (Frolking et al., 1999; Launay and Guerif, 2005; Moulin 

et al., 1998; Pradhan, 2001; Yuping et al., 2008). Many methods are used to apply imagery 

resources to agricultural studies. The Maximum Likelihood classification technique stands out, 

being mentioned frequently as both most accurate and most commonly used (Chen et al., 2008; 

Shalaby and Tateishi, 2007; Wessels et al., 2004). To increase accuracy and decrease uncertainty, 

many studies used various multi-temporal techniques, or time-series techniques, to produce 

crop estimates (Gonzalez-Alonso et al., 1997; Lobel and Asnew, 2004; Pax-Lenney et al., 1996; 

Shalaby and Tateishi, 2007). 
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Of central importance to this study is the relationship between the geographic scale (i.e. 

resolution) of the data and the geographic scale of cropped and uncropped lands.  Land cover 

classification is particularly difficult in developing countries because the geographic scale of the 

subsistence agriculture is finer than the geographic scale of a MODIS pixel (Ozdogan and 

Woodcock, 2006; Pax-Lenney et al., 1997). In study regions where subsistence agriculture is the 

norm, some substantial errors of inclusion and exclusion in the classification process can arise. 

Omission and commission errors lead to over- or under-estimation of cropped area (Marshall et 

al., 2011; Ozdogan and Woodcock, 2006). This problem occurs because subsistence agriculture 

often exhibits a checkerboard pattern with cropped fields interspersed with fallow lands 

(Ozdogan and Woodcock, 2006). As such, agricultural land delineation can be difficult with 

low–resolution imagery such as 250- or 500-meter MODIS imagery, from which most national 

scale land cover classifications are conducted (Lobel and Asner, 2004). This study will evaluate 

the use of 30–meter Landsat TM imagery combined with relatively cheap training point data 

derived from WV2 imagery in place of more expensive ground-based truth measurement.  

While WV2 data have very high resolution (2 m for multispectral, and 0.5 m for panchromatic), 

enabling a more precise detection of subsistence croplands, they introduce a new problem, 

owing to the relatively sparse acquisition of images. Usually, imagery is to sparse to cover an 

entire country within a growing season. This thesis will explore the accuracy of cropped area 

estimates that combine WV2 images with Landsat imagery, and in particular, the accuracy of 

producing estimates far from the WV2 images.  
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Chapter 2 

Literature Review 
 

Many different methods of classification have been developed over the years from 

multiple disciplines. Scientific ideologies, such as those of Charles Booth in the early 20th 

century, and that of Robert Park and Ernest Burgess in the 1920s, initiated and advocated for the 

use of clustering in scientific research (Troy, 2008). Cluster analysis is a method of grouping 

variables of interest into classes based on similarity (Gan et al., 2007). In cases where 

assumptions are ill-advised and little background or preliminary knowledge have been 

obtained, clustering is an especially appropriate method for determining and explaining 

relationships between variables (Jain et al., 1999). Cluster analysis is a vital element to “data 

mining,” which is a method for gathering information from large data sets (Gan et al., 2007).  

Trends are emerging for using clustering in image analysis, including information retrieval, 

processing, and pattern recognition. Clustering techniques are used by many different 

disciplines and research communities including geography, geology, biology, psychiatry, 

psychology, archaeology, and even marketing (Jain et al., 1999). 

Jain et al. (1999) presented an array of different methods for cluster analysis based on 

hierarchical and partitional techniques. Techniques related to algorithmic structure and 

operation (agglomerative and divisive), those related to the sequential or simultaneous use of 

features in the clustering processes (polythetic and monothetic), and methods such as hard 

versus fuzzy clustering, deterministic, stochastic, incremental and non–incremental make–up 

the complexity of Jain et al.’s “taxonomy”. 
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2.1 Classification Methods 

Classification methods are often used to derive information from satellite imagery. The 

information obtained from a satellite can come in the form of spectral bands, the combination of 

which creates a digital image over an area. Each spectral band is made up of thousands of 

individual pixels which hold numerical information about that pixel and the land type it 

represents. A single digital image pixel can be associated with multiple bands. By comparing 

cross-band pixels, especially when associated with known pixels, one can classify all pixels 

within a digital image into specific regions or groups known as “classes” (Campbell and 

Wynne, 2011). A class is a compilation of patterns whose spatial distribution is determined by 

probability density (Jain et al., 1999). The division and reassignment of heterogeneous land 

cover types into homogenous classes is known as classification.  

Detection, recognition, and identification are three of the most fundamental processes in 

classification of imagery. Detection refers to decision-making processes such as determining the 

“presence or absence” of landscape features. Recognition concerns holding enough information 

about detected features to allow broad categorization. Specificity of classes occurs once 

confidence is high enough to confirm identification (Campbell and Wynne, 2011). Though 

classification is often used for the delineation of ground cover into class types, the value of 

using these classes to determine land cover areas (i.e. determining quantities for hectares of 

agricultural land cover) is questionable unless conducted through computer interpretation of a 

digital image in which pixel level analyses can be carried out (Richards and Jia, 1999). 

Unsupervised, or unlabeled, classification of variables into meaningful homogenous groups is a 

method of cluster analysis (Gan et al., 2007; Jain et al., 1999). One of the primary differences 
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between unsupervised and supervised, or labeled vs. unlabeled, analyses is that supervised 

analysis is based on categorical labels derived specifically from the data. (Campbell and Wynne, 

2011; Jain et al., 1999). 

2.2 Clustering 

Carmichael et al. (1968) demonstrated the importance of “finding natural clusters” when 

performing cluster analyses. Recognition of natural clusters expedites understanding the 

relationships between cluster members in that information can be extrapolated from these 

“mutually exclusive” subdivisions of the data to make generalizations and predictions based on 

their un-relatedness to non-members (Carmichael et al., 1968). Implementation of clustering 

follows the condition that data points must exist in a continuous region of space with a 

relatively dense population compared to the surrounding continuous regions of space 

(Carmichael et al., 1968). 

2.3 Unsupervised Classification 

 Unsupervised classification is related to the idea of “natural groups” or “natural 

clusters” within an image being grouped together based strictly on spectral similarities within 

the data (Campbell and Wynne, 2011). Minimal analyst input is required apart from inputting 

the number of classes or the minimum and maximum to be assigned to the data. The 

fundamentals of the process itself involve the separation of values into the specified number of 

classes, or clusters, based on some measure of distance, such as Euclidean distance (Jones and 

Vaughan, 2010). Due to the limited classification-analyst interaction little opportunity exists for 

analyst bias to increase error in the classification prior to interpretation of the results (Campbell 
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and Wynne, 2011). Some examples of unsupervised methods of classification include k–means 

and maximum likelihood classification (Jones and Vaughan, 2010).  One of the primary 

limitations to unsupervised classification is that the classification is based on natural 

relationships between spectral values. Often a significant difference will be found between the 

ideal classes of interest to the interpreter and the classes actually created by the classification. 

The analyst has less control over the resultant classes in unsupervised classification than in the 

case of supervised classification, as there are no training fields or informational classes involved 

(Campbell and Wynne, 2011). 

Classification of pixels based on spectral values only becomes significant when 

correlated with informational classes. Informational classes are determined by the analyst, or 

whoever the classification is being produced for.  When a match between spectral and 

information classes arises, it is common for them to be assigned based on recognizable patterns 

in an image. Accurate assignment of classes can be inhibited by the occurrence of mixed pixels, 

in which case identification and knowledge from the analyst is heavily relied upon (Campbell 

and Wynne, 2011). An example of a simple method for the allocation of informational classes in 

a multispectral image is by plotting spectral image bands against each other (i.e. x-axis being 

band 4, y-axis being band 7, a simple example) using brightness values of pixels. This 

demarcates landcover types based upon textural, moisture, soil, and topographic differences 

(Richards and Jia, 1999). The resultant plot can be referred to as a multispectral space or pattern 

space. These plots aid in the discrimination between landcover types, pattern recognition, and 

in the assignment of informational classes (Richards and Jia, 1999). Groups of pixels that have 

been assigned to informational classes can then be used as training fields. Training fields that 
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clearly represent the spectral values of the region and are suitably distributed without can be 

applied to analysis such as supervised classification. Mixed pixels would not be ideally 

included in a training field (Campbell and Wynne, 2011). 

2.4 Supervised Classification 

Supervised classification is the classification of pixels using training data (Campbell and 

Wynne, 2011). The availability of accurate training fields is essential to supervised classification. 

Supervised classification is especially suitable in such cases where a specific product is expected 

from the analysis, or when conducting comparisons of landscapes that have different temporal 

or spatial identities (bi-image comparison, time series, nearest neighbor, etc.) (Campbell and 

Wynne, 2011). Limitations and ineffectiveness primarily arise in cases where training fields are 

ineptly generated, usually through the inclusion of mixed pixels or shadows (Campbell and 

Wynne, 2011).  A primary aspect of supervised classification is that the analyst has sufficient 

knowledge of the area in which the study is being conducted. The added control in the hands of 

the analyst adds some degree of detail or precision to the assessment, but can also introduce 

unwanted bias due to human subjectivity and opinion (Guo and Mason, 2009).  

ERDAS IMAGINE® is a versatile and powerful software package for creating 

information from geospatial data (Intergraph Corporation ©, 2013). IMAGINE’s supervised 

classification function has a maximum likelihood option that incorporates a Bayesian classifier 

that takes added variability within a single class into account: 

D = ln(ac) – [0.5 ln(|Covc|)] – [0.5 (X–Mc)T (Covc–1) (X–Mc)] 

D  = weighted distance (likelihood) 

C  = a particular class 
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X  = measurement vector of the candidate pixel 

Mc  = mean vector of the sample of class c 

ac  = percent probability that any candidate pixel is a member 

     of class c (defaults to 1.0, or is entered from a priori 

     knowledge) 

Covc  = covariance matrix of the pixels in the sample of class c 

|Covc|  = determinant of Covc (matrix algebra) 

Covc–1  = inverse of Covc (matrix algebra) 

ln  = natural logarithm function 

T  = transposition function (matrix algebra) 

 

The ERDAS IMAGINE® supervised classification function does not allow the inclusion of point 

data into the process. Training samples are traditionally acquired by creating a polygon over a 

specific area of the image that represents a class type. ERDAS IMAGINE® refers to one of these 

delineated class areas as an AOI, “area of interest” (Intergraph Corporation ©, 2013). As such, I 

decided that a polygon file representing the data affiliated with each training point should be 

created. The prime method for creating the AOI training samples from point data was to create 

a buffer region around each training point.  

Guo and Mason (2009) discussed a hybrid classification approach, one in which the 

initial step was to conduct an unsupervised classification where classes were assigned based on 

supplementary data, such as aerial imagery or ground truth data. Statistical results of the initial 

classification were then used as training data, and the image was reclassified using a supervised 

method. In terms of accuracy, the subjectivity of the analyst must be considered with ground 

truth and aerial data. Human observation is variable, and its impracticable to expect to measure 

and extract the exact truth from the field or aerial data when opinions vary with each human 

observer (Adams and Gillespie, 2006). 
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Classification and regression tree analysis (CART) is another method applied to the 

classification of digital imagery. Defined training classes or fields, such as those required for 

supervised classification, are also necessary for CART. However, ancillary data are the primary 

source for the parameters required for CART, so less prior knowledge of the study site and 

variables is needed for the analysis. Ancillary data aid in the delineation of relevant data to put 

to use to the successful classification of the image. Problems associated with the CART method 

include the fact that pixels are frequently mislabeled due the requirement that they can only be 

appointed to a single discrete class. This can be remedied by using a fuzzy clustering method. 

Where other classification methods strictly require the assignment of pixels into specific classes 

like forest or water, fuzzy clustering allows a single pixel to be classified into more than one 

class based on its unsuitability for any single class. Fuzzy clustering is also an obvious solution 

that can be applied to the problem of mixed pixels. Fuzzy clustering is based on the idea of 

membership functions. Membership functions deal with relationships between data and classes. 

In regards to remote sensing, brightness values and spectral characteristics are the relationship 

variables for a membership function. For example, fuzzy classification takes a pixel and gives it 

a membership grade for each class between 0 and 1 (nonmembership and membership) instead 

of simply classifying a pixel as forest or water. This method specifies “partial membership” by 

assigning a ratio to the pixel (water = 0.3, forest = 0.7) where the total value of the pixel is equal 

to 1 (Campbell and Wynne, 2011). 

Classification can also be applied to studies with interests in time series and/or change 

detection. Many different techniques can be applied in image comparison. Comparisons across 

multiple bands are possible but can add a significant level of difficulty to analysis of the change. 
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Easier interpretation can be achieved by using images that have undergone some method of 

band combination, such as in vegetation indices (Campbell and Wynne, 2011).  
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Chapter 3 

Accuracy of Supervised Classification of Cropland in sub-Saharan Africa 

 

3.1 Introduction 

Satellite-based land cover classification is a safe and low-cost method to assess changes 

in agricultural development and degradation. The accurate and rapid evaluation of 

agriculturally productive land is vital to the improvement of land-use practices and food 

security in developing countries (Barrett, 2010; Grace et al., 2012). Digital imagery provides 

information about the earth’s surface, and classification is an ideal way to extract that 

information and turn it into a coherent and substantial product. Desired knowledge of urban 

areas, forests, waterways, and agriculture are just a few of the reasons one might want to extract 

information from satellite imagery. Over both large geographical areas and small areas at very 

high resolutions, the knowledge desired is often land cover types within the given area. Land 

cover types can then be classified into land cover classes. 

 In regions of the world where food insecurity is a major concern, classification can be 

used in very beneficial ways, especially in parts of the world that aren’t easily accessible. 

Whether it is because of climate, terrain, or a precarious political environment, classification 

methods can be used to classify and analyze the environment. This is especially important in 

analyses involving crop production and food insecurity, as these things can be affected most in 

regions with stressed environments. REWORD 
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3.1.1 Research Question and Objectives 

Previous land cover classification studies in sub-Saharan Africa have been performed 

using coarse resolution MODIS or AVHRR imagery (Lobel and Asner, 2004; Wardlow et al., 

2007; Wessels et al., 2004; Xiao et al., 2003). However, the concern is that the granularity of the 

agriculture in this region of the world is too fine to be detected by coarse resolution imagery. 

The goal of this research is to determine whether or not accurate cropped land classifications 

can be established using WV2 and Landsat data. Given the fine granularity of subsistence 

cropland in sub–Saharan Africa, my study focuses more on village-scale cropland monitoring 

while also asking: can we produce an accurate classification using 30-meter Landsat surface 

reflectance data that are trained using labeled data from WV2 data? How will classification 

accuracy vary with scale? How far from labels can we accurately classify data? Can we be 

confident about classifications far from labels, and if so, how far? Finally, can we be confident in 

classifications between labels? 

3.1.2 Physical Environment: 

 Herrmann et al. (2005) described the environment in northern Mali (approximately 16° 

N to 24° N) as part of the Saharan desert, with southern Mali (approximately 10° N to 16° N) 

ranging from the arid to semi–arid zone below the Sahara desert, to the humid-subtropical 

savannas in the south. Geographical regions based on rainfall time series data include: Sahelo-

Sahara (approximately 18 °N to 25 °N), Sahel (approximately 13-15 °N to 18 °N), and Soudan 

(approximately 10 °N to 15 °N) (Nicholson, 2001). The 2005 Vulnerability Profile of Mali 

(Simonsson, 2005) summarized that precipitation in Mali varies greatly and considers the 
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existence of four “eco-climate” regions: Sahara, Sahelian, Sudanian, and Sudanian–Guinean; 

with rainfall throughout these regions averaging from 100 to 1,700 mm/year. To further 

illustrate the aridity gradient in Mali, climate profiles generated for each province by The World 

Bank characterize the northern-most province of Timbuktu as having maximum temperatures 

in June of approximately 44 °C, minimum temperatures in January of approximately 11 °C, and 

maximum rainfall averages reaching 27 mm in August. Conversely, the southern–most 

province of Mali, Sikasso, has maximum temperatures in March and April of approximately 37 

°C, minimum temperatures in December and January of approximately 15 °C, and maximum 

rainfall averages reaching 282 mm in August (WorldBank 2013). ADD TO REFERENCES 

The size and climatic variability of Mali allow it to have very distinct vegetative and 

productive zones that are attributed to specific livelihood regions. Productive regions are 

influenced by human-induced and environmental factors. The severe level of desertification of 

the Sahel region of Mali since at least the 1980s (Nicholson, 2001) is an example of these 

contributing factors. Following a prominent south to north aridity gradient, livelihood regions 

in Mali range from nomadic pastoralism in the far northern region just south of the Sahara 

desert, to herding, to increasingly rain dependent crops as you travel further south. The 

majority of the population in Mali depends heavily on agro-pastoral resources, however only 

25% of Mali is capable of supporting such practices (Simonsson, 2005). 

3.2 Data 

Because a distinct aridity gradient exists from south to north, we blocked the study 

region into a more arid north study region, and a more humid south region.  We selected two 
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Landsat TM (at 30x30 m pixel resolution) scenes in each region for a total of four Landsat TM 

scenes.  The scenes were selected based on their spatial and temporal agreement with the 

labeled training data (Figure 1), the accuracy of which is the premise of this study. The Landsat 

surface reflectance product was used for this study in the hope it would facilitate comparability 

across the landscape. 

The training data for this study were produced by the USAID Famine Early Warning 

System Network using the USGS Rapid Land Cover Mapper (RLCM) tool. The RLCM tool 

overlays a grid of points on top of high-resolution imagery (Figure 1). For this research, the grid 

of points were set to be 500 m apart. The RLCM displays an interface by which the user is 

zoomed into each individual point and prompted to label that point as crop or non-crop. 

The data used in this thesis were labeled by African workers with familiarity of the sub-

Saharan Mali landscape. The high-resolution imagery used was WorldView-2 data. Only small, 

area-frame scale sections of the WorldView-2 data were used for the labeling process, so the 

entirety of southern Mali is not covered with these labeled data (Figure 2). 

 The coverage of the labeled data in southern Mali is limited, owing to the scarcity of 

acquired imagery within any growing season. The FEWS NET team also labeled the grid points 

with: elevation (not used), livelihood zone, and latitude and longitude. The swaths of labeled 

data were selected based on environmental extremes (two swaths in the arid north, two swaths 

in the humid subtropical south) and on livelihood regions. As the FEWS NET livelihood zone 

data designated specific crop types and agricultural practices for different regions of Mali, it 

seemed most logical to use swaths of training data within the same livelihood region. This 

method of selection was successful for the southern training data, as two swaths were easily 
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identified that lie within the same livelihood. However, when selecting the two swaths for the 

northern training data, we found it difficult to find two swaths that were related both spatially 

and according to livelihood (Figure 2). Ultimately, the two swaths at the northern extent of the 

training data that were closest to one another (within the same Landsat scene) were selected for 

use in cropland classifications. However, these two swaths are distributed among four different 

livelihood regions, primarily growing millet, shallots, rice, and sorghum (FEWSNET, 2013).  

3.3 Classification Methods 

A single digital image pixel can be associated with multiple spectral bands. By 

comparing cross-band pixels, especially when associating them with known pixels, one can 

classify all pixels within a digital image into specific regions or groups known as “classes” 

(Campbell and Wynne, 2011). A class is a compilation of patterns whose spatial distribution is 

determined by probability density (Jain et al., 1999). The division and re-assignment of 

heterogeneous land cover types into homogenous classes is known as classification. Though 

classification is often used for the delineation of ground cover into class types, the value of 

using these classes to determine land cover areas is questionable unless conducted through 

computer interpretation of a digital image in which pixel level analyses can be carried out 

(Richards and Jia, 1999). Unsupervised, or unlabeled, classification of variables into meaningful 

homogenous groups is a method of cluster analysis (Gan et al., 2007; Jain et al., 1999). One of the 

primary differences between unsupervised and supervised, or unlabeled versus labeled, 

analyses is that supervised analysis is based on categorical labels derived specifically from the 

data (Campbell and Wynne, 2011; Jain et al., 1999). 
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  Unsupervised classification is related to the idea of “natural groups” or “natural 

clusters” within an image being grouped together based strictly on spectral similarities within 

the data (Campbell and Wynne, 2011). Minimal analyst input is required apart from inputting 

the number of classes or the minimum and maximum to be assigned to the data. The 

fundamentals of the process itself involve the separation of values into the specified number of 

classes, or clusters, based on some measure of distance, such as Euclidean distance (Jones and 

Vaughan, 2010). Due to the limited classification-analyst interaction is little opportunity for 

analyst bias exists prior to interpretation of the results to increase error in the classification 

(Campbell, 2011). One of the primary limitations in unsupervised classification is that the 

classification is based on natural relationships between spectral values. Often, a significant 

difference will be observed between the ideal classes of interest to the interpreter and the classes 

actually created by the classification. The analyst has less control over the resultant classes in 

unsupervised classification than in the case of supervised classification, as no training fields or 

informational classes are involved (Campbell and Wynne, 2011). 

Supervised classification is the classification of pixels using training fields. The 

availability of accurate training fields is essential to supervised classification. Supervised 

classification is especially suitable in such cases where a specific product is expected from the 

analysis, or when conducting comparisons of landscapes that have different temporal or spatial 

identities (bi-image comparison, time series, or nearest neighbor) (Campbell and Wynne, 2011). 

Another aspect of supervised classification is that the analyst has sufficient knowledge of the 

area in which the study is being conducted. The added control in the hands of the analyst adds 

some degree of detail or precision to the assessment, but can also introduce unwanted bias due 
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to the subjectivity and opinions of the analyst (Guo and Mason, 2009). A “hybrid classification” 

approach is one in which the initial step is to conduct a unsupervised classification, assigning 

classes based on supplementary data such as aerial imagery or ground truth data. Afterward, 

using the statistical results of the initial classification as training data, the image is reclassified 

using a supervised method (Guo and Mason, 2009). In terms of accuracy, the subjectivity of the 

analyst may affect ground truth and aerial data. Human observation is variable, so it is 

impracticable to expect to measure and extract the exact “truth” from the field (or from aerial 

data) because it will differ with each observer (Adams and Gillespie, 2006). 

3.3.1 Methods 

We first organize the bands of imagery, truth data, and auxiliary information that make 

up the data so that optimal analysis may occur. Scenes with the most training point swaths were 

considered for the northern and southern extents of the training data. The northern extent scene 

included two swaths of training points while the southern extent has one complete swath and a 

partial swath that it shares with the scene directly north of itself. The south scene and the scene 

directly north of it where mosaicked together to create two complete training swaths. This was 

to ensure more comparable results between the northern and southern analyses.  

The north scene represents the arid part of the study region, while the south scene 

represents the humid subtropical portion of the study region. Together, they represent the two 

most extreme environments of the study region’s aridity gradient. Entire Landsat TM scenes 

were not used because this study is interested in the accuracy that can be obtained in a 

classification using the labeled data and 30 m Landsat. Therefore, the northern and southern 
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classification regions were clipped so that only the areas where swaths of training point data 

exist for the classification processes.  

ERDAS IMAGINE’s supervised classification function has a maximum likelihood option 

that incorporates a Bayesian classifier that takes added variability within a single class into 

account. However, the supervised classification function does not allow for the inclusion of 

point data into the process. Training samples are traditionally acquired by creating a polygon 

over a specific area of the image that represents a class type. As such, we decided that a polygon 

file representing the data affiliated with each training point should be created. The prime 

method for creating the AOI training samples from point data is to create a buffer region 

around each training point.  

To assess the best method of supervised classification using these training point data, 

classifications were conducted at different spatial scales, progressively moving away from the 

points, and incorporating more pixel values for each. This method of pixel inclusion 

incorporates increasing numbers of pixels depending on proximity to the training points. The 

question behind this reasoning is: when using point data to classify an image, instead of the 

traditional areas of interest, how many pixels need to be included to produce a efficient training 

space? 

As all classification algorithms require the input of some sort of signature information 

(i.e. parametric, nonparametric, etc). The AOI feature spaces delineated had to be attributed 

with spectral signature information, resulting in training samples for the classification analysis. 

The idea behind training samples is to pick out a group of spectral signatures, the spectral 

values associated with each pixel of the image, that represent a single class and then repeating 
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the processes multiple times depending on the number of classes desired. Doing this requires 

the overlaying of the AOI regions onto an image. A signature editing tool takes the values 

associated with the pixels in the AOI region averages and adds them to the editor. The result of 

the signature process is the training samples to be used in the maximum likelihood 

classification. Parametric decision rules within the maximum likelihood classifier in IMAGINE 

use the training signatures to assign every pixel within the continuous surface of the image 

being classified into the designated classes. 

To answer specific questions generated throughout this research, various methods of 

dividing labels into training and test data were employed. The three label division schemes 

(Figure 3) include: Thin, which will be a test accuracy between labels; Corner, which will test 

the accuracy of predictions just outside of labels; and Swaths A and B, which test how accurate 

predictions are far away from labels. Swath methods include predicting from swath A to B and 

also from B to A. For each method, at least 50–80% of the training points will end up being 

incorporated as training data for the classification process.  

After all classification methods were completed, confusion matrices were generated to 

display the true and predicted data and the overall performance of the classification schema.  

Kappa coefficients included in these confusion matrix tables are a conservative measure of 

agreement, one that takes into account agreement occurring by chance. Also included in these 

tables were user accuracies, which measure the probability that a pixel is a certain class given 

that the classifier has labeled the pixel into that class; and producer accuracies, which measure 

the probability that the classifier has labeled and image pixel into a certain class given the 

ground truth is that class in reality. 
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3.4 Results 

Results for this research included kappa coefficients generated from confusion matrices 

with error of omission (Type II error), where pixels are not reported as crop when they should 

be; and error of commission (Type I error), where pixels are reported into crop when they 

should not be; are taken into account for three analyses. The 7 band supervised classification for 

the wet season, 2 band NDVI for wet and dry, and the 14 band supervised classification for wet 

and dry. The kappa coefficients were generated from supervised classifications of cropped land 

within areas where labeled data existed. The initial 32 classifications, using only the growing 

season data, were generated and confusion matrices were made showing results of 

classifications from all methods. User and producer accuracies, along with kappa coefficients 

were calculated from these confusion matrices (Table 1 (North) and Table 2 (South)). User 

accuracies for the crop class range from 0.188 to 0.462 in the southern region, and from 0 to 

0.497 in the north region. User accuracies measure how good the model is, or, how well the true 

data can estimate crop. Producer accuracies range from 0.285 to 0.780 in the southern region, 

and 0 to 0.456 in the northern region. Producer accuracy measures how good the prediction 

map is, or, how accurate the prediction is.  

NDVI were generated for the leaf-on and leaf-off datasets in both the North and the 

South. The leaf-on and leaf-off NDVI for each region were stacked together to create one 2-band 

image. A classification using the thinning method was then performed on the 2-band NDVI 

images for the two regions. The thinning method was used due to its higher accuracy compared 

to the other methods. The kappa coefficients for the NDVI classifications (Table 3) were very 

low, the highest being only 0.24, suggesting that more information is needed to classify crop vs. 
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non-crop than just what is included in the NDVI. However, information was lacking in the 

NDVI to classify cropland, legitimizing the use of the original 7-band imagery in the 

classification. However, the 7-band classifications proved to have low kappa, no higher than 

0.32 in the most productive region. Therefore, the analysis to determine the difference between 

the two leaf-on and leaf-off time periods is most promising.  

As most of the kappa coefficients were initially rather low, additional analysis was 

needed to determine just how much information is being included in the solely crop or non-

crop classifications. Also, dry season data were collected to determine if the difference between 

the wet season and the dry season, also known as leaf-on vs. leaf-off analysis, could more 

accurately discern crop. The 7-band raster used in the initial leaf-on analysis was combined with 

the 7-bands of the leaf-off analysis, generating one 14-band image. The kappa coefficients from 

these classifications (Table 4 and 5) were not dramatically higher than the original analysis, but 

they did increase. The highest kappa was a 0.488 in the South, where it had been 0.32. Though 

less dramatic, the kappa did increase in the North as well, the highest now being 0.443. The 

kappa coefficients showed an overall increase across all methods, though marginally. 

3.5 Discussion 

 The results of this research vary between different classification methods and different 

buffer sizes. Mali livelihood zones explain some of the variation between classification results. 

As far as environment, Mali has everything from desert in the north, to lush fertile zones in the 

south. The Niger river plays a huge role as well, with at least 3 livelihood zones depending on it 

completely. Cultural factors such as dependence on remittance and commercial dominance also 
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play a role in zone delineation. In the north, swath A falls into two different livelihood zones: 

zone 4, millet and transhumant livestock rearing, and zone 6, the Niger delta lakes where agro-

pastoral rice and livestock rearing is prominent. Zone 4 has an annual precipitation of 300 to 

500-mm, and is considered a food difficult zone where external aid is common. Zone 6 has an 

annual precipitation of 300 to 600-mm, and is considered a surplus-producing zone, as it is 

more food secure than the zones surrounding it. Swath B in the north also falls into two 

different livelihood zones: zone 9, west and central rain-fed millet and sorghum, and zone 5, the 

Dogon plateau where tourism, millet, shallot, and other wild food make up the livelihoods in 

the region. Zone 9 has an annual precipitation of 600 to 800-mm, and is in the middle of trade 

routes bringing livestock to the south and crops to the north. Zone 5 has an annual precipitation 

of 400 to 600-mm, and is considered a food deficit zone primarily due to its poor quality soils. 

The north results seem to show more variation between classification methods than the south 

results. This is most likely due to the inclusion of four agriculturally distinct livelihood regions. 

In the south, both swaths A and B fell within a single livelihood zone, zone 11, which 

hosts southern maize, cotton, and fruits as its primary agricultural products. Zone 11 has an 

annual precipitation of 1000 to 1300-mm, and is considered a highly productive zone. The south 

displayed higher kappa accuracies and less, though still present, variation between 

classification methods overall. We believe that these patterns are due to the south having better 

comparability between swaths, and the north having very little comparability based on the 

livelihood zones. The higher kappa by buffer size is different for each classification method, 

including the 14-band and 2-band analyses. No pattern suggests that buffer size has any 

influence on improving accuracy or kappa coefficients. 
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Overall, the classification accuracies generated in the results of this study are not great 

based on kappa coefficients. Even in what was considered the best case, using two swaths 

within the same livelihood zone in the most agriculturally productive region, the highest kappa 

coefficients were still below 0.5 and you can see examples of these classifications in Figures 4, 5, 

6, and 7 (Figure 4, 5, 6, and 7 shows the resultant classifications for the 90-m south scene, 

overlaying WV-2 imagery and overlayed with crop/non-crop point data. These figures are from 

the southern half of Swath B in the south). However, upon improving on the original methods, 

kappa coefficients did increase for every method, though only moderate change was seen 

(Figure 4, 5, 6, and 7).   

 Variation between different buffer sizes is inconsequential, though differences between 

different classification testing methods were observed. In the original 7-band methods, kappa 

coefficients between the thinning and corner methods dropped by approximately half. Also, we 

observed no similarity between swath A and swath B, suggesting that the swaths are not 

symmetric. The swaths also have no similarity with the thinning or corner methods. In the 14-

band image classifications the highest kappa coefficient for the south increased from 0.320 to 

0.488. Unlike in the 7-band method, we saw little to no difference between the thinning and 

corner methods in the south, and very slight difference between the thinning and corner 

methods in the north. However, the swath methods still show remarkably low kappa accuracy 

in both the north and south ranging from negative kappas to kappas less than 0.1. 
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3.6 Conclusions 

Several questions can be answered considering the results of these classifications: 1) 

How does classification accuracy vary with scale? 2) How far from labels can we classify data? 

3) Can we be confident about classifications far from labels, if so, how far? Finally, can we be 

confident of classifications between labels? The degree of accuracy far from labels was 

measured by classifying one swath with the data from another. In this case there appears to be 

no real ability to predict accurately between swaths. Accuracy quickly drops off when 

predictions begin to be made outside of the training area, and the consideration of different 

buffer sizes doesn’t seem to matter at all. There was hope that classification between labels 

would produce high, reliable accuracy, however even in the best–case scenario kappa 

coefficients were still less than 0.5. So, if accounting for crop type and agricultural practices isn’t 

enough to ensure comparability between swaths, are there other ways to define landscapes that 

would make accuracies using these data better? The results suggest that there is a spectral 

landscape that is changing rapidly from one place to another. Though the original assumption 

was that individual livelihood zones would be similar spectrally, there is likely to be gradation 

in aridity even within the same livelihood zone, causing this assumption to be incorrect. There 

is a trend of under classification of crop in the north and over classification in the south. As the 

majority of the over classification of cropland in the south was due to all types of vegetation 

being classified as crop, there was the assumption that the combination of WorldView–2 

imagery from different seasons using leaf–off pairs might increase accuracy. This assumption 

turned out to be correct, though not to the degree that was hoped. 
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Overall, kappa coefficients were low, with none reaching above 0.5. This suggests that 

we cannot produce significantly accurate classifications using this method. We do illustrate, 

however, that livelihood zone differences play a significant role in low agreement for the swath 

methods in the north. Though, even in the south classifications where the swaths were in the 

same livelihood zone the kappas were still very low with the methods used. This is most likely 

due to the aridity gradient in the country, which is explained by the annual precipitation for the 

different livelihood zones. This suggests that classification far from lables is not possible. 

Finally, the thin method has the best kappas which suggests that we can be more confident in 

classifications between labels, though accuracy quickly declines as we move away from labels. 
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Appendix 1: Tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 1: Results for 7–band North wet season classification. 
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Table 2: Results for 7–band South wet season classification. 
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Table 3: Results for NDVI analysis on wet and dry season data. 
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Table 4: Results for 14–band North wet and dry season classification. 
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Table 5: Results for 14–band South wet and dry season classification. 
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Appendix 2: Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: An example of the training data points and WV2 imagery.  The points are on a 500 m grid.  

Green circles indicate points that were classified as crop, while blue squares were classified as not-crop. 
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Figure 2: Illustrates the distribution of data. Red squares represent the distribution of the Landsat 

scenes. The black rectangles represent the distribution of the World View-2 derived point data. The 

red dotted lines show the boundaries for the different livelihood zones in Mali. 
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Figure 3: Examples of point exclusion methods of test and training data. The box with grey points is an example of the distribution of the two 

swaths, from each environment, at an offset. Blue points represent those used for training and red triangles for testing.  
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Figure 4: Corner 90-meter, red points represent crop pixels while black points represent non-crop  

pixels. Blue is the land area classified as crop for this method. 
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Figure 5: SwathA 90-meter, red points represent crop pixels while black points represent non-crop  

pixels. Orange is the land area classified as crop for this method. 
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Figure 6: SwathB 90-meter, red points represent crop pixels while black points represent non-crop  

pixels. Yellow is the land area classified as crop for this method. 
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Figure 7: Thin 90-meter, red points represent crop pixels while black points represent non-crop  

pixels. Red is the land area classified as crop for this method. 
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