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Abstract 

  Atomic Force Microscopes (AFM) are typically used to image surfaces along 

with small particulates that may be deposited on the surface.  Surface imaging can be 

made down to the atomic level but usually it is conducted at the nano and micro scales.  It 

is highly desirable to identify the constituency of particulates on the surface and if 

possible determine the chemical and physical identity of particulates.  The objective of 

the research presented in this thesis is to establish the feasibility of using dual micro 

cantilevers to determine the physical constituency of nano particles deposited to the 

micro surface.  The goal at this point is not to determine the physical properties of a 

particulate but rather to determine whether the particulate is hard or soft and categorize it. 

The research addresses this goal by predicting the vibration response of dual micro 

cantilever when the cantilever tip engages a surface and a particulate.  Five different 

particulate models are analyzed: elastic, viscous, visco-elastic in parallel, visco-elastic in 

series and visco-elastic in series/parallel.  Each model represents different possible 

physical constituencies of particles. The analysis shows that each particle model produces 

unique signatures and vibration responses of the dual micro cantilever.  Properties that 

are identified in the research are signatures.  Signatures can be shifts in natural 

frequencies, change in response amplitudes and phase angles.  
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CHAPTER 1 

BACKGROUND 
 

The Atomic Force Microscope (AFM) is one of about two-dozen types of 

scanned-proximity probe microscopes.  It has been used primarily to image the surfaces 

of insulating materials with nanometer-scale resolution.  The AFM was developed in 

1986 by Binnig [1], who also developed the Scanning Tunneling Microscope (STM) 

along with Heinrich Rohrer in the early 1980’s [2].   They both were awarded the Nobel 

Prize for the discovery of the STM.  The STM is not only a tool for detailed investigation 

of surfaces, but also for the study of atoms and molecules on the surface.  The 

introduction of the AFM has revolutionized the idea of the mechanical measurement of 

surfaces and the sensitivity of the surface forces on an unprecedented scale [3].  The 

AFM utilizes an atomically sharp tip to scan a surface [4].  The force of interaction 

between the tip and the surface is used to map the surface.  The typical AFM used for 

topographic imaging of the surface is shown in Figure 1.  This can operate in one of the 

several modes, such as contact mode, tapping mode and non-contact mode.  The different 

types of modes are discussed later in this section. 

The basis of all scanning probe techniques is that a sharp tip is brought close to a 

surface, and measurement is then made of some property that depends on the distance 

between the tip and the surface.  In the STM the tip is made of tungsten or 

platinum/iridium wire, and when it is brought within a few nanometers of a conducting 

surface, a voltage difference is applied to it.  The current is then measured as the tip scans 

across the surface, and these measurements lead to the image of the surface.  Many 
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Figure 1: Digital Instruments MultimodeTM AFM optimized for high-resolution 
force measurements and topographic imaging [9]. 
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materials are not conductors; therefore the STM cannot be used to image the surface.  

Soft interfaces and biological molecules may be sensitive to electron bombardment, 

which motivated the scientists to seek an alternative for the STM, which is the AFM. 

Some of the disadvantages of the STM are that the electro-magnetic force between the tip 

and the surface affects the resolution of the images, and that it can only be used for 

conductive materials. The AFM was developed to control these forces and for imaging 

non-conductive surfaces too [5].  The basic principle of the STM depends on the 

tunneling current between a metallic tip, which is sharpened to a single atom point, and a 

conductive material.  Since the STM uses current, it can image only conductive surfaces 

whereas the AFM can be used to image conductive as well as insulating surfaces.  The 

AFM can be used to image insulating materials such as BN, NaCl and polymers with a 

very high atomic resolution, and it is even used to find magnetic forces with a spatial 

resolution of <10 nm using a magnetic tip [6]. 

In the original AFM, a tip at the end of a small cantilever beam was placed in 

contact with a surface.  A typical AFM is shown in Figure 1.  It is used to image and to 

find forces between the tip and the surface [7].  The sharp tip at the end of cantilever is 

used by the AFM to measure the forces between the tip and the surface with piconewton 

sensitivity and subnanometer lateral resolution.  This has enabled the AFM to generate 

images of surfaces with an atomic resolution equal to that of STM.  Because of the 

sensitivity of the AFM, an understanding of the tip and its interaction with the sample is 

important for the interpretation of images [8]. 

The AFM currently used has an optical lever that (shown later in Figure 4) 

reflects the laser beam from the cantilever.  The reflected laser beam is sensed by a 
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photodiode, which magnifies the small cantilever deflections.  The reflected laser beam is 

then passed on to the computer (shown in Figure 2) to get a plot for laser deflection 

versus tip position.  In this way, the AFM makes a topographic map of the sample surface 

[9]. 

The heart of a scanning force microscope is the force interaction between the 

sharp tip and the sample surface.  The tip is mounted on a flexible cantilever beam whose 

geometrical and material properties make it possible to probe the surface forces with high 

sensitivity.  The role of the laser beam is to translate the force acting on the tip into a 

deflection that subsequently can be monitored by various means.  Among these methods, 

electron tunneling, capacitance, optical interferometry, optical polarization, and optical 

deflection have recently been developed to a high degree of sophistication [3].  The most 

common AFM configuration has a laser beam that reflects from the backside of a very 

short (100- 200 µm) cantilever.  Deflections in the cantilever are thereby precisely 

measured by an optical position-sensitive detector (PSD) [10].  In operation, a servo-

circuit is employed to keep the detector signal constant by raising or lowering the sample. 

The slope of the cantilever where the laser beam is directed is, therefore, maintained at a 

constant value by the servo action [11].  

 The working of the AFM is shown in Figure 2. As shown in the figure, 

when the cantilever beam deflects the laser beam, it is sensed by the PSD.  This detector 

senses where the ray is deflected and compares it with the basic position.  Then this is 

passed on to a computer to map the surface of the sample. 

 4



 

 

Figure 2: Working of AFM [9] 
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The AFM can be operated in two principal modes; one is with feedback control 

and other is without feedback control.   With feedback control the tip-sample force is 

constant; hence, this can also be called constant force mode.  Thus if there is any change 

in the forces between the tip and the sample, the tip-sample separation automatically 

changes to restore the constant force.  In this mode a reasonably good image of the 

surface can be obtained (hence the alternative name, height mode).  Without feedback 

mode only a small amount of feedback is present to control problems arising due to 

thermal drift or rough sample, which will damage the tip.  Hence this mode is known as 

error signal mode and used primarily for very flat surfaces at high resolution [12]. 

The image contrast can be obtained in many ways.  The three main classes of 

interaction are contact mode, tapping mode and non-contact mode.  Contact mode is the 

most common method of operation of the AFM, and as the name suggests, the tip and 

sample remain in close contact as the scanning proceeds.  It is commonly called 

deflection mode because, when the sample has any rough surface, the cantilever beam 

deflects.  Even though this mode is generally believed to be the easiest to use, the images 

contain a mixture of friction [11,13,14], adhesion forces [13-16], capillary force [17] and 

elastic effects as well [11].   The drawback in contact mode is that as the sample moves it 

produces high lateral forces.  

Tapping mode is the next most common mode used by the AFM. In this mode the 

AFM tip oscillates at its fundamental resonant frequency above the surface.  The time the 

tip is in contact with the sample is less, so the lateral forces developed due to tip 

interaction are also less.  An image obtained from tapping mode is far better than the 

image obtained from contact mode [12].  The tapping mode atomic force microscope is 
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an ideal tool for imaging surfaces.  A rich variety of forces can be sensed by atomic force 

microscopy.  In the non-contact mode (of distances greater than 10 Å between the tip and 

the sample surface), Van der Waals, electrostatic, magnetic or capillary forces produce 

images of topography, whereas in the contact mode, ionic repulsion forces take the 

leading role in producing the images.  

Tapping mode is preferable to contact mode for soft samples.  In contact mode the 

lateral forces, capillary forces and Van der Waals forces may damage the samples, but in 

tapping mode, a vibrating cantilever, is driven in resonant frequency taps over the sample 

[18].  In general, tapping mode operation in air requires a stiff cantilever to avoid the tip 

getting stuck on the sample surface due to capillary bridge formation.  However, it is also 

possible with soft cantilevers, as long as the amplitude of oscillation is several microns as 

demonstrated by Putman et al [19].   In summary, the tapping mode AFM operating in air 

requires a very stiff cantilever, while operation in a liquid requires a very soft cantilever 

[20].  When the vibrating cantilever approaches the sample, it experiences an attractive 

force.  This force will have an effect on the force gradient.  As the force gradient 

increases, the free resonant frequency will decrease, so to restore this, a stiffer cantilever 

is used in air.  Tapping mode AFM (TMAFM) operation in liquids rather than in air is 

preferred due to a number of factors, such as the reduction of Van der Waals forces by a 

factor of up to ten or more [21], the elimination of capillary forces, consequent 

minimization of friction forces, and reduced tip and sample contamination [22].  Liquids 

are also the ideal physiological media for biological samples.  However, resonant motion 

of the cantilever for the TMAFM in liquids is impeded by the large damping and added 
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inertial mass of the liquid [23].  In spite of this, TMAFM under liquids has been 

demonstrated for DNA molecules and cells [19,22].   

There are two ways to accomplish the resonant motion of the TMAFM.  ( i ) The 

sample can be oscillated vertically up and down to excite the cantilever oscillation.  The 

amplitude and phase of the cantilever beam changes when the tip begins to contact the 

sample position.  (ii) By giving an acoustic excitation to the cantilever at frequencies well 

above the fundamental.  While the tip scans the top of the surface, the oscillation 

amplitude of the cantilever senses the force derivative of the tip-sample interaction.  The 

amplitude of the cantilever vibration changes when the tip begins to contact the sample 

surface and is held constant by a feedback circuit controlling the tip holder’s position.  In 

this way the surface topography under fluids can be recorded. 

One of the most important factors influencing the resolution that may be achieved 

with an AFM is the sharpness of the scanning tip.  The first tips used were made by 

glueing diamond onto pieces of aluminum foil. For the best tip the radius of curvature 

must be around 5 –10 nm.  However, the AFM incorporates a number of refinements that 

enable it to achieve atomic-scale resolution [9]: 

• Sensitive detection:  Measures vertical deflection of the cantilever with 

high resolution. 

• Flexible cantilevers:  When using a flexible cantilever, the stylus exerts 

low forces on the sample, which reduces distortion and damaging of the 

tip while scanning.  To have a flexible cantilever, the spring constant 

should be low and the resonant frequency should be high. To achieve this, 

the mass has to be low.  Therefore, AFM cantilevers are of small size. 
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• Sharp tips:  Generally tips are evaluated based on their end radius.  Force 

microscopists use one of three tips; normal tip, super-tip and ultralever tip 

(shown in Figure 3). 

• High-resolution tip-sample positioning 

• Force feedback:  In this the force between tip and sample is maintained as 

a constant value.  The height between tip and sample is adjusted to restore 

the constant force value. 

The main influences for a sharp tip are [12]: 

• Broadening:  Tip broadening arises when the radius of curvature of the tip 

is comparable with, or greater than, the size of the sample to be imaged. 

• Compression:  This occurs when the tip is over the sample.  

• Interaction forces:  Forces between the tip and sample are important for 

the contrast of the AFM.  Selection of a tip depends on the material to be 

imaged. 

• Aspect ratio (cone angle):  This is crucial when imaging steep sloped 

samples. 

The normal tip (Figure 3a; Albrecht et al., 1990) is a 3 µm tall pyramid with ~ 30 

nm end radius.  The electron-beam-deposited (EBD) tip or super-tip (Figure 3b; Keller 

and Chih-chung, 1992) is formed by an electron-beam-induced deposit of carbonaceous 

material made by pointing a normal tip straight into the electron beam of a scanning 

electron microscope.  The super-tip offers a higher aspect ratio (it is long and thin, good 

for probing pits and crevices) and sometimes a better end radius than the normal tip.   

 9



 

                            a            b    c 

     
 

Figure 3: Three common types of AFM tip.  (a) Normal tip (3 µm tall);  (b) Super 
tip;  (c) Ultralever tip (also 3µm tall) [9]. 
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(Figure 3c). The ultralever tip offers a moderately high aspect ratio and on occasion a ~10 

nm end radius [9]. 

The cantilever is the important component in the AFM.  Cantilevers are made of 

flattened and polished tungsten wires whose ends are bent and then etched to obtain sharp 

tips.  The cantilevers thus obtained will have stiffness in the range of 100 – 250 N/m.  

The length of the cantilever will range ~ 200 µm, width ~ 10 µm and thickness ~ 1 µm. 

The spring constant and cantilever length varies for various AFM modes, which are 

tabulated in Table 1.  The stiffness of the cantilevers is calculated by measuring the 

thermal oscillation amplitude and also by laser interferometer.  The cantilevers will have 

resonant frequencies in the range of 11 – 20 kHz [24]. 

The principal component of an AFM is the small cantilever, which measures the 

force between the tip attached to the cantilever and the surface of interest.  The force is 

 

Table 1:  Length and spring constants for various AFM Modes 
 
 
Cantilever Cantilever Length Spring constant 

Standard Silicon Nitride 100 – 200 µm 0.01 – 0.6 N/m 

Oxide-Sharpened Silicon Nitride 100 – 200 µm 0.01 – 0.06 N/m 

Contact AFM Etched Silicon 450 µm 0.02 – 0.1 N/m 

Force Modulation Etched Silicon 225 µm 1 – 5 N/m 

Tapping Mode Etched silicon 225 µm 20 – 70 N/m 

Tapping Mode Etched Silicon 125 µm 20 – 100 N/m 
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determined by multiplying the measured cantilever deflection by the calibrated spring 

constant of the cantilever as a function of the sample position.  This measured force 

versus sample position generates a force map, or image of the surface.  The measurement 

starts with the sample far away and the cantilever in its rest position.  As the sample is 

moved towards the cantilever tip, the cantilever bends towards the sample due to 

attractive surface forces.  The forward deflection is then multiplied by the spring constant 

to get the attractive force.  When the sample is further moved forward, then the sample 

pushes back the cantilever to its original position.  When plotting the deflection versus 

the distance moved a force plot can be drawn, and from this plot, the force between tip 

and sample at any desired point on the surface can be determined [25]. 

Surface forces are important in image interpretation. Surface forces alone create 

large contact areas, even before the cantilever applies any external load.  The size of the 

contact area will also depend on the mechanical properties of the tip and sample. 

Assuming that the contact area between tip and sample determines the image resolution, 

an awareness of surface forces and mechanical properties is important in order to 

interpret contact-mode images.  In non-contact mode imaging, if the surface forces vary 

from spot to spot on a sample through changes in the chemistry of the surface, the 

detected image will be a convolution of the topography and the surface forces [26]. 

The way to measure the forces with the AFM is to position the tip over a desired 

point of the sample and allow the piezoelectric scanner to scan the surface, and 

decreasing the distance between the tip and sample until the tip touches the sample. The 

curve obtained represents the cantilever deflection as a function of sample extension. The 

curve is called a force spectrum. When the tip is far from the sample, then the force is 
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repulsive, and when the tip is moved closer to the sample, then the force is attractive, so 

the cantilever deflects towards the sample [7]. 

When the base of the cantilever beam is given excitation, it produces vibration. 

Due to excitation, amplitude, frequency and phase angle will change.  These changes are 

measured and used in a feedback loop to control the forces and the vertical distance 

between the tip and the sample.  Tapping mode of the AFM is used commonly to image 

wide range of organic materials with nanometric-scale resolution.  Other techniques such 

as, boundary excitations base motion excitation are also used to excite the base of 

cantilever to obtain the nanoscale information about elastic properties of materials [27]. 

The AFM shown in Figure 4 operates by measuring repulsive or attractive forces 

between tip and sample.  When it is in repulsive mode (contact mode) the tip of the 

cantilever lightly touches the sample.  A raster-scan drags over the sample and it 

measures the vertical deflection of the cantilever, which indicates the sample height [9]. 

In noncontact mode, the AFM derives topographic images from measurements of 

attractive forces; the tip does not touch the sample (Albrecht Et.al., 1991).  On the 

nanometer scale, several investigators have measured the interaction forces between the 

tip and the sample during STM and AFM measurements.  Martin and Williams and 

Wickramasinghe measured the attractive forces between AFM tip and sample as a 

function of tip-surface separation in the 3-18 nm range.  The attractive forces are on the 

order of 10nN [8]; 
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Figure 4: Concept of AFM and the optical lever; (left) a cantilever touching a 
sample; (right) the optical lever [9] 
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The AFM is being used to solve processing and materials problems in a wide 

range of technologies affecting electronics, telecommunications, biological, chemical, 

automotive, aerospace, and energy industries.  The materials being investigated include  

thin and thick film coatings, ceramics, composites, glasses, synthetic and biological 

membranes, metals polymers, and semiconductors.  The AFM is being applied to studies 

of phenomena such as abrasion, adhesion, cleaning, corrosion, etching, friction, 

lubrication, plating and polishing [28]. 

Recently, the AFM has also been used to investigate the mechanical properties of 

materials including atomic-scale friction, elastic modulus, and surface forces.  The 

modulus can be determined from the loading part of the indentation curve for elastic 

materials.  For elasto-plastic materials, elastic modulus and hardness can be found from 

the unloading curve. Force magnitudes range from millinewton and depend on the sample 

materials and the medium in which the experiment is conducted (air, vacuum, liquid) [8]. 

In most applications of AFM, only lower atomic resolution is achieved because of 

the extreme sensitivity and instability of soft levers against high force gradients of short 

interactions.  But now atomic resolution can be achieved using high resonant cantilevers 

with large ~ 100 Å oscillation amplitudes in ultrahigh vacuum [24]. 

One of the most exciting results for atomic force microscopy has been the 

discovery of achieving atomic resolution when the tip is in contact with the sample while 

scanning.  The AFM is able to achieve such a high resolution by using a very small 

loading force on the tip, typically ranging from 10-7 to 10-11 N, which makes the area of 

contact between the tip and sample exceedingly small [2]. 
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The AFM can also image the softness of a sample by pressing the cantilever into 

it at each point in a scan.  The scanner raises the sample or lowers the cantilever by a 

preset amount, called modulation amplitude (usually 1-10 nm) [9].  In response, the 

cantilever deflects an amount dependent on the softness of the sample: the harder the 

sample, the more the cantilever deflects.  This type of analysis is also done using a single 

cantilever, as shown in Figure 5.  Only information like frequency response and phase 

angle can be obtained by the use of a single cantilever beam. When a dual cantilever 

beam is used, one can expect to get more information about a particle. 

In Figure 6, the dual cantilever proposed for imaging and identifying particles is 

shown.  The second cantilever is attached to the end of the first cantilever.  The tip is 

attached to the underneath end of the first cantilever.  When the tip engages with any 

particle on the surface it produces some force.  Due to this force and the cantilever’s base 

motion, response is produced.  The image of the surface can be interpreted by the 

response obtained from the dual cantilever. Two-degrees of freedom have an advantage 

over a single-degree of freedom.  In the former, the response obtained for the second 

mass may provide some more information about the particle. In single degree of freedom 

we will have only one frequency response peak where as in dual cantilever we will have 

four-frequency response peak. This additional 3-frequency responses peak can provide 

some additional information about the particles. 

The dual cantilever is given a base excitation with which it vibrates.  As 

mentioned earlier the dual cantilever is assumed to be in tapping mode so that the 

cantilever vibrates over the surface at its resonant frequency.  When it encounters any 

particle on the surface then the tip of the cantilever engages with the particulate.  The 
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Figure 5: AFM’s can image sample elasticity by pressing the tip into the sample and 
measuring the resulting cantilever deflection [9] 
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Figure 6: Dual cantilever proposed for imaging the particulate attached to a surface.  
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response obtained can be interpreted in some way to find the particle’s properties.  This 

forms the basis of the research work proposed.  In this thesis we explore how the dual 

cantilever can be used to identify and image the surface and some of its advantages over a 

single cantilever beam. 

Biological applications of atomic force microscopy, though technically 

challenging, are destined to be of great importance.  The AFM is already used to image 

individual biological molecules such as amino acids and DNA [2].  It can also be used in 

finding the difference in shape of many biological molecules, such as single stranded, 

double-stranded and triple-stranded DNA, and protein channels in membranes [29]. 
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CHAPTER 2 
 

OBJECTIVE OF RESEARCH 
 

Single microcantilevers are used in the AFM to image nano and micro surfaces.  

AFM imaging can also show the shapes of nano size particulates attached to surfaces.  In 

some cases, particulates can be identified through the history of the surface.  Known 

particles are sometimes simply placed on a test surface, either directly or indirectly. 

However, in some cases, the identity of imaged particles is unknown. Establishing the 

physical properties of nano size particulates at the same time a surface is being imaged 

would provide important supplemental information. 

The objective of this research is to evaluate the possibility of using dual or compound 

microcantilevers in AFM to establish physical properties of particulates at the same time 

surfaces are being imaged.  A dual microcantilever can be achieved has a direct 

modification of a single microcantilever. One needs only to extend a second cantilever 

away from the end of the first microcantilever. If the motions of the two cantilever tips 

are measured, the proposed cantilever configuration would convert a typical 

microcantilever from a single-degree of freedom vibration system to a two-degree of 

freedom vibration system.  AFM would have to be modified with a second laser beam in 

order to measure the dynamic response of the tip of the second cantilever.  Here the AFM 

is assumed to be in tapping mode because in contact mode the method used to solve the 

frequency response is complicated. 

Assuming that the vibratory motion of both the tip and the end of the second 

cantilever can be measured simultaneously by AFM, how these measured responses can 
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be interpreted to extract both the image of a surface and identify particulates that might 

be attached to the surface is the objective of this research. The possible result of this 

research is to show how the frequency response obtained from the dual cantilever can be 

used to identify the particles.   

In dual cantilever the modal stiffness and modal damping can be determined 

experimentally. Knowing the stiffness of the dual cantilever and stiffness matrix for the 

dual cantilever model, we can determine the type of particle on the surface. Moreover, in 

dual cantilever we will have four-frequency response peak whereas in single cantilever 

we will have only one frequency response peak. This also gives some additional 

information about the particle on the surface. The following sections explain vibration 

models used in the analysis and define various responses and signatures that can be used 

to identify particulates through their physical behavior. 
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CHAPTER 3 

METHOD OF SOLUTION 
 

The objective of this research is to image and identify a particle on a surface of a 

sample at the nano-scale level.  In this research, the AFM is used to image the surface 

with atomic resolution.  The single cantilever, shown in Figure 5, is commonly used to 

image a surface with atomic resolution.  With the single cantilever model, frequency 

response can be obtained for only one point, whereas in dual cantilever model, frequency 

response can be obtained for two points.  The frequency response for the second point in 

the dual cantilever model may provide some additional information about the particle that 

cannot be obtained from the single-degree cantilever model.  In this chapter, the basic 

mathematical model used for the research is developed and analyzed with some 

numerical values for spring constants, damper constants and frequencies provided by the 

manufacturers of microcantilevers.  This research is based on five basic models; they are 

the elastic model, the viscous model, the visco-elastic model in parallel (Kelvin-Voigt 

model), the visco-elastic model in series (Maxwell model) and the visco-elastic model in 

series/parallel (Standard solid model).  This last model is also called the second viscous 

model.  For each model, natural frequency, mode shape and frequency response are 

obtained.  Frequency response is plotted as the function of the driving frequency with 

which the base vibrates.  The signature for the models is noted and discussed briefly in 

the Chapter 4. 

The dual cantilever used in this research is shown in Figure 7; it has two beams of  
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Figure 7: Dual cantilever with base motion of y = y0 cos (ωt) in tapping mode 

 23



different sizes that are attached together.  Each beam has its own mass and stiffness.  The 

AFM tip is attached to the underneath end of the first mass.  In this research we are 

making two assumptions.  First, the dual cantilever used in this research is assumed to be 

in tapping mode.  In tapping mode the dual cantilever vibrates over the surface at its 

resonance frequency, and its response is altered when it encounters any particle.  The use 

of tapping mode has some advantages over contact mode, which have been discussed in 

the background section.  The basic purpose of using tapping mode is to reduce lateral 

forces. Lateral forces are produced while scanning the surface, and will result in 

damaging the tip.  The second assumption is a steady state for calculating the frequency 

response (i.e. the tip is attached to the particle when response is obtained).   In reality, 

though, is not the case; the tip does not stick to the particle.  When the tip does not stick, 

then the calculations involve a lot of complication. But the complex calculations required 

to model this phenomenon are beyond the scope of this research. In this research, 

continuous systems are discretized, and so higher modes of the dual cantilever are 

neglected (beyond fundamental natural frequency).  

 The motion of a system subjected to any given excitation is commonly referred to 

as the system response.  The response is generally described by displacement and, less 

frequently, by velocity or acceleration.  The excitation can be in the form of initial 

displacement and velocities or in the form of externally applied force, or both. 

The elements constituting a discrete mechanical system are of three types, namely, 

those relating forces to displacements, to velocities, and to accelerations, respectively. 

The most common example of a component relating forces to displacements is the spring. 

Springs are generally assumed to be massless, so that force acting at one end must be 
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balanced by force acting at the other end, where the latter force is equal in magnitude but 

opposite in direction to the former.  The element relating forces to velocities is generally 

known as a damper.  The damper is also assumed to be massless, so that a corresponding 

force at one end must balance a force at the other end.  In this research, springs and 

damper are attached in various combinations and the corresponding response is analyzed. 

  In the basic dual cantilever model, it is assumed that the tip is not engaged with any 

particle.  For this basic model, the equation of motion is derived. Using the equation of 

motion, we obtain the natural frequency, mode shapes and frequency response.  This 

model is used as a baseline for all subsequent models.  The frequency response obtained 

from this model is used to compare with the frequency response obtained from the other 

models.  When the frequency responses are compared, one can see the difference, which 

may be useful in determining the physical nature of the particle on the surface.  The 

frequency response for the basic dual cantilever model is obtained by substituting 

numerical values given by the micro-cantilever manufacturers.  The same set of values 

for spring constants and frequencies are used through out the research.  

The dual cantilever can be excited using an external force or by boundary force.  In 

this research a boundary force modeled as y0sinωt excites the beam, where y0 is the 

amplitude of the base motion and ω is the driving frequency.  Physical properties of the 

particulate can be discovered in some way using the response obtained from the various 

models.  The whole research is subdivided as follows.  First, the model is attached to a 

spring alone, then with damper alone.  Later spring and damper are connected in parallel, 

and lastly spring and damper are connected in series.  Each model has its own signatures, 

and they are discussed briefly in the next chapter.  
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3.1 DUAL CANTILEVER MODEL 

 The unattached dual cantilever is the basic model used for this research.  As stated 

before, in order to understand subsequent models, it is important to know how the dual 

cantilever model works. The few sections in this chapter deal with the basic dual 

cantilever model.  Tapping mode is assumed for the dual cantilever.  The basic dual 

cantilever used in this research is shown in Figure 7.  In this model the assumptions made 

are, first, that the base of the dual cantilever is fixed to a vibrating support and, second, 

that the tip is not engaged with any particle on the surface.  The system is allowed to 

vibrate under the influence of the base motion.  The base motion has an amplitude of y0 

and a driving frequency of ω.  In this section we are going to discuss how the basic 

equation of motion for the dual cantilever model is obtained.  To derive the equation of 

motion, some of the concepts of strength of materials and dynamics are used.  

In Figure 7, the displacement of the mass due to base motion can be related to the 

deflections as  

        x1 = y + w1                        (1) 

        x2 = y + w2                        (2) 

where y is the base motion amplitude, w1 is the deflection of mass m1, w2 is the 

deflection of mass m2, x1 is the combined amplitude of base motion and deflection of 

mass m1 and x2 is the combined amplitude of base motion and deflection of mass m2. 

In this particular case, the differential equation can best be developed in terms of 

the flexibility matrix [α] instead of the stiffness matrix [k], because it is easier to derive 

the flexibility influence coefficients than stiffness influence coefficients.  The elements in 

the flexibility matrix are called influence coefficients.  Moreover, the use of influence 
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coefficients facilitates the writing of differential equations of multi-degree of freedom 

systems directly in matrix form.  The use of equations in matrix form facilitates the 

application of computer methods to get their solutions.  

When load F1 is applied at point 1 as shown in Figure 8, the deflection obtained at 

point 1 is α11 and the deflection due to load F1 at point 2 is α21.  When a load F2 is 

applied at point 2, the deflection at point 1 due to load F2 is α12 and the deflection at 2 is 

α22.  Maxwell’s reciprocal theorem states that the deflection at any point in the system 

due to unit load acting at any other point of the system is equal to the deflection at the 

second point due to unit load acting at the first point.  Therefore, α12=α21. 

Writing all the influence coefficients in matrix form gives the flexibility matrix [α] 
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The deflection matrix is related to the force matrix by  

[w]= [α] {F}                              (5)   

Applying the above relation to the dual cantilever model shown in Figure 7 gives  
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Figure 8: Elements in flexibility matrix; α12 = α21 
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Since the flexibility matrix is the inverse of the stiffness matrix, equation (6) becomes  
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Applying equations (1) and (2) to equation (7) gives 
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where ( ) ( )tyty ωcos0=  represents the base motion of the dual cantilever. 

In equation (9), m1 is mass 1, m2 is mass 2, c1 is the damper constant for the first 

mass, c2 is the damper constant for the second mass and [k] is the stiffness matrix, which 

is obtained by applying load at each point and getting the deflection at each point. 

Simplifying equation (9), the equation of motion for a two-degree of freedom system is  
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                         (10) 

where [m] is mass matrix, [c] is damper constant matrix , [k] is stiffness matrix and {y} is 

the base motion amplitude vector. How the natural frequencies and mode shapes are 

determined using the equation of motion derived for the dual cantilever is discussed in 

the next section.  
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3.1.1 EIGENVALUES AND EIGENVECTORS

 

 

It is helpful in the vibration analysis of any system to have a clear picture of the 

vibration mode shapes and their natural frequencies.  This section establishes these 

vibration elements, which are commonly called eigenvectors and eigenvalues, 

respectively.  An n-degree of freedom system requires n independent coordinates to 

define the system completely at any instant.  In most cases, the coordinates are taken 

from the equilibrium position.  The two-degree of freedom system requires 2 independent 

coordinates to specify the system.   In this dual cantilever model, the two coordinates 

used to represent the system are x1 and x2, respectively as shown in Figure 9.  

The differential equation for the two-degree freedom system given in equation (9) 

has both static and dynamic coupling between coordinates.  The physical concept of static 

coupling is that if one coordinate is given a displacement, the other coordinate also 

undergoes some displacement.  The differential equation (9) also has the second 

derivatives of x1 and x2, so it also has dynamic (inertial) coupling.    The physical concept 

of dynamic coupling is that if acceleration is given to one coordinate, the other coordinate 

also has acceleration.  The systems having two degrees of freedom are important because 

they introduce the phenomenon called coupling.  The motion of any two independent 

coordinates, in general, depends also on the motion of the other coordinates through the 

coupling of springs and dampers.  

One way to find a solution for a coupled system is to decouple the equations into 

two independent single-degree of freedom problems.  Then, for a single-degree of 

freedom, the solution can be obtained easily.  In order to decouple the differential
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Figure 9: Dual cantilever with two-degree of freedom in free vibration.
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equations, the modal matrix is used.  In this section we are going to see how the modal 

matrix is obtained from the characteristic equation. 

Making the mass matrix a diagonal matrix can eliminate dynamic coupling; 

similarly, making the stiffness matrix diagonal can eliminate static coupling.  The method 

used to diagonalize both the mass and stiffness matrices is called decoupling.  It 

decouples the two-degree of freedom equations into two single degree of freedom 

equations.  Pre-multiplying the stiffness matrices by the transpose of the modal matrix 

and post-multiplying by the modal matrix gives the modal mass and stiffness matrices, 

which are diagonal.  

The two-degree of freedom problem has two natural frequencies.  Under certain 

conditions, any point in the system may execute harmonic vibrations in any of the two 

natural frequencies, and these are known as the principal modes of vibration. Amplitude 

ratio is the ratio between the displacement amplitude of mass and the amplitude of the 

base displacement. When the system is driven by harmonic excitation (base motion) with 

a frequency near one of the system’s natural frequencies, the amplitude ratio will be high.   

The differential equation for the two-degree system without any damping is 

                                   [m]{ }+ [k] {x} = {0}     (11) 
..
x

The classical approach to find the eigenvalues, natural frequencies, eigenvectors, mode 

shapes and the modal matrix is to assume solution of the form   

tXx ωsin11 =       (12) 

tXx ωsin22 =       (13) 

substituting these two initial solution in the differential equation (11) gives 
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[ ] [ ][ ] { }0
2

12 =








−
X
X

mk ω     (14) 

The above equation is said to be the amplitude equation or the eigenvector equation. 

The stiffness matrix for the two-degree of freedom system is derived using 

relation [ ]   [ ] 1−= αk

                                 [ ] ( )








=








−

−+
=

2221

1211

22

221

kk
kk

kk
kkk

k    (15) 

where  and 22112 kkk −== ( ) 1121 kkk =+  , here in this case k1 and k2 are obtained from 

the manufacture of the microcantilevers. The mass matrix is  

                                       (16)
 [ ] 








=

2

1

0
0

m
m

m

Natural frequency can be obtained from the characteristic equation  

                       [ ] [ ] 02 =− mk ω   

(or)   

[ ] [ ] 0][21 =−− Ikm ω                     (17) 

where  ω2 is the eigenvalue, ω is the natural frequency and [I] is the identity matrix. There 

are two natural frequencies. The lower one is called the first, or the fundamental, 

frequency and the higher one is called the second frequency. 

The eigenvector for each mode is calculated by substituting each natural 

frequency or the eigenvalue into the eigenvector equation (14).  The eigenvectors 

obtained are the columns in the modal matrix.  The modal matrix is given by
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







=



 →

2221

1211

XX
XX

X     (18) 

where  and 


 are the eigenvectors ( mode shapes) of first and second 

vibration modes of the dual cantilever. 









21

11

X
X





 22

12

X
X

When the modal displacements are normalized with respect to the displacement of 

the first mass, then the modal matrix becomes 

      (19) 








=

→

2221

11
][

XX
X

where X21 and X22 are given by 

            
( )2

122

2
21

neffmk
k

X
ω−

=

   (20)
 

                                                       
( )2

222

2
22

neffmk
k

X
ω−

=

   (21)

 

The ratio of the amplitude of the two masses being positive means that the 

motions are in phase, that is, the two masses move up or down together. This is the case 

for the system’s first mode. The ratio of the amplitudes of the two masses being negative 

means that two motions are out of phase, that is, one mass moving down and the other 

moving up, and vice versa. This is the case for the second mode. In the first mode, every 

point in the system executes harmonic motion of the first natural frequency and in the 

second mode that of the second natural frequency.  A system having two degrees of 

freedom can vibrate in two principal modes of vibration, corresponding to its two natural 

frequencies. 
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EXAMPLE CALCULATION:       

The purpose of the following discussion is to describe numerically the typical 

mode shapes and the natural frequencies of the dual cantilever.  Usually manufacturers of 

the microcantilevers gives the spring constants and natural frequencies of single 

microcantilevers, and their effective mass is calculated from the given numbers.  We 

assume that the second cantilever in the dual cantilever is attached to the single 

microcantilever.  The values of spring constants for different modes are tabulated in  

Table 1.  If we choose the values for  k1, k2, f1 and f2 as given below, for example 
                

k1 = 42 N/m, k2 = 20 N/m,  f1 = 300 kHz and f2 = 350 kHz . 

Extracting effective masses m1 and m2 from the single-degree cantilever 

information, effective masses are given as 

                                   
           

( )2
1

1
1 2 f

km eff π
=

                                 (22)

 

                                            
( )2

2

2
2 2 f

km eff π
=

                                             (23) 

where m1eff and m2eff are the effective mass for the dual cantilever; k1 and k2 are the 

spring constants for mass 1 and mass 2, respectively; and f1 and f2 are the frequencies 

with which the masses vibrate. It is assumed that the effective mass for each cantilever in 

isolation may be used for the dual cantilever system. It is recognized that this is an 

approximation, but is used for this initial study.   Equation (22) and (23) are obtained 

from the standard equation, which is given by 

 35



    
m
kf

π2
1

=

      (24) 

Knowing the frequency (f) and stiffness (k) of the cantilever, the effective mass of the 

cantilever can be determined. The effective masses for the system are calculated using 

equations (22-23), and they are found to be  m1eff = 1.18 e –11 kg  and m2eff = 0.435e –11 

kg.
  

Using the effective masses calculated and the stiffness matrix (Equation 15), we 

find the natural frequencies using the characteristic equation (17). The natural frequency 

for the first mode is found to be 193 kHz and for the second mode is 266 kHz. 

Substituting the first natural frequency in equation (20), and the second natural frequency 

in equation (21), the elements in the modal matrix are determined.  The columns of the 

modal matrix are the first and second mode shapes. The modal matrix for the given set of 

numerical values is found to be  









−

=



 →

5741.18158.1
11

X

 

Mode shapes for the typical example values of spring constant and frequency are shown 

in Figures 10 and 11.  In the first mode, mass m1 and mass m2 vibrates in phase, i.e., they 

move together.  In the second mode, they are out of phase, i.e., as the first mass moves up 

the second mass moves down. 

The mode shapes for the dual cantilever model have the same relative phase 

values of stiffness and mass. In the first mode, the two masses will always be in phase  
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Figure 10: Mode shape 1; First natural frequency = 193 kHz 
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Figure 11: Mode shape 2; Second natural frequency = 266 kHz
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and in the second mode, they will be out of phase.  The mode shapes for the other models 

are discussed in Chapter 4. 

 3.1.2 FREQUENCY RESPONSE OF THE DUAL CANTILEVER 
 

The response of the system is the movement of mass due to excitation by the base 

motion.  The simple diagram for the dual cantilever used in this research is shown in 

Figure 7.  In the previous section we discussed the mode shapes and the natural 

frequencies for the dual cantilever model.  In this section we are going to discuss, using 

the mode shape and natural frequencies, how the frequency response for the dual 

cantilever model is determined.  The frequency response obtained from this model forms 

the baseline for the other models in later sections.  As mentioned previously this model is 

based on two assumptions.  First, the cantilever is in tapping mode and the experiment is 

done in open space.  Second, the tip is not engaged with any particle. In subsequent 

models, the tip will be engaged with a particle. So, when the solutions for those models 

are compared with the baseline solution, we may be able to say whether the particle is 

soft or hard.  The response obtained for the system will be for a particular driving 

frequency. Therefore, the frequency response curve can be plotted by varying the driving 

frequency, i.e., frequency response is a function of driving frequency.   

In this research the frequency response for the system is solved using the modal 

summation method.  Here {x} contains the local coordinates, and {η} contains the modal 

coordinates.  The local and modal coordinates are related by  

{ } { }η



=

→

Xx                 (25) 
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where  is the modal matrix . 



 →

X

The differential equation in terms of local coordinates can be written as 

[ ] [ ] [ ]{ } { }Fxkxcxm =+






+







 ...

   (26) 

where {F} is the local force matrix, given by  

     { }    (27) [ ] [ ] t
y
y

k
y
y

kF ωcos
0

0









=








=

The differential equation in terms of modal coordinates can be written as  

[ ] [ ] [ ]{ } { }QKCM =+






+







 ηηη

...

   (28) 

where    [M]  is the modal mass matrix  

   [      (29) 
→→

= ][][][] XmXM T

 [K] is the modal stiffness matrix  

                                                     [                  (30) 
→→

= ][][][] XkXK T

[C] is the modal damping matrix  

   [ ]     (31) [ ]
→→

= ][][ XcXC T

In this research , damping is assumed to be proportional, i.e.,  

[ ] [ ] [ ]kmc βα +=                                (32) 

where α and β are arbitrary constants.  This assumptions makes the modal damping 

matrix to be diagonal, and so allows the two modal differential equations to be 

completely decoupled. 
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{Q} is the modal force , given by  

                                 (33) 
{ }FXQ T

→

= ][}{

where  [k] is the stiffness matrix, [m] is the mass matrix, [c] is the damper constant 

matrix.  The modal matrices are all diagonal matrices, because the modal matrix 

decouples the differential equations to two single-degree of freedom equations. 

The differential equation given in equation (28) can be expanded into two separate 

differential equations  

111

.

11

..

11 QKCM =++ ηηη
       (34)  

and  

222

.

22

..

22 QKCM =++ ηηη
     (35) 

where Q1 and Q2 are given by 

[ ]{ } tykXQ T ωcos011 =
     (36) 

tQQ ωcos011 =
      (37) 

[ ]{ } tykXQ T ωcos022 =
     (38) 

tQQ ωcos022 =
      (39) 

Therefore, simplifying all the above equations, differential equations represented in 

equation (34) and (35) can be generally written as  

)cos(2 02
...

t
M
Q

r

r
rrrrrr ωηωηωξη =++    (40) 
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We will proceed to solve the above differential equation using complex notation. 

Replacing cos ωt by e iωt gives  

ti

r

r
rrrrrr e

M
Q ωηωηωξη 02

...
2 =++     (41) 

One can find a real solution as well as a complex solution for the same problem. 

In this particular research we are finding only the complex variable solution.  The 

differential equation given in equation (41) can be solved by assuming an initial solution 

of the form 

ti
rr eY ωη

−

=
        (42)     

where 
−

Y  is the complex amplitude, ω is the driving frequency. 

By substituting the complex function given in equation (42) into the differential equation 

(41) we get     

 ( ) ( )( )
ti

r
ti

rrr

r

r

r eYe
rir

K
Q

ωω

ξ
η

_

2

0

21
=

+−
=

                (43) 

where r1 and r2 are the frequency ratios for the first and the second masses. Frequency 

ratio is the ratio between the driving frequency and the natural frequency.  

                                                     1
1

n

r
ω
ω

=
                             (44) 

                                               2
2

n

r
ω
ω

=
                                   (45) 

The modal solution ηr can also be written as 
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)( φωωφη −− == ti
r

tii
rr eYeeY

               (46) 

where φ is the phase angle between the base motion and the modal response.  Note that 
−

Y  

contains both amplitude and phase angle.  The relationship between phase angle and the 

amplitude is shown graphically in the Nyquist phase diagram (Figure 12). 

When both the numerator and the denominator of equation (43) are multiplied by the 

complex conjugate of the denominator, equation (43) becomes   
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     (47) 

Equation (47) has both the real part as well as the imaginary part.  It can be written 

separately as  
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     (48) 

where the first term represents the real part and second term represents the imaginary 

part. 

The response can be converted from modal coordinates back to local coordinates 

as 


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η
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x
x

     (49) 

This can be written in another form as 
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Figure 12: Nyquist phase diagram 
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2121111

−−−

+= ηη XXx
      (50) 

2221212

−−−

+= ηη XXx
      (51) 

As a classical approach, the initial solution is assumed to be of the form 

tieXx ω
−−

= 11

       (52) 

tieXx ω
−−

= 22

       (53) 

substituting the complex variable solution given in equation (42) and using equation 

(52),(53) equation (50) and (51) becomes  

−−−

+= 2121111 YXYXX
      (54) 

−−−

+= 2221212 YXYXX
      (55) 

The complex solution can be separated into real and imaginary parts as given below. 

( )
( ) ( )∑

+−

−
=



 −

222

20

11
21

1
Re

rrr

r
r

r

r
rr

r
K
Q

XX
ξ      (56) 

( )

( ) ( )∑
+−

−=



 −

222

0

11
21

2
Im

rrr

rr
r

r

r
rr

r
K
Q

XX
ξ

ξ

    (57) 
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The frequency response obtained is for the complex variable solution.  The 

frequency response of the system, X1 and X2 are obtained by combining the real and the 

imaginary solution.  It is given as 

2

1

2

11 ImRe 
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








+












=

−−

XXX
      (60) 

2

2

2

22 ImRe 











+












=

−−

XXX
      (61) 

EXAMPLE CALCULATION: 

This part of the section discusses numerically the values obtained for frequency 

response for the given example values.  Values for the spring constants and frequencies 

are given by manufacturers of the microcantilevers.  For example, considering a typical 

values for springs k1= 42 N/m and k2= 20 N/m, damping coefficient for first mass 

ξ1=0.0012, frequencies f1=300 kHz and f2= 350 kHz .  The damper coefficient for the 

first mass is assumed as given when the experiment is done in open space [41]. The 

damping coefficient for the second mass is taken proportional to the mass and is given by 
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         (62) 

In this case, we assume that the damping for the second mass is proportional to the first 

mass, because the second cantilever is just an add-on cantilever to the single cantilever. 

The effective masses for the example values are already calculated and discussed in the 

previous section.  Using the effective masses and damper coefficient for the first mass, 

we find from equation (62) that ξ2 is 0.0034 .  The modal matrix for the given example 

values is also calculated in the previous section.   The modal mass matrix, modal stiffness 

matrix and modal damping matrix are calculated using modal matrix, mass matrix, 

stiffness matrix and damping constant matrix, respectively.  The equations used to 

calculate these are given in the frequency response section of the dual cantilever model 

(Equations 29-31).  The modal force is calculated from the modal matrix and the force 

vector.  Knowing the natural frequency, we can calculate the frequency ratio for any 

given driving frequency.  Knowing frequency ratio, damper coefficients, modal force and 

modal stiffness, we can determine the frequency response for the given driving frequency 

by using equation (48).  Equation (48) has both real and imaginary parts; plots can be 

obtained separately for each of them.  The total response or the combined response of the 

system is calculated using equations (60) and (61).  
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Figure 13 represents the real part of the frequency response for the first mass. 

From the plot it is clear that once the driving frequency is larger than the first natural 

frequency then the amplitude is negative because the system vibrates in second principal  

mode.  Figure 14 represents the imaginary part of the frequency response for the first 

mass.   Figure 15 gives the frequency response of the combined real and imaginary parts 

of the dual cantilever.  From the plot it is clear that when the driving frequency is equal to 

the natural frequency the amplitude ratio is high.  As the driving frequency increases 

initially the amplitude ratio increases until it reaches the first natural frequency, and then 

it decreases and again increases until it reaches the second natural frequency, and then it 

is steady after that.  When the driving frequency increases beyond 350 kHz, the response 

is negligible. 

Figure 16 is the real part of the frequency response for the second mass.   When we 

compare Figure 13 and Figure 16 the difference can be easily seen.  In Figure 13 as the 

driving frequency increases beyond the first natural frequency, the amplitude ratio is 

negative and it gradually increases as driving frequency increases. But in Figure 16, when 

the driving frequency increases beyond the first natural frequency the amplitude ratio is 

negative and until it reaches the second natural frequency it is negative.   Figure 17 gives 

the imaginary part of the frequency response for the second mass.  In the same way, if 

you compare Figure 14 and Figure 17, the difference can be easily seen. In Figure14, 

when the driving frequency is near the second natural frequency still the amplitude ratio 

is negative but in Figure 17, the amplitude ratio is positive.  Figure 18 gives the 

frequency response for the combined real and imaginary parts for the second mass.  
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Figure 13: Real part of the complex solution for the first mass 
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Figure 14: Imaginary part of the complex solution for the first mass
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Figure 15: Combined frequency response of two-degree damped system for the  
first mass 
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Figure 16: Real part of the complex solution for the second mass 
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Figure 17: Imaginary part of the complex solution for the second mass 
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 Figure 18: Combined frequency response of the two-degree damped system for the 
second mass 
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3.2 ELASTIC MODEL 
 
 The objective of this research is to identify and image particulates on the surface.  

Until now we have discussed how the basic dual cantilever model is built, and how the 

frequency response for the dual cantilever model is obtained.  Moving on to the research, 

first we are going to discuss the elastic model in this section.  The elastic model, as the 

name suggests, is used to find whether the particulates on the surface are hard or not.  

The block diagram for the classic elastic model is shown in Figure 19(a). In this model, 

the dual cantilever tip is connected to a lower spring.  The spring attached to the tip is 

considered to be the particle on the surface, which we have to identify.  The assumptions 

made in the dual cantilever model are applied here also i.e., tapping mode and steady 

state response.  The response obtained from this model is then compared with the 

frequency response of the dual cantilever model or the baseline model.  By comparing the 

two frequency response curves, one can identify the signature of this model.  

In Figure 19 (b), k3 represents the lower spring attached to the tip of the dual 

cantilever.  Here x1 and x2 are the displacements of the first and second masses, 

respectively.  The dual cantilever is given a base motion with an amplitude of y0 and a 

driving frequency ω.  As mentioned earlier, the dual cantilever beam has different 

stiffness; k1 and k2 are the stiffness for the first and second beam, respectively.  The 

lower spring attached to the tip of the dual cantilever is considered to be parallel to the 

springs k1 and k2.  Thus, the spring force acting on the tip is now the sum of the spring 

forces of springs k1 and k3. This will in turn increase the total stiffness of the first beam.  

When the stiffness of the beam increases, the natural frequency automatically increases
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Figure 19: Elastic model. (a) Dual cantilever tip attached to a lower spring              
(b) Graphical representation for elastic model
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The characteristic equation used to find the natural frequency of the elastic model is 

the same as the characteristic equation given in the dual cantilever model. The stiffness 

matrix used to find the natural frequency is  

       

( )








−

−++
=

22

2321][
kk
kkkk

k
                    (63) 

Comparing the stiffness matrix used in the dual cantilever model (equation 15) and the 

one given in equation (63), we can see all the terms are the same except the first term. 

The first term has an extra term, which is the spring constant of the lower spring. 

Therefore, when the lower spring constant has some non-zero value, the natural 

frequencies will increase.  When comparing the natural frequencies of the dual cantilever 

model with that of the elastic model, the elastic model has the higher natural frequencies.  

Shift in natural frequency is one of the signatures of this model.  Shift in natural 

frequency occurs only due to that extra term in the stiffness matrix, so the lower spring 

has direct impact on the natural frequency. 

The dual cantilever will be vibrating in its resonance frequency over the surface, 

which has to be imaged.  While the tip is scanning the surface, it is just moving over the 

surface and does not have any contact with the surface.  When the tip encounters any 

particle on the surface, then this model is applied, i.e., the particle is considered to be a 

spring and is attached to the tip.  The equations used to find the frequency response are 

already discussed in the previous section.  The same set of equations is used here too.  

The frequency response obtained for the elastic model is then compared with the 

frequency response obtained in the dual cantilever model.  If there is any frequency shift, 

then one can say that the particle on the surface is hard.  This is so because, when the 
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particle is hard, it will increase the stiffness of the beam, which results in a higher natural 

frequency.  When the lower spring constant value is zero, then the frequency response 

obtained from this model will be the same as the frequency response obtained in the dual 

cantilever model.   Some of the particles that can be found using this model are sand, 

lead, and steel. 

The frequency response obtained will be for a particular value of driving frequency. 

Therefore, varying the driving frequency, the frequency response curve is drawn. 

Frequency responses are obtained for different values of the lower spring constants, and 

they are compared.  A plot between the lower spring constant and the shift in natural 

frequencies is also drawn to see how natural frequencies vary with the change of lower 

spring constant values.  

EXAMPLE CALCULATION: 

This part of the section deals with some numerical values for the elastic model. Let us 

take the same example values given in the previous section and k3 =10 N/m for the lower 

spring constant.  The effective masses calculated (Equations 22-23) from the spring 

constant and the frequencies given by the manufacturers are 

 m1 = 1.18×10-11 kg       m2 = 0.0435×10-11 kg 

Using the stiffness matrix and the effective masses, the natural frequencies are calculated 

from the characteristic equation (17).  The natural frequencies are found to be 

First natural frequency           = 200.82 kHz 

Second natural frequency       = 270.886 kHz 

Mode shape is given by    







−

=
36.11017.2

11
X
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 The frequency responses for this example model are shown in the Figure 20 and Figure 

21.  Figure 20 represents the frequency response of the first mass and Figure 21 

represents the frequency response of the second mass. 

In both figures, the frequency response obtained from the elastic model is compared 

with the frequency response obtained from the dual cantilever model or the baseline 

model.  The solid line represents the frequency response of the elastic model, and the 

dotted line represents the frequency response of the baseline.  It can be seen that the 

natural frequency of the elastic model is higher than the natural frequency of the baseline 

model.  Therefore, by inferring this, one can say the particle on the surface is harder.  In 

order to see what happens to the natural frequency when the lower spring constant value 

changes, a different value for the lower spring constant is taken and the same procedure is 

followed to get the frequency response.  For example take k3 = 20 N/m, the frequency 

response for this value is given in Figure 22 and Figure 23.  

Comparing the frequency responses obtained for the lower spring constant values of 

10 N/m and 20 N/m, it can be seen that there is a shift in natural frequencies.  The natural 

frequency increases with the increase in k3.  When the lower spring constant is 10 N/m, 

then the first natural frequency is 200 kHz, and when the lower spring constant is 20 

N/m, the first natural frequency is 207 kHz.  From the Figures 20 and 22, it is clear that 

as the lower spring constant increases the natural frequency tends to shift outwards.  Plots 

can be drawn between shifts in natural frequency versus lower spring constant.  The shift 

in the first natural frequency is given in Figure 24 and for the second natural frequency in 

Figure 25.  In both figures, the natural frequency obtained for this model is compared 

with the baseline natural frequency.  The change in natural frequency is linear. 
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Figure 20: Frequency response of first mass for two-degree damped system                          
adding a lower spring with spring constant k3= 10 N/m 

  ______ k3=10 N/m ; -------  Baseline with k3 = 0 N/m 
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Figure 21: Frequency response of second mass for two-degree damped system 
adding a lower spring with spring constant k3= 10 N/m 

         ______ k3=10 N/m ; ------  Baseline with k3=0 N/m
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Figure 22: Frequency response of first mass for two-degree damped system adding a 
lower spring with spring constant k3= 20 N/m 

                    ______ k3=20 N/m ; -------  Baseline with k3 = 0 N/m 
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Figure 23: Frequency response of second mass for two-degree damped system 
adding a lower spring with spring constant k3= 20 N/m 

                   _______ k3=20 N/m ; -------  Baseline with k3 = 0 N/m 
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Figure 24: Spring constant k3 versus first natural frequency 

             ______ With k3; --------  Baseline with k3 = 0 N/m 
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Figure 25: Spring constant k3 versus second natural frequency 

    ______ With k3 ; --------  Baseline with k3 = 0 N/m 
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The signature of this model and some more examples for this model are discussed briefly 

in Chapter 4.  In Chapter 4, it is explained how the response obtained from this model can 

be linked to the particle properties. 

3.3 VISCOUS MODEL 
 

Viscous model is the second model used in this research to identify and image 

particle on the surface.  In the previous section we have seen how the elastic model is 

used to identify hard particles.  In this section we are going to discuss how soft particles 

are being identified.  As the name suggests, the viscous model is used to image whether 

the particle on the surface is soft or not.  In the elastic model only the spring is connected 

to the tip of the dual cantilever, but in the viscous model only the damper is connected to 

the tip.  A block diagram for the viscous model is shown in Figure 26(a).  In Figure 

26(b), c3 represents the lower damper, and x1 and x2 are the displacements of the first 

mass and the second mass, respectively.   The dual cantilever is given a base motion with 

an amplitude of y0 and a driving frequency of ω.  The dual cantilever has a stiffness of k1, 

k2 and damper constants c1, c2 for the first and second masses, respectively. 

In this model, when the lower damper is connected to the tip of the dual cantilever, 

the energy exerted by the damper will be high and hence can be used to identify soft 

particulates.  In this model the lower damper added is parallel to the main system (i.e., to 

the dual cantilever).  Therefore, the damper constant for the first beam will be the sum of 

the lower damper constant and the damper constant for first mass.  In this model the 

stiffness matrix, which is used to find the natural frequency, is the same as the stiffness

 60



  (a) 

 

                         (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

y = y0 cos ωt 
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Figure 26: Viscous model. (a) Dual cantilever tip attached to a lower damper         
(b) Graphical representation of viscous model
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matrix used to find the natural frequency of the dual cantilever model. Hence, the natural 

frequency for this model is going to be the same as the natural frequency of the baseline 

model. The natural frequency increases only when there is any extra spring force acting.  

In this model, there is no extra spring force, but there is an extra damper force because of 

the damper.  Therefore, the only changes in this model will be the damper coefficient and 

the damper constant matrix.  The damper constant in this model is taken proportionally to 

the effective mass ratio.  Knowing the damper coefficient for the first mass from the 

manufacturer and calculating the effective mass and the natural frequencies from given 

values of spring constants and frequencies, the damper constant for the first mass can be 

determined by using the relationship given in 

cc
c

dampingCritical
constDampertcoefficiendamper ==)( ξ

    (64) 

where the critical damping is determined from the effective mass and the natural 

frequency. The damper constant for the first mass is  

2
1111 2 neffmc ωξ=         (65) 

where ξ1 is the damper coefficient of the first mass, ωn1 is the first natural frequency, and 

m1eff and m2eff are the effective masses for mass 1 and mass 2, respectively. 

Equation (65) is obtained from the standard equation, which is given by 

    
nc m

c
c
c

ω
ξ

2
==      (66) 

The damper constant for the second mass, which is proportional to the effective mass, is  











=

eff

eff

m
m

cc
1

2
12

                           (67) 
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We assume that the effective masses are same for all the modes. Equation (67) is derived 

from  

   
const

m
c

=
1

1

    and       
const

m
c

=
2

2  

  The lower damper attached to the dual cantilever is considered as the particulate 

on the surface.  While scanning, the tip of the dual cantilever moves over the surface.  

When it encounters any particle then this model applies. When the tip of the cantilever 

touches the lower damper, a response is produced, and this response is recorded.  Some 

of the particulates which can be determined from this model are DNA, blood etc.,
   

The damper force acting now on the tip is the addition of the first mass damper 

constant force plus the lower damper constant force because the lower damper is parallel 

to the dual cantilever.  The damper constant at the tip is then given by 

     cc 314 c+=              (68) 

The local damping matrix for the viscous model is   

                (69) 







−

−
=

22

24

cc
cc

c

The modal damping matrix is determined using the equation (31) given in the 

frequency response section of the dual cantilever model. Since we have assumed that 

there is proportional damping, the off diagonals are zero when the modal damping is 

calculated.
 

                                         (70) 
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[ ] ][][ 111 XcXC T=
     (71) 

[ ] ][][ 222 XcXC T=
     (72) 

Here X1 and X2 represents the first and second mode respectively. 

The mathematical formulation of this model requires modal damping factor ς1 and ς2 

to determine the frequency response, which can be now determined from 

2
11

1
1 2 nM

C
ω

ς =
      (73) 

2
22

2
2 2 nM

C
ω

ς =
      (74) 

Equation (73) and (74) are formulated from the relation between the damper constant and 

the critical damping given in equation (64). Where ωn2 is the second natural frequency, 

C2 is the second diagonal element in the modal damping matrix or the damper constant 

for the second mass in the modal coordinates, and M2 is the second diagonal element in 

the modal mass matrix or the mass 2 in the modal coordinates. 

After determining the modal damper coefficients (Equation 73 and 74) and the 

frequency ratios (Equations 44 and 45) for mass 1 and mass 2, the frequency response 

can be determined by using the same equations used to determine the frequency response 

in the dual cantilever model.  The frequency response curve can be plotted as a function 

of driving frequency.  The same procedure can be used to determine the frequency 

response for various values of the damper constants for the lower damper.  By comparing 

the plots obtained with the baseline frequency response, one can determine what type of 

particle is on the surface.  When the amplitude ratio of the viscous model is lesser than 
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the amplitude ratio of the baseline model then the particle on the surface can be identified 

as a soft particle.  Therefore, change of amplitude ratio is considered to be one of the 

signatures of this model. 

EXAMPLE CALCULATION: 

In this part of the section we are going to discuss this model with some numerical 

values for the lower damper.  Using some numerical examples will help us to understand 

better how the model is working and what happens when the damper constants change.  

A typical numerical example is used to see graphically what happens to the amplitude 

ratio when there is a change in lower damper constant value.  Let us take some example 

values as given by the manufacturer of the microcantilevers k1 = 42 N/m, k2 = 20 N/m, f1 

= 300 kHz, f2 = 350 kHz: The damper constant value for the lower damper is assumed 

initially to be c3=0.00000005 N-s/m.  The effective masses are calculated as  

m1 = 1.18×10-11 kg and m2 = 0.0435×10-11 kg.  

Using the effective mass and the stiffness matrix, natural frequencies of the two-degree of 

freedom are 

First natural frequency = 193 kHz 

Second natural frequency = 266 kHz 

Corresponding mode shapes are displayed as columns in the modal matrix as 









−

=
5741.18158.1
11

X
  

These are the same as the dual cantilever model which has already been discussed. 

The damper coefficient for the first mass is assumed to be 0.0012 [41].  The damper 

constant for the first mass is calculated using the relation given in (64).  Knowing the 
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natural frequencies and the effective masses, damper constants for both mass can be 

determined from equations (65,67). Modal mass matrix, modal stiffness matrix, and 

modal damper matrix are calculated using modal matrix, mass matrix, stiffness matrix 

and damper matrix, respectively, using the equations (29-31).  The modal damper 

coefficients for the first and the second mass are then calculated using equation (73) and 

(74). 

After determining the values for modal damper coefficients, frequency ratio, modal 

force and modal stiffness, substituting them in the frequency response equation, we find 

the frequency response for the first mass as shown in Figure 27.  Figure 27 is compared 

with the baseline frequency response (Figure 28) to see the difference in the model when 

a damper is added.  The difference cannot be seen when both are shown in the same plot, 

so they are shown in two different plots. The amplitude change is very small for this 

value of damper constant value.  When the damper constant value is higher, then one can 

see the difference clearly.  Figure 28 represents the frequency response for the first mass 

of the dual cantilever when the tip is not attached to any particle.   Figure 29 represents 

the frequency response of the second mass for the viscous model, and it is compared with 

Figure 30, which is the frequency response of the second mass for the dual cantilever 

model or the baseline frequency response.  When the lower damper constant value 

increases, it offers more resistance for the masses to vibrate and hence the amplitude ratio 

is less. When the lower damper constant value is high, then it behaves more like rigid 

body. Hence the force exerted on the damper will be high, that’s why the movement of 

damper will be high.  

 66



  

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

Driving frequency ,kHz

A
m

pl
itu

de
 ra

tio
, X

1/
y0

 

Figure 27: Frequency response for the first mass with a lower damper constant                          
c3 = 0.00000005 N –s/m 
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Figure 28: Frequency response for the first mass; baseline with c3=0 N-s/m
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Figure 29: Frequency response for the second mass with a lower damper constant 
c3= 0.00000005 N-s/m 
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Figure 30: Frequency response for the second mass; baseline with c3 = 0 N-s/m 
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 Figure 31 represents the frequency response of the viscous model for the first 

mass when the damper constant value is 0.0000005 N s/m.  Figure 31 has both the 

viscous model frequency response and the baseline frequency response.  The solid line 

represents the viscous model frequency response, and the dotted line represents the 

baseline frequency response.  When comparing both plots, we can infer that the 

amplitude ratio of the viscous model is less than the amplitude ratio of the baseline 

frequency response. From this we can infer that the particle on the surface is a soft 

particle. Figure 32 represents the frequency response of the viscous model for the second 

mass.  It has both the frequency responses of the viscous model and the baseline.  So, 

when the damper constant is higher, then the first mass will be fully restrained from 

vibrating.  In that case we will have only amplitude for the second mass.  A plot can be 

drawn for the change in amplitude ratio versus the lower damper constant value.  From 

the plot we can see how the damper constant value changes the amplitude ratio of the 

system. Figure 33 represents the change of amplitude ratio versus the damper constant 

value for the first mass and Figure 34 represents the change of amplitude ratio versus 

lower damper constant value of the second mass.  The change is linear, and as the damper 

constant value increases the change of amplitude ratio is almost constant.  So, change in 

amplitude ratio is considered to be the signature of this model. 

Comparing Figure 27 and Figure 31, it can be shown that when the damper constant 

value increases then the amplitude of vibration decreases at resonance.  From this model 

one can say, when there is a change in damper constant then the amplitude ratio will also 

change. Change in amplitude ratio refers to whether the particulate is soft or not.  When  
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Figure 31: Frequency response for the first mass of the two-degree                     
damped system adding a damper with c3=0.0000005 N-s/m 

                          ______ c3=0.0000005 N-s/m ;--------  Baseline with c3 = 0 N-s/m 
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Figure 32: Frequency response for the second mass for the two-degree               
damped system adding a damper with c3=0.0000005 N-s/m 

                      ______ c3=0.0000005 N-s/m ; --------  Baseline with c3 = 0 N-s/

 70



 
 
 

               

0

50

100

150

200

250

0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006

Lower damper constant c3, N-s/m

A
m

pl
itu

de
 ra

tio
 o

f X
1/

y0

 
Figure 33: Damper constant versus shift in amplitude ratio for X1 

          ______ with c3; --------  Baseline with c3 = 0 N-s/m 
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Figure 34: Damper constant versus shift in amplitude ratio for X2 

       _____ with c3; -------  Baseline with c3 = 0 N-s/m 
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the amplitude ratio is higher then the particle is not soft. In the other case, when the 

amplitude ratio is less, then the particle is soft. 

Figure 33 and Figure 34 show that as the damper constant increases the amplitude 

ratio decreases.  It can be seen that as the damper constant is higher then the amplitude 

ratio is almost negligible.  The mass does not vibrate because it is fully restrained from 

vibration. So we will have vibration for second mass alone. 

In the viscous model, the tip can be assumed to experience a force consistent with 

either a capillary force model or a squeeze film model.  Each model is discussed 

separately. 

3.3.1 CAPILLARY FORCE MODEL 

Condensation of water vapor takes place in the gap between contiguous bodies. 

The liquid bridge or meniscus thus formed will, on the one hand, draw up on the particle 

by means of surface tension forces (Fc, 1) and on the other hand, will reduce the liquid 

pressure (Fc, 2) by virtue of its concave shape, i.e., 

Fc = Fc, 1 - Fc, 2         (75)  

Fc, 1 = 2πa1σ       (76) 

Fc, 2 = S pc            (77)     

where F c is the capillary force, S is the contact area (S = πa1
2); pc is the capillary pressure 

and σ is the surface tension of the liquid.  The capillary pressure indicates the difference 

in pressure between two bulk phases (in present case, liquid and gas) that are in a state of 

equilibrium and are separated by a curve surface.  If a1 and a2 are the radii of the 

curvature of the water interlayer, the capillary force is determined as 
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As α (wetting angle) tends to zero, capillary force becomes  

Fc=2πσr     (79) 

The various angles and areas for calculating the capillary force are shown in Figure 35.  

If one of the contiguous surfaces is planar, the height of the interlayer will be twice as 

small. Then  

Fc=4πσr        (80) 

The capillary force depends on the wetting angle. It can be seen from Table 2, that 

as the wetting angle is increased i.e., as the surface becomes more hydrophobic, the 

forces of adhesion drop off; the particle diameter under these conditions determines how 

much the adhesive force drops. These forces are calculated not only for a single particle, 

but also for dust-covered surface. 

When a drop of liquid is placed on the surface of a solid, the attraction of the solid 

causes a reduction in pressure within the liquid. This is designated as Psl , while Plv gives 

 
Table 2: Force variation due to change in wetting angle 
 
 
Wetting angle α, deg 

Capillary force Fc, for particles of indicated diameter 

0 15 60 90 

12 µm 416 407 252 135 

4 µm 1240 1220 777 405 
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Figure 35: Capillary condensation upon contact of two particles (a) or contact of 
particle with surface (b, c): (a, b) without any interlayer in contact zone; (c) with 
liquid interlayer in contact zone. 
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inward pressure from the liquid vapor interface. The pressure Psl is balanced by spreading 

of the drop until 

 Psl = Plv cos θ      (81) 

where θ is the contact angle. When there is no positive molecular attraction at the liquid-

solid interface, Psl is zero indicating a contact angle of 90°. 

Surface Tension: 

Surface molecules are subject to an attractive force from nearby surface 

molecules so that the surface is in the state of tension.  This tensile force per unit of 

length along the surface is called surface tension.  Surface tension is a property of the 

fluid and its adjacent fluid or solid.  It is more properly called the interfacial tension 

because it appears at the interface between two fluids in contact with each other. 

Surface tension is the tendency of the surface of a liquid to behave like a stretched 

elastic membrane.  There is a natural tendency for liquids to minimize their surface area. 

For this reason, drops of liquid tend to take a spherical shape.  For such a small droplet, 

surface tension will cause an increase of internal pressure p in order to balance the 

surface force.  Surface tension generally appears only in situations involving either free 

surfaces (liquid/gas or liquid solid boundaries) or interfaces (liquid/liquid boundaries); in 

the latter case, it is usually called the interfacial tension. 

When an interface between two fluids meets a solid surface, the interface forms 

an angle with respect to the solid surface called contact angle.  This angle depends upon 

the nature of the two fluids and the solid.  The values of the angle and the interfacial 
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tension then determine the effects of capillarity, such as the vertical rise height of a fluid 

in capillary tube. 

Liquid mediated adhesive forces can be divided into two components; meniscus 

force due to surface tension force and a rate-dependent viscous force.  These forces 

increase for smaller gaps and smoother surfaces so that the adhesion of ultra flat surfaces 

can be extremely strong.  For an applied normal force less that the meniscus force there is 

no tendency for the surfaces to separate.  When the force exceeds the meniscus force (FM) 

at time tm, then the viscous component in the normal direction (FV⊥) is the excess over 

FM.  FAD is the total force required to separate the two surfaces in time ts, 

FAD=FM + FV⊥      (82) 

 If a drop of liquid is introduced between two surfaces under close proximity, 

surface tension effects will arise.  The surface tension effects will attempt to pull the 

surfaces closer together; furthermore, surface tension will resist separation of the surfaces 

in a direction normal to the interface (Fan and O’Brien, 1975).  This is because, whenever 

surface tension acts, the pressure inside the liquid is lower than it is outside the liquid.  

Force calculated using surface tension is 

( )[ ]θ
σπ

tan1
2
+

=
rFc      (83) 

where θ is the contact angle, σ is the surface tension of the liquid, r is the radius of the 

droplet. 

By comparing, the force obtained from the frequency response curve and Table 3, 

we can conclude what type of particle is on the surface.  This force is a constant force and 

it does not change with height.  It is independent of height of the liquid film. 
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Table 3: Capillary force for various liquids and contact angle 
 
 

Force in nN/m   Fc Liquid Surface tension

In Dyne/cm θ = 30° θ =45° θ =60° 

Water 72.3 3.612 3.23 2.903 

Blood 55.5- 61.2 3.0327 2.71906 2.4379 

Crude oil 0.0320 N/m 1.58572 1.42172 1.2747 

Olive oil 41 2.0317 1.82159 1.63323 

Soap 25 1.2388 1.11066 0.9958 

Mercury 470 23.2903 20.8816 18.7224 

1 Dyne/cm = 0.001 N/m 

 

3.3.2 SQUEEZE FILM MODEL 

  Consider two circular flat plates of radius approaching each other, or a single 

circular plate of radius R approaching a large surface (as in Figure 36). The space 

between is filled with a viscous liquid, which is being displaced radially outward by the 

relative motion of the plates. An elementary circular slot can be imagined through which 

liquid is being forced. 

Load carrying capacity W is the product of the area and the average pressure  

W = πR2 pavg   (or)  3

4

2
3

h
RVµπ

=W    (84) 

This equation can be utilized in number of different ways, depending upon information 

known and what has to be determined. For a constant load W, the instantaneous velocity 
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Figure 36: Squeeze film model 
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Table 4: Damper constant for various liquid 
 

Liquid Viscosity (µ) Damper constant(c) in   nN-s/nm 

Water 1.002 cP 0.00047942 x10-2 

Honey 10000cP 47.1 x10-2 

Soya bean oil 69.3cP 0.3264 x10-2 

Mercury 1.554cP 0.007319 x10-2 

 

of approach can be computed for a given thickness. The opposite condition can also be 

analyzed where there is a uniform velocity of approach. In this case, as the film thickness 

decreases, the build-up pressure of a load carrying capacity can be revealed. 

3

4

2
3

h
R

V
Wc πµ

==      (85) 

Let us assume h= 100 nm, R= 10 nm and µ= bulk viscosity and it will differ for different 

liquid. The damper constant for various liquids can be determined by using the equation 

(85) and are tabulated in Table 4. 

3.4 VISCO – ELASTIC MODEL #1 - SPRING/DAMPER IN PARALLEL                             

(KELVIN-VOIGT MODEL) 

In previous sections we discussed the elastic model, in which a spring alone is 

connected to the tip of the dual cantilever, and the viscous model in which a damper 

alone is connected to the tip of the dual cantilever.  When both the spring and the damper 

are connected, either in series or in parallel, then the model is called a visco-elastic 

model. In this section we are going to discuss the first visco-elastic model, in which, the 

spring and the damper are connected in parallel to the tip of the dual cantilever.  This 
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visco-elastic model is used to identify particulates, which are a little soft or a little hard.  

The lower spring and the lower damper, which are connected to the dual cantilever tip, 

are considered to be parallel to the springs and dampers in the dual cantilever.  In this 

model, the particle that can be identified has to be a combination of spring and damper in 

parallel. This model has the advantages of both the elastic and the viscous model 

discussed in previous sections and has its own signature.  The signature of this model is 

discussed briefly in Chapter 4. The concept used to identify the particles is the same as 

used in the viscous and the elastic models.  The typical block diagram used for the visco-

elastic model with spring/damper in parallel is shown in Figure 37(a). 

In Figure 37(b), the dual cantilever tip is connected to the lower spring and the 

damper.  The dual cantilever has springs k1 and k2 and dampers c1 and c2, respectively.  

Here c3 and k3 are the lower damper and the lower spring connected parallel to the main 

system. In this model, x1 and x2 are displacement of first mass and second mass 

respectively.  A base motion with amplitude of y0 and a driving frequency of ω excites 

the dual cantilever beam.  Due to this base motion, the system vibrates. When the tip 

touches the lower system, which consists of a spring and a damper, response is produced.   

The response produced by the system can be linked to the properties of the particles in 

some way as explained in Chapter 4. 

Some of the particles, which can be determined from this model, are DNA, tissues 

and cells.  In this model, the stiffness matrix used to calculate the natural frequency is the 

same as the stiffness matrix discussed in the elastic model (Equation 63).  The damper 

matrix for this model is the same as the damper matrix used for the viscous model 

(Equation 69).  After knowing spring constants and frequencies of the beam from the  
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Figure 37: Voigt/Kelvin model. (a) Dual cantilever tip attached to the spring and the 
damper in parallel (b) Graphical representation of visco-elastic model
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manufacturers, the effective masses for the dual cantilever are calculated.   Using the 

stiffness matrix and the effective masses, the natural frequencies and the mode shape are 

determined.  Modal mass matrix, modal stiffness matrix and modal damping matrix are 

calculated from mass matrix, stiffness matrix, damper constant matrix and modal matrix, 

respectively.  After determining all of the above, the damper coefficient for the second 

mass is determined as discussed in earlier section (that is viscous model).  The frequency 

response equations are given under the frequency response section in the dual cantilever 

model. 

The response obtained from this model can be used to determine what type of 

particle on the surface and its corresponding physical properties.  When the response 

obtained has a low amplitude ratio, then one can decide that the particle is soft and when 

there is a frequency shift, then it can be inferred that the particle is hard.  These are the 

signatures expected from this model.  The signature of this model is discussed briefly in 

Chapter 4 along with a parameter study.  

 In the parameter study the damper coefficient of the first mass is varied and the 

results are compared with the results obtained from this model. The frequency response 

for this model is obtained from the equations derived in section 3.1.2 for various values 

of k3 and c3.  This is done to see how the frequency response varies corresponding to 

lower spring constant and lower damper constant values.  By comparing this frequency 

response curve with the baseline, it will be easy to identify the particle. 

EXAMPLE CALCULATION: 

This model can be understood more clearly with some numerical examples than 

simply the mathematical model itself.  The typical values for the dual cantilever taken are 
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already discussed in previous sections under example calculations.  Therefore, taking 

some values for the lower spring constant and lower damper constant, the frequency 

responses are plotted and compared with the baseline frequency response for determining 

the signatures.  

From Figure 38, when the lower spring has a spring constant of 10 N/m and lower 

damper has a damper constant of 0.00000005 N-s/m, the natural frequency is calculated 

as 207 kHz.  When there is no spring connected to the tip of the dual cantilever, then the 

natural frequency is calculated as 193 kHz, so comparing this two we can say that as the 

spring constant increases the natural frequency shifts.  Comparing with Figure 15 and 

Figure 38, we can see that the amplitude ratio when adding damper is less than the 

amplitude ratio in Figure 15. These things are seen in both the elastic model and the 

viscous model, where the natural frequency tends to move outwards and the amplitude of 

vibration is reduced respectively. 

 Comparing the plots obtained from adding a spring alone, i.e. Figure 20, and adding 

a spring and a damper, i.e. Figure 39, it is clear that as the lower damper constant value 

increases, the amplitude with which the masses vibrate is reduced and as lower spring 

constant increases the natural frequency tends to shift outwards. This will not be 

universally true, but in this model it is true. 

3.5 VISCO – ELASTIC MODEL #2 - SPRING/DAMPER IN SERIES (MAXWELL 

MODEL) 

This is the second visco-elastic model in this research.  In the previous section we 

discussed the visco-elastic model in which the spring/damper are connected in parallel,  
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Figure 38: Frequency response for the first mass adding a lower spring k3=10 N/m   
and damper constant c3= 0.0000005 N-s/m 
 

              

Figure 39: Frequency response for the second mass adding a lower spring                   
k3=10 N/m and damper constant c3= 0.0000005 N-s/m 
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and in this section we are going to discuss the visco-elastic model in which the 

spring/damper are connected in series.  In order to understand the physical nature of 

spring and damper connected in series, the visco-elastic model for the two-degree-of-

freedom problem is done by building the classic single-degree-of-freedom model and 

then transferring it to the two-degree of freedom model. 

A simple single-degree-of-freedom model is used to understand the concept of spring 

and dashpot in series.  The simplest model is the one that has a mass connected to the 

spring and the damper in series.  In this model, the mass is free to vibrate and no base 

motion is given.  The next case will be a mass connected to the spring and the damper in 

series with the free end given a base motion.  By studying the above two cases, we can 

understand how the spring and the damper behave when they are connected in series and 

when they are given any base motion.  Using these models, a two-degree visco- elastic 

model with spring and damper connected in series is developed.  

Concepts used in deriving the equation of motion for the two-degree model, when the 

spring and damper are connected in series, are derived from the two simple cases 

discussed above. This concept is different than the concept used for the dual cantilever 

model.  All the equations derived here are based on the kinematics and dynamics of the 

model.  The equation of motion derived is based on the free body diagram of the model 

and the forces acting on the body.  The basic principle in deriving the equation of motion 

is to equate the external force and the applied force on the body.  

In this model, the movement of the damper is also considered, and it is determined 

from the equation of motion of the system. The movement of the damper depends on the 

type of particle on the surface and on the exciting force between the tip and the particle. 
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When the particle is soft, then the movement of the damper is less, and when the particle 

is hard, then the movement will be greater.  

3.5.1 SINGLE DEGREE OF FREEDOM WITH FREE END 

This model is a classic example of single-degree of freedom with mass connected to 

the spring and the damper in series.  The end where the mass is connected is free to 

vibrate.  The simple single-degree model used to show how spring and damper work 

when they are connected in series is shown in Figure 40.   In Figure 40, m is the mass of 

the system, k is the spring attached to the system and c is the damper.  We can see from 

Figure 40, that the mass is connected to the spring and damper in series, and the mass is 

free to vibrate.  Displacement of the spring is taken as x and the damper as u. 

The equation of motion for this model is determined by considering the dynamics and 

kinematics of the system.  The basic concept used in deriving the equation of motion, as 

mentioned earlier, is to equate applied force to the external force, which is best 

summarized by Newton’s Law.  In this model, the natural frequency is determined in a 

different way than in the other three models (elastic model, viscous model and visco-

elastic model #1).  In the other three models, the modal summation method is used to find 

the frequency response, but in this model, the response of the system is determined from 

the amplitude equation itself.  

Imagine, at any instant, when the system is displaced through a distance x from the 

equilibrium position as shown in the Figure 40.  The body has, at that instant, a velocity 

 in the downward direction and acceleration  also in the downward direction.  The  
.
x

..
x
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Figure 40: Single degree of freedom with free end and its free body diagram 
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damping resistance at any instant is equal to c , where  is the relative velocity between 

the piston and the cylinder of the damper. 

.
x

.
x

The external forces acting on the body at this instant are 

(i) The spring force kx acting in the upward direction, and 

(ii) The damping force c
.
x  acting in the upward direction. 

From the free body diagram shown in Figure 40, equating external force and applied 

force, 

kuxxm )(
..

−−=       (86) 

or 

ukkxxm =+
..

                  (87) 

From kinematics, the force due to the displacement of the spring is equal to the force 

acting on the damper, so equating those two forces we get 

.
)( uckux =−      (or)   xuu

k
c

=+
.

    (88) 

Combining equations (87) and (88) 

...
ucxm −=        (89) 

Where  is the second derivative of the displacement of the spring with respect to time 

or the acceleration of the mass,  is the first derivative of the displacement of the mass 

with respect to time or the velocity of the spring, and  is the first derivative of the 

displacement of the damper with respect to time.  The mass of the system is m; k is the 

spring constant of the system, c is the damper constant of the system.  Equations (88) and 

..
x

.
x

.
u
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(89) are the linear differential equations of the second order, and the initial solution is of 

the form 

           (90) 
stXex =

           (91) 
stUeu =

where s are the roots of the system. 

Substituting for x and u in equations (88) and (89)  

   








=




























 +− 0

0
11

2

U
X

k
cs

csms

         (92) 

Equation (92) is called the amplitude equation of the single-degree of freedom model; it 

can be solved to get the roots.  

011

2

=






 +−

k
cs

csms
      (93) 

Equation (93) is called the characteristic equation and equating it to zero gives the roots 

of the equation, which is the natural frequency of the system.  Substituting the roots in 

equation (92) the response for the system can be determined. 

The relation between response of damper and response of the spring is  

     

X

k
cs

U






 +

=
1

1

    (94)

 

     






 +

=

k
cs1

1α

     (95) 

           (96) ( ) tststs eXeXeXtx 321
321 ++=
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               u    (97) ( ) tststs eXeXeXt 321
332211 ααα ++=

The initial conditions are assumed to be 

                        ( ) 00 Xx =      (98) 

                                                         (99) ( ) 00
.

=x

                                                     ( ) 00 =u      (100) 

where s1, s2, s3 are roots of the characteristic equation, x (t) is the response of the system, 

u (t) is the displacement of the damper and α is the ratio between X and U. Then, 

applying the initial condition to equation (96) and (97), constants are determined and 

substituting this in the response equation, the total response is obtained. 

The nature of the solution, and hence the equilibrium, depends on the roots s1, s2 and 

s3 of the characteristic equation.  If s1, s2 and s3 are real and negative, then es
1

t, es
2

t and es
3

t 

reduce to zero as t tends to ∞, so the solution dies out as the time unfolds.  If anyone of s1 

or s2 or s3 is real and positive, then the solution increases without bounds as t tends to ∞. 

If the roots s1, s2 and s3 are complex, then they are complex conjugates.  The nature of the 

solution depends upon the real part of the roots.  Indeed, the solution can be expressed as 

the product of two factors, one corresponding to the real part of the exponents and the 

other corresponding to the imaginary parts.  The factor corresponding to the real part 

plays the role of time-dependent amplitude, and the factors corresponding to the 

imaginary parts vary harmonically with time.  If the real part is negative, then the time-

dependent amplitude approaches zero as t tends to ∞, so that the solution represents a 
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decaying oscillation.  If the real part is positive, then the time-dependent amplitude 

increases without bounds as t tends to ∞, so that the solution represents a divergent 

oscillation.  If the real part is zero, in which case the roots are purely imaginary, the 

amplitude does not depend on time but is constant and the solution represents simple 

harmonic oscillation, which is bounded. 

3.5.2 SINGLE DEGREE OF FREEDOM WITH BASE MOTION 

In the previous section we saw how the single-degree of freedom model works when 

the spring and the damper are connected in series without any base motion.  In this 

section, we are going to see how it works when a base motion is given.  The principle, 

which is applied to derive the equations in single-degree of freedom with free end, is used 

in this model also.  In this model, mass is attached to the spring and the damper in series 

as given in Figure 41.  The free end is given a base motion with an amplitude of y0 and a 

driving frequency of ω.  Considering a classical spring-mass-dashpot system, where k is 

the stiffness of the spring, m is the mass of the body and c is the damper constant of the 

dashpot. 

When the system is given a base motion and, at any instant, when the mass is 

displaced from the mean position through a distance x in the downward direction 

(positive direction of x), the external forces acting on the system are  

(i) kx, in the upward direction. 

(ii) c , in the upward direction. 
.
x

(iii) y0 sinωt in the downward direction. 
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Figure 41: Single degree of freedom with base motion 
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Taking all these forces and using Newton’s law of motion (that is equating applied force 

and external force), the differential equation for the system is derived.  From the free 

body diagram shown in Figure 41, equating the applied force and external forces 

                        (101) kuxxm )(
..

−−=

tyy ωsin0=        (102) 

The force acting on the spring is equal to the force acting on the damper, so equating 

those two we get 

kxucuy )()(
..

−=−
                 (103) 

Let us assume the solution of the second order differential equation can be of the classical 

form  

tiXex ω=          (104) 

tiUeu ω=         (105)
 

Substituting the initial solution for x and u equations (101) and (103), a matrix is obtained 

for the equation of motion, which can be solved directly to get the unknown displacement 

of the spring and the damper.  Equation (101) and (103) are the two differential equations 

for the single degree model with base motion. 

The matrix form of equation of motion is given by   

  







−

=




















+−

−+−

0

2
0

)1( cyiU
X

k
ick

kkm

ωω
ω

                      (106)
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where y0 is the amplitude with which the system vibrates, ω is the driving frequency, X is 

the complex response of the system and U is the complex response of the damper. Then 

substituting these back into the initial solution the real response for the system is 

determined.  

3.5.3 TWO-DEGREE OF FREEDOM WITH BASE MOTION  
 

In this section, the two-degree model of a dual cantilever with the spring and the 

damper connected in series to the tip of the dual cantilever is discussed.  As we already 

discussed in previous sections, when there are two masses, spring and damper are 

connected in series, then the equation of motion for the system is obtained using free 

body diagram.  Displacement of one mass is influenced by the other mass. 

The mathematical formulation for an n-degree-of-freedom system consists of n 

simultaneous ordinary differential equations.  Hence, the motion of one mass affects the 

motion of another.  For a proper choice of coordinates, known as principal or natural 

coordinates, the system differential equations become independent of one another.  The 

natural coordinates represent linear combinations of the actual displacements of the 

discrete mass and, conversely, the motion of the system can be regarded as a 

superposition of the natural coordinates.  The differential equations for the natural 

coordinates posses the same structure those of single-degree-of-freedom systems. 

The model for the proposed two-degree dual cantilever with spring and damper 

connected in series to the tip of the dual cantilever is shown in the Figure 42(a).  The dual 

cantilever has stiffness k1 and k2, damper constants c1 and c2 respectively, k3 is the 

stiffness of the lower spring, c3 is the damper constant of lower spring.  A base motion 

with amplitude of y0 and a driving frequency of ω excites the dual cantilever.  Due to  
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Figure 42: Maxwell model. (a) Dual cantilever tip attached with the spring and the    
damper in series  (b) Graphical representation for the two-degree model with spring 
and dashpot in series.
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excitation, the dual cantilever vibrates; the displacements of the masses are determined 

using the response equation.  Here x1 is the movement of mass 1, x2 is displacement of 

mass 2 and u is displacement of lower damper.  The free body diagram for this model is 

also shown in Figure 42(b) to get all the forces acting on the system.  Equating the force 

acting on the body, equation of motion for the system to determine the natural frequency 

and frequency response is derived.  Figure 42(b) represents the free body diagram for the 

two-degree dual cantilever with base motion.  It shows the forces acting on mass m1 and 

mass m2 separately.  The basic principle in deriving the equation of motion using free 

body diagram is to equate the applied force to external force.  When the forces are 

equated, the equation obtained for first mass is given in equation (108) and for second 

mass in equation (110).  In these two equations the external force is the acceleration force 

and the applied force are due to force spring and damper. 

Natural vibration for a multi-degree-of –freedom system differ from that of a single-

degree-of -freedom system in that for multi-degree-of-freedom systems natural vibration 

implies a certain displacement configuration, or shape, assumed by the whole system 

during motion.  Moreover, a multi-degree-of-freedom system does not possess only one 

natural configuration but have a finite number of natural configurations known as natural 

modes of vibration.  Depending on the initial excitation, the system can vibrate in any 

linear combination of these modes.  To each mode corresponds a unique frequency, 

referred to as a natural frequency, so that there are as many natural frequencies as there 

are natural modes.   
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By equating the external and applied force for the system the three equation obtained 

are given below.  Equation (109) is obtained by equating force acting on the spring to the 

force acting on the damper. 

tyy ωsin0=                     (107) 

)()()()(
.
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                    (109) 
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..

22 xxcxxkxm −+−=                            (110) 

Let  us assume the initial solution to be of classical form  

tieXx ω
11 =                   (111) 

tieXx ω
22 =                   (112) 

tiUeu ω=                    (113) 

Substituting the initial solution for x1, x2 and u in (108),(109),(110) and solving the 

equation (114) gives the unknowns of the matrix, in this case they are the displacement of 

first,  second mass and damper. 
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The solution obtained from the above equation is the complex solution, to get the real 

response for the model we have to substitute the complex solution back to the initial 

solutions. 

The Maxwell model shown in (Figure 43(a)) is similar to the visco-elastic model 

#2 shown in Figure 42. In this maxwell model, the spring with modulus g and damper 

with viscosity η are connected in series. The creep response and stress relaxation for this 

maxwell model are shown in Figure 43 (b). Where e is the strain, s is the stress acting, s0 

is the initial stress and e0 is the initial strain. As seen from the plot, shown in Figure 43 

(b), the creep is steep. When the stress is removed, the spring instantly relaxes but the 

damper remains extended. This model exhibits permanent deformation. A purely viscous 

material such as pitch, for example, may be thought of as a maxwell material. Maxwell 

model is fluid-like if the viscosity small and solid-like if it is large. 

3.6 VISCO- ELASTIC MODEL # 3 - SPRING/DAMPER IN SERIES/PARALLEL 

(STANDARD SOLID MODEL) 

This is the third visco-elastic model discussed in this research. This model is a slight 

modification of the second visco-elastic model.  In this model we are not going to 

develop mathematical model for single degree of freedom, instead we are directly 

building the two degree freedom model using the concepts from previous section.  The 

way of analyzing this model is to form a concept from which, the properties of the 

particulates can be identified.  
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(b) 

                                     
 
 
Figure 43: Maxwell model. (a) Maxwell model (b) Creep response and stress 
relaxation 
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3.6.1 TWO DEGREE OF FREEDOM MODEL 
 

The block diagram for the third viso-elastic model is shown in Figure 44 (a).  In the 

Figure 44 (b), k3 and k4 are the two springs attached to the tip of the dual cantilever, and 

c3 is the damper. We can see from the figure, the spring k3 is connected in series with the 

spring k4 and damper c3, which are connected in parallel.  The displacement of mass 1 is 

x1 and mass 2 is x2 and displacement of spring k4 and c3 is taken as u.   In this model we 

assume that k4 is some proportional of k3 

Say                                                           k4 = α k3 

In this way, when α is zero then this model becomes similar to the visco-elastic 

model #2.  From the free body diagram given in Figure 44(b), the forces acting on the 

body can be easily determined.  Equating the external force to the forces due to spring 

and damper, we get the equation (116) and (119). Those two equations are for the first 

mass and the second mass respectively. 

 tyy ωsin0=       (115) 
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Figure 44:  Standard solid model. (a) Second viscous model for two degree of 
freedom (b) Free body diagram for the two-degree freedom model 
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Equation (116), (118) and (119) are the three differential equations to determine the 

unknowns.  Now, assuming an initial solution of the form 

isteXx 11 =      (120) 

tiseXx 22 =      (121) 

istUeu =       (122) 

Substituting the initial solution in the equations (116)(118) and (119), and writing them in 

a matrix form  
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            (123) 

Equation (123) is called the amplitude equation. Substituting the values for mass, spring 

constant and damper constants the response of the system can be determined and plotted. 

This model is similar to standard solid model or delayed elasticity model where a spring 

g1 is connected in series with a spring g2 and damper η in parallel as shown in Figure 45 

(a) and (c). Figure 45 (b) gives the creep and stress response of standard solid model. 

This model gives an overall better approximation to the response of polymers. If 

the loading varies cyclically at frequency ω as in dynamical mechanical testing, the 

response is characterized by a complex modulus and phase lag. This model has properties 

similar to a styrene-butadiene random co-polymer with glass transition temperature near 

room temperature [24,32]. At high frequency, the damper cannot respond and the system 

responds like an elastic spring with modulus. At low frequency, the damper can fully 

relax and the system again responds elastically but with modulus. These values are  
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Figure 45: Standard solid model. (a) Standard solid model (b) Creep and stress 
relaxation response (c) Another way of representing standard solid model 
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similar to those measured experimentally for 1,2-polybutadiene freshly cast from toluene 

solution [20,21]. The standard solid model is more representative of contacts to 

polymeric solids and exhibits behavior intermediate between the maxwell and 

Voigt/kelvin models. The Voigt/Kelvin model has spring g2 connected to damper η in 

parallel. 
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CHAPTER 4 
 

DISCUSSION OF RESULTS 
 

In this chapter we will discuss the dynamic response of each of the basic 

mathematical models explained in Chapter 3.   Each model will be discussed in terms of 

specific response and signatures that may be useful in describing the physical properties 

of the particulates later.  Results obtained for each model in Chapter 3 are discussed in 

this chapter along with their signatures and how they are used to identify the particulates 

on the surface.   

4.1 ELASTIC MODEL 
 
 This is the first model discussed in the research.  The block diagram for this 

model is shown in Figure 19.  As shown in Figure 19, the tip of the dual cantilever is 

connected to a spring.  If the particle on the surface that has to be identified is a 

combination of spring, then this model is applied.  The signature expected from this 

model will be a shift in natural frequencies.  The spring connected to the tip of the dual 

cantilever is parallel to the other springs (k1 and k2).  Therefore, the lower spring k3 

increases the total spring force acting on the tip of the dual cantilever, hence the natural 

frequencies increases.  When there is a shift in natural frequencies then one can conclude 

that the particle on the surface is hard. Depends on how much the shift in natural 

frequencies we can say how hard the particles are.  In the mathematical model for the 

elastic model, we have discussed how this model works with some numerical examples.  

Also, a plot is drawn between different values of lower spring constant and change in  
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natural frequencies.  These plots are shown in Figure 46 and Figure 47; from these 

figures we can see clearly that, as the lower spring constant increases the natural 

frequency also increases. 

When the lower spring constant is zero, then the natural frequencies are same as 

the natural frequencies in the case of dual cantilever model discussed in 3.1 sections. But 

when the lower spring has any value, then the natural frequencies increases.  It is seen 

from Figures 46 and 47 that, the change in natural frequencies is linear to the change of 

amplitude ratio.  In the Figures 46 and 47, the solid line shows the natural frequency 

when the lower spring is connected to the tip where as the dotted line represents the 

natural frequency of dual cantilever when the tip is not connected to the lower spring.  

In this model, the shift in natural frequencies can be linked in some way to the 

hardness of the particle from which we can determine what type of particle is on the 

surface.  The particles, which can be identified by this model, are biological (DNA), 

engineering (Steel, Alloy, Aluminum etc.,).  Each particle will be having its own 

stiffness, so when the response obtained from the elastic model is compared with the 

baseline frequency response we can determine the frequency shift. Based on the 

frequency shift, the spring constant can be determined from Figures 46 and 47.  A table 

can be drawn for various particles and their corresponding stiffness, so we can determine 

the type of particle and their physical properties from that table, using the stiffness 

determined from the frequency response obtained form this model. 

Here is an example application for the elastic model with some values for young’s 

modulus and size of particle.  Stiffness can be determined from the equation (124) given 
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Figure 46: Change in first natural frequency versus lower spring constant 
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Figure 47: Change in second natural frequency versus lower spring constant
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Table 5: Variation in stiffness due to size of the particle 
 

Size L in nm K in nN/nm

10 10 2000 

20 10 8000 

30 10 12000 

 

as. 

L
EAk =        (124) 

where E is young’s modulus – it depends on type of material; for steel= 200 nN/(nm)2
, A 

is the area of the particle and L is the length of the particle.  For example, consider a 

cubical steel particle of size say 10nm x 10nm x10nm on the surface, then the stiffness of 

the particle is determined as 2000 nN/nm. As the size varies stiffness also varies, it can be 

seen in Table 5. 

From Table 5, one can say how the size of the particle can change the stiffness of 

the particle.  The frequency response determined from the elastic model is compared with 

the baseline frequency response; the shift in natural frequencies can be determined.  

Using the shift in natural frequencies, we can determine the lower spring constant from 

Figures 46 and 47.  After knowing the lower spring constant, then the type of the particle 

can be easily determined.  In this model the particle on the surface does not have any 

damping (that is the particle is being considered as hard). 

The mode shapes for the various values of lower spring constants are given in  
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Figures 48- 52.  Mode shapes for various values of lower spring constants are drawn to 

see how it varies with lower spring constant.  It can be seen from Figures 48-52 that, as 

the lower spring constant increases then the second mode decreases and the first mode 

increases steeply. 

 In this section, a parameter study is done by varying the damping coefficient for 

the first mass. First it is changed from 0.0012 to 0.002 and then to 0.005. Frequency 

response for various damper coefficient and various lower spring constant values are 

plotted against the driving frequency. Figures 53-58 gives the frequency responses for 

various damper coefficient values of the first mass 

Figures 57 and 58 represents the frequency response of the first mass and the 

second mass of the elastic model, connected to a lower spring with a spring constant of 

30 N/m and damper coefficient for the first mass of 0.0012. From Figure 57, when the 

damping factor is 0.0012, the amplitude ratio for the first mass is around 80 at the first 

natural frequency, where as the amplitude ratio for the first mass from Figure 53 when 

the damping coefficient for the first mass of 0.002 at the first natural frequency is around 

50. In Figure 58 for the second mass, the amplitude ratio at first natural frequency when 

the damping factor for the first mass is 0.0012 is approximately 160, and when damping 

factor is 0.002, it is around 125. Similarly, when the damping factor for the first mass is 

still increased from 0.002 to 0.005 the amplitude ratios at first natural frequency points 

are 20 and 45 for the first and the second mass respectively. From this comparison we 

can infer that, as the damper coefficient for the first mass increases the amplitude ratio for 

both masses decreases. 
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Figure 48: Mode shape when lower spring constant k3 =0 N/m 
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Figure 49: Mode shape when lower spring constant k3 =10 N/m 
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Figure 50: Mode shape when lower spring constant k3= 20 N/m
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Figure 51: Mode shape when lower spring constant k3=30 N/m 
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Figure 52: Mode shape when lower spring constant k3= 200 N/m
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Figure 53: Frequency response for the first mass when lower spring constant                    
k3 = 30 N/m and damper coefficient for first mass = 0.002 
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Figure 54: Frequency response for the second mass when lower spring constant       
k3 = 30 N/m and damper coefficient for first mass = 0.002 
_____with k3 =30 N/m and ξ1=0.002;-------- base line with k3 = 0 N/m and ξ1 =0.0012 
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Figure 55: Frequency response for the first mass when lower spring constant          
k3 = 30 N/m and damper coefficient for first mass = 0.005 
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Figure 56: Frequency response for the second mass when lower spring constant      
k3 = 30 N/m and damper coefficient for first mass = 0.005 
 ______ with k3 =30 N/m and ξ1=0.005; ------- base line with k3 = 0 N/m and                
ξ1 =0.0012 
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Figure 57: Frequency response for the first mass when lower spring constant           
k3 = 30 N/m and damper coefficient for first mass = 0.0012 
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Figure 58: Frequency response for the second mass when lower spring constant           
k3 = 30 N/m and damper coefficient for first mass = 0.0012 
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4.2 VISCOUS MODEL 

This is the second model discussed in this research. The block diagram for the 

viscous model is shown in Figure 26.  As seen in Figure 26, the tip of the dual cantilever 

is connected to a damper. In this case, the particle is considered to be a combination of 

damper.  The lower damper connected to the tip of the dual cantilever is parallel to the 

other dampers (c1 and c2) of the dual cantilever.  Therefore, the damping force acting on 

the tip of the dual cantilever will be now the addition of the damper force due to lower 

damper and damper force due to the first mass. 

The expected signature from this model is, change in the amplitude ratio.  The 

frequency response obtained from this model is compared with the frequency response 

obtained from the dual cantilever when the tip is not connected to any spring or damper.  

Comparing these two frequency responses, if the amplitude ratio of the viscous model is 

lesser then the amplitude ratio of the dual cantilever model, then the particle is said to be 

soft.  Depends on the change in amplitude ratio, the damper constant of the particle can 

be interpreted.  Plots can be drawn between various values of lower damper constants and 

the change in amplitude ratio for the first mass and the second mass.  These plots are 

shown in Figures 59 and 60.  In both the Figures, as the lower damper constant value 

increases, the amplitude ratio decreases.  When a damper is connected to the tip of the 

dual cantilever, and if it has some damping constant value, then the amplitude ratio will 

differ from the baseline model.  So this change in amplitude ratio can be linked in some 

way to the mechanical properties of the particulates. 
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Figure 59: Change in amplitude ratio for first mass versus lower damper constant 

______ Baseline with c3 = 0 N-s/m; __________  with c3 
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Figure 60: Change in amplitude ratio for second mass versus lower damper constant 

                   ______ Baseline with c3 = 0 N-s/m; __________  with c3
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When there is no damper attached to the tip of the dual cantilever, the frequency response 

for this case is shown in Figure 61 and when the tip is attached to a damper with damper 

constant of 0.000000005 N-s/m, then the frequency response is shown in Figure 62.  By 

comparing these two plots, it is clearly seen that when there is no damper, then the 

amplitude ratio is little higher than 100. But when we add a damper, then the amplitude 

ratio is less than 100.  These plots can be later used to compare with the baseline model 

to determine the damper constant of the particles on the surface.   

Parameter Study: 

In this case, we are varying the damping coefficient for the first mass and recording 

the frequency response. Therefore, the damping coefficient for the second mass will also 

be changing for each value of the damper coefficient for the first mass. Plots are obtained 

for different damping coefficient and are shown in Figures 63-70. From these Figures, it 

is clear that, as the damping factor increases the amplitude ratio tends to decrease and 

become low when it is high. Figures 69 and 70 are the frequency response for the first 

and the second mass when the damping factor is 0.0012. It is seen from the figures, that 

the amplitude ratio at the first natural frequency is around 110 when the damping factor is 

0.0012, it is very low when the damping factor is 0.1, it is around 20 when the damping 

factor is 0.01 and it is around 105 when it is 0.001. Same way the amplitude ratio for X2 

also changes as the damping factor increases. 

4.3 VISCO-ELASTIC MODEL #1- SPRING/DAMPER IN PARALLEL 

(VOIGT/KELVIN MODEL) 

We have already discussed the signatures of the elastic model and the viscous model in 

the previous sections. The signature of this model is going to be similar to both the 
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Figure 61: Frequency response for first mass when the tip is not connected to 
damper. 
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Figure 62: Frequency response for the first mass when the tip is connected to a 
lower damper c3 =0.00000005 N-s/m
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Figure 63: Frequency response for the first mass with damper constant                           
c3 = 0.00000005 N-s/m and damper coefficient for first mass = 0.1 
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Figure 64: Frequency response for the second mass with damper constant                           
c3 = 0.00000005 N-s/m and damper coefficient for first mass = 0.1 
                               ------ with c3 =0.00000005 N-s/m and ξ1 =0.1;  
                               ______ with c3 = 0 N-s/m     and ξ1=0.0012

 119



 

0

20

40

60

80

100

120

150 170 190 210 230 250 270 290 310 330 350

Driving frequency ,kHz

A
m

pl
itu

de
 ra

tio
, X

1/
y0

 
Figure 65: Frequency response for the first mass with damper constant                     
c3 =0.00000005 N-s/m and damper coefficient for first mass = 0.01 
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Figure 66: Frequency response for the second mass with damper constant                                           
c3=0.00000005 N-s/m and damper coefficient for first mass = 0.01 
                                ------ with c3 =0.00000005 N-s/m and ξ1 =0.01;  

                               _____ with c3 = 0 N-s/m and ξ1=0.0012
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Figure 67: Frequency response for the first mass with damper constant                              
c3 = 0.00000005 N-s/m and damper coefficient for first mass = 0.001 
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Figure 68: Frequency response for the second mass with damper constant                            
c3 = 0.00000005 N-s/m and damper coefficient for first mass = 0.001 

 121



0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

Driving frequency ,kHz

A
m

pl
itu

de
 ra

tio
, X

1/
y0

 
Figure 69: Frequency response for the first mass with damper constant                             
c3 =0.00000005 N-s/m and damper coefficient for first mass =0.0012 
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Figure 70: Frequency response for the second mass with damper constant                            
c3 = 0.00000005 N-s/m and damper coefficient for first mass = 0.0012 
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elastic and the viscous models. In the mathematical model, the frequency responses are 

determined for some numerical examples. Some of the particles that can be identified 

from this model are DNA, tissues and cell.  The particle, which has to be identified on the 

surface, is considered to be a combination of spring and damper as shown in the Figure 

37.  If the particle has spring and damper in parallel, then this model can be applied to 

identify the particle on the surface.  This model has the advantage of both the elastic and 

the viscous model.  We can identify both the soft and the hard particles on the surface.  

As mentioned earlier, depends on the shift in the natural frequencies and the change in 

amplitude ratio we can determine the physical properties and identify the particles on the 

surface.  

 A parameter study is be done by varying the values of lower spring constant, 

damper constant values and damper coefficient for first mass.  This study can reveal how 

some of the physical properties of the particles can be determined from the frequency 

response. For this initial study finding the physical properties of the particle is beyond 

scope.  

4.4 VISCO-ELASTIC MODEL #2 - SPRING/DAMPER IN SERIES (MAXWELL 

MODEL) (SEE FIGURE 42) 

  This is the second visco-elastic model discussed in this research.  As shown in 

Figure 42, the tip of the dual cantilever is connected to a spring and a damper in series. In 

the previous models (elastic, viscous and visco-elastic #1) we used modal summation 

method to find the frequency response, and in this model we are finding the complex 

amplitude from the amplitude equation directly. The equation of motion for this model is 

derived by equating the forces in the free body diagram shown in Figure 42 (b). In this 
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case we are plotting the movement of the damper as well.  To see how the frequency 

response varies numerically, we can use some example values for k1, k2, k3, c1, c2, c3, f1 

and f2. Usually stiffness and frequency can be obtained from the manufacturers of the 

microcantilevers. Frequency response for various values of the lower spring constant k3 

and the lower damper c3 are obtained and discussed in this section. Some of the particles 

that can be identified by this model are pitch, polymers etc., 

Taking the values for k1 = 42 N/m, k2 = 20 N/m, c1 = 0.000000003 N s/m, c2 = 

0.000000008 N s/m, f1= 300 kHz, f2= 350 kHz and varying the lower damper constant 

and the lower spring constant, plots are obtained for the frequency response. First, we are 

going to vary the lower spring constant and see how the frequency response is affected by 

this change. Figures 71,73,75 show the frequency response for the Maxwell model for the 

first mass, second and the damper respectively. In these figures, plots are compared with 

different lower spring constant values to see the shift in natural frequencies. We can infer 

that as the spring constant k3 increases the natural frequencies also increases. Phase angle 

of the system can provide some additional information about the particle, but as if now, it 

is beyond the scope of this study.  Phase angle for a system can be determined by   

  
)Re(

)Im(arctan −

−

−=
X

XanglePhase  

Phase angle is the inverse tangent of the imaginary part to the real part of the response. 

Figure 72 and Figure 74 represents the phase angle for the first and the second mass 

respectively, as we see there is definite a phase shift between different values of the lower  
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Figure 71: Frequency response of first mass in maxwell visco-elastic model (Case #2) 
with c3=0.00005 N s/m 
 
 

 
 
Figure 72: Phase angle of first mass in maxwell visco-elastic model (Case #2) with 
c3=0.00005 N s/m 
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Figure 73: Frequency response of second mass in maxwell visco-elastic model    
(Case #2) with c3=0.00005 N s/m 
 

 
 
Figure 74: Phase angle of second mass in maxwell visco-elastic model (Case #2) with 
c3=0.00005 N s/m  
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Figure 75: Frequency response of damper in maxwell visco-elastic model (Case #2) 
with c3=0.00005 N s/m 
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spring constant. This signature can be used to determine some of the physical properties 

of the particle. In the same way, the frequency response can be determined by varying the 

lower damper constants. Figures 76,78,80, represents the frequency response of the first 

mass, second mass and the damper respectively. In all these three figures, each one is 

compared with different lower damper values to see how the amplitude ratio varies. 

When the lower damper constant c3 increases, the amplitude ratio is decreases.  Phase 

shift for the change in damper value is shown in Figure 77 and Figure 79. Here also there 

is a definite phase shift, which will be useful to determine some of the physical properties 

of the particle. 

When the lower damper constant c3 = 0.5 N s/m, then the damper is very rigid. In 

this case, the Maxwell model will behave like the elastic model, where the spring alone is 

connected to the tip of the dual cantilever. The natural frequencies obtained from this 

model can be compared with the natural frequencies obtained from the elastic model for 

same value of k3. When the lower damper constant c3 = 0, then the lower spring k3 

connected in series with the lower damper will be hanging free. The natural frequencies 

obtained for this case will be equal to the natural frequencies of the baseline model. The 

amount of shift in natural frequencies depends on the damping and same way the amount 

of change in the amplitude ratio depends on the amount of stiffness. 

4.5 VISCO-ELASTIC MODEL #3- SPRING IN SERIES WITH SPRING/DAMPER 

IN PARALLEL (STANDARD SOLID MODEL) 

Visco-elastic model #3 is shown in Figure 44. In Figure 44, a spring k3 is 

connected in series to a spring k4 and a damper c3, which are connected in parallel. The 

mathematical model is built in 3.6.1 section. In this section, we are going to discuss how  
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 Figure 76: Frequency response of first mass in maxwell visco-elastic model       
(Case #2) with k3=10 N/m 
 
 

 
 
Figure 77: Phase angle of first mass in maxwell visco-elastic model (Case #2) with 
k3=10 N/m 
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Figure 78: Frequency response of second mass in maxwell visco-elastic model 
(Case#2) with k3=10 N/m 
 

 
 
Figure 79: Phase angle of first mass in maxwell visco-elastic model (Case #2) with 
k3=10 N/m

 130



 
Figure 80: Frequency response of damper for maxwell visco elastic model (Case #2) 
with k3=10 N/m 
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the value of lower springs and lower dashpot affects the frequency response of this 

standard solid model.  Some of the particles that can be identified from this model are 

silk, nylon, rayon, certain plastics etc., This analysis is similar to a parameter study as we 

seen in the case of the elastic and viscous models. Same set of example values are taken 

in this model too (i.e., example values taken for Visco-elastic #2). 

First we are going to vary the lower spring constant k3 and obtaining the 

frequency response. Figures 81, 83 and 85 represents the frequency response of the first 

mass, second mass and the damper. From the above three figures we can infer that as the 

lower spring constant k3 increases, the natural frequencies also increases. This is the 

signature we expect form this model. The amount of shift in natural frequencies depends 

on the amount of damping the system has. In this case also the phase angle is plotted to 

see whether there is any change in phase angle. This is shown in figures 83 and 84, as 

wee see it has a definite phase shift for both first as well as for second mass. 

Second, we are going to vary the lower spring constant k4 to see how it affects the 

frequency response of the model. Figures 86, 88, 90 represent the frequency response of 

the first mass, second mass and the damper respectively. From the figure we can see that 

there is not much difference in either the natural frequencies or the amplitude ratio for 

various spring constant values. This is because the damper, which is connected in parallel 

to this spring, dominates. Similarly there is not much change in phase angle for the first 

and second mass (shown in Figures 87 and 89). 

Lastly, we are going to vary the lower damper constant and see how it affects the 

frequency response of the system. Figures 91, 93 and 95 represent the frequency response 

of the first mass, second mass and the damper respectively. Figures 92 and 94 are the  
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Figure 81: Frequency response of first mass in standard solid visco-elastic model 
(Case #3) with c3=0.00005 N s/m and k4=5 N/m 
 
 

 
 
Figure 82: Phase angle of first mass of standard solid visco-elastic model (Case #3) 
with c3=0.00005 N s/m and k4=5 N/m 
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Figure 83: Frequency response of second mass in standard solid visco-elastic model 
(Case #3) with c3=0.00005 N s/m and k4=5 N/m 
 
 

 
 
Figure 84: Phase angle of second mass of standard solid visco-elastic model (Case 
#3) with c3=0.00005 N s/m and k4=5 N/m 
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Figure 85: Frequency response of damper in standard solid visco-elastic model 
(Case #3) with c3=0.00005 N s/m and k4=5 N/m 
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Figure 86: Frequency response of first mass in standard solid visco-elastic model 
(Case # 3) with k3=10 N/m and c3=0.00005 N s/m 
 
 

 
 
Figure 87: Phase angle of first mass in standard solid visco-elastic model  
(Case # 3) with k3=10 N/m and c3=0.00005 N s/m 
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Figure 88: Frequency response of second mass in standard solid visco-elastic model 
(Case # 3) with k3=10 N/m and c3=0.00005 N s/m 
 
 

 
 
Figure 89: Phase angle of second mass in standard solid visco-elastic model  
(Case # 3) with k3=10 N/m and c3=0.00005 N s/m 
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Figure 90: Frequency response of damper in standard solid visco-elastic model 
(Case # 3) with k3=10 N/m and c3=0.00005 N s/m 
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Figure 91: Frequency response of first mass in standard solid visco-elastic model 
(Case # 3) with k3=10 N/m and k4=5 N/m 
 
 
 

 
 
Figure 92: Phase angle of first mass in standard solid visco-elastic model (Case # 3) 
with k3=10 N/m and k4=5 N/m 
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Figure 93: Frequency response of second mass in standard solid visco-elastic model 
(Case #3) with k3=10 N/m and k4=5 N/m 
 
 

 
 
Figure 94: Phase angle of second mass in standard solid visco-elastic model        
(Case # 3) with k3=10 N/m and k4=5 N/m 
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Figure 95: Frequency response of damper in standard solid visco-elastic model 
(Case #3) with k3=10 N/m and k4=5 N/m 
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phase angle plot for the first mass and the second mass. From these figures, we can infer 

that as the lower damper constant increases, the amplitude ratio decreases.  Also it can be 

seen that the natural frequency also increases for lower damper constant values. This is 

because as the lower damper constant value decreases, the lower spring k4 dominates and 

it increases the natural frequency. Also there is a significant change in phase angle as wee 

seen in Figures 92 and 94 for the first mass and the second mass respectively. 

When the lower damper constant c3 = 0, then the two springs k3 and k4 are in 

series. This case will be similar to the elastic model where the spring is connected to the 

tip of the dual cantilever. Since the springs are connected in series, the effective stiffness 

can be determined. If the effective stiffness calculated above is substituted in the elastic 

model then, the natural frequency obtained from the elastic model will be closer to the 

natural frequency determined from this model. When k4 is zero, then this model becomes 

similar to visco elastic model #2 where a spring is connected in series with a damper. 

There is increasing need for quantitative measurements of materials properties 

with nano-meter-scale resolution. Applications include materials characterization [1,2], 

microelectromechanical systems and tribology[3-7], and biological 

systems[8].Mechanical properties such as modulus, yield strength and work of adhesion 

are extracted from the SFM date using continuum mechanics models from the field of 

contact mechanics[14,15]. 
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CHAPTER 5 
 

CONCLUSION 
 

Dual cantilevers provide a realistic means for identifying the physical 

characteristics of various types of particle that might be attached to a surface.  The 

deflection of the added or the second cantilever gives additional information not normally 

recovered in typical AFM tests.  Classical vibration analyses show that cantilever 

amplitudes of the contacting tip and free end give signatures that are unique to different 

particle types.  It was not the goal here to quantify physical properties of particles but to 

qualify the general type of particle under question. 

Five different models were used to represent behavior of the particles: 1) spring, 

2) damper, 3) spring/damper in parallel, 4) spring/damper in series and 5) spring in series 

with a parallel spring and damper.  Distinct response signatures of each of the particle 

models are summarized below. 

1) Spring: Increase in natural frequency of both the fundamental and the second 

modes of vibration.  The degree of hardness of the particle is manifested by a 

higher shift in both natural frequencies.  The second cantilever can act as a 

dynamic absorber by completely suppressing the dynamic amplitude of the 

cantilever tip.  In this case, only the second cantilever responds. 

2) Damper: Particle damping greatly affects the dynamic response amplitude of 

the tip but has a much lesser effect on the dynamic amplitude of the second 

cantilever.
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3) Spring/damper in parallel: This model reflects a change in both natural 

frequencies (1st and 2nd modes) as well as a reduction in vibration amplitudes. 

4) Spring/damper in series: This model also reflects in both natural frequencies 

as well as a reduction in vibration amplitudes. This model has the advantages 

of both elastic model and viscous model.   Properties of the particulates can be 

manifested by the amount of shift in natural frequencies and change in 

amplitude. 

5) Spring in series with a parallel spring and damper: In this model the amount of 

shift in natural frequencies depends on the magnitude of damping and the 

same way change in the amplitude ratio depends on the amount of stiffness. 

A basic assumption made in this study is that the tip remains in contact with the 

surface particle long enough for steady state vibrations to occur. In reality, the tip may 

become disengaged and reattach itself during the contact encounter. This scenario is 

much more involved and represents a challenge for further research on this topic. These 

mechanical models do not quantitatively describe actual polymers. However, they do 

capture the major features of the polymer response and therefore provide simple models 

that are useful for semi-quantitative analysis of data and for the design and interpretation 

of experiments.
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