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ABSTRACT 

Geostatistics were employed to characterize sub-core scale heterogeneity and 

identify spatial structure in previously published water retention data (Kang et al., 2014) 

obtained using neutron radiography for Flint sand. The water retention data were 

parameterized using the Brooks and Corey (BC) model. The BC parameters investigated 

were: saturated water content (Ѳs), residual water content (Ѳr), air entry value (ψa), and 

pore size distribution index (λ). Spatial dependency in the BC parameters was identified 

using semivariograms. Of the four BC parameters analyzed, two were found to be spatially 

correlated, Ѳs and ψa. The spherical model fit to the cross variogram was used to perform 

co-kriging and map out the spatial dependency of these parameters. Low and high values 

apparent at the top and bottom of the kriged map for ψa implicated packing and 

compressive stress as the major causes of sub-core scale heterogeneity for this parameter.  

A concentrated area of high values in the center of the kriged map for Ѳs suggests that 

neutron scattering and the normalization procedure employed during image analysis to 

eliminate the effect of variable neutron path lengths was not completely successful. To 

alleviate these effects a trend correction process was developed by generating a second 

dataset using cross-validation, calculating the difference between the observed and leave-

one-out cross validation data set, and adding the average of the observed data to the newly 

created residual variable. This trend correction process was validated using an 

independent data set collected by Cropper (2014). Mann-Whitney and Kolmogorov-

Smirnov two sample tests were employed to determine if the Cropper (2014) parameters 

were significantly different from the trend corrected parameters in terms of their median 

values and frequency distributions, respectively. The results from both tests found 
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significant differences between the two data sets indicating the trend correction procedure 

was unsuccessful, likely due to the unconsolidated sample and cylindrical geometry 

employed.  Since spatial structure can have profound effects on flow and transport 

predictions, future work using neutron radiography to measure point BC parameters 

should focus on consolidated samples and rectangular sample geometry. Further 

exploration of the novel trend correction procedure is warranted. 

 

  



v 

TABLE OF CONTENTS 

CHAPTER 1 INTRODUCTION ............................................................................................................................ 1 

1.1 Problem Statement ....................................................................................................................................... 1 

1.2 Objectives.......................................................................................................................................................... 3 

1.3 Hypotheses ....................................................................................................................................................... 3 

CHAPTER 2 LITERATURE REVIEW ................................................................................................................ 4 

2.1 Sub-Core Scale Heterogeneity .................................................................................................................. 4 

2.2 Computed Tomography and Neutron Imaging .................................................................................. 6 

2.3 Geostatistical Analysis of Sub-Core Heterogeneities ....................................................................... 7 

CHAPTER 3 METHODOLOGY ......................................................................................................................... 12 

3.1 Data .................................................................................................................................................................. 12 

3.2 Preliminary Classical Statistics.............................................................................................................. 14 

3.3 Trend Surface Analysis ............................................................................................................................. 14 

3.4 Detrending ..................................................................................................................................................... 18 

3.5 Spatial Interpolation .................................................................................................................................. 19 

3.5.1 Introduction .............................................................................................................................................. 19 

3.5.2 Empirical Semivariogram and Cross - Variogram ...................................................................... 20 

3.5.3 Semivariogram Model ........................................................................................................................... 21 

3.5.4 Kriging ......................................................................................................................................................... 23 

3.6 Cross-validation .......................................................................................................................................... 27 



vi 

3.7 Trend Correction......................................................................................................................................... 29 

3.8 Validation ....................................................................................................................................................... 31 

CHAPTER 4 RESULTS AND DISCUSSION .................................................................................................. 35 

4.1 Fitting the Brooks and Corey Equation .............................................................................................. 35 

4.2 Classical Descriptive Statistics ............................................................................................................... 35 

4.3 Trend Identification Using the Kruskal-Wallis Test ...................................................................... 37 

4.4 Trend Surface Analysis and Detrending ............................................................................................ 38 

4.5 Spatial Interpolation .................................................................................................................................. 40 

4.5.1 Theoretical Model ................................................................................................................................... 40 

4.5.2 Cross-validation ....................................................................................................................................... 44 

4.5.3 Kriging ......................................................................................................................................................... 46 

4.6 Trend Correction and Validation .......................................................................................................... 49 

CHAPTER 5 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ........................................... 53 

LIST OF REFERENCES ...................................................................................................................................... 59 

APPENDICES ........................................................................................................................................................ 65 

Appendix 1. Tables ............................................................................................................................................ 66 

Appendix 2. Figures........................................................................................................................................... 72 

VITA ....................................................................................................................................................................... 101 

 



vii 

LIST OF TABLES 

Table 1: Descriptive statistics of observed BC parameters (Equation 1) .................................... 66 

Table 2: Asterisks are used to denote the level of significance for multiple statistical tests 

presented in the study; for example, *** indicates significance at the 99.9% confidence 

level, ** indicates significance at the 99% confidence level, * indicates significance at 

the 95% confidence level, and non-significant (confidence levels < 95%) results are 

indicated using NS .................................................................................................................................... 66 

Table 3: SW W  statistic used to test if the BC  parameters come from a normal distribution 

before employing trend surface analysis and moving forward with the kriging analyses

 ......................................................................................................................................................................... 66 

Table 4: KW results for sample intervals in the x-direction.............................................................. 66 

Table 5: KW results for sample intervals in the y-direction ............................................................. 67 

Table 6: Trend surface analysis results used to identify significant trends in the BC 

parameters before kriging .................................................................................................................... 67 

Table 7: t-values listed with their corresponding significance levels to determine specific 

trend directions ......................................................................................................................................... 67 

Table 8: Descriptive statistics of trend surface residuals, very small mean values signify 

successful removal of trends within the BC parameters........................................................... 67 

Table 9: SW W  statistic and significance level for trend surface residuals before kriging, 

normal to near normal distributions of BC parameters before kriging will result in 

optimal interpolation .............................................................................................................................. 68 

Table 10: Semivariogram model results computed for residual BC parameters ...................... 68 

Table 11: Semivariogram model results computed for observed BC parameters ................... 68 



viii 

Table 12: Cross-variogram with spherical model computed for the residual values of ψa 

versus Ѳs ....................................................................................................................................................... 68 

Table 13: CV results for ψa – compares different kriging methods and their semivariogram 

model which resulted in the best prediction accuracy as indicated by r and NRMSE... 68 

Table 14: CV results for Ѳs – compares different kriging methods and their semivariogram 

model which resulted in the best prediction accuracy as indicated by r and NRMSE... 69 

Table 15: Presents the results of the kriging form with the best prediction accuracy for ψa

 ......................................................................................................................................................................... 69 

Table 16: Presents the results of the kriging form with the best prediction accuracy for Ѳs 

 ......................................................................................................................................................................... 69 

Table 17: Descriptive statistics of the data set generated during leave-one-out CV ............... 69 

Table 18: SW W statistic and significance levels for the CV data set ............................................. 69 

Table 19: Trend surface analysis results conducted for the CV data set to determine if the 

parameter contains a geographic trend .......................................................................................... 69 

Table 20: t-values used to identify specific trend directions for the CV data set ...................... 70 

Table 21: Descriptive statistics of trend surface residuals computed for the CV data set .... 70 

Table 22: SW W statistic and significance level for the CV data set residuals ............................ 70 

Table 23: Cross-variogram with spherical model computed for the residual values of ψa and 

Ѳs for the CV data set ............................................................................................................................... 70 

Table 24: CV results using CK with the spherical model for ψa of the CV data set ................... 70 

Table 25: CV results using CK with the spherical model for Ѳs of the CV data set .................... 70 

Table 26: Descriptive statistics of the detrended variable, zra (i.e. presented as “Krige” in 

Tables 27 and 28 below ......................................................................................................................... 71 



ix 

Table 27: MW W statistic with significance levels to determine statistical differences 

between the following data sets: Cropper (2014), Kang et al. (2014), corrected zra 

(labeled as Krige) variable, and Trend (created during trend surface analysis) ............. 71 

Table 28: KS D statistic with significance levels to determine statistical differences between 

the following data sets: Cropper (2014), Kang et al. (2014), corrected zra (labeled as 

Krige) variable, and Trend (created during trend surface analysis) .................................... 71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

LIST OF FIGURES 

Figure 1: a) Hanging water column set up for drainage of Flint sand at the HFIR CG1-D 

beamline. b) Various basal matric potentials were achieved by adjusting the height of 

the burette column outside of the beamline (Kang et al., 2014). ........................................... 72 

Figure 2: The 8 x 15 grid superimposed on an example 2-D radiographic image (28.2 x 60.7 

mm) of air (white) displacing water (blue) in Flint sand at a given equilibrium basal 

matric potential used to construct the 120 point water retention curves (Kang et al., 

2014); the distance between adjacent points is 3.2 mm, and the dimensions of the red 

rectangular region of interest are 25.6 x 51.2 mm ...................................................................... 73 

Figure 3: Histograms of the observed BC parameters used to indicate that sub-core scale 

heterogeneity is present ........................................................................................................................ 74 

Figure 4: Q-Q plots of the BC parameters used to visualize the SW results given in table 3 75 

Figure 5: Scatter diagrams used to indicate significant linear relationships between the BC 

parameters. ................................................................................................................................................. 79 

Figure 6: Plots of median values and their corresponding upper (75%) and lower (25%) 

quartiles for each sample interval (i.e. 3.2 mm, 6.4 mm, etc) in the x-direction. Since 

water retention curves were computed for all but five points on an 8 x 15 Cartesian 

grid, sample intervals in the x-direction typically consist of 8 values. These plots are 

used to illustrate KW results and determine significantly different sample intervals. BC 

parameters with significantly different median values in the x-direction are shown 

here, for Ѳs and Ѳr. .................................................................................................................................... 82 

Figure 7: Plots of median values and their corresponding upper (75%) and lower (25%) 

quartiles for each sample interval (i.e. 6.4 mm, 9.6 mm, etc) in the y-direction. Since 



xi 

water retention curves were computed for all but five points on an 8 x 15 Cartesian 

grid, sample intervals in the y-direction typically consist of 15 values. These plots are 

used to illustrate the KW results and determine significantly different sample 

intervals. BC parameters with significantly different median values in the y-direction 

are shown here, for ψa and λ. ............................................................................................................... 83 

Figure 8: Trend surfaces for the four BC parameters are shown here and were used to 

identify 2 dimensional trends .............................................................................................................. 86 

Figure 9: Residual semivariograms and best fit spherical model for all four BC parameters, 

a) ψa and b) Ѳs were found to be spatially dependent whereas c) λ and d) Ѳr were 

found to be pure nugget effect ............................................................................................................ 87 

Figure 10: Raw semivariograms and best fit spherical model for ψa, Ѳs, and λ parameters, a) 

ψa and b) Ѳs were found to be spatially dependent whereas c) λ was determined to be 

pure nugget effect; a significant fit of the spherical model to the semivariogram of Ѳr 

was unsuccessful ...................................................................................................................................... 90 

Figure 11: shows the cross-variogram of ψa and Ѳs with the fitted spherical model .............. 93 

Figure 12: One-to-one graph of the CK method compared to the theoretical one-to-one line 

of correlation for ψa ................................................................................................................................. 94 

Figure 13: One-to-one graph of the CK method compared to the theoretical one-to-one line 

of correlation for Ѳs .................................................................................................................................. 95 

Figure 14: Final co-kriged maps for ψa and Ѳs using the Kang et al. (2014) data set .............. 96 

Figure 15: Kinal co-kriged maps for ψa and Ѳs using the CV data set ............................................ 96 

Figure 16: Corrected maps for ψa and Ѳs using the cross-validation and co-kriging 

correction method .................................................................................................................................... 97 



xii 

Figure 17: Plots of median values and their corresponding upper (75%) and lower (25%) 

quartiles for the independent Cropper (2012) data set, the Kang et al. (2014) data set, 

the Krige data set (i.e. spatial trend corrected data using CK and CV for ψa and Ѳs), and 

the Trend data set (i.e. trend corrected data using trend surface analysis for all BC 

parameters). These plots are used to illustrate MW and KS results and determine 

which data sets are significantly different from one another. ................................................ 98 



1 

CHAPTER 1 

INTRODUCTION  
 

1.1 Problem Statement 

Spatially correlated heterogeneity occurs at multiple scales and represents a major 

challenge for predicting fluid movement in the subsurface (Pini and Benson, 2013). 

Investigation of multi-scale heterogeneity and its effects on flow and transport is important 

for multiple applications such as site characterization, contaminant transport, brine 

displacement efficiency, CO2 sequestration, and reservoir production (Duijn et al., 1995; 

Eaton, 2006; Perrin and Benson, 2009; Li and Benson, 2014).  Simulation studies have 

shown that sub-core scale heterogeneity can have a profound effect on flow and transport 

behavior (Pini and Benson, 2013). Li et al. (2013) presented evidence indicating that even 

small inaccuracy in characterizing multiphase flow parameters can accumulate and lead to 

significant error in long-term modeling at larger scales. Therefore, continuing investigation 

of sub-core scale heterogeneity is essential to better understand and model fluid movement 

in the subsurface. 

To understand and model multiphase flow in the subsurface the water retention curve 

is often employed. Kang et al. (2014) developed a technique for directly measuring water 

retention curves at the sub-core scale using 2-D neutron radiography. This technique 

allows multiple curves to be calculated for a single core.  Kang et al. (2014) computed 120 

water retention curves for a single repacked core sample of homogeneous sand material. 

The water retention curves were parameterized by fitting the Brooks and Corey (BC) 

equation (Brooks and Corey, 1964) to each of the 120 curves.  Histograms of the BC 

parameters show a range in distributions despite water retention curves being calculated 
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for a nominally homogenous material. Distributions within each parameter can be 

explained by sub-core scale heterogeneity caused in three ways:  

1. natural heterogeneity which was effectively eliminated when the Kang et al. (2014) 

experiment was conducted on a nominally homogeneous material 

2. artificial heterogeneity due to the measurement method itself (i.e. neutron imaging) 

3. induced heterogeneity due to stratification caused by packing and particle 

segregation 

Parameter histograms illustrate a distribution, but they do not characterize the spatial 

distribution of the parameters. Spatial heterogeneity is known to effect fluid flow and 

transport through porous media (Zinn and Harvey, 2003). Consequently, further 

investigation is needed to understand the spatial distribution of the BC parameters and 

identify possible causes of the sub-core scale heterogeneity in order to potentially improve 

modeling of flow and transport at this scale. 

The purpose of this study is to  apply geostatistical techniques to the BC parameters 

computed by Kang et al. (2014) to identify spatial structure and characterize sub-core scale 

heterogeneity of the repacked, nominally homogeneous sand material. Geostatistics is 

typically applied at the field scale. Very few studies have applied geostatistics at the sub-

core scale, and it is unknown whether any previous studies have used geostatistics to 

identify heterogeneity of BC parameters at the sub-core scale. Understanding the role of 

heterogeneities at this scale provides a first step toward appropriate methods for up 

scaling laboratory-measured data to simulate field-scale multi-phase flow behavior (Perrin 

and Benson, 2009). 
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1.2 Objectives 

The overall goals of this research are to characterize, explain, and attempt to correct 

method based sub-core scale heterogeneity of a repacked, nominally homogeneous sand 

material. In order to accomplish this, geostatistics will first be applied to BC parameters 

computed by Kang et al. (2014). Subsequently comparison statistics will be used to validate 

the results of the geostatistical analysis. The objectives of the research are: 

1. Produce semivariograms of BC parameters measured by Kang et al. (2014) at Oak 

Ridge National Lab (ORNL) 

2. Produce kriged maps of the BC parameters to evaluate how they vary across the 

sand column 

3. Remove spatial structure caused by the data collection procedure in the Kang et al. 

(2014) dataset 

4. Validate spatially-corrected neutron parameters against parameters collected using 

an independent methods 

1.3 Hypotheses 

The null hypothesis is that there will be little or no spatial structure in the measured 

Brooks and Corey parameters because they were fitted to water retention curves 

calculated for a nominally homogeneous sand material. The alternative hypothesis is that if 

there is spatial structure, it will be limited to the vicinity of the ends of the core and will be 

due to inconsistency in core packing.  
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CHAPTER 2 

LITERATURE REVIEW 
 

2.1 Sub-Core Scale Heterogeneity 

Understanding sub-core scale heterogeneity is important because it can influence 

fluid movement at much larger scales. The presence of sub-core scale features can 

significantly increase overall variability and connectedness in the subsurface (Zinn and 

Harvey, 2003). In this section, several studies will be investigated to illustrate specific 

examples of how sub-core scale heterogeneity influences fluid movement. Also, these 

studies demonstrate the importance of research dedicated to better understanding and 

improving our ability to model sub-core scale heterogeneity.  

In the study conducted by Pini (2012),  CO2/water drainage capillary pressure 

saturation curves were measured at reservoir pressure and temperature for the Berea 

sandstone. Its core was initially saturated with water and then flooded with 100% CO2 at 

increasingly high flow rates, X-ray Computed Tomography (CT) images were captured each 

time the flow rate was increased (Pini, 2012).  This technique allowed observation of 

capillary-pressure saturation relationships on mm-scale subsets of the rock core (Pini, 

2012). Results from this study show that sub-core scale capillary-pressure saturation 

curves are different from one another, this suggests that there is a significant degree of 

heterogeneity in the supposed homogeneous Berea sandstone core (Pini, 2012). Also, the 

study shows that sub-core scale heterogeneities can cause small changes in capillary 

pressure which lead to strong variations in saturation.  
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Krause et al. (2013) conducted steady-state relative permeability measurements at 

reservoir conditions. X-ray CT scanning was used to measure sub-core scale porosity and 

saturation distributions (Krause et al., 2013). The work was conducted on two rock cores: 

Berea sandstone, which in this study was considered to have a low degree of heterogeneity, 

and a sandstone core from the Waare C formation which had a high degree of 

heterogeneity. Results from the study show that the Berea sandstone had a homogeneous 

porosity distribution, but due to sub-core scale heterogeneities the permeability 

distribution was strongly heterogeneous. Considerable heterogeneity was found in both 

the porosity and permeability distributions for the Waare core. This method was shown to 

accurately characterize sub-core scale heterogeneity, and provide well-characterized rock 

core for applications such as upscaling (Krause et al., 2013). 

Pini and Benson (2013) characterized the core/sub-core scale heterogeneity of a 

naturally heterogeneous sandstone using N2/water core flooding, X-ray CT imaging, and a 

scaling factor. They developed a procedure that can potentially combine pore and reservoir 

scale flow properties while sufficiently characterizing sub-core scale heterogeneities. Pini 

and Benson (2013) also acknowledge that geologic heterogeneity occurs over a wide range 

of scales and that it presents a major challenge when attempting to predict fluid movement 

in the sub-surface.  

Li and Benson (2014)stated that, “spatially correlated heterogeneities at small 

scales can affect large-scale CO2 migrations in geological sequestration.” The purpose of 

their work was to show the effect of small-scale “High-Randomness Pattern-Free” (HRPF) 

heterogeneities on buoyancy driven CO2 migration. The study was conducted on a 2D 
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permeability field (5m x 0.4m) that was relatively homogenous over the entire sample 

domain. However, it was shown that heterogeneities were found at the millimeter scale. 

These heterogeneities were determined to be highly random because a short spatial 

correlation was shown, using a variogram, at the millimeter scale. Because millimeter scale 

heterogeneity appears to be relatively homogenous at a larger scale, it is often ignored in 

core analysis and flow simulation (Li and Benson, 2014). It was shown that CO2 plume 

velocity can be significantly decreased or even completely immobilized by millimeter scale 

heterogeneity if the plume volume is small.  

2.2 Computed Tomography and Neutron Imaging 

Neutron imaging was first applied in soil science in the 1970’s to visualize the 

spatial distribution of soil water characteristics (Perfect et al., 2014). Neutron imaging is 

ideal for observing air-water displacements in soil because neutrons are strongly 

attenuated by hydrogen rich fluids but not by air or soil minerals. Deinert et al. (2004) 

concluded that neutron imaging is ideal for detailed laboratory studies because of its 

sensitivity to variations in moisture content and its ability to image nontranslucent 

material (Cheng et al., 2012).  

Tumlinson et al. (2008) first applied neutron imaging to measure a point water 

retention curve. Their analysis was based on a single applied matric potential; therefore, it 

was not possible to construct a full drainage function. Papafotiou et al. (2008)  determined 

the 3-D distribution of water in a porous medium under quasi-steady state flow after two 

drainage steps. They also tested the ability of neutron and synchrotron tomography to 

determine average hydraulic properties using numerical simulations.  
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Vasin et al. (2008) conducted multi-step drainage experiments in two 

heterogeneously packed sand columns to test the influence of packing structures on the 

movement of water and to assess outflow curves in both columns made with an upscaled 

model. Neutron radiography (2-D) was used to measure the spatial distribution of water 

content during the multi-step drainage process and neutron tomography was used to 

measure 3-D water content at the steady state. Cheng et al. (2012) demonstrated that 

neutron imaging can fully reproduce the hysteretic characteristics of soil water and can be 

used to quantify average relative saturations. Kang et al. (2014) employed neutron 

radiography to map out the spatial distribution of water and determine pixel (1 pixel = 

0.0032 cm or 32 μm) or point water retention functions at different locations within a 

nominally homogenous Flint sand column. An 8 x 15 Cartesian grid was superimposed over 

each neutron radiograph. A water retention curve was calculated for each point on the grid 

system. Histograms of the water retention curve parameters indicate the existence of sub-

core scale heterogeneities. Also, the presence of spatial structure in these data will 

influence upscaling strategies, and therefore a geostatistical analysis is warranted. 

2.3 Geostatistical Analysis of Sub-Core Heterogeneities 

Historically geostatistics was applied to estimate ore reserves in the mining 

industry (Matheron, 1963). However, variogram estimation and spatial prediction (kriging) 

have spread to all sciences where data exhibit spatial dependency (Ecker, 2003). 

Geostatistics has been applied to a wide range of disciplines and is defined by Olea (1991) 

as “the application of statistical methods … for use in the earth sciences, particularly in 

geology” (Ecker, 2003).  Geostatistics is typically applied to data at the field scale (Dunlap 

and Spinazola, 1984; Iqbal et al., 2005; Huysmans and Dassargues, 2006; Saito et al., 2009); 
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however, Warrick et al. (1986) stated that “dimensionally, applications of geostatistics 

could be for distances of a few molecules or kilometers.”  

This section provides several examples of geostatistics being successfully applied at 

the sub-core scale. The success of geostatistics at this scale is important for the purpose of 

this study and its ability to effectively characterize sub-core scale spatial dependency. 

Commonly geostatistical methods applied at a small scale are associated with X-ray 

computed tomography (CT) scanning to identify core/sub-core scale heterogeneity. No 

examples were found of geostatistical analysis applied to sub-core heterogeneities 

quantified with neutron imaging.  

Peters and Afzal (1992) were amongst the first to use geostatistics at the core-scale. 

They investigated core-scale heterogeneities of reservoir rock to access oil recovery 

processes. First, they conducted a CT-imaging experiment to characterize a laboratory 

sandpack. Then semivariograms, along with other statistical analyses, were used to access 

and visualize the variability and spatial continuity of porosity and permeability 

distributions (Peters and Afzal, 1992). It was determined that CT imaging is a very 

powerful tool for characterizing permeable materials. Results indicated that even though it 

is often assumed that a sandpack has homogenous and isotropic properties, sub-core 

heterogeneities resulted from packing. This phenomenon is commonly observed in the 

geotechnical literature (Oliviera et al., 1996; Bromly et al., 2007; Lewis and Sjöstrom, 2010) 

and is a feature that may be identified within this study. Porosity and permeability 

variations that resulted from this heterogeneity were successfully determined using 

geostatistics at the core scale.  
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Grevers and De Jong (1994) applied geostatistics at the sub-core scale to analyze the 

spatial continuity of compacted soil and subsoil macroporosity, obtained from CT images. 

Geostatistical analysis was useful to discriminate the spatial variability and continuity of 

soil macropores in subsoils at the micro-scale (i.e. less than 1 cm).  Perret et al. (1998) 

developed a procedure to characterize macropore morphology in large undisturbed soil 

columns using a 4th generation X-ray CAT scanner. Geostatistics, along with other methods, 

were used to access the variations in macropore morphology as a function of depth. 

Semivariograms were computed at every 30 mm interval. Results from the geostatistical 

analysis indicate that the spatial variability of macroporosity decreased with depth.  

Aylmore and Rasiah (1998) explored the use of geostatistics to clarify the issue of 

randomness and continuity on the spatial distribution of porosity, fractal dimension, water 

content, and unsaturated hydraulic conductivity at scales as small as 1-cm intervals, 

obtained using a custom-built scanner and computed tomography techniques. It was 

shown that even though randomness existed in the spatial distribution of the soil 

parameters, specific trends existed in their spatial continuity (Aylmore and Rasiah, 1998). 

The results indicate that geostatistical analysis is useful to clarify the issue of randomness 

at very small scales. Aylmore and Rasiah (1998) ended the study with a recommendation of 

using geostatistics to clarify randomness and spatial continuity of soil parameters, 

especially porosity because it can have a significant impact on flow and transport in porous 

media. 

Murata and Saito (2003) used a bubble concrete material to create synthetic porous 

rocks with varying porosity from 10-60% to examine the influence of porosity and pore 
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size distribution on hydraulic properties. Binary images were taken of vertical and 

horizontal cross-sections of the synthetic rock samples. Thresholding of the images was 

performed to separate pores and matrix. Semivariograms were used to identify the spatial 

structure of the pore size distribution. Information about the spatial correlation provided 

by the semivariogram analysis was used to create three-dimensional simulations of pore 

distribution (Murata and Saito, 2003).  

De Gryze et al. (2006) conducted a study to explore the effects of decomposing 

residue on porosity and pore morphology in artificial aggregates compared to native field 

aggregates. X-ray computed tomography (CT) was used to visualize the pore space in 3D. 

Mass fractal dimension and variogram analysis were performed on the images to quantify 

the micro-meter scale changes in porosity and pore morphology. Both types of soil samples 

were found to have significant spatial correlation, apparent by the standardized 

variograms increase from a small nugget to a sill and the successful fit of an exponential 

model (De Gryze et al., 2006). Although variogram analysis successfully identified spatial 

correlation for the soils a meaningful or interpretable difference in porosity and pore 

morphology between the artificial and native field aggregates caused by decomposing 

residue was not identified.  

Houston et al. (2013) is another example of geostatistical techniques conducted on 

CT images at the sub-core scale. In this study indicator kriging is used to deal with image 

segmentation issues relevant to 3D CT images of naturally occurring heterogeneous 

materials such as soils. The method developed by Houston et al. (2013) is an extension of 

the commonly used indicator-kriging algorithm of Oh and Lindquist (1999). The results of 
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this study show that the proposed extension produce image segmentation results similar to 

that of the original method with a substantial decrease in cost (Houston et al. (2013). This 

paper indicates that adaptive window kriging is a viable solution to solving segmentation 

issues at micro-metric resolutions (Houston et. al, 2013).   

Finally, Carducci et al. (2014) conducted a study aimed at evaluating the spatial and 

morphological configuration of the pore space in core samples of kaolinitic Latosols. 3D 

images of the core samples were generated using an X-ray CT scanner. To prepare the 3D 

images for geostatistical analysis they followed an image processing technique in which 

grey-scale images were converted into binary images, distinguishing the void and non-void 

space (Carducci et al., 2014).  Semi-variograms were then computed to identify the spatial 

structure of the different soils. It was shown that greater spatial variability was apparent in 

the horizontal direction of the 3D images. The identification of spatial variability in 

agricultural soils is useful to monitor the effects agricultural systems have on pore 

distribution (Carducci et al., 2014).  

 These studies offer encouraging evidence that geostatistics can be used to identify 

spatial structure in the Kang et al. (2014) dataset. They also provide insight into a potential 

cause of sub-core scale heterogeneity (i.e. packing) within a nominally homogenous 

sandpack; as well as, recommend the use of geostatistics to identify the spatial structure of 

porosity. The previously mentioned studies typically relied on the binarization of CT 

images before using geostatistics. This research is unique in that geostatistics is applied to 

data evenly spaced on a Cartesian grid system at the sub-core scale, a method much more 

similar to how geostatistics is applied at the field scale.  
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CHAPTER 3 

METHODOLOGY 
 

Geostatistics is playing an increasingly significant role in hydrogeology and 

reservoir modeling. This increased role is driven by the need to visualize and quantify 

subsurface heterogeneity because of its control on groundwater flow, solute transport, and 

multiphase fluid movement. In this section, the process of applying geostatistics to identify 

sub-core scale heterogeneity in the Brooks and Corey water retention parameters 

estimated by Kang et al. (2014) is described. Subsequently, the correction process used to 

remove spatial dependency caused by the Kang et al. (2014) data collection procedure is 

described. The R statistical software (R Core Team, 2014) and SAS 9.2 (SAS Institute, Inc., 

1996) programs were used to conduct the geo statistical analysis in this section.  

3.1 Data 

Neutron imaging combined with the hanging water column method were employed 

by Kang et al. (2014) to measure point (pixel-scale) water retention curves for repacked 

Flint sand. The hanging water column setup consisted of a cylindrical aluminum container 

(inner diameter = 2.56 cm, height = 10 cm) connected with Tygon tubing via an outlet at its 

base to a burette filled with distilled water. Oven-dried Flint sand (~ 50 g) was saturated 

with water and then incrementally packed into the Al container up to 5.6 (± 0.1) cm (Kang 

et al., 2014). Before the drainage experiment, the sand column was fully saturated with 

water by raising the water level in the burette to a height approximately equal to the top of 

the sand pack and allowed to equilibrate overnight (Kang et al., 2014).  
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Neutron imaging of the sand column was performed using cold neutrons at the High 

Flux Isotope Reactor (HFIR) CG1-D beam line at Oak Ridge National Lab (ORNL), 

photographs of the experimental setup are shown in Figure 1 (all figures and tables are 

located in the appendix). The sand column was subsequently drained stepwise under 

quasi-equilibrium conditions by adjusting the height of the hanging water column to give 

various basal matric potential values of -2.1, -8.0, -11.8, -15.0, -16.6, -18.3, -20.8, -25.3, and -

46.7 cm (Kang et al., 2014). Radiographic images (Figure 2) were acquired at each quasi-

equilibrium state during the drainage process with an exposure time of 60s.   

A grid of 8 x 15 was superimposed on the images (Figure 2), and the individual 

volumetric water content values (θ) at these locations were combined with information on 

the known distribution of matric potentials (ψ) within the sample to give point water 

retention curves for the 120 selected locations (Kang et al., 2014). The point water 

retention data were parameterized by fitting the Brooks and Corey, BC, equation (Kang et 

al., 2014). The Brooks and Corey equation is given by:  

 � = ��									0 < � ≤ 	�
 

� = 		�� 	+ 	(�� 	− 		��) 	× 	��
� �� 										� > 	�
 

 

(1) 

where θ (cm3cm-3) is volumetric water content, θ� (cm3cm-3) is the saturated volumetric 

water content, 	θ� (cm3cm-3) is the residual volumetric water content, ψ� (cm) is the air-

entry value, and λ	(dimensionless) is the pore-size distribution index.  Equation (1) was 

fitted to the 120 point water retention data sets using segmented non-linear regression 

(Marquardt method) in SAS 9.2.  All of the fits converged successfully, except for 5 points 

which were excluded from further analyses. The median (and mean) RMSE and R2 values 

for the successfully converged fits were 0.019 (0.024) and 0.985 (0.975), respectively. 
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3.2 Preliminary Classical Statistics  

 Before applying geostatistics to the Kang et al. (2014) dataset each parameter was 

analyzed using classical descriptive statistical methods to obtain mean, median, variance, 

and standard deviation values. The correlation coefficient (r), coefficient of determination 

(R2), and scatter diagrams were used to identify correlations between parameters. The 

descriptive statistics, along with histograms, were used to examine the frequency 

distribution of each parameter.  The Shapiro-Wilk (SW) normality test (Shapiro and Wilk, 

1965) was used to detect non-normal data and Quantile - Quantile (Q-Q) plots were 

employed to visualize the SW results. Non-normal parameters were transformed either 

using a logarithmic (i.e. log10(x)) or inverse (i.e. 1/x) methods to obtain a normal or more 

normal distributions before applying geostatistical analysis. Transformed parameters were 

back-transformed before interpretation. Normality testing is essential because 

geostatistical methods are optimal when data are normally distributed, and significant 

deviations from normality can cause problems with spatial prediction (Bohling, 2005). 

These preliminary steps were performed in an effort to ensure quality results from the 

geostatistical analysis.   

3.3 Trend Surface Analysis 

To understand the main purpose of conducting a trend surface analysis some basic 

restrictions of geostatistics must first be briefly discussed. In order to perform geostatistics 

a weak form of stationarity known as the intrinsic hypothesis must be satisfied (Journel 

and Huijbregts, 1978). The intrinsic hypothesis as described by Vieira et al. (2010) requires 

that the mean and semivariance depend strictly on the separation distance of samples and 
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not on their coordinate location (Vieira et al., 2010). Often, experimental data will not 

satisfy this restriction because of an underlying trend; therefore, a trend removal 

procedure is warranted to perform geostatistics (Vieira et al., 1983). This necessitates the 

use of trend surface analysis to remove the trend.  A trend surface is fit to the experimental 

data by the method of least squares; then the predicted trend surface is subtracted from 

the experimental data leaving only the residuals. Geostatistical analysis is then performed 

on the residuals, which satisfies the intrinsic hypothesis.  

The first objective of the trend surface analysis is to visualize, in 2-dimensions, 

trends within the soil column for each of the BC parameters. This is accomplished by fitting 

a second degree polynomial equation to the experimental data using the linear model 

function in R (R Core Team, 2014). The second degree polynomial equation is given by:  

 �̂� 	= 	 b� 	+	b�x	 +	b!y	 + b#x! 	+	b$y! 	+ 	b%xy (2) 

where �̂� is the estimated Brooks and Corey parameter, b0 is the y-intercept, b1 and b2 are 

first degree coefficients of the slope of the x and y coordinates, b3 and b4 are second degree 

coefficients corresponding to the curvilinear trends of x2 and y2, and b5 is the coefficient for 

the cross product term, x × y. R uses Ordinary Least Squares (OLS) to estimate the slope 

coefficients (bi), and fit the polynomial to the experimental data. Once the trend surface is 

fitted to the data the following statistics are available to determine goodness of fit and 

significance of the trend surface: coefficient of determination (R2), F-statistic, probability 

associated with the F-statistic (p > F), residual degrees of freedom (Residual DF), model 

degrees of freedom (Model DF), standard error (SE), t-value, and probability associated 

with the t-value (p > | t |).  
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OLS fits a regression plane to the experimental data by minimizing the residuals 

(the vertical distances to the plane). In other words, OLS attempts to find a “best fit surface” 

that minimizes the distance between the experimental data points and the predicted 

surface. OLS fits the experimental data to the polynomial so that the sum of squared 

residuals (SSR) is minimized, i.e.:  

 &&' = 	([	�� −	�̂�]!+
�,�  

 
(3) 

where �� is the actual value and �̂� is the predicted value. OLS is an appropriate approach 

when trying to fit a polynomial trend to spatial data; however, it is not a good interpolation 

technique because it does not assume residuals are spatially correlated (Dubrule, 2003). 

Trend surface analysis is a global interpolator that uses polynomial regression to fit a 

single function to all points in the study area. Interpolation using geostatistics employs 

information provided from a local, spatially correlated neighborhood.  The variogram 

(discussed in detail later) is used to describe the spatial structure within the neighborhood 

and assign weights to measured data to make predictions. To make a distinction between 

these interpolation techniques, trend surface analysis identifies a global spatial trend while 

geostatistics identifies local spatial trends based on autocorrelation. 

There are two questions to pose when evaluating how well the model describes the 

experimental data. First, how well does the trend surface fit the experimental data? This is 

typically referred to as goodness of fit and is measured using R2  (Neiman, 2007). There are 

three types of variation which are of interest when describing the goodness of fit: the 

aforementioned SSR, the total sum of squares (SST), and the model sum of squares (SSM). 

SST is the total variation in the experimental data, and is computed by: 
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 &&- = 	([	�� −	��̅]!+
�,�  

 
(4) 

where, ��̅, is the mean of the experimental data. SSM is the amount of variation accounted 

for by the model, and is calculated by: 

 &&/ =	([	�̂� −	��̅]!+
�,�  

 
(5) 

The R2 statistic is used to summarize how well the experimental data predicted from the 

model match the actual values. It can be calculated as: 

 

 '! = 1 −	&&'&&- 
(6) 

Second, is the trend surface statistically significant (i.e. does the model account for more 

variation than can be expected by chance)? The statistical significance of the trend surface 

can be measured using the F-statistic, and its associated p-value. The F-statistic is 

calculated by:  

 1 − 234352356 = 	/789:	;4<54=69><<7<	;4<54=69  
(7) 

where Model variance is calculated by dividing SSM by the Model degrees of freedom (DF), 

and the Error variance is calculated by dividing SSR by the Residual DF. If the achieved F-

statistic is greater than or equal to the F-statistic obtained purely by chance, the model 

significantly predicts the underlying trends in the experimental data (Neiman, 2007). The 

significance level for the probability associated with the F-statistic was set at 0.05 (i.e. 95% 

confidence level) and was used to determine whether the achieved F-statistic, under the 

null hypothesis that all model coefficients are zero, could have arisen from sampling error 
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alone (Neiman, 2007). If the p-value associated with the F-statistic is less than or equal to 

0.05 the null hypothesis is rejected. 

Once the F-statistic and associated probability confirm that the overall model has a 

significant trend the t-value is used to determine the significance of specific trend 

directions. The t-value is calculated by:  

 3 − ;4:?9 = 	 @�&> 
(8) 

where bi is the slope coefficient and SE is the standard error. The significance level for the 

probability associated with the t-value was also set at 0.05 and was used to determine 

whether a particular slope coefficient is significantly different from zero. If the p-value 

associated with the t-value is less than or equal to 0.05 the specific trend 

direction/component is significant and contributes to the overall trend surface. The 

identification of specific trend directions is necessary for a specific form of geostatistics, 

known as Universal Kriging, which will be discussed later. 

3.4 Detrending 

Before the experimental data can be adequately analyzed using geostatistics the 

intrinsic hypothesis must be satisfied by trend removal (Vieira et al., 1983). Fortunately, 

there is a very simple and effective way of detrending the experimental data (Vieira et al., 

2010). As previously mentioned, a trend surface is fitted to the data using OLS in order to 

identify the trend directions that significantly contribute to the overall trend surface. Next, 

a new variable, known as the residual variable, is constructed by subtracting the value of 

the trend surface function from the experimental data (Vieira et al., 2010): 

 ��A� =	�� −	�̂�  (9) 
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The newly calculated ��A� is then analyzed again to ensure that the trend removal was 

successful.  

By removing the trend there is a change in scale for the data. Because the trend 

surface describes the overall spatial variation for the variable, 	��A� will produce a new 

surface which will contain simply the remaining surface roughness and its values will 

fluctuate above and below zero (Vieira et al., 2010). If the degree of the trend surface 

sufficiently describes the underlying trend of the parameter the mean value of the residuals 

should be zero (Vieira et al., 1983). After detrending, the geostatistical analysis will be 

performed on the residual variable; the trend surface should be added back for the final 

steps in the geostatistical process.  

3.5 Spatial Interpolation 

3.5.1 Introduction 

Geostatistical methods are well documented (Isaaks and Srivastava, 1989; Cressie, 

1993; Goovaerts, 1997), but for the purpose of better understanding the spatial 

interpolation techniques to be used in this study, a brief account of the relevant methods 

(Kumar and Remadevi, 2006) will be given here. Geostatistics is based on the theory of the 

regionalized variable, defined by Materon (1971) as a property or process that spreads in 

space and exhibits a certain spatial structure. In order to make interpolations and 

adequately describe the processes controlling the regionalized variable, geostatistics is 

employed. Geostatistics uses the empirical semivariogram to create a model for spatially 

correlated variables to interpolate unsampled locations using a technique known as kriging 

(Hartkamp et al., 1999). The gstat package in R (Pebesma, 2004) was used to conduct the 
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geostatistical analysis in this study. The program can compute an empirical semivariogram, 

fit the semivariogram with a theoretical model, estimate values at unmeasured locations 

using several forms of the kriging equation (i.e. simple, ordinary, universal, co-kriging), and 

validate the kriging results using “leave-one-out” cross-validation. 

3.5.2 Empirical Semivariogram and Cross - Variogram 

The empirical semivariogram is a central concept in geostatistics. It models the 

spatial structure of the regionalized variable and provides weighting information to the 

kriging algorithm for interpolation. The semivariogram is of the form:  

 B(ℎ) = 12E(ℎ) ([�(F�) − 	�(F� + ℎ)]²G(H)
�,� 	  

(10) 

where B(ℎ) is the estimated semivariance for the lag distance h; 	E(ℎ) is the number of 

experimental pairs separated by vector h; and �(F�) and �(F� + ℎ) are the values of variable  

�  at positions F�  and	F� + ℎ, respectively. Huysmans and Dassargues (2006) provide a 

simple explanation of the semivariogram, “as the sample semivariance described as a 

function of spatial separation.” Small semivariance values indicate a high degree of spatial 

correlation between parameter values separated by the lag vector; whereas, large 

semivariance values indicate a low degree of spatial correlation (Huysmans and 

Dassargues, 2006).  

In order to describe spatial relationships between parameters, the cross-variogram 

is used. The cross-variogram enables the characterization of spatial dependency between 

two variables. For locations where measurements of two parameters u and v have been 

made, the cross variogram can be calculated using the following equation (Oliver, 2010): 
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 BIJ(ℎ) = 	 12E(ℎ)	([	�I(F�
G(H)
�,� ) −	�I(F� + 	ℎ)]	[�J(F�) −	�J(F� + 	ℎ)]  

(11) 

where BIJ(ℎ) is the cross variogram comparing parameters u and v, and h is a lag distance 

separating two locations F�  and  F� + 	ℎ (Papritz et al., 1993). The cross variogram is a 

measure of cross variability between two different parameters, and it addresses whether 

the change in one parameter is spatially similar to another (Lloyd, 2014). To compute the 

cross-variogram both parameters must be correlated and have common measurement 

locations (Oliver, 2010).  In this study, all BC parameter values were calculated at the same 

locations using a superimposed grid on the neutron radiographic images. 

3.5.3 Semivariogram Model 

Fitting an appropriate theoretical model to the empirical semivariogram is another 

important step in geostatistical analysis. Three of the most commonly used models, 

spherical, exponential, and Gaussian, were fitted to the empirical semivariogram of each BC 

parameter. These theoretical models take the following mathematical form (Orjuela-Matta 

et al., 2012) :  

 Spherical:	B(ℎ) = 	U6V +	6� ∗ 	X32 Zℎ4[ −	1	2 	Zℎ4[
#	\ 	ℎ	 ≤ 4

6V +	6�							ℎ > 4																																			 ] 
 

(12) 

 Exponential:	B(ℎ) = 6V +	6� ∗	Z1 − exp Z−3ℎ4 [[	 (13) 

 Gaussian:	B(ℎ) = 	 6V +	6� ∗ 	X1 − exp X−3ℎ!4! \\ 
(14) 

where B(ℎ) represents the theoretical semivariogram dependent on the lag distance	ℎ, a 

represents the range or decorrelation length, 61 and  67 represent the partial sill and 

nugget, respectively. The gstat package in R (Pebesma, 2004) uses non-linear regression in 
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OLS to fit the theoretical model to the empirical semivariogram using an iterative process 

where the range, partial sill, and nugget are determined. The range measures the limit of 

spatial dependence for each BC parameter and is the distance at which the variogram reaches 

its sill (67+ 61). The sill represents the point at which the semivariogram levels-off. This plateau 

occurs because at some lag distance points being compared are so far apart they are no longer 

related to one another; at this point their squared differences are equal to the variance around 

the average value (Davis, 2002). The nugget is the y-intercept of the variogram (Lakhankar 

et al., 2010). It can be caused by variability at very short distances for which no pairs of 

observations are available, sampling inaccuracy, or inaccuracy in the instruments used for 

measurement (Hartkanmp et al., 1999).  

The goodness of fit of the theoretical model to the empirical data is determined 

using R2 and Normalized Root Mean Square Error (NRMSE). The NRMSE is a non-

dimensional form of the Root Mean Square Error (RMSE), and is computed by dividing the 

RMSE by the range of the observed data. The NRMSE is useful for comparing goodness of fit 

for parameters with different units. The theoretical model with the highest R2 and lowest 

NRMSE was said to be the most appropriate model to represent the empirical 

semivariogram; this is referred to as the “best fit model.” Later in the study, cross-

validation will be performed to validate the best fit model selection by testing the 

predictive ability of each model. An optimal theoretical model will be chosen based on a 

collection of information gathered from this section and the cross-validation section.  

Fitting of the semivariogram with a theoretical model is necessary for several 

reasons. First, the kriging algorithm requires input for all distances and directions, while 

the empirical semivariogram was calculated for specific distances and directions. Second, a 
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model provides a convenient parametric form of the semivariogram. Finally, an 

appropriate model is needed to ensure a positive definite covariance matrix, which is a 

requirement of kriging (Tang, 2005). 

3.5.4 Kriging 

After fitting a theoretical model to each empirical semivariogram, kriging is 

performed to interpolate BC parameter values at unmeasured locations using the gstat R 

package (Pebesma, 2004). Kriging is a generic term for several techniques (e.g. simple, 

ordinary, universal, and co-kriging) used to estimate spatially dependent data at 

unsampled locations based on a weighted linear sum of measured data (Majani, 2007). The 

weights used in the kriging algorithm are derived from the modeled semivariogram. 

Goovaerts (1997) states that, “all kriging estimators are but variants of the basic linear 

regression estimator Z*(x) defined as:” 

 e∗(F) − 	f(F) = 	( g�(F)	[e(F�) − f(F�)]
+(h)
�,�	 	  

(15) 

where F	is a measured value inside a spatially related neighborhood around the estimation 

location	F�; =(F) is the number of data points located inside the spatially related 

neighborhood used to make an estimation of  e∗(F), i.e. only the closest points are 

significantly important; f(F),f(F�) are the expected mean values of 	e∗(F) and e(F�), 

respectively; and g� 	(F) is the kriging weight assigned to �(F�), a realization of the 

regionalized variable e(F�) (Davis, 2002; Goovaerts, 1997). 
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All forms of kriging share the same objective, namely to determine the weights,  g�, 
that minimize estimation variance under the unbiasedness constraint (Goovaerts, 1997). 

Shown mathematically as: 

 jk	! (F) = l4<me∗(F) − 	e(F)n	 (16) 

minimized under the unbiasedness constraint, 

 >me∗(F) − 	e(F)n = 0	 (17) 

The kriging form will differ based on the model adopted for the random function 

(RF) e(F), which can be broken down into a trend component, -(F),	 and a residual 

component '(F): 

 e(F) = '(F) + 	-(F)	 (18) 

The residual component is modeled as a stationary RF with mean equal to zero and 

covariance function that depends only on lag, h, not position, x (Bohling, 2005): 

 >m'(F)n = 0	 
(19) 

 o7;m'(F), '(F + ℎ)n = >m'(F) ∗ '(F + ℎ)n = op(ℎ)	 
The residual covariance function, CR(h), is derived via information provided by the 

semivariogram model, i.e. 

 op(ℎ) = 	&5:: − 	B(ℎ)	 (20) 

therefore, the semivariogram model used in the kriging program will represent the 

residual component of the variable (Bohling, 2005). The expected value of the random 

variable Z at location x is thus the value of the trend component at that location (Goovaerts, 

1997): 
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 >me(F)n = f(F)	 (21) 

The three main kriging variants, simple, ordinary, and universal differ according to their 

treatment of the trend component, f(F).  

Simple kriging (SK) is mathematically the least complicated, as the name implies, 

and considers the mean, f(F), to be known and constant throughout the study area 

(Goovaerts, 1997). This assumption is satisfied when dealing with residuals from a function 

fitted by least squares (i.e. trend surface residuals), in this case the mean is zero (Davis, 

2002). A form of simple kriging, known as residual kriging (RK), will be utilized in this 

study to deal with non-stationary regionalized variables. In RK the trend is estimated 

(using trend surface analysis) then removed from the data. The empirical semivariogram 

and fitted model are computed for the residuals in the previously stated manner, and then 

the residuals are kriged to obtain estimates. Finally, the trend is then added back to the 

kriged estimates to produce the final result.  

Ordinary Kriging (OK) differs from SK in that the requirement of a known mean is 

dropped. OK accounts for fluctuations in the mean by limiting the domain of stationarity to 

the local neighborhood (Goovaerts, 1997). Where SK assumes a stationary known mean, 

OK assumes a stationary but unknown mean; Universal Kriging (UK) is a further 

generalization of the kriging procedure that removes the restriction of a constant mean. UK 

performs in a simultaneous process what would otherwise consist of three arduous steps: 

trend removal, kriging of residuals, and adding back the removed trend to residual 

estimates (Davis, 2002). In the gstat package (Pebesma, 2004) the underlying geographic 
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trend of the parameter is first determined using trend surface analysis and then supplied to 

the UK algorithm.  

Co-kriging is an extension of the basic kriging algorithm that allows information 

provided by a spatially correlated co-variable to supplement the estimation process of the 

primary variable. For example, if  =q(F) saturated water content data, e!(Fq), are available 

in addition to the =�(F) air entry data, e�(F�), the simple co-kriging estimate for the 

primary variable at any unsampled location x is: 

 e∗(F) −	f� =	 ( g�(F)	[e�(F�) − f�]
+r(h)
�,�	 	+ ( gq(F)	se!(Fq) − f!t

+u(h)
q,�	 	  

(22) 

where f� and f! are the primary and secondary means assumed known and constant 

within the study area (Goovaerts, 1998).  Kriging and co-kriging are theoretically identical 

and abide by the same unbiasedness and minimization requirements. The only difference 

being cokriging models four covariance functions as opposed to a single covariance 

function for kriging: 

 o��(ℎ) = 	o7;me�(F), 	e�(F + ℎ)n 
o!!(ℎ) = 	o7;me!(F), 	e!(F + ℎ)n 
o�!(ℎ) = 	o7;me�(F), 	e!(F + ℎ)n 
o!�(ℎ) = 	o7;me!(F), 	e�(F + ℎ)n 

(23) 

where o�!(ℎ) is assumed to be identical to o!�(ℎ) (Goovaerts, 1997). It has been reported 

in several studies (Goovaerts, 1997; Hartkanmp et al., 1999; Majani, 2007) that co-kriging 

should be applied when the primary variable is under sampled. In this study all parameters 

have an equal amount of data points; therefore, co-kriging is used as an attempt to improve 
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prediction by incorporating information gained by the spatial correlation between different 

BC parameters.  

3.6 Cross-validation 

Cross-validation (CV) allows one to compare the effects of different semivariogram 

models and kriging techniques on interpolation results (Goovaerts, 1997). The method 

consists of selecting a theoretical model and associated parameters for the underlying 

semivariogram, removing one of the measured values from the data set, then re-estimating 

the removed value at that location by kriging with the selected theoretical model (Vieira et 

al., 2009). This is referred to as “leave-one-out” CV. This approach was used for several 

purposes in this study: first, validation of the theoretical semivariogram model selection; 

second, performance comparison for different kriging techniques (i.e. simple, ordinary, 

universal, co-kriging); and third, the suite of estimated values was used to compute 

detrended kriged maps (discussed further in the “Trend Correction” section). 

The initial reason for employing leave-one-out CV was to confirm the model 

selection based on goodness of fit.  CV achieves this by evaluating the predictive ability of 

the entire geostatistical model, which includes the semivariogram model and kriging form. 

Variations of the kriging method and semivariogram model are tested to determine which 

combination results in the most accurate predictions. There is a difference between how 

well a theoretical model fits the empirical data and how well the kriging estimator, using 

that model, interpolates values at unsampled locations. The goodness of fit is an indication 

as to which model will achieve the best predictions, but this relationship is not perfect; 

therefore, CV is used to validate the “best fit model” based on interpolation results.  
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In order to validate the selected semivariogram model (chosen based on the criteria 

listed in the previous section, i.e. R2 and NRMSE) the kriging form is held constant while 

other theoretical models (with lower R2 and higher NRMSE values) are tested. Once the 

best fit model selection is confirmed, the kriging variants are tested while keeping the 

theoretical model constant. An optimal geostatistical model is chosen based on all available 

information, goodness of fit and predictive ability. The predictive ability of a geostatistical 

model is determined by comparing interpolated and actual values; as well as, conducting a 

performance evaluation which directly compares kriging methods.  

The difference between the estimated and known values (CV residuals) can be 

investigated using several statistical tools to assess predictive ability. The one-to-one graph 

of the CV residuals is commonly used and is computed by (Vieira, 2009): 

 e∗(F�) 	= 	4 + @ ∗ e(F�) (24) 

where a is the intercept, b is the slope, Z(xi) and Z*(xi) are measured and estimated values, 

respectively. Assuming the ideal scenario Z(xi) and Z*(xi)  would be identical, resulting in a 

correlation coefficient (r) and b of unity, and an a of zero, with the graph of Z(xi) and Z*(xi) 

being a series of points on the one-to-one line (Vieira, 2009). If a (the intercept) is positive 

predicted values are always an overestimation of observed values, and if a is negative the 

inverse is true. If b (the slope) is less than unity then the estimator, Z*(xi), is overestimating 

small values and underestimating large values, while if b is greater than the opposite is 

true. The quality of the estimation can be assessed by these parameters. Another very 

powerful statistical metric that can be derived from the one-to-one graph is NRMSE. In this 
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section NRMSE is employed to determine predictive ability, while it was previously used to 

evaluate goodness of fit.  

 A separate performance evaluation was conducted for the kriging methods by 

calculating percent prediction accuracy (% PA). The % PA was determined by directly 

comparing CV estimated values for the three kriging forms used in this study (i.e. OK/RK, 

UK and CK) to observed values. The number of times the absolute value of the difference 

between the CV estimated value and the actual value was smallest for a particular kriging 

method was summed, Nb, then divided by the total number, Nt, of measured values (i.e. 

115) and multiplied by 100. Given in mathematical form by: 

 %	w<9856357=	x66?<46y	 = 	EzE{ ∗ 100 (25) 

The sum of the computed %PA for each kriging form will be 100%. The optimal kriging 

estimator was determined using the following criteria: goodness of fit (i.e. R2 and NRMSE), 

statistics derived from the one-to-one graph (a, b, r, and NRMSE), and %PA. By 

incorporating the information gained from several statistical criteria the most appropriate 

semivariogram model and kriging form was chosen to compute the final kriged map for 

each spatially dependent parameter.  

3.7 Trend Correction 

As previously mentioned in the CV methods section, the suite of CV estimated values 

was used to compute detrended kriged maps of spatially correlated BC parameters. This 

was done in an effort to remove any spatial correlation resulting from the data collection 

procedure conducted by Kang et al. (2014). To identify the true controls of flow and 
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transport at the sub-core scale, the Kang et al. (2014) dataset, hereafter referred to as the 

Kang data, must be devoid of procedural spatial structure. Failing to remove this type of 

spatial structure will result in misinterpretation of the true geologic controls on fluid 

movement. This section presents the methods used in order to develop a technique using 

geostatistics to remove non-geologic spatial structure.  

 The CV estimated values were used in the same manner as the Kang data to compute 

a kriged surface. The necessary steps are briefly presented here:  

1. Preliminary statistics were used to summarize the CV data and test for normality 

2. Non-normal data were transformed using an inverse transformation 

3. Normally distributed data were used in a trend surface analysis to identify 

significant trends 

4. Significant trends were removed by subtracting the trend surface function from the 

CV data (Vieira et al., 2010), this process created a new residual variable 

5. An empirical semivariogram was computed for the detrended CV data 

6. Theoretical models were fit to the empirical semivariogram and their fit was 

assessed using R2 and RMSE 

7. Cross-validation was used to validate the selected theoretical model 

8. Finally, the same kriging method used to obtain the CV values was used to compute 

a kriged map of the CV data 

Up to this point kriged maps have been computed for spatially correlated BC 

parameters and their CV estimated values. Now CV kriged estimates will be used to remove 

non-geologic spatial structure from the Kang data. The manner in which this was 
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accomplished is very similar to that of the detrending procedure already discussed. The 

difference between the Kang and CV kriged values is calculated. The computed residual 

value is then added to the average of the Kang data kriged predictions to create a new 

variable. This calculation is illustrated by: 

 e�
 = 	 (e| −	e}J) +	 e̅| 	 (26) 

where Zk and Zcv represent Kang and CV kriged estimates, respectively; e̅| signifies the 

mean of Zk; and Zra is the corrected BC parameter. The new variable, Zra, is then mapped to 

visually represent the now detrended BC parameter. In the next section this procedure will 

be validated using independent data. 

3.8 Validation 

In this section several nonparametric statistics and plots are presented in an 

attempt to validate the trend correction process, and explain obvious trends in the BC 

parameter kriged maps. The Mann-Whitney (MW) and Kolmogorov–Smirnov (KS) two 

sample tests were employed to validate the spatially-corrected BC parameters against  BC 

parameters for Flint sand independently collected by Cropper (2014). In the Cropper 

(2014) study nine water retention curves were measured using the hanging water column 

method for Flint sand columns of various lengths (4.3 cm to 55 cm), and point BC 

parameter values were inversely computed from the measured water retention data using 

Trucell (Jalbert et al., 1999). Proving that the spatially-corrected data is not significantly 

different from the independent point data will indicate that the trend correction process 

was successful. The level of significance or alpha (α) value, used for hypothesis testing in 

this section was set at 0.05 (Harned, 1995) . If the test probability level was less than or 
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equal to α = 0.05, then the null hypothesis that both groups have the same distribution is 

rejected (Harned, 1995). The statistical software pack used in this section was SAS 9.2 (SAS 

Institute, Inc., 1996). 

The MW test is a nonparametric test that checks for equivalence of medians of two 

sample populations (Davis, 2002).  This statistical test combines and ranks all values from 

the sample populations while paying no attention to which group individual values belong 

to. The smallest number is given a rank of 1, the largest number is ranked N, where N is the 

total number of values in the two sample populations.  The MW test statistic is the sum of 

the ranks for observations from one of the samples, usually the smaller sample, and is 

denoted by W. Exact probabilities of occurrence for specified values of W have been 

worked out and are available in statistical tables for small sample sizes (Davis, 2002). For 

large sample sizes, W is approximately normally distributed and can be tested using the 

standard normal table to calculate probabilities (Davis, 2002).  

The KS two sample test compares the cumulative relative frequency distributions of 

two data sets, and computes an α-value dependent on the largest absolute difference 

between the distributions. This maximum difference is the KS statistic, D (Davis, 2002). The 

KS test checks for any violation of the null hypothesis (i.e. differences in median, variance, 

or distribution); because of this, it has less power to detect shifts in the median but more 

power to detect changes in the shape of the distributions (Lehmann and D’Abrera, 2006). 

The α-value is used to determine the chance that the calculated KS D-statistic would be as 

large or larger than critical values of D (Davis, 2002). If the α-value is ≤ 0.05 it can be 

concluded that the two sample populations are drawn from different populations.  
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The Kruskal-Wallis (KW) test along with plots of the interquartile range (IQR) for 

each parameter, were used to validate the trends visually apparent in the kriged maps. The 

KW test is used to test the equivalency of several samples (Davis, 2002). In this case the 

samples are equivalent to the number of points along the x and y directions of the grid (8 X 

15) superimposed over each radiographic image. There were eight points, k = 8, in the x 

direction, and 15 points, k = 15, in the y direction, both directions had unequal sample 

sizes.   The KW test was performed in the x and y directions for each parameter resulting in 

a total of eight tests. The procedure of this test is very similar to that of the MW test, except 

it is extended to more than two samples. The observations from k samples are pooled and 

then ranked from smallest to largest. For each k group the sum of the ranks is found by: 

 '| =	('(F�|)+~

�,� 	 (27) 

where R(xik) represents the rank of the ith observation in the kth sample (Davis, 2002). The 

total number of observations N is determined by: 

 E =	(=|
|

q,� 	 (28) 

where nk is the number of observations in the kth sample (Davis, 2002). From the sum of 

the ranks the KW H-statistic can be calculated: 

 � =	 12E(E − 1)	(['| −	=| 	(E + 1)/2]!=|
|

q,� 	 (29) 
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H is approximately distributed as chi-squared (χ2) with k-1 degrees of freedom; therefore, 

χ2 can be used to evaluate probability. If significant differences were detected by the KW 

test, the IQR was plotted for graphical comparison to identify dissimilar distributions.  
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CHAPTER 4 

RESULTS AND DISCUSSION 
 

4.1 Fitting the Brooks and Corey Equation 

2-D neutron radiographic images of volumetric water contents at nine imposed 

basal matric potentials were obtained during drying of Flint sand at the HFIR CG1-D 

beamline. A total of 120 point soil water retention curves were obtained from these images 

as described earlier. The Brooks and Corey (BC), Equation (1), was fitted to each curve 

using segmented non-linear regression in SAS and 98.5% of the fits converged successfully 

yielding 115 sets of the four BC parameters. The RMSE of the fits ranged from 0.005 to 

0.078 cm3cm-3, while the R2 values (from predicted versus observed values) were between 

0.860 and 0.999. The median (and mean) RMSE and R2 values were 0.019 (0.024) and 

0.985 (0.975), respectively.  

4.2 Classical Descriptive Statistics 

 The best fit values of the 115 sets of point BC parameters (Ѳs, Ѳr, ψa, and λ) ranged 

between 0.30-0.55 cm3/cm3, 0.00-0.06 cm3/cm3, 14.50-19.10 cm, 3.55-17.59, respectively. 

These parameters were first summarized using classical descriptive statistics (Table 1) and 

histograms (Figure 3).  The histograms reveal considerable sub-core scale variability in the 

repacked sand column possibly due to heterogeneity in local porosity, connectivity of 

pores, and pore-size distribution caused by the packing procedure employed (Kang et al. 

2014). The Ѳs parameter exhibited the greatest variation (Figure 3b, Table 1). The 

frequency distribution for Ѳs is clearly positively skewed, with some very high estimates of 

Ѳs. This is not surprising since Ѳs is likely to be quite sensitive to packing, edge effects and 
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surface variations (Kang et al. 2014). Furthermore, it represents an estimate of the water 

content at saturation, which is the condition that is least accurately measured by the 

neutron imaging method (Kang et al., 2014). 

 The Shapiro-Wilk (SW) test statistic, W, was used to evaluate normality of the 

frequency distributions of the four BC parameters. The results of this test are given in Table 

2. Asterisks (i.e. *, **, or ***) were used to denote the significance level of the SW test, and 

all other statistical tests employed. Table 3 lists the significance levels associated with the 

number of asterisks. The Quantile-Quantile (Q-Q) plots shown in Figure 4 can be used to 

visualize the SW results. Points on the Q-Q plot provide an indication of normality for each 

parameter. If the parameter is normally distributed, points will fall on a 45-degree 

reference line. Normality testing indicated that two of the four parameters were non-

normal at the highest significance level (i.e. ***), i.e. Ѳs and λ, with W statistics of 0.901 and 

0.951, respectively.  Kriging (see below) is optimal when parameters are normally 

distributed. Therefore, inverse (Ѳs) and logarithmic (λ) transformations were used to 

obtain near normal distributions before moving forward with the geostatistical analyses. 

The success of these transformations is shown in Table 2 with W statistics of 0.972 and 

0.993 for inverse Ѳs and log λ, respectively. Although, inverse Ѳs is shown to be non-normal 

at the lowest significance level (i.e. *) the transformed parameters Q-Q plot shown in Figure 

4e demonstrates that the transformation obtained a near-normal distribution. Moving 

forward all trend surface and geostatistical analyses will be conducted using the 

transformed parameters. 
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 Scatter diagrams, along with r, and R2 statistics were used to indicate significant 

linear relationships between the BC parameters (Figure 5). In the ideal scenario, a 

correlation between two parameters is either +1 or -1; between these two extremes lies a 

spectrum of less-than-perfect relationships, including zero, which indicates no correlation 

(Davis, 2002). Of the six possible relationships, four were found to be significant with r and 

R2 values ranging from -0.44 to 0.51 and 0.033 to 0.255, respectively. Only one of the four 

significant relationships was between parameters that turned out to be spatially correlated 

(see below), i.e.  Ѳs vs.  ψa (r = -0.44, R2 = 0.197). The implications of this relationship will 

be discussed further in the following sections. 

4.3 Trend Identification Using the Kruskal-Wallis Test 

The Kruskal-Wallis (KW) test was employed to test the equivalence of sample 

intervals in the x- and y-directions of the grid superimposed over the neutron images and 

to identify 1-dimensional trends. Quantifying trends using the KW test offers an alternative 

trend identification method to the trend surface analysis (which will be discussed in the 

next section). The results from the KW test can be found in Tables 4 and 5 for the x- and y-

directions, respectively.  Within each table, χ2 was used to evaluate probability and 

asterisks were used to signify significance levels, with results provided for those 

parameters with significant trends. Table 4 shows statistical differences in the x direction 

for Ѳs and Ѳr. The trend found in Ѳs was at the highest significance level (χ2 = 36.1 ***) while 

the trend in Ѳr was at the lowest significance level (χ2 = 14.4 *). These results are illustrated 

in Figure 6, which is a plot of the interquartile range (IQR) for each sample interval in the x-

direction. The plot for Ѳs (Figure 6a) shows a bulge of high median values for the central 
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sample intervals (9.6 mm – 19.2 mm). This may be an indication that the estimation of Ѳs 

was effected by variable path lengths caused by the cylindrical shape of the sand column. 

The plot for Ѳr (Figure 6b) indicates a trend of increasing values across the soil column 

from the 3.2 mm sample interval to the 25.6 mm sample interval.  

In Table 5 it is shown that ψa and λ experience significant differences among sample 

intervals in the y-direction with χ2 values of 48.7 and 29.6 at the highest and lowest 

significance levels, respectively. Figure 7 shows a plot of IQR in the y-direction for the 

significant parameters in Table 5, this plot indicates where the statistical differences 

occurred for ψa and λ. The plot for ψa shown in Figure 7a shows a clear trend of increasing 

median values from the top to the bottom of the column. This trend may indicate that 

compaction occurred during sample preparation. Although a significant difference was 

found between sample intervals in the y-direction for λ, the plot shown in Figure 7b cannot 

be used to discern a specific trend direction. This may indicate that λ was unaffected by the 

methodology employed. These results are the first indication that the Kang et al. (2014) 

data collection procedure may have inadvertently caused trends in the BC parameters. To 

reiterate, significant differences among sample intervals were apparent in the x-direction 

for Ѳs and in the y-direction for ψa, these results will become important when interpreting 

the kriged maps of spatially correlated parameters below.  

4.4 Trend Surface Analysis and Detrending 

 Figure 8 shows trend surfaces for each of the BC parameters. It is evident from these 

initial images that the parameters have strong spatial trends.  Table 6 summarizes the 

statistics used to determine fit and significance of the trend surfaces.  The R2 values in 
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Table 6 are relatively low for all of the parameters indicating poor predictive capabilities. 

Since the main objectives of the trend surface analysis are to determine significant trend 

directions and provide rough estimates of the underlying trend directions the poor R2 

values are not troublesome. The F-statistic and associated significance levels, represented 

by asterisks, reveal that all parameters had significant trends. Table 7 contains t-values and 

their associated level of significance to identify significant trend directions.  

Major conclusions cannot be drawn from these results because the trend surface 

analysis does not account for spatial dependency and is a global interpolator, but initial 

inferences can be made. The Ѳs trend surface shows a strong tendency of high values in the 

center of the sand column, possibly caused by varying thicknesses of water across the 

cylinder. The trend surface of ψa suggests trends caused by packing and/or compressive 

stress during sample preparation.  It seems intuitive that low values would be prominent at 

the top of the column, whereas, compaction may lead to high values at the bottom. These 

results are consistent with those found during the KW test in the previous section. Both Ѳr 

and λ exhibit similar parabolic trends that illustrate their correlation (r = 0.51), but the 

extremely low R2 values 0.074 and 0.101, respectively, limit interpretation.  

The descriptive statistics in Table 8 summarize the residual values for the BC 

parameters after trend removal. Following the detrending procedure only the fluctuations 

above and below the fitted surface remains, resulting in very small mean values; this is an 

indication that the trends were successfully removed. The trend surface analysis was 

conducted again on the newly created residual variable, zres, for each parameter to ensure 

stationarity before moving forward with geostatistics. Also, to verify normality of the 
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residuals, the SW test was performed and the results are summarized in Table 9. The 

transformation and trend removal processes were successful at achieving near normal 

distributions for Ѳs and λ. The single asterisk for Ѳs indicates the parameter is still slightly 

positively skewed at the lowest significance level (i.e. <0.05), but to avoid employing a 

more complicated transformation technique the near-normal distribution was deemed 

acceptable.  

4.5 Spatial Interpolation 

4.5.1 Theoretical Model 

 As previously discussed there are two options for computing kriged surfaces of non-

stationary data. Option one involves OK of residual data (i.e. referred to as RK in section 

3.5.4), and option two entails UK of raw data. These two approaches employ different 

semivariograms to make predictions because the data used to compute them are not the 

same. This can become confusing and seem as if different semivariogram forms are used 

for OK as opposed to UK, but the computation of the semivariogram is the same for both 

methods. Tables 10 and 11 list the parameters (range, nugget, and sill) of the model with 

the best fit statistics (R2 and NRMSE), and the degree of spatial dependency (DSD) defined 

as the ratio of the nugget to the sill. These metrics were used to evaluate the goodness of fit 

of the theoretical models to the empirical semivariograms and to describe the extent of 

spatial correlation. In this section the “best fit model” describes the model with the highest 

R2 and lowest NRMSE. This signifies the optimal fit of a model to its empirical 

semivariogram. A true “best” semivariogram model is elusive; therefore, the most 

appropriate model is determined based on the statistics presented here and the following 
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section. The null hypothesis that there will be no spatial structure because the Kang et al. 

(2014) study was conducted for a nominally homogeneous material was rejected for two of 

the four BC parameters, Ѳs and ψa. 

In Table 10 the spherical model had the best fit statistics for all parameters, but was 

found to significantly fit only Ѳs and ψa. The R2 values for ψa and Ѳs are 0.884 and 0.784, and 

NRMSE values are 0.107 and 0.127, respectively. The ranges for ψa (14.8 mm) and Ѳs (16.2 

mm) were considerably larger than those of λ (8.12) and Ѳr (0 mm). According to Wei et al. 

(2007),  the DSD is classified as strong when it is less than 0.25, moderate when it is 

between 0.25 and 0.75, and weak when it is greater than 0.75. As can be observed in Table 

10, the DSD values for ψa (0.592) and Ѳs (0.385) indicate moderate spatial dependency, 

whereas, the values for λ (0.928) and Ѳr (1.00) indicate little to no spatial dependency.  

Figure 9 shows the residual semivariograms and best fit models for each parameter. 

The ψa and Ѳs display the characteristic curvilinear form of the semivariogram, while λ and 

Ѳr are sub-linear and linear, respectively. The flat semivariograms of λ and Ѳr reiterate the 

DSD results in Table 10. Attempting to perform spatial interpolation with these parameters 

would be meaningless; therefore, they are interpreted as pure nugget and will not be used 

to compute kriged maps. Additionally, ψa and Ѳs were shown to be spatially correlated and 

will be employed in the kriging plan.  

 The results of Table 11 are very similar to those of Table 10 except these data seem 

to have a higher degree of spatial correlation. This is because when using the residual data 

much of the redundant (drift related) variability in the empirical semivariogram is 

removed (Kitanidis, 1997). When using the raw data the trend swamps the empirical 



42 

semivariogram, making it difficult to infer the true covariance function of the parameter 

(Kitanidis, 1997), consequently some of the trend variability is interpreted as spatial 

structure.  

In Table 11 the spherical model was determined to have the best fit for ψa, Ѳs, and λ; 

gstat was unsuccessful at fitting a model to the Ѳr parameter. As seen previously, the 

spherical model achieved a significant fit for only ψa and Ѳs. The R2 and NRMSE statistics 

for ψa (0.833 and 0.121) suffered when using the raw data, but an improvement was 

observed for Ѳs (0.859 and 0.107). A decrease in range is apparent for ψa (12.9 mm), but a 

slight increase is shown for Ѳs (16.9 mm) and λ (8.12 mm). The DSD values for ψa (0.336), 

Ѳs (0.425), and λ (0.859) improved when using the raw data because the underlying trend 

is contributing to the spatial variability of the parameters. As before, the DSD for Ѳr was 

unity, indicating no spatial correlation. Figure 10 depicts graphs of the raw semivariograms 

and best fit models for the ψa, Ѳs, and λ parameters. These semivariograms repeat the 

results of the residual semivariogram analyses, demonstrating that ψa and Ѳs were spatially 

dependent while λ and Ѳr were not.  

 Of the six possible relationships between the BC parameters, four were found to be 

significant and only one of those four was among the spatially correlated parameters, i.e. ψa 

versus Ѳs. A cross-variogram was computed using the spatial relationship between ψa and 

Ѳs. The residual variable for each parameter was used during the computation to deal with 

stationarity. Table 12 lists the parameters of the best fit model and its fit associated 

statistics. The spherical model was confirmed as the best fit model with an R2 of 0.936 and 

NRMSE of 7.83e-2. In comparison the R2 and NRMSE for the cross-variogram is much better 
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than all other semivariogram fits. The range of the cross-variogram is between the 

individual ranges of each parameters semivariogram. The nugget (-1.17e-3) is very small in 

comparison the sill (-1.69e-2) resulting in a very low DSD, 6.92e-2. The DSD for the cross-

variogram indicates a much higher degree of spatial dependency than any other individual 

semivariogram. The nugget and sill of the cross-variogram were negative because ψa and Ѳs 

were negatively correlated (r = -0.44). This indicates that as one parameter increases the 

other decreases; as a result, kriged maps will develop inverse features. Figure 11 shows the 

cross-variogram of ψa and Ѳs with the fitted spherical model. The structural variance, the 

variance between the nugget and sill, is much larger for the cross-variogram than the 

comparable semivariograms. This higher degree of spatial structure will translate into 

more accurate kriged predictions later.  

 One of the main objectives of this study was to identify spatial structure in the BC 

parameters using semi/cross-variograms. Early on it was determined that any spatial 

structure found in the parameters must be a result of artificial heterogeneity due to 

measurement error or sample preparation because the Kang et al. (2014) study was 

conducted using a nominally homogeneous material. Considering the results of this section 

it is evident that the data collection procedure resulted in a moderate degree of spatial 

dependency for ψa and Ѳs and a very small degree of spatial structure for λ. From these 

results Ѳr seems to be unaffected by the methodology or the degree of spatial structure 

occurs on a scale smaller than the resolution of the data collection procedure.  
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4.5.2 Cross-validation  

In an effort to determine which procedural techniques resulted in the sub-core scale 

heterogeneity evident in the Kang et al. (2014) data, kriged maps will be computed for the 

spatially dependent parameters, ψa and Ѳs.  To ensure the optimal geostatistical model is 

chosen to compute the final kriged map, leave-one-out cross-validation (CV) was employed. 

This CV is used to determine how well the kriging estimator, with a particular model, 

estimates values at unsampled locations. In the previous section the most appropriate 

semivariogram model was chosen based on its fit of the empirical data, now its predictive 

ability will be tested with different kriging methods. The optimal geostatistical model is a 

combination of the best model and kriging method. The statistical methods used to 

compare the CV estimated values to raw data are presented here. 

The one-to-one graph of CV predicted values versus observed values was used to 

derive r, NRMSE, intercept (a), and slope (b) values to evaluate prediction accuracy. These 

statistics are given in Tables 13 and 14 for each kriging technique and its best predictive 

model for ψa and Ѳs, respectively. For ψa (shown in Table 13) the best prediction accuracy 

was achieved using the spherical model for OK and CK, and the Gaussian model for UK. Of 

the three kriging methods, CK had the best prediction accuracy with an r of 0.726 and an 

NRMSE of 0.122. From Table 13, the a and b values indicate that all kriging methods are 

overestimating small values and underestimating large values of ψa. This is evident in 

Figure 12 by comparing the one-to-one graph of the CK method to the theoretical one-to-

one line of correlation.  
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Table 14 shows all kriging methods achieved the best prediction accuracy using the 

spherical model for Ѳs. As with ψa, CK achieved the best prediction accuracy with an r of 

0.573 and an NRMSE of 0.146. Comparing the r and NRMSE values between ψa and Ѳs it is 

clear that more accurate predictions were obtained for ψa. All kriging methods for the Ѳs 

parameter overestimated small values and underestimated large values, as shown by a and 

b coefficients in Table 14. Figure 13 illustrates these results by comparing the one-to-one 

graph for each kriging method to the theoretical one-to-one line for Ѳs.  

A separate test of prediction accuracy was conducted, and the results are given in 

Tables 15 and 16 for ψa and Ѳs, respectively. In these tables the “Best Prediction” column 

indicates the number of times the CV estimated value by a certain kriging method was 

closer than its competitors when estimating one of the 115 experimental data points.  

Percent prediction accuracy (%PA) was calculated based of the “Best Prediction” column. 

Table 15 shows that CK was clearly superior to the other interpolators, making the best 

prediction 49% of the time.  These results support the data presented in Table 13 for ψa. As 

can be seen in Table 16, CK was also shown to be the best interpolator, but only by the 

narrowest of margins (1%). CK made the best prediction 41% of the time, whereas, UK was 

only slightly less accurate with 40%. The results presented here support the results given 

in Table 14 for Ѳs.  

 From the information provided thus far the optimal geostatistical model consists of 

both the spherical model and CK form for ψa and Ѳs. As stated by Goovaerts (1997) there is 

no “best” semivariogram model; as a result, the user should determine the model based on 

the information available and the objective to be accomplished. In this study the most 
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appropriate semivariogram model and kriging form were chosen based on the information 

put forth in the previous section and the CV results provided here. Now that the optimal 

geostatistical model (both semivariogram model and kriging form) has been chosen, kriged 

maps of the spatially dependent parameters, ψa and Ѳs, can be computed with confidence.  

4.5.3 Kriging  

 Up to this point speculations have been made as to the principal causes of 

spatial dependency in ψa and Ѳs. Now an in depth look at the spatial structure of the 

parameters can be made using the final kriged maps given in Figure 14. Starting with ψa, a 

layer of low values is shown at the top of the column. Possible causes of this include 

packing and compressive stress imposed by the weight of the overlying material in the 

sand column. During the packing process sand is incrementally added to the column in 

order to minimize its impact on fluid movement. Inevitably unnatural alterations are made 

to the sand pack which can cause method-based heterogeneity in a nominally 

homogeneous material. With each addition of sand, larger particles have the potential to 

move to the top resulting in a layer of low ψa values. In the kriged map of ψa this is only 

shown to have occurred at the top of the column. Otherwise layering would be evident 

throughout the sand column. Also, in general material will be looser and less compact at the 

top of the column because the grains are being subjected to less compressive stress. A 

second feature in the kriged map of ψa that is obvious is a large region of high values at the 

bottom of the column. Compaction of sand due to compressive stress is an intuitive 

explanation for these high values. As more material is added to the column during packing 

the weight of the overlying sand increases causing compaction. Greater compaction results 
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in larger capillary pressures needed to drain pores. The features found in the kriged map of 

ψa are a result of inconsistency in core packing; therefore, the alternative hypothesis can be 

accepted for this parameter.  

The most obvious feature in the kriged map of ψa is the zone of low values in its 

center. A physical process cannot be used to explain this observation; therefore, the 

relationship between ψa and Ѳs is used to propose an answer. The scatter diagram 

comparing ψa and Ѳs (Figure 5a) revealed a significant negative (r = -0.44 **) correlation 

between these parameters. The ψa value represents the pressure at which the largest pore 

throats begin to drain. When compaction occurs both the porosity and the size of the 

largest pore throats are affected. During compaction porosity decreases and the largest 

pore throats disappear preferentially. A decrease in porosity results in a reduction in the 

size of the largest pore throats and a corresponding increase in the ψa value; therefore, ψa 

is inversely related to porosity.  Since Ѳs is essentially a measure of porosity, an explanation 

of the features in the kriged map of Ѳs will provide an answer for the concentration of low 

ψa values in the center of its kriged map.  

Looking at the kriged map for Ѳs, a central tendency of high values is evident, with a 

hot spot of large values in the center of the column (Figure 14b). This is the inverse of the 

kriged map of ψa (Figure 14a). The central tendency of high values mimics the cylindrical 

shape of the aluminum column used to contain the sand pack. The shape of the trend 

suggests that the image analysis process may have contributed to the spatial structure in 

Ѳs. Before point values of volumetric water content were calculated and paired with 

capillary pressures to compute water retention curves, a normalization process was 

performed on the raw neutron radiographs. This normalization process was done to 
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remove the variable path lengths associated with the cylindrical column shape. The fact 

that a central tendency is still apparent in the kriged map of Ѳs suggests that this 

normalization procedure was not 100% in removing the effects of different path lengths.  

 To understand the sub-core scale heterogeneity shown in the kriged map of Ѳs a 

detailed explanation of the imaging process is given here. Wet neutron radiographs were 

acquired during the drainage process of the sand column. After the final drainage step, the 

sand column was oven drained and imaged again to obtain a dry image of the sand pack. 

The collected raw images (wet and dry) were normalized with respect to reference images 

of the open beam and dark field to correct for background noises, inhomogeneities in the 

beam detector, and fluctuations in the neutron flux (Kang et al., 2014). Normalized wet 

images were then divided by normalized oven dry images to calculate water thicknesses 

across the sand column. The water thickness of each pixel was computed using an 

attenuation and correction coefficient previously obtained at the HFIR CG 1-D. 

Subsequently, volumetric water content was calculated for individual pixels by dividing the 

measured water thickness by the beam path length, which is the chord length for a circle 

(Kang et al, 2014).  This normalization process essentially flattens out the sand column. 

The central tendency of high values in the kriged map of Ѳs illustrate that the normalization 

process was not completely effective.  

 The hotspot of high values in the center of the kriged map for Ѳs can also be partly 

attributed to neutron scattering. Neutrons are attenuated by the water in the sand column 

resulting in increased scatter and decreased neutron intensity. Raw neutron radiographs 

are a measure of neutron intensity; therefore, little or no detection of neutrons 
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corresponds to high water content. Water thickness is greatest in the center of the column 

because this is its widest point. The water content calculated for a pixel in the center of the 

column can be the same as the water content calculated for a pixel on the edge with 

differing amounts of water by virtue of the cylindrical shape of the column. This is why the 

normalization process is necessary. As previously stated, with more water increased 

scattering will occur. Since larger quantities of water are present in the center of the 

column more scattering takes place. The increased scatter in the center of the column 

causes a decrease in detection of neutron intensity. This translates to higher water contents 

even if the water content in the center is the same as along the edge. In effect the varying 

thickness of water along the column results in both the central tendency and hot spot of 

high values in the kriged map of Ѳs. 

4.6 Trend Correction and Validation 

 Tables 17 through 25 summarize the results of steps 1 through 8 listed in section 

3.7. A summary of these results is given because they are very similar to the results 

presented in sections 4.41 and 4.4.2 for the Kang et al. (2014) data set. The results of 

Tables 17 through 25 are specific to the data set created during the CV procedure for ψa 

and Ѳs. These results are given to describe the CV data set, created by the optimal 

geostatistical model, used to aid in correction of non-geologic spatial structure within ψa 

and Ѳs. First, the results of the trend correction process will be presented. Then, validation 

results will be given to determine if the correction process was successful. 

 Table 17 gives the descriptive statistics of the CV data set, and Table 18 provides the 

results of normality testing. As with the Kang data, ψa is normally distributed and Ѳs is not. 
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An inverse transformation was applied to Ѳs before moving forward with trend surface 

analysis. The results of this transformation are given in Table 18; normality was achieved 

with a W statistic of 0.982. Table 19 shows that significant trends were evident for both 

parameters. Significant trend directions for ψa include x, x*y, x2, and y2; whereas, the 

significant trends for Ѳs were limited to x and x2 as shown by Table 20. Classical descriptive 

statistics are given in Table 21 for the trend surface residuals computed for the CV data set. 

Normal and near normal distributions are shown for ψa and Ѳs, respectively in Table 22.  

The spherical model was fit to the cross-variogram of the CV data; these results are 

presented in Table 23. In comparison to Table 12 a slightly worse fit of the spherical model 

to the cross-variogram was indicated by an R2 and NRMSE, of 0.897 and 0.109, respectively. 

Also, the DSD was slightly higher for the CV data than the Kang data.  For consistency the 

optimal geostatistical model determined in section 4.4.2 was also used here to perform CV 

and compute kriged maps of both parameters.  

 CV was used to assess the predictive ability of the spherical model and CK form for 

the CV data. This was mostly a precautionary step to ensure the quality of predictions made 

for the CV data set. Tables 24 and 25 summarize the cross-validation results for the CV data 

set of ψa and Ѳs, respectively. The data presented in these tables indicate better prediction 

accuracy for both ψa and Ѳs. With r values of 0.824 and 0.716 the predictive ability using 

the CV data set was shown to dramatically improve for ψa and Ѳs, respectively. The NRMSE 

results reiterate the improved predictive ability with values of 0.102 and 0.126 for ψa and 

Ѳs. As before, a and b coefficients for both parameters indicate over predication of small 

values and under prediction of large values. Figure 15 shows kriged maps of the CV data set 

for ψa and Ѳs. As expected, the maps were very similar to those in Figure 14.  
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 The sub-core scale heterogeneity found in ψa and Ѳs was shown to be caused by 

methods based processes in section 4.4.3. To remove those trends and discover the actual 

variability, a map of the detrended variable, zra (created in section 3.7), was computed. 

Since the material used in the Kang et al. (2014) study was homogeneous, no spatial 

structure was anticipated after trend correction in zra. Semivariograms were used to test 

for spatial dependency in the zra variable for ψa and Ѳs. The semivariograms computed for 

zra were horizontal and contained no structural variance; therefore, they were determined 

to be pure nugget and confirm the initial speculation. Classical descriptive statistics for the 

zra variable is given in Table 26 for both ψa and Ѳs. 

Because kriging is an exact interpolator (i.e. the predicted and observed values are 

equal at all measurement locations) dependent upon spatial structure, geostatistics cannot 

be employed to produce maps of the zra variable; therefore, the map shown in Figure 16 

was created using the residual values between the kriged maps computed for the Kang and 

CV data sets. Figure 16 is a result of first computing the average of all kriged predictions for 

the original Kang dataset. Then adding it to the difference found by subtracting the kriged 

values calculated using the Kang data set and the CV data set. As a result, the zra values for 

both ψa and Ѳs can be found at measured locations on the corrected map in Figure 16. From 

this map it is evident there is no spatial dependency in either parameter once the spatial 

(non-geologic trends) are removed. The variability shown in the map for each parameter is 

relatively consistent and displays no correlation between values as a result of distance.   

 In order to validate the trend correction process, the zra was compared to an 

independent dataset collected by Cropper et al. (2014). In Tables 27 and 28 zra is referred 
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to as “Krige”. Table 27 gives the Mann-Whitney (MW) W statistic and corresponding 

significance level denoted by asterisks (Table 2). Three data sets are compared to the 

Cropper data, two of which consist of all BC parameters, the Kang and Trend data, and the 

Krige data which contains only the spatially dependent parameters ψa and Ѳs. Since trend 

surface analysis is as an inexact interpolator the Trend data set was generated during the 

trend identification and removal process. The Cropper data set contains nine values while 

each of the three comparison sets consists of 115 data points. As can be seen in Table 27, 

median values of the ψa, Ѳs, and Ѳr parameters were significantly different from the median 

values of the Cropper parameters. This result indicates that, in terms of median values, the 

data collection process has unintentionally effected the computation of three BC 

parameters (ψa, Ѳs, and Ѳr) and that the trend correction process used in this study to 

remove non-geologic spatial dependency was not successful. Figure 17 is an illustration of 

these results; it compares the IQR of each BC parameter and its corresponding data set. 

From the figure it is apparent that the upper and lower quartiles for ψa, Ѳs, and Ѳr do not 

overlap the IQR of the Cropper data. Table 28 presents the Kolmogorov-Smirnov (KS) two 

sample test D statistic and significance levels. These results confirm the conclusions drawn 

from Table 27. In this case, the frequency distributions for ψa, Ѳs, and Ѳr were significantly 

different from the frequency distributions for these parameters from the Cropper data set, 

while the frequency distribution for λ was not.  
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CHAPTER 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
 

 Precise characterization of sub-core scale heterogeneity is essential for accurate 

prediction of fluid movement in the subsurface. This research focused on improving our 

ability to quantify sub-core scale features and on identifying their spatial structure using a 

combination of neutron imaging and geostatistics.  There are two major conclusions to be 

drawn from this study. First, geostatistics was successfully applied at the sub-core scale to 

characterize the spatial variability in point Brooks and Corey (BC) soil water retention 

parameters obtained by Kang et al. (2014) using neutron radiography. Second, the spatial 

dependency found in the BC parameters was likely attributed to sample preparation and 

image analysis, rather than to the hydrogeological phenomena. Ultimately this study offers 

a way to visualize areas of potential improvement for the Kang et al. (2014) data collection 

procedure. This study also proposes a technique for correcting methods based spatial 

dependency. The goal of the correction process was to remove the effects of methodology 

from each spatially dependent BC parameter and expose the actual variability present 

within the parameter. In doing this the true controls on flow and transport at the sub-core 

scale can be identified. The main results used to arrive at these conclusions are discussed 

below along with some suggestions for future work. 

 Histograms illustrated substantial variability within the BC parameters for this 

nominally homogeneous material. Kang et al. (2014) offered the packing procedure as 

explanation for the sub-core scale variability. In this study geostatistics was employed to 

determine if the sub-core scale variability evident in parameter histograms is spatially 
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correlated. This is an important task because spatially similar regions, whether at the sub-

core scale or field scale, will dictate subsurface flow.  

 The first steps in the geostatistical analysis were to determine linear relationships 

between parameters and test for normality. Four of the six possible relationships between 

parameters were found to be significant, but later it was determined only one relationship 

was between spatially correlated parameters, i.e. Ѳs vs.  ψa (r = -0.44, R2 = 0.197). The 

Shapiro-Wilk (SW) test indicated that both distributions were significantly different from a 

normal distribution. As a result these parameters were transformed to yield normal and 

nearly-normal distributions before moving forward with the geostatistical analysis.  

 To satisfy the intrinsic hypothesis and ensure stationarity a trend surface analysis 

was conducted. The trend surface analysis showed that all four BC parameters contained 

significant trends. The trend surfaces (Figure 8) provided some of  the first evidence that 

the sample packing and data collection procedures had impacted the BC parameters.  The 

trends were effectively removed by following the detrending procedure suggested by 

Vieira et al. (2010). Moving forward the residuals computed during the detrending process 

were used in place of the original Kang data for ordinary kriging (OK) and co-kriging (CK).  

 The most critical part of conducting a geostatistical analysis is calculating the 

empirical semivariogram and fitting it with a theoretical model. The empirical 

semivariogram identifies spatial correlation by plotting the semivariance versus distance. If 

this relationship results in a horizontal line no spatial correlation is evident in the 

parameter. This was true for two of the four parameters, i.e. Ѳr and λ. This lack of spatial 

correlation indicates that either these parameters were unaffected by the sample 
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preparation/measurement method or the variability within these parameters exists at a 

scale smaller than the sampling distance. In contrast, spatial dependency was clearly 

evident in the ψa and Ѳs parameters from their semivariograms; therefore, the null 

hypothesis was rejected.  The spherical model achieved the best fit to the empirical 

semivariogram and cross-variogram for ψa and Ѳs based on the R2 and NRMSE statistics. It 

was shown by the ratio of the nugget to the sill that ψa possessed a higher degree of spatial 

dependency than Ѳs. The first objective of this research listed in section 1.2 was to provide 

semivariograms of BC parameters; this was accomplished for ψa and Ѳs. 

 Leave-one-out cross-validation (CV) was used to determine an optimal geostatistical 

model to compute the final kriged maps of ψa and Ѳs. The geostatistical model consists of 

the most appropriate semivariogram model and kriging form. Several statistical metrics 

were used to determine the optimal geostatistical model. In the end, using the spherical 

model and CK form resulted in the best prediction accuracy. CV was also used to generate a 

data set that would later be used to correct for non-geologic spatial structure.  

 The final CK maps of ψa and Ѳs can be seen in Figure 14. They were computed based 

on the significant linear relationship found between these two parameters. The initial 

suspicion put forth by Kang et al. (2014) regarding the cause of sub-core scale variability 

was confirmed. The effects of packing and compressive stress were evident in the CK map 

for ψa; therefore, the alternate hypothesis was accepted. Low values were apparent at the 

top of the column, while generally higher values occurred at the bottom. Packing and 

compressive stress could be used to explain the majority of trends in the map. These 

findings are consistent with the work of Lewis and Sjöstrom, 2010, who stated that packing 
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of homogeneous material can cause spatial heterogeneity in the form of preferential flow 

paths which can effect transport of solutes through a porous medium. The negative 

correlation between ψa and Ѳs was used to explain the concentration of low values in the 

center of the ψa kriged map. These low values corresponded to a hot spot of high values in 

the center of the Ѳs kriged map. The trends found in this map were explained as a result of 

the image analysis procedure and could not be attributed to a physical procedure such as 

packing. Both the hot spot and central tendency of high values in the kriged map of Ѳs were 

likely caused by varying thickness of water across the sand column due to its cylindrical 

shape. Because of the shape of the sand column, a volumetric water content computed for a 

single pixel in the center of the column could contain a larger quantity of water than a pixel 

on the edge with the same volumetric water content. The kriged map of Ѳs shows the image 

processing technique used to eliminate this effect was not completely successful. Also, 

greater water thicknesses in the center of the column are thought to be the cause of the hot 

spot of high values in the center of the column. Because neutrons are attenuated by the 

hydrogen in water more scattering occurs with an increased presence of water.  

 The next logical step in this research was to attempt to remove the spatial structure 

caused by methodology found in ψa and Ѳs. In order to accomplish this, a detrending 

technique similar to the one used to achieve stationarity was employed. During the trend 

surface analysis computing residual values was simple because it is an inexact 

interpolation method. Because kriging is an exact interpolator a second set of data 

generated using leave-one-out CV was used to compute residual values by finding the 

difference between the original Kang data and the CV data set. The average of the observed 

data was added to the residuals to create a new variable zra. This variable was mapped for 
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both parameters and is shown in Figure 16. It represents the true geologic variability in ψa 

and Ѳs once the trends caused by methodology were removed.  The maps of ψa and Ѳs after 

trend correction show no spatial correlation. To verify this, semivariograms of the zra 

variable for both parameters resulted in pure nugget effects. To validate the correction 

process the zra variable computed for ψa and Ѳs was compared to an independent data set 

of the 9 values for each BC parameter collected by Cropper (2014).  

 The Mann-Whitney (MW) and Kolmogorov two sample (KS) statistics were used to 

test the null hypothesis that the corrected and independent data had the same median 

values and frequency distributions, respectively. The MW test is more sensitive to changes 

in median values; whereas, the KS test has more power to determine changes in the shape 

of the distribution. Both test statistics ultimately indicated a significant difference between 

the two group’s distributions. From these results it can be deduced that the trend 

correction process was unsuccessful. 

 This research successfully identified spatial dependency in point BC parameters and 

in doing so determined possible experimental causes of this sub-core scale heterogeneity in 

a nominally homogenous sand material. Also, spatial structure was found to be caused by 

inconsistency in packing for ψa. Although the attempted correction process was 

unsuccessful, new information was gained about the data collection procedure conducted 

by Kang et al. (2014).  The newly acquired information from this research can be used to 

improve upon the work performed by Kang et al. (2014) before the technique is extended 

to other natural materials. Identifying the effects of methodology is necessary to improve 

the modeling of sub-core scale heterogeneity resulting from geology in future studies. 
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 Future work should include a revised correction process. Geostatistics is a viable 

option for overcoming the effects of methodology in the BC parameters. In the future an 

improved means of discriminating between methods based and actual spatial structure is 

needed. Now that the effects of varying water thickness have been show in Ѳs, for future 

work a new geostatistical weighting scheme could be developed to combat it. For instance, 

if it is assumed that the central tendency of high values is in the center of the column was 

caused by its cylindrical shape; it might be possible to assign increasingly larger weights to 

interpolated values from the center to the edge for Ѳs based on the formula for a chord of a 

circle. A similar weighting scheme could also be applied to ψa to remove the trend caused 

by compressive stress as a linear function of depth. Weights would then be applied to ψa in 

the opposite direction of these trends. This idea offers a quantitative solution for the 

existing trends in the BC parameters.  

Possible physical solutions for future exploration may be to employ consolidated 

materials and/or methods to remove the effects of repacking. Such methods may include 

using low disturbance techniques that retain sedimentary layers, for example employing 

push type coring and frozen cores. The use of rectangular sample geometry could be used 

to eliminate variable neutron pathways. Because employing a rectangular column can 

introduce edge effects, the column would be large enough so that the imaging procedure 

could be focused on the center of the column (i.e. the unaffected region). Additionally, the 

effectiveness of this correction method could be tested by preparing sand columns with 

deliberate heterogeneity (e.g. layering), and then attempting to determine spatial 

variability within BC parameters using geostatistics and neutron imaging.  
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Appendix 1. Tables 

Table 1: Descriptive statistics of observed BC parameters (Equation 1) 

Parameter Unit N Mean Median 
Standard 

Deviation 

Coefficient of 

Variation 

ψa cm 115 17.5 17.5 0.820 4.69e-2 
Ѳs cm3/cm3 115 0.374 0.464 4.44e-2 0.119 
λ - 115 7.74 7.42 2.50 0.323 

Ѳr cm3/cm3 115 2.66e-2 2.55e-2 1.08e-2 0.405 
 

Table 2: Asterisks are used to denote the level of significance for multiple statistical tests 
presented in the study; for example, *** indicates significance at the 99.9% confidence 
level, ** indicates significance at the 99% confidence level, * indicates significance at the 
95% confidence level, and non-significant (confidence levels < 95%) results are indicated 
using NS 

Significance Levels Asterisks 

< 0.001 *** 
< 0.01 ** 
< 0.05 * 
Not Significant NS 

 

Table 3: SW W statistic used to test if the BC parameters come from a normal distribution 
before employing trend surface analysis and moving forward with the kriging analyses 

Parameter Unit N W 

ψa cm 115 0.984 
Ѳs cm3/cm3 115 0.901 *** 
λ - 115 0.951 *** 

Ѳr cm3/cm3 115 0.983 
1/Ѳs cm3/cm3 115 0.972 * 

Log10(λ) - 115 0.993 

 

Table 4: KW results for sample intervals in the x-direction 

Parameter Unit χ2 

ψa cm NS  
Ѳs cm3/cm3 36.1 *** 
λ - NS 

Ѳr cm3/cm3 14.4 * 
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Table 5: KW results for sample intervals in the y-direction 

Parameter Unit χ2 

ψa cm 48.7 *** 
Ѳs cm3/cm3 NS 
λ - 29.6 * 

Ѳr cm3/cm3 NS 
 

Table 6: Trend surface analysis results used to identify significant trends in the BC 
parameters before kriging 

Parameter Unit N R2 F-statistic 

ψa cm 115 0.342 14.3 *** 
Ѳs cm3/cm3 115 0.274 21.2 *** 
λ - 115 0.121 5.11 *** 

Ѳr cm3/cm3 115 0.074 4.45 ** 
 

Table 7: t-values listed with their corresponding significance levels to determine specific 
trend directions 

Parameter Unit N x y x*y x2 y2 

ψa cm 115 -3.93 *** NS 4.41 *** 2.30 * -6.62 *** 
Ѳs cm3/cm3 115 5.90 *** NS NS -5.77 *** NS 
λ - 115 NS NS 3.36 ** -2.61 * -3.86 *** 

Ѳr cm3/cm3 115 NS NS 2.93 ** NS -2.30 * 
 

Table 8: Descriptive statistics of trend surface residuals, very small mean values signify 
successful removal of trends within the BC parameters 

Parameter Unit N Mean Median 
Standard 

Deviation 

ψa cm 115 -1.74e-11 3.67e-2 0.665 
Ѳs cm3/cm3 115 4.35e-11 -6.93e-3 3.88e-2 
λ - 115 -6.09e-11 -7.32e-4 0.297 

Ѳr cm3/cm3 115 -2.61e-11 -7.98e-4 1.04e-2 
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Table 9: SW W statistic and significance level for trend surface residuals before kriging, 
normal to near normal distributions of BC parameters before kriging will result in optimal 
interpolation 

Parameter Unit N W 

ψa cm 115 0.987 
Ѳs cm3/cm3 115 0.976 * 
λ - 115 0.989 

Ѳr cm3/cm3 115 0.980 
 

Table 10: Semivariogram model results computed for residual BC parameters 

Parameter Unit Model 
Nugget 

(unit)2 

Sill 

(unit)2 

Range 

(mm) 
R2 NRMSE DSD 

ψa cm Spherical 0.206 0.535 14.8 0.884 *** 0.107 0.385 
Ѳs cm3/cm3 Spherical 1.09e-3 1.84e-3 16.2 0.784 *** 0.127 0.592 
λ - Spherical 4.78 5.63 8.12 0.119 0.268 0.928 

Ѳr cm3/cm3 Spherical 1.15e-4 1.15e-4 NA 2.49e-2 0.316 1.00 
 

Table 11: Semivariogram model results computed for observed BC parameters 

Parameter Unit Model 
Nugget 

(unit)2 

Sill 

(unit)2 

Range 

(mm) 
R2 NRMSE DSD 

ψa cm Spherical 0.186 0.553 12.9 0.833 *** 0.121 0.336 
Ѳs cm3/cm3 Spherical 4.15e-2 9.77e-2 16.9 0.859 *** 0.107 0.425 
λ - Spherical 1.47e-2 1.71e-2 9.67 0.188 0.266 0.859 

Ѳr cm3/cm3 - 1.14e-4 1.14e-4 NA NA NA 1.00 
 

Table 12: Cross-variogram with spherical model computed for the residual values of ψa 
versus Ѳs 

Parameter Unit Model Nugget Sill 
Range 

(mm) 
R2 NRMSE DSD 

ψa vs. Ѳs - Spherical -1.17e-3 -1.69e-2 15.5 0.936 *** 7.83e-2 6.92e-2 

 

Table 13: CV results for ψa – compares different kriging methods and their semivariogram 
model which resulted in the best prediction accuracy as indicated by r and NRMSE 

Kriging Method Model r NRMSE a b 

OK Spherical 0.704 0.126 8.47 0.515 
UK Gaussian 0.681 0.130 9.85 0.436 
CK Spherical 0.726 0.122 7.87 0.550 
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Table 14: CV results for Ѳs – compares different kriging methods and their semivariogram 
model which resulted in the best prediction accuracy as indicated by r and NRMSE 

Kriging Method Model r NRMSE a b 

OK Spherical 0.541 0.150 0.257 0.310 
UK Spherical 0.503 0.155 0.278 0.246 
CK Spherical 0.573 0.146 0.241 0.356 

 

Table 15: Presents the results of the kriging form with the best prediction accuracy for ψa 

Kriging 

Method 

Best 

Prediction 
%PA 

OK 32/115 28 
UK 27/115 23 
CK 56/115 49 

 

Table 16: Presents the results of the kriging form with the best prediction accuracy for Ѳs 

Kriging 

Method 

Best 

Prediction 
%PA 

OK 22/115 19 
UK 46/115 40 
CK 47/115 41 

 

Table 17: Descriptive statistics of the data set generated during leave-one-out CV 

Parameter Unit N Mean Median 
Standard 

Deviation 

Coefficient 

of Variation 

ψa cm 115 17.5 17.5 0.621 3.55e-2 
Ѳs cm3/cm3 115 0.374 0.372 2.77e-2 7.39e-2 

 

Table 18: SW W statistic and significance levels for the CV data set 

Parameter Unit N W 

ψa cm 115 0.989 
Ѳs cm3/cm3 115 0.964 ** 

1/Ѳs cm3/cm3 115 0.982 
 

Table 19: Trend surface analysis results conducted for the CV data set to determine if the 
parameter contains a geographic trend   

Parameter Unit N R2 F-statistic 

ψa cm 115 0.603 33.1 *** 
Ѳs cm3/cm3 115 0.562 35.3 *** 
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Table 20: t-values used to identify specific trend directions for the CV data set 

Parameter Unit N x y x*y x2 y2 

ψa cm 115 -7.20 *** NS 7.77 *** 4.27 *** -3.06 ** 
Ѳs cm3/cm3 115 -11.6 *** NS NS 11.2 *** NS 

 

Table 21: Descriptive statistics of trend surface residuals computed for the CV data set 

Parameter Unit N Mean Median 
Standard 

Deviation 

ψa cm 115 2.09e-18 2.78e-2 0.391 
Ѳs cm3/cm3 115 4.44e-18 2.89e-3 1.91e-2 

 

Table 22: SW W statistic and significance level for the CV data set residuals  

Parameter Unit N W 

ψa cm 115 0.984 
Ѳs cm3/cm3 115 0.976 * 

 

Table 23: Cross-variogram with spherical model computed for the residual values of ψa and 
Ѳs for the CV data set 

Parameters Unit Model Nugget Sill 
Range 

(mm) 
R2 NRMSE DSD 

ψa vs. Ѳs - Spherical -2.34e-3 1.42e-2 15.5 0.897 0.109 0.165 
 

Table 24: CV results using CK with the spherical model for ψa of the CV data set 

Kriging Method Model r NRMSE a b 

CK Spherical 0.824 0.102 7.076 0.595 
 

Table 25: CV results using CK with the spherical model for Ѳs of the CV data set 

Kriging Method Model r NRMSE a b 

CK Spherical 0.716 0.126 0.212 0.434 
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Table 26: Descriptive statistics of the detrended variable, zra (i.e. presented as “Krige” in 
tables 27 and 28 below 

Parameter Unit N Mean Median 
Standard 

Deviation 

Coefficient 

of Variation 

ψa cm 115 17.4 17.4 0.564 3.23e-2 
Ѳs cm3/cm3 115 0.373 0.366 3.65e-2 9.77e-2 

 

Table 27: MW W statistic with significance levels to determine statistical differences 
between the following data sets: Cropper (2014), Kang et al. (2014), corrected zra (labeled 
as Krige) variable, and Trend (created during trend surface analysis) 

Cropper vs. ψa Ѳs λ Ѳr 
Kang 227 ** 327 * 384 1.08 *** 
Krige 197 *** 290 ** NA NA 
Trend 206 *** 307 * 206 1.08 *** 

 

Table 28: KS D statistic with significance levels to determine statistical differences between 
the following data sets: Cropper (2014), Kang et al. (2014), corrected zra (labeled as Krige) 
variable, and Trend (created during trend surface analysis) 

Cropper vs. ψa Ѳs λ Ѳr 
Kang 0.673 ** 0.595 ** 0.434 0.656 ** 
Krige 0.717 *** 0.613 ** NA NA 
Trend 0.708 *** 0.604 ** 0.469 0.691 *** 
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Appendix 2. Figures 

 

 

Figure 1: a) Hanging water column set up for drainage of Flint sand at the HFIR CG1-D 
beamline. b) Various basal matric potentials were achieved by adjusting the height of the 
burette column outside of the beamline (Kang et al., 2014).  
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Figure 2: The 8 x 15 grid superimposed on an example 2-D radiographic image (28.2 x 60.7 
mm) of air (white) displacing water (blue) in Flint sand at a given equilibrium basal matric 
potential used to construct the 120 point water retention curves (Kang et al., 2014); the 
distance between adjacent points is 3.2 mm, and the dimensions of the red rectangular 
region of interest are 25.6 x 51.2 mm 
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Figure 3: Histograms of the observed BC parameters used to indicate that sub-core scale 
heterogeneity is present  
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Figure 4: Q-Q plots of the BC parameters used to visualize the SW results given in Table 3 
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Figure 4 continued 
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Figure 4 continued 
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Figure 4 continued  
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Figure 5: Scatter diagrams used to indicate significant linear relationships between the BC 
parameters. 
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Figure 5 continued 
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Figure 5 continued  
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Figure 6: Plots of median values and their corresponding upper (75%) and lower (25%) 
quartiles for each sample interval (i.e. 3.2 mm, 6.4 mm, etc) in the x-direction. Since water 
retention curves were computed for all but five points on an 8 x 15 Cartesian grid, sample 
intervals in the x-direction typically consist of 8 values. These plots are used to illustrate 
KW results and determine significantly different sample intervals. BC parameters with 
significantly different median values in the x-direction are shown here, for Ѳs and Ѳr. 
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Figure 7: Plots of median values and their corresponding upper (75%) and lower (25%) 
quartiles for each sample interval (i.e. 6.4 mm, 9.6 mm, etc) in the y-direction. Since water 
retention curves were computed for all but five points on an 8 x 15 Cartesian grid, sample 
intervals in the y-direction typically consist of 15 values. These plots are used to illustrate 
the KW results and determine significantly different sample intervals. BC parameters with 
significantly different median values in the y-direction are shown here, for ψa and λ. 
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Figure 7 continued  
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Figure 7 continued 
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Figure 8: Trend surfaces for the four BC parameters are shown here and were used to 
identify 2 dimensional trends 
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Figure 9: Residual semivariograms and best fit spherical model for all four BC parameters, 
a) ψa and b) Ѳs were found to be spatially dependent whereas c) λ and d) Ѳr were found to 
be pure nugget effect 
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Figure 9 continued  
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Figure 9 continued  
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Figure 10: Raw semivariograms and best fit spherical model for ψa, Ѳs, and λ parameters, a) 
ψa and b) Ѳs were found to be spatially dependent whereas c) λ was determined to be pure 
nugget effect; a significant fit of the spherical model to the semivariogram of Ѳr was 
unsuccessful 
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Figure 10 continued  
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Figure 10 continued  
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Figure 11: Shows the cross-variogram of ψa and Ѳs with the fitted spherical model 
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Figure 12: One-to-one graph of the CK method compared to the theoretical one-to-one line 
of correlation for ψa 
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Figure 13: One-to-one graph of the CK method compared to the theoretical one-to-one line 

of correlation for Ѳs 
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Figure 14: Final co-kriged maps for ψa and Ѳs using the Kang et al. (2014) data set 

 

 

 

   

Figure 15: Final co-kriged maps for ψa and Ѳs using the CV data set 
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Figure 16: Corrected maps for ψa and Ѳs using the cross-validation and co-kriging 
correction method 
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Figure 17: Plots of median values and their corresponding upper (75%) and lower (25%) 
quartiles for the independent Cropper (2012) data set, the Kang et al. (2014) data set, the 
Krige data set (i.e. spatial trend corrected data using CK and CV for ψa and Ѳs), and the 
Trend data set (i.e. trend corrected data using trend surface analysis for all BC parameters). 
These plots are used to illustrate MW and KS results and determine which data sets are 
significantly different from one another.  
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Figure 17 continued  
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Figure 17 continued  
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