
University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

12-2016 

Tagamajig: Image Recognition via Crowdsourcing Tagamajig: Image Recognition via Crowdsourcing 

Gregory Martin Simpson 
University of Tennessee, Knoxville, gsimpso3@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Other Computer Sciences Commons 

Recommended Citation Recommended Citation 
Simpson, Gregory Martin, "Tagamajig: Image Recognition via Crowdsourcing. " Master's Thesis, University 
of Tennessee, 2016. 
https://trace.tennessee.edu/utk_gradthes/4308 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4308&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=trace.tennessee.edu%2Futk_gradthes%2F4308&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


To the Graduate Council: 

I am submitting herewith a thesis written by Gregory Martin Simpson entitled "Tagamajig: Image 

Recognition via Crowdsourcing." I have examined the final electronic copy of this thesis for form 

and content and recommend that it be accepted in partial fulfillment of the requirements for the 

degree of Master of Science, with a major in Computer Science. 

Mark E. Dean, Major Professor 

We have read this thesis and recommend its acceptance: 

Bradley T. Vander Zanden, Chad A. Steed 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



Tagamajig: Image Recognition via

Crowdsourcing

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Gregory Martin Simpson

December 2016



c© by Gregory Martin Simpson, 2016

All Rights Reserved.

ii



To my sister, Rebecca. If I can do it, so can you.

iii



Acknowledgements

I would like to thank my advisor and committee chair, Dr. Mark Dean, for his

invaluable support and counsel throughout my graduate career. I would like to thank

my committee members, Dr. Bradley Vander Zanden and Dr. Chad Steed, for their

significant guidance and feedback throughout the lifespan of this project, as well

as their considerable contributions to my graduate and undergraduate education. I

would like to thank my colleague and friend, Kelley Deuso, for presenting me with

the opportunity to pursue my graduate degree and for her continuous encouragement

to persevere during the most difficult portions of my graduate education. I would

also like to thank my other current and former fellow Graduate Teaching Assistants,

Mwamba Bowa and Derek Lusby, for their hard work and patience with me on those

occasions when I was overwhelmed with my studies.

I would like to thank my parents for their immeasurable support throughout my

pursuit of this degree...and the last one, and the one before that. I could not have done

this without their constant words of comfort and advice, and I truly appreciate their

encouragement and their confidence in my abilities. Finally, I would like to thank

my friends, Janine and Richard, for their unceasing encouragement and patience with

me, even on my worst of days. Their constant reality checks, reminders to keep things

in perspective, and occasional insistence at taking a break and living life allowed me

to survive the last year and a half, and I am forever grateful.

iv



Abstract

The University of Tennessee, Knoxville (UTK) Library possesses thousands of

unlabeled gray-scale photographs from the Smoky Mountains circa the 1920s - 1940s.

Their current method of identifying and labeling attributes of the photographs is

to do so manually. This is problematic both because of the scale of the collection

as well as the reliance on an individual’s limited knowledge of the area’s numerous

landmarks.

In the past few years, similar dilemmas have been tackled via an approach known

as crowd computing. Some examples include Floating Forests, in which users are

asked to identify and mark kelp forests in satellite images, and Ancient Lives, which

enlists users help in transcribing 2000-year-old manuscripts that Oxford University

researchers had struggled to efficiently translate for over a century.

For this particular problem, we propose releasing the image collections to the

public through a web application. The application would target outdoor enthusiasts,

conservationists, or professionals such as geologists, rangers, or historians who are

familiar with the region and would find interest in helping to label the more

recognizable photos. Users would ”tag” landmarks using a hierarchically sorted data

set of landmark names accessible via an incremental search.

With sufficient participation, the image collection could be efficiently categorized

and labeled beyond what is currently feasible using the librarys limited number of

personnel. Furthermore, this application could easily be adapted to categorize other

unlabeled image collections if provided with the proper data set for tagging.

v



Table of Contents

1 Introduction 1

1.1 Project Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Inspiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Design 5

2.1 Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Utility Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 User Registration and Login . . . . . . . . . . . . . . . . . . . 6

2.2.2 Image Collection Navigation . . . . . . . . . . . . . . . . . . . 7

2.3 Image Tagging Interface . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Aggregate Results View . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Administrative Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Implementation 22

3.1 Back-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Tagging Data Set and MySQL Database . . . . . . . . . . . . 24

3.1.2 Laravel Framework . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3 Helper Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Front-end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Laravel Blade Templates . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Bootstrap Framework . . . . . . . . . . . . . . . . . . . . . . . 36

vi



3.2.3 jQuery Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Evaluation 40

4.1 Alternative Design Considerations . . . . . . . . . . . . . . . . . . . . 40

4.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Limitations of Image Tagging Interface . . . . . . . . . . . . . 41

4.2.2 Limitations of Aggregate Results View . . . . . . . . . . . . . 42

4.3 Additional Applications . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Future Work 46

5.1 Sorting Collection by Landmark Type . . . . . . . . . . . . . . . . . . 46

5.2 Aggregate View by Landmark Type . . . . . . . . . . . . . . . . . . . 47

5.3 Google Maps Integration . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Tablet/Touchscreen Support . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 Digital Assets Management Integration . . . . . . . . . . . . . . . . . 48

5.6 User Contributions to Data Set . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusion 50

Bibliography 52

Vita 56

vii



List of Figures

2.1 User Registration Form . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Application Login Form . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Paginated Image Collection View . . . . . . . . . . . . . . . . . . . . 8

2.4 Image Tagging User Interface . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Image Tagging Incremental Search . . . . . . . . . . . . . . . . . . . 11

2.6 Tag Marker Mouse Hover . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Tagging a Feature by Type . . . . . . . . . . . . . . . . . . . . . . . . 13

2.8 Aggregate Results Heatmap . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Heatmap Adjusted After Removal of Most Prominent Landmark . . . 16

2.10 Heatmap Opacity Adjusted to 100% . . . . . . . . . . . . . . . . . . 17

2.11 Colorblind Friendly Heatmap with 100% Opacity . . . . . . . . . . . 18

2.12 Admin Photo Management Table . . . . . . . . . . . . . . . . . . . . 19

2.13 Admin Panel - Two Landmark Write-ins To Be Reviewed . . . . . . . 20

2.14 Manage Write-ins Table . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Application Software Stack . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Diagram of Project Database Tables . . . . . . . . . . . . . . . . . . 25

3.3 Diagram of Related Tables in Project Database . . . . . . . . . . . . 27

3.4 Example Migration - Users Table . . . . . . . . . . . . . . . . . . . . 30

3.5 Example Eloquent Query . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Aggregate Results Heatmap - Limitations . . . . . . . . . . . . . . . . 43

viii



4.2 Example Use - Sports Teams and Players . . . . . . . . . . . . . . . . 45

5.1 Potential Google Maps Integration . . . . . . . . . . . . . . . . . . . 48

ix



Chapter 1

Introduction

1.1 Project Overview

This project was motivated by the needs of the University of Tennessee Library Digital

Collections Department. The library possesses thousands of scanned digital images

across dozens of collections, many of which are unlabeled. The library’s current

method for labeling these images is for a single employee to do so manually. This

is problematic both because of the sheer size of the image collections as well as

the dependence on an individual’s limited knowledge of a particular image set. For

example, the image collection which was targeted as a proof of concept for this project

contains gray-scale images of a particular region of the Smoky Mountains, most of

which were taken between the 1920s and 1940s. While many of these images contain

landmarks which may be recognizable to individuals with extensive knowledge of the

area, relying on a single person with limited familiarity of the region to accurately

classify such a large and diverse collection of images proved to be time-consuming

and impractical.

The first solution proposed for this particular challenge was the use of landmark

identification using existing image processing techniques. However, this approach

was soon abandoned due to several limiting factors. Firstly, many of the landmarks

1



in question are located in remote areas and therefore lack a significant number of

existing labeled photographs needed to act as a training set for an image recognition

neural network. Secondly, the appearance of the majority of the landmarks change

over the course of months, days, or even minutes. A particular waterfall, for example,

may appear drastically different from one photograph to the next, as environmental

changes may affect the flow of water or even cause some or all of the waterfall to freeze.

With the proper training set, it could be possible to classify the image as containing

a waterfall, but labeling the specific landmark in question would be impossible, even

with a substantial collection of images of that particular landmark to act as a training

set. Finally, the collection itself would be a limiting factor in the use of automated

object recognition, as the digital collection consists of scanned gray-scale photographs,

many of which are almost 100 years old. While the Digital Collections Department’s

efforts to catalog these photographs have resulted in a collection which is easily

recognizable to the average viewer, the quality is far from perfect due to the age

of the photographs and would be unsuitable for use in a study of object identification

via a trained neural network.

After abandoning the computer vision approach to the problem at hand, focus

shifted to a solution utilizing crowdsourcing. With the Smoky Mountains National

Park drawing a large number of outdoor enthusiasts and history buffs each year, a

crowdsourcing application targeting such individuals with more extensive familiarity

of the region seemed the most practical and realistic means of acquiring accurate

labels for the image collection.

1.2 Inspiration

This project’s primary influence was Ancient Lives, developed by Oxford University

[24]. The university has been in possession of hundreds of thousands of untranslated

Greek texts since the 1880s. Prior to the introduction of Ancient Lives to the public,

the university had only managed to translate a small portion of the text collection due

2



to a limited number of available personnel and the time-consuming nature of the work.

After its release, Ancient Lives proved to be a major success, with volunteers providing

over 7 million transcriptions in only a few years. Ancient Lives allows users to select

the exact point on each scanned papyrus image that they wish to identify and mark

this location with a letter from a predefined set of Greek alphabetic symbols. This

process served as the primary inspiration for the landmark tagging process developed

for use in this project.

Another crowdsourcing web application, Floating Forests [25], was also examined

as a source of possible inspiration. Floating Forests presents users with satellite

images in an “endless slideshow” and asks users to identify kelp forests in the images

by outlining them with their mouse. This idea of a continuous one-way slideshow

was initially considered as a means of presenting users of this application with new

images from the Smoky Mountains collection. However, this approach was eventually

abandoned for reasons that will be described in detail in the Design section below.

1.3 Objectives

The primary requirement of the library’s Digital Collections Department is a means

of sorting and classifying vast quantities of unlabeled photographs. Given the

department’s needs and the decision to tackle the problem at hand through the

use of crowdsourcing, the application’s primary focus was determined to be the

delivery a user-friendly interface for tagging specific landmarks in the given set of

photographs. Emphasis on a simple, intuitive interface is stressed due to the varied

levels of computer literacy of the target users. However, the interface must find

balance between ease of use and depth to allow for users to provide enough feedback

via the available data set in order to provide the library with meaningful results.

To allow users with less familiarity of the region with the opportunity to assist with

cataloging the image collection, the application must provide users with the ability

to mark landmark types in addition to specific landmarks. While this data might not

3



be as directly valuable to the library, it could be used to categorize the collection in

a more meaningful and organized way rather than presenting users with all possible

photographs that need to be identified.

To promote participation and a sense of group loyalty among users (and discourage

purposeful manipulation or skewing of results), users and application administrators

will be able to view aggregate results for each photograph with a visual representation

of each individual tag submitted for a photograph. Each tag visualization would be

weighted in such a way as to represent the degree to which other users agree or

disagree by submitting the same landmark for the same photograph.

Finally, the application was developed with the goal of being able to accept new

image collections and data sets with relative ease, allowing the application to easily

be adapted for use in the identification of numerous other types of unlabeled image

sets. Other potential image types, as well as many potential future additions to the

application, will be discussed in Chapter 5.

4



Chapter 2

Design

This chapter will provide an overall description of the user-facing layout of the

application, a description of some key terms used throughout this report, and a

detailed description of each front-end element of the application.

2.1 Application Overview

The application can be described as being divided into three primary sections.

Image-Tagging Interface The image-tagging interface is the primary view through

which users contribute to the labeling of the image collection. Using this view, users

are able to examine a specific image and label or tag specific notable features within

the image. A feature refers to any attribute within the image that users may deem

significant enough to warrant labeling. Users are given two options for tagging a

feature within the image: the user can tag the feature as being a landmark, which

is a feature unique to the region (e.g. “Abrams Falls”, “Bright Hill Cemetery”), or

the user can tag the feature by type, which is a categorical description of a feature

to which each landmark must be assigned (e.g. “Abrams Falls” is of type “falls”,

“Bright Hill Cemetery” is of type “cemetery”).

5



Aggregate Results View The aggregate results view utilizes a heatmap overlaid

on an image to illustrate all tags which users have submitted for the image. The

view allows users to filter the heatmap to only display results for certain submitted

landmarks and modify the heatmap’s settings to suit the user’s individual preferences.

Administrative Panel The administrative panel provides users with admin

privileges the ability to manage all assets of the application, including user accounts,

available images, and the contents of the data set used for tagging image features.

Each view is explored in detail in the following sections.

2.2 Utility Views

2.2.1 User Registration and Login

Before exploring or contributing to the image collection, users are required to create

a unique user account. A user account is necessary to prevent a user from submitting

multiple identical tags for a single image. It also makes it possible for the user

to review and edit previously submitted tags. New users must provide a unique

username and email address as well as a password. An email address is necessary for

resetting a user’s password in the event that the user’s password is forgotten. The

user registration form is displayed in Figure 2.1.

6



Figure 2.1: User Registration Form

After registering, users can sign in via the login form on the application’s

homepage, which can be seen in Figure 2.2.

Figure 2.2: Application Login Form

2.2.2 Image Collection Navigation

Navigation of images both for the purposes of tagging image features or viewing

aggregate results is managed through the pagination of the image collection, allowing

users to view a subset of the collection on each page. This paginated thumbnail view

is shown in Figure 2.3.

7



Figure 2.3: Paginated Image Collection View

The use of image thumbnails allows users to decide at a glance whether the image

may contain recognizable features, or at least be clear enough to make out a particular

feature type which the user can tag for further categorization of a particular image.

Initially, the concept of a unidirectional “endless” image slideshow was considered for

the purpose of displaying photos to be tagged, with new photos being dynamically

appended to the end of the slideshow using AJAX queries. However, after developing

and testing this interface, concerns arose with regards to user frustration, as many

of the photos in the test collection are simply unrecognizable (a close-up shot of a

flower, for example). With no control over what photo is appended to the slideshow

with each AJAX call, it is possible that users could be continuously presented with

unrecognizable photos, frustrating them to the point of quitting. The one-way

slideshow concept also did not allow for users to return to previously viewed photos

and update their contributed tags. By instead using simple thumbnail pagination,

users are able to quickly scan and skip unrecognizable photos as well as return to

previously viewed images and alter their past tags for each photograph.

8



2.3 Image Tagging Interface

The core component of the application is the user interface for tagging specific features

within images. A high emphasis was placed upon providing the users with an interface

which is uncluttered and intuitive. The interface can be seen in Figure 2.4. To assist

users with identifying specific features within the images, the interface supports image

zoom via either a mouse wheel or the zoom buttons located in the lower left corner

of the image viewing container. Panning the zoomed image is supported via clicking

and dragging the left mouse button.

Figure 2.4: Image Tagging User Interface

To tag a specific point within the image as containing a particular landmark, a

user simply needs to click on that point within the image to begin the tagging process.

9



Upon clicking, an opaque tag marker appears at the point of the click, and an attached

container with an empty select element is attached to the tag marker. When the user

enters one or more letters into the dynamic select element, it executes an AJAX

request to the application’s back-end which returns all possible matching landmarks

and populates the select element with the returned landmark names. This real-time

incremental search is useful for two reasons. Firstly, it can assist the user in their

attempt to identify a particular landmark. For example, if a user is attempting to

label a waterfall but cannot remember the name of the fall from memory, the user can

input “fall” into the incremental search box, and a narrowed selection of landmarks

containing the substring “fall” will be returned, allowing the user to browse a much

more restricted and manageable list of possible matches in an attempt to jog his or

her memory. Secondly, constraining users to only submit landmarks that exist within

the database’s Landmarks table via a select element, as opposed to a free-form input

field where any input would be accepted, reduces the probability of unintentional user

error as well as intentional submissions of incorrect (or even inappropriate) names.

The dynamic search element of the tagging process is visible in Figure 2.5.

10



Figure 2.5: Image Tagging Incremental Search

The user may cancel the tagging action by clicking on another point in the image

or by clicking the tag marker icon, which displays an ‘X’ when hovered. If the user has

found a landmark name with which they wish to tag the feature, they may complete

the tagging process of the feature by either clicking the appropriate option within

the dynamic select element or scrolling to the proper select element with the mouse

wheel or keyboard keys and pressing the Enter key.

After successfully tagging a feature with the desired landmark name, the tag

marker icon remains in place. If the user hovers the mouse over the tag marker, a

pop-up container displayed above or below the marker reveals the selected name of

the landmark as can be seen in Figure 2.6. If the user wishes to remove the tag,

11



he or she simply needs to click the tag marker icon itself, marked with an ‘X’ upon

hovering.

Figure 2.6: Tag Marker Mouse Hover

For instances in which a user may be unable to identify a feature as being a

specific, unique landmark, he or she can still contribute to the identification of the

image by tagging the feature’s type. Like the landmark tagging function, tagging a

feature by type provides the user with a dynamic incremental search element with

which to tag the feature. Because the number of types is significantly less than the

number of unique landmark names present in the database, the select element is

populated with all type options before the user begins typing. However, the user

can still use the keyboard to restrict the number of choices via an incremental search

of available types. To differentiate a tag by type versus a tag by specific landmark

12



name, landmark name tags are color-coded in blue while type tags are colored green.

An example of both types of tags can be seen in Figure 2.7. In this example, the user

has already tagged the waterfall with a specific landmark name and is currently in

the process of tagging the stream in the foreground by type.

Figure 2.7: Tagging a Feature by Type

When a user finishes tagging a particular photo, the user may save and submit

their tags by clicking the “Save Tags” button located in the upper right corner of the

image tagging container. The “Save Tags” button saves all tags made by the user

(and deletes all previously submitted user tags for the image) via an AJAX request

13



and presents the user with the option of remaining on the current page or returning

to the previous collection of paginated thumbnails to continue tagging other images.

Finally, if a user believes that a particular landmark is missing from the list of

available landmarks, the user can submit a request that the landmark be added by

using the text input field in the upper left corner of the image container. Upon

submission of the write-in request, administrators are alerted of the request via the

admin panel where they are given the option of adding the write-in to the available

choice of landmarks.

2.4 Aggregate Results View

To compliment the contribution of feature identification by individual users, an

interface was developed to display tags provided by all users for each image. The

interface uses a weighted rainbow heatmap to display each individual tag provided

for the image, with tags representing more “popular” landmarks for the image being

represented by “warmer” colors such as oranges and reds, and tags for landmarks

which were chosen less often in comparison to the total number of contributed tags

for the photo being represented with “cooler” colors such as blues and greens. In

the example in Figure 2.8, we can see that the majority of users have provided a tag

of “Abrams Falls” on or around the waterfall in the center of the image. Because

this landmark is the most prominent of all tags provided for the image, all tags

representing this landmark are colored red, while less popular tags such as “Abrams

Creek” and “Bald River” which appear in the stream located in the bottom of the

photo are painted with cooler colors.

14



Figure 2.8: Aggregate Results Heatmap

Users may utilize the panel on the left side of the aggregate view panel to control

which tags representing particular landmarks are displayed. The “Clear Selection”

button will deselect all landmarks, while the “Show All Tags” button will select all

landmarks, returning the view to its initial state upon loading the view. Individual

landmarks can be toggled using buttons which are located in a drop-down menu

under their respective type. Each type drop-down label also provides the number of

landmarks in the image that are of that particular type. In the example provided in

Figure 2.9, the user has deselected the most popular tag, “Abrams Falls”, resulting

in the weighting of the remaining tags in the heatmap to be recalculated. Because

“Abrams Creek” is the most popular tag following the removal of “Abrams Falls”,

each “Abrams Creek” tag is now displayed as red instead of yellow as before.

15



Figure 2.9: Heatmap Adjusted After Removal of Most Prominent Landmark

Upon initial load of the aggregate view, the opacity of the heatmap defaults to

45%. However, the user may adjust the opacity to their liking using the opacity

slider located in the bottom left corner of the aggregate view container. The slider

supports the adjustment of the heatmap’s opacity from 0 to 100%, allowing the user to

completely remove the heatmap temporarily in order to more easily explore features

behind the tags or make the heatmap completely nontransparent to make each tag,

especially for features which were tagged less often, more easy to discern. An example

of the aggregate view with the heatmap adjusted to 100% opacity is shown in Figure

2.10.

16



Figure 2.10: Heatmap Opacity Adjusted to 100%

Finally, for individuals who are affected by red-green color blindness, a colorblind-

friendly option is available by selecting the option in the bottom right corner of the

aggregate view container. This changes the heatmap to utilize a sequential single

hue color scheme deemed “colorblind safe”. Like the rainbow color scheme which is

utilized by the heatmap by default, the opacity of the colorblind safe heatmap is fully

adjustable. The colorblind-friendly color scheme is shown in Figure 2.11, adjusted to

use an opacity value of 100%. The color scheme for the colorblind-friendly mode was

selected from the online resource “ColorBrewer” [4].

17



Figure 2.11: Colorblind Friendly Heatmap with 100% Opacity

2.5 Administrative Panel

An administrative panel is provided to allow user with admin privileges the ability

to manage the application’s content. The main panel is divided into three accordion

sections: Photos, Landmarks, and Users. Under the photos section of the accordion

element, administrators are given two options: “Add Photos”, which directs the user

to a simple page for uploading one or more new images, and “Manage Photos”, which

takes the user to a table view of all images currently in the database. The table

provides pagination of the image collection as well as the ability to order the table

by image name, number of tags for each image, and whether the image is currently

active and able to be viewed and tagged by users. The table also provides support

for instant search to narrow results. The image management table is shown in Figure

2.12.

18



Figure 2.12: Admin Photo Management Table

Selecting a particular photo from the table will provide the administrator with a

view identical to that of the aggregate results heatmap view available to normal users.

In addition to the heatmap container, the view includes the count of the total number

of tags provided by users for the image, controls for setting the image to active or

inactive, and controls for permanently removing the image from the collection.

Under the Landmarks section of the main admin panel, administrators are

presented with the following options: “Manage Landmarks”, “Manage Write-Ins”,

“Add Landmark”, and “Add Type”. An icon next to “Manage Write-Ins” presents

the number of landmark write-ins submitted by users that remain to be reviewed

by administrators. An example of the main administrative panel with two write-ins

waiting to be evaluated can be seen in Figure 2.13.

19



Figure 2.13: Admin Panel - Two Landmark Write-ins To Be Reviewed

“Manage Landmarks” takes administrators to a table view similar to the view

provided by the “Manage Photos” link. Like the “Manage Photos” table, the

landmarks table supports instant search and allows administrators to sort landmarks

by name or by type. Selecting a landmark from the landmarks table brings the

administrator to an “Update Landmark” form which is pre-populated with the

landmark’s existing attributes. The form allows administrators to update the

landmark’s name, type, county, state, latitude, and longitude, as well as delete

the landmark. The “Manage Write-Ins” option displays the list of current write-in

landmarks submitted by users and provides administrators with the option to make a

particular write-in a new landmark, delete a particular write-in, or delete all existing

write-in suggestions. An example of this table is displayed in Figure 2.14.

Figure 2.14: Manage Write-ins Table

Selecting “Add to Landmarks” for a particular write-in will load a form identical

to the “Update Landmark” form but with only the “name” field being pre-populated

20



with the name suggested by the write-in. The administrator is then required to assign

a type to the landmark before submitting it. County, state, latitude, and longitude are

all optional fields when creating a new landmark. When the landmark is submitted,

the write-in is automatically deleted.

The “Add Landmark” option brings the administrator to an identical form but

lacking any pre-populated fields. Finally, the “Add Type” provides a form consisting

of a single text input field, allowing the administrator to submit a new type which

can be assigned to new or existing landmarks for future tagging purposes.

The final section of the main admin panel is the “Users” section. This section

offers two options: “Manage Users” and “Add User”. Like the “Manage Photos” and

“Manage Landmarks” options, the “Manage Users” option loads an interactive table

listing all users. Users are able to be sorted by username, email address, or admin

status, and like the other tables used for managing of photos and landmarks, the

users table supports instant search and dynamic pagination. Selecting a particular

user from the list gives administrators the option to delete that user and all tags

associated with the user account. The “Add User” option allows an administrator to

manually create a new user and give the new user admin privileges if needed.

21



Chapter 3

Implementation

Implementation details of the application will be discussed in detail in the following

sections. However, for the purposes of clarity, we will first provide a brief description

of each software component that was used in the development of the application.

Database

• MySQL - MySQL is an open-source relational database management system

provided by Oracle Corporation [12].

Application Frameworks

• Laravel - Laravel is an open-source web application framework. It utilizes

the model-view-controller (MVC) software architectural pattern and provides

features to assist with the management of database relations, front-end view

templating, and application security [17].

– Eloquent ORM - Eloquent ORM (Object-Relational Mapping) is Lar-

avel’s approach to managing an application’s database records. An object-

oriented model is defined for each database table and is used to interact

with database records, as opposed to record manipulation via raw SQL

queries [16].

22



– Blade Templates - Blade is Laravel’s templating engine for providing

dynamic views to end users. Blade supports template inheritance to reduce

the likelihood of copy-paste errors across views with shared layouts [15].

– Artisan - Artisan is Laravel’s command-line interface, providing features

to support application development such as generating application assets

and performing database operations [14].

• Bootstrap - Bootstrap is an open-source front-end web framework. It provides

templates for responsive front-end design and ships by default with Laravel [13].

Scripting

• Python - Python is an open-source high-level programming language provided

by the Python Software Foundation [1]. For this project, Python scripts were

used for parsing the landmarks data set and seeding tables within the project

database.

• jQuery - jQuery is a JavaScript library developed by John Resig and the

jQuery Foundation [18]. jQuery’s primary purpose is to simplify client-side

scripting by providing a simple but feature-rich syntax for easier manipulation of

DOM elements. jQuery was used to implement the application’s image tagging

interface as well as in several open-source third-party plugins described in the

following sections.

Software Stack A diagram summarizing the application’s overall software stack is

displayed in Figure 3.1.

23



Figure 3.1: Application Software Stack

3.1 Back-end

3.1.1 Tagging Data Set and MySQL Database

One of the first priorities in the development of the application was obtaining a

list of landmarks which could be used to provide users with options for tagging

notable features within the Smoky Mountains photo collection. An appropriate

data set was found via the United States Board on Geographic Names, which is

responsible for maintaining uniform naming of geographic landmarks throughout the

U.S. government [21]. The Board provides lists of geographic landmarks for the entire

country and divided by state. Each element in these landmarks lists contains an excess

of information about each landmark, including the landmark name, landmark type

(mountain range, lake, etc.), state alphabetic abbreviation, county name, landmark

latitude and longitude, and the landmark’s elevation. The Tennessee geographic data

set was utilized for this application, and the specific landmarks used was narrowed

down by only using landmarks whose location was within a certain distance of

the center of the Smoky Mountains National Park, where the photos in the image

collection were taken.

24



MySQL was used as the relational database management system for this project.

A diagram of the complete database is displayed in Figure 3.2 (ER model created with

MySQL Workbench [11]). Before discussing table relationships within the project’s

database, independent tables with no inherent relations will be reviewed.

Figure 3.2: Diagram of Project Database Tables

Independent Tables

Migrations Table The Migrations Table is generated by default by the Laravel

PHP framework utilized for this project. Its purpose is to track any changes to the

application’s database schema, such as the creation of a new table, updating of a

column within a table, addition of foreign key constraints, or any other modifications

25



to the target database, which are referred to as “migrations” by Laravel. Tracking

these migrations via the Migrations Table allows Laravel to track changes to the

database in a manner similar to version control systems used for managing source

code, allowing users to easily rescind previous modifications to the database as well

as easily share database schemas with coworkers. Laravel’s database migrations will

be discussed in more detail in the “Laravel Framework” subsection below.

Password Resets Table The Password Resets Table is generated by Laravel to

assist with user authentication. If a user forgets his or her password and requests that

it be reset, an email is sent to the user which contains a password reset link which

is appended with a unique token. The token, user email, and timestamp of the reset

request are stored in the Resets Table. When the user follows the link provided in the

email to reset their password, the unique token contained in their password reset URL

is compared against the token stored for that user’s email address in the Password

Resets Table to prevent any malicious attempts by unauthorized individuals to reset

a user’s password. By default, the unique token is set to expire one hour after the

password reset link is sent and the table entry is created.

Landmark Write-in Table The Landmark Write-in Table contains names of

landmarks submitted by users who believe that the current set of landmark names

offered for tagging of image features is incomplete. After being reviewed by an

administrator, the specific entry in the table is deleted regardless of whether the

administrator decides to accept or reject the user’s suggestion.

Table Relationships

Relationships between database tables are implemented through the use of foreign

keys. Specific table relationships can be examined in the entity relationship model in

Figure 3.3. Primary keys are labeled with a yellow key icon. Foreign keys are labeled

26



with red icons. Columns which are defined as NOT NULL are labeled with filled

icons, while the icons for nullable columns are unfilled.

Figure 3.3: Diagram of Related Tables in Project Database

All tables use the Laravel naming convention of id as their primary auto-

incrementing key. While some may argue that this naming convention is insufficient

and requires increased aliasing when making complex queries, Laravel’s Object

27



Relational Model (ORM) provides a layer of abstraction on top of MySQL and

mitigates the need to use raw MySQL queries in most circumstances. Laravel’s

Eloquent ORM will be described in more detail in a later subsection. All tables

created using Laravel migrations also contain timestamps for the time and date that

the record was created and most recently updated by default.

Users Table Other than the standard auto-incrementing primary key, created at

timestamp, and updated at timestamp, the Users Table contains the following fields:

username, email, password, remember token, and admin. The password field is

encrypted using Laravel’s implementation of the bcrypt hashing function. Bcrypt

protects against rainbow table attacks through the use of a salt while also preventing

brute-force attacks by increasing hash time with each iterative call for comparison

to hashed values stored in a user’s record. The remember token is used to compare

against a stored cookie on the user’s machine when a user utilizes the “Remember

Me” option when logging in. Finally, the admin field is a simple Boolean value to

indicate whether the user has administrative privileges.

Photos Table The Photos Table contains two unique fields: filename and active.

As the name implies, filename contains the file name of the photograph. The active

field is a Boolean value indicating whether the image is currently available to be

viewed and tagged by users and can be toggled by administrators via the admin

panel.

Types Table The Types Table contains only one unique field: name, the name

of a landmark type to which a specific landmark can belong (“stream”, “cave”, or

“cemetery”, for example).

Landmarks Table The Landmarks Table has a many-to-one relationship with the

Types Table through the use of the foreign key type id. Through the use of Laravel

Migration foreign key constraints, all landmark records whose type id corresponds to

28



a Type record that is deleted are deleted as well through the use of the cascade

command when defining the foreign key reference in the migration. The name field

is required and must be unique to the table. All remaining fields in the Landmarks

Table - county, state, latitude, and longitude - are optional.

Tags Table Each entry in the Tags Table is used to record a single tag event

on an image by a particular user. Therefore, the following foreign keys are needed

to accurately record all necessary information: type id, landmark id, photo id, and

user id. Like the foreign key relation defined in the Landmarks Table, all foreign

keys in the Tags Table are constrained in that deleting a record in another table that

corresponds to a foreign key entry in the Tags Table will result in any Tag records

with that foreign key to be deleted as well. Because the Tags table has a many-to-one

relationship with the Landmarks Table, which itself has a many-to-one relationship

with the Types Table, the inclusion of the type id foreign key in the Tags Table may

appear to be redundant. However, because a user can tag a photo feature by specific

landmark name or type, the type id foreign key is necessary, as a tag by type does not

contain a landmark id. This is also why type id, photo id, and user id are all defined

as NOT NULL while landmark id is nullable. The other unique entries in the Tags

table, x click and y click, are also required. They contain the normalized coordinates

of the tag within the image for easy translation regardless of how the image may be

scaled on the user’s machine or later displayed on the aggregate results view.

3.1.2 Laravel Framework

The open-source PHP web framework known as Laravel was used as the backbone

of this project. Laravel provides support for web applications utilizing a model-

view-controller design pattern and provides tools to support a multitude of features

including dependency management, database query abstraction, traffic routing, user

authentication, and unit testing. Laravel includes a commmand-line interface known

as Artisan to assist with application development.

29



Database Migrations

Laravel’s database migrations act as a sort of version control for an application’s

database. Using Artisan, developers can create migrations which are responsible

for creating, updating, and deleting tables in the project database. Each migration

consists of two methods: up and down. The up method is used to perform the

desired operation upon the database, and the down method should be written to

undo whatever action was taken in the up method. For example, if a migration’s

purpose is to create a new Users table, the up method should use the appropriate

Laravel syntax to create a new table with the desired columns and constraints, and

the down method should simply drop the Users table. An example Laravel migration

- this one used to create the Users table for this application - is shown in Figure 3.4.

Figure 3.4: Example Migration - Users Table

After the desired migrations are created, they can be executed in the order in

which they were created via the command line using the artisan command php

30



artisan migrate. To undo the previous migration (calling the down method on all

migrations which were most recently executed), the artisan command php artisan

migrate:rollback can be used. Finally, invoking the command php artisan

migrate:reset will call the down method on all project migrations. This migrations

system makes it incredibly easy to track database changes during the lifespan of

the project’s development and easily deploy the project on a new server when ready

for production. Laravel’s database migrations were utilized for the entirety of this

project.

Eloquent ORM

Instead of directly interacting with the application’s MySQL database via raw

queries, Laravel supports an object-relational mapping known as Eloquent. Using

the Eloquent ORM, each table in the database has an analogous model which is used

to query the database as well as insert, update, or delete records. A skeleton model

(example model User in this case) can be generated from the command line using the

Artisan command php artisan make:model User. Using the --migration flag will

generate a database migration that corresponds to the model. Models can then be

used to query the corresponding database table using the Laravel syntax and return

one or more instances of the class. Figure 3.5 illustrates the Laravel ORM equivalent

of the raw MySQL query select * from users where admin = 1 order by name

desc; before iterating over the returned array of User objects.

Figure 3.5: Example Eloquent Query

Updating, creating, and deleting records are similarly straightforward thanks to

Eloquent’s syntactic sugar. However, one of Eloquent’s greatest strengths is its ability

31



to define relationships among models in the form of model methods. For example, in

this application there exists a one-to-many relationship between a User record and

Tags, i.e. a user may have many tags. By declaring the method

public function users(){

return $this->belongsTo(’App\User’);

}

within the Tag class and declaring the method

public function tags(){

return $this->hasMany(’App\Tag’);

}

within the User class, we may then query the database for a count of all tags belonging

to the user with the following command:

$tag_count = $user->tags()->count();

Using Laravel’s relationships in combination with its simple query building syntax

makes the handling of large collections of database records much more in line with

the principles of object-oriented paradigm and greatly reduces development time and

error rate in comparison to making raw database queries.

Controllers

Controllers are used by Laravel to handle the bulk of request-related logic, including

parsing of the request, querying the database via the Eloquent syntax, working with

raw data, and returning data and views to the client-side user. Controllers provide

a simple way to group related requests into a single class. The following custom

controllers were utilized for this application:

UserController The User Controller is responsible for returning the user home

page view and handling all logic related to the user changing his or her password.

32



PhotoController The Photo Controller handles creating the paginated thumbnail

view for browsing photos as well as the Aggregate Results View for an individual

image.

TagController The Tag Controller is responsible for returning the Image Tagging

Interface view for a particular image. It also saves all submitted user tags and write-

in landmarks for an image and makes the appropriate query and returns the JSON

results for the interface’s incremental search.

AdminController The Admin Controller handles all administrative tasks such

as uploading new photos, loading the main admin panel view, or granting admin

privileges to new users.

Security

Laravel provides a number of tools to assist with the development of a secure web

application.

Authentication Laravel ships with several authentication controllers out of the

box, including controllers for user login, registration, and password reset. The Artisan

command php artisan make:auth will create the necessary routes and views to

support these built-in authentication controllers. The Auth facade (similar to a static

class interface) can be used to check whether a user is authenticated and retrieve an

instance of the current authenticated user.

Middleware Laravel Middleware provides a convenient mechanism for filtering

requests within the application. Within a middleware, the incoming request can

be checked to meet certain criteria before allowing the user’s request to proceed.

If the middleware rule is not met, the user can be automatically redirected to

the appropriate page. For example, the Admin.php middleware confirms that the

requesting user has admin privileges. If the user lacks the proper permissions, they

33



are redirected to their homepage. Middleware can be attached to individual routes or

groups of routes within routes.php. However, a more convenient approach is often to

assign the middleware to the appropriate controller by calling the middleware method

in the controller’s constructor. For example, this application’s AdminController.php

constructor appears as so:

public function __construct(){

$this->middleware([’auth’, ’admin’]);

}

This attaches both the admin middleware as well as the standard auth middleware to

the controller. If a user’s request calls any method within this controller, the user must

be both authenticated and have admin privileges. Because of the way that middleware

“stacks”, if the user is authenticated but does not have admin privileges, they will

be redirected to the user’s personal homepage. However, if they lack authentication,

they will be redirected to the application’s login page.

Form Validation Laravel also provides support for form validation which is

simplified through the use of syntactic sugar. The example below illustrates how

Laravel’s validate method handles form input from a post request.

$this->validate($request, [

’email’ => ’required|email|unique:users|max:255’,

’password’ => ’required|confirmed’

]);

The above code snippet is used to validate a form for creating a new user. The

validate method does the following: for the ’email’ line, it confirms that the user

has provided an email, that it is a valid email format, that the email is unique to

the Users table, and that it is a maximum of 255 characters. For the ’password’

line, the validate method confirms that the user provides an password and that the

34



password matches the password provided in the form’s password confirmation field.

If any of these conditions are not met, the user is automatically returned to the form

and alerted with the appropriate errors.

3.1.3 Helper Scripts

Several Python scripts were created to assist with the seeding of the application

database. Two scripts were responsible for parsing of the Board of Geographic

Names data set and creating the appropriate records within the Types and Landmarks

tables. Another script accepts the directory which contains the image collection as a

command line argument and seeds the Photos table with an entry for each image’s

filename and path. A final script was used for seeding the Users table with randomly

generated users, with usernames and emails made by concatenating two randomly

chosen words from the standard Unix words file located in /usr/share/dict/. The

generation of random users was necessary for testing purposes.

3.2 Front-end

3.2.1 Laravel Blade Templates

Laravel creates user-side views through the use of their Blade templating engine.

Blade templates work primarily through the use of two key features: template

inheritance and sections. The idea behind these features is simple - rather

than rewriting portions of markup which are shared across views (for example, a

navigational header, or the inclusion of certain CSS stylesheets or JavaScript files),

a template can be created which contains a markup “skeleton” which can be shared

across a series of views. HTML markup specific to a certain view can then be inserted

in specific section of the template using the @yield directive in the appropriate

area within the template. For example, when writing the master template of an

35



application, the <body> element can be left blank except for a @yield directive, as

follows:

<body>

@yield(’body_content’)

</body>

Each child view that needs to inherit the parent template may then do so by

extending the parent template and inserting that view’s specific HTML markup

into the target section of the inherited template using the section directive.

For example, extending the above template, assuming the template is named

main layout.blade.php:

@extends(’main_layout’)

@section(’body_content’)

<p>This will appear within the body of the main layout template.</p>

@endsection

Blade templating greatly reduces copy-paste errors across views and simplifies the

changing of stylesheets and scripts which are utilized by multiple views within the

application. Blade also includes syntactic sugar for simplifying the displaying of data

and execution of PHP control structures such as branches and loops.

3.2.2 Bootstrap Framework

Laravel ships with the Bootstrap CSS and JavaScript front-end framework by default.

Bootstrap is a responsive front-end framework that easily scales from mobile devices

to desktop machines with little or no modification necessary. The default Bootstrap

theme was utilized for this project. However, custom Bootstrap themes can easily be

applied to the application to override the default theme at a later time if desired.

36



3.2.3 jQuery Plugins

The responsive elements of this application’s user interfaces were developed primarily

using the jQuery JavaScript library. jQuery provides a simpler syntax for manipulat-

ing DOM elements and handling events and provides support for the development of

plugins and widgets. A custom plugin was developed to support the image tagging

interface, while existing plugins were utilized for the aggregate results view and other

miscellaneous tasks.

Tagger Plugin

The semi-opaque tag marker icons and the pop-up containers displaying the names

of tagged landmarks were inspired by the design of the open-source Taggd jQuery

Plugin developed by Tim Severien [19]. However, the underlying method of

implementing the plugin is quite different and borrows much more heavily from the

imgNotes jQuery Plugin by Wayne Mogg [9]. The Tagger plugin is attached to

the currently viewed image and is responsible for maintaining state information for

all tags that are currently attached to the image, including the landmark id and/or

type id of each tag as well as each tag’s normalized coordinates within the image.

The Tagger plugin is responsible for all event handling related to the tag markers,

including creation of new tag markers when clicking on a new point in the image,

displaying of tag names when hovering over a tag marker, and deleting a tag marker

on click. The plugin also handles all AJAX requests to the server for the incremental

search implemented for the purpose of narrowing tag options. Finally, the plugin

provides export and import methods which are used to send all existing tags to the

server to be saved, and repopulate the image with tags previously submitted by the

user, respectively.

Plugin Dependencies The Tagger plugin relies on several dependencies in order

to function. The primary dependency is the ImgViewer plugin, also developed by

37



Wayne Mogg [10]. ImgViewer supports basic user interaction with the image itself,

including zooming and panning via click and drag of the left mouse button. The

plugin also translates zoomed coordinates to properly scaled coordinates for use by

the Tagger plugin. The ImgViewer plugin itself relies on two other plugins: Zoetrope

[2] and jquery-mousewheel [7], which handle basic animations and mouse wheel

behavior. Finally, the Select2 plugin provides support for dynamic select elements

with incremental search via AJAX request [5].

Heatmap Plugin

The heatmap plugin utilized for the aggregate results view of the application,

heatmap.js, was developed by Patrick Wied [23]. The heatmap plugin was wrapped

in a custom jQuery plugin (photoresults.js) which was responsible for configuring

and instantiating the heatmap plugin. Upon first loading the results view, the

photoresults.js plugin iterates over all tags that exist in the aggregate view and

determines which tag occurs most frequently in order to properly weight the value

of each tag entry in the heatmap. The photoresults.js plugin also handles all events

related to landmark filtering, the opacity slider, and the colorblind-friendly switch

and reconfigures the heatmap settings accordingly when a change in one of the input

variables is detected.

Miscellaneous Plugins

Several other open-source jQuery plugins were used throughout the project. Bootstrap-

slider [8], developed by Kyle Kemp and Rohit Kalkur, was used for the opacity

slider in the aggregate results view. Bootstrap-checkbox [22] was used for the

toggle switches which control the tag-by-landmark-name versus tag-by-type option

in the image tagging interface as well as the colorblind-friendly toggle switch in the

aggregate results view. The match-height plugin [6] was used to match the height

38



of adjacent Bootstrap elements. Finally, the DataTables plugin [20] was utilized for

the pagination and management of all assets within the admin panel.

39



Chapter 4

Evaluation

4.1 Alternative Design Considerations

Before the current approach of allowing users to select a specific image to tag via

paginated thumbnails was implemented, an alternative design was considered. This

alternative approach would have acted as an “endless” one-way slideshow, allowing

the user to stay on a single page, provide tags for an image, and then select the scroll

button on the right side of the image to automatically submit their tags and provide

the user with a new image. This approach was strongly inspired by Zooniverse’s

“Floating Forests” web application discussed in this composition’s introduction.

However, this design has several shortcomings which more negatively affected the

user experience than anticipated.

The first shortcoming to this approach is the risk of overwhelming the user with

unidentifiable images. The photo collection for which this application was developed

contains many images which users can simply not be expected to recognize, either due

to the ambiguous content of the image or the quality of the image itself. Because this

application relies on promoting participation and feedback by providing users with

content that they find interesting, delivering a series of images that are unrecognizable

increases the risk that users abandon the application due to boredom or frustration.

40



The second shortcoming of this design is that users are unable to revisit previously

viewed images and view or update their original tags. By abandoning the slideshow

approach and providing full access to the image collection via paginated thumbnail

view, both of these issues are resolved. The thumbnails allow users to quickly scan a

portion of the collection for noteworthy images while ignoring images which appear

difficult or impossible to identify. This layout also allows users to revisit previously

tagged images, view their past input, and update their contributed tags if necessary.

4.2 Limitations

While initial design and development has produced a working application, exami-

nation of the finished product reveals some shortcomings or room for improvement

with regards to some design choices. Some of these flaws could be rectified relatively

quickly by implementing relatively simple additions to an existing interface, while

other shortcomings would require more extensive examination and reevaluation of

the root purpose of a particular interface before implementing a redesigned solution.

4.2.1 Limitations of Image Tagging Interface

While emphasis was placed on the delivery of a simple and user-friendly interface

for tagging features, there is still room for the improvement of at least two minor

components within the tagging view.

The first element that may be improved is the tag markers. While these markers

are easily created and destroyed by the user, they cannot be relocated after their

creation at this time. This means that if a user wishes to modify a tag’s location

within the image, the user must destroy the original tag before creating a new tag

at the desired position. A more intuitive way of doing this would be to implement

drag-and-drop support for existing tags, allowing the user to drag an existing tag to a

41



new location by clicking and holding the primary mouse button over the tag marker

while moving it with the mouse.

A second potential improvement to the tagging interface concerns the current

method of saving tags. At this time, the user is required to update their contribution

to a particular image by clicking the “Save Tags” button located in the upper right

corner of the image tagging container. Clicking this button sends all user tag data

for the image to the server for storage via an AJAX request. This is potentially

problematic as a user could easily forget to use the “Save Tags” button before leaving

the page. A potential solution is to remove the button and simply update the user’s

tag records for the image by sending an AJAX request each time the user creates or

deletes any tag. This would increase traffic overhead between the client and server

but would alleviate the burden of the user being required to remember to manually

save their input before leaving the page.

4.2.2 Limitations of Aggregate Results View

The Aggregate Results View was meant as more of a proof-of-concept illustrating

one potential way that the combined input for all users could be visualized for an

individual image. The interface succeeds in revealing the locations within an image

that users tend to consider most likely to contain a notable feature, and coloring

more popular tag choices in darker, more “intense” colors does somewhat succeed

in highlighting which user opinions are more popular at a glance. However, this

approach does have a limitation, which can be more easily understood by examining

Figure 4.1.

42



Figure 4.1: Aggregate Results Heatmap - Limitations

In this example, the overwhelming majority of users have labeled the waterfall in

the center of the photo as “Abrams Falls”, with a few users labeling the same waterfall

as “Bald River Falls”. However, even though the individual tags submitted as “Bald

River Falls” are more lightly colored to indicate that it was a less popular choice

among user submissions, these tags for “Bald River Falls” are completely concealed

by the more popular and darkly colored heatmap markers for “Abrams Falls”. In

hindsight, this should be expected, as users will naturally place “competing” tags

for landmarks of the same type in the same general area of the image where the

landmark appears. However, this leads to a situation where the majority opinion

for the name of a particular landmark tends to obscure less popular user opinions.

This can be observed in Figure 4.1 above, where it is apparent that users provided

many more tags for the waterfall in the image than the stream beneath it. While it is

likely that the popular opinion is correct if a sufficient number of users provide input,

there are rare instances in which the less popular opinion may be more accurate, in

which case it would be useful to have a method of viewing this user input as well.

43



One possible solution to reveal less popular tags which may be concealed by more

popular submissions would be to somehow highlight the heatmap marks of a particular

landmark when the user hovers over the landmark name on the selection panel located

on the left side of the screen. When hovering over a button for a particular landmark

name, all other landmark tags which are currently active within the heatmap could

be redrawn using a “diluted” or more transparent color scheme, allowing the desired

landmark tags to be visible while retaining their properly weighted color values based

on their frequency versus the entire visible tag set.

4.3 Additional Applications

One of the major strengths of the application is the ease with which it can be applied

to a wide variety of image collections for the purposes of labeling and categorization.

All that is required is a target image collection and an appropriate data set for

tagging the desired “landmarks”, and the application can be deployed with little or

no modification needed to its underlying functionality. In fact, even if specific feature

names are not available within a new data set, providing only a data set for the

Types table still allows users to categorize images for easier handling and labeling of

the target image collection at a later time.

The example provided in Figure 4.2 illustrates a theoretical image collection which

could be targeted for labeling and organization using the application.

44



Figure 4.2: Example Use - Sports Teams and Players

The example image is a screen capture of a soccer match, and the example data

set uses soccer teams for the Types table and individual players for the Landmarks

table. Much like the Smokey Mountains collection and data set used for developing

the application, users can label specific “landmarks” (in this case, specific players),

or simply provide a tag specifying that a landmark type (the football club) is present

within the image, allowing users who are more familiar with the tagged football club

to explore images containing those tags in hopes of identifying specific players.

45



Chapter 5

Future Work

While the application produced for this study is a complete and fully functioning

piece of software, it can be considered a backbone for a much more ambitious project

when considering the possible additions to its existing functionality.

5.1 Sorting Collection by Landmark Type

While tags by landmark type are presently able to be collected, users are unable

to browse images based on which images contain certain Type tags at this time.

Allowing users to view thumbnails of images which have been tagged as containing a

particular landmark type would allow users who are more familiar with a particular

landmark type to focus their efforts on providing specific landmark names for these

images. For example, a cemetery is a landmark type which is easily distinguishable

for the average user, but most users are unlikely to recognize the particular cemetery

present within an image. However, a local historian with extensive knowledge of the

area’s historic cemeteries could likely recognize and tag many of these landmarks

with relative ease if he or she was presented with a collection of images containing

only such landmark types. Updating the paginated Image Collection Navigation

view to support narrowing by type would be a relatively simple addition that could

46



increase the rate at which images containing type tags are later correctly identified

with regards to a specific landmark name.

5.2 Aggregate View by Landmark Type

Potential shortcomings of the current Aggregate Results View are discussed in Section

4.2.2. Beyond its present flaws, the interface does not have a way of displaying tags

by type at this time. While efforts should first be focused on addressing the present

issues of the view when displaying tags by landmark name, future work could also

incorporate a complimentary view of tags by type.

5.3 Google Maps Integration

An untapped resource within the existing tagging data set is the existence of latitude

and longitude data for each specific landmark within the data set. One possible use

for this data would involve integrating the most likely location of each image into

a Google Maps plugin. The latitude and longitude for the most popular landmark

from each image could be extracted and used to place a marker within a Maps plugin,

similar to the example seen in Figure 5.1.

47



Figure 5.1: Potential Google Maps Integration

Each marker could display a thumbnail of the “best guess” image when hovering

and activate a pop-up modal containing the corresponding image when clicked.

5.4 Tablet/Touchscreen Support

Support for tablets as well as touchscreen laptops and desktops should be a relatively

simple addition thanks to the use of the flexible Bootstrap framework and the

simplicity of the image tagging interface. Expanding support to smartphones is not

recommended due to their limited screen size.

5.5 Digital Assets Management Integration

The application’s image collection is currently stored locally within the public images

directory. To increase flexibility regarding the control of available images and decrease

the storage demand on the application’s host server, the application could be modified

to use the library’s digital assets management system. The management system is

built around the Islandora framework, an open-source framework created to manage

48



and distribute digital collections [3]. Because the library’s management system

utilizes a RESTful API to manipulate the Islandora framework, integrating the system

with the application to serve images from the remote digital collection should be a

relatively straightforward undertaking.

5.6 User Contributions to Data Set

At this time, users can only contribute to the tagging data set by suggesting “missing”

landmarks via the write-in text box in the image tagging view. If the write-in

suggestion is accepted by an administrator, that administrator is responsible for

providing all other metadata for the new landmark entry, including latitude and

longitude, type, and county. One possible future addition to the application could

allow users to provide suggestions for any or all of these fields when submitting a

write-in. Users could also possibly be allowed to browse the existing landmark data

set and provide feedback similar to the write-in submission feature if the user believes

that existing records within the data set are inaccurate.

49



Chapter 6

Conclusion

This project has focused on the creation of an application for the purposes of labeling

an unsorted image collection via the contributions of volunteer users. Users are able

to label notable features within an image either as a specific, unique landmark or as a

more broad “type” to which each landmark belongs. This allows users with a broad

range of knowledge about the area to contribute to the labeling and categorizing of the

image collection. Users who are more familiar with the region may be able to identify

a feature as being a particular landmark with relative ease, while those who are

less knowledgeable of the area may still contribute to the collection’s organization by

labeling a feature’s type present within each image which would be incredibly difficult

using existing image processing or pattern recognition techniques. re While the

application’s development focused on a specific image set, it was designed such that a

completely unrelated image collection and complementary data set could be imported

with relative ease, allowing it to be used for a variety of image types. Furthermore,

this application is in many ways a foundation upon which many more robust and

practical features may be added to increase its use both to its administrators and

its volunteer users. Nevertheless, the application is fully functional in its present

state and fulfills the primary goal of this project - to provide a tool for assisting the

50



University of Tennessee Library’s Digital Collections Department in the classification

of unlabeled images.

51



Bibliography

52



[1] Python, accessed April 04, 2016. https://www.python.org/. 23

[2] Zoetrope, accessed June 05, 2016. https://github.com/FormstoneClassic/

Zoetrope. 38

[3] Islandora, accessed September 28, 2016. http://http://islandora.ca/. 49

[4] Brewer, C., and Harrower, M. ColorBrewer, accessed July 08, 2016.

http://colorbrewer2.org/. 17

[5] Brown, K., and Vaynberg, I. Select2, accessed June 08, 2016. https:

//github.com/select2/select2. 38

[6] Brummitt, L. matchHeight, accessed June 05, 2016. https://github.com/

liabru/jquery-match-height. 38

[7] jQuery Foundation. jquery-mousewheel, accessed June 05, 2016. https:

//github.com/jquery/jquery-mousewheel. 38

[8] Kemp, K., and Kalkur, R. bootstrap-slider, accessed June 22, 2016. https:

//github.com/seiyria/bootstrap-slider. 38

[9] Mogg, W. ImgNotes, accessed June 05, 2016. https://github.com/waynegm/

imgNotes. 37

[10] Mogg, W. ImgViewer, accessed June 05, 2016. https://github.com/

waynegm/imgViewer. 38

[11] MySQL. MySQL Workbench, accessed August 29, 2016. http://www.mysql.

com/products/workbench/. 25

53

https://www.python.org/
https://github.com/FormstoneClassic/Zoetrope
https://github.com/FormstoneClassic/Zoetrope
http://http://islandora.ca/
http://colorbrewer2.org/
https://github.com/select2/select2
https://github.com/select2/select2
https://github.com/liabru/jquery-match-height
https://github.com/liabru/jquery-match-height
https://github.com/jquery/jquery-mousewheel
https://github.com/jquery/jquery-mousewheel
https://github.com/seiyria/bootstrap-slider
https://github.com/seiyria/bootstrap-slider
https://github.com/waynegm/imgNotes
https://github.com/waynegm/imgNotes
https://github.com/waynegm/imgViewer
https://github.com/waynegm/imgViewer
http://www.mysql.com/products/workbench/
http://www.mysql.com/products/workbench/


[12] Oracle Corporation. MySQL, accessed April 04, 2016. http://www.mysql.

com. 22

[13] Otto, M., and Thornton, J. Bootstrap, accessed May 09, 2016. http:

//getbootstrap.com/. 23

[14] Otwell, T. Artisan, accessed May 09, 2016. https://laravel.com/docs/5.

3/artisan. 23

[15] Otwell, T. Blade Templates, accessed May 09, 2016. https://laravel.com/

docs/5.3/blade. 23

[16] Otwell, T. Eloquent ORM, accessed May 09, 2016. https://laravel.com/

docs/5.3/eloquent. 22

[17] Otwell, T. Laravel, accessed May 09, 2016. https://laravel.com/. 22

[18] Resig, J. jQuery, accessed June 02, 2016. https://jquery.com/. 23

[19] Severien, T. Taggd, accessed June 04, 2016. https://timseverien.com/

taggd/v3/. 37

[20] SpryMedia Ltd. DataTables, accessed August 06, 2016. https://

datatables.net/. 39

[21] United States Board on Geographic Names. Domestic and Antarctic

Names, accessed April 04, 2016. http://geonames.usgs.gov/domestic/

download_data.htm. 24

[22] Vasily, A. Bootstrap-checkbox, accessed June 23, 2016. https://github.com/

vsn4ik/bootstrap-checkbox. 38

[23] Wied, P. heatmap.js, accessed June 22, 2016. https://github.com/pa7/

heatmap.js. 38

54

http://www.mysql.com
http://www.mysql.com
http://getbootstrap.com/
http://getbootstrap.com/
https://laravel.com/docs/5.3/artisan
https://laravel.com/docs/5.3/artisan
https://laravel.com/docs/5.3/blade
https://laravel.com/docs/5.3/blade
https://laravel.com/docs/5.3/eloquent
https://laravel.com/docs/5.3/eloquent
https://laravel.com/
https://jquery.com/
https://timseverien.com/taggd/v3/
https://timseverien.com/taggd/v3/
https://datatables.net/
https://datatables.net/
http://geonames.usgs.gov/domestic/download_data.htm
http://geonames.usgs.gov/domestic/download_data.htm
https://github.com/vsn4ik/bootstrap-checkbox
https://github.com/vsn4ik/bootstrap-checkbox
https://github.com/pa7/heatmap.js
https://github.com/pa7/heatmap.js


[24] Williams, A., et al. A Computational Pipeline for Crowdsourced

Transcriptions of Ancient Greek Papyrus Fragments. 2014 IEEE International

Conference on Big Data (2014). 2

[25] Zooniverse. Floating Forests, accessed March 14, 2016. http://www.

floatingforests.org. 3

55

http://www.floatingforests.org
http://www.floatingforests.org


Vita

Gregory Simpson was born in Bristol, TN to the parents of Bryan and Kathryne

Simpson. He is the older of two children, having one sister, Rebecca. He attended

Van Pelt Elementary, Virginia Middle, and Virginia High Schools in Bristol, VA.

After completing high school, he enrolled at the University of Tennessee, Knoxville,

and pursued an undergraduate degree in Psychology. He obtained a Bachelors of Arts

degree in Psychology from the University of Tennessee in May 2007 before continuing

on to work in the field of mental health care. Gregory returned to the University

of Tennessee in 2012 to pursue a second undergraduate degree in Computer Science.

He obtained a Bachelors of Science degree in Computer Science in May 2015 before

accepting a graduate teaching assistantship at the university. Gregory completed his

Masters of Science degree in Computer Science in December 2016.

56


	Tagamajig: Image Recognition via Crowdsourcing
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Abstract

	Table of Contents
	Nomenclature
	1 Introduction
	1.1 Project Overview
	1.2 Inspiration
	1.3 Objectives

	2 Design
	2.1 Application Overview
	2.2 Utility Views
	2.2.1 User Registration and Login
	2.2.2 Image Collection Navigation

	2.3 Image Tagging Interface
	2.4 Aggregate Results View
	2.5 Administrative Panel

	3 Implementation
	3.1 Back-end
	3.1.1 Tagging Data Set and MySQL Database
	3.1.2 Laravel Framework
	3.1.3 Helper Scripts

	3.2 Front-end
	3.2.1 Laravel Blade Templates
	3.2.2 Bootstrap Framework
	3.2.3 jQuery Plugins


	4 Evaluation
	4.1 Alternative Design Considerations
	4.2 Limitations
	4.2.1 Limitations of Image Tagging Interface
	4.2.2 Limitations of Aggregate Results View

	4.3 Additional Applications

	5 Future Work
	5.1 Sorting Collection by Landmark Type
	5.2 Aggregate View by Landmark Type
	5.3 Google Maps Integration
	5.4 Tablet/Touchscreen Support
	5.5 Digital Assets Management Integration
	5.6 User Contributions to Data Set

	6 Conclusion
	Bibliography
	Vita

