

University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange

#### Masters Theses

Graduate School

12-2006

# Integrated Corridor Management: Operational Strategies under Interstate Diversion Scenarios

Shaun Michael Quayle University of Tennessee - Knoxville

#### **Recommended** Citation

Quayle, Shaun Michael, "Integrated Corridor Management: Operational Strategies under Interstate Diversion Scenarios." Master's Thesis, University of Tennessee, 2006. https://trace.tennessee.edu/utk\_gradthes/1770

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

To the Graduate Council:

I am submitting herewith a thesis written by Shaun Michael Quayle entitled "Integrated Corridor Management: Operational Strategies under Interstate Diversion Scenarios." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering.

Thomas Urbanik II, Major Professor

We have read this thesis and recommend its acceptance:

Arun Chatterjee, Lee D. Han

Accepted for the Council: <u>Carolyn R. Hodges</u>

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Shaun Michael Quayle entitled "Integrated Corridor Management: Operational Strategies under Interstate Diversion Scenarios." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Civil Engineering.

Thomas Urbanik II

Major Professor

We have read this thesis and recommend its acceptance:

Arun Chatterjee

Lee D. Han

Accepted for the Council:

Linda Painter\_\_\_\_ Interim Dean of Graduate Studies

(Original signatures are on file with official student records.)

## Integrated Corridor Management: Operational Strategies under Interstate Diversion Scenarios

A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville

> Shaun Michael Quayle December 2006

Copyright © 2006 by Shaun Quayle All rights reserved.

### ACKNOWLEDGEMENTS

I want to first thank Jesus Christ, my Savior, Lord and Hope, which through Him all this was and is possible. Next, I want to thank Dr. Thomas Urbanik II for being my teacher, guide, and friend. You always kept me on the right track and helped me to see the big picture in things and made my graduate school experience valuable and enlightening. Next, special thanks must go out to Kiel Ova of PTV America for your unending help in developing this project and willingness to answer all my questions.

Then I also want to thank Dr. Lee Han and Dr. Arun Chatterjee for being my teachers and adding so much value to my experience at UT, I am grateful and look forward to years of friendship with you in this small world known as transportation engineering.

Lastly, I must thank my faithful wife, Kristina, for all her patience and understanding through the process of putting together this thesis. You are my joy and a blessing, more than you will ever know.

## ABSTRACT

This thesis looks at operational strategies to increase capacity within the context of Integrated Corridor Management (ICM) under a non-recurring Interstate incident scenario. This incident scenario creates lengthy queues and increased delay and travel times on the Interstate, forcing a portion of Interstate traffic to utilize alternate routes throughout the corridor, changing the network traffic patterns. Particular operational strategies are tested under this premise to qualify and mildly quantify the benefits of relaying incident and diversion routing information to corridor drivers, mimicking ITS information dissemination elements such as changeable message signs, highway advisory radio, in vehicle navigation systems and etc. This thesis assumes idealized institutional ICM aspects, data-sharing, and technology integration.

The experimental analysis for the corridor network was conducted in VISSIM microsimulation, with its NEMA signal interface, also making use of VISUM macrosimulation, and Synchro 6 signal timing optimization. Based upon the results of this analysis, it was concluded that for the study area, implementing ICM strategies pertaining to advance driver warning and routing information pertaining to an incident can mildly reduce travel time and delay at the entire network-level, but travel time and delay do increase on the incident roadway corridor level when compared to a do nothing scenario during the off-peak period. This research also successfully validates the ability to convert a regional planning-level model into a working microsimulation, operations-level model.

## TABLE OF CONTENTS

| Chapter                                                            | Page |
|--------------------------------------------------------------------|------|
| CHAPTER 1 - INTRODUCTION                                           | 1    |
| CHAPTER 2 - BACKGROUND                                             |      |
| ICM Operational Strategies                                         |      |
| ICM Operational Applications                                       |      |
| USDOT ICM Initiative                                               |      |
| City of Portland & ODOT ICM Implementations & Studies              |      |
| University of Maryland ICM Simulation Analysis & Research          |      |
| University of Virginia Urban Freeway Diversion Feasibility Researc |      |
| CHAPTER 3 – RESEARCH PROCEDURE                                     | 9    |
| Problem Statement                                                  | 9    |
| Part A                                                             | 9    |
| Part B                                                             | 10   |
| Research Objectives                                                | 10   |
| Research Methodology                                               | 11   |
| Part A                                                             | 11   |
| Part B                                                             | 12   |
| Research Test Site                                                 | 12   |
| Modeling Software Tools                                            |      |
| VISUM 9.40 Macrosimulation                                         |      |
| VISSIM 4.10 Microsimulation                                        |      |
| Synchro 6                                                          |      |
| Research Experiment                                                |      |
| Input Traffic Volumes                                              |      |
| Input Signal Timing                                                |      |
| Incident Construct                                                 |      |
| Operational Scenarios                                              |      |
| No Incident: Existing Conditions                                   |      |
| With Incident: Existing Conditions                                 |      |
| With Incident: ICM Real-Time Traveler information Strategies       |      |
| Simulation Methodology                                             |      |
| Incident Logic                                                     |      |
| Observation Period                                                 |      |
|                                                                    |      |
| CHAPTER 4 - RESEARCH RESULTS                                       |      |
| Experimental Objective                                             |      |
| Experimental Hypothesis                                            |      |
| Statistical Analysis                                               |      |
| Experimental Results                                               |      |
| Corridor-Level Results                                             |      |
| Network-Level Results                                              |      |

| Analysis of Results                                      | . 32 |
|----------------------------------------------------------|------|
| Simulation Lessons Learned                               |      |
| Sub-Area Network Cut                                     | . 34 |
| Model Scales                                             | . 34 |
| Simulation Time Period                                   |      |
| CHAPTER 5 - FINDINGS and RECOMMENDATIONS                 | . 36 |
| Findings                                                 | . 36 |
| Recommendations                                          |      |
| LIST OF REFERENCES                                       | . 39 |
| APPENDIX A - VISSIM: DYNAMIC TRAFFIC ASSIGNMENT OVERVIEW | . 41 |
| APPENDIX B – CITY OF PORTLAND/OREGON DEPT. OF            |      |
| TRANSPORTATION SIGNAL TIMING DATA                        | . 54 |
| APPENDIX C - ODOT COUNT STATION DATA, INTERSTATE 205     | . 57 |
| APPENDIX D – SYNCHRO 6 OUTPUTS                           | . 59 |
| APPENDIX E – VISSIM INCIDENT SENSITIVITY SUMMARY         | 159  |
| APPENDIX F – VISSIM VAP LOGIC CODE                       | 161  |
| APPENDIX G – RESULTS OF VISSIM SIMULATION RUNS           | 163  |
| APPENDIX H – SUMMARY OF STATISTICAL TESTS                | 171  |
| APPENDIX I – JMP (sas) STATISTICAL ANALYSIS OUTPUT       | 173  |
| APPENDIX J – SIMULATION LESSONS LEARNED                  | 187  |
| Vita                                                     | 193  |

## LIST OF TABLES

| Table                                                                   | Page |
|-------------------------------------------------------------------------|------|
| Table 1. ODOT/City of Portland Criteria Guidelines for Activating the I | СМ   |
| System.                                                                 | 23   |
| Table 2. Corridor-Level VISSIM Results.                                 |      |
| Table 3. I-205 Throughput Volumes Downstream of Incident                |      |
| Table 4. Network-Level VISSIM Results                                   |      |

## **LIST OF FIGURES**

| Figure                                                   | Page |
|----------------------------------------------------------|------|
| Figure 1 – Sources of Traffic Congestion                 |      |
| Figure 2 – ICM Related ITS Traveler Information Elements |      |
| Figure 3 – Research Study Area                           | 14   |
| Figure 4 – VISUM Model: Planning Network                 |      |
| Figure 5 – VISSIM Model: Operations Network              | 18   |
| Figure 6 – Synchro Model: Signal Operations Network      | 20   |
| Figure 7 – Study Incident Location Map                   |      |
| Figure 8 – VISSIM Incident through VAP logic             |      |

## LIST OF PLATES

| Plate                                           | Page |
|-------------------------------------------------|------|
| Plate 1 – City of Portland Signal Timing Sheets | 56   |

## **CHAPTER 1 - INTRODUCTION**

In a transportation world with finite capacity, operational strategies should be developed in systems to address realistic temporary or non-recurring capacity constraints on major routes and thus develop the ability to effectively and efficiently direct traffic to available capacity elsewhere in the system. This thesis focuses on a corridor level Interstate/arterial network operations and interactions under the larger category of Integrated Corridor Management (ICM). ICM is defined by "the coordination of individual network operations between adjacent facilities that creates an interconnected system capable of cross-network travel management." (1) In this case, we are working with a network composed of arterial and Interstate facilities. To go a step further within ICM, a corridor is defined as, "a largely linear geographic band defined by existing and forecasted travel patterns involving both people and goods. The corridor serves a particular travel market or markets that are affected by similar transportation needs and mobility issues..." (2)

In a broad sense, ICM strategies and operations can be beneficial on any corridor that experiences congestion, either recurring or non-recurring, so long as alternative routes within the corridor exist. If the stimulus for ICM is more efficient operations generally in reaction to congestion, it is helpful to look at simplified national average congestion causes as shown in Figure 1 (3).

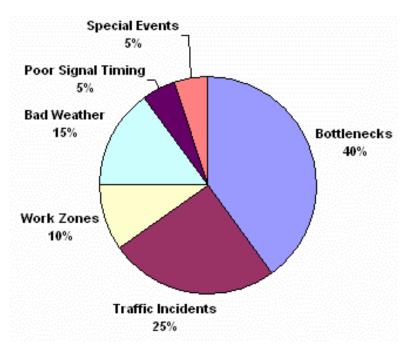



Figure 1 – Sources of Traffic Congestion.

Figure 1 shows a variety of sources of congestion on American roadways, thus it would make sense that there should be a variety of ICM operational strategies to address the different root causes of congestion. ICM operational strategies are generally set up to address four main categories where the need for ICM is especially important (*3*):

- Traffic Incident Management
- Work Zone Management
- Planned Special Event Management
- Day-to-Day or Recurring Operations

For each of these categories there are specific ICM operational strategies and applications, but the focus of this thesis will remain solely on addressing traffic incident management. The system capacity constraint or incident to be tested will be a simple non-recurring interstate incident blocking two of three northbound lanes, encouraging drivers to alter their normal routes, creating a partial diversion of traffic from the interstate onto the arterial system to make use of additional capacity, reducing system delays and travel times. Diversion during PM peak periods in urban, dense traffic environments is generally not very effective or recommended based on previous research projects (4) due to a lack of available network (surface street) capacity, thus the off-peak period will be the focus of this testing.

The first step in implementing an effective ICM operational strategy is developing a strong communication network between agencies and infrastructure. For the purposes of this project, we are assuming ideal agency communication and data-sharing. In addition, it is of great importance to communicate roadway and operational status to drivers within a corridor, which can be accomplished through a variety of Intelligent Transportation System (ITS) elements related to ICM, such as highway advisory radio, changeable message signs, 511, in-vehicle navigation systems, local radio station traffic updates and etc. Figure 2 shows examples of these ITS driver communication elements.

In the event of a non-recurring Interstate incident, these ITS traveler information tools allow drivers early notification of the incident type, location, and potential alternate or diversion routes around the Interstate incident, via the arterial network. In this thesis, the impacts of ITS driver communication as an ICM strategy will be tested against a do nothing scenario, where drivers are not informed of an upstream incident nor alternate routes to utilize.

A secondary ICM operational strategy would consider improving the operations of signalized intersections, which account for the majority vehicle



Figure 2 – ICM Related ITS Traveler Information Elements

01:12

delay and can act as network capacity constraints themselves. Two-thirds of all vehicle miles traveled in the U.S. are on facilities controlled by traffic signals (*5*), thus improving the operation of signals and signal timing can result in significant improvements in areas such as travel time and delay.

As Interstate traffic diverts to the adjacent arterial street system, adjustments to the arterials should be made to improve operations in response to the diversion traffic demand pattern. The most obvious adjustment would be to the traffic signal timing and offsets to account for increased demand and potentially allow the heavier diversion traffic flows priority through the surface street network, improving system measures of effectiveness such as travel time and delay. This thesis conducted a literature review of these scenarios to better understand issues, but will not test signal timing and offset strategies due to effort to undertake the building of the evaluation framework. This should be part of the next steps in research pertaining to this topic and the use of simulation models for evaluation.

Again, this thesis assumes that there is ideal agency communication, datasharing, and advanced roadway/ITS technologies to alert drivers, such as variable message signs, highway advisory radio, 511, and etc. Thus we are able to reduce the number of variables in the system, which is particularly beneficial given microsimulation will be used to emulate a real corridor and then implement and test the various operational strategies.

In addition to the corridor analysis, this thesis will also discuss in detail the process, challenges, and lessons learned with building a microsimulation,

operations model at a corridor level from a regional planning model through the conversion of a planning model directly into a microsimulation model for more detailed analysis than is possible in planning models, which cannot replicate detailed individual vehicle and signal operations. A conversion of this nature is relatively new to this research team and has not been documented in the past as evidenced by the research team's search of literature. In recent years, PTV Vision Suite has developed and refined the VISUM regional planning model with a link to convert model structure to its related VISSIM microsimulation operations model. These two models were utilized in tandem for this thesis project. The two motivations for this effort were to determine if the regional data could be readily incorporated into a microsimulation model as a means to create harmony with the regional planning data, and secondly, whether the microsimulation tools in a corridor based analysis would be helpful in developing strategies.

Working with both types of models presents some interesting differences and bridges that must be developed to transfer a corridor model from the regional planning realm to the engineering operations realm. This task can be accomplished and hopefully the information presented with challenges and lessons learned can reduce the learning curve for engineers and planners who wish to undertake a similar-type effort.

Additional detail, research procedures, results and conclusions are presented in the chapters to follow.

## **CHAPTER 2 - BACKGROUND**

This thesis focuses on the operational aspects of Integrated Corridor Management (ICM), particularly in the coordinated freeway and arterial environment with scenarios where a non-recurring incident requires traffic incident management and diversion strategies.

This chapter will define and give examples of ICM operational strategies and then report on the state-of-the practice efforts and previous research on ICM operational strategies. ICM is a developing field of transportation and this background section is only intended as an overview, not an exhaustive report of previous work.

## **ICM Operational Strategies**

The overall goal of ICM is to improve mobility, safety, and other transportation objectives for travelers and goods within a corridor from a system prospective. ICM will typically occur across multiple jurisdictions, multiple facility-types, and various existing operational strategies. In cases where there are significant, unplanned supply variations within a corridor, such as a traffic incident, the opportunity for operational improvement with ICM strategies in place appears to be quite high.

The primary issues in dealing with a traffic incident scenario from an ICM prospective are incident detection and the need for rapid response to implement a strategy. The problem or incident must be clearly defined before an effective, strategic solution can be implemented.

The identification of ICM operational strategies should be identified based on input from corridor stakeholders. ICM may encompass one or many aspects of an operational strategy for a corridor(s). For example, here are several ICM strategic activities (*2*):

- Improving efficiency of cross-network & cross-jurisdictional interfaces, communications, and infrastructure (i.e. signal systems);
- Sharing of information and resources between agencies and stakeholders;
- Mobility opportunities through alternate modes or routes;
- Traffic signal timing and operations adjustments;
- Lane-use adjustments or dynamic lane assignment;
- Real-time traffic and transit monitoring;
- Real-time information distribution (i.e. 511, changeable message signs, etc);

- Congestion and incident management;
- Variable access control (ramp metering or ramp closures);
- Public awareness programs, and
- Transportation pricing and electronic payment.

This list is not exhaustive and many other ICM operational strategies exist. Careful strategy evaluation and stakeholder consensus should be developed as a strategic ICM plan is developed, tested, implemented, and maintained. The next section will discuss specific applications and research related to this thesis topic.

## **ICM Operational Applications**

The outputs or results of successful ICM operational applications are an effective or intelligent use of all transportation network assets, an increase in travel reliability, a clearer presentation and implementation of traveler alternatives, as in the case of this thesis, strategic traveler information systems allowing diversion routing. These and other ICM operational applications are the result of the implementation of the ICM operational strategies previously presented. The following research applications helped to guide and shape the research plan, objectives and methodology of this thesis.

#### **USDOT ICM Initiative**

The USDOT plans to expand the ICM operational knowledge, concept and applications through a two phased approach, which is currently ongoing. Phase I entails conducting foundational research on the topics related to or involving ICM and developing practical resources. This will result in an established concept and a strong base of knowledge.

Phase II will involve the development of ICM tools, strategy and deployment support, as well as technical integration for practitioners. This will involve analysis, modeling and simulation of various ICM corridors to develop and validate methodologies. This will be done on a generic ICM corridor model as well as up to 4 pioneer test sites throughout the US. The result of this effort should be validated and tested methodologies to support ICM strategy analysis. Through the experiences with the generic and pioneer sites, a suite of technical assistance guides will be developed to support ICM implementation in the future.

#### City of Portland & ODOT ICM Implementations & Studies

The City of Portland, along with the Oregon Department of Transportation (ODOT) has developed a coordinated corridor control system for the freeway/arterial corridor of Interstate 5 and Barbur Boulevard on the Westside of Portland, Oregon with the goal of reducing the amount of time that normal freeway operations are disrupted on Interstate 5 when an incident occurs.

The key elements of this I-5/Barbur Blvd. system include closed circuit television cameras (CCTV), variable/changeable/dynamic message signs, ramp meters, vehicle detectors, coordinated traffic signals (14 on Barbur Blvd.), and transit bus probes (near real-time reporting of travel time and speed to measure congestion). The primary ICM operational strategy developed and implemented in this project was special incident signal timing plans (increase to 140-160 second cycle lengths), which favor northbound or southbound traffic depending on the location and type of incident. This corridor has been split into 7 segments to further tailor specific response plans and strategies, with operational scenarios developed for a variety of situations. The two primary criteria for utilizing Barbur Boulevard as a diversion route are an incident on I-5 blocking two or more lanes, or an incident on I-5 blocking a single lane for longer than 20 minutes (*6, 7*).

The City of Portland and ODOT has also conducted a traffic incident management and strategies study for a coordinated freeway/arterial corridor system of Interstate 205, Interstate 84, and 82nd Avenue on the eastside of Portland, Oregon. The focus of this study was to "use available monitoring devices to manage diverting traffic and maximize vehicle throughput on 82nd Avenue," typically in response to non-recurring congestion. Equipment to be used to detect and manage incidents in the study area are system detectors, CCTV cameras, traffic signals (25 along 82nd and 16 connecting 82nd and I-205), ramp meters, dynamic message signs, and fixed message guide signs. These technologies are or will be connected via fiber to TMC and operations centers for ODOT and the City of Portland. Based on an operational analysis using Synchro, the increased capacity demands through diversion could be reasonably addressed along 82nd Avenue during the peak period by strategically increasing the cycle lengths from 70-120 seconds to a consistent 160 seconds (*8*).

#### University of Maryland ICM Simulation Analysis & Research

The University of Maryland conducted a simulation-based study in the Interstate 95 corridor in the Baltimore, Washington DC area, with 262 signals, 111 zones, and 2182 nodes, for the purposes of Integrated Corridor Management feasibility and effectiveness using the DYNASMART-P dynamic traffic assignment, simulation model. Simulation was done on a number of ICM strategies under both a work zone (planned) event and an incident (unplanned) event. ICM strategies tested were advisory warning variable message signs (VMS), mandatory detour, optional detour, ramp metering, and signal coordination. The analysis results indicated that effectiveness in corridor operations can be improved when multiple management techniques are used in a coordinated fashion (9).

#### University of Virginia Urban Freeway Diversion Feasibility Research

This study focused on operational feasibility analysis of freeway diversion from urban freeway to adjacent arterials. Various signal timing strategies were tested through the micro simulation program, VISSIM to see if diversion would improve traffic mobility (travel time and delay) along the selected arterial networks. Key findings are freeway diversion during peak periods is not recommended, increased volume timing plans were not operationally feasible to vehicle mobility along the arterials, and the optimized signal timing plan with geometric change can improve mobility in forward direction of diversion route, in most cases, while it may not be efficient for entire network. No field deployment was tested in this research, but is recommended (*10*).

## CHAPTER 3 – RESEARCH PROCEDURE

This chapter will go into detail on the elements of the research procedure. This will include the problem statement, research objectives, research methodologies, research test site, modeling software, and the research experiment. This research procedure will be split into two focus areas, part A and part B, describing corridor operational testing and the process of converting a regional planning model to a microsimulation operations model.

#### **Problem Statement**

As stated, the problem statement will be split into two related focus areas, part A and part B, dealing with operational testing and experiences in converting simulation models.

#### Part A

There is a finite amount of capacity available within an Interstate/arterial corridor roadway network. If capacity becomes limited through a nonrecurring incident on the interstate, can operational strategies be implemented within the corridor to aid overall system operations?

To answer this question, we need to look at whether or not operational measures of effectiveness, such as travel time and delay, will improve under the provision of advanced traveler information through ITS elements such as dynamic message signs, highway advisory radio, in-vehicle navigation systems and etc in real-time or near real-time. This will allow drivers to utilize alternate pathways along adjacent arterials under incident scenarios, such as an Interstate partial closure. Immediately after an incident occurs on a freeway, such as a two lane blockage, Interstate flow rate drops, queues build up and travel time and delay increase substantially. All this provides stimulus for drivers to search out alternate routes leaving the Interstate and making use of any additional capacity on the adjacent arterial systems and corridors, to reduce their own delay and travel time as opposed to remaining on the Interstate in the queue waiting for the incident to be cleared.

As operators of the facility or facilities within the incident corridor, there is a responsibility to develop strategies and methods of operation that are as effective, safe, and "seamless" as possible to move traffic of all modes through the system. Doing this from an integrated perspective should result in an application of ICM. This type of application will likely involve two or more separate government owning/operating agencies in the State Department of Transportation, responsible for Interstate operations and communications and the local government agency being the City, County and/or State Department of Transportation, responsible for the operations and

communications of arterial surface street network. Agency partnership is a necessary, and key element to the success of implementing a corridor operations strategy involving both the Interstate and surface street networks. We will assume in this thesis, agency communication and partnership exists at a very high level.

A communication and operational gap must be bridged between these agencies and the corridor facilities they operate, in this thesis case Interstate and arterial. The technology assumed to be available along the Interstate for the purposes of this thesis, is closed-circuit monitoring cameras (CCTV), highway advisory radio (HAR), changeable message signs (CMS), ramp metering (although not operational during off-peak test period), fully interconnected signals and high-speed communication lines to collect field data and information, as well as infrastructure in place to share this data and information internally and with partnering agencies in near real-time. Each of these technologies proves crucial to implementing a diversion strategy or strategies in a timely and effective manner and allows the ability to terminate the diversion strategy appropriately as well.

#### Part B

Can we test these ICM strategies in a real-world corridor by converting an existing regional planning level model and its network and origin-destination data into a working operations-level, microsimulation model successfully?

The tool to answer part A rests in first answering part B. What bridges must be established to produce the best possible operations model from an existing regional planning model, in order to test part A? In order to answer these part B questions, we will go through the process of taking an agency's regional planning model and make necessary adjustments and alterations to the model to increase the level of detail and realism of the model once in microsimulation. We will also look at the big picture impacts of making adjustments to a regional model and cutting out a corridor portion of the model for our testing purposes, discuss potential repercussions and finally discuss some lessons learned in the conversion process and some areas for further research.

#### **Research Objectives**

The objectives of this thesis are twofold. First to determine the applicability of a diversion operational strategy based on real-time traveler information to aid traffic diverting from an Interstate facility upon a non-recurring type incident, such as a two-lane blockage, resulting in constrained Interstate capacity. Second, determine the feasibility and effectiveness of using a planning level model to create an effective operations-level, microsimulation model to emulate real-world conditions for strategy testing. The specific objectives are as follows:

- Clearly establish the theory of corridor diversion strategy to be tested & the tools necessary to test it;
- Identify appropriate conditions to both implement the corridor diversion strategy & attempt to convert from a planning to operations level model;
- Clarify ways to best implement the corridor diversion strategy & to best develop the simulation tool to test it, and
- Qualify the benefit of the corridor diversion strategy & converting a planning level model into an operations level model.

## Research Methodology

Again, the problem methodology will be split into two related focus areas, part A and part B, dealing with operational testing and experiences in converting simulation models.

#### Part A

To determine the applicability of a real-time traveler information operational strategy or strategies at the corridor level, using an existing test or study area, a study methodology was developed considering various scenarios, such as real-time or near real-time traveler information plans and operations, incident type, location, and length, and other strategy implementation characteristics.

A proposed study procedure is shown below:

- Select test site and Interstate/arterial network,
- Collect data pertaining to volumes, geometry, signal phasing, timing, and offset,
- Conduct capacity and signal timing analysis,
- Develop test scenarios,
- Select representative operational performance measures, and
- Perform statistical analysis.

Performance measures to be used in this thesis will be diversion directional average travel time and average delay per vehicle for the main north-south corridors within the study area. It should be recognized that one strategy may work well for diversion traffic but maybe detrimental to the network or system as a whole. Therefore, network-wide or system-level performance measures of total travel time, and average delay will be collected to develop a systemwide idea of the effectiveness of the strategy implemented. Hypothesis tests will be used to determine whether performance measures from one strategy differ statistically to another strategy, and are shown in the research result section of this report. Model observation and sensitivity analysis will be conducted at some level to determine the length of time for Interstate and arterial operations to recover after an incident is cleared or removed.

#### Part B

Simulation will be the primary analysis tool used in this thesis, given its costeffectiveness, reasonable accuracy, ability to collect a wealth of data and the ability to control variables such as incident characteristics. It is reasonable to test via simulation prior to field implementation due to the difficulty in deploying and evaluating measures of effectiveness directly.

The modeling software tools for analysis of this thesis are VISSIM 4.10, VISUM 9.40, and Synchro 6. Each of these serve a role in developing signal timing plans, converting planning level data into operations analysis data, and conducting the microsimulation operations analysis. Further detail on the methodologies of each model will be described in the modeling software section. Because this thesis testing is focused on qualifying the diversion strategies and developing a reliable operations model from a regional planning model in general, quantifying the benefits of the strategies specific to the study area was deemed less important and thus detailed calibration of the simulation models was unnecessary.

An idealized model was developed using a real test site, optimized signal timing scenarios, and planning level calibrated origin and destination data, to test the various thesis scenarios. The model should reflect realistic operations, but not mimic real-life conditions for the corridor due to the implementation of optimized signal timing data and planning-level volume and traffic assignments. In addition, traffic assignment within the model will be allowed to change dynamically in reaction to previous model simulation runs. Thus, the model will be changing up to a point where the model converges on a stable threshold, and is considered stable in its traffic assignment (paths from origin to destination), then traffic assignment will be set static for the scenario after "convergence" is reached, and the dynamic assignment module turned off.

## **Research Test Site**

This research project called for a real urban test site, with a corridor composed of one or more freeway facilities and numerous adjacent arterial facilities. The test site must have local agency cooperation and data sharing with the research team, and have a history of progressive traffic engineering and transportation planning practices, under the premise that implementation may be a future step to these strategies being tested. After a literature review, discussions with networking partners, and the fact that the research members are familiar with this area; the metro area of Portland, Oregon seemed to rise to the top of test site possibilities. Discussions with METRO, the planning government agency in Portland, Oregon revealed the existence of a recently developed regional planning model in VISUM, and an interest by the City of Portland in conducting some microsimulation modeling of diversion strategies on the eastside of the metropolitan region, pointed towards a good match for the purposes of this research and the local agency needs and ability to share data. A similar study on diversion strategies had been developed and implemented by the Oregon Department of Transportation, Tri-Met (Transit), and the City of Portland for the Westside of the metropolitan region, looking at a 3 mile corridor (6, 7), but no microsimulation analysis had been done on the Westside corridor.

In talking with the City of Portland and Metro, the corridor of Interstate 205 and parallel 82<sup>nd</sup> Avenue was a test site of interest. Previously, the City had done some analysis on this corridor for the purposes of developing a corridor concept of operations (*8*), but was willing to share their data for the purposes of this research in the hopes of confirming or simply adding data as the City considers implementation at some future date, possibly.

The study area selected for the purposes of this research can be seen in Figure 3 on the following page. The research study area is composed of two major Interstate facilities, Interstate 205 (I-205) running north-south the length of the study area, and Interstate 84 (I-84) running east-west the length of the study area. The two major north-south arterial corridors are 82<sup>nd</sup> Avenue, just west of I-205, and 122<sup>nd</sup> Avenue, just east of I-205. The major east-west arterial corridors are Foster Road, Powell Boulevard, Division Street, Stark Street, Washington Street, Glisan Street, and Sandy Avenue. All these arterial corridors are multi-laned, high speed (35-45 mph), and signalized intersection corridors.

As shown in Figure 3, the study area and corresponding VISUM, VISSIM, and Synchro models developed for this thesis cover an area of approximately 7.75 miles north-south and 3.5 miles east-west, or approximately 27 square miles. There are 100 signalized intersections, not including ramp meters within the study area.

## **Modeling Software Tools**

Modeling software was used as a tool to conduct this research. This section will give an overview of each software packages and its applications in the thesis methodology.

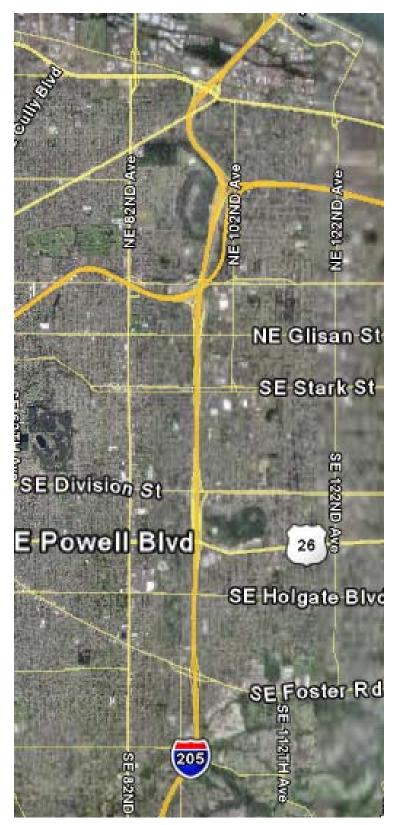



Figure 3 – Research Study Area

#### VISUM 9.40 Macrosimulation

VISUM is a macrosimulation software program from PTV AG that serves as a strategic planning and travel demand modeling package. Primarily made up of links, nodes and zones, VISUM supports multi-modal networks, GIS interfaces through ESRI, does trip generation, distribution, mode split and traffic assignment for private autos and transit vehicles. VISUM has interfaces to Synchro and Traffix for node or intersection Highway Capacity Manual anaylsis. Most importantly for this thesis, VISUM has a link to and from VISSIM to conduct microsimulation analysis and select flow analyses. Within VISUM are intersection editors to define specific turning lanes and storage lengths, the ability to edit node to match aerial or GIS study area coverage, and a simple VISSIM NEMA editor for inputting signal timing and junction priority rules (*11*). All this is in place to aid in the export or conversion of the VISUM model over to VISSIM for microsimulation.

An already constructed VISUM network, developed from EMME/2 software planning models, for our study area was provided for the purposes of this thesis from METRO. Large scale cutting and editing of the network was necessary to prepare a VISUM model that could be exported to VISSIM for microsimulation. Figure 4 on the following page shows the VISUM network used in this thesis.

As shown in Figure 4, the developed VISUM model is a derivative of the original constructed VISUM model by the Metro planning/government agency and contains the original origin-destination traffic volume data. There are 604 nodes, 1452 links, and 155 zones within this VISUM model. Key alterations to the original METRO model in VISUM include the following:

- Adding of link curvature to match real roadway geometry;
- Deletion of unnecessary nodes;
- Addition of grade separation;
- Adjust link speeds to match general posted speeds;
- Adjust major flows at nodes to match major roadway(s);
- Adjust number of lanes to match Google Earth aerials (12) & update corresponding link capacity, and
- Add signal timing and controller information to nodes.

#### VISSIM 4.10 Microsimulation

The simulation model VISSIM 4.10 is a microscopic (individual vehicle-level), time-step, and behavior based simulation model developed to model urban traffic and transit operations. It was selected as the analysis tool of choice in this thesis due to its ability to model corridors of both freeways and signalized arterials with accuracy at a microscopic-level, capturing the individual vehicle

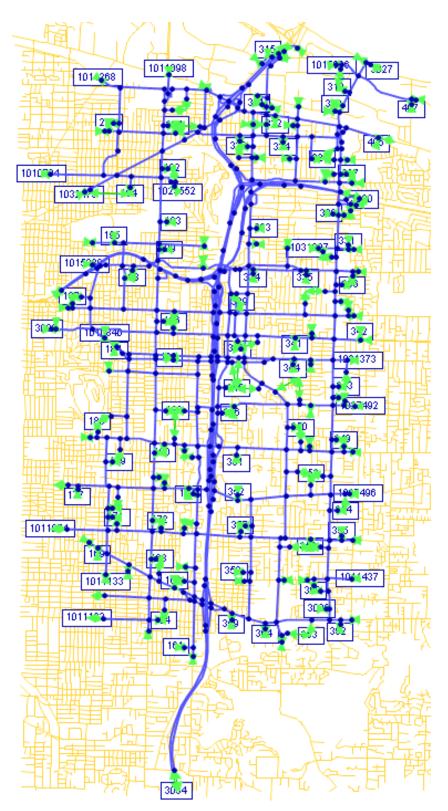



Figure 4 – VISUM Model: Planning Network

interactions, allowing for signal timing modifications, dynamic traffic reassignment and ease of data collection through valid measures of effectiveness such as travel time, delay, stops, etc.

The ability of VISSIM and VISUM to import and export between each other was a focus of this research given that an already constructed VISUM network was provided, yet little or no previous reports, research or experience could be identified for a similar type of VISUM to VISSIM conversion at a corridor-level. It is believed that this conversion process and the lessons learned will be a pioneer effort of its kind.

There are several types of signal control logic available within VISSIM and through add-on packages, but for the purposes of this research, the standard NEMA signal control logic was utilized, along with the external signal state generator or vehicle actuated programming (VAP) that allows for the design of user-defined signal control logic. This VAP logic is used to create the incident or blockage on the Interstate. Further discussion on VAP logic will be included later as the experiment is described.

The dynamic traffic assignment module within VISSIM is key to the purposes of this thesis. It replaces static route modeling with a model designed to model route choice behavior using origin-destination matrices and data as flow inputs. In VISSIM, dynamic assignment is done over time by an iterated application of the microscopic traffic flow simulation, through discreet choice theory (Logit Model), which calls for driver routing decisions based on a given number of known routes and some criteria for prioritizing the routes (*13*).

Dynamic assignment makes simulation of diversion from the Interstate to the arterial street network and back to the Interstate possible in VISSIM. Drivers will follow routes where the lowest travel time and costs exist between their origin and destination, thus they will seek out and most efficiently utilize available capacity within the system on the Interstate or on the arterial network, with or without an incident on the Interstate. The dynamic assignment module will be used to emulate the dissemination of real-time traveler information to vehicles within the network. *Appendix A* contains further overview details regarding the dynamic traffic assignment module in VISSIM 4.10. Figure 5 on the following page shows the VISSIM research network.

As shown in Figure 5, the overall roadway geometry and characteristics are retained in the export from VISUM, but now exist in a more detailed, microsimulation (individual-vehicle) format of VISSIM. There are signals operating at the 100 signalized intersections, priority rules for right-of-way at every intersection, as well as desired speed and link capacity characteristics




Figure 5 – VISSIM Model: Operations Network

that all carried over from VISUM. Origin-destination data and zones remain consistent to the original Metro files in VISUM. Traffic assignment and vehicle pathways between origins and destinations occur as a result of the dynamic assignment module, start from the multi-equilibrium runs in VISUM, but expanded upon through dynamic assignment in VISSIM. The next section will discuss how the traffic signal timing and operations were developed and optimized for use in this research.

#### Synchro 6

The last modeling software used in this thesis is Synchro 6, specializing in modeling and optimizing signal timing, as well as conducting intersection capacity-based and HCM-based operations analysis. Signal timing and optimization are the primary purposes of the Synchro 6 tool in this research. Using this tool, we optimized the existing signal timing network under existing flows. Future research should investigate the impacts of reoptimizing the signalized network under diversion flows.

Within Synchro, there are optimization tools for cycle lengths, splits, and offsets at the local intersection, zone (multiple intersections), or entire network levels. The optimization within Synchro is keyed off of user defined elements such as turning movement volumes, intersection geometrics, link speeds, distances between intersections and etc. (14) Original signal phasing and locations used in these Synchro models, were given by signal information provided by the City of Portland and ODOT, which can be seen in *Appendix B*. More specifics with regard to signal timing and optimization will be discussed in the experimental sections of this thesis. Figure 6 on the following page shows the Synchro model used for this research.

#### **Research Experiment**

The research experiment within VISSIM is described in the following section of this report.

#### Input Traffic Volumes

The primary input traffic volume data, the origin and destination trips were taken from the original weekday, afternoon peak period Metro assignment files. The only adjustment made to the origin-destination data was to apply a factor of 55% to the trips to convert from weekday afternoon peak period data (3:30pm-5:30pm) to weekday off-peak period data (8:00pm-10:00pm). The factor of 55% was arrived at through a simple breakdown of Interstate 205 24-hour volumes within the study area from ODOT permanent count station data. *Appendix C* contains the compiled data used from the ODOT count station.



Figure 6 – Synchro Model: Signal Operations Network

Because we are using weekday off-peak period (8:00pm-10:00pm) as our study time period, the research team has assumed that all study area ramp meters will be turned off for each of the study scenarios, allowing the research team to greater isolate the impacts of a advanced traveler information systems leading to diversion operations within the network. ODOT currently operates their ramp meters in this section of I-205 during the afternoon from 1:00pm – 7:00pm.

#### Input Signal Timing

Another key input data source is signal timing plans, each developed in Synchro 6. The Synchro analysis network was expanded from an already constructed network within the study area. The network was built using existing timing and phasing information where available. The desire with this research was to not use the exact existing signal timing operating parameters but to instead input the existing parameters and let Synchro optimize the cycle lengths, splits, and offsets throughout the corridor network based on traffic volumes. This gives the research team an existing or starting condition that has reliable signal timing parameters based on traffic volumes optimized from dynamic, multi- equilibrium assignment iterations conducted in the completed VISUM model. Again, *Appendix D* contains the optimized signal timing information used in this research.

#### Incident Construct

As mentioned previously, the incident to be tested in this research is a simple two-lane blockage of northbound traffic on Interstate 205, approximately 1,500 feet north of the northbound I-205 on-ramp terminus from Glisan Street. Figure 7 points out the location of the test incident relative to the study area.

As shown in Figure 7, this incident location was chosen because there are numerous diversion points in the model south of the incident for traffic to leave the Interstate and search out an alternative route around the incident. They are, given in closest to furthest proximity to the incident, the northbound I-205 interchange ramp at Glisan Street, Washington Street/Stark Street, Powell Boulevard, and Foster Road. The sole return point to I-205 northbound in this model north of the incident is at the Sandy Road interchange. The incident location also should not directly impact operations on the adjacent Interstate 84 corridor, restricting testing impacts to the Interstate 205 corridor and its adjacent arterials.

The two lane blockage is meant to emulate an incident such as a car fire in the far right-hand lane, and emergency vehicle responders blocking the middle lane, leaving only the far left lane accessible for Interstate traffic to proceed through during the incident. After the fire is extinguished, the vehicle

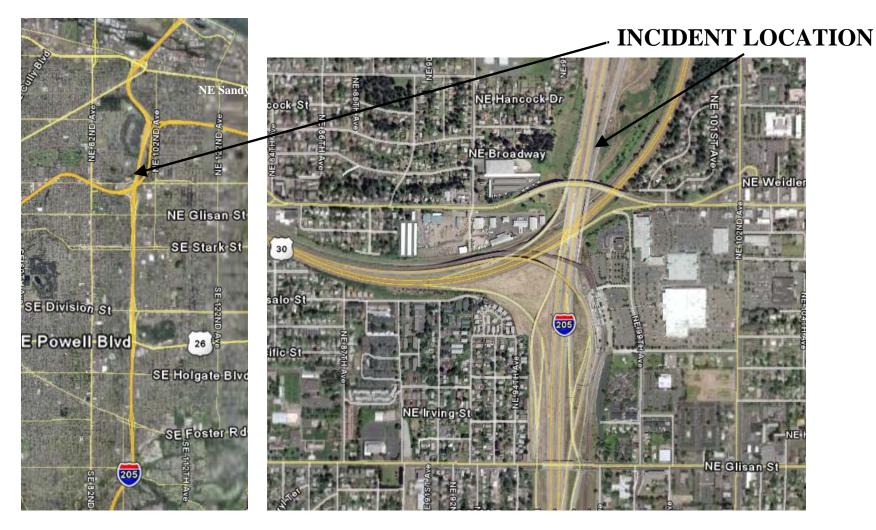



Figure 7 – Study Incident Location Map

is pushed to the shoulder, emergency vehicles leave the scene and all three northbound lanes return to normal operations.

The incident duration will be 30 minutes. This is just above the ICM implementation threshold of 20 minutes per the joint City of Portland/ODOT "I-5/Barbur Boulevard Incident Management Operational Plan Users Manual Version 1.0 (*15*)." This plan was the developed and implemented plan on the westside of Portland, Oregon. This thesis study area is located on the eastside of Portland, Oregon and it is likely the same threshold implementation parameters would be utilized. Table 1 shows the ODOT/City of Portland criteria guidelines for activating the ICM system (*7*).

By conducting this thesis with an incident duration of 30 minutes, a relatively short incident length, we can begin to determine if the established 20 minute duration is generally reasonable for the study area under the test case of a two-lane blockage during the off-peak period. Of course this thesis is testing scenarios through simulation and driver behaviors and parameters may not exactly reflect those of the Portland Metro area, thus simulation is intended to only give a benchmark to grow towards implementation if desired.

This incident construct of type and duration under went some mild sensitivity testing to determine which incident characteristics were appropriate, reasonable and resulting in correct operations within the model. Incident lengths of 20, 30, 45, and 60 minutes were tested to see the type of impact duration had on model operations. The two-lane blockage incident for 20 and 30 minutes was found to be reasonable and resulting in correct model operations, with the model recovering and returning to normal operations by the end of the two hour simulation runs. Only mild queuing and spillback occur as a result of these shorter durations, limiting the opportunity for large scale vehicle diversion. Similarly, we tested a three-lane or complete northbound blockage for 20

| Factor                  | Criteria                                                                                                    |
|-------------------------|-------------------------------------------------------------------------------------------------------------|
| Number of Lanes Blocked | Two or more                                                                                                 |
| Duration                | 20 minutes or more                                                                                          |
| Time-of-Day             | Peak periods have higher traffic volumes                                                                    |
| Day-of-Week             | Weekdays typically experience higher traffic volumes                                                        |
| Volume of Traffic       | Compare volumes on Interstate to an average<br>Interstate volume for the time-of-day an incident<br>occurs. |

| Table 1. ODOT/City of Portland Criteria Guidelines for Activating the ICM |
|---------------------------------------------------------------------------|
| System.                                                                   |

minutes, which resulted in large scale queuing, spillback and opportunity for diversion, yet the research team did not feel this type of incident was realistic.

The two-lane blockage for the longer durations of 45 and 60 minutes were potential incident types, yet realistic model operations could not be established within the limited research timeframe. It is believed there are potential improvements necessary to unsignalized and signalized intersections along Glisan Road and other adjacent arterials in the way of priority rules to keep intersections clear and allow for traffic movements even when queuing spills back up Interstate ramps or from upstream intersections. Implementation of VISSIM's dynamic assignment may also avoid this modeling problem altogether and should be noted for further research. *Appendix E* contains the VISSIM Incident Sensitivity Results.

#### **Operational Scenarios**

This section will outline the operational scenarios tested in this research project.

#### No Incident: Existing Conditions

The operational scenario, no incident, existing conditions is the true baseline of the network or system. This scenario contains Metro origin-destination data, optimized signal timing for base (no incident) traffic volumes, and no incident occurring within the network. This scenario will show how well the corridor or network operates and performs under normal existing conditions with optimized signal timing. This scenario should produce the most efficient or best results, since no incident is occurring in the system to force non-recurring delay, queuing and ultimately diversion to alternate arterial routes.

#### With Incident: Existing Conditions

This operational scenario is almost identical to the no incident, existing conditions scenario, except that there will be an incident occurring matching the description in the previous section, "incident construct" of this report. The Metro origin-destination data is the same, and the signal timing is the same as the existing conditions no incident scenario. Traffic will follow its existing, non-incident patterns, with no routes changing. No adjustments are made to the signal timing, lane assignment or other operational features of the network.

This scenario is a "do nothing" scenario under incident conditions. No ITS or traveler information will be relayed through the corridor network. This is considered a worst case scenario for network operations in that an incident has occurred but no information has been communicated the drivers to warn of the incident, offer alternative routes, or even make system operational adjustments

such as signal timing and offset changes. Drivers are not allowed to seek alternate routes in reaction to the incident in this scenario.

#### With Incident: ICM Real-Time Traveler information Strategies

This operational scenario is similar to the previous in that all the incident characteristics are the same. In the previous scenario assumed drivers were given no advanced information of the incident nor did they search out alternate routes. Here we will model using VISSIM's dynamic assignment module in effect with the Interstate incident and the vehicles will learn the best paths through the corridor, some waiting on the Interstate and others diverting to alternate routes off the Interstate. This will allow us to simulate extremely good data dissemination to all drivers. This data dissemination to drivers could be through highway advisory radio, local news and radio traffic updates, roadside dynamic or changeable message signs (on Interstate and arterial). But there are no other active ICM operational strategies related to lane usage, signal timing, signal offsets, or roadway geometry that will be implemented in this final test scenario.

#### Simulation Methodology

The following section describes the methods used to design the VISSIM experiment and to collect the evaluation data.

#### Incident Logic

As mentioned previously, the incident logic was implemented in VISSIM using a VAP algorithm, written specifically for this experiment. The basic structure of the logic is as follows:

TIME BEGIN = 900 (of incident) DURATION = 1800 (time of blockage)

START SIMULATION TIMER SET Signal Head = Off;

IF SIMULATION TIMER >= TIME BEGIN, THEN Signal Head = Red;

IF SIMULATION TIMER > (TIME BEGIN + DURATION), THEN Signal Head = Off;

Basically, this logic says the dummy signal heads will be on beginning at "TIME BEGIN" and lasting a length of "DURATION" to mimic a simple two-lane freeway blockage of a car fire and emergency vehicle respondents. After the duration has pasted, the dummy signal heads turn off and vehicles are able to return to their

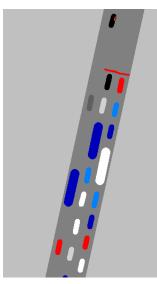



Figure 8 – VISSIM Incident through VAP logic

normal operations without incident impedance. Figure 8 shows the incident through VAP logic in VISSIM. The detailed coding used in this VAP logic is contained in *Appendix F.* 

#### **Observation Period**

Each simulation run was two hours (7200 seconds) in duration. This was to match the two-hour data provided by Metro for the origin and destination zones in the network. Data was collected in fifteen minute (900 second) intervals of:

- 900-1800
- 1800-2700
- 2700-3600
- 3600-4500
- 4500-5400
- 5400-6300
- 6300-7200

The first interval of 0-900 seconds is used as a loading period to initialize the network and establish reasonable operations before data is collected. As stated previously, data collection was done directly from VISSIM outputs at two levels, the network-level and the corridor-level. The automated, multirun interface of VISSeed was used to conduct the 30 runs in each testing scenario using different random number seeds. VISSeed is a utility developed by the Advanced Traffic Analysis Center at North Dakota State University allowing users to define the number of runs and data to be collected automatically and to run VISSIM through VISSeed in batch fashion to save time.

#### Performance Measures

Based on research team discussion and input from the NCHRP 3-81 project, "Strategies for Integrated Operation of Freeway and Arterial Corridors," two sets or types of operational performance measures were developed for this thesis, network-level and corridor-level. The corridor-level performance measures will be applied in the northbound direction (incident direction) only to the three major north-south corridors within the network, Interstate 205 (freeway), 82<sup>nd</sup> Avenue (arterial) and 122<sup>nd</sup> Avenue (arterial).

The Interstate 205 performance measures are based on the 34,153-foot northbound portion of the network starting just south of the southern-most (Foster Road) interchange, stretching to just north of the northern-most (Sandy Boulevard) interchange. The 82<sup>nd</sup> Avenue corridor performance measures are based on the 25,187-foot northbound portion of the network, starting just north of Foster Road and ending just south of Sandy Boulevard. Similarly, the 122<sup>nd</sup> Avenue corridor performance measures are based on the 25,698-foot northbound portion of the network, starting just north of Foster Road and ending just south of Sandy Boulevard. Similarly, the 122<sup>nd</sup> Avenue corridor performance measures are based on the 25,698-foot northbound portion of the network, starting just north of Foster Road and ending just south of Halsey Street.

These performance measures were selected to qualify and quantify the results of the research experiment through the VISSIM microsimulation model:

- Network Performance Measures
  - Travel Time (hours)
  - Average Speed (miles per hour)
  - Total Delay Time (hours)
  - Average Delay Time (seconds)
  - Total Stopped Delay (seconds)
  - Number of Stops
- Corridor Performance Measures
  - Average Travel Time (seconds)
  - Average Delay (seconds per vehicle)
  - Average Speed (miles per hour)

While data will be collected on these performance measures, statistical analysis will only be performed on the two primary performance measures, average delay and travel time in both the network and individual corridors. Research and performance measure results will be presented in the next section.

### **CHAPTER 4 - RESEARCH RESULTS**

This chapter presents the results of the research procedure and experimental test, which is outlined in the previous chapter. The experimental objective and hypothesis are presented, followed by an analysis of the experimental results. The last section will present results related to part B of the research procedure, lessons learned in simulation model development and conversion from a regional planning model to a microsimulation, operations model.

### **Experimental Objective**

The objective of the VISSIM experiment was to determine if the implementation of real-time traveler information operational strategies in the event of an Interstate non-recurring incident would result in reduced delay and improved travel time in both the entire network and on the incident roadway corridor of northbound Interstate 205, and the primary diversion roadway of 82<sup>nd</sup> Avenue. The intent of this experiment is to qualify the benefit of such operational strategies under a single specific incident scenario in a corridor through the use of dynamic assignment in a microsimulation model. The intent is not to specifically quantify the benefit strategy.

### **Experimental Hypothesis**

The hypothesis of this experiment is that vehicles will divert to alternate routes and there will be reduced delay and improved travel times in the incident corridor of northbound Interstate 205 with the implementation of an ICM operational strategy of real-time traveler information systems. In addition, the entire network system will not see a significant increase in delay and travel times as a result of the ICM traveler information systems in place during an incident due to driver's ability to select alternate routes with remaining capacity if so desired in advance of the northbound I-205 incident.

### **Statistical Analysis**

For each incident scenario, both with and without ICM traveler information system strategies in place, 30 simulation runs were conducted for a total of 60 simulation runs. In addition another 30 simulation runs were conducted without an incident to develop a numerical baseline for operations within the corridor. Each of the 30 runs for each scenario was made using a different random seed

number with VISSIM. Random seed numbers result in a variance of the distribution of vehicles entering the network on any given run. The different random seeds are utilized in an effort to emulate the stochastic nature of traffic flows in an urban corridor.

The same 30 random seed values were utilized between the scenarios, but because traffic assignment is variable between the network incident scenarios means that we must conduct a statistical evaluation on the data sets as nonpaired samples. Non-paired statistical tests were used to determine if there was a significant difference in delay and travel time between the incident scenarios, with ICM traveler information operational strategies and no strategies. The 30 runs for each scenario were broken into 7 data sets: average travel time and average delay for both 82<sup>nd</sup> Avenue and Interstate 205 corridor-specific scenarios, point I-205 volume just downstream of I-205 incident, and total travel time and average delay for the network-wide scenarios. Each data set was analyzed for normalcy, assuming an  $\alpha = 0.05$ . If the data sets were determined to be normal, then a non-paired samples t-test was used to test the means. If the data sets were found to be non-normally distributed, then a one-way analysis of the variance or ANOVA test was used on the means. The following hypotheses were developed for testing the difference of the means between the incident scenarios:

- Null Hypothesis =  $H_0$ :  $\mu_1 = \mu_2$
- Alternative Hypothesis =  $H_a$ :  $\mu_1 \neq \mu_2$

If the null hypothesis was accepted, then the means are determined to be equal. This means that there is no significant difference between the data sets and the implementation of real-time driver and traffic information upon a non-recurring incident has no significant impact. If the null hypothesis is rejected, the alternative hypothesis is accepted, indicating that the means are different between the incident scenarios and that implementing real-time traveler and traffic information systems upon a non-recurring incident had a significant impact on delay and travel time at either a network-level or the specific Interstate 205 or 82<sup>nd</sup> Avenue corridor operations. The JMP (SAS) statistical analysis and software package was utilized for all the statistical tests conducted in this research.

#### **Experimental Results**

This section of the report will be split into two sections to present the experimental results. The two levels are the corridor-specific level on 82nd Avenue and Interstate 205, and the network-wide level. The VISSIM experiment was conducted over 30 iterations or runs for each scenario.

#### **Corridor-Level Results**

The VISSIM experiment was conducted on the three major north-south roadways within our network. The roadways are Interstate 205, 82<sup>nd</sup> Avenue and 122<sup>nd</sup> Avenue within the experiment, but because the VISSIM dynamic traffic assignment module assigned in some iterations, very few vehicles to navigate the 25,698-foot corridor along 122<sup>nd</sup> Avenue, it was impossible to derive experimental results along 122<sup>nd</sup> Avenue. Perhaps a shorter section of 122<sup>nd</sup> Avenue for data collection of travel time and delay would have yielded more vehicle travel and the ability to collect data and run the experiment. As is the corridor-level results of average travel time and average delay per vehicle were collected for Interstate 205 and 82<sup>nd</sup> Avenue. The travel time and delay values for these corridors were collected under both diversion scenarios, with advanced traveler information systems in place and without. Both the average travel time and delay measures of effectiveness are weighted to account for the differing volumes collected during the 15-minute or 900 second data collection intervals in VISSIM. The average travel time and delay values for each of the 30 VISSIM runs in each diversion scenario are included as Appendix G.

The statistical tests described in the previous section were applied to all 30 runs under each diversion scenario at the corridor-level. Table 2 shows which corridors experienced a statistically significant difference in average travel time and/or average delay, assuming an  $\alpha = 0.05$ , when advanced traveler information systems are in place within the VISSIM model with incident. As shown, the Interstate 205 corridor did not see a significant change in travel time or delay with advanced traveler information systems in place. The 82<sup>nd</sup> Avenue corridor did see a significant change (increase) in travel time and delay with the advanced traveler information systems in place. Appendix H contains a more detailed statistical summary for this corridor-level analysis. Appendix I contains the JMP (SAS) statistical outputs for this data set.

| Location & Measure of<br>Effectiveness | With Incident,<br>No Traveler<br>information | With Incident,<br>Traveler<br>information | P-Value | Significant<br>Difference* |
|----------------------------------------|----------------------------------------------|-------------------------------------------|---------|----------------------------|
| Interstate 205                         |                                              |                                           |         |                            |
| Average Travel Time (sec.)             | 539.8                                        | 541.6                                     | 0.565   | No                         |
| Average Delay Time (sec.)              | 95.3                                         | 96.8                                      | 0.624   | No                         |
| 82 <sup>nd</sup> Avenue                |                                              |                                           |         |                            |
| Average Travel Time (sec.)             | 770.6                                        | 775.5                                     | 0.045   | Yes                        |
| Average Delay Time (sec.)              | 167.8                                        | 172.9                                     | 0.026   | Yes                        |

#### Table 2. Corridor-Level VISSIM Results.

\* Alpha = 0.05

| Measure of<br>Effectiveness | With Incident,<br>No Traveler<br>information | With Incident,<br>Traveler<br>information | Diverting<br>Vehicles | P-value | Significant<br>Difference* |
|-----------------------------|----------------------------------------------|-------------------------------------------|-----------------------|---------|----------------------------|
| Total Volume                | 4387                                         | 4177                                      | 210                   | <0.0001 | Yes                        |
| * Alpha = 0.05              |                                              |                                           |                       |         |                            |

 Table 3. I-205 Throughput Volumes Downstream of Incident.

\* Alpha = 0.05

In addition to the travel time and delay parameter testing, data was also collected over the 30 runs regarding I-205 northbound throughput volumes just north or downstream of the 2-lane blocking incident. Measuring throughput beyond the incident offers a perspective on the number of vehicles diverting to an alternate route from Interstate 205. Table 3 shows the I-205 throughput volumes with incident in place.

We see from Table 3, that there are approximately 210 vehicles that divert from I-205 to an alternate route around the incident, based on the advanced traveler information presented in this network. This number is statistically significant, showing that vehicles do react and change their travel patterns based on advanced traveler information. If incident characteristics were to change, such as number of lanes blocked or length of incident would likely affect the number of diverting vehicles in this VISSIM-based model. Again, *Appendix H* contains a more detailed statistical summary for this throughput volume analysis. *Appendix I* contains the JMP (SAS) statistical outputs for this data set.

#### Network-Level Results

The experimental results of this research are looking not only at the impact under an incident scenario of advanced traveler information has on the operations (travel time and delay) along specific key roadways, but also the impact that advanced traveler information and traffic diversion have on the entire 27 square mile network. As stated previously, a large number of network measures of effectiveness were collected including number of arriving vehicles, average speed, total delay, stopped delay and number of stops, but these characteristics were not the primary measures utilized in this experiment. The primary characteristics used in the network-level experiment are average delay and total travel time, being that they are the most similar to the corridor-level measures allowing for better correlation between the results. Experimental results for all measures of effectiveness at a network-level can be seen in *Appendix G*.

The statistical tests as described in the previous section were applied to all 30 iterations or runs of each incident scenario, with and without advanced traveler information systems. The statistical tests will only be on the primary measures of

| Measure of<br>Effectiveness  | With Incident,<br>No Traveler<br>information | With Incident,<br>Traveler<br>information | P-Value | Significant<br>Difference* |
|------------------------------|----------------------------------------------|-------------------------------------------|---------|----------------------------|
| Total Travel Time (hrs.)     | 7097.3                                       | 7089.3                                    | 0.430   | No                         |
| Average Delay Time<br>(sec.) | 63.9                                         | 63.1                                      | 0.078   | No                         |
| * Alpha = 0.05               |                                              |                                           |         |                            |

Table 4. Network-Level VISSIM Results.

\* Alpha = 0.05

effectiveness, average delay and total travel time. Table 4 shows the VISSIM results for the network-level measures of effectiveness and if they were statistically significant in their differences between scenarios, again assuming an  $\alpha = 0.05$ . As shown, the total travel time and average vehicle delay on a network-wide level is not statistically different, thus indicating that the application of advanced traveler information systems does not have a significant impact on the network. Again, *Appendix H* contains a more detailed statistical summary for this network-level analysis. *Appendix I* contains the JMP (SAS) statistical outputs for this data set.

### Analysis of Results

The results presented in the previous section do not support the first part of the hypothesis that I-205 corridor average travel time and average delay will improve significantly, while 82<sup>nd</sup> Avenue corridor travel time and delay will not change significantly under advanced traveler information systems with an incident in place. The results do support the second part of the hypothesis that the implementation of advanced traveler information systems will not have a significant impact on total travel time or average delay time of all vehicles in the entire network or at the network-level.

Specifically, the lack of a significant impact on I-205 measures of effectiveness is surprising given that the advanced traveler information systems allows vehicles to choose alternate routes, 210 vehicles in this case, which it seems would reduce the average travel time and delay for vehicles remaining on Interstate 205. The slight increase in travel time and delay for vehicles, at 0.3% and 1.6% respectively, traveling on Interstate 205 may be the result of traffic reassigning to I-205 as other traffic diverted from the Interstate with the incident in place, per VISSIM's dynamic assignment module. Perhaps creating a longer incident or a full-blockage of Interstate 205 would have encouraged a greater number of vehicles to divert under the advanced traveler information scenarios, resulting in

a significant difference between travel time and delay measures with advanced traveler information in place.

The increase in average vehicle travel time and delay along 82<sup>nd</sup> Avenue is expected, with vehicles diverting to this and other corridors as a result of the advanced traveler information systems and ability to choose alternate routes around the incident. While the increase on 82<sup>nd</sup> Avenue is statistically significant, the relative increase of 5 seconds of travel time and 5 seconds of delay is very small at 0.6% and 3% of the totals respectively. The numerically small changes in average vehicle travel time and delay can be correlated to the relatively short and small incident event occurring during the off-peak period on Interstate 205, lasting 30 minutes and generating a 1500-foot queue that clears in less than 15 minutes. Again, a longer and more impacting incident on Interstate 205 may result in more pronounced results on both 82<sup>nd</sup> Avenue and Interstate 205.

The second part of the thesis experimental hypothesis, that the implementation of advanced traveler information systems will not have a significant impact on network-wide total travel time and average vehicle delay was found to be true. Numerically, both the total travel time and average vehicle delay improved, at 0.1% and 1.3% respectively, with the implementation of advanced traveler information systems under an incident scenario, the change was not found to be statistically significant. Once again, the network-wide improvements maybe found to have a significant improvement if a longer or more impacting incident were developed on Interstate 205.

The results show that there is a small numerical benefit to the network to implement advanced traveler information systems and allow vehicles to choose alternate routes around the incident, but that there is a numerical disbenefit to the individual corridor operations along Interstate 205 and 82<sup>nd</sup> Avenue with the advanced traveler information systems. Further research should be conducted to validate these findings and test out different incident lengths and types to determine and quantify the impacts of advanced traveler information systems in this network.

#### Simulation Lessons Learned

In addition to the numerical analysis presented, numerous conceptual lessons were learned as a result of this research, primarily in reference to part B of the research problem, converting a regional level planning model into a working microsimulation level operations model. As mentioned before, based on the research team's literature review of previous research, this type of conversion attempt could not be found. The uniqueness of this research effort presented a great opportunity to learn of successes and challenges that are worth noting to aid in the success of these types of research efforts in the future. This section

will discuss some higher level issues discovered through the conversion and simulation process related to network definition, model scale differences, and simulation time periods pertaining to this ICM research.

#### Sub-Area Network Cut

The biggest lessons learned in working with and converting between a regional planning model and a microsimulation operations model deal with issues of scale. First, regional planning models traditionally cover a much larger geographic area and thus may sacrifice roadway geometric or operational accuracies and data in order to allow manageable and cost-effective modeling efforts are used for planning or predictive purposes. The geographic area of microsimulation is usually much smaller compared to regional planning models, and this research is no exception.

This research required us to cut out a "sub-area network" of the regional planning model in order to convert the planning model into a manageable microsimulation operations network surrounding a single Interstate corridor section. The challenge with cutting out a smaller portion of the regional network is that elements of the regional network are lost. For example, highway access points, entire highways and major roadways could be eliminated thus eliminating strategic routes and diversion routes. In addition to the loss of potential routings, there is the loss of all generation and destination zones outside of the network cut. With the elimination of a portion of the roadway network, potential routes, and origin-destination zones (traffic volumes), we are affecting or changing the original intent and operations of the regional planning model to make it usable at a microsimulation, corridor level. The location of the sub-area network cut should be made so as to eliminate as few as possible strategic or important origindestination zones, as well as roadway geometry and traffic routes. Careful consideration and communication is necessary to ensure as much of the original intent of the regional planning model is retained in the microsimulation model after that sub-area network cut is made.

#### Model Scales

The scale of the regional planning model and the microsimulation operations model are usually not the same. The term scale can refer to geographic size, which was discussed in the previous section, but here we discuss scale in reference to the level of detail and type of model input data. The type of data in a traditional regional planning model is different in that it is zone-based, for origin and destination traffic volumes. In operations-based models, traditionally traffic volumes are static based on field measurements, such as intersection turning movement counts or link counts. For this research, the use of origin-destination traffic volumes is advantageous due to the changing roadway capacities due to a non-recurring incident. Origin-destination traffic volumes work well with the

dynamic traffic assignment module in our microsimulation model allowing emulation of real-time traveler information to assist in diversion routing.

The accuracy of the input data between model scales is not usually consistent. Traditional regional planning models will have complete origin-destination data and traffic assignment patterns, but the roadway network is not as detailed as a microsimulation operations model. This was the case in this research, the regional planning model has complete and updated origin-destination data forecasted for present day conditions, but no intersection control, such as traffic signals assigned to nodes within the planning model. The planning model also lacked precision in link geometry, link shape, grade separation, allowable movements, exclusive turn lanes, and other necessary operational aspects to emulate accurate operations our microsimulation corridor model. Adding these operational elements directly to the operations model. Since the operations model is converted from the planning model in this research, then model consistency is retained for future changes that maybe necessary in one or both models.

#### Simulation Time Period

The simulation time period has a direct and obvious impact on the length of simulation runs or iterations impacting the time necessary to conduct research and arrive at results. The length of simulation time also impacts the ability of the network operations to recover after an incident has occurred and is cleared. This research project's two-hour period of simulation and the 1 hour and 45 minutes of data collection are sufficient under most single point incident types lasting an hour or less within our network during the off-peak period. For peak-period or multi-point incident types, the two-hour simulation length may not be sufficient to allow for full operational recovery post-incident and a longer simulation length maybe necessary. *Detailed discussions on lessons learned can be seen in Appendix J.* 

### **CHAPTER 5 - FINDINGS AND RECOMMENDATIONS**

Because there is finite capacity on present-day American roadway networks, operational strategies should be developed in systems to address realistic temporary or non-recurring capacity constraints on major routes and thus develop the ability to effectively and efficiently direct traffic to available capacity elsewhere in the system. This thesis focused on the development and testing of one such operational scenario in an attempt to qualify its effectiveness, while also reviewing the effectiveness of converting an existing planning-level model into an microsimulation, operations-level model for use in testing these operational strategies. The following sections summarize the findings and recommendations associated with this research effort in operational strategies under Interstate diversion scenarios.

### Findings

The objective of this research was split into two sections, part A which was to introduce and test the concept of advanced traveler information systems under an incident scenario, emulated by VISSIM's dynamic assignment module. Part B, was to convert an existing regional planning-level model into a working, realistic microsimulation, operations-level model. Based on this research, the following conclusions are drawn regarding part A:

- The concept of advanced traveler information systems, allowing vehicles to choose alternate routes to navigate a system can be done with benefit to the system, particularly when the system or network is operated in an integrated or cooperative fashion between agencies based on prior research and implementation experience.
- The experimental analysis for this research does not confirm qualitatively that the application of this traveler information concept through VISSIM's dynamic assignment module can result in improved operations at the corridor and network-levels under an Interstate partial-lane blockage incident. As shown in this experiment, significant benefit cannot be achieved for the network-level operations (travel time and delay) or on the incident corridor of Interstate 205, with the advanced traveler information systems and allowable traffic diversion in place in the system.
- VISSIM's dynamic assignment module is effective in emulating advanced traveler information systems and allowing vehicles to choose alternate paths through a network when an incident of an Interstate partial blockage has occurred.
- Under the incident scenario where a partial Interstate blockage occurs, VISSIM model operations can become unstable due to lengthy queuing, particularly without dynamic assignment in place to allow vehicles to avoid congested areas.

For part B, the following conclusions are drawn regarding this research:

- The concept of taking a regional planning model and converting its structure and function into a microsimulation, operations-level model for the purposes of research can be accomplished successfully. The interoperability of the programs VISUM and VISSIM in this research case has been confirmed.
- Gaps in input data between these models must be addressed before the conversion between planning-level models and operations-level models can occur. This for example can include signal timing data, intersection geometry details like storage bays, prohibited movements, number of lanes, lane drops, operating speeds, etc. needed to be input into the planning-level model before it can be converted to an operations-level model.
- The type of incident or event to be tested should play a role in determining the size of the network needed at a microsimulation level dictating the sub-area network cut necessary in the regional planning model.
- Working cooperatively with the developer(s) of the regional planning model and the one converting the planning model to an operating model is important to retain functionality and intent when converting model type.

### Recommendations

The intent of this thesis was two-fold, to attempt to convert a working regional planning model into a working microsimulation operations model and to use that operations model to test a diversion operations strategy under an Interstate incident scenario during the off-peak period in order to qualify the benefits of an advanced traveler information system strategy. Although only a single operational strategy was tested within this thesis, the single operational strategy test and its results opens the door for building into and testing many more operational strategies under this type of non-recurring congestion and incidents. Additional research is necessary to refine and validate the results of this thesis and to expand and develop new operational strategies at the simulation level to build towards a concept of operations and ultimately field implementation. The following suggestions are made to help guide further research in part A, the operational testing:

- Validate the experimental findings of this research on the use of advanced traveler information systems by testing in VISSIM different incident types and lengths to determine when and how this advanced traveler information operational strategy should be implemented and terminated.
- Investigate the impact of intersection priority rules and traffic assignment patterns related to the VISSIM model under various incident types and

lengths to address issues with gridlock occurring and the lack of gridlock recovery within the model.

- Continue sensitivity testing with regards to the VISSIM dynamic assignment module and its impact to traffic assignment under a variety of incident types and length scenarios.
- Expand operational strategies under this non-recurring incident scenario to include signal timing adjustments, and possibly dynamic lane assignment applications at strategic locations like diversion routing exit and entry points, such as Interchange turning movements and etc.
- Once clear results are established for a number of operational strategies under the non-recurring Interstate scenario, consider expanding testing to peak-periods and/or other types of congestion sources such as recurring congestion, or planned special events, or construction work zones.
- Ultimately a more extensive experimental analysis of these operational strategies within this corridor would provide further qualification of benefit and perhaps some quantification of benefit derived from advanced traveler information systems and other operational strategies.

The following suggestions are made to help guide further research in part B, the conversion from a planning-level model to an operations-level model:

- Do traffic volume and assignment comparison between the complete Metro regional planning model and the sub-area network cut developed as the study model for this research to test for model consistency in traffic operations after a sub-area network cut.
- Continue sensitivity testing regarding where the sub-area network cut is made and size of network attempting to be established for operations purposes from a regional planning model.
- Allot plenty of time to make all the necessary additions, changes and checks necessary in both the original regional planning model and the converted operational model to ensure as accurate as possible operations and results.
- Within the conversion process specific to VISUM-VISSIM, add operations level data and accuracy wherever possible directly to the regional planning model prior to conversion to an operations-level model to ensure the best possible conversion and final operational model possible.

## LIST OF REFERENCES

### LIST OF REFERENCES

 "Integrated Corridor Management Concept Development & Foundational Research." United States Department of Transportation ITS Joint Program Office, Federal Highway Adminstration, Federal Transit Administration. April 11, 2006

http://www.itsdocs.fhwa.dot.gov/jpodocs/repts\_te/14273.htm

- 2) Harding, John. "Integrated Corridor Management: Initiative, Concepts, Activities." Intelligent Transportation Systems, United States Department of Transportation.
- Urbanik, T., Humphreys, D., Smith, B., and Levine, S. "Coordinated Freeway and Arterial Operations Handbook." Office of Operations Research and Development, Federal Highway Administration. FHWA Report No. FHWA-HRT-06-095, May 2006.
- 4) Sun, H., N-Sang, S., Park, B., and Smith, B. "Operation Feasibility Analysis of Freeway Diversion at Urban Network." Center for Transportation Studies, University of Virginia, Report No. UVACTS-13-00-84. February, 2004. <u>http://cts.virginia.edu/docs/UVACTS-13-0-84.pdf</u>
- 5) Federal Highway Administration. Signal Timing Program Plan. November 8, 2004. <u>http://ops.fhwa.dot.gov/traffic\_sig\_timing/tst\_progplan.htm</u>
- 6) "I-5 South/Barbur Boulevard Traffic and Incident Management Demonstration Corridor Lessons Learned Report." David Evans and Associates, Inc. for Oregon Department of Transportation and the City of Portland. March 2004.
- 7) Kloos, B., Mitchell, D., Peters, J., and Rotich, W. "Creating a Freeway/Arterial Concept of Operations Plan in Portland." January 2005.
- 8) "I-205, 82<sup>nd</sup> Avenue Incident Management Plan." City of Portland, Oregon Department of Transportation, Kittelson and Associates, Inc. August 2005.
- Hamdar, S., Eisenman, S. and Mahmassani, H. "Evaluation of Operational Strategies for Integrated Corridor Management." Maryland Transportation Initiative, University of Maryland, submitted for 85th Annual Meeting of the Transportation Research Board, January 2006.
- 10)Sun, H., N-Sang, S., Park, B., Smith, B. "Operation Feasibility Analysis of Freeway Diversion at Urban Network." Center for Transportation Studies, University of Virginia, Report No. UVACTS-13-00-84. February, 2004. http://cts.virginia.edu/docs/UVACTS-13-0-84.pdf
- 11)"VISUM Overview V9." Lew, K., PTV America. Microsoft Powerpoint presentation, 9/2/2005.
- 12)<sup>"</sup>Google Earth" mapping and aerial software package. <u>http://earth.google.com/</u> Google, 2006.
- 13) "VISSIM 4.10 Users Manual." PTV AG, Karlsruhe, Germany. March 2005.
- 14) "Synchro 6 Users Guide." Husch, D. and Albeck, J. Trafficware, Albany, CA. 2004.
- 15) "I-5/Barbur Boulevard Incident Management Operational Plan, Users Manual Version 1.0." Oregon Department of Transportation, City of Portland, DKS Associates, Inc. October 2002.

APPENDIX A – VISSIM: DYNAMIC TRAFFIC ASSIGNMENT OVERVIEW

### **VISSIM:** Dynamic Traffic Assignment Overview

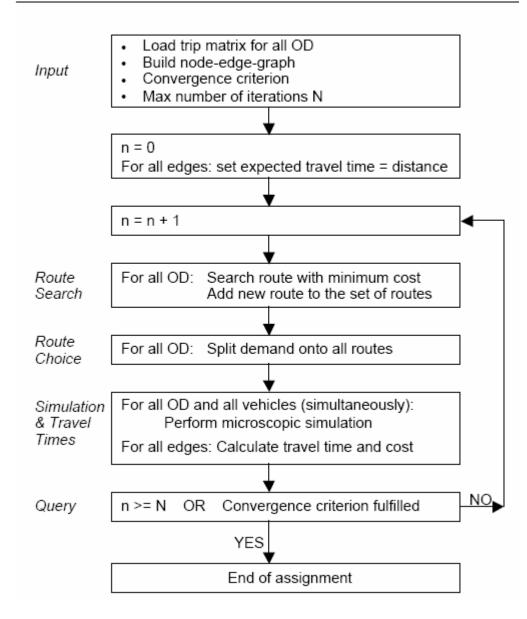
The dynamic assignment module in VISSIM replaces static route modeling with a model designed to model route choice driver behavior using origin-destination matrices and data as flow inputs. In VISSIM, this dynamic assignment is done over time by an iterated application of the microscopic traffic flow simulation.

Dynamic assignment allows the user to realistically distribute traffic in a road network for a given set of trips in an origin-destination structure. The user is essentially modeling the route choice of the drivers in the model. The dynamic assignment module in VISSIM is based on discreet choice theory (Logit model), which is essentially how drivers decide which route to take based on a given number of known routes and some criteria for prioritizing those possible routes.

As stated in the VISSIM 4.10 users manual, "the motivation to include route choice in a simulation model like VISSIM is two fold:

- With growing network size it becomes more and more impossible to supply the routes from all origins to all destinations manually, even if no alternatives are considered.
- On the other hand the simulation of the actual route choice behavior is of interest because the impact of control measures or changes in the road network on route choice are to be assessed."

Dynamic assignment in VISSIM is based on the concept of iterated simulation. This implies that the network is simulated multiple times and the vehicles or drivers in the network adjust and choose their routes based on the "travel cost" they experienced during the preceding simulations, sort of a "learning process." The tasks associated with this learning process, in short, are as follows:


- All routes from origin to destination must be found. VISSIM computes the best paths in each repetition of the simulation.
- Routes must be assessed so that drivers can make their choices. In VISSIM, routes are assessed by a generalized "cost", which is a weighted combination of distance, travel time, tolls, etc...
- VISSIM uses a variation of the Logit model, which is the most common mathematical model for discreet choice theory. The VISSIM Logit model handles the route choice of each driver.

In VISSIM, the simulation model iterations will continue until a stable condition is reached where the volumes and travel times on the edges or links of the network do not change significantly from one iteration to the next, or are "converging." The criteria for convergence can be defined by the user.

It should be noted that within the context of Dynamic Assignment in VISSIM, we are referring to the idea of the model being composed of nodes representing in most cases, real-world intersections and the roads between are the edges of an abstract graph, or links.

The figure below, from the VISSIM 4.10 users manual illustrates the principle of Dynamic Assignment in VISSIM as described previously:

#### Principle of Dynamic Assignment



#### Parking Lots and Zones

- Network element, parking lot is the point where vehicles actually appear or leave the road network.
- Distribution of destination traffic to parking lots is computed by a choice model in VISSIM
- Traffic composition is defined with the O-D matrix that generates the vehicles entering the lot (composition not defined in the parking lots).
- Desired speed for vehicles leaving the lot is defined locally within the parking lot and not within the O-D matrix.

#### Nodes

• In order to reduce the complexity of the network and reduce the computing time and storage for paths, it is sensible to define some parts of the VISSIM network as nodes?

#### Edges

- The abstract network constructed from the nodes in VISSIM using dynamic assignment. These are really links, but called edges to distinguish them for dynamic assignment purposes.
- A route is a sequence of edges. For all the edges a travel times and costs are computed from the simulation providing the information needed for the route choice model.
- An edge can be selected for graphical display relative to dynamic assignment, yellow = open; red = closed
- Path results such as costs, travel time, volume, etc. shown in the edge window are based on immediate preceding iteration/run.

#### Origin-Destination Matrices

• The matrices cannot be edited directly through the VISSIM interface, but are stored in text files (.fma) and can be edited with any text editing program. The format of the OD matrices matches one of the formats for the VISUM program, making data transfer easier between these programs.

#### Simulated Travel Time and General Cost

- The appropriate size of the evaluation interval depends on the dynamics of the travel demand. The evaluation interval should be smaller than the interval in which the demand changes
- Interval should be no smaller than 5 minutes, because the fluctuation of values will increase with the smaller intervals. The interval must be significantly larger than signal cycle lengths. (Most cases an evaluation interval of 5 to 30 minutes is appropriate)
- There is special treatment for vehicles that spend more than one evaluation period on an edge (link), designated as congestion, even if there is nowhere for the vehicle to go.
- The travel time measured in the current iterations will not influence the current route search and route selection, but will factor into the iterations following.
- To model a growing travel experience, the most recent iterations should be weighed most heavily, but all previous iterations should be considered. Exponential smoothing is the process of weighing the iterations and produces the expected value for the next iteration. Expected travel times are stored in the .BEW VISSIM cost file
- A smoothing factor of 0.5 (as used in VISSIM) implies the last iteration = 50%, one before that = 25%, one before that 12.5%, next 6.25%, etc...
- general cost = α \* travel time + β \* travel distance + γ \* financial cost + Σ supplement2
- The coefficients listed above can be defined by the VISSIM user, and can be varied by vehicle group, so different route selections can occur by vehicle group.

#### Route Search and Route Choice

- The general cost for a route is the sum of the costs for each edge comprising the route.
- In dynamic assignment the drivers have to choose a route when they start their trip at the origin parking lot. In VISSIM, not all drivers will choose the best route. This is so many routes are tested through the iterations and the true best route is actually discovered.
- The sensitivity factor, in the Logit model determines how much the traffic distribution reacts to differences in utility. A low factor would lead to relatively equal distribution with little or no regard for utility, a very high factor would force all drivers to choose the best route.

• VISSIM uses a variation of the Logit model, called the Kirchhoff distribution formula.

$$p(R_{j}) = \frac{U_{j}^{k}}{\sum_{i} U_{i}^{k}}$$
where  

$$U_{j} = \text{ utility of route } j$$

$$p(R_{j}) = \frac{U_{j}^{k}}{\sum_{i} U_{i}^{k}} = \frac{e^{k \cdot \log U}j}{\sum_{i} e^{k \cdot \log U}j} = \frac{e^{-k \cdot \log C}j}{\sum_{i} e^{-k \cdot \log C}j}$$
where  $C_{j}$  is the general cost of route  $j$ .

- In the route search, as long as convergence is not reached, a different "best" route will be found through the iterations of the model. Archive of "best" routes found are stored (.WEG) and factor into future iterations of route searches.
- The criterion for the "best" route is the general cost.
- Route search is conducted at the beginning of each evaluation interval and is based on the expected general cost for the interval computed from previous iterations.
- In the first iteration, since no travel time information is available, the cost is evaluated replacing travel time with distance and link/connector costs are also considered.
- For subsequent iterations, edges that have not been traveled on have a default travel time of 0.1 seconds assigned to encourage drivers to try new routes on these unused edges.
- If one adds weight to the distance in the cost calculations drivers will be less exploring and not end up on circuitous detours.

#### Route Visualization

- Routes found during the dynamic assignment iterations can be visualized by selecting EDIT → AUTO ROUTING SELECTION, while the parking lot icon is selected.
- Paths window will show all the found routes and their costs, distances, and volumes for the selected OD pair.
- Path window shows results for individual vehicle groups and time periods. Converging, non-converging and detour (if automatic detour detection is used) can be detected.

Multi-class Assignment

- Is the assignment of different road user classes on the same roadway network. Each road user class can be assigned different values of coefficients in the general cost function which determines route choice, thus you can make certain classes more willing to pay tolls or place a higher value on travel time over distance, etc...
- Secondly, edges and paths or routes can be restricted through the connectors for certain vehicle types. Obviously transit is an example of this feature, but also unfamiliar drivers who won't leave major roadways in search of "shortcuts" or etc...

#### Parking Lot Choice

- If a zone is represented by more than one parking lot, then a driver must decide which lot to go to.
- Parking lot choice can take place in the following situations:
  - When a vehicle starts its trip at an origin parking lot
  - When a vehicle is forced to review its decision by a dynamic routing decision
  - When a vehicle is forced to review its decision by the route guidance system

The utility function of a parking lot is defined as:

$$U_{k,s} = \alpha_{k,s} \cdot C_{parking}$$

$$+ \beta_{k,s} \cdot attraction$$

$$+ \gamma_{k,s} \cdot D_{dest}$$

$$+ \delta_{k,s} \cdot D_{veh}$$

$$+ \varepsilon_{k,s} \cdot fs$$
where
$$Cpark = \text{parking cost}$$

$$Ddest = \text{distance to destination zone}$$

$$Dveh = \text{distance from vehicle position}$$

$$fs = \text{availability of free spaces}$$

k = index of the vehicle type

- s = index of the decision situation (departure, routing decision...)
- The sensitivity factor of the parking lot Logit model can be set in the Dynamic Assignment window in the field labeled Logit Scaling Factor. There is also a field labeled Logit Lower Limit, where a threshold can be defined, so that parking lots with a lower utility than the threshold are not chosen at all.

#### Detour Detection

- A route is considered useless if it is an obvious detour (replacing a known route with another route much longer in length using some of the same edges).
- How much longer the replacing link sequence must be to qualify as a detour can be defined by the user in the Dynamic Assignment window.
- With detour detection on, one can see the detour or non-detour routes in the path visualization window.

#### Correction of Overlapping Paths

- Overlapping correction is an optional extension of the route choice model in VISSIM to correct the biased distribution in the case of overlapping routes.
- Overlap correction uses a commonality factor, which is a measure of how much of a route is shared with other routes. High commonality factor = lots of overlap in routes, low commonality factor = independent route
- Overlap correction tends to assign more traffic to longer routes in certain networks, it generally improves assignment quality.

#### Dynamic Routing Decisions

- O-D matrices based vehicles will obey their dynamic assignments and ignore standard (static) routing decisions encountered.
- Dynamic routing decisions deal with directing vehicles that must be rerouted if a criteria is met at the point of the dynamic routing decision (i.e. destination parking lot is full or etc.).
- In routing decision window the conditions, strategies and parameters can be set for each dynamic routing decision.

#### Route Guidance

 Route guidance in VISSIM is the capability to reroute vehicles during their trips based on current traffic conditions in the current simulation iteration.

- Unlike dynamic routing decisions, route guidance is not restricted to fixed positions in the road network, but equipped vehicles are rerouted in fixed time intervals.
- Route guidance will always search the best route from the current vehicle position to the destination parking lot, using the general cost criteria with travel times measured in the current iteration.

#### Path Evaluation Files

- Path evaluation file is a .WGA file, producing results in the dynamic assignment procedure in a user-definable format.
- The Path Evaluation Configuration window can be accessed, if option Paths (Dynamic Ass.) is ticked in the Offline Analysis (File) window (EVALUATION – FILES...).
- The filter information needs to be configured. This is done in the Path Evaluation - Filter window which is accessed by selecting Paths (Dynamic Ass.) in the Offline Analysis (File) window (EVALUATION – FILES...). Filter file saved as a .WGF

#### Iteration Control

- During the iterations, information about routes in the network and about travel times on the edges of the road network is collected. This information is stored in two files, the cost file (\*.BEW) and the path file (\*.WEG). File names can be set be the user in the dynamic assignment window.
- Deactivating the options *store costs* and *calculate and store paths* in the dynamic assignment window is appropriate if say the model has reached convergence and route choice does not need to be changed in the following simulations.
- To avoid start-up congestions it is recommended to load the network with less than the full travel demand during the first iterations.
- After first iteration(s), one can either delete the cost file and run the network with full demand; or gradually increase demand up to full levels over a number of iterations.

#### Using VISSIM Batch Mode to Run Multiple Iterations

Since Dynamic Assignment normally requires many simulation iterations it is possible to start VISSIM in batch mode and compute several subsequent iterations without stopping. Therefore VISSIM can be called from the command line with the -s < n > parameter. The number n denotes the number of iterations to be computed. For example

VISSIM.EXE TEST.INP -S20

would compute 20 iterations of the network file TEST.INP. This feature can be combined with the congestion-avoiding scaling of travel demand by using the command line option -V<P>. The number p denotes the percentage points by which the scaling factor in the input file is increased in each iteration until 100% is reached. For example

#### VISSIM.EXE TEST.INP -S20 -V5

would compute 20 iterations of the network file TEST.INP and increase the traffic demand by 5% each iteration. E.g. if in TEST.INP a reduced volume factor of 20% is defined then in the first iteration the travel demand would be scaled down to 20%, in the second iteration increased by 5% from there (so there will be 25% of the full traffic demand), then 30% and so on, and from the 16<sup>th</sup> iteration onwards the total travel demand would be assigned.

#### Convergence Control

- For convergence to be met, travel times and volumes must not change significantly between iterations, but also between evaluation intervals with an iteration.
- VISSIM offers an automatic test for convergence through the dynamic assignment window, setting the thresholds for differences in % for travel time on paths and edges, and volume on edges, tested between runs.
- The non converging paths in the last iteration can be displayed within the *Paths* window (EDIT AUTO ROUTING SELECTION...).

#### Route Search Control and Local Calibration

- VISSIM offers several means to control the use of certain parts of the network during Dynamic Assignment route choice to better match VISSIM dynamic assignment results with real-world observed results:
  - o Surcharges added to link/connector total cost once per visit
  - Edge Closure bans use during dynamic assignment
  - Restricting Number of Routes on a per O-D pair basis through defining an upper limit for # of routes and/or defining a maximum cost difference between the best and worst route. Both the threshold factor and the upper limit can be defined in the *Path Search* window. It is reached by pressing the button EXTENDED in the *Dynamic Assignment* window.

 Route Closure – manually close subroutes (a sequence of links and connectors). This should be a last resort option, better to adjust cost parameters, speeds or close turning movements than to close a whole route.

#### Generation of Static Routing

- VISSIM offers the possibility to convert the current state of the Dynamic Assignment (the routes found and their volumes) into a VISSIM model with static routes. It is then possible to use the simulation without the Dynamic Assignment module; in other words: the assignment is frozen.
- The conversion to static routes is done using the button CREATE STATIC ROUTING in the *Dynamic Assignment* window. The number of generated static routes can be reduced.

#### 11.8.6 Summary of the Dynamic Assignment Parameters

The Dynamic Assignment window is accessed by TRAFFIC – DYNAMIC ASSIGNMENT. In this section only a short summary of the available options is shown. A more detailed description of most of the parameters is contained in the relevant sections above.

- TRIP CHAIN FILE: Links to a trip chain file (e.g. exported from VISEM)
- Matrices: Contains a link to one or more matrix files each related to a vehicle composition
- Cost File: The file that contains the estimated travel times for the edges of the abstract network graph.
- Path File: The file that contains the route archive of the network
- Check Edges: When active, VISSIM checks the consistency of the cost resp. path file in terms of network changes. It is strongly recommended to leave this option enabled since otherwise results of the Dynamic Assignment may be inconsistent. For large networks the Check Edges process may take some time. In this case it may be switched off if it is assured that no changes have been done to the network structure.

| ∎ D | ynamic Assignm        | ent                          |          | ×  |
|-----|-----------------------|------------------------------|----------|----|
|     | Trip chain file:      | ?.fkt                        |          | _  |
|     | Matrices              |                              |          |    |
|     | Traffic comp.         | Matrix                       |          |    |
|     | 1, Pkw                | teil 7_0p.fma                | EJI      |    |
|     | 1, Pkw<br>2, Lkw      | teil6_7p.fma<br>teil7_8i.fma | New      |    |
|     | 2, Lkw                | teil6_71 fina                | Delete   | 5  |
|     |                       |                              | Delete   |    |
|     |                       | -                            | -        |    |
|     | Cost file:            | morgen.bew                   |          |    |
|     |                       | Check Edges                  |          |    |
|     | Path file:            | morgen.weg                   |          |    |
|     |                       | Check Edges                  |          |    |
|     | Evaluation interval:  |                              | 900      | в  |
|     | Store costs           |                              | Extended |    |
|     | Calculate and store   | paths                        | Extended |    |
|     | Kirchhoff exponent:   |                              | 3.60     |    |
|     | Logit scaling factor: |                              | 1.50000  |    |
|     | Lagit lower limit :   |                              | 0.00100  |    |
|     | Reduced volume [%     | i]:                          | 100      | 36 |
|     | Correction of overla  | pping paths                  |          |    |
|     | Avoid Long Detours    | :                            | 2.00     |    |
|     | Use VISSIM's virtua   | I memory                     |          |    |
|     | Convergence           | Ъ                            |          |    |
| 2   |                       | 5                            |          |    |
| -   | Route Guidance        |                              |          |    |
| C   | reate Static Routing  | ОК                           | Cancel   |    |

- The Evaluation Interval is the interval at which the cost is calculated and new routes are searched
- Store Costs: If checked, VISSIM writes a new cost file.
- EXTENDED: Access to the smoothing factor for cost calculation
- Z Calculate and Store Paths: If checked VISSIM calculates new shortest paths through the network and stores them in the paths file.

If VISSIM is run in batch mode with a specified number of runs VISSIM creates or overwrites the cost and path files automatically.

EXTENDED: Further options to limit the number of routes being found

- The Kirchhoff Exponent: Sensitivity parameter of the Kirchhoff distribution function used for route choice
- Logit Scaling Factor: Sensitivity factor for the Logit model used in parking lot choice
- Logit Lower Limit: Defines the cutoff proportion for the parking lot choice algorithm. If the benefit proportion of a parking lot is below the limit, no vehicles will be assigned to it
- Reduced Volume [%]: This checkbox allows for reduction of the volume from all OD-matrices used for the next Dynamic Assignment run down to the given percentage.
- Correction of overlapping paths: Corrects the proportions of vehicles being assigned if routes share common edges
- Avoid Long Detours: Paths with long detours (segments that could be replaced by shorter distance alternatives from different paths) will not be used for vehicle distribution. The factor for deciding when a segment is a detour can be defined in the adjacent field.
- In VISSIM's Virtual Memory allows the user to conserve some of the memory (RAM) used while running a simulation with Dynamic Assignment. If checked, a file is created that holds a reference to the vehicles that will eventually enter the network instead of those vehicles being generated at the beginning of the simulation and being stored in the computers memory until they leave the network. Using the Virtual Memory option slows down the simulation but will not tie up as much of the systems memory resources.
- CONVERGENCE: Provides three threshold values to detect convergence of the Dynamic Assignment process
- ROUTE GUIDANCE: Allows for definition of up to two control strategies to be used by vehicles with route guidance (e.g. navigation system)
- CREATE STATIC ROUTING: Starts the conversion of the current Dynamic Assignment results into static routes
  - Paths evaluation is unique to dynamic assignment, comparing different attributes of different paths (i.e. travel time, distance, volume, total "cost", etc) and can be based off of zones or parking lots over a user defined time interval.
  - There is a convergence evaluation tool to use with the dynamic assignment function to determine if the model is converging through dynamic assignment for all the edges and paths. Convergence is determined through volume difference and travel time difference, results are given in percentages.

### APPENDIX B – CITY OF PORTLAND/OREGON DEPT. OF TRANSPORTATION SIGNAL TIMING DATA

| ODOT Ramp Metering Sche   |                         |              |
|---------------------------|-------------------------|--------------|
| Location                  | Operational time        | Cycle length |
| Foster NB I-205           | 6:05 a.m.               | 3.3 sec.     |
|                           | 6:30 a.m.               | 4 sec.       |
|                           | 7:15 a.m.               | 3.3 sec.     |
|                           | 8:15 a.m.               | 4.7 sec.     |
|                           | 8:35 a.m.               | 3.9 sec.     |
|                           | 8:45 a.m.               | 3.0 sec.     |
|                           | 9:00 a.m.               | OFF          |
|                           | 14:30 p.m.              | 5.1 sec.     |
|                           | 16:30 p.m.              | 5 sec.       |
|                           | 18:15 p.m.              |              |
|                           | 18:30 p.m.              | OFF          |
| Powell NB I-205           | 6:30 a.m.               | 4.8 sec.     |
|                           | 7:30 a.m.               | 4.5 sec.     |
|                           | 8:45 a.m.               | 3 sec.       |
|                           | 9:00 a.m.               | OFF          |
|                           | 14:30 p.m.              |              |
|                           | 16:45 p.m.              | 4.3          |
|                           | 18:20 p.m.              | 3 sec.       |
|                           | 18:35 p.m.              | OFF          |
| Division NB I-205         | 6:30 a.m.               | 6 sec.       |
| 1                         | 8:45 a.m.               | 3 sec.       |
|                           | 9:00 a.m.               | OFF          |
|                           | 14:30 p.m.              | 7 sec.       |
|                           | 18:15 p.m.              |              |
|                           | 18:30 p.m.              |              |
| Foster SB I-205           | 6:05 a.m.               | 3 sec.       |
|                           | 6:45 a.m.               | 4.3 sec.     |
|                           | 7:30 a.m.               | 4.1 sec.     |
|                           | 9:15 a.m.               | 3 sec.       |
|                           | 9:30 a.m.               | OFF          |
|                           | 13:05 p.m.              | 3 sec.       |
|                           | 15:25 p.m.              |              |
|                           | 15:45 p.m.              |              |
|                           | 18:30 p.m.              | 3 sec.       |
|                           | 19:00 p.m.              |              |
| Powell SB I-205           | 6:05 a.m.               | 10 sec.      |
|                           | 7:30 a.m.               | 13 sec.      |
|                           | 8:10 a.m.               | 3 sec.       |
|                           | 9:35 a.m.               | OFF          |
|                           | 13:05 p.m.              |              |
|                           | 15:45 p.m.              |              |
|                           | 18:30 p.m.              |              |
|                           | 18:45 p.m.              |              |
| Division SB I-205         | 6:05 a.m.               | 3 sec.       |
|                           | 6:45 a.m.               | 5 sec.       |
|                           | 7:30 a.m.               | 5.3 sec.     |
|                           | 8:00 a.m.               | 5.0 sec.     |
|                           | 8:15 a.m.               | 3 sec.       |
|                           | 9:30 a.m.               | OFF          |
|                           | 13:05 p.m.              |              |
|                           | 15:25 p.m.              |              |
|                           | 15:45 p.m.              |              |
|                           | 17:30 p.m.              |              |
|                           | 18:15 p.m.              |              |
|                           | 18:40 p.m               |              |
| Stark/Washington SB I-205 | 6:00 a.m.               | 5 sec.       |
| <u> </u>                  | 7:15 a.m.               | 5.5 sec.     |
|                           | 8:20 a.m.               | 3.5 sec.     |
|                           | 9:30 a.m.               | OFF          |
| 1                         | 13:00 p.m.              | -            |
|                           | 15:45 p.m.              |              |
|                           | 16:45 p.m.              |              |
|                           | 17:45 p.m.              |              |
|                           | 18:15 p.m.              |              |
|                           | 18:30 p.m.              |              |
|                           | 18:45 p.m.              |              |
|                           | 10. <del>4</del> 5 p.m. | <u> </u>     |

**ODOT Ramp Metering Schedule - Interstate 205** 

City of Portland signal timing and phasing sheets and markups are included in Plate 1, through the link below. These signal timings and phasing were used in this research to develop an accurate signal system reflecting the study area in Portland, Oregon.

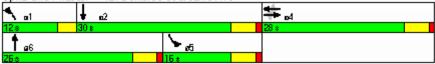
City of Portland Signal Timing Data

# APPENDIX C – ODOT COUNT STATION DATA, INTERSTATE 205

DISCLAIMER: Portland State University Portal project: portal.its.pdx.edu \* Data provided by Oregon Department of Transportation (ODOT). ODOT cannot guarantee the timeliness accuracy or reliability of the data.

| Thursday, May 18, 2006    |             |          | Thursday, April 13, 2006  |             |          | Thursday, March 02, 200   | 6          |          |         |                 |       |
|---------------------------|-------------|----------|---------------------------|-------------|----------|---------------------------|------------|----------|---------|-----------------|-------|
| I-205 North @ Division (m | nile 19.78) |          | I-205 North @ Division (n | nile 19.78) |          | I-205 North @ Division (m | ile 19.78) |          | 3-day   | 2 wk (May 9-18) |       |
| starttime                 | volume      | pct_good | starttime                 | volume      | pct_good | starttime                 | volume     | pct_good | Avg Vol | Avg Vol         | Delta |
| 2006-05-18 00:00:00-07    | 655         | 0.988889 | 2006-05-18 00:00:00-07    | 650         | 1        | 2006-05-18 00:00:00-07    | 626        | 0.97963  | 644     | 625             | 18    |
| 2006-05-18 01:00:00-07    | 509         | 1        | 2006-05-18 01:00:00-07    | 495         | 0.988889 | 2006-05-18 01:00:00-07    | 407        | 0.988889 | 470     | 451             | 19    |
| 2006-05-18 02:00:00-07    | 452         | 0.983333 | 2006-05-18 02:00:00-07    | 390         | 0.966667 | 2006-05-18 02:00:00-07    | 422        | 0.97037  | 421     | 413             | 9     |
| 2006-05-18 03:00:00-07    | 563         | 0.994444 | 2006-05-18 03:00:00-07    | 540         | 0.994444 | 2006-05-18 03:00:00-07    | 527        | 0.975926 | 543     | 556             | -13   |
| 2006-05-18 04:00:00-07    | 1215        | 0.983333 | 2006-05-18 04:00:00-07    | 1104        | 0.994444 | 2006-05-18 04:00:00-07    | 1062       | 0.955556 | 1127    | 1215            | -88   |
| 2006-05-18 05:00:00-07    | 2959        | 1        | 2006-05-18 05:00:00-07    | 2695        | 0.972222 | 2006-05-18 05:00:00-07    | 2548       | 0.994444 | 2734    | 2932            | -198  |
| 2006-05-18 06:00:00-07    | 5071        | 1        | 2006-05-18 06:00:00-07    | 4742        | 1        | 2006-05-18 06:00:00-07    | 4117       | 0.877778 | 4643    | 5002            | -359  |
| 2006-05-18 07:00:00-07    | 5670        | 1        | 2006-05-18 07:00:00-07    | 5464        | 1        | 2006-05-18 07:00:00-07    | 5612       | 0.933333 | 5582    | 5297            | 285   |
| 2006-05-18 08:00:00-07    | 4815        | 0.938889 | 2006-05-18 08:00:00-07    | 5031        | 0.994444 | 2006-05-18 08:00:00-07    | 5148       | 0.988889 | 4998    | 4947            | 51    |
| 2006-05-18 09:00:00-07    | 4547        | 0.994444 | 2006-05-18 09:00:00-07    | 4604        | 1        | 2006-05-18 09:00:00-07    | 4243       | 0.983333 | 4465    | 4605            | -141  |
| 2006-05-18 10:00:00-07    | 4386        | 1        | 2006-05-18 10:00:00-07    | 4160        | 0.994444 | 2006-05-18 10:00:00-07    | 3904       | 0.988889 | 4150    | 4241            | -91   |
| 2006-05-18 11:00:00-07    | 4463        | 1        | 2006-05-18 11:00:00-07    | 4391        | 0.988889 | 2006-05-18 11:00:00-07    | 4218       | 1        | 4357    | 4324            | 34    |
| 2006-05-18 12:00:00-07    | 4470        | 1        | 2006-05-18 12:00:00-07    | 4569        | 1        | 2006-05-18 12:00:00-07    | 4126       | 1        | 4388    | 4349            | 40    |
| 2006-05-18 13:00:00-07    | 4755        | 1        | 2006-05-18 13:00:00-07    | 4420        | 0.972222 | 2006-05-18 13:00:00-07    | 4261       | 1        | 4479    | 4358            | 120   |
| 2006-05-18 14:00:00-07    | 5219        | 0.994444 | 2006-05-18 14:00:00-07    | 5143        | 1        | 2006-05-18 14:00:00-07    | 848        | 0.188889 | 3737    | 4974            | -1237 |
| 2006-05-18 15:00:00-07    | 5327        | 1        | 2006-05-18 15:00:00-07    | 4898        | 0.994444 | 2006-05-18 15:00:00-07    | 4838       | 0.933333 | 5021    | 5068            | -47   |
| 2006-05-18 16:00:00-07    | 5159        | 1        | 2006-05-18 16:00:00-07    | 5298        | 1        | 2006-05-18 16:00:00-07    | 5254       | 0.983333 | 5237    | 4695            | 542   |
| 2006-05-18 17:00:00-07    | 4290        | 0.994444 | 2006-05-18 17:00:00-07    | 4984        | 1        | 2006-05-18 17:00:00-07    | 4970       | 1        | 4748    | 4469            | 279   |
| 2006-05-18 18:00:00-07    | 4680        | 1        | 2006-05-18 18:00:00-07    | 4909        | 1        | 2006-05-18 18:00:00-07    | 4293       | 1        | 4627    | 4368            | 260   |
| 2006-05-18 19:00:00-07    | 3500        | 1        | 2006-05-18 19:00:00-07    | 3454        | 0.988889 | 2006-05-18 19:00:00-07    | 2937       | 0.988889 | 3297    | 3322            | -25   |
| 2006-05-18 20:00:00-07    | 3014        | 1        | 2006-05-18 20:00:00-07    | 2753        | 0.994444 | 2006-05-18 20:00:00-07    | 2637       | 0.983333 | 2801    | 2938            | -136  |
| 2006-05-18 21:00:00-07    | 2916        | 0.994444 | 2006-05-18 21:00:00-07    | 2819        | 1        | 2006-05-18 21:00:00-07    | 2435       | 0.988889 | 2723    | 2742            | -18   |
| 2006-05-18 22:00:00-07    | 2005        | 0.994444 | 2006-05-18 22:00:00-07    | 1959        | 1        | 2006-05-18 22:00:00-07    | 1584       | 0.988889 | 1849    | 1849            | 1     |
| 2006-05-18 23:00:00-07    | 1276        | 1        | 2006-05-18 23:00:00-07    | 1170        | 0.988889 | 2006-05-18 23:00:00-07    | 1007       | 1        | 1151    | 1154            | -3    |

| Average 3-5pm      | 5129  | 4881.5 |
|--------------------|-------|--------|
| Average 8-10pm     | 2762  | 2840   |
| Percent Difference | 53.9% | 58.2%  |


### **APPENDIX D – SYNCHRO 6 OUTPUTS**

Timing Report, Sorted By Phase 12: Burnside St & 82nd Ave

| 1      | 2                                                                                                                                               | 4                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NBL    | SBT                                                                                                                                             | EBWB                                                                                                                                                                                                                                                   | SBL                                                                                                                                                                                                                                                                                                                                                       | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Lead   | Lag                                                                                                                                             |                                                                                                                                                                                                                                                        | Lag                                                                                                                                                                                                                                                                                                                                                       | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Ň                                                                                                                                               |                                                                                                                                                                                                                                                        | Ň                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| None   | C-Max                                                                                                                                           | None                                                                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                      | C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12     | 30                                                                                                                                              | 28                                                                                                                                                                                                                                                     | 16                                                                                                                                                                                                                                                                                                                                                        | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17.1%  | 42.9%                                                                                                                                           | 40.0%                                                                                                                                                                                                                                                  | 22.9%                                                                                                                                                                                                                                                                                                                                                     | 37.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6      | 15                                                                                                                                              | 9                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3      | - 4                                                                                                                                             | 4                                                                                                                                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0      | 1                                                                                                                                               | 1                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3      | 10                                                                                                                                              | 4                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.2    | 20                                                                                                                                              | 0.2                                                                                                                                                                                                                                                    | 0.2                                                                                                                                                                                                                                                                                                                                                       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10     | 30                                                                                                                                              | 20                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                        | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| s) 0   | 10                                                                                                                                              | 4                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | 20                                                                                                                                              | 6                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0      | - 5                                                                                                                                             | 5                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0      | 10                                                                                                                                              | 19                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| No     | Yes                                                                                                                                             | Yes                                                                                                                                                                                                                                                    | No                                                                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Yes    | Yes                                                                                                                                             | Yes                                                                                                                                                                                                                                                    | Yes                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27     | 39                                                                                                                                              | 69                                                                                                                                                                                                                                                     | 53                                                                                                                                                                                                                                                                                                                                                        | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 39   | 69                                                                                                                                              | 27                                                                                                                                                                                                                                                     | 69                                                                                                                                                                                                                                                                                                                                                        | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36     | 64                                                                                                                                              | 22                                                                                                                                                                                                                                                     | 64                                                                                                                                                                                                                                                                                                                                                        | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 36     | 54                                                                                                                                              | 3                                                                                                                                                                                                                                                      | 64                                                                                                                                                                                                                                                                                                                                                        | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 58   | 0                                                                                                                                               | 30                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                        | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 67     | 25                                                                                                                                              | 53                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 67     | 15                                                                                                                                              | 34                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                        | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                                                                                 | 70                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| otuate | d-Coord                                                                                                                                         | linated                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        |                                                                                                                                                 | 45                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | Lead<br>None<br>12<br>17.1%<br>6<br>3<br>0<br>2<br>10<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Lead Lag<br>None C-Max<br>12 30<br>17.1% 42.9%<br>6 15<br>3 44<br>0 1<br>3 10<br>0.2 20<br>10 30<br>\$ 0 10<br>0 20<br>0 5<br>0 10<br>0 5<br>0 10<br>No Yes<br>Yes Yes<br>27 39<br>39 69<br>36 64<br>36 54<br>58 0<br>67 25<br>67 15<br>xotuated-Coord | Lead Lag<br>None C-Max None<br>12 30 28<br>17.1% 42.9% 40.0%<br>6 15 9<br>3 4 4<br>0 1 1<br>3 10 4<br>0.2 20 0.2<br>10 30 20<br>\$) 0 10 4<br>0 20 6<br>0 5 6<br>0 10 19<br>No Yes Yes<br>Yes Yes Yes<br>Yes Yes Yes<br>Yes Yes Yes<br>39 69 27<br>36 64 22<br>36 64 22<br>36 54 3<br>58 0 30<br>67 25 53<br>67 15 34<br>70<br>xotuated-Coordinated<br>45 | Lead         Lag         Lag           None         C-Max         None         None           12         30         28         16           17.1%         42.9%         40.0%         22.9%           6         15         9         8           3         4         4         4           0         1         1         1           3         10         4         3           0.2         20         0.2         0.2           10         30         20         10           5)         0         10         4         0           0         20         6         0         0           0         20         6         0         0           0         20         6         0         0           0         10         19         0         0           No         Yes         Yes         Yes         No           Yes         Yes         Yes         Yes         14           36         54         3         64           36         54         3         25      67         15 |

Offset: 39 (56%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 12: Burnside St & 82nd Ave



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

10/31/2006

Timing Report, Sorted By Phase 14: Woodstock & 82nd Ave

|                        | •       | ŧ       | +       | 7     | 1     |
|------------------------|---------|---------|---------|-------|-------|
| Phase Number           | 1       | 2       | 4       | 5     | 6     |
| Movement               | NBL     | SBT     | EBWB    | SBL   | NBT   |
| Lead/Lag               | Lead    | Lag     |         | Lag   | Lead  |
| Lead-Lag Optimize      |         | Ŭ       |         | Ň     |       |
| Recall Mode            | None    | C-Max   | None    | None  | C-Max |
| Maximum Split (s)      | 11      | 30      | 29      | 10    | 31    |
| Maximum Split (%)      | 15.7%   | 42.9%   | 41.4%   | 14.3% | 44.3% |
| Minimum Split (s)      | 8       | 20.5    | 28      | 8     | 20.5  |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3     | 3.5   |
| All-Red Time (s)       | 0       | 1       | 0       | 0     | 1     |
| Minimum Initial (s)    | 4       | 4       | - 4     | - 4   | - 4   |
| Vehicle Extension (s)  | 3       | 3       | 3       | З     | 3     |
| Minimum Gap (s)        | 3       | 3       | 3       | 3     | 3     |
| Time Before Reduce     | (s) 0   | 0       | 0       | 0     | 0     |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     |
| Walk Time (s)          |         | 5       | 5       |       | 5     |
| Flash Dont Walk (s)    |         | 11      | 15      |       | 11    |
| Dual Entry             | No      | Yes     | Yes     | No    | Yes   |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   |
| Start Time (s)         | 67.5    | 8.5     | 38.5    | 28.5  | 67.5  |
| End Time (s)           | 8.5     | 38.5    | 67.5    | 38.5  | 28.5  |
| Yield/Force Off (s)    | 5.5     | 34      | 64.5    | 35.5  | 24    |
| Yield/Force Off 170(s) | 5.5     | 23      | 49.5    | 35.5  | 13    |
| Local Start Time (s)   | 43.5    | 54.5    | 14.5    | 4.5   | 43.5  |
| Local Yield (s)        | 51.5    | 10      | 40.5    | 11.5  | 0     |
| Local Yield 170(s)     | 51.5    | 69      | 25.5    | 11.5  | 59    |
| Intersection Summary   | r i     |         |         |       |       |
| Cycle Length           |         |         | 70      |       |       |
| Control Type           | Actuate | d-Coord | linated |       |       |
| Natural Cycle          |         |         | 60      |       |       |

Natural Cycle 60 Offset: 24 (34%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 14: Woodstock & 82nd Ave

| 🔨 at        | <b>↓</b> n2 |                | <b>*</b> ≢ ₀4 |  |
|-------------|-------------|----------------|---------------|--|
| 11 8        | 30 в        |                | 25 a          |  |
| <b>†</b> 26 |             | <b>&gt;</b> 65 |               |  |
| 31 s        |             | 10 :           |               |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 35: Duke & 82nd Ave

| 35: Duke & 82nd A      |         | Flias   | e       |         |        | 10/31/2006      |
|------------------------|---------|---------|---------|---------|--------|-----------------|
|                        | •       | ŧ       | +       | 7       | 1      |                 |
| Phase Number           | 1       | 2       | - 4     | 5       | 6      |                 |
| Movement               | NBL     | SBT     | EBWB    | SBL     | NBT    |                 |
| Lead/Lag               | Lag     | Lead    |         | Lead    | Lag    |                 |
| Lead-Lag Optimize      |         |         |         |         |        |                 |
| Recall Mode            |         | C-Max   |         |         | C-Max  |                 |
| Maximum Split (s)      | 13      |         | 27      | 15      | 28     |                 |
| Maximum Split (%) 👘    | 18.6%   | 42.9%   | 38.6%   | 21.4%   | 40.0%  |                 |
| Minimum Split (s)      | 8       |         | 23      | 8       | 20.5   |                 |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3       | 3.5    |                 |
| All-Red Time (s)       | 0       | 1       | 0       | 0       | 1      |                 |
| MinimumInitial (s) 👘   | - 4     | - 4     | - 4     | - 4     | - 4    |                 |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3       | 3      |                 |
| Minimum Gap (s)        | 3       | 3       | 3       | 3       | 3      |                 |
| Time Before Reduce (   | (s) 0   | 0       | 0       | 0       | 0      |                 |
| Time To Reduce (s)     | 0       | 0       | 0       | 0       | 0      |                 |
| Walk Time (s)          |         | 5       | - 5     |         | 5      |                 |
| Flash Dont Walk (s)    |         | 11      | 15      |         | 11     |                 |
| Dual Entry             | No      | Yes     | Yes     | No      | Yes    |                 |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes     | Yes    |                 |
| Start Time (s)         | 59.5    | 29.5    | 2.5     | 29.5    | 44.5   |                 |
| End Time (s)           | 2.5     | 59.5    | 29.5    | 44.5    | 2.5    |                 |
| Yield/Force Off (s)    | 69.5    | 55      | 26.5    | 41.5    | 68     |                 |
| Yield/Force Off 170(s) | 69.5    | - 44    | 11.5    | 41.5    | 57     |                 |
| Local Start Time (s)   | 4.5     | 44.5    | 17.5    | 44.5    | 59.5   |                 |
| Local Yield (s)        | 14.5    | 0       | 41.5    | 56.5    | 13     |                 |
| Local Yield 170(s)     | 14.5    | 59      | 26.5    | 56.5    | 2      |                 |
| Intersection Summary   |         |         |         |         |        |                 |
| Cycle Length           |         |         | 70      |         |        |                 |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |         |        |                 |
| Natural Cycle          |         |         | 55      |         |        |                 |
| Offset: 55 (79%), Refe | renced  | to phas | se 2:SB | T and t | B:NBT. | Start of Yellow |

Offset: 55 (79%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 35: Duke & 82nd Ave

| ↓ a2  |             | <b>€</b> at | <b>*</b> 4 |
|-------|-------------|-------------|------------|
| 3D s  |             | 13 в        | 27 *       |
| ► a5  | <b>†</b> ₅6 |             |            |
| 15% 2 | 8:          |             |            |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 3

Timing Report, Sorted By Phase 2113: Glisan Street & 82nd Ave

| 2113: Glisan Street    |       |       |       |       |       |       |       |       | 10/31/2006 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|-------|------------|
|                        | ۲     | ŧ     | ≯     | +     | 7     | t     | *     | -+    |            |
| Phase Number           | 1     | 2     | 3     | - 4   | 5     | 6     | 7     | 8     |            |
| Movement               | NBL   | SBT   | EBL   | WBT   | SBL   | NBT   | WBL   | EBT   |            |
| Lead/Lag               | Lag   | Lead  | Lead  | Lag   | Lead  | Lag   | Lead  | Lag   |            |
| Lead-Lag Optimize      |       |       |       |       |       |       |       |       |            |
| Recall Mode            | None  | C-Max | None  | Ped   | None  | C-Max | None  | Ped   |            |
| Maximum Split (s)      | 13    |       | 11    | 19    | 19    | 21    | 10    | 20    |            |
| Maximum Split (%) 👘    | 18.6% | 38.6% | 15.7% | 27.1% | 27.1% | 30.0% | 14.3% | 28.6% |            |
| Minimum Split(s)       | 6     | 14.6  | 6     | 14.6  | 6     | 14.6  | 6     | 14.6  |            |
| Yellow Time (s)        | 3     | 3.6   | 3     | 3.6   | 3     | 3.6   | 3     | 3.6   |            |
| All-Red Time (s)       | 0     |       | 0     | 1     | 0     | 1     | 0     | 1     |            |
| MinimumInitial (s) 👘   | 3     |       | 3     | 10    | 3     | 10    | 3     | 10    |            |
| Vehicle Extension (s)  | 0.2   |       | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   |            |
| Minimum Gap (s)        | 5     |       | 5     | 0.2   | 5     | 0.2   | 5     | 0.2   |            |
| Time Before Reduce (   |       | -     | 0     | 0     | 0     | 0     | 0     | 0     |            |
| Time To Reduce (s)     | 0     | -     | 0     | 0     | 0     | 0     | 0     | 0     |            |
| Walk Time (s)          | 0     | -     | 0     | 5     | 0     | 5     | 0     | 5     |            |
| Flash Dont Walk (s)    | 0     |       | 0     | 13    | 0     | 11    | 0     | 13    |            |
| Dual Entry             | No    |       | No    | Yes   | No    | Yes   | No    | Yes   |            |
| Inhibit Max            | Yes   |       | Yes   | Yes   | Yes   |       | Yes   | Yes   |            |
| Start Time (s)         | 50    |       | 63    | 4     | 23    | 42    | 63    | 3     |            |
| End Time (s)           | 63    |       | 4     | 23    | 42    | 63    | 3     | 23    |            |
| Yield/Force Off (s)    | 60    | 45.4  | 1     | 18.4  | 39    | 58.4  | 0     | 18.4  |            |
| Yield/Force Off 170(s) |       |       | 1     | 5.4   | - 39  | 47.4  | 0     | 5.4   |            |
| Local Start Time (s)   | 8     |       | 21    | 32    | 51    | 0     | 21    | 31    |            |
| Local Yield (s)        | 18    |       | 29    | 46.4  | 67    | 16.4  | 28    | 46.4  |            |
| Local Yield 170(s)     | 18    | 62.4  | 29    | 33.4  | 67    | 5.4   | 28    | 33.4  |            |
| Intersection Summary   |       |       |       |       |       |       |       |       |            |
| Cycle Length           |       |       | 70    |       |       |       |       |       |            |

| Cycle Length  | 70                   |
|---------------|----------------------|
| Control Type  | Actuated-Coordinated |
| Natural Cycle | 50                   |

Natural Cycle 50 Offset: 42 (60%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 2113: Glisan Street & 82nd Ave

| ↓ <sub>a2</sub> | <b>↑</b> ∎1 | ∕ "₃ | <b>4</b>    |  |
|-----------------|-------------|------|-------------|--|
| 27 8            | 13 *        | 11 a | 19%         |  |
| ₩ a5            | <b>†</b> 26 | 6 07 | <b>→</b> 88 |  |
| 19:0            | Z1 s        | 10 a | 20 s        |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4 Timing Report, Sorted By Phase 4106: Washington St & 82nd Ave

|                        | 4-      | ţ.      | 4        |
|------------------------|---------|---------|----------|
| Phase Number           | 2       | 6       | 8        |
| Movement               | SBTL    | NBT     | EBTL     |
| Lead/Lag               |         |         |          |
| Lead-Lag Optimize      |         |         |          |
| Recall Mode            | C-Max   | C-Max   | Ped      |
| Maximum Split (s)      | 33      | 33      | 37       |
| Maximum Split (%)      | 47.1%   | 47.1%   | 52.9%    |
| Minimum Split (s)      | 15      | 15      | 15.1     |
| Yellow Time (s)        | 4       | 4       | 3.6      |
| All-Red Time (s)       | 1       | 1       | 1.5      |
| MinimumInitial (s) 👘   | 10      | 10      | 10       |
| Vehicle Extension (s)  | 0.2     | 0.2     | 0.2      |
| Minimum Gap (s) 👘      | 0.2     | 0.2     | 0.2      |
| Time Before Reduce (   |         | 0       | 0        |
| Time To Reduce (s)     | 0       | 0       | 0        |
| Walk Time (s)          | 10      | 10      | 4        |
| Flash Dont Walk (s) 👘  | 9       | 9       | 12       |
| Dual Entry             | Yes     |         | Yes      |
| Inhibit Max            | Yes     |         |          |
| Start Time (s)         | 14      |         | 47       |
| End Time (s)           | 47      | 47      | 14       |
| Yield/Force Off (s)    | 42      | 42      | 8.9      |
| Yield/Force Off 170(s) |         | - 33    | 66.9     |
| Local Start Time (s)   | 0       | 0       | 33       |
| Local Yield (s)        | 28      | 28      | 64.9     |
| Local Yield 170(s)     | 19      | 19      | 52.9     |
| Intersection Summary   |         |         |          |
| Cycle Length           |         |         | 70       |
| Control Type A         | Actuate | d-Coord | linated  |
| Natural Cycle          |         |         | 40       |
| Offset: 14 (20%), Refe | renced  | to phas | se 2:SBT |

Splits and Phases: 4106: Washington St & 82nd Ave

| ↓ <sub>n2</sub> |      |
|-----------------|------|
| 338             |      |
| <b>1</b> a6     | A 48 |
| 33:             | 37 s |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 5

Timing Report, Sorted By Phase 4107: Stark St & 82nd Ave

| 4107: Stark St & 82                      |         |          |         |           |   |  | 10/31 |
|------------------------------------------|---------|----------|---------|-----------|---|--|-------|
|                                          | •       | Ţ        | - +     | t         |   |  |       |
| Dhara Number                             |         | •        |         |           |   |  |       |
| Phase Number                             | 1       | 2        | 4       | -         |   |  |       |
| Movement                                 | NBL     |          | WBTL    | NBT       |   |  |       |
| Lead/Lag                                 | Lag     | Lead     |         |           |   |  |       |
| Lead-Lag Optimize                        |         | 0.14-1-1 | D. 4    | 0.14-0.1  |   |  |       |
| Recall Mode                              |         | C-Max    |         | C-Max     |   |  |       |
| Maximum Split (s)                        | 18      |          | 23      | 47        |   |  |       |
| Maximum Split (%)                        |         | 41.4%    |         |           |   |  |       |
| Minimum Split (s)                        | 8       | 24.6     | 10.4    |           |   |  |       |
| Yellow Time (s)                          | 3       |          | 3.9     | 3.6       |   |  |       |
| All-Red Time (s)                         | 0       | 1        | 1.5     | 1         |   |  |       |
| Minimum Initial (s)                      | -       |          | 0.2     | 20<br>0.2 |   |  |       |
| Vehicle Extension (s)<br>Minimum Gap (s) | 0.2     | 0.2      | 0.2     | 0.2       |   |  |       |
| 1.17                                     | -       |          | 0.2     | 0.2       |   |  |       |
| Time Before Reduce<br>Time To Reduce (s) | (5) 0   | -        | 0       | 0         |   |  |       |
| Walk Time (s)                            | 0       | _        | 8       | 6         |   |  |       |
| Flash Dont Walk (s)                      | 0       | 9        | 12      | 9         |   |  |       |
| Dual Entry                               | No      | _        |         | -         |   |  |       |
| Inhibit Max                              | Yes     |          |         |           |   |  |       |
| Start Time (s)                           | 19      |          | 37      | 60        |   |  |       |
| End Time (s)                             | 37      | 19       | 60      | 37        |   |  |       |
| Yield/Force Off (s)                      | 34      |          |         | 32.4      |   |  |       |
| Yield/Force Off 170(s)                   |         |          |         | 23.4      |   |  |       |
| Local Start Time (s)                     | 29      |          | 47      | 0         |   |  |       |
| Local Yield (s)                          | 44      |          |         | 42.4      |   |  |       |
| Local Yield 170(s)                       | 44      | 15.4     | 52.6    | 33.4      |   |  |       |
| Intersection Summary                     | r i i   |          |         |           | ľ |  |       |
| Cycle Length                             |         |          | 70      |           |   |  |       |
|                                          | Actuate | d-Coord  | linated |           |   |  |       |
| Natural Cycle                            |         |          | 45      |           |   |  |       |
|                                          |         |          |         |           |   |  |       |

## Offset: 60 (86%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 4107: Stark St & 82nd Ave

| ↓ <sub>02</sub> | <b>*</b> a1 | et of |
|-----------------|-------------|-------|
| 298             | 18 e        | 23 s  |
| <b>†</b> 26     |             |       |
| 47 s            |             |       |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6 Timing Report, Sorted By Phase 4108: Yamhill Street & 82nd Ave

| 4100. Taninin oue    | 610.02  | SHO AN  | -       |       |       |  |
|----------------------|---------|---------|---------|-------|-------|--|
|                      | •       | ŧ       | +       | 7     | †     |  |
| Phase Number         | 1       | 2       | 4       | 5     | 6     |  |
| lovement             | NBL     | SBT     | EBWB    | SBL   | NBT   |  |
| ead/Lag              | Lag     | Lead    |         | Lag   | Lead  |  |
| ead-Lag Optimize     |         |         |         |       |       |  |
| ecall Mode           | None    | C-Max   | Ped     | None  | C-Max |  |
| aximum Split (s)     | 15      | 32      | 23      | 15    | 32    |  |
| aximum Split (%)     | 21.4%   | 45.7%   | 32.9%   | 21.4% | 45.7% |  |
| inimum Split(s)      | 6       | 14.6    | 14.2    | 6     | 14.6  |  |
| llow Time (s)        | 3       | 3.6     | 3.2     | 3     | 3.6   |  |
| l-Red Time (s)       | 0       | 1       | 1       | 0     | 1     |  |
| inimum Initial (s) 👘 | 3       | 10      | 10      | 3     | 10    |  |
| hicle Extension (s)  | 0.2     | 0.2     | 0.2     | 0.2   | 0.2   |  |
| nimum Gap (s) 👘      | 5       | 10      | 8       | 5     | 10    |  |
| ne Before Reduce     | (s) 0   | 0       | 0       | 0     | 0     |  |
| ne To Reduce (s)     | 0       | 0       | 0       | 0     | 0     |  |
| lk Time (s)          | 0       | 10      | 4       | 0     | 10    |  |
| ish Dont Walk (s) 👘  | 0       | 9       | 13      | 0     | 8     |  |
| ial Entry            | No      | Yes     | Yes     | No    | Yes   |  |
| nibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   |  |
| art Time (s)         | 58      | 26      | 3       | - 58  | 26    |  |
| id Time (s)          | 3       | 58      | 26      | 3     | 58    |  |
| eld/Force Off (s)    | 0       | 53.4    | 21.8    | 0     | 53.4  |  |
| eld/Force Off 170(s) | ) 0     | 44.4    | 8.8     | 0     | 45.4  |  |
| cal Start Time (s)   | 32      | 0       | 47      | 32    | 0     |  |
| cal Yield (s)        | - 44    |         | 65.8    | - 44  | 27.4  |  |
| cal Yield 170(s)     | 44      | 18.4    | 52.8    | 44    | 19.4  |  |
| tersection Summary   | (       |         |         |       |       |  |
| /cle Length          |         |         | 70      |       |       |  |
| ontrol Type 👘 🧳      | Actuate | d-Coord | linated |       |       |  |

| cycle Length       | 70                                        |            |
|--------------------|-------------------------------------------|------------|
| Control Type       | Actuated-Coordinated                      |            |
| Natural Cycle      | 40                                        |            |
| Offset: 26 (37 %). | Referenced to phase 2:SBT and 6:NBT. Star | t of Green |

Splits and Phases: 4108: Yamhill Street & 82nd Ave

| ↓ n2        | <b>*</b> a1    | <b>\$</b> ы |
|-------------|----------------|-------------|
| 328         | 15 s           | 23 B        |
| <b>1</b> 26 | <b>&gt;</b> 15 |             |
| 32%         | 15:            |             |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 7

Timing Report, Sorted By Phase 4109: Division Street & 82nd Ave

| Movement         NBL         SBT         EBL         WBT         SBL         NBT         WBL         EBT           Lead/Lag         Lag         Lag         Lead         Lag         Lag         Lead         Lag         Lag <t< th=""></t<> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Movement         NBL         SBT         EBL         WBT         SBL         NBT         WBL         EBT           Lead/Lag         Lag         Lad         Lead         Lag         Lag <t< th=""></t<> |
| Lead/Lag         Lag         Lead         Lead         Lag         Lead         None         None         None         None         None         None         Max           Maximum Split(s)         10         24         12         24         11         23         14         22           Maximum Split(s)         14.3%         34.3%         17.1%         34.3%         15.7%         32.9%         20.0%         31.4%           Minimum Split(s)         6         14.6         6         9.6         6         14.6         9.6           Yellow Time (s)         0         1         0         1         0         1         0         1           Minimum Initial (s)         3         3.6         3         3.6         3         10         3         5           Vehicle Extension (s)         0.2         0.2         0                                    |
| Lead-Lag Optimize         None C-Max         None         Mone         Maximum Split(s)         10         24         12         24         11         23         14         22           Maximum Split(s)         14.3%         34.3%         17.1%         34.3%         15.7%         32.9%         20.0%         31.4%           Minimum Split(s)         6         14.6         6         9.6         6         14.6         6         9.6           Vellow Time (s)         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1 <t< td=""></t<>        |
| None         C-Max         None         None         None         C-Max         None         None         C-Max         None         Maximum Split (s)         10         11         23         14         22           Maximum Split (s)         14.3%         34.3%         17.1%         34.3%         15.7%         32.9%         20.0%         31.4%           Minimum Split (s)         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6   |
| Maximum Split (s)         10         24         12         24         11         23         14         22           Maximum Split (%)         14.3%         34.3%         17.1%         34.3%         15.7%         32.9%         20.0%         31.4%           Minimum Split (s)         6         14.6         6         9.6         6         14.6         6         9.6           Yellow Time (s)         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3<                                            |
| Maximum Split(%)         14.3%         34.3%         17.1%         34.3%         15.7%         32.9%         20.0%         31.4%           Minimum Split(s)         6         14.6         6         9.6         6         14.6         6         9.6           Yellow Time (s)         3         3.6         3         3.6         3         3.6         3         3.6           All-Red Time (s)         0         1         0         1         0         1         0         1           Minimum Initial (s)         3         10         3         5         3         10         3         5           Vehicle Extension (s)         0.2         0.2         0.2         20         0.2         0.2         20           Minimum Gap (s)         5         0.2         5         12         5         0.2         5         13           Time Before Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <                                                               |
| Minimum Split (s)         6         14.6         6         9.6         6         14.6         6         9.6           Yellow Time (s)         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3                                                           |
| Yellow Time (s)         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6         3         3.6                                                       |
| All-Red Time (s)       0       1       0       1       0       1       0       1         Minimum Initial (s)       3       10       3       5       3       10       3       5         Vehicle Extension (s)       0.2       0.2       0.2       20       0.2       0.2       0.2       20         Minimum Gap (s)       5       0.2       5       12       5       0.2       5       13         Time Before Reduce (s)       0       0       0       0       0       0       0       0         Time To Reduce (s)       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       14       15       16       16       16       16<                                                                                                                                                                                         |
| Minimum Initial (s)         3         10         3         5         3         10         3         5           Vehicle Extension (s)         0.2         0.2         0.2         20         0.2         0.2         0.2         20           Minimum Gap (s)         5         0.2         5         12         5         0.2         5         13           Time Before Reduce (s)         0         0         0         0         0         0         0         0         0           Time To Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         16         16         16         16         16                                                                                    |
| Vehicle Extension (s)         0.2         0.2         0.2         20         0.2         0.2         0.2         20           Minimum Gap (s)         5         0.2         5         12         5         0.2         5         13           Time Before Reduce (s)         0         0         0         0         0         0         0         0           Time To Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         15         0         15         0         15         0                                                                                        |
| Minimum Gap (s)         5         0.2         5         12         5         0.2         5         13           Time Before Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         15         0         15         0         15         0         15         0         15         0         15         0         15         0         15         0 <t< td=""></t<>                                                                                  |
| Time Before Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                  |
| Time To Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         0         15         0         20         10         10         10         10         10         10         10         10         10 <th10< th=""> <th10< th=""> <th< td=""></th<></th10<></th10<>                                                 |
| Walk Time (s)         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         4         0         15         0                                                                                                          |
| Flash Dont Walk (s) 0 20 0 15 0 20 0 15<br>Dual Entry No Yes No Yes No Yes No Yes<br>Inhibit Max Yes Yes Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dual Entry No Yes No Yes No Yes No Yes<br>Inhibit Max Yes Yes Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Inhibit Max Yes Yes Yes Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Start Time (c) 446 206 546 666 206 346 546 686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Statt Time (3) +1.0 20.0 04.0 00.0 20.0 01.0 04.0 00.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| End Time (s) 54.6 44.6 66.6 20.6 31.6 54.6 68.6 20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Yield/Force Off (s) 51.6 40 63.6 16 28.6 50 65.6 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Yield/Force Off 170(s) 51.6 20 63.6 1 28.6 30 65.6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Local Start Time (s) 4.6 50.6 14.6 26.6 50.6 61.6 14.6 28.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Local Yield (s) 11.6 0 23.6 46 58.6 10 25.6 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Local Yield 170(s) 11.6 50 23.6 31 58.6 60 25.6 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cycle Length 70<br>Control Turne Automated Constituented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Control Type Actuated-Coordinated Natural Cycle 45

Natural Cycle 45 Offset: 40 (57%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 4109: Division Street & 82nd Ave

| <b>↓</b> n2          | 🔨 a1       | ► ₀3        | et.          |  |
|----------------------|------------|-------------|--------------|--|
| 24 s                 | 10 s       | 128         | 24 B         |  |
| <b>▶</b> ₂5 <b>†</b> | <b>p</b> 6 | <b>f</b> a7 | <b>*</b> 168 |  |
| 11 s 23 ;            | 3          | 14 s        | 22 8         |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 8

Timing Report, Sorted By Phase 4110: Powell Blvd & 82nd Ave

|                        | 4       | +       | •       | Ŧ     | ≯     | t     | 7     | 1     |  |
|------------------------|---------|---------|---------|-------|-------|-------|-------|-------|--|
| Phase Number           | 1       | 2       | 3       | 4     | 5     | 6     | 7     | 8     |  |
| Movement               | WBL     | EBT     | NBL     | SBT   | EBL   | WBT   | SBL   | NBT   |  |
| Lead/Lag               | Lead    | Lag     | Lag     | Lead  | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize      |         |         |         |       |       |       |       |       |  |
| Recall Mode            | None    | Ped     | None    | C-Max | None  | Ped   | None  | C-Max |  |
| Maximum Split (s)      | 13      | 20      | 11      | 26    | 13    | 20    | 16    | 21    |  |
| Maximum Split (%)      | 18.6%   | 28.6%   | 15.7%   | 37.1% | 18.6% | 28.6% | 22.9% | 30.0% |  |
| Minimum Split (s)      | 6       | 19.6    | 6       | 19.6  | 6     | 19.6  | 6     | 19.6  |  |
| Yellow Time (s)        | 3       | 3.6     | 3       | 3.6   | 3     | 3.6   | 3     | 3.6   |  |
| All-Red Time (s)       | 0       | 1       | 0       | 1     | 0     | 1     | 0     | 1     |  |
| MinimumInitial (s) 👘   | 3       | 15      | 3       | 15    | 3     | 15    | 3     | 15    |  |
| Vehicle Extension (s)  | 0.2     | 0.2     | 0.2     | 0.2   | 0.2   | 0.2   | 0.2   |       |  |
| Minimum Gap (s) 👘      | 5       | 8       | 5       | 8     | 5     | 8     | 5     | 8     |  |
| Time Before Reduce     | (s) 0   | 20      | 0       | 20    | 0     | 20    | 0     | 20    |  |
| Time To Reduce (s)     | 0       | 10      | 0       | 10    | 0     | 10    | 0     | 10    |  |
| Walk Time (s)          | 0       | 4       | 0       | 4     | 0     | 4     | 0     |       |  |
| Flash Dont Walk (s) 👘  | 0       | 14      | 0       | 19    | 0     | 15    | 0     | 16    |  |
| Dual Entry             | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   |       |  |
| Start Time (s)         | 53      | 66      | 42      | 16    | 53    | 66    | 16    |       |  |
| End Time (s)           | 66      | 16      | 53      | 42    | 66    | 16    | 32    |       |  |
| Yield/Force Off (s)    | 63      | 11.4    | 50      | 37.4  | 63    | 11.4  | 29    |       |  |
| Yield/Force Off 170(s) |         | 67.4    | 50      | 18.4  | 63    | 66.4  | - 29  |       |  |
| Local Start Time (s)   | 21      | 34      | 10      | 54    | 21    | 34    | 54    | 0     |  |
| Local Yield (s)        | 31      | 49.4    | 18      | 5.4   | 31    | 49.4  | 67    | 16.4  |  |
| Local Yield 170(s)     | 31      | 35.4    | 18      | 56.4  | 31    | 34.4  | 67    | 0.4   |  |
| Intersection Summary   |         |         |         |       |       |       |       |       |  |
| Cycle Length           |         |         | 70      |       |       |       |       |       |  |
| Control Type 🔰 🖉       | Actuate | d-Coord | linated |       |       |       |       |       |  |
| Natural Cycle          |         |         | 60      |       |       |       |       |       |  |

Natural Cycle 60 Offset: 32 (46%), Referenced to phase 4:SBT and 8:NBT, Start of Green

Splits and Phases: 4110: Powell Blvd & 82nd Ave

| 🖌 al | <b>→</b> a2            | ↓ a4 |                        | <b>↑</b> ₀3 |
|------|------------------------|------|------------------------|-------------|
| 13 s | 20 s                   | 26%  |                        | 11 a 👘 👘    |
| ₽ 🕫  | <b>←</b> <sub>66</sub> | ₩ a7 | <b>†</b> <sub>₽8</sub> |             |
| 13%  | 20 :                   | 16%  | 21 2                   |             |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 9

Timing Report, Sorted By Phase 4112: Holgate Blvd & 82nd Ave

| 4112. Holyate Dive     |       | IU AVE |       |       |       |       |       |       | 10/0 1/2000 |
|------------------------|-------|--------|-------|-------|-------|-------|-------|-------|-------------|
|                        | •     | 4      | ∕     | 4     | 7     | 1     | 4     | ţ     |             |
| Phase Number           | 1     | 2      | 3     | - 4   | 5     | 6     | 7     | 8     |             |
| Movement               | NBL   | . SBT  | EBL   | WBT   | SBL   | NBT   | WBL   | EBT   |             |
| Lead/Lag               | Lag   | Lead   | Lead  | Lag   | Lead  | Lag   | Lead  | Lag   |             |
| Lead-Lag Optimize      |       |        |       |       |       |       |       |       |             |
| Recall Mode            | None  | C-Max  | None  | None  | None  | C-Max | None  | None  |             |
| Maximum Split (s)      | 11    | 27     | 11    | 21    | 14    | 24    | 12    | 20    |             |
| Maximum Split (%)      | 15.7% | 38.6%  | 15.7% | 30.0% | 20.0% | 34.3% | 17.1% | 28.6% |             |
| Minimum Split (s)      | 6     | 14.6   | 6     | 8.6   | 6     | 14.6  | 6     | 8.6   |             |
| Yellow Time (s)        | 3     | 3.6    | 3     | 3.6   | 3     | 3.6   | 3     | 3.6   |             |
| All-Red Time (s)       | 0     |        | 0     |       | 0     | 1     | 0     |       |             |
| Minimum Initial (s) 👘  | 3     | 10     | 3     | - 4   | 3     | 10    | 3     | - 4   |             |
| Vehicle Extension (s)  |       |        | 0.2   |       |       | 0.2   | 0.2   |       |             |
| Minimum Gap (s) 👘      | 2     | 10     | 2     |       | _     | 10    | 2     |       |             |
| Time Before Reduce     | (s) O | 0      | 0     | -     |       | 0     | 0     |       |             |
| Time To Reduce (s)     | 0     |        | 0     |       |       | 0     | 0     | _     |             |
| Walk Time (s)          | 0     |        |       |       |       | 4     | 0     |       |             |
| Flash Dont Walk (s) 👘  | 0     |        | _     |       | -     | 15    | 0     |       |             |
| Dual Entry             | No    |        |       |       |       | Yes   |       |       |             |
| Inhibit Max            | Yes   |        |       |       |       |       |       |       |             |
| Start Time (s)         | 16    |        | 27    |       |       | 3     | 27    | 39    |             |
| End Time (s)           | 27    |        | 38    |       | -     | 27    | - 39  | 59    |             |
| Yield/Force Off (s)    | 24    |        |       |       | -     | 22.4  |       |       |             |
| Yield/Force Off 170(s) |       |        |       |       | -     | 7.4   |       |       |             |
| Local Start Time (s)   | 13    |        | 24    |       |       | 0     | 24    |       |             |
| Local Yield (s)        | 21    |        |       |       |       | 19.4  | 33    |       |             |
| Local Yield 170(s)     | 21    | 64.4   | 32    | 37.4  | 67    | 4.4   | 33    | 38.4  |             |
| Intersection Summary   | r -   |        |       |       |       |       |       |       |             |
| Cycle Length           |       |        | 70    |       |       |       |       |       |             |

| Cycle Length  | 70                   |
|---------------|----------------------|
| Control Type  | Actuated-Coordinated |
| Matural Custa | 45                   |

Natural Cycle 45 Offset: 3 (4%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 4112: Holgate Blvd & 82nd Ave

| <b>↓</b> a2 |      | t ∎1 | <u>ا م</u>  | et.<br>ot  |
|-------------|------|------|-------------|------------|
| 27 s        |      | 11 * | 11 a 🛛 👘    | 21 в       |
| <b>№</b> a5 | 1 a6 |      | <b>f</b> 07 | <b>→</b> ∞ |
| 14:3        | 24 s |      | 12 a        | 20 %       |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 10

Timing Report, Sorted By Phase 4113: Foster Rd & 82nd Ave

| 4110.100torrta d       | 021101 | r m O |       |       |       |       |       |       |  |
|------------------------|--------|-------|-------|-------|-------|-------|-------|-------|--|
|                        | •      | 4     | ≁     | ţ     | 7     | 1     | *     | +     |  |
| Phase Number           | 1      | 2     | 3     | - 4   | 5     | 6     | 7     | 8     |  |
| Movement               | NBL    | SBT   | EBL   | WBT   | SBL   | NBT   | WBL   | EBT   |  |
| Lead/Lag               | Lag    | Lead  | Lead  | Lag   | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize      |        |       |       |       |       |       |       |       |  |
| Recall Mode            | None   | C-Max | None  | Ped   | None  | C-Max | None  | Ped   |  |
| Maximum Split (s)      | 14     | 21    | 10    | 25    | 17    | 18    | 11    | 24    |  |
| Maximum Split (%)      | 20.0%  | 30.0% | 14.3% | 35.7% | 24.3% | 25.7% | 15.7% | 34.3% |  |
| Minimum Split (s)      | 6      | 15    | 6     | 23    | 6     | 15    | 6     | 15    |  |
| Yellow Time (s)        | 3      | 3.6   | 3     | 3.6   | 3     | 3.6   | 3     | 3.6   |  |
| All-Red Time (s)       | 0      | 1.4   | 0     | 1.4   | 0     | 1.4   | 0     | 1.4   |  |
| Minimum Initial (s) 👘  | 3      | 10    | 3     | 10    | 3     | 10    | 3     | 10    |  |
| Vehicle Extension (s)  | 0.2    | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   |  |
| Minimum Gap (s) 👘      | 5      | 10    | 5     | 10    | 5     | 10    | 5     | 10    |  |
| Time Before Reduce     | (s) 0  | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          | 0      |       | -     |       | 0     | -     | 0     |       |  |
| Flash Dont Walk (s) 👘  | 0      | 15    | 0     | 15    | 0     | 15    | 0     | 18    |  |
| Dual Entry             | No     | Yes   | No    | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes    |       | Yes   |       | Yes   | Yes   | Yes   |       |  |
| Start Time (s)         | 5      |       |       |       | 54    |       | 19    |       |  |
| End Time (s)           | 19     | _     | - 29  |       | 1     | 19    | 30    |       |  |
| Yield/Force Off (s)    | 16     |       | 26    |       | 68    | 14    | 27    | 49    |  |
| Yield/Force Off 170(s) | ·      |       | 26    |       |       | 69    | 27    |       |  |
| Local Start Time (s)   | 4      |       | 18    |       | 53    |       | 18    |       |  |
| Local Yield (s)        | 15     |       | 25    |       | 67    | 13    | 26    |       |  |
| Local Yield 170(s)     | 15     | 54    | 25    | 33    | 67    | 68    | 26    | 30    |  |
| Intersection Summary   | (      |       |       |       |       |       |       |       |  |
| Cvcle Lenath           |        |       | 70    |       |       |       |       |       |  |

| Cycle Length     | 70                   |
|------------------|----------------------|
| Control Type     | Actuated-Coordinated |
| Made and Country | 80                   |

Natural Cycle 60 Offset: 1 (1%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 4113: Foster Rd & 82nd Ave

| 🖡 a2                   | ▲ at        | ۰.4         | <b>←</b>   |
|------------------------|-------------|-------------|------------|
| 21.8                   | 14 s        | 1D:s        | 25 *       |
| <b>₩</b> <sub>25</sub> | <b>†</b> 26 | <b>f</b> a7 | <b>→</b> ∞ |
| 17:8                   | 18:3        | 11:8        | 24 8       |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 11

Timing Report, Sorted By Phase 2067: Sandy Blvd & 82nd Ave

| 2007. Danay Diva c     | x 02110 | 17.00 |                |       |       |       |       |       |  |
|------------------------|---------|-------|----------------|-------|-------|-------|-------|-------|--|
|                        | 4       | ţ     | ٠              | +     | 7     | t     | -     | -     |  |
| Phase Number           | 1       | 2     | 3              | 4     | 5     | 6     | 7     | 8     |  |
| Movement               | NBL     | SBT   | EBL            | WBT   | SBL   | NBT   | WBL   | EBT   |  |
| Lead/Lag               | Lag     | Lead  | Lead           | Lag   | Lag   | Lead  | Lead  | Lag   |  |
| Lead-Lag Optimize      |         |       |                |       |       |       |       |       |  |
| Recall Mode            | None    | C-Max | None           | Ped   | None  | C-Max | None  | Ped   |  |
| Maximum Split (s)      | 10      | 17    | 10             | 23    | 10    | 17    | 15    | 18    |  |
| Maximum Split (%)      | 16.7%   | 28.3% | 16.7%          | 38.3% | 16.7% | 28.3% | 25.0% | 30.0% |  |
| Minimum Split(s)       | 6       | 14.6  | 8              | 14.6  | 6     | 14.7  | 8     | 14.7  |  |
| Yellow Time (s)        | 3       | 3.6   | 3.5            | 3.6   | 3     | 3.7   | 3.5   | 3.7   |  |
| All-Red Time (s)       | 0       |       | 0.5            | 1     | 0     | 1     | 0.5   | 1     |  |
| MinimumInitial (s) 👘   | 3       | 10    | - 4            | 10    | 3     | 10    | - 4   | 10    |  |
| Vehicle Extension (s)  | 0.2     |       | 3              | 0.2   | 0.2   | 0.2   | 3     | 0.2   |  |
| Minimum Gap (s)        | 5       | 0.2   | 3              | 0.2   | 5     | 0.2   | 3     | 0.2   |  |
| Time Before Reduce (   | (s) O   | 0     | 0              | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0       | -     | 0              | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          | 0       | -     |                | 5     | 0     | 4     |       | 5     |  |
| Flash Dont Walk (s) 👘  | 0       |       |                | 18    | 0     | 13    |       | 18    |  |
| Dual Entry             | No      |       |                | Yes   |       | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     |       |                |       |       | Yes   | Yes   |       |  |
| Start Time (s)         | 29      |       | 39             | 49    | 29    | 12    | 39    | 54    |  |
| End Time (s)           | - 39    |       | 49             | 12    | 39    | 29    | 54    |       |  |
| Yield/Force Off (s)    | 36      |       |                | 7.4   | 36    | 24.3  | 50    | 7.3   |  |
| Yield/Force Off 170(s) |         |       |                | 49.4  | 36    | 11.3  | 50    | 49.3  |  |
| Local Start Time (s)   | 17      |       | 27             | 37    | 17    | 0     | 27    | 42    |  |
| Local Yield (s)        | 24      |       |                | 55.4  |       | 12.3  | 38    | 55.3  |  |
| Local Yield 170(s)     | 24      | 55.4  | 33             | 37.4  | 24    | 59.3  | 38    | 37.3  |  |
| Intersection Summary   |         |       |                |       |       |       |       |       |  |
| Cycle Length           |         |       | 60             |       |       |       |       |       |  |
| Constant Trans (       |         | 4.0   | 11 - L - L - L |       |       |       |       |       |  |

| Cycle Length  | 60                   |  |
|---------------|----------------------|--|
| Control Type  | Actuated-Coordinated |  |
| Natural Cycle | 50                   |  |
|               |                      |  |

Offset: 12 (20%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 2067: Sandy Blvd & 82nd Ave

| ↓ a2        | <b>1</b> at | ا 🖊  | <b>4</b>   |
|-------------|-------------|------|------------|
| 17 8        | 10 в        | 10 в | 23 8       |
| <b>†</b> 26 | ראי<br>שיי  | 🗲 o7 | <b>→</b> ∞ |
| 17:8        | 10 s        | 15 : | 18:        |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 2115: Tillamook Street & 82nd Ave

|                        | •     | ŧ       | ÷     | 7     | t     | 4     | , |
|------------------------|-------|---------|-------|-------|-------|-------|---|
| Phase Number           | 1     | 2       | 4     | 5     | 6     | 8     | 3 |
| Movement               | NBL   | SBT     | WBTL  | SBL   | NBT   | EBTL  | _ |
| Lead/Lag               | Lag   | Lead    |       | Lag   | Lead  |       |   |
| Lead-Lag Optimize      |       |         |       |       |       |       |   |
| Recall Mode            | None  | C-Max   | None  | None  | C-Max | None  | 2 |
| Maximum Split (s)      | 14    | 26      | 20    | 10    | 30    | 20    | ) |
| Maximum Split (%) 👘    | 23.3% | 43.3%   | 33.3% | 16.7% | 50.0% | 33.3% | 5 |
| Minimum Split (s)      | 6     | 14.6    | 9.2   | 6     | 14.6  | 9.2   | 2 |
| Yellow Time (s)        | 3     | 3.6     | 3.2   | 3     | 3.6   | 3.2   | 2 |
| All-Red Time (s)       | 0     | 1       | 1     | 0     | 1     | 1     | 1 |
| Minimum Initial (s)    | 3     | 10      | 5     | 3     | 10    | 5     | 5 |
| Vehicle Extension (s)  | 0.2   | 0.2     | 0.2   | 0.2   | 0.2   | 0.2   | 2 |
| Minimum Gap (s)        | 5     | 0.2     | 10    | 5     | 0.2   | 10    | ) |
| Time Before Reduce (   | s) 0  | 0       | 5     | 0     | 0     | 5     | 5 |
| Time To Reduce (s)     | 0     | 0       | 3     | 0     | 0     | 3     | 3 |
| Walk Time (s)          | 0     | 10      | 5     | 0     | 10    | 5     | 5 |
| Flash Dont Walk (s)    | 0     | 5       | 13    | 0     | 7     | 13    | 3 |
| Dual Entry             | No    | Yes     | Yes   | No    | Yes   | Yes   | 5 |
| Inhibit Max            | Yes   | Yes     | Yes   | Yes   | Yes   | Yes   | 5 |
| Start Time (s)         | 18    | 52      | 32    | 22    | 52    | 32    | 2 |
| End Time (s)           | 32    | 18      | 52    | 32    | 22    | 52    | 2 |
| Yield/Force Off (s)    | 29    | 13.4    | 47.8  | 29    | 17.4  | 47.8  | 3 |
| Yield/Force Off 170(s) | - 29  | 8.4     | 34.8  | - 29  | 10.4  | 34.8  | 3 |
| Local Start Time (s)   | 26    | 0       | 40    | 30    | 0     | 40    | ) |
| Local Yield (s)        | 37    | 21.4    | 55.8  | 37    | 25.4  | 55.8  | 3 |
| Local Yield 170(s)     | 37    | 16.4    | 42.8  | 37    | 18.4  | 42.8  | 3 |
| Intersection Summary   |       |         |       |       |       |       |   |
| Cycle Length           |       |         | 60    |       |       |       |   |
| Control Type A         |       | d-Coord |       |       |       |       |   |

Natural Cycle 40 Offset: 52 (87%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 2115: Tillamook Street & 82nd Ave

| ↓ n2        | t ∎1 | <b>4</b><br>■ a4       |
|-------------|------|------------------------|
| 26%         | 14 * | 2D 8                   |
| <b>†</b> 26 | ► a5 | <b>↓</b> <sub>28</sub> |
| 30 s        | 10:0 | 20:0                   |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 2117: Freemont Street & 82nd Ave

|                        | •     | ţ     | *     | 1     | t     |
|------------------------|-------|-------|-------|-------|-------|
| Phase Number           | 1     | 2     | 4     | 5     | 6     |
| Movement               | NBL   | SBT   | EBWB  | SBL   | NBT   |
| Lead/Lag               | Lag   | Lead  |       | Lead  | Lag   |
| Lead-Lag Optimize      | Ť     |       |       |       |       |
| Recall Mode            | None  | C-Max | Ped   | None  | C-Max |
| Maximum Split (s)      | 15    | 22    | 23    | 15    | 22    |
| Maximum Split (%)      | 25.0% | 36.7% | 38.3% | 25.0% | 36.7% |
| Minimum Split (s)      | 6     | 14.6  | 14.2  | 6     | 14.6  |
| Yellow Time (s)        | 3     | 3.6   | 3.2   | 3     | 3.6   |
| All-Red Time (s)       | 0     | 1     | 1     | 0     | 1     |
| Minimum Initial (s)    | 3     | 10    | 10    | 3     | 10    |
| Vehicle Extension (s)  | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   |
| Minimum Gap (s)        | 5     | 0.2   | 0.2   | 5     | 0.2   |
| Time Before Reduce (   | (s) O | 0     | 0     | 0     | 0     |
| Time To Reduce (s)     | 0     | 0     | 0     | 0     | 0     |
| Walk Time (s)          | 0     | 10    | 13    | 0     | 10    |
| Flash Dont Walk (s)    | 0     | 10    | 13    | 0     | 9     |
| Dual Entry             | No    | Yes   | Yes   | No    | Yes   |
| Inhibit Max            | Yes   | Yes   | Yes   | Yes   | Yes   |
| Start Time (s)         | - 59  | 37    | 14    | 37    | 52    |
| End Time (s)           | - 14  | - 59  | 37    | 52    | 14    |
| Yield/Force Off (s)    | 11    | 54.4  | 32.8  | 49    | 9.4   |
| Yield/Force Off 170(s) | i 11  | 44.4  | 19.8  | 49    | 0.4   |
| Local Start Time (s)   | 7     | 45    | 22    | 45    | 0     |
| Local Yield (s)        | 19    | 2.4   | 40.8  | 57    | 17.4  |
| Local Yield 170(s)     | 19    | 52.4  | 27.8  | 57    | 8.4   |
| Intersection Summary   |       |       |       |       |       |

| Cycle Length        | 60                         |                           |  |
|---------------------|----------------------------|---------------------------|--|
| Control Type        | Actuated-Coordinated       |                           |  |
| Natural Cycle       | 40                         |                           |  |
| Offset: 52 (87%), R | eferenced to phase 2:SBT a | ind 6:NBT, Start of Green |  |
|                     |                            |                           |  |

Splits and Phases: 2117: Freemont Street & 82nd Ave

| ↓ a2                   |             | ▲ a1 | <b>\$</b> ₀₄ |  |
|------------------------|-------------|------|--------------|--|
| 22.8                   |             | 15 s | 23 в         |  |
| <b>№</b> <sub>25</sub> | <b>†</b> 26 |      |              |  |
| 15:8                   | 22:3        |      |              |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 2118: Prescott Street & 82nd Ave

| 2110.1100004.040       |       | 2020  | ~     |       |       |
|------------------------|-------|-------|-------|-------|-------|
|                        | 4     | ţ     | #     | •     | 1     |
| Phase Number           | 1     | 2     | 4     | - 5   | 6     |
| Movement               | NBL   | SBT   | EBWB  | SBL   | NBT   |
| Lead/Lag               | Lag   | Lead  |       | Lead  | Lag   |
| Lead-Lag Optimize      |       |       |       |       |       |
| Recall Mode            | None  | C-Max | Ped   | None  | C-Max |
| Maximum Split (s)      | 16    | 22    | 22    | 13    | 25    |
| Maximum Split (%)      | 26.7% | 36.7% | 36.7% | 21.7% | 41.7% |
| Minimum Split (s)      | 6     | 14.6  | 14.2  | 6     | 14.6  |
| Yellow Time (s)        | 3     | 3.6   | 3.2   | 3     | 3.6   |
| All-Red Time (s)       | 0     | 1     | 1     | 0     | 1     |
| Minimum Initial (s)    | 3     | 10    | 10    | 3     | 10    |
| Vehicle Extension (s)  | 0.2   | 0.2   | 0.2   | 0.2   | 0.2   |
| Minimum Gap (s)        | 5     | 0.2   | 0.2   | 5     | 0.2   |
| Time Before Reduce     | (s) 0 | 0     | 0     | 0     | 0     |
| Time To Reduce (s)     | 0     | 0     | 0     | 0     | 0     |
| Walk Time (s)          | 0     | 10    | 7     | 0     | 9     |
| Flash Dont Walk (s)    | 0     | 7     | 14    | 0     | 9     |
| Dual Entry             | No    | Yes   | Yes   | No    | Yes   |
| Inhibit Max            | Yes   | Yes   | Yes   | Yes   | Yes   |
| Start Time (s)         | 7     | 45    | 23    | 45    | 58    |
| End Time (s)           | 23    | 7     | 45    | 58    | 23    |
| Yield/Force Off (s)    | 20    | 2.4   | 40.8  | 55    | 18.4  |
| Yield/Force Off 170(s) | ) 20  | 55.4  | 26.8  | 55    | 9.4   |
| Local Start Time (s)   | 9     | 47    | 25    | 47    | 0     |
| Local Yield (s)        | 22    | 4.4   | 42.8  | 57    | 20.4  |
| Local Yield 170(s)     | 22    | 57.4  | 28.8  | 57    | 11.4  |
| Intersection Summary   | ,     |       |       |       |       |
| Could Loo ath          |       |       |       |       |       |

| Cycle Length  | 60                   |  |
|---------------|----------------------|--|
| Control Type  | Actuated-Coordinated |  |
| Natural Cycle | 40                   |  |
|               |                      |  |

Offset: 58 (97%), Referenced to phase 2:SBT and 6:NBT, Start of Green

Splits and Phases: 2118: Prescott Street & 82nd Ave

| ↓ n2                   | <b>1</b> at | <b>\$</b> •4 |  |
|------------------------|-------------|--------------|--|
| 228                    | 16 B        | 22.8         |  |
| <b>↓</b> <sub>25</sub> | Ť ø6        |              |  |
| 13s Z                  | ā a         |              |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 2146: 82nd Ave & NE Webster Street

| - ŧt   | 4                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | 4                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| NBSB   | SWL                                                                                                                                             |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| C-Min  | None                                                                                                                                            |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| 33     | 27                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| 55.0%  | 45.0%                                                                                                                                           |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| 29.5   | 14.5                                                                                                                                            |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| 0.2    |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| _      | -                                                                                                                                               |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| Ő      | 27                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        | 60                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| ctuate | d-Coordinated                                                                                                                                   |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        | 50                                                                                                                                              |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| renced | to phase 2:NI                                                                                                                                   | SB, Start of Yellov                                                                                                                                                                                                                                                            | J                                                                                                                                                                                         |                                                                                                                                                                    |
|        |                                                                                                                                                 | 10/- h -t Ot t                                                                                                                                                                                                                                                                 |                                                                                                                                                                                           |                                                                                                                                                                    |
| 4.40.0 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
| 146:8  | 2nd Ave & NE                                                                                                                                    |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                    |
|        | 2<br>NBSB<br>29.5<br>3.5<br>1<br>25<br>0.2<br>0.2<br>0.2<br>0<br>0<br>0<br>0<br>7<br>es<br>29.5<br>2.5<br>58<br>58<br>58<br>31.5<br>0<br>0<br>0 | 2 4<br>NBSB SWL<br>C-Min None<br>33 27<br>55.0% 45.0%<br>29.5 14.5<br>3.5 3.5<br>1 1<br>25 10<br>0.2 0.2<br>0.2 0.2<br>0.0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>1 45<br>29.5 2.5<br>2.5 29.5<br>58 25<br>31.5 4.5<br>0 27<br>0 27<br>60<br>ctuated-Coordinated<br>50 | 2 4<br>NBSB SWL<br>C-Min None<br>33 27<br>55.0% 45.0%<br>29.5 14.5<br>3.5 3.5<br>1 1<br>25 10<br>0.2 0.2<br>0.2 0.2<br>0.2 0.2<br>0.0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>10 0<br>0 0 | 2 4<br>NBSB SWL<br>C-Min None<br>33 27<br>55.0% 45.0%<br>29.5 14.5<br>3.5 3.5<br>1 1<br>0.2 0.2<br>0.2 0.2<br>0.0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 5

Timing Report, Sorted By Phase 2152: Jonesmore St & 82nd Ave

10/31/2006

|                        | <u>ب</u> | †       | - 4     | *       | •     | ۰ŧ       |
|------------------------|----------|---------|---------|---------|-------|----------|
| Phase Number           | 1        | 2       | 3       | 4       | 5     | 6        |
| Movement               | SBL      | NBT     | EBTL    | WBTL    | NBL   | SBT      |
| Lead/Lag               | Lead     | Lag     | Lag     | Lead    | Lag   | Lead     |
| Lead-Lag Optimize      |          |         |         |         |       |          |
| Recall Mode            | None     | C-Max   | None    | None    | None  | C-Max    |
| Maximum Split (s)      | 10       | 18      | 19      | 13      | 12    | 16       |
| Maximum Split (%)      | 16.7%    | 30.0%   | 31.7%   | 21.7%   | 20.0% | 26.7%    |
| Minimum Split (s)      | 6        | 14.6    | 9.2     | 20      | 8     | 14.6     |
| Yellow Time (s)        | 3        | 3.6     | 3.2     | 3.5     | 3.5   | 3.6      |
| All-Red Time (s)       | 0        | 1       | 1       | 0.5     | 0.5   | 1        |
| Minimum Initial (s)    | 3        | 10      | 5       | - 4     | - 4   | 10       |
| Vehicle Extension (s)  | 0.2      | 0.2     | 0.2     | 3       | 3     | 0.2      |
| Minimum Gap (s)        | 20       | 0.2     | 10      | 3       | 3     | 0.2      |
| Time Before Reduce     | (s) O    | 0       | 5       | 0       | 0     | 0        |
| Time To Reduce (s)     | 0        | 0       | 3       | 0       | 0     | 0        |
| Walk Time (s)          | 0        | 10      | 5       | 5       |       | 0        |
| Flash Dont Walk (s)    | 0        | 14      | 15      | 11      |       | 0        |
| Dual Entry             | No       | Yes     | Yes     | Yes     | No    | Yes      |
| Inhibit Max            | Yes      | Yes     | Yes     | Yes     | Yes   | Yes      |
| Start Time (s)         | 16       | 26      | 57      | - 44    | 32    | 16       |
| End Time (s)           | 26       | 44      | 16      | 57      | 44    | 32       |
| Yield/Force Off (s)    | 23       | 39.4    | 11.8    | 53      | 40    | 27.4     |
| Yield/Force Off 170(s) | 23       | 25.4    | 56.8    | 42      | 40    | 27.4     |
| Local Start Time (s)   | 50       | 0       | 31      | 18      | 6     | 50       |
| Local Yield (s)        | 57       | 13.4    | 45.8    | 27      | 14    | 1.4      |
| Local Yield 170(s)     | 57       | 59.4    | 30.8    | 16      | 14    | 1.4      |
| Intersection Summary   | r        |         |         |         |       |          |
| Cycle Length           |          |         | 60      |         |       |          |
| Control Type 💦 🖉       | Actuate  | d-Coord | linated |         |       |          |
| Natural Cycle          |          |         | 75      |         |       |          |
| Offect 28 (43%) Rota   | renced   | to pha  |         | T and I | R-CRT | Start of |

Offset: 26 (43%), Referenced to phase 2:NBT and 6:SBT, Start of Green

Splits and Phases: 2152: Jonesmore St & 82nd Ave

| <b>→</b> <sub>a1</sub> | <b>†</b> "2 | 7 .4 | <b>4</b> .a |  |
|------------------------|-------------|------|-------------|--|
| 1Ds                    | 1B®         | 13 a | 19 *        |  |
| <b>↓</b> _a6           | ب 🔦         |      |             |  |
| 16%                    | 12 *        |      |             |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6 Timing Report, Sorted By Phase 2153: Multnomah Street & 82nd Ave

|                         | 1       | Ŧ       | 4        |
|-------------------------|---------|---------|----------|
| Phase Number            | 2       | 6       | 8        |
| Movement                | NBT     | SBT     | WBL      |
| Lead/Lag                |         |         |          |
| Lead-Lag Optimize       |         |         |          |
| Recall Mode             | C-Max   | C-Max   | None     |
| Maximum Split (s)       | 34      | 34      | 26       |
| Maximum Split (%)       | 56.7%   | 56.7%   | 43.3%    |
| Minimum Split (s)       | 14.6    | 14.6    | 9.2      |
| Yellow Time (s)         | 3.6     | 3.6     | 3.2      |
| All-Red Time (s)        | 1       | 1       | 1        |
| Minimum Initial (s)     | 10      | 10      | 5        |
| Vehicle Extension (s)   | 0.2     | 0.2     | 0.2      |
| Minimum Gap (s)         | 0.2     | 0.2     | 10       |
| Time Before Reduce (    | (s) 0   | 0       | 5        |
| Time To Reduce (s)      | 0       | 0       | 3        |
| Walk Time (s)           | 10      | 0       | 5        |
| Flash Dont Walk (s)     | 9       | 0       | 12       |
| Dual Entry              | Yes     | Yes     | Yes      |
| Inhibit Max             | Yes     | Yes     | Yes      |
| Start Time (s)          | 22      | 22      | 56       |
| End Time (s)            | 56      | 56      | 22       |
| Yield/Force Off (s)     | 51.4    | 51.4    | 17.8     |
| Yield/Force Off 170(s)  | ) 42.4  | 51.4    | 5.8      |
| Local Start Time (s)    | 0       | 0       | 34       |
| Local Yield (s)         | 29.4    | 29.4    | 55.8     |
| Local Yield 170(s)      | 20.4    | 29.4    | 43.8     |
| Intersection Summary    | r       |         |          |
| Cycle Length            |         |         | 60       |
| Control Type 🛛 🖌        | Actuate | d-Coord | linated  |
| Natural Cycle           |         |         | 40       |
| Offset: 22 (37 %), Refe | erenced | to phas | se 2:NB1 |
| Splits and Phases:      |         |         | hah Stre |



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 7

Timing Report, Sorted By Phase 2215: Killingsworth & 82nd Ave

|                        | 4       |          | +       | 49     |    |               |
|------------------------|---------|----------|---------|--------|----|---------------|
| Phase Number           | 1       | 2        | 6       | 8      | 1  |               |
| Movement               | WBL     | . EBT    | WBT     | NBL    | 1  |               |
| Lead/Lag               | Lead    |          |         |        |    |               |
| Lead-Lag Optimize      |         |          |         |        |    |               |
| Recall Mode            | None    | C-Max    | C-Max   | None   |    |               |
| Maximum Split (s)      | 10      | 32       | 42      | 18     |    |               |
| Maximum Split (%)      | 16.7%   | 53.3%    | 70.0%   | 30.0%  |    |               |
| Minimum Split (s)      | e       | 30.4     | 30.4    | 9.2    |    |               |
| Yellow Time (s)        | 3       | 4.4      | 4.4     | 3.2    |    |               |
| All-Red Time (s)       | 0       | 1        | 1       | 1      |    |               |
| Minimum Initial (s)    | 3       | 25       | 25      | 5      |    |               |
| Vehicle Extension (s)  | 0.2     | 0.2      | 0.2     | 25     |    |               |
| Minimum Gap (s)        | 10      | 30       | 8       | 5      |    |               |
| Time Before Reduce     | (s) (   | 20       | 20      | 5      |    |               |
| Time To Reduce (s)     |         | 10       | 10      | 5      |    |               |
| Walk Time (s)          | 0       | 10       | 0       | 6      |    |               |
| Flash Dont Walk (s)    | 0       | 11       | 0       | 17     |    |               |
| Dual Entry             | No      | Yes      | Yes     | Yes    |    |               |
| Inhibit Max            | Yes     | ; Yes    | Yes     | Yes    |    |               |
| Start Time (s)         | 56      | 6        | 56      | 38     |    |               |
| End Time (s)           | 6       | 38       | 38      | 56     |    |               |
| Yield/Force Off (s)    | 3       | 32.6     | 32.6    | 51.8   |    |               |
| Yield/Force Off 170(s) | ) 3     | 21.6     | 32.6    | 34.8   |    |               |
| Local Start Time (s)   | 50      | 0        | 50      | 32     |    |               |
| Local Yield (s)        | 57      | 26.6     | 26.6    | 45.8   |    |               |
| Local Yield 170(s)     | 57      | 15.6     | 26.6    | 28.8   |    |               |
| Intersection Summary   | r i     |          |         |        |    |               |
| Cycle Length           |         |          | 60      |        | Ĩ  |               |
|                        | Actuate | ed-Coord | linated |        |    |               |
| Natural Cycle          |         |          | 50      |        |    |               |
| Offset: 6 (10%), Refer | enced   | to nhase | 2.EBT   | and 61 | 'n | WBT. Start of |

Offset: 6 (10%), Referenced to phase 2:EBT and 6:WBT, Start of Green

Splits and Phases: 2215: Killingsworth & 82nd Ave

| 🖌 al     | <b>→</b> a2 |       |
|----------|-------------|-------|
| 1D:s     | 328         |       |
| <b>4</b> |             | *¥ ø8 |
| 42s      |             | 18:   |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 8

Timing Report, Sorted By Phase 138: Foster Rd & 122nd Ave

|                        | ٠,      | -       | 1       | -+      |                        |
|------------------------|---------|---------|---------|---------|------------------------|
|                        |         |         |         | -       |                        |
| Phase Number           | 1       | 2       | 3       | 6       |                        |
| Movement               | EBL     | WBT     | SBL     | EBT     |                        |
| Lead/Lag               | Lead    | Lag     |         |         |                        |
| Lead-Lag Optimize      |         |         |         |         |                        |
| Recall Mode            |         | C-Max   |         | C-Max   |                        |
| Maximum Split (s)      | 15      | 22      | 23      | 37      |                        |
| Maximum Split (%) –    |         |         | 38.3%   |         |                        |
| Minimum Split (s)      | 8       | 20.5    | 20.5    | 20.5    |                        |
| Yellow Time (s)        | 3       | 3.5     | 3.5     | 3.5     |                        |
| All-Red Time (s)       | 0       | 1       | 1       | 1       |                        |
| MinimumInitial (s) 👘   | - 4     |         |         | - 4     |                        |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3       |                        |
| Minimum Gap (s) 👘      | 3       | 3       | _       | 3       |                        |
| Time Before Reduce     | (s) O   | 0       | 0       | 0       |                        |
| Time To Reduce (s)     | 0       | 0       | 0       | 0       |                        |
| Walk Time (s)          |         | 5       | 5       | 5       |                        |
| Flash Dont Walk (s)    |         | 11      | 11      | 11      |                        |
| Dual Entry             | No      | Yes     | Yes     | Yes     |                        |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes     |                        |
| Start Time (s)         | 19.5    | 34.5    | 56.5    | 19.5    |                        |
| End Time (s)           | 34.5    | 56.5    | 19.5    | 56.5    |                        |
| Yield/Force Off (s)    | 31.5    | 52      | 15      | 52      |                        |
| Yield/Force Off 170(s) | 31.5    | 41      | - 4     | 41      |                        |
| Local Start Time (s)   | 27.5    | 42.5    | 4.5     | 27.5    |                        |
| Local Yield (s)        | 39.5    | 0       | 23      | 0       |                        |
| Local Yield 170(s)     | 39.5    | 49      | 12      | 49      |                        |
| Intersection Summary   | r i i   |         |         |         |                        |
| Cycle Length           |         |         | 60      |         |                        |
|                        | Actuate | d-Coord | linated |         |                        |
| Natural Cycle          |         |         | 50      |         |                        |
|                        | erenced | to pha: | se 2:WB | T and ( | B:EBT, Start of Yellow |

Splits and Phases: 138: Foster Rd & 122nd Ave

| 🗡 "1        | • <b>-</b><br>•2 | ▶ ₀  |
|-------------|------------------|------|
| 15:8        | 22 8             | 23 B |
| <b>→</b> a6 |                  |      |
| 37 s        |                  |      |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 140: Powell Blvd & 122nd Ave

| Phase Number     1     2     3     4     5     6     7     8       Movement     NBL <sbt< td="">     EBL     WBT     SBL     NBT     WBL     EBT       Lead/Lag     Lead     Lag     Lead     Lag     Lead     Lag       Lead-Lag     Optimize       Recall Mode     None     C-Max     None     None     None       Maximum     Split(s)     10     19     14     17     10     19     11     20</sbt<> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Lead/Lag Lead Lag Lead Lag Lead Lag Lead Lag<br>Lead-Lag Optimize<br><mark>Recall Mode None C-Max None None None C-Max None None</mark><br>Maximum Split(s) 10 19 14 17 10 19 11 20                                                                                                                                                                                                                      |
| Lead-Lag Optimize<br>Recall Mode None C-Max None None None C-Max None None<br>Maximum Split(s) 10 19 14 17 10 19 11 20                                                                                                                                                                                                                                                                                   |
| Recall Mode None C-Max None None None C-Max None None<br>Maximum Split(s) 10 19 14 17 10 19 11 20                                                                                                                                                                                                                                                                                                        |
| Maximum Split(s) 10 19 14 17 10 19 11 20                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                          |
| Maximum Split (%) 16.7% 31.7% 23.3% 28.3% 16.7% 31.7% 18.3% 33.3%                                                                                                                                                                                                                                                                                                                                        |
| Minimum Split (s) 8 20.5 8 20.5 8 20.5 8 20.6                                                                                                                                                                                                                                                                                                                                                            |
| Yellow Time (s) 3 3.5 3 3.5 3 3.5 3 3.5                                                                                                                                                                                                                                                                                                                                                                  |
| All-Red Time (s) 0 1 0 1 0 1 0 1                                                                                                                                                                                                                                                                                                                                                                         |
| Minimum Initial (s) 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                        |
| Vehicle Extension (s) 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum Gap (s) 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                          |
| Time Before Reduce (s) 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                     |
| Time To Reduce (s) 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                         |
| WalkTime(s) 5 5 5                                                                                                                                                                                                                                                                                                                                                                                        |
| Flash Dont Walk (s) 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                          |
| DualEntry No Yes No Yes No Yes No Ye                                                                                                                                                                                                                                                                                                                                                                     |
| Inhibit Max Yes Yes Yes Yes Yes Yes Yes Ye                                                                                                                                                                                                                                                                                                                                                               |
| Start Time (s) 27.5 37.5 56.5 10.5 27.5 37.5 56.5 7.5                                                                                                                                                                                                                                                                                                                                                    |
| End Time (s) 37.5 56.5 10.5 27.5 37.5 56.5 7.5 27.5                                                                                                                                                                                                                                                                                                                                                      |
| Yield/Force Off (s) 34.5 52 7.5 23 34.5 52 4.5 23                                                                                                                                                                                                                                                                                                                                                        |
| Yield/Force Off 170(s) 34.5 41 7.5 12 34.5 41 4.5 12                                                                                                                                                                                                                                                                                                                                                     |
| Local Start Time (s) 35.5 45.5 4.5 18.5 35.5 45.5 4.5 15.5                                                                                                                                                                                                                                                                                                                                               |
| Local Yield (s) 42.5 0 15.5 31 42.5 0 12.5 34                                                                                                                                                                                                                                                                                                                                                            |
| Local Yield 170(s) 42.5 49 15.5 20 42.5 49 12.5 20                                                                                                                                                                                                                                                                                                                                                       |
| Intersection Summary                                                                                                                                                                                                                                                                                                                                                                                     |
| Cycle Length 60                                                                                                                                                                                                                                                                                                                                                                                          |

Control Type Actuated-Coordinated Natural Cycle 60 Offset: 52 (87%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 140: Powell Blvd & 122nd Ave

| 🔨 at  | <b>↓</b> ₀2 | ⊿ ا  | <b>≠</b><br>¤4 |
|-------|-------------|------|----------------|
| 1Ds 🛛 | 198         | 14 * | 17 a           |
| S 45  | <b>1</b> a6 | 6 07 | <b>→ 2</b> 8   |
| 10%   | 19:8        | 11 * | 20%            |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 2

Timing Report, Sorted By Phase 142: Holgate Blvd & 122nd Ave

|                        | •       | ŧ       | ≯      | +     | 7     | 1     | 4     | +     |  |
|------------------------|---------|---------|--------|-------|-------|-------|-------|-------|--|
| Phase Number           | 1       | 2       | 3      | 4     | 5     | 6     | 7     | 8     |  |
| Movement               | NBL     | SBT     | EBL    | WBT   | SBL   | NBT   | WBL   | EBT   |  |
| Lead/Lag               | Lead    | Lag     | Lead   | Lag   | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize      |         |         |        |       |       |       |       |       |  |
| Recall Mode            | None    | C-Max   | None   | None  | None  | C-Max | None  | None  |  |
| Maximum Split (s)      | 10      | 20      | 13     | 17    | 10    | 20    | 10    | 20    |  |
| Maximum Split (%) 👘    | 16.7%   | 33.3%   | 21.7%  | 28.3% | 16.7% | 33.3% | 16.7% | 33.3% |  |
| Minimum Split (s)      | 8       | 20      | 8      | 20    | 8     | 20    | 8     | 20    |  |
| Yellow Time (s)        | 3       | 3.5     | 3      | 3.5   | 3     | 3.5   | 3     | 3.5   |  |
| All-Red Time (s)       | 0       |         | 0      | 1     | 0     | 1     | 0     | 1     |  |
| MinimumInitial (s) 👘   | - 4     |         | - 4    | - 4   | - 4   | - 4   | 4     | - 4   |  |
| Vehicle Extension (s)  | 3       |         | 3      | 3     | 3     | 3     | 3     | 3     |  |
| Minimum Gap (s)        | 3       | 3       | 3      | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce (   |         | -       | 0      | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0       | 0       | 0      | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          |         | 4       |        | 4     |       | 4     |       | 4     |  |
| Flash Dont Walk (s)    |         | 11      |        | 11    |       | 11    |       | 11    |  |
| Dual Entry             | No      |         | No     | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     |         | Yes    | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Start Time (s)         | 22.5    | 32.5    | 52.5   | 5.5   | 22.5  | 32.5  | 52.5  | 2.5   |  |
| End Time (s)           | 32.5    | 52.5    | 5.5    | 22.5  | 32.5  | 52.5  | 2.5   | 22.5  |  |
| Yield/Force Off (s)    | 29.5    | 48      | 2.5    | 18    | 29.5  | 48    | 59.5  | 18    |  |
| Yield/Force Off 170(s) |         | 37      | 2.5    | 7     | 29.5  | 37    | 59.5  | 7     |  |
| Local Start Time (s)   | 34.5    | 44.5    | 4.5    | 17.5  | 34.5  | 44.5  | 4.5   | 14.5  |  |
| Local Yield (s)        | 41.5    | 0       | 14.5   | - 30  | 41.5  | 0     | 11.5  | 30    |  |
| Local Yield 170(s)     | 41.5    | 49      | 14.5   | 19    | 41.5  | 49    | 11.5  | 19    |  |
| Intersection Summary   |         |         |        |       |       |       |       |       |  |
| Cycle Length           |         |         | 60     |       |       |       |       |       |  |
| Control Type 🛛 🖌       | Actuate | d-Coord | inated |       |       |       |       |       |  |

Control Type Actuated-Coordinated Natural Cycle 60

Offset: 48 (80%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 142: Holgate Blvd & 122nd Ave

| 🔨 a1            | <b>↓</b> ₀2 | ▲ .3        | <b>≼</b>   |
|-----------------|-------------|-------------|------------|
| 1Ds             | 2D 8        | 138         | 17 a       |
| ► <sub>25</sub> | <b>1</b> 26 | <b>f</b> a7 | <b>₽</b> 8 |
| 10s             | 20:8        | 10:8        | 20%        |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 144: Harold St & 122nd Ave

|                        | •       | ŧ       | ¥       | 7     | t     | 4     |
|------------------------|---------|---------|---------|-------|-------|-------|
| Phase Number           | 1       | 2       | 4       | 5     | 6     | 8     |
| Movement               | NBL     | SBT     | WBTL    | SBL   | NBT   | EBTL  |
| Lead/Lag               | Lead    | Lag     |         | Lead  | Lag   |       |
| Lead-Lag Optimize      |         |         |         |       |       |       |
| Recall Mode            | None    | C-Max   | None    | None  | C-Max | None  |
| Maximum Split (s)      | 11      | 29      | 20      | 15    | 25    | 20    |
| Maximum Split (%)      | 18.3%   | 48.3%   | 33.3%   | 25.0% | 41.7% | 33.3% |
| Minimum Split(s)       | 8       | 20.5    | 20      | 8     | 20.5  | 20    |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3     | 3.5   | 3     |
| All-Red Time (s)       | 0       | 1       | 0       | 0     | 1     | 0     |
| Minimum Initial (s)    | 4       | 4       | 4       | 4     | 4     | 4     |
| Vehicle Extension (s)  | 3       | 3       | 3       | з     | 3     | 3     |
| Minimum Gap (s)        | 3       | 3       | 3       | 3     | 3     | 3     |
| Time Before Reduce     | (s) 0   | 0       | 0       | 0     | 0     | 0     |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     |
| Walk Time (s)          |         | 5       | 5       |       | 5     | 5     |
| Flash Dont Walk (s)    |         | 11      | 11      |       | 11    | 11    |
| Dual Entry             | No      | Yes     | Yes     | No    | Yes   | Yes   |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   |
| Start Time (s)         | 2.5     | 13.5    | 42.5    | 2.5   | 17.5  | 42.5  |
| End Time (s)           | 13.5    | 42.5    | 2.5     | 17.5  | 42.5  | 2.5   |
| Yield/Force Off (s)    | 10.5    | 38      | 59.5    | 14.5  | 38    | 59.5  |
| Yield/Force Off 170(s) | ) 10.5  | 27      | 48.5    | 14.5  | 27    | 48.5  |
| Local Start Time (s)   | 24.5    | 35.5    | 4.5     | 24.5  | 39.5  | 4.5   |
| Local Yield (s)        | 32.5    | 0       | 21.5    | 36.5  | 0     | 21.5  |
| Local Yield 170(s)     | 32.5    | 49      | 10.5    | 36.5  | 49    | 10.5  |
| Intersection Summary   | r i     |         |         |       |       |       |
| Cycle Length           |         |         | 60      |       |       |       |
| Control Type           | Actuate | d-Coord | linated |       |       |       |
| Matural Curls          |         |         | 50      |       |       |       |

Natural Cycle 50 Offset: 38 (63%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 144: Harold St & 122nd Ave

| 🔨 at            | ↓ <sub>n2</sub> | <b>4</b><br>▼ n4       |
|-----------------|-----------------|------------------------|
| 11 s            | 29 :            | 208                    |
| ► <sub>25</sub> | <b>1</b> 26     | <u>→</u> <sub>48</sub> |
| 15%             | 25%             | 20%                    |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 147: Division Street & 122nd Ave

|                        | •       | 4       | ≯       | +     | 7     | 1     | 4     | +     |  |
|------------------------|---------|---------|---------|-------|-------|-------|-------|-------|--|
| Phase Number           | 1       | 2       | 3       | 4     | 5     | 6     | 7     | 8     |  |
| Movement               | NBL     | SBT     | EBL     | WBT   | SBL   | NBT   | WBL   | EBT   |  |
| Lead/Lag               | Lead    | Lag     | Lead    | Lag   | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize      |         |         |         |       |       |       |       |       |  |
| Recall Mode            | None    | C-Max   | None    | None  | None  | C-Max | None  | None  |  |
| Maximum Split (s)      | 10      | 19      | 13      | 18    | 10    | 19    | 11    | 20    |  |
| Maximum Split (%)      | 16.7%   | 31.7%   | 21.7%   | 30.0% | 16.7% | 31.7% | 18.3% | 33.3% |  |
| Minimum Split (s)      | 8       | 20.5    | 8       | 20.5  | 8     | 20.5  | 8     | 20.5  |  |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5   | 3     | 3.5   | 3     | 3.5   |  |
| All-Red Time (s)       | 0       | 1       | 0       | 1     | 0     | 1     | 0     | 1     |  |
| Minimum Initial (s) 👘  | - 4     | - 4     | - 4     | - 4   | - 4   | - 4   | - 4   | - 4   |  |
| Vehicle Extension (s)  | З       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Minimum Gap (s) 👘      | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce i   | (s) O   | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          |         | 5       |         | 5     |       | 5     |       | 5     |  |
| Flash Dont Walk (s) 👘  |         | 11      |         | 11    |       | 11    |       | 11    |  |
| Dual Entry             | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Start Time (s)         | 21.5    | 31.5    | 50.5    | 3.5   | 21.5  | 31.5  | 50.5  | 1.5   |  |
| End Time (s)           | 31.5    | 50.5    | 3.5     | 21.5  | 31.5  | 50.5  | 1.5   | 21.5  |  |
| Yield/Force Off (s)    | 28.5    | 46      | 0.5     | 17    | 28.5  | 46    | 58.5  | 17    |  |
| Yield/Force Off 170(s) |         | 35      | 0.5     | 6     | 28.5  | 35    | 58.5  | 6     |  |
| Local Start Time (s)   | 35.5    | 45.5    | 4.5     | 17.5  | 35.5  | 45.5  | 4.5   | 15.5  |  |
| Local Yield (s)        | 42.5    | 0       | 14.5    | 31    | 42.5  | 0     | 12.5  | 31    |  |
| Local Yield 170(s)     | 42.5    | 49      | 14.5    | 20    | 42.5  | 49    | 12.5  | 20    |  |
| Intersection Summary   |         |         |         |       |       |       |       |       |  |
| Cycle Length           |         |         | 60      |       |       |       |       |       |  |
| Control Type 🔰 🖌       | Actuate | d-Coord | linated |       |       |       |       |       |  |

Natural Cycle 60

Offset: 46 (77%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 147: Division Street & 122nd Ave

| 🔨 at | 4 a2        | ▲ ا         | et of               |
|------|-------------|-------------|---------------------|
| 1D:s | 198         | 13 *        | 18 8                |
| S 45 | <b>1</b> 26 | <b>€</b> 07 | <b>₽</b> <u>2</u> 8 |
| 10:0 | 19:0        | 11 * 20     | ]8                  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 5

Timing Report, Sorted By Phase 170: Market St & 122nd Ave

|                        | •        | 1       | 1       | - <b>`</b> |       | <u></u> |
|------------------------|----------|---------|---------|------------|-------|---------|
|                        | •        | •       | Ŧ       |            | •     | ,       |
| Phase Number           | 1        | 2       | 4       | 5          | 6     | 8       |
| Movement               | NBL      | SBT     | WBTL    | SBL        | NBT   | EBTL    |
| Lead/Lag               | Lead     | Lag     |         | Lead       | Lag   |         |
| Lead-Lag Optimize      |          |         |         |            |       |         |
| Recall Mode            | None     | C-Max   | None    | None       | C-Max | None    |
| Maximum Split (s)      | 12       | 24      | 24      | 10         | 26    | 24      |
| Maximum Split (%)      | 20.0%    | 40.0%   | 40.0%   | 16.7%      | 43.3% | 40.0%   |
| Minimum Split (s)      | 8        | 20.5    | 20      | 8          | 20.5  | 20      |
| Yellow Time (s)        | 3        | 3.5     | 3       | 3          | 3.5   | 3       |
| All-Red Time (s)       | 0        | 1       | 0       | 0          | 1     | 0       |
| Minimum Initial (s)    | - 4      | - 4     | - 4     | - 4        | - 4   | - 4     |
| Vehicle Extension (s)  | 3        | 3       | 3       | 3          | 3     | 3       |
| Minimum Gap (s)        | 3        | 3       | 3       | 3          | 3     | 3       |
| Time Before Reduce     | (s) 0    | 0       | 0       | 0          | 0     | 0       |
| Time To Reduce (s)     | 0        | 0       | 0       | 0          | 0     | 0       |
| Walk Time (s)          |          | 5       | 5       |            | 5     | 5       |
| Flash Dont Walk (s)    |          | 11      | 11      |            | 11    | 11      |
| Dual Entry             | No       | Yes     | Yes     | No         | Yes   | Yes     |
| Inhibit Max            | Yes      | Yes     | Yes     | Yes        | Yes   | Yes     |
| Start Time (s)         | 28.5     | 40.5    | 4.5     | 28.5       | 38.5  | 4.5     |
| End Time (s)           | 40.5     | 4.5     | 28.5    | 38.5       | 4.5   | 28.5    |
| Yield/Force Off (s)    | 37.5     | 0       | 25.5    | 35.5       | 0     | 25.5    |
| Yield/Force Off 170(s) | ) 37.5   | 49      | 14.5    | 35.5       | 49    | 14.5    |
| Local Start Time (s)   | 28.5     | 40.5    | 4.5     | 28.5       | 38.5  | 4.5     |
| Local Yield (s)        | 37.5     | 0       | 25.5    | 35.5       | 0     | 25.5    |
| Local Yield 170(s)     | 37.5     | 49      | 14.5    | 35.5       | 49    | 14.5    |
| Intersection Summary   | <u> </u> |         |         |            |       |         |
| Cycle Length           |          |         | 60      |            |       |         |
| Control Type           | Actuate  | d-Coord | linated |            |       |         |
| Natural Cycle          |          |         | 50      |            |       |         |

Natural Cycle 50 Offset: 0 (0%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 170: Market St & 122nd Ave

| ▲ at            | ↓ n2                   | <b>4</b> − ⊿ |
|-----------------|------------------------|--------------|
| 128             | 24 s                   | 24 *         |
| ► <sub>25</sub> | <b>†</b> <sub>46</sub> | 🚣 øi         |
| 10:0            | 26%                    | 24 *         |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6

Timing Report, Sorted By Phase 171: Glisan St & 122nd Ave

| TTT: Onoun of a 12     | - zna n |         |         |       |       |       |       |       |  |
|------------------------|---------|---------|---------|-------|-------|-------|-------|-------|--|
|                        | •       | 4       | ≯       | +     | 7     | t     | 1     | +     |  |
| Phase Number           | 1       | 2       | 3       | - 4   | 5     | 6     | 7     | 8     |  |
| Movement               | NBL     | SBT     | EBL     | WBT   | SBL   | NBT   | WBL   | EBT   |  |
| Lead/Lag               | Lead    | Lag     | Lead    | Lag   | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize      |         |         |         |       |       |       |       |       |  |
| Recall Mode            | None    | C-Max   | None    | None  | None  | C-Max | None  | None  |  |
| Maximum Split (s)      | 10      | 19      | 13      | 18    | 10    | 19    | 11    | 20    |  |
| Maximum Split (%)      | 16.7%   | 31.7%   | 21.7%   | 30.0% | 16.7% | 31.7% | 18.3% | 33.3% |  |
| Minimum Split (s)      | 8       | 20      | 8       | 20    | 8     | 20    | 8     | 20    |  |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5   | 3     | 3.5   | 3     | 3.5   |  |
| All-Red Time (s)       | 0       | 1       | 0       | 1     | 0     | 1     | 0     | 1     |  |
| Minimum Initial (s) 👘  | - 4     | - 4     | - 4     | - 4   | - 4   | - 4   | - 4   |       |  |
| Vehicle Extension (s)  | з       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Minimum Gap (s) 👘      | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce (   | (s) O   | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          |         | 4       |         | 4     |       | 4     |       | 4     |  |
| Flash Dont Walk (s) 👘  |         | 11      |         | 11    |       | 11    |       | 11    |  |
| Dual Entry             | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   |       | Yes   |       |  |
| Start Time (s)         | 25.5    | 35.5    | 54.5    | 7.5   | 25.5  | 35.5  | 54.5  | 5.5   |  |
| End Time (s)           | 35.5    | 54.5    | 7.5     | 25.5  | 35.5  | 54.5  | 5.5   | 25.5  |  |
| Yield/Force Off (s)    | 32.5    | 50      | 4.5     | 21    | 32.5  | 50    | 2.5   | 21    |  |
| Yield/Force Off 170(s) |         | 39      | 4.5     | 10    | 32.5  | - 39  | 2.5   | 10    |  |
| Local Start Time (s)   | 35.5    | 45.5    | 4.5     | 17.5  | 35.5  | 45.5  | 4.5   | 15.5  |  |
| Local Yield (s)        | 42.5    | 0       | 14.5    | 31    | 42.5  | 0     | 12.5  | 31    |  |
| Local Yield 170(s)     | 42.5    | 49      | 14.5    | 20    | 42.5  | 49    | 12.5  | 20    |  |
| Intersection Summary   |         |         |         |       |       |       |       |       |  |
| Cycle Length           |         |         | 60      |       |       |       |       |       |  |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |       |       |       |       |       |  |
| Markey and Occurring   |         |         |         |       |       |       |       |       |  |

Natural Cycle 60 Offset: 50 (83%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 171: Glisan St & 122nd Ave

| ▲ at | ↓ a2        | <u>ا</u>    | <b>4</b> <sub>p4</sub> |
|------|-------------|-------------|------------------------|
| 1D s | 198         | 13 *        | 18 8                   |
| ► a5 | <b>†</b> 26 | <b>6</b> 07 | <b>→</b> <u>a</u> 8    |
| 10:0 | 19:         | 11 * 2      | 0:8                    |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 7

Timing Report, Sorted By Phase 182: Stark St & 122nd Ave

| 102. Otalit 01 01 122  |         | <u> </u> |         |       |       |       |       |       |   |
|------------------------|---------|----------|---------|-------|-------|-------|-------|-------|---|
|                        | ٠       | 4        | ≯       | +     | 7     | ţ.    | ¥     | +     |   |
| Phase Number           | 1       | 2        | 3       | - 4   | 5     | 6     | 7     | 8     | 1 |
| Movement               | NBL     | SBT      | EBL     | WBT   | SBL   | NBT   | WBL   | EBT   | Ī |
| Lead/Lag               | Lead    | Lag      | Lead    | Lag   | Lead  | Lag   | Lead  | Lag   |   |
| Lead-Lag Optimize      |         |          |         |       |       |       |       |       |   |
| Recall Mode            | None    | C-Max    | None    | None  | None  | C-Max | None  | None  |   |
| Maximum Split (s)      | 11      | 18       | 13      | 18    | 11    | 18    | 11    | 20    |   |
| Maximum Split (%)      | 18.3%   | 30.0%    | 21.7%   | 30.0% | 18.3% | 30.0% | 18.3% | 33.3% |   |
| Minimum Split (s)      | 8       | 20       | 8       | 20    | 8     | 20    | 8     | 20    |   |
| Yellow Time (s)        | 3       | 3.5      | 3       | 3.5   | 3     | 3.5   | 3.5   | 3.5   |   |
| All-Red Time (s)       | 0       | 1        | 0       | 1     | 0     | 1     | 0     |       |   |
| Minimum Initial (s)    | - 4     | - 4      | - 4     | - 4   | - 4   | - 4   | - 4   | - 4   |   |
| Vehicle Extension (s)  | 3       |          | 3       | 3     | 3     | 3     | 3     |       |   |
| Minimum Gap (s)        | 3       | 3        | 3       | 3     | 3     | 3     | 3     | -     |   |
| Time Before Reduce     | (s) 0   | 0        | 0       | 0     | 0     | 0     | 0     | 0     |   |
| Time To Reduce (s)     | 0       | 0        | 0       | 0     | 0     | 0     | 0     | 0     |   |
| Walk Time (s)          |         | 4        |         | 4     |       | 4     |       | 4     |   |
| Flash Dont Walk (s) 👘  |         | 11       |         | 11    |       | 11    |       | 11    |   |
| Dual Entry             | No      | Yes      | No      | Yes   | No    | Yes   | No    | Yes   |   |
| Inhibit Max            | Yes     | Yes      | Yes     | Yes   | Yes   | Yes   | Yes   |       |   |
| Start Time (s)         | 25.5    | 36.5     | 54.5    | 7.5   | 25.5  | 36.5  | 54.5  | 5.5   |   |
| End Time (s)           | 36.5    | 54.5     | 7.5     | 25.5  | 36.5  | 54.5  | 5.5   | 25.5  |   |
| Yield/Force Off (s)    | 33.5    | 50       | 4.5     | 21    | 33.5  | 50    | 2     |       |   |
| Yield/Force Off 170(s) | 33.5    | 39       | 4.5     | 10    | 33.5  | - 39  | 2     | 10    |   |
| Local Start Time (s)   | 35.5    | 46.5     | 4.5     | 17.5  | 35.5  | 46.5  | 4.5   |       |   |
| Local Yield (s)        | 43.5    | 0        | 14.5    | 31    | 43.5  | 0     | 12    | 31    |   |
| Local Yield 170(s)     | 43.5    | 49       | 14.5    | 20    | 43.5  | 49    | 12    | 20    |   |
| Intersection Summary   | r       |          |         |       |       |       |       |       |   |
| Cycle Length           |         |          | 60      |       |       |       |       |       |   |
| Control Type 💦         | Actuate | d-Coord  | linated |       |       |       |       |       |   |
| Natural Cycle          |         |          | 60      |       |       |       |       |       |   |

Natural Cycle 60 Offset: 50 (83%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 182: Stark St & 122nd Ave

| 🔨 at        | ↓ n2 | ۸ م         | <b>←</b>     |
|-------------|------|-------------|--------------|
| 11 s        | 18 * | 13 *        | 18 e         |
| <b>№</b> a5 | 1 e6 | <b>6</b> 07 | ► <b>a</b> 8 |
| 11:0        | 18 * | 11 * ZD     | s 🛛          |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 8

Timing Report, Sorted By Phase 191: Halsey St & 122nd Ave

| 101.110100j 01011      | E E HIGI |         |         |       |       |       |       |       |  |
|------------------------|----------|---------|---------|-------|-------|-------|-------|-------|--|
|                        | 4        | ŧ       | ≯       | -     | 7     | ţ.    | -     | -     |  |
| Phase Number           | 1        | 2       | 3       | - 4   | 5     | 6     | 7     | 8     |  |
| Movement               | NBL      | SBT     | EBL     | WBT   | SBL   | NBT   | WBL   | EBT   |  |
| Lead/Lag               | Lead     | Lag     | Lead    | Lag   | Lag   | Lead  | Lead  | Lag   |  |
| Lead-Lag Optimize      |          |         |         |       |       |       |       |       |  |
| Recall Mode            | None     | C-Max   | None    | None  | None  | C-Max | None  | None  |  |
| Maximum Split (s)      | 11       | 21      | 10      | 18    | 13    | 19    | 10    | 18    |  |
| Maximum Split (%) 👘    | 18.3%    | 35.0%   | 16.7%   | 30.0% | 21.7% | 31.7% | 16.7% | 30.0% |  |
| Minimum Split (s)      | 8        | 20      | 8       | 20    | 8     | 20    | 8     | 20    |  |
| Yellow Time (s)        | 3        | 3.5     | 3       | 3.5   | 3     | 3.5   | 3     | 3.5   |  |
| All-Red Time (s)       | 0        | 1       | 0       | 1     | 0     | 1     | 0     | 1     |  |
| Minimum Initial (s) 👘  | - 4      |         | - 4     | - 4   | - 4   | - 4   | - 4   |       |  |
| Vehicle Extension (s)  | 3        |         | 3       | 3     | 3     | 3     | 3     |       |  |
| Minimum Gap (s) 👘      | 3        | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce (   |          |         | 0       | 0     | 0     | 0     | 0     | -     |  |
| Time To Reduce (s)     | 0        | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          |          | 4       |         | 4     |       | 4     |       | 4     |  |
| Flash Dont Walk (s) 👘  |          | 11      |         | 11    |       | 11    |       | 11    |  |
| Dual Entry             | No       | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes      | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Start Time (s)         | 37.5     | 48.5    | 9.5     | 19.5  | 56.5  | 37.5  | 9.5   |       |  |
| End Time (s)           | 48.5     |         | 19.5    | 37.5  | 9.5   | 56.5  | 19.5  |       |  |
| Yield/Force Off (s)    | 45.5     |         | 16.5    | 33    | 6.5   | 52    | 16.5  | 33    |  |
| Yield/Force Off 170(s) |          | 54      | 16.5    | 22    | 6.5   | 41    | 16.5  | 22    |  |
| Local Start Time (s)   | 45.5     |         | 17.5    | 27.5  | 4.5   | 45.5  | 17.5  | 27.5  |  |
| Local Yield (s)        | 53.5     |         | 24.5    | 41    | 14.5  | 0     | 24.5  | 41    |  |
| Local Yield 170(s)     | 53.5     | 2       | 24.5    | 30    | 14.5  | 49    | 24.5  | 30    |  |
| Intersection Summary   |          |         |         |       |       |       |       |       |  |
| Cycle Length           |          |         | 60      |       |       |       |       |       |  |
| Control Type 🛛 🖌       | Actuate  | d-Coord | linated |       |       |       |       |       |  |
|                        |          |         |         |       |       |       |       |       |  |

Natural Cycle 60 Offset: 52 (87%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 101: Halsey St & 122nd Ave

| Splits and Phase | s: 191: Halsey St & 1 | 122nd Ave   |                   |  |
|------------------|-----------------------|-------------|-------------------|--|
| ▲ at             | ↓ <sub>n2</sub>       | ړ ≁         | <b>4</b> ≏_<br>⊳4 |  |
| 11 8             | 21 *                  | 10 в        | 18 s              |  |
| <b>1</b> 26      | ► <sub>65</sub>       | <b>f</b> 07 | <b>*</b> 18       |  |
| 19%              | 13 *                  | 10 \$       | 18 2              |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 9

Timing Report, Sorted By Phase 196: Burnside St & 122nd Ave

| 190. Dumside St &      | 12210   | 1/10    |         |         |        |          |         |       | 10/0 1/200 |
|------------------------|---------|---------|---------|---------|--------|----------|---------|-------|------------|
|                        | *       | +       | •       | 4       | ≁      | +        | 7       | 1     |            |
| Phase Number           | 1       | 2       | 3       | - 4     | 5      | 6        | 7       | 8     |            |
| Movement               | WBL     | EBT     | NBL     | SBT     | EBL    | WBT      | SBL     | NBT   |            |
| Lead/Lag               | Lag     | Lead    | Lag     | Lead    | Lag    | Lead     | Lag     | Lead  |            |
| Lead-Lag Optimize      |         |         |         |         |        |          |         |       |            |
| Recall Mode            | None    | None    | None    | C-Max   | None   | None     | None    | C-Max |            |
| Maximum Split (s)      | 10      | 20      | 10      | 20      | 10     | 20       | 10      | 20    |            |
| Maximum Split (%)      | 16.7%   | 33.3%   | 16.7%   | 33.3%   | 16.7%  | 33.3%    | 16.7%   | 33.3% |            |
| Minimum Split (s)      | 8       | 20      | 8       | 20      | 8      | 20       | 8       | 20    |            |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5     | 3      | 3.5      | 3       | 3.5   |            |
| All-Red Time (s)       | 0       | 1       | 0       | 1       | 0      | 1        | 0       | 1     |            |
| Minimum Initial (s)    | - 4     | - 4     | - 4     | - 4     | - 4    | - 4      | - 4     | - 4   |            |
| /ehicle Extension (s)  | 3       | 3       | 3       | 3       | 3      | 3        | 3       | 3     |            |
| dinimum Gap (s)        | 3       | 3       | 3       | 3       | 3      | 3        | 3       | 3     |            |
| Time Before Reduce (   | s) 0    | 0       | 0       | 0       | 0      | 0        | 0       | 0     |            |
| Time To Reduce (s)     | 0       | 0       | 0       | 0       | 0      | 0        | 0       | 0     |            |
| Walk Time (s)          |         | 4       |         | 4       |        | 4        |         | 4     |            |
| Flash Dont Walk (s)    |         | 11      |         | 11      |        | 11       |         | 11    |            |
| Dual Entry             | No      | Yes     | No      | Yes     | No     | Yes      | No      | Yes   |            |
| nhibit Max             | Yes     | Yes     | Yes     | Yes     | Yes    | Yes      | Yes     | Yes   |            |
| Start Time (s)         | 0.5     | 40.5    | 30.5    | 10.5    | 0.5    | 40.5     | 30.5    | 10.5  |            |
| End Time (s)           | 10.5    | 0.5     | 40.5    | 30.5    | 10.5   | 0.5      | 40.5    | 30.5  |            |
| rield/Force Off (s)    | 7.5     | 56      | 37.5    | 26      | 7.5    | 56       | 37.5    | 26    |            |
| rield/Force Off 170(s) | 7.5     | 45      | 37.5    | 15      | 7.5    | 45       | 37.5    | 15    |            |
| _ocal Start Time (s)   | 34.5    | 14.5    | 4.5     | 44.5    | 34.5   | 14.5     | 4.5     | 44.5  |            |
| Local Yield (s)        | 41.5    | 30      | 11.5    | 0       | 41.5   | 30       | 11.5    | 0     |            |
| Local Yield 170(s)     | 41.5    | 19      | 11.5    | 49      | 41.5   | 19       | 11.5    | 49    |            |
| ntersection Summary    |         |         |         |         |        |          |         |       |            |
| Cycle Length           |         |         | 60      |         |        |          |         |       |            |
| Control Type 🛛 🗛       | Actuate | d-Coord | linated |         |        |          |         |       |            |
| Natural Cycle          |         |         | 60      |         |        |          |         |       |            |
| Offset: 26 (43%), Refe | renced  | to phas | se 4:SB | T and 8 | B:NBT, | Start of | fYellov | ν     |            |

Splits and Phases: 196: Burnside St & 122nd Ave

| → a2       | 🖌 al | a4          | <b>1</b> •3     |
|------------|------|-------------|-----------------|
| 2D 8       | 1Ds  | 2D s        | 1D:s            |
| <b>e</b> 6 | ▲ 45 | <b>1</b> a8 | ► <sub>a7</sub> |
| 20:0       | 10%  | 20:s        | 10%             |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 10

Timing Report, Sorted By Phase 205: San Rafael & 122nd Ave

|                        | 4       |         | +       | 4     | +     |       |
|------------------------|---------|---------|---------|-------|-------|-------|
|                        | ٦       | •       |         |       |       | -     |
| Phase Number           | 1       | 2       | - 4     | 5     | 6     | 8     |
| Movement               | NBL     | SBT     | WBTL    | SBL   | NBT   | EBTL  |
| Lead/Lag               | Lead    | Lag     |         | Lead  | Lag   |       |
| Lead-Lag Optimize      |         |         |         |       |       |       |
| Recall Mode            | None    | C-Max   | None    | None  | C-Max | None  |
| Maximum Split (s)      | 10      | 28      | 22      | 15    | 23    | 22    |
| Maximum Split (%)      | 16.7%   | 46.7%   | 36.7%   | 25.0% | 38.3% | 36.7% |
| Minimum Split (s)      | 8       |         | 20      | 8     | 20.5  | 20    |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3     | 3.5   | 3     |
| All-Red Time (s)       | 0       | 1       | 0       | 0     | 1     | 0     |
| Minimum Initial (s)    | 4       | - 4     | - 4     | - 4   | - 4   | - 4   |
| Vehicle Extension (s)  |         |         | 3       | 3     | 3     | 3     |
| Minimum Gap (s)        | 3       | 3       | 3       | 3     | 3     | 3     |
| Time Before Reduce     | (s) 0   | 0       | 0       | 0     | 0     | 0     |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     |
| Walk Time (s)          |         | 5       | 5       |       | 5     | - 5   |
| Flash Dont Walk (s)    |         | 11      | 11      |       | 11    | 11    |
| Dual Entry             | No      | Yes     | Yes     | No    | Yes   | Yes   |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   |
| Start Time (s)         | 2.5     | 12.5    | 40.5    | 2.5   | 17.5  | 40.5  |
| End Time (s)           | 12.5    | 40.5    | 2.5     | 17.5  | 40.5  | 2.5   |
| Yield/Force Off (s)    | 9.5     | 36      | 59.5    | 14.5  | 36    | 59.5  |
| Yield/Force Off 170(s) | 9.5 (   | - 25    | 48.5    | 14.5  | - 25  | 48.5  |
| Local Start Time (s)   | 26.5    | 36.5    | 4.5     | 26.5  | 41.5  | 4.5   |
| Local Yield (s)        | 33.5    | 0       | 23.5    | 38.5  | 0     | 23.5  |
| Local Yield 170(s)     | 33.5    | 49      | 12.5    | 38.5  | 49    | 12.5  |
| Intersection Summary   | /       |         |         |       |       |       |
| Cycle Length           |         |         | 60      |       |       |       |
| Control Type           | Actuate | d-Coord | linated |       |       |       |

| Control Type      | Actuated-Coordinated      |                            |
|-------------------|---------------------------|----------------------------|
| Natural Cycle     | 50                        |                            |
| Offset: 36 (60%), | Referenced to phase 2:SBT | and 6:NBT, Start of Yellow |

Splits and Phases: 205: San Rafael & 122nd Ave

| ▲ a1     | ↓ n2        |      |
|----------|-------------|------|
| 1D s 🔰 🕹 | 2B s        | 22.8 |
| S 45     | <b>†</b> 26 | → øB |
| 15%      | 23%         | Z2 a |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 11

Timing Report, Sorted By Phase 210: Fremont St & 122nd Ave

|                        | 1     | Ŧ     | 7     | - 5   | †     | -4    |
|------------------------|-------|-------|-------|-------|-------|-------|
| Phase Number           | 1     | 2     | 4     | 5     | 6     | 8     |
| Movement               | NBL   | SBT   | WBTL  | SBL   | NBT   | EBTL  |
| Lead/Lag               | Lead  | Lag   |       | Lead  | Lag   |       |
| Lead-Lag Optimize      |       |       |       |       |       |       |
| Recall Mode            | None  | Max   | None  | None  | Max   | None  |
| Maximum Split (s)      | 9     | 21    | 20    | 9     | 21    | 20    |
| Maximum Split (%)      | 12.9% | 30.0% | 28.6% | 12.9% | 30.0% | 28.6% |
| Minimum Split (s)      | 8     | 20.5  | 20    | 8     | 20.5  | 20    |
| Yellow Time (s)        | 3     | 3.5   | 3     | 3     | 3.5   | 3     |
| All-Red Time (s)       | 0     | 1     | 0     | 0     | 1     | 0     |
| Minimum Initial (s)    | - 4   | - 4   | - 4   | - 4   | - 4   | - 4   |
| Vehicle Extension (s)  | 3     | 3     | 3     | 3     | 3     | 3     |
| Minimum Gap (s)        | 3     | 3     | 3     | 3     | 3     | 3     |
| Time Before Reduce (   | (s) O | 0     | 0     | 0     | 0     | 0     |
| Time To Reduce (s)     | 0     | 0     | 0     | 0     | 0     | 0     |
| Walk Time (s)          |       | 5     | 5     |       | 5     | 5     |
| Flash Dont Walk (s)    |       | 11    | 11    |       | 11    | 11    |
| Dual Entry             | No    | Yes   | Yes   | No    | Yes   | Yes   |
| Inhibit Max            | Yes   | Yes   | Yes   | Yes   | Yes   | Yes   |
| Start Time (s)         | 0     | 9     | 30    | 0     | 9     | 50    |
| End Time (s)           | 9     | 30    | 50    | 9     | 30    | 0     |
| Yield/Force Off (s)    | 6     | 25.5  | 47    | 6     | 25.5  | 67    |
| Yield/Force Off 170(s) | 6     | 14.5  | 36    | 6     | 14.5  | 56    |
| Local Start Time (s)   | 44.5  | 53.5  | 4.5   | 44.5  | 53.5  | 24.5  |
| Local Yield (s)        | 50.5  | 0     | 21.5  | 50.5  | 0     | 41.5  |
| Local Yield 170(s)     | 50.5  | 59    | 10.5  | 50.5  | 59    | 30.5  |
| Intersection Summary   |       |       |       |       |       |       |
| Cycle Length           |       |       | 70    |       |       |       |

| Cycle Length  | 70               |  |
|---------------|------------------|--|
| Control Type  | Semi Act-Uncoord |  |
| Natural Cycle | 70               |  |

Splits and Phases: 210: Fremont St & 122nd Ave

| ▲ at            |      | 🔽 🖬  | <b>4</b> в |
|-----------------|------|------|------------|
| 9:              | 21 * | 20 в | 20 s       |
| ► <sub>25</sub> | t ee |      |            |
| 9.8             | 21 * |      |            |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 12

Timing Report, Sorted By Phase 213: I-84 Off-Ramp & 122nd Ave

Offset: 42 (70%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 213: I-84 Off-Ramp & 122nd Ave

| ↓ a2                   |             | 1 04 |  |
|------------------------|-------------|------|--|
| 398                    |             | 21 * |  |
| <b>↓</b> <sub>25</sub> | <b>1</b> 66 |      |  |
| 16%                    | <b>辺</b> *  |      |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 13

Timing Report, Sorted By Phase 227: Shaver Ave & 122nd Ave

|                        | 1       | +       | 1     | - <b>`</b> + | Ť     | -4    |  |
|------------------------|---------|---------|-------|--------------|-------|-------|--|
| Phase Number           | 1       | 2       | 4     | 5            | 6     | 8     |  |
| Movement               | NBL     | SBT     | WBTL  | SBL          | NBT   | EBTL  |  |
| Lead/Lag               | Lead    | Lag     |       | Lead         | Lag   |       |  |
| Lead-Lag Optimize      |         |         |       |              |       |       |  |
| Recall Mode            | None    | C-Max   | None  | None         | C-Max | None  |  |
| Maximum Split (s)      | 13      | 24      | 23    | 12           | 25    | 23    |  |
| Maximum Split (%)      | 21.7%   | 40.0%   | 38.3% | 20.0%        | 41.7% | 38.3% |  |
| Minimum Split (s)      | 8.5     | 20.5    | 20    | 8            | 20.5  | 20    |  |
| Yellow Time (s)        | 3       | 3.5     | 3     | 3            | 3.5   | 3     |  |
| All-Red Time (s)       | 0       | 1       | 0     | 0            | 1     | 0     |  |
| Minimum Initial (s)    | - 4     | - 4     |       | - 4          |       | - 4   |  |
| Vehicle Extension (s)  | 3       | 3       | 3     | 3            | 3     | 3     |  |
| Minimum Gap (s)        | 3       | 3       | 3     | 3            | 3     | 3     |  |
| Time Before Reduce (   | (s) O   | 0       | 0     | 0            | 0     | 0     |  |
| Time To Reduce (s)     | 0       | 0       | 0     | 0            | 0     | 0     |  |
| Walk Time (s)          |         | 5       | 5     |              | - 5   | 5     |  |
| Flash Dont Walk (s)    |         | 11      | 11    |              | 11    | 11    |  |
| Dual Entry             | No      | Yes     | Yes   | No           | Yes   | Yes   |  |
| Inhibit Max            | Yes     | Yes     | Yes   | Yes          | Yes   | Yes   |  |
| Start Time (s)         | 33.5    | 46.5    | 10.5  | 33.5         | 45.5  | 10.5  |  |
| End Time (s)           | 46.5    | 10.5    | 33.5  | 45.5         | 10.5  | 33.5  |  |
| Yield/Force Off (s)    | 43.5    | 6       | 30.5  | 42.5         | 6     | 30.5  |  |
| Yield/Force Off 170(s) | 43.5    | 55      | 19.5  | 42.5         | 55    | 19.5  |  |
| Local Start Time (s)   | 27.5    | 40.5    | 4.5   | 27.5         | 39.5  | 4.5   |  |
| Local Yield (s)        | 37.5    | 0       | 24.5  | 36.5         | 0     | 24.5  |  |
| Local Yield 170(s)     | 37.5    | 49      | 13.5  | 36.5         | 49    | 13.5  |  |
| Intersection Summary   |         |         |       |              |       |       |  |
| Cycle Length           |         |         | 60    |              |       |       |  |
|                        | Actuate | d-Coord |       |              |       |       |  |
| Natural Cycle          |         |         | 50    |              |       |       |  |

## Offset: 6 (10%), Referenced to phase 2:SBT and 6:NBT, Start of Yellow

Splits and Phases: 227: Shaver Ave & 122nd Ave

| 🔨 at                   | <b>↓ n</b> 2 | at pi      |
|------------------------|--------------|------------|
| 13s                    | 24 a         | 23 s       |
| <b>₩</b> <sub>25</sub> | <b>†</b> ø6  | <b>→</b> ∞ |
| 12%                    | 25 %         | 23 8       |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 14

Timing Report, Sorted By Phase 230: Skidmore & 122nd Ave

|                        | 4       | ŧ       | 1       | ۶     |                     |
|------------------------|---------|---------|---------|-------|---------------------|
| Phase Number           | 1       | 2       | 6       | 8     |                     |
| Movement               | NBL     |         | NBT     | EBL   |                     |
| Lead/Lag               | Lead    |         |         |       |                     |
| Lead-Lag Optimize      |         |         |         |       |                     |
| Recall Mode            | None    | C-Max   | C-Max   | None  |                     |
| Maximum Split (s)      | 12      |         | 40      | 20    |                     |
|                        | 20.0%   | 46.7%   | 66.7%   | 33.3% |                     |
| Minimum Split (s)      | 8       |         | 20.5    | 20    |                     |
| Yellow Time (s)        | 3       |         | 3.5     | 3     |                     |
| All-Red Time (s)       | 0       | 1       | 1       | 0     |                     |
| Minimum Initial (s)    | 4       | 4       | - 4     | 4     |                     |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3     |                     |
| Minimum Gap (s)        | 3       | 3       | 3       | 3     |                     |
| Time Before Reduce (   | (s) O   | 0       | 0       | 0     |                     |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     |                     |
| Walk Time (s)          |         | 5       | 5       | 5     |                     |
| Flash Dont Walk (s)    |         | 11      | 11      | 11    |                     |
| Dual Entry             | No      | Yes     | Yes     | Yes   |                     |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   |                     |
| Start Time (s)         | 24.5    | 36.5    | 24.5    | 4.5   |                     |
| End Time (s)           | 36.5    | 4.5     | 4.5     | 24.5  |                     |
| Yield/Force Off (s)    | 33.5    | 0       | 0       | 21.5  |                     |
| Yield/Force Off 170(s) | 33.5    | 49      | 49      | 10.5  |                     |
| Local Start Time (s)   | 24.5    | 36.5    | 24.5    | 4.5   |                     |
| Local Yield (s)        | 33.5    | 0       | 0       | 21.5  |                     |
| Local Yield 170(s)     | 33.5    | 49      | 49      | 10.5  |                     |
| Intersection Summary   |         |         |         |       |                     |
| Cycle Length           |         |         | 60      |       |                     |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |       |                     |
| Natural Cycle          |         |         | 50      |       |                     |
|                        |         |         | DODT -  |       | BT, Start of Yellow |

Splits and Phases: 230: Skidmore & 122nd Ave



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 15

Timing Report, Sorted By Phase 234: Marx Way & 122nd Ave

|                        | ŧ       | -4      | 1       |
|------------------------|---------|---------|---------|
| Phase Number           | 2       | 6       | 8       |
| Movement               | SBT     | NBTL    | EBL     |
| Lead/Lag               |         |         |         |
| Lead-Lag Optimize      |         |         |         |
| Recall Mode            | C-Max   | C-Max   | None    |
| Maximum Split (s)      | 40      | 40      | 20      |
| Maximum Split (%)      | 66.7%   | 66.7%   | 33.3%   |
| Minimum Split (s)      | 20.5    | 20.5    | 20      |
| Yellow Time (s)        | 3.5     | 3.5     | 3       |
| All-Red Time (s)       | 1       | 1       | 0       |
| Minimum Initial (s) 👘  | - 4     |         |         |
| Vehicle Extension (s)  | 3       |         | 3       |
| Minimum Gap (s) 👘      | 3       | _       | 3       |
| Time Before Reduce (   |         | -       | 0       |
| Time To Reduce (s)     | 0       | -       | 0       |
| Walk Time (s)          | 5       | 5       | 5       |
| Flash Dont Walk (s) 👘  | 11      | 11      | 11      |
| Dual Entry             | Yes     |         |         |
| Inhibit Max            | Yes     |         |         |
| Start Time (s)         | 34.5    |         | 14.5    |
| End Time (s)           | 14.5    |         | 34.5    |
| Yield/Force Off (s)    | 10      |         | 31.5    |
| Yield/Force Off 170(s) |         | 59      | 20.5    |
| Local Start Time (s)   | 24.5    |         | 4.5     |
| Local Yield (s)        | 0       | _       | 21.5    |
| Local Yield 170(s)     | 49      | 49      | 10.5    |
| Intersection Summary   |         |         |         |
| Cycle Length           |         |         | 60      |
| One-test Trees (       | Actuate | d-Coord | linated |
| Control Type 🛛 🗚       |         |         |         |
| Natural Cycle          |         |         | 45      |

Splits and Phases: 234: Marx Way & 122nd Ave



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 16

Timing Report, Sorted By Phase 10: Foster Rd & 72nd

10/31/2006

|                      | الر ا     | +                       | 4       | -1     | 4       | -+       |
|----------------------|-----------|-------------------------|---------|--------|---------|----------|
| Phase Number         | 1         | 2                       | 3       | 4      | 5       | 6        |
| Movement             | EBL       |                         |         | NBTL   | WBL     | EBT      |
| Lead/Lag             | Lead      |                         | Lead    | Lag    | Lead    | Lag      |
| Lead-Lag Optimize    |           |                         |         | - v    |         |          |
| Recall Mode          | None      | C-Max                   | None    | None   | None    | C-Max    |
| Maximum Split (s)    | 10        | 22                      | 19      | 19     | 10      | 22       |
| Maximum Split (%)    | 14.3%     | 31.4%                   | 27.1%   | 27.1%  | 14.3%   | 31.4%    |
| Minimum Split(s)     | 8         | 20.5                    | 19      | 19     | 8       | 20.5     |
| Yellow Time (s)      | 3         | 3.5                     | 3       | 3      | 3       | 3.5      |
| All-Red Time (s)     | 0         | 1                       | 0       | 0      | 0       | 1        |
| Minimum Initial (s)  | 4         |                         |         | 4      | 4       | - 4      |
| Vehicle Extension (  |           |                         | 3       | 3      | 3       | 3        |
| Minimum Gap (s)      | 3         | 3                       | 3       | 3      | 3       | 3        |
| Time Before Reduc    | e(s) 0    | 0                       | 0       | 0      | 0       | 0        |
| Time To Reduce (s)   | ı 0       | 0                       | 0       | 0      | 0       | 0        |
| Walk Time (s)        |           | 4                       |         | 4      |         | 4        |
| Flash Dont Walk (s)  |           | 11                      |         | 11     |         | 11       |
| Dual Entry           | No        | Yes                     | Yes     | Yes    | No      | Yes      |
| Inhibit Max          | Yes       | <ul> <li>Yes</li> </ul> | Yes     | Yes    | Yes     | Yes      |
| Start Time (s)       | 46.5      | 56.5                    | 8.5     | 27.5   | 46.5    | 56.5     |
| End Time (s)         | 56.5      |                         | 27.5    | 46.5   | 56.5    | 8.5      |
| Yield/Force Off (s)  | 53.5      | 4                       | 24.5    | 43.5   | 53.5    | 4        |
| Yield/Force Off 170  |           |                         | 24.5    | 32.5   | 53.5    | 63       |
| Local Start Time (s) |           |                         | 4.5     | 23.5   | 42.5    | 52.5     |
| Local Yield (s)      | 49.5      | _                       | 20.5    | 39.5   | 49.5    | 0        |
| Local Yield 170(s)   | 49.5      | 59                      | 20.5    | 28.5   | 49.5    | 59       |
| Intersection Summa   | iry       |                         |         |        |         |          |
| Cycle Length         |           |                         | 70      |        |         |          |
| Control Type         | Actuate   | d-Coord                 | dinated |        |         |          |
| Natural Cycle        |           |                         | 70      |        |         |          |
| Offset: 4 (6%), Refe | renced to | phase                   | 2:WBT   | and 6: | EBT, St | art of Y |

Splits and Phases: 10: Foster Rd & 72nd

| A    | <b>←</b>    | ы <b>4</b> | <b>≺1</b> ₀4 |  |
|------|-------------|------------|--------------|--|
| 1D:s | 22 *        | 19 B       | 198          |  |
| 🖌 a5 | <b>→</b> 66 |            |              |  |
| 10:0 | Z:*         |            |              |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1 Timing Report, Sorted By Phase 30: Woodstock Blvd & 92nd Ave

|                         |         |            |       |             |           | _ |  |  |  |
|-------------------------|---------|------------|-------|-------------|-----------|---|--|--|--|
|                         | +       | - <b>`</b> | - †   | - <u></u> - |           |   |  |  |  |
|                         | •       |            |       |             |           |   |  |  |  |
| Phase Number            | 2       | _          | 6     | 8           |           |   |  |  |  |
| Movement                | SBT     | SBL        |       | EBTL        |           |   |  |  |  |
| Lead/Lag                |         | Lead       | Lag   |             |           |   |  |  |  |
| Lead-Lag Optimize       |         |            |       |             |           |   |  |  |  |
| Recall Mode             | None    | None       |       | C-Max       |           |   |  |  |  |
| Maximum Split (s)       | 36      | 13         | 23    | 24          |           |   |  |  |  |
| Maximum Split (%)       | 60.0%   | 21.7%      | 38.3% | 40.0%       |           |   |  |  |  |
| Minimum Split(s)        | 20      |            | 20    | 20.5        |           |   |  |  |  |
| Yellow Time (s)         | 3       | 3          | 3     | 3.5         |           |   |  |  |  |
| All-Red Time (s)        | 0       | 0          | 0     | 1           |           |   |  |  |  |
| Minimum Initial (s)     | - 4     | - 4        | - 4   | - 4         |           |   |  |  |  |
| Vehicle Extension (s)   | 3       | 3          | 3     | 3           |           |   |  |  |  |
| Minimum Gap (s)         | 3       | 3          | 3     | 3           |           |   |  |  |  |
| Time Before Reduce      | (s) 0   | 0          | 0     | 0           |           |   |  |  |  |
| Time To Reduce (s)      | 0       | 0          | 0     | 0           |           |   |  |  |  |
| Walk Time (s)           | 4       |            | 4     | 4           |           |   |  |  |  |
| Flash Dont Walk (s)     | 11      |            | 11    | 11          |           |   |  |  |  |
| Dual Entry              | Yes     | No         | Yes   | Yes         |           |   |  |  |  |
| Inhibit Max             | Yes     | Yes        | Yes   | Yes         |           |   |  |  |  |
| Start Time (s)          | 6.5     | 6.5        | 19.5  | 42.5        |           |   |  |  |  |
| End Time (s)            | 42.5    | 19.5       | 42.5  | 6.5         |           |   |  |  |  |
| Yield/Force Off (s)     | 39.5    | 16.5       | 39.5  | 2           |           |   |  |  |  |
| Yield/Force Off 170(s)  | ) 28.5  | 16.5       | 28.5  | 51          |           |   |  |  |  |
| Local Start Time (s)    | 4.5     | 4.5        | 17.5  | 40.5        |           |   |  |  |  |
| Local Yield (s)         | 37.5    | 14.5       | 37.5  | 0           |           |   |  |  |  |
| Local Yield 170(s)      | 26.5    | 14.5       | 26.5  | 49          |           |   |  |  |  |
| Intersection Summary    | (       |            |       |             |           |   |  |  |  |
| Cycle Length            |         |            | 60    |             |           |   |  |  |  |
|                         | Actuate | d-Coord    |       |             |           |   |  |  |  |
| Natural Cycle           |         | 2 20010    | 50    |             |           |   |  |  |  |
| Offset: 2 (3%), Refere  | nced to | phase \$   |       | Start       | of Yellow |   |  |  |  |
| Should be (Sho), Hereie |         | Phase      |       | - Diant -   |           |   |  |  |  |

Splits and Phases: 30: Woodstock Blvd & 92nd Ave

| ↓ o2 |             |      |
|------|-------------|------|
| 3B s |             |      |
| ► a5 | <b>1</b> 06 |      |
| 13%  | Z3 a        | 24 * |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 119: Foster Rd & 101st Ave

|                       | -         | 7       | •             | +     |
|-----------------------|-----------|---------|---------------|-------|
| Phase Number          | 2         | 4       | 5             | 6     |
| Movement              | EBT       | SBL     | EBL           | WBT   |
| Lead/Lag              |           |         | Lead          | Lag   |
| Lead-Lag Optimize     |           |         |               |       |
| Recall Mode           | C-Max     | None    | None          | C-Max |
| Maximum Split (s)     | 40        | 20      | 15            | 25    |
| Maximum Split (%)     | 66.7%     | 33.3%   | 25.0%         | 41.7% |
| Minimum Split (s)     | 20.5      |         | 8             | 20.5  |
| Yellow Time (s)       | 3.5       |         | 3             | 3.5   |
| All-Red Time (s)      | 1         | 0       | 0             | 1     |
| Minimum Initial (s)   | 4         | 4       | - 4           | - 4   |
| Vehicle Extension (s) | ı 3       | 3       | 3             | 3     |
| Minimum Gap (s)       | 3         |         | 3             | 3     |
| Time Before Reduce    | (s) O     | 0       | 0             | 0     |
| Time To Reduce (s)    | 0         | 0       | 0             | 0     |
| Walk Time (s)         | 5         | 5       |               | 5     |
| Flash Dont Walk (s)   | 11        | 11      |               | 11    |
| Dual Entry            | Yes       | Yes     | No            | Yes   |
| Inhibit Max           | Yes       | Yes     | Yes           | Yes   |
| Start Time (s)        | 52.5      | 32.5    | 52.5          | 7.5   |
| End Time (s)          | 32.5      | 52.5    | 7.5           | 32.5  |
| Yield/Force Off (s)   | 28        | 49.5    | 4.5           | 28    |
| Yield/Force Off 170(s | s) 17     | 38.5    | 4.5           | 17    |
| Local Start Time (s)  | 24.5      | 4.5     | 24.5          | 39.5  |
| Local Yield (s)       | 0         |         | 36.5          | 0     |
| Local Yield 170(s)    | 49        | 10.5    | 36.5          | 49    |
| Intersection Summar   | v         |         |               |       |
| Cycle Length          | ,         |         | 60            |       |
|                       | Actuate   | d-Coore |               |       |
| Notice Conte          | , conduce | 0.00010 | ninated<br>FO |       |

Natural Cycle 50 Offset: 28 (47 %), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Splits and Phases: 119: Foster Rd & 101st Ave

| → a2 |                | ₩ a4 |  |
|------|----------------|------|--|
| 4Ds  |                | 2Ds  |  |
| ▲ ₀5 | <b>4</b><br>26 |      |  |
| 15%  | 25%            |      |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 136: Foster Rd & 110th Dr

|                               | ٨       | ÷       |         | 4     | -+    | 4    |
|-------------------------------|---------|---------|---------|-------|-------|------|
| Phase Number                  | 1       | 2       | 4       | 5     | 6     | 8    |
| Movement                      | EBL     |         | NBTL    | WBL   |       | SBTL |
|                               | Lead    |         | NBIL    | Lead  |       | SBIL |
| Lead/Lag<br>Lead-Lag Optimize | Lead    | Lag     |         | Lead  | Lag   |      |
| Recall Mode                   | None    | C-Max   | None    | None  | C-Max | None |
| Maximum Split (s)             | 11      | 29      | 20      | 12    | 28    | 20   |
| Maximum Split (%)             |         |         |         |       | 46.7% |      |
| Minimum Split(%)              | 10.3%   | 20.5    | 20      | 20.0% | 20.5  | 20   |
| Yellow Time (s)               | 3       | 20.5    | 20      | 3     | 20.5  | 20   |
| All-Red Time (s)              | 0       | 3.5     | 0       | 0     | 3.0   | 0    |
| Minimum Initial (s)           | 4       |         | 4       | 4     |       | 4    |
| Vehicle Extension (s)         |         | 3       | 3       | 3     | 3     | 3    |
| Minimum Gap (s)               | 3       | 3       | 3       | 3     | 3     | 3    |
| Time Before Reduce            | -       | 0       | 0       | 0     | 0     | 0    |
| Time To Reduce (s)            | (5) 0   | 0       | 0       | 0     | 0     | 0    |
| Walk Time (s)                 | 0       | 5       | 5       |       | 5     | 5    |
| Flash Dont Walk (s)           |         | 11      | 11      |       | 11    | 11   |
| Dual Entry                    | No      | Yes     | Yes     | No    | Yes   | Yes  |
| Inhibit Max                   | Yes     |         | Yes     | Yes   | Yes   | Yes  |
| Start Time (s)                | 24.5    | 35.5    | 4.5     | 24.5  | 36.5  | 4.5  |
| End Time (s)                  | 35.5    | 4.5     | 24.5    | 36.5  | 4.5   | 24.5 |
| Yield/Force Off (s)           | 32.5    | 0       | 21.5    | 33.5  | 0     | 21.5 |
| Yield/Force Off 170(s)        |         | 49      | 10.5    | 33.5  | 49    | 10.5 |
| Local Start Time (s)          | 24.5    | 35.5    | 4.5     | 24.5  | 36.5  | 4.5  |
| Local Yield (s)               | 32.5    | 0.00    | 21.5    | 33.5  | 0     | 21.5 |
| Local Yield 170(s)            | 32.5    | 49      | 10.5    | 33.5  | 49    | 10.5 |
|                               |         |         | .0.0    | 00.0  |       | 10.0 |
| Intersection Summary          | (       |         |         |       |       |      |
| Cycle Length                  |         |         | 60      |       |       |      |
| Control Type 👘                | Actuate | d-Coord | linated |       |       |      |
| Natural Cycle                 |         |         | 50      |       |       |      |

## Offset: 0 (0%), Referenced to phase 2:WBT and 6:EBT, Start of Yellow

Splits and Phases: 136: Foster Rd & 110th Dr

| ▶ <sub>a1</sub> | ← <sub>n2</sub> | <b>*1</b> .4             |
|-----------------|-----------------|--------------------------|
| 11 8            | 29 :            | 2D 8                     |
| <b>€</b> 25     | - <b>→</b> ø6   | <b>4</b> ≥ <sub>28</sub> |
| 12:0            | 28 %            | 20:3                     |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 4026: Foster Rd & 92nd Ave

|                        | Ŧ       | 1       | 1       | 4       |
|------------------------|---------|---------|---------|---------|
| Phase Number           | 2       | - 4     | 7       | 8       |
| Movement               | WBTL    | NBT     | NBL     | SBT     |
| Lead/Lag               |         |         | Lag     |         |
| Lead-Lag Optimize      |         |         |         |         |
| Recall Mode            | C-Max   | Ped     | None    | Ped     |
| Maximum Split (s)      | 30      | 30      | 12      | 18      |
| Maximum Split (%)      | 50.0%   | 50.0%   | 20.0%   | 30.0%   |
| Minimum Split (s)      | 17.6    | 18.2    | 10.2    | 17.2    |
| Yellow Time (s)        | 3.6     | 3.2     | 3.2     | 3.2     |
| All-Red Time (s)       | 1       | 1       | 1       | 1       |
| Minimum Initial (s)    | 9       | 10      | 6       | 9       |
| Vehicle Extension (s)  | 0.2     | 0.2     | 0.2     | 0.2     |
| Minimum Gap (s)        | 10      | 8       | 5       | 25      |
| Time Before Reduce     | (s) 0   | 0       | 0       | 0       |
| Time To Reduce (s)     | 0       | 0       | 0       | 0       |
| Walk Time (s)          | 4       | 4       | 0       | 4       |
| Flash Dont Walk (s)    | 9       | 10      | 0       | 9       |
| Dual Entry             | Yes     | Yes     | No      | Yes     |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes     |
| Start Time (s)         | 58      | 28      | 46      | 28      |
| End Time (s)           | 28      | 58      | 58      | - 46    |
| Yield/Force Off (s)    | 23.4    | 53.8    | 53.8    | 41.8    |
| Yield/Force Off 170(s) | ) 14.4  | 43.8    | 53.8    | 32.8    |
| Local Start Time (s)   | 0       | 30      | 48      | 30      |
| Local Yield (s)        | 25.4    |         | 55.8    | 43.8    |
| Local Yield 170(s)     | 16.4    | 45.8    | 55.8    | 34.8    |
| Intersection Summary   | (       |         |         |         |
| Cycle Length           |         |         | 60      |         |
| Control Type           | Actuate | d-Coord | linated |         |
| Natural Cycle          |         |         | 45      |         |
| Offset: 58 (97%), Refe | erenced | to phas | se 2:WB | TL, Sta |
| Splits and Phases:     |         |         | d & 02n |         |



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 5

Timing Report, Sorted By Phase 4134: Woodstock Blvd & I-205 NB Ramp

| Average         EBTL         NBT           ead/Lag         ead/Lag         ead/Lag           eeadl         Maximum Split(s)         26         34           Aaximum Split(s)         26         34           Maximum Split(s)         26         33           frellow Time (s)         4         5           UI-Red Time (s)         1         1           Minimum Initial (s)         20         27           /rehicle Extension (s)         0.2         0.2           Minimum Gap (s)         10         10           Time To Reduce (s)         0         0           Time To Reduce (s)         0         0           Valk Time (s)         4         15           Iash Dont Walk (s)         17         12           Vual Entry         Yes         Yes           Start Time (s)         0         26           Cind Time (s)         28         0           Tield/Force Off (s)         21         54           Cical Yield (s)         21         54           Occal Yield (s)         21         54           Occal Yield (s)         21         54           Occal Yield (s)         21         54                                                                               |                                       | <u>_</u> | 1        |               |        |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|----------|---------------|--------|------|--|--|
| ead/Lag         ead/Lag Optimize         tecall Mode       C-Max         Aaximum Split(s)       26         34ximum Split(s)       26         Aaximum Split(s)       26         41       33         Minimum Split(s)       26         26       33         *ellow Time (s)       4         5       5         Minemum Initial (s)       20         27       //ehole Extension (s)         /ehole Extension (s)       0.2         0.2       0.2         /inimum Gap (s)       10         ime To Reduce (s)       0         0       0         Valk Time (s)       4         15       13ash Dont Walk (s)         17       12         vala Entry       Yes         Ves       Yes         Notal Entry       Yes         Yes       Yes         Notal Time (s)       0         28       0         'field/Force Off (s)       21         54       54         ocal Yield (s)       21         54       54         ocal Yield (s)       21         ocal Yiel                                                                                                                                                                                                                                          | Phase Number                          | 2        | 4        |               |        |      |  |  |
| eead-Lag Optimize         tecall Mode       C-Max       Ped         daximum Split(s)       28       34         daximum Split(s)       28       34         daximum Split(s)       28       33         'ellow Time (s)       4       5         Minimum Split(s)       28       33         'ellow Time (s)       4       5         Minimum Split(s)       20       27         /ehiole Extension (s)       0.2       0.2         Minimum Gap (s)       10       1         'ine Before Reduce (s)       0       0         'ime To Reduce (s)       0       0         'ima Time (s)       4       15         'lash Dont Walk (s)       17       12         vual Entry       Yes       Yes         'ield/Force Off (s)       21       54         'ield/Force Off (s)       21       54         ocal Yield (s)       21       54         ocal Yield 170(s)       4 <t< td=""><td>Aovement</td><td>EBTL</td><td>NBT</td><td></td><td></td><td></td><td></td><td></td></t<>                                             | Aovement                              | EBTL     | NBT      |               |        |      |  |  |
| Accall Mode       C-Max       Ped         Aaximum Split(s)       26       34         Aaximum Split(s)       43.3% 56.7%         Ainimum Split(s)       26       33         'ellow Time (s)       1       1         Ainimum Initial (s)       20       27         //ellow Time (s)       1       1         Ainimum Initial (s)       20       27         //ellow Time (s)       10       10         ime Before Reduce (s)       0       0         Valk Time (s)       4       15         Tiash Dont Walk (s)       17       12         Vual Entry       Yes       Yes         Nat Time (s)       0       26         Ind Time (s)       0       26         .ocal Start Time (s)       0       26         .ocal Yield (s)       21       54         .ocal Yield (s)       21       54         .ocal Yield 170(s)       4       42         .ocal Yield 170(s)       4       42         .ocal Yield 170(s)       4                                                                                                                                                           | Lead/Lag                              |          |          |               |        |      |  |  |
| Aaximum Split (s)       26       34         Maximum Split (s)       43.3 % 56.7 %         Minimum Split (s)       26       33         Yellow Time (s)       4       5         UI-Red Time (s)       1       1         Minimum Initial (s)       20       27         Yehole Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time To Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         Dual Entry       Yes       Yes         Nakt Time (s)       0       26         Ind Time (s)       0       26         Ind Time (s)       26       0         Yield/Force Off (s)       21       54         Yield/Force Off 170(s)       4       42         Local Yield (s)       21       54         Social Yield 170(s)       4       42         Maximum Type       Actuated-Coordinated         Latural Cycle       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Siplits and Phases:       4134: Woodstock Blvd & I-205 NB Ramp         Image       134 <td>ead-Lag Optimize</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>     | ead-Lag Optimize                      |          |          |               |        |      |  |  |
| Aaximum Split (%)       43.3 % 56.7 %         Ainimum Split (s)       26       33         'ellow Time (s)       4       5         Wi-Red Time (s)       1       1         Ainimum Initial (s)       20       27         'ehiole Extension (s)       0.2       0.2         Ainimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         Dual Entry       Yes       Yes         Nat Time (s)       0       26         ind Time (s)       0       26         ind Time (s)       26       0         'ield/Force Off (s)       21       54         'ield/Force Off (s)       21       54         ocal Start Time (s)       0       26         ocal Yield (s)       21       54         control Type       Actuated-Coordinated         atural Cycle       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Siplits and Phases:       4134: Woodstock Blvd & I-205 NB Ramp         I ad       I ad                                                                                                                                                 | Recall Mode                           | C-Max    | Ped      |               |        |      |  |  |
| Minimum Split (s)       26       33         'ellow Time (s)       4       5         Minimum Initial (s)       20       27         /ehiole Extension (s)       0.2       0.2         /inimum Gap (s)       10       10         'ime Before Reduce (s)       0       0         Valk Time (s)       4       15         Nak Time (s)       4       15         Valk Time (s)       4       15         Nual Entry       Yes       Yes         Neat Time (s)       0       26         Ind Time (s)       0       26         Indel/Force Off (170(s)       4       42         Indel/Force Off 170(s)       4       42         Indel/Force Off I TO(s)       4       42         Indel/Force Off I TO(s)       4       42         Indel/Force Off I TO(s)       4       42         Intersection Summary                                                                                                                                                         | vlaximum Split (s)                    | 26       | 34       |               |        |      |  |  |
| Yellow Time (s)       4       5         MI-Red Time (s)       1       1         Minimum Initial (s)       20       27         Yehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         Dual Entry       Yes       Yes         Start Time (s)       0       26         and Time (s)       26       0         Yield/Force Off (s)       21       54         Yield/Force Off (s)       21       54         Yield Yor(s)       4       42         Accord Yield (s)       21       54         Occal Yield (s)       21       54         Occal Yield (s)       21       54         Occal Yield (s)       4       42         Intersection Summany       60         Control Type       Actuated-Coordinated         Notal Yield (s)       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Offset: and Phases:       4134: Woodstock Blvd                                                                                                           | Maximum Split (%)                     | 43.3%    | 56.7%    |               |        |      |  |  |
| Yellow Time (s)       4       5         MI-Red Time (s)       1       1         Minimum Initial (s)       20       27         Yehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         Dual Entry       Yes       Yes         Start Time (s)       0       26         and Time (s)       26       0         Yield/Force Off (s)       21       54         Yield/Force Off (s)       21       54         Yield Yor(s)       4       42         Accord Yield (s)       21       54         Occal Yield (s)       21       54         Occal Yield (s)       21       54         Occal Yield (s)       4       42         Intersection Summany       60         Control Type       Actuated-Coordinated         Notal Yield (s)       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Offset: and Phases:       4134: Woodstock Blvd                                                                                                           | Minimum Split (s)                     | 26       | 33       |               |        |      |  |  |
| Ainimum Initial (s)       20       27         Vehicle Extension (s)       0.2       0.2         Ainimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         vual Entry       Yes       Yes         nhibit Max       Yes       Yes         O       26       0         rield/Force Off (s)       21       54         Yield/Force Off 170(s)       4       42         .ocal Start Time (s)       0       26         .ocal Yield (s)       21       54         .ocal Yield (s)       21       54         .ocal Yield 170(s)       4       42         .ocal Yield 170(s)       60       0         .ontor Type       Actuated-Coordinated         .otatural Cycle       60         .offset: 0 (0%), Referenced to phas                                                                                                                             | Yellow Time (s)                       | 4        | 5        |               |        |      |  |  |
| Minimum Initial (s)       20       27         Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Valk Time (s)       4       15         Iash Dont Walk (s)       17       12         Vual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Nual Entry       Yes       Yes         Nual Entry       Yes       Yes         Nat Time (s)       0       26         Ind Time (s)       26       0         Yield/Force Off (s)       21       54         Yield/Force Off 170(s)       4       42         Jocal Start Time (s)       0       26         Jocal Start Time (s)       0       26         Jocal Yield (s)       21       54         Jocal Yield (s)       21       54         Jocal Yield 170(s)       4       42         Jocal Yield 170(s)       60       0         Jorthot Typ                                                                                                                                               | All-Red Time (s)                      | 1        | 1        |               |        |      |  |  |
| fehicle Extension (s)       0.2       0.2         dinimum Gap (s)       10       10         time Before Reduce (s)       0       0         time To Reduce (s)       0       0         Valk Time (s)       4       15         tlash Dont Walk (s)       17       12         val Entry       Yes       Yes         nhibit Max       Yes       Yes         that Time (s)       0       26         ind Time (s)       26       0         ifeld/Force Off (s)       21       54         .ocal Start Time (s)       0       26         .ocal Start Time (s)       0       26         .ocal Yield (s)       21       54         .ocal Yield (s)       21       54         .ocal Yield 170(s)       4       42         .ocal Yield 170(s)       60       0         .ontori Type       Actuated-Coordinated         .otatural Cycle       60         .offset: 0 (0%), Referenced to ph                                                                                                                             | Minimum Initial (s)                   | 20       | 27       |               |        |      |  |  |
| Ainimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         Dual Entry       Yes       Yes         Dual Entry       2       0       2         Otat Time (s)       0       26       0         Occal Start Time (s)       0       26       0         Outeret Entry       Ad                                                                                                                                                                                   | Vehicle Extension (s)                 | 0.2      | 0.2      |               |        |      |  |  |
| Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       4       15         Tash Dont Walk (s)       17       12         vual Entry       Yes       Yes         nual                                                                                                                                                                                            | Minimum Gap (s)                       | 10       | 10       |               |        |      |  |  |
| Valk Time (s)     4     15       Tash Dont Walk (s)     17     12       Dual Entry     Yes     Yes       Start Time (s)     0     26       and Time (s)     26     0       rield/Force Off (s)     21     54       rield/Force Off 170(s)     4     42       .ocal Start Time (s)     0     26       .ocal Start Time (s)     0     26       .ocal Yield (s)     21     54       .ocal Yield (s)     21     54       .ocal Yield 170(s)     4     42       .otal Yield 170(s)     4     60       .ontrol Type     Actuated-Coordinated       .otal Atural Cycle     60       .offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green       .optimation of the set in | 1.17                                  | (s) O    | 0        |               |        |      |  |  |
| Tash Dont Walk (s)       17       12         Dual Entry       Yes       Yes         nhibit Max       Yes       Yes         start Time (s)       0       26         ind Time (s)       26       0         rield/Force Off (s)       21       54         rield/Force Off 170(s)       4       42         .ocal Start Time (s)       0       26         .ocal Yield (s)       21       54         .ocal Yield (s)       21       54         .ocal Yield 170(s)       4       42         .otal Yield 170(s)       60       0         .otal                                                                                                                                                | Time To Reduce (s)                    | 0        | 0        |               |        |      |  |  |
| bual Entry Yes   phibit Max Yes   phibit Max Yes   Yes Yes   start Time (s) 0   26 0   ield/Force Off (s) 21   54 Start Time (s)   0 26   .ocal Start Time (s) 0   0 26   .ocal Yield (s) 21   .ocal Yield (s) 21   .ocal Yield (s) 21   .ocal Yield 170(s) 4   42 .ocal Yield 170(s)   4 42   Intersection Summary Evole Length Control Type Actuated-Coordinated Natural Cycle Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp Actual Phases: 4134: Woodstock Blvd & I-205 NB Ramp Actual Phases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Walk Time (s)                         | 4        | 15       |               |        |      |  |  |
| bual Entry Yes   phibit Max Yes   phibit Max Yes   Yes Yes   start Time (s) 0   26 0   ield/Force Off (s) 21   54 Start Time (s)   0 26   .ocal Start Time (s) 0   0 26   .ocal Yield (s) 21   .ocal Yield (s) 21   .ocal Yield (s) 21   .ocal Yield 170(s) 4   42 .ocal Yield 170(s)   4 42   Intersection Summary Evole Length Control Type Actuated-Coordinated Natural Cycle Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp Actual Phases: 4134: Woodstock Blvd & I-205 NB Ramp Actual Phases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flash Dont Walk (s)                   | 17       | 12       |               |        |      |  |  |
| Start Time (s)     0     26       Ind Time (s)     26     0       Start Time (s)     21     54       Start Time (s)     0     26       Socal Start Time (s)     0     26       Socal Yield (s)     21     54       Socal Yield (s)     21     54       Socal Yield (s)     21     54       Socal Yield 170(s)     4     42       Intersection Summary     60       Sontrol Type     Actuated-Coordinated       Sontrol Type     Actuated-Coordinated       Statural Cycle     60       Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green       Splits and Phases:     4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dual Entry                            | Yes      | Yes      |               |        |      |  |  |
| ind Time (s) 26 0<br>(ield/Force Off (s) 21 54<br>(ield/Force Off 170(s) 4 42<br>.ocal Start Time (s) 0 26<br>.ocal Yield (s) 21 54<br>.ocal Yield 170(s) 4 42<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Latural Cycle 60<br>Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green<br>Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inhibit Max                           | Yes      | Yes      |               |        |      |  |  |
| Tield/Force Off (s)       21       54         Tield/Force Off 170(s)       4       42         Local Start Time (s)       0       26         Local Yield (s)       21       54         Local Yield (s)       21       54         Local Yield 170(s)       4       42         Intersection Summary       60         Cycle Length       60         Control Type       Actuated-Coordinated         Latural Cycle       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Splits and Phases:       4134: Woodstock Blvd & I-205 NB Ramp         Image: Phase 2       Image: Phase 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Start Time (s)                        | 0        | 26       |               |        |      |  |  |
| Yield/Force Off 170(s)       4       42         Local Start Time (s)       0       26         Local Yield (s)       21       54         Local Yield 170(s)       4       42         Intersection Summary       60         Cycle Length       60         Control Type       Actuated-Coordinated         Natural Cycle       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Splits and Phases:       4134: Woodstock Blvd & I-205 NB Ramp         Image: Page       64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | End Time (s)                          | 26       | 0        |               |        |      |  |  |
| .ocal Start Time (s)       0       26         .ocal Yield (s)       21       54         .ocal Yield 170(s)       4       42         Intersection Summary       60         Cycle Length       60         Control Type       Actuated-Coordinated         Iatural Cycle       60         Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green         Oplits and Phases:       4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yield/Force Off (s)                   | 21       | 54       |               |        |      |  |  |
| cocal Yield (s)     21     54       cocal Yield 170(s)     4     42       Intersection Summary     60       Cycle Length     60       Control Type     Actuated-Coordinated       Natural Cycle     60       Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green       Cyplits and Phases:     4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yield/Force Off 170(s)                | 4        | 42       |               |        |      |  |  |
| A 42 Intersection Summary Sycle Length 60 Control Type Actuated-Coordinated Natural Cycle 60 Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Local Start Time (s)                  | 0        | 26       |               |        |      |  |  |
| Local Yield 170(s) 4 42<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 60<br>Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green<br>Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp<br>4 a2<br>4 a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Local Yield (s)                       | 21       | 54       |               |        |      |  |  |
| Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 60<br>Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green<br>Cyplits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .ocal Yield 170(s)                    | 4        | 42       |               |        |      |  |  |
| Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 60<br>Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green<br>Cyplits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ntersection Summarv                   | r        |          |               |        |      |  |  |
| Actuated-Coordinated<br>Iatural Cycle 60<br>Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green<br>Oplits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp<br>2 a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |          |          | 60            |        |      |  |  |
| latural Cycle 60<br>Offset: 0 (0%), Referenced to phase 2:EBTL, Start of Green<br>Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | Actuate  | d-Coordi | nated         |        |      |  |  |
| Offset: O (O%), Referenced to phase 2:EBTL, Start of Green<br>Splits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Natural Cycle                         |          |          |               |        |      |  |  |
| iplits and Phases: 4134: Woodstock Blvd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | nced to  | phase 2  | EBTL, Start   | of Gre | en   |  |  |
| → a2 1 e4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , ,                                   |          |          |               |        |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Splits and Phases:                    | 4134: V  | Voodstoc | k Blvd & I-20 | 5 NB F | Ramp |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |          | l ∎ a         |        |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26%                                   |          |          |               |        |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |          |               |        |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |          |               |        |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |          |               |        |      |  |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6

Timing Report, Sorted By Phase 4135: Foster Rd & I-205 NB Ramp

| Phase Number       2       4         Movement       WBT NBTL         Lead/Lag       Lead/Lag         Lead/Lag       Recall Mode       C-Max       Ped         Maximum Split(s)       25       35       Maximum Split(s)       21       29         Yellow Time (s)       4       4       All-Red Time (s)       1       1         Minimum Initial (s)       16       24       Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       1                                                                                                                                                                                                                                                                                                                                                               | Phase Number            | 4       |             |                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|-------------|------------------------|
| Movement         WBT NBTL           Lead-Lag Optimize         Recall Mode         C-Max         Ped           Maximum Split (\$)         25         35           Maximum Split (\$)         21         29           Yellow Time (\$)         4         4           All-Red Time (\$)         1         1           Minimum Split (\$)         26         20           Yellow Time (\$)         1         1           Minimum Split (\$)         20         20           Yellow Time (\$)         1         1           Minimum Gap (\$)         10         10           Time Before Reduce (\$)         0         0           Walk Time (\$)         5         18           Flash Dont Walk (\$)         11         12           Dual Entry         Yes         Yes           Inhibit Max         Yes         Yes           Inhibit Max         Yes         Yes           Indiffere (\$)         49         24           Yield/Force Off (\$)         44         19           Yield/Force Off (\$)         44         19           Yield/Force Off (\$)         9         43           Intersection Summary         0                                                                                                                                                                                                                                                                                                                  | Phase Number            |         | - T         |                        |
| Lead-Lag Optimize<br>Recall Mode C-Max Ped<br>Maximum Split (\$) 25 35<br>Maximum Split (\$) 21 29<br>Yellow Time (\$) 41.7% 58.3%<br>Minimum Split (\$) 21 29<br>Yellow Time (\$) 4 4<br>All-Red Time (\$) 1 1<br>Minimum Initial (\$) 16 24<br>Vehicle Extension (\$) 0.2 0.2<br>Minimum Gap (\$) 10 10<br>Time Before Reduce (\$) 0 0<br>Time Before Reduce (\$) 0 0<br>Time To Reduce (\$) 0 0<br>Walk Time (\$) 5 18<br>Flash Dont Walk (\$) 11 12<br>Dual Entry Yes Yes<br>Start Time (\$) 24 49<br>End Time (\$) 49 24<br>Yield/Force Off (\$) 44 19<br>Yield/Force Off (\$) 44 19<br>Yield/Force Off 170(\$) 33 7<br>Local Start Time (\$) 0 25<br>Local Yield (\$) 20 55<br>Local Yield (\$) 20 55<br>Local Yield 170(\$) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & 1-205 NB Ramp<br>■ at                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 2       | 4           |                        |
| Lead-Lag Optimize         Recall Mode       C-Max         Maximum Split(s)       25         Maximum Split(s)       41.7% 58.3%         Minimum Split(s)       21         29         Yellow Time (s)       4         All-Red Time (s)       1         Minimum Initial (s)       16         24       Vehicle Extension (s)         0.2       0.2         Minimum Ray (s)       10         Time To Reduce (s)       0         Maximum Split(s)       11         12       10         Walk Time (s)       5         13       14         Mulk Time (s)       5         14       12         Dual Entry       Yes         Start Time (s)       24         Yield/Force Off 170(s)       33         7       Local Start Time (s)       0         25       Local Yield (s)       20         Local Yield (s)       20       55         Local Yield (s)       20       50                                                                                                                                                                                                                                                                                                                                                                                                                                             | Movement                | WBT     | NBTL        |                        |
| Recall Mode       C-Max       Ped         Maximum Split(s)       25       35         Maximum Split(s)       241.7% 58.3%       Minimum Split(s)       241.29         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       16       24         Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       44       9         Yield/Force Off (s)       44       19         Yield/Force Off (s)       44       19         Yield/Force Off (70(s)       3       7         Local Start Time (s)       0       25         Local Yield (TO(s)       9       43         Intersection Summary       Cycle Length       60         Control Type       Actuated-Coordinated         Natural Cycle       50                                                                                                                                                                                                                                                                                                                                                                 | Lead/Lag                |         |             |                        |
| Maximum Split (s)       25       36         Maximum Split (s)       41.7% 58.3%         Minimum Split (s)       21       29         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       16       24         Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       1         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Start Time (s)       24       49         End Time (s)       44       19         Yield/Force Off (s)       43       10         Local Yield (s)       20       55         Local Yield TO(s)       9       43         Interse                                                                                                                                                                                                                                                                                                                                                                                   | Lead-Lag Optimize       |         |             |                        |
| Maximum Split (%)       41.7% 58.3%         Minimum Split (c)       21       29         Yellow Time (c)       4       4         All-Red Time (c)       1       1         Minimum Initial (c)       16       24         Vehicle Extension (s)       0.2       0.2         Minimum Gap (c)       10       10         Time Before Reduce (c)       0       0         Time To Reduce (c)       0       0         Walk Time (c)       5       18         Flash Dont Walk (c)       11       12         Dual Entry       Yes       Yes         Start Time (c)       24       49         End Time (c)       44       19         Yield/Force Off (c)       9       43         Intersection Summary       0       25         Local Yield (c)       20       55         Local Yield 170(c)       9       43         Intersection Summary       60         Coyle Length       60         Coule Length       60                                                                                                                                                                                                                                                                                                                                                                                          | Recall Mode C           | C-Max   | Ped         |                        |
| Maximum Split (%)       41.7% 58.3%         Minimum Split (\$)       21       29         Yellow Time (\$)       4       4         All-Red Time (\$)       1       1         Minimum Initial (\$)       16       24         Vehicle Extension (\$)       0.2       0.2         Minimum Gap (\$)       10       1         Time Before Reduce (\$)       0       0         Walk Time (\$)       5       18         Flash Dont Walk (\$)       11       12         Dual Entry       Yes       Yes         Start Time (\$)       24       49         End Time (\$)       44       19         Yield/Force Off (\$)       9       43         Local Start Time (\$)       0       25         Local Yield (\$)       20       55         Local Yield (\$)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:///BT, Start                                                                                                                                                                                                                                                                                                                                       | Maximum Split (s)       | 25      | 35          |                        |
| Minimum Split (s)       21       29         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       16       24         Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       44       19         Yield/Force Off (s)       9       43         Intersection Summary       0       25         Local Yield (s)       20       55         Local Yield (s)       20       50         Corle Length       60         Control Type       Actuated-Coordinated         Natural Cycle       5                                                                                                                                                                                                                                                                                                                                                                                   |                         | 1.7%    | 58.3%       |                        |
| All-Red Time (s) 1 1<br>Minimum Initial (s) 16 24<br>Vehicle Extension (s) 0.2 0.2<br>Minimum Gap (s) 10 10<br>Time Before Reduce (s) 0 0<br>Walk Time (s) 5 18<br>Flash Dont Walk (s) 11 12<br>Dual Entry Yes Yes<br>Inhibit Max Yes Yes<br>Start Time (s) 24 49<br>End Time (s) 49 24<br>Yield/Force Off (s) 44 19<br>Yield/Force Off (s) 44 19<br>Yield/Force Off 170(s) 33 7<br>Local Start Time (s) 0 25<br>Local Yield (s) 20 55<br>Local Yield (s) 20 55<br>Local Yield (s) 20 55<br>Local Yield Tro(s) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 21      | 29          |                        |
| Minimum Initial (s)       16       24         Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         #at       at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yellow Time (s)         | - 4     | 4           |                        |
| Minimum Initial (s)       16       24         Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         #at       at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 1       | 1           |                        |
| Vehicle Extension (s)       0.2       0.2         Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       44       19         Yield/Force Off (s)       44       19         Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       Cycle Length       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         Image: All Start Start Start Start of Green       All Start St                                                                                                                                                                                                                                                                | 17                      | 16      | 24          |                        |
| Minimum Gap (s)       10       10         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       Cycle Length       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         Image:       4135: Foster Rd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 0.2     |             |                        |
| Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off (s)       44       19         Yield/Force Off (s)       44       19         Yield/Force Off (s)       0       25         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         a1       a1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |         |             |                        |
| Time To Reduce (s) 0 0<br>Walk Time (s) 5 18<br>Flash Dont Walk (s) 11 12<br>Dual Entry Yes Yes<br>Start Time (s) 24 49<br>End Time (s) 49 24<br>Yield/Force Off (s) 44 19<br>Yield/Force Off (s) 44 19<br>Yield/Force Off (s) 33 7<br>Local Start Time (s) 0 25<br>Local Yield (s) 20 55<br>Local Yield 170(s) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |         |             |                        |
| Walk Time (s)       5       18         Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off (s)       44       19         Yield/Force Off (s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         Image: Control Type       4135: Foster Rd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | ~       |             |                        |
| Flash Dont Walk (s)       11       12         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       24       49         End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         al       al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |         |             |                        |
| Dual Entry     Yes     Yes       Inhibit Max     Yes     Yes       Start Time (s)     24     49       End Time (s)     49     24       Yield/Force Off (s)     44     19       Yield/Force Off 170(s)     33     7       Local Start Time (s)     0     25       Local Yield (s)     20     55       Local Yield 170(s)     9     43       Intersection Summary     60       Control Type     Actuated-Coordinated       Natural Cycle     50       Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green       Splits and Phases:     4135: Foster Rd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |         |             |                        |
| Inhibit Max Yes Yes<br>Start Time (s) 24 49<br>End Time (s) 49 24<br>Yield/Force Off (s) 44 19<br>Yield/Force Off 170(s) 33 7<br>Local Start Time (s) 0 25<br>Local Yield (s) 20 55<br>Local Yield 170(s) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |         |             |                        |
| Start Time (s)     24     49       End Time (s)     49     24       Yield/Force Off (s)     44     19       Yield/Force Off 170(s)     33     7       Local Start Time (s)     0     25       Local Yield (s)     20     55       Local Yield 170(s)     9     43       Intersection Summary     60       Cycle Length     60       Control Type     Actuated-Coordinated       Natural Cycle     50       Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green       Splits and Phases:     4135: Foster Rd & I-205 NB Ramp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |         |             |                        |
| End Time (s)       49       24         Yield/Force Off (s)       44       19         Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         a2       a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |         |             |                        |
| Yield/Force Off (s)     44     19       Yield/Force Off 170(s)     33     7       Local Start Time (s)     0     25       Local Yield (s)     20     55       Local Yield 170(s)     9     43       Intersection Summary       Cycle Length     60       Control Type     Actuated-Coordinated       Natural Cycle     50       Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green       Splits and Phases:     4135: Foster Rd & I-205 NB Ramp       Image: Colspan="2">Control Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |         |             |                        |
| Yield/Force Off 170(s)       33       7         Local Start Time (s)       0       25         Local Yield (s)       20       55         Local Yield 170(s)       9       43         Intersection Summary         Cycle Length       60         Control Type       Actuated-Coordinated         Natural Cycle       50         Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green         Splits and Phases:       4135: Foster Rd & I-205 NB Ramp         Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2">Colspan="2"         Colspan="2">Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2"         Colspan="2">Colspan="2" </td <td></td> <td></td> <td></td> <td></td> |                         |         |             |                        |
| Local Start Time (s) 0 25<br>Local Yield (s) 20 55<br>Local Yield 170(s) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>a2<br>a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |         |             |                        |
| Local Yield (s) 20 55<br>Local Yield 170(s) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |         |             |                        |
| Local Yield 170(s) 9 43<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |         |             |                        |
| Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>a2<br>a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |         |             |                        |
| Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         | Ŭ       |             |                        |
| Control Type Actuated-Coordinated<br>Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |         |             | 80                     |
| Natural Cycle 50<br>Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green<br>Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |         | I. Colordia |                        |
| Offset: 24 (40%), Referenced to phase 2:WBT, Start of Green Splits and Phases: 4135: Foster Rd & I-205 NB Ramp a2 a2 a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | ctuated | 1-Cooran    |                        |
| Splits and Phases: 4135: Foster Rd & I-205 NB Ramp<br>a2<br>a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |         |             |                        |
| ← a2 ← a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uffset: 24 (40%), Refer | enced   | to phase    | 2:00B1, Start of Green |
| ← a2 ← a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solits and Phases: 4    | 135 F   | oster Rd    | & L205 NB Ramp         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 100.1   | osterna     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a2                      |         |             | T a4                   |
| 253 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25s                     |         |             | 35 s                   |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 7

Timing Report, Sorted By Phase 4136: Woodstock Blvd & I-205 SB Ramp

|                         |         | 4         |                      |  |
|-------------------------|---------|-----------|----------------------|--|
| Phase Number            | 2       | 4         |                      |  |
| Movement                |         | SBTL      |                      |  |
| Lead/Lag                |         |           |                      |  |
| Lead-Lag Optimize       |         |           |                      |  |
| Recall Mode             | C-Max   | Ped       |                      |  |
| Maximum Split (s)       | 29      | 31        |                      |  |
| Maximum Split (%) 🔗     | 48.3%   | 51.7%     |                      |  |
| Minimum Split(s)        | - 25    | 25        |                      |  |
| Yellow Time (s)         | - 4     | - 4       |                      |  |
| All-Red Time (s)        | 1       | 1         |                      |  |
| Minimum Initial (s)     | 20      | 20        |                      |  |
| Vehicle Extension (s)   | 0.2     | 0.2       |                      |  |
| Minimum Gap (s)         | 10      | 10        |                      |  |
| Time Before Reduce (;   | s) 0    | 0         |                      |  |
| Time To Reduce (s)      | 0       | 0         |                      |  |
| Walk Time (s)           | 8       | 8         |                      |  |
| Flash Dont Walk (s) 👘   | 9       | 12        |                      |  |
| Dual Entry              | Yes     |           |                      |  |
| Inhibit Max             | Yes     |           |                      |  |
| Start Time (s)          | 6       | 35        |                      |  |
| End Time (s)            | 35      | 6         |                      |  |
| Yield/Force Off (s)     | 30      | 1         |                      |  |
| Yield/Force Off 170(s)  |         | 49        |                      |  |
| Local Start Time (s)    | 0       | 29        |                      |  |
| Local Yield (s)         | 24      | 55        |                      |  |
| Local Yield 170(s)      | 15      | 43        |                      |  |
| Intersection Summary    |         |           |                      |  |
| Cycle Length            |         |           | 60                   |  |
| //                      | ctuate  | d-Coordii | ated                 |  |
| Natural Cycle           |         |           | 50                   |  |
| Offset: 6 (10%), Refere | nced t  | o phase ( | EBT, Start of Green  |  |
| Splits and Phases: 4    | ¥136: V | Voodstod  | Blvd & I-205 SB Ramp |  |
| • a2                    |         |           | ► M                  |  |
|                         |         |           | T 64                 |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 8

Timing Report, Sorted By Phase 4137: Foster Rd & I-205 SB Ramp

| Dhana Number             | ~         |            |                     |            | <br> |   |
|--------------------------|-----------|------------|---------------------|------------|------|---|
| Phase Number<br>Movement | 2<br>WBTL | 8<br>SBT   |                     |            |      |   |
| _ead/Lag                 | OUDIL     | 301        |                     |            |      |   |
| Lead-Lag Optimize        |           |            |                     |            |      |   |
|                          | C-Max     | Ped        |                     |            |      |   |
| Maximum Split (s)        | 35        | 25         |                     |            |      |   |
|                          | 58.3%     |            |                     |            |      |   |
| Minimum Split (s)        | 35        | 19         |                     |            |      |   |
| Yellow Time (s)          | 4         | 5          |                     |            |      |   |
| All-Red Time (s)         | 1         | 1          |                     |            |      |   |
| Minimum Initial (s)      | 30        | 13         |                     |            |      |   |
| Vehicle Extension (s)    | 0.2       | 0.2        |                     |            |      |   |
| Minimum Gap (s)          | 10        | 10         |                     |            |      |   |
| Time Before Reduce (     |           | 0          |                     |            |      |   |
| Time To Reduce (s)       | Ő         | ŏ          |                     |            |      |   |
| Walk Time (s)            | 7         | 5          |                     |            |      |   |
| Flash Dont Walk (s)      | 20        | 8          |                     |            |      |   |
| Dual Entry               | Yes       | Yes        |                     |            |      |   |
| Inhibit Max              | Yes       | Yes        |                     |            |      |   |
| Start Time (s)           | 8         | 43         |                     |            |      |   |
| End Time (s)             | 43        | 8          |                     |            |      |   |
| Yield/Force Off (s)      | 38        | 2          |                     |            |      |   |
| Yield/Force Off 170(s)   |           | 54         |                     |            |      |   |
| Local Start Time (s)     | 0         | 35         |                     |            |      |   |
| Local Yield (s)          | 30        | 54         |                     |            |      |   |
| Local Yield 170(s)       | 10        | 46         |                     |            |      |   |
|                          |           |            |                     |            |      |   |
| Intersection Summary     |           |            | e0                  |            |      |   |
| Cycle Length             |           |            | 60                  |            |      |   |
|                          | Actuated  | l-Coordina |                     |            |      |   |
| Natural Cycle            |           |            | 55<br>VDTI 01-1-1-1 | A          |      |   |
| Offset: 8 (13%), Refere  | enced to  | ) phase 20 | VBTL, Start of      | Green      |      |   |
|                          | 4407. 5   |            |                     | _          |      |   |
| Splits and Phases: 《     | +1371F    |            | 1-205 SB Ramp       | ,          |      | 1 |
| ¥ a2                     |           |            |                     |            |      |   |
| 35 s                     |           |            |                     |            |      |   |
|                          |           |            |                     | a8         |      |   |
|                          |           |            | Ľ                   | <b>e</b> 8 |      |   |
|                          |           |            | -                   |            |      |   |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 9

Timing Report, Sorted By Phase 8: Holgate Blvd & 92nd Ave

|                                         | -       | -       | •       | ŧ     | ≯     | +     | 7     | †     |  |
|-----------------------------------------|---------|---------|---------|-------|-------|-------|-------|-------|--|
| Phase Number                            | 1       | 2       | 3       | 4     | 5     | 6     | 7     | 8     |  |
| Movement                                | WBL     | EBT     | NBL     | SBT   | EBL   | WBT   | SBL   | NBT   |  |
| Lead/Lag                                | Lead    | Lag     | Lead    | Lag   | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize                       |         |         |         |       |       |       |       |       |  |
| Recall Mode                             | None    | C-Min   | None    | None  | None  | C-Min | None  | Min   |  |
| Maximum Split (s)                       | 10      | 21      | 10      | 19    | 10    | 21    | 10    | 19    |  |
| Maximum Split (%)                       | 16.7%   | 35.0%   | 16.7%   | 31.7% | 16.7% | 35.0% | 16.7% | 31.7% |  |
| Minimum Split (s)                       | 8       | 20.5    | 8       | 20.5  | 8     | 20.5  | 8     | 20.5  |  |
| Yellow Time (s)                         | 3       | 3.5     | 3       | 3.5   | 3     | 3.5   | 3     | 3.5   |  |
| All-Red Time (s)                        | 0       | 1       | 0       | 1     | 0     | 1     | 0     | 1     |  |
| MinimumInitial (s) 👘                    | - 4     | - 4     | - 4     | - 4   | - 4   | - 4   | - 4   | - 4   |  |
| Vehicle Extension (s)                   | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Minimum Gap (s)                         | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce                      | (s) 0   | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)                      | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)                           |         | 5       |         | 5     |       | 5     |       | 5     |  |
| Flash Dont Walk (s)                     |         | 11      |         | 11    |       | 11    |       | 11    |  |
| Dual Entry                              | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max                             | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Start Time (s)                          | 31.5    | 41.5    | 2.5     | 12.5  | 31.5  | 41.5  | 2.5   | 12.5  |  |
| End Time (s)                            | 41.5    | 2.5     | 12.5    | 31.5  | 41.5  | 2.5   | 12.5  | 31.5  |  |
| Yield/Force Off (s)                     | 38.5    | 58      | 9.5     | 27    | 38.5  | 58    | 9.5   | 27    |  |
| Yield/Force Off 170(s)                  | 38.5    | 47      | 9.5     | 16    | 38.5  | 47    | 9.5   | 27    |  |
| Local Start Time (s)                    | 33.5    | 43.5    | 4.5     | 14.5  | 33.5  | 43.5  | 4.5   | 14.5  |  |
| Local Yield (s)                         | 40.5    | 0       | 11.5    | 29    | 40.5  | 0     | 11.5  | 29    |  |
| Local Yield 170(s)                      | 40.5    | 49      | 11.5    | 18    | 40.5  | 49    | 11.5  | 29    |  |
| Intersection Summary                    | r       |         |         |       |       |       |       |       |  |
| Cycle Length                            |         |         | 60      |       |       |       |       |       |  |
| · · · · · / · · · · · · · · · · · · · · | Actuate | d-Coord | linated |       |       |       |       |       |  |
| Made and Country                        |         |         |         |       |       |       |       |       |  |

Natural Cycle 60 Offset: 58 (97%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Splits and Phases: 8: Holgate Blvd & 92nd Ave

| 🖌 al  | → a2           | <b>↑</b> ⊿      | t pd |
|-------|----------------|-----------------|------|
| 1Ds 🔰 | 21 8           | 10 *            | 19 * |
| ▲ a5  | <b>4</b><br>26 | ► <sub>07</sub> | t ea |
| 10:0  | 21 8           | 10 *            | 19 * |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 57: Holgate Blvd & 72nd

|                        | +       | 井         |        |                 |  |  |  |
|------------------------|---------|-----------|--------|-----------------|--|--|--|
| Phase Number           | 2       | 4         |        |                 |  |  |  |
| vlovement              | EBWB    | NBSB      |        |                 |  |  |  |
| .ead/Lag               |         |           |        |                 |  |  |  |
| ead-Lag Optimize       |         |           |        |                 |  |  |  |
| Recall Mode            | Max     | None      |        |                 |  |  |  |
| Aaximum Split (s)      | 30      | 30        |        |                 |  |  |  |
| Maximum Split (%)      | 50.0%   | 50.0%     |        |                 |  |  |  |
| Vinimum Split (s)      | 20      | 20        |        |                 |  |  |  |
| Yellow Time (s)        | 3       | 3         |        |                 |  |  |  |
| All-Red Time (s)       | 1       | 1         |        |                 |  |  |  |
| Minimum Initial (s)    | 4       | 4         |        |                 |  |  |  |
| Vehicle Extension (s)  | 3       | 3         |        |                 |  |  |  |
| Minimum Gap (s)        | 3       | 3         |        |                 |  |  |  |
| Time Before Reduce (   | (s) O   | 0         |        |                 |  |  |  |
| Time To Reduce (s)     | 0       | -         |        |                 |  |  |  |
| Walk Time (s)          | 5       | 5         |        |                 |  |  |  |
| Flash Dont Walk (s)    | 11      | 11        |        |                 |  |  |  |
| Dual Entry             | Yes     | Yes       |        |                 |  |  |  |
| Inhibit Max            | Yes     | Yes       |        |                 |  |  |  |
| Start Time (s)         | 0       | 30        |        |                 |  |  |  |
| End Time (s)           | - 30    | 0         |        |                 |  |  |  |
| Yield/Force Off (s)    | 26      | 56        |        |                 |  |  |  |
| Yield/Force Off 170(s) | 15      | 45        |        |                 |  |  |  |
| Local Start Time (s)   | 34      | 4         |        |                 |  |  |  |
| Local Yield (s)        | 0       | 30        |        |                 |  |  |  |
| Local Yield 170(s)     | 49      | 19        |        |                 |  |  |  |
| ntersection Summary    |         |           |        |                 |  |  |  |
| Cycle Length           |         |           | 60     |                 |  |  |  |
| Control Type           | Sen     | ni Act-Un |        |                 |  |  |  |
| Natural Cycle          |         |           | 40     |                 |  |  |  |
|                        |         |           |        |                 |  |  |  |
| Splits and Phases: 🤅   | 57: Hol | gate Blv  | 1&72nd |                 |  |  |  |
| <b>\$</b> a2           |         |           |        | \$ <b>\$</b> _4 |  |  |  |
|                        |         |           |        | 70.             |  |  |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 151: Holgate Blvd & 112th Ave

|                         | <u>+</u> | - e -     |                           |
|-------------------------|----------|-----------|---------------------------|
| Phase Number            | 2        | 4         |                           |
| Aovement .              | EBWB     | SBL       |                           |
| ead/Lag                 |          |           |                           |
| .ead-Lag Optimize       |          |           |                           |
| Recall Mode             | C-Max    | None      |                           |
| Maximum Split (s)       | 35       | 25        |                           |
| Maximum Split (%)       | 58.3%    | 41.7%     |                           |
| Minimum Split(s)        | 20.5     | 20        |                           |
| rellow Time (s)         | 3.5      | 3         |                           |
| All-Red Time (s)        | 1        | 0         |                           |
| Minimum Initial (s)     | 4        | 4         |                           |
| Vehicle Extension (s)   | 3        | 3         |                           |
| Minimum Gap (s)         | 3        | 3         |                           |
| Time Before Reduce      | (s) O    | 0         |                           |
| Time To Reduce (s)      | 0        | 0         |                           |
| Nalk Time (s)           | 5        | 5         |                           |
| lash Dont Walk (s)      | 11       | 11        |                           |
| ual Entry               | Yes      | Yes       |                           |
| nhibit Max              | Yes      | Yes       |                           |
| Start Time (s)          | 17.5     | 52.5      |                           |
| End Time (s)            | 52.5     | 17.5      |                           |
| /ield/Force Off (s)     | 48       | 14.5      |                           |
| rield/Force Off 170(s)  | ) 37     | 3.5       |                           |
| _ocal Start Time (s)    | 29.5     | 4.5       |                           |
| Local Yield (s)         | 0        | 26.5      |                           |
| _ocal Yield 170(s)      | 49       | 15.5      |                           |
| ntersection Summary     | r i i    |           |                           |
| Cycle Length            |          |           | 60                        |
|                         | Actuate  | d-Coordi  |                           |
| Natural Cycle           |          |           | 45                        |
| 0ffset: 48 (80 %), Refe | erenced  | to phase  | ≥ 2:EBWB, Start of Yellow |
| Splits and Phases:      | 151: Ho  | )Igate Bl | vd & 112th Ave            |
| ± ₀2                    |          | -         | a4 a4                     |
|                         |          |           |                           |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 157: Holgate Blvd & 104th Ave

|                        | - #     | - 44      |                         |
|------------------------|---------|-----------|-------------------------|
| Phase Number           | 2       | 4         |                         |
| Movement               | EBWB    | NBSB      |                         |
| Lead/Lag               |         |           |                         |
| Lead-Lag Optimize      |         |           |                         |
| Recall Mode            | C-Max   | None      |                         |
| Maximum Split (s)      | 38      | 22        |                         |
| Maximum Split (%) –    | 63.3%   | 36.7%     |                         |
| Minimum Split (s)      | 23.5    | 22        |                         |
| Yellow Time (s)        | 3.5     | 3         |                         |
| All-Red Time (s)       | 1       | 0         |                         |
| Minimum Initial (s)    | 4       | 4         |                         |
| Vehicle Extension (s)  |         | 3         |                         |
| Minimum Gap (s)        | 3       | 3         |                         |
| Time Before Reduce     |         | 0         |                         |
| Time To Reduce (s)     | 0       | 0         |                         |
| Walk Time (s)          | 6       | 6         |                         |
| Flash Dont Walk (s) 👘  | 13      | 13        |                         |
| Dual Entry             | Yes     | Yes       |                         |
| Inhibit Max            | Yes     | Yes       |                         |
| Start Time (s)         | 40.5    | 18.5      |                         |
| End Time (s)           | 18.5    | 40.5      |                         |
| Yield/Force Off (s)    | 14      |           |                         |
| Yield/Force Off 170(s  | ) 1     | 24.5      |                         |
| Local Start Time (s)   | 26.5    | 4.5       |                         |
| Local Yield (s)        | 0       | 23.5      |                         |
| Local Yield 170(s)     | 47      | 10.5      |                         |
| Intersection Summary   | 1       |           |                         |
| Cycle Length           |         |           | 60                      |
|                        | Actuate | d-Coordii |                         |
| Natural Cycle          |         |           | 50                      |
| Offset: 14 (23%), Refe | erenced | to phase  | 2:EBWB, Start of Yellow |
|                        |         |           |                         |
| Splits and Phases:     | 157: Ho | lgate Bh  | vd & 104th Ave          |
| <b>*</b> •2            |         |           | <b>a</b> 4              |
| 7.0                    |         |           | 72 1                    |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 54: Powell Blvd & 72nd

|                        | *       | •       | 4    | -+    |
|------------------------|---------|---------|------|-------|
| Phase Number           | 2       | 4       | 5    | 6     |
|                        | WBTL    | NBL     | WBL  | EBT   |
| Lead/Lag               |         |         | Lead | Lag   |
| Lead-Lag Optimize      |         |         | 2385 | 203   |
|                        | C-Max   | None    | None | C-Max |
| Maximum Split(s)       | 39      | 21      | 12   | 27    |
| 1 17                   |         | 35.0%   |      |       |
| Minimum Split (s)      | 20.5    | 19      | 8    | 20.5  |
| Yellow Time (s)        | 3.5     | 3       | 3    | 3.5   |
| All-Red Time (s)       | 1       | 0       | 0    | 1     |
| Minimum Initial (s)    | 4       | - 4     | - 4  | - 4   |
| Vehicle Extension (s)  | 3       | 3       | 3    | 3     |
| Minimum Gap (s)        | 3       | 3       | 3    | 3     |
| Time Before Reduce (   | (s) O   | 0       | 0    | 0     |
| Time To Reduce (s)     | 0       | 0       | 0    | 0     |
| Walk Time (s)          | 5       | 5       |      | 5     |
| Flash Dont Walk (s)    | 11      | 11      |      | 11    |
| Dual Entry             | Yes     | Yes     | No   | Yes   |
| Inhibit Max            | Yes     | Yes     | Yes  | Yes   |
| Start Time (s)         | 21.5    | 0.5     | 21.5 | 33.5  |
| End Time (s)           | 0.5     | 21.5    | 33.5 | 0.5   |
| Yield/Force Off (s)    | 56      | 18.5    | 30.5 | 56    |
| Yield/Force Off 170(s) | 45      | 7.5     | 30.5 | 45    |
| Local Start Time (s)   | 25.5    | 4.5     | 25.5 | 37.5  |
| Local Yield (s)        | 0       | 22.5    | 34.5 | 0     |
| Local Yield 170(s)     | 49      | 11.5    | 34.5 | 49    |
| Intersection Summary   |         |         |      |       |
| Cycle Length           |         |         | 60   |       |
|                        | Actuate | d-Coord |      |       |

| Cycle Length      | 60                           |                           |
|-------------------|------------------------------|---------------------------|
| Control Type      | Actuated-Coordinated         |                           |
| Natural Cycle     | 50                           |                           |
| Offset: 56 (93%), | Referenced to phase 2:WBTL a | nd 6:EBT, Start of Yellow |

Splits and Phases: 54: Powell Blvd & 72nd

| <b>↓</b> ₀2 |      | <b>↑</b> of |
|-------------|------|-------------|
| 39 s        |      | 21 *        |
| <b>f</b> a5 | → e6 |             |
| 12:8        | 27 8 |             |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 55: Powell Blvd & 71st

|                        | ۶       | +       | <u>_</u> | 4       |                      |
|------------------------|---------|---------|----------|---------|----------------------|
| Phase Number           | 1       | 2       | 6        | 8       |                      |
| Movement               | EBL     | WBT     | EBTL     | SBL     |                      |
| Lead/Lag               | Lead    | Lag     |          |         |                      |
| Lead-Lag Optimize      |         |         |          |         |                      |
| Recall Mode            | None    | C-Max   | C-Max    | None    |                      |
| Maximum Split (s)      | 13      | 24      | 37       | 23      |                      |
| Maximum Split (%)      | 21.7%   | 40.0%   | 61.7%    | 38.3%   |                      |
| Minimum Split (s)      | 8.5     | 20.5    | 20.5     | 19      |                      |
| Yellow Time (s)        | 3       | 3.5     | 3.5      | 3       |                      |
| All-Red Time (s)       | 0       | 1       | 1        | 0       |                      |
| Minimum Initial (s) 👘  | - 4     | - 4     | - 4      | - 4     |                      |
| Vehicle Extension (s)  |         | 3       | 3        | 3       |                      |
| Minimum Gap (s)        | 3       | 3       | 3        | 3       |                      |
| Time Before Reduce     | (s) 0   | 0       | 0        | 0       |                      |
| Time To Reduce (s)     | 0       | 0       | 0        | 0       |                      |
| Walk Time (s)          |         | 5       | - 5      | 5       |                      |
| Flash Dont Walk (s)    |         | 11      | 11       | 11      |                      |
| Dual Entry             | No      | Yes     | Yes      | Yes     |                      |
| Inhibit Max            | Yes     | Yes     | Yes      | Yes     |                      |
| Start Time (s)         | 27.5    | 40.5    | 27.5     | 4.5     |                      |
| End Time (s)           | 40.5    | 4.5     | 4.5      | 27.5    |                      |
| Yield/Force Off (s)    | 37.5    | 0       | 0        | 24.5    |                      |
| Yield/Force Off 170(s  | ) 37.5  | 49      | 49       | 13.5    |                      |
| Local Start Time (s)   | 27.5    | 40.5    | 27.5     | 4.5     |                      |
| Local Yield (s)        | 37.5    | 0       | 0        | 24.5    |                      |
| Local Yield 170(s)     | 37.5    | 49      | 49       | 13.5    |                      |
| Intersection Summary   | /       |         |          |         |                      |
| Cycle Length           |         |         | 60       |         |                      |
| Control Type           | Actuate | d-Coord | linated  |         |                      |
| Natural Cycle          |         |         | 50       |         |                      |
| Offset: 0 (0%), Refere | nced to | phase : | 2:WBT    | and 6:E | BTL, Start of Yellow |
|                        |         |         |          |         |                      |

Splits and Phases: 55: Powell Blvd & 71st



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 149: Powell Blvd & 112th Ave

10/31/2006

|                       | 4                                     | ≯       | -        | -4      | -        | -+       |
|-----------------------|---------------------------------------|---------|----------|---------|----------|----------|
| Phase Number          | 2                                     | 3       | 4        | 6       | 7        | 8        |
| Movement              | SBTL                                  | EBL     | WBT      | NBTL    | WBL      | EBT      |
| Lead/Lag              |                                       | Lead    | Lag      |         | Lead     | Lag      |
| Lead-Lag Optimize     |                                       |         | Ť        |         |          | Ť        |
| Recall Mode           | None                                  | None    | C-Max    | None    | None     | C-Max    |
| Maximum Split(s)      | 21                                    | 11      | 28       | 21      | 10       | 29       |
| Maximum Split (%)     | 35.0%                                 | 18.3%   | 46.7%    | 35.0%   | 16.7%    | 48.3%    |
| Minimum Split (s)     | 20                                    | 8       | 20.5     | 20      | 8        | 20.5     |
| Yellow Time (s)       | 3                                     | 3       | 3.5      | 3       | 3        | 3.5      |
| All-Red Time (s)      | 0                                     | 0       | 1        | 0       | 0        | 1        |
| Minimum Initial (s)   | - 4                                   | - 4     | - 4      | - 4     |          | - 4      |
| Vehicle Extension (s) |                                       | 3       | 3        | 3       | 3        | 3        |
| Minimum Gap (s)       | 3                                     | 3       | 3        | 3       | 3        | 3        |
| Time Before Reduce    |                                       | 0       | 0        | 0       | 0        | 0        |
| Time To Reduce (s)    | 0                                     | 0       | 0        | 0       | 0        | 0        |
| Walk Time (s)         | 5                                     |         | 5        | 5       |          | 5        |
| Flash Dont Walk (s)   | 11                                    |         | 11       | 11      |          | 11       |
| Dual Entry            | Yes                                   | No      | Yes      | Yes     |          | Yes      |
| Inhibit Max           | Yes                                   | Yes     | Yes      | Yes     |          | Yes      |
| Start Time (s)        | 30.5                                  | 51.5    | 2.5      | 30.5    | 51.5     | 1.5      |
| End Time (s)          | 51.5                                  | 2.5     | 30.5     | 51.5    | 1.5      | 30.5     |
| Yield/Force Off (s)   | 48.5                                  | 59.5    | 26       | 48.5    | 58.5     | 26       |
| Yield/Force Off 170(s | · · · · · · · · · · · · · · · · · · · | 59.5    | 15       | 37.5    | 58.5     | 15       |
| Local Start Time (s)  | 4.5                                   | 25.5    | 36.5     | 4.5     | 25.5     | 35.5     |
| Local Yield (s)       | 22.5                                  | 33.5    | 0        | 22.5    | 32.5     | 0        |
| Local Yield 170(s)    | 11.5                                  | 33.5    | 49       | 11.5    | 32.5     | 49       |
| Intersection Summar   | у                                     |         |          |         |          |          |
| Cycle Length          |                                       |         | 60       |         |          |          |
| Control Type          | Actuate                               | d-Coord |          |         |          |          |
| Natural Cycle         |                                       |         | 50       |         |          |          |
| Offset: 26 (43%), Ref | erenced                               | to phas | se 4:WB  | T and   | 8:EBT,   | Start of |
| Splits and Phases:    | 149: Po                               |         | .4 2 11  | 246 A.J |          |          |
| Spins and Phases:     | 149. FC                               |         | VG 64 11 | 210 AV  | <u>e</u> |          |

| ₽ a2        | ا م           | <b>←</b>      |
|-------------|---------------|---------------|
| 21 8        | 11 *          | 28 B          |
| <b>1</b> 26 | <b>f</b> 07 - | <b>-</b> ₽ ø3 |
| 21 s        | 10 * 2        | 3*            |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Timing Report, Sorted By Phase 158: Powell Blvd & 104th Ave

|                        | +       | 4       | -     | -+    |
|------------------------|---------|---------|-------|-------|
| Phase Number           | 4       | 6       | 7     | 8     |
| Movement               | WBT     | NBL     | WBL   | EBT   |
| Lead/Lag               |         |         | Lead  | Lag   |
| Lead-Lag Optimize      |         |         |       | Ň     |
| Recall Mode            | C-Max   | None    | None  | C-Max |
| Maximum Split (s)      | 40      | 20      | 10    | 30    |
| Maximum Split (%)      | 66.7%   | 33.3%   | 16.7% | 50.0% |
| Minimum Split (s)      | 20.5    | 20      | 8     | 20.5  |
| Yellow Time (s)        | 3.5     | 3       | 3     | 3.5   |
| All-Red Time (s)       | 1       | 0       | 0     | 1     |
| Minimum Initial (s)    | - 4     | - 4     | - 4   | - 4   |
| Vehicle Extension (s)  | 3       | 3       | 3     | 3     |
| Minimum Gap (s)        | 3       | 3       | 3     | 3     |
| Time Before Reduce     | (s) 0   | 0       | 0     | 0     |
| Time To Reduce (s)     | 0       | 0       | 0     | 0     |
| Walk Time (s)          | 5       | 5       |       | 5     |
| Flash Dont Walk (s)    | 11      | 11      |       | 11    |
| Dual Entry             | Yes     | Yes     | No    | Yes   |
| Inhibit Max            | Yes     | Yes     | Yes   | Yes   |
| Start Time (s)         | 46.5    | 26.5    | 46.5  | 56.5  |
| End Time (s)           | 26.5    | 46.5    | 56.5  | 26.5  |
| Yield/Force Off (s)    | 22      | 43.5    | 53.5  | 22    |
| Yield/Force Off 170(s) | ) 11    | 32.5    | 53.5  | 11    |
| Local Start Time (s)   | 24.5    | 4.5     | 24.5  | 34.5  |
| Local Yield (s)        | 0       | 21.5    | 31.5  | 0     |
| Local Yield 170(s)     | 49      | 10.5    | 31.5  | 49    |
| Intersection Summary   | (       |         |       |       |
| Cycle Length           |         |         | 60    |       |
|                        | Actuate | d-Coord |       |       |
| Control Type 7         | Rotuate | 0.00010 | eo    |       |

Natural Cycle 60 Offset: 22 (37%), Referenced to phase 4:WBT and 8:EBT, Start of Yellow

Splits and Phases: 158: Powell Blvd & 104th Ave

|             | <b></b>     |              |
|-------------|-------------|--------------|
|             | 4Ds         |              |
| <b>4</b> a6 | <b>f</b> a7 | <b>→ a</b> 8 |
| 20%         | 10:0        | 30 s         |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 4173: Powell Blvd & 92nd Ave

|                        | -       | -        | \$       | 4      | ÷     | +     | •     | 1     |      |
|------------------------|---------|----------|----------|--------|-------|-------|-------|-------|------|
| Phase Number           | 1       | 2        | 3        | - 4    | 5     | 6     | 7     | 8     |      |
| Movement               | WBL     | EBT      | NBL      | SBT    | EBL   | WBT   | SBL   | NBT   |      |
| Lead/Lag               | Lag     | Lead     | Lag      | Lead   | Lead  | Lag   | Lag   | Lead  |      |
| Lead-Lag Optimize      |         |          |          |        |       |       |       |       |      |
| Recall Mode            | None    | Max      | None     | None   | None  | Max   | None  | None  |      |
| Maximum Split(s)       | 14      | 35       | 14       | 27     | 14    | 35    | 14    | 27    |      |
| Maximum Split (%)      | 15.6%   | 38.9%    | 15.6%    | 30.0%  | 15.6% | 38.9% | 15.6% | 30.0% |      |
| Minimum Split (s)      | 14      | 29       | 14       | 27     | 14    | 32    | 14    | 27    |      |
| Yellow Time (s)        | 3.5     | 4.5      | 3.5      | 3.5    | 3.5   | 4.5   | 3.5   | 3.5   |      |
| All-Red Time (s)       | 0.5     | 0.5      | 0.5      | 0.5    | 0.5   | 0.5   | 0.5   | 0.5   |      |
| Minimum Initial (s)    | - 4     | - 4      | - 4      | - 4    | - 4   | - 4   | - 4   | - 4   |      |
| Vehicle Extension (s)  | 3       | 3        | 3        | 3      | 3     | 3     | 3     | 3     |      |
| Minimum Gap (s)        | 3       | 3        | 3        | 3      | 3     | 3     | 3     | 3     |      |
| Time Before Reduce (   | s) 0    | 0        | 0        | 0      | 0     | 0     | 0     | 0     |      |
| Time To Reduce (s)     | 0       | 0        | 0        | 0      | 0     | 0     | 0     | 0     |      |
| Walk Time (s)          |         | 5        |          | 5      |       | 5     |       | 5     |      |
| Flash Dont Walk (s) 👘  |         | 19       |          | 18     |       | - 22  |       | 18    |      |
| Dual Entry             | No      | Yes      | No       | Yes    | No    | Yes   | No    | Yes   |      |
| Inhibit Max            | Yes     | Yes      | Yes      | Yes    | Yes   | Yes   | Yes   | Yes   |      |
| Start Time (s)         | 35      | 0        | 76       | 49     | 0     | 14    | 76    | 49    |      |
| End Time (s)           | 49      | 35       | 0        | 76     | - 14  | 49    | 0     | 76    |      |
| Yield/Force Off (s)    | 45      | 30       | 86       | 72     | 10    | - 44  | 86    | 72    |      |
| Yield/Force Off 170(s) | 45      | 11       | 86       | 54     | 10    | - 22  | 86    | 54    |      |
| Local Start Time (s)   | 5       | 60       | 46       | 19     | 60    | - 74  | 46    | 19    |      |
| Local Yield (s)        | 15      | 0        | 56       | 42     | 70    | - 14  | 56    | 42    |      |
| Local Yield 170(s)     | 15      | 71       | 56       | 24     | 70    | 82    | 56    | 24    |      |
| ntersection Summary    |         |          |          |        |       |       |       |       |      |
| Cycle Length           |         |          | 90       |        |       |       |       |       |      |
| Control Type           | Sen     | hi Act-U | ncoord   |        |       |       |       |       |      |
| Natural Cycle          |         |          | 90       |        |       |       |       |       |      |
| Calife and Dhases:     | 1470. 0 | amall 5  | 91vd & 9 | Ond A. |       |       |       |       |      |
| Splits and Phases: 4   | +173: F | owente   |          | Zna Al | 4     |       |       | 4     |      |
| <b>→ n</b> 2           |         |          | 🖌 al     |        | ¶ ₀4  |       |       |       | λ n3 |

1 👩

148 27 \* sos ₽ ₽5

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

← 6

Synchro 6 Report Page 5

► 07

Timing Report, Sorted By Phase 4174: Powell Blvd & I-205 SB Ramp

|                        | <u>ج</u> | \$        |
|------------------------|----------|-----------|
| Phase Number           | 4        | 6         |
| Movement               | EBT      | EBWB      |
| Lead/Lag               |          |           |
| Lead-Lag Optimize      |          |           |
| Recall Mode            | None     | C-Max     |
| Maximum Split (s)      | 35       | 25        |
| Maximum Split (%) 👘    | 58.3%    |           |
| Minimum Split(s)       | 24       | 16        |
| Yellow Time (s)        | 3.5      | 4.5       |
| All-Red Time (s)       | 0.5      | 0.5       |
| Minimum Initial (s) 👘  | - 4      | 4         |
| Vehicle Extension (s)  | 3        | 3         |
| Minimum Gap (s) 👘      | 3        | 3         |
| Time Before Reduce     |          | 0         |
| Time To Reduce (s)     | 0        | 0         |
| Walk Time (s)          | 5        | 5         |
| Flash Dont Walk (s) 👘  | 15       | 11        |
| Dual Entry             | Yes      | Yes       |
| Inhibit Max            | Yes      | Yes       |
| Start Time (s)         | 41       | 16        |
| End Time (s)           | 16       | 41        |
| Yield/Force Off (s)    | 12       | 36        |
| Yield/Force Off 170(s) |          | 25        |
| Local Start Time (s)   | 5        | 40        |
| Local Yield (s)        | 36       | 0         |
| Local Yield 170(s)     | 21       | 49        |
| Intersection Summary   | r        |           |
| Cycle Length           |          |           |
| Control Type 💦         | Actuate  | d-Coordii |
| Latural Cycele         |          |           |

Natural Cycle 40 Offset: 36 (60%), Referenced to phase 6:EBWB, Start of Yellow

Splits and Phases: 4174: Powell Blvd & I-205 SB Ramp

|               | <b>∉</b> + ₀4 |
|---------------|---------------|
|               | 358           |
| <b>4</b> → ₂6 |               |
| 25%           |               |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6

Timing Report, Sorted By Phase 4176: Powell Blvd & I-205 NB Ramp

|                       | -+      | ≯       | +         | 4      |                       |
|-----------------------|---------|---------|-----------|--------|-----------------------|
| Phase Number          | 2       | 5       | 6         | 8      |                       |
| Movement              | EBT     | EBL     | WBT       | NBTL   |                       |
| Lead/Lag              |         | Lag     | Lead      |        |                       |
| Lead-Lag Optimize     |         |         |           |        |                       |
| Recall Mode           | C-Max   | C-Max   | Min       | None   |                       |
| Maximum Split (s)     | 38      | 16      | 22        | 22     |                       |
| Maximum Split (%) –   | 63.3%   | 26.7%   | 36.7%     | 36.7%  |                       |
| Minimum Split (s)     | 16      | 14      | 29        | 16     |                       |
| Yellow Time (s)       | 6.5     | 3.5     | 6.5       | 5.5    |                       |
| All-Red Time (s)      | 0.5     | 0.5     | 0.5       | 0.5    |                       |
| Minimum Initial (s)   | - 4     | - 4     | - 4       | - 4    |                       |
| Vehicle Extension (s) | 3       | 3       | 3         | 3      |                       |
| Minimum Gap (s)       | 0.2     | 0.5     | 3         | 3      |                       |
| Time Before Reduce    | (s) 0   | 0       | 0         | 0      |                       |
| Time To Reduce (s)    | 0       | 0       | 0         | 0      |                       |
| Walk Time (s)         | 5       |         | 5         | 5      |                       |
| Flash Dont Walk (s)   | 12      |         | 16        | 18     |                       |
| Dual Entry            | Yes     | No      | Yes       | Yes    |                       |
| Inhibit Max           | Yes     | Yes     | Yes       | Yes    |                       |
| Start Time (s)        | 15      | 37      | 15        | 53     |                       |
| End Time (s)          | 53      | 53      | 37        | 15     |                       |
| Yield/Force Off (s)   | 46      | 49      | 30        | 9      |                       |
| Yield/Force Off 170(s | ) 34    | 49      | - 30      | 51     |                       |
| Local Start Time (s)  | 29      | 51      | 29        | 7      |                       |
| Local Yield (s)       | 0       | 3       | - 44      | 23     |                       |
| Local Yield 170(s)    | 48      | 3       | 44        | 5      |                       |
| Intersection Summary  | ý       |         |           |        |                       |
| Cycle Length          |         |         | 60        |        |                       |
|                       | Actuate | d-Coord |           |        |                       |
| Natural Cycle         |         |         | 60        |        |                       |
| Offset: 46 (77%), Ref | erenced | to phas | e 2:EB    | Tand 5 | :EBL, Start of Yellow |
| Splits and Phases:    | 4176: F | owell E | ) vd &  - | 205 NE | Ramp                  |

| <b>→</b> a2 |      | <b>М</b> "В |
|-------------|------|-------------|
| 3B s        |      | 22 a        |
| <b>4</b>    | ي 🖌  |             |
| 22s         | 16 : |             |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 7

Timing Report, Sorted By Phase 5: Division Street & I-205 SB Ramp

|                        | 4       | -       | 4       | +       |                        |
|------------------------|---------|---------|---------|---------|------------------------|
| Phase Number           | 1       | 2       | 4       | 6       |                        |
| Movement               | WBL     | EBT     | SBTL    | WBT     |                        |
| Lead/Lag               | Lag     | Lead    |         |         |                        |
| Lead-Lag Optimize      |         |         |         |         |                        |
| Recall Mode            | C-Max   | Min     | None    | C-Max   |                        |
| Maximum Split (s)      | 15      | 24      | 31      | 39      |                        |
| Maximum Split (%)      | 21.4%   | 34.3%   | 44.3%   | 55.7%   |                        |
| Minimum Split (s)      | 9       | 24      |         | 21      |                        |
| Yellow Time (s)        | 5       | 5       | 3.8     | - 5     |                        |
| All-Red Time (s)       | 0       | 0       | 1.2     | 0       |                        |
| Minimum Initial (s)    | - 4     |         | 6       | 10      |                        |
| Vehicle Extension (s)  | 3       | 5       | 3       | 5       |                        |
| Minimum Gap (s) 👘      | 1.5     | 3       | 1.5     | 3       |                        |
| Time Before Reduce (   | (s) 8   | 20      | 8       | 20      |                        |
| Time To Reduce (s)     | 3       |         | 3       | 20      |                        |
| Walk Time (s)          |         | 5       | 5       | 5       |                        |
| Flash Dont Walk (s) 👘  |         | 16      | 19      | 11      |                        |
| Dual Entry             | No      | Yes     | Yes     | Yes     |                        |
| Inhibit Max            | Yes     |         |         | Yes     |                        |
| Start Time (s)         | 6       | 52      | 21      | 52      |                        |
| End Time (s)           | 21      | 6       | 52      | 21      |                        |
| Yield/Force Off (s)    | 16      | 1       | 47      | 16      |                        |
| Yield/Force Off 170(s) | 16      | 1       | 28      | 5       |                        |
| Local Start Time (s)   | 60      | 36      | 5       | 36      |                        |
| Local Yield (s)        | 0       | 55      | 31      | 0       |                        |
| Local Yield 170(s)     | 0       | 55      | 12      | 59      |                        |
| Intersection Summary   |         |         |         |         |                        |
| Cycle Length           |         |         | 70      |         |                        |
| Control Type 💫 🖌       | Actuate | d-Coord | linated |         |                        |
| Natural Cycle          |         |         | 65      |         |                        |
| Offset: 16 (23%), Refe | renced  | to pha: | se 1:WE | L and 6 | 3:WBT, Start of Yellow |

Splits and Phases: 5: Division Street & L205 SB Ramp

| Splits and Phases: | <ul> <li>D: Divisior</li> </ul> | n Street & I-2l | 15 SB | Kamp          |  |
|--------------------|---------------------------------|-----------------|-------|---------------|--|
| <b>→</b> a2        |                                 | 🖌 at            |       | <b>↓</b> • •4 |  |
| 24 s               |                                 | 15 a            |       | 31 a          |  |
| <b>4</b>           |                                 |                 |       |               |  |
| 39s                |                                 |                 |       |               |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 25: Division Street & 96th Ave

|                        | 4        | ≯       | t     | 4     | +     |  |
|------------------------|----------|---------|-------|-------|-------|--|
| Phase Number           | 2        | 3       | 4     | 6     | 8     |  |
| Movement               | SBL      | EBL     | WBT   | NBTL  | EBT   |  |
| Lead/Lag               |          | Lead    | Lag   |       |       |  |
| Lead-Lag Optimize      |          |         |       |       |       |  |
| Recall Mode            | None     | None    | C-Max | None  | C-Max |  |
| Maximum Split(s)       | 13       | 12      | 20    | 25    | 32    |  |
| Maximum Split (%)      | 18.6%    | 17.1%   | 28.6% | 35.7% | 45.7% |  |
| Minimum Split (s)      | 13       | 8       | 21    | 21    | 21    |  |
| Yellow Time (s)        | 3.5      | 3       | - 4   | - 4   | - 4   |  |
| All-Red Time (s)       | 0.5      | 0       | 1     | 1     | 1     |  |
| Minimum Initial (s)    | - 4      | - 4     | - 4   | - 4   | - 4   |  |
| Vehicle Extension (s)  | 3        | 3       | 3     | 3     | 3     |  |
| Minimum Gap (s)        | 3        | 3       | 3     | 3     | 3     |  |
| Time Before Reduce (   | s) 0     | 0       | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0        | 0       | 0     | 0     | 0     |  |
| Walk Time (s)          |          |         | 4     | 4     | 4     |  |
| Flash Dont Walk (s)    |          |         | 11    | 11    | 11    |  |
| Dual Entry             | Yes      | No      | Yes   | Yes   | Yes   |  |
| Inhibit Max            | Yes      | Yes     | Yes   | Yes   | Yes   |  |
| Start Time (s)         | 15       | 53      | 65    | 28    | 53    |  |
| End Time (s)           | 28       | 65      | 15    | 53    | 15    |  |
| Yield/Force Off (s)    | 24       | 62      | 10    | 48    | 10    |  |
| Yield/Force Off 170(s) | 24       | 62      | 69    | 37    | 69    |  |
| Local Start Time (s)   | 5        | 43      | 55    | 18    | 43    |  |
| Local Yield (s)        | - 14     | 52      | 0     | 38    | 0     |  |
| Local Yield 170(s)     | 14       | 52      | 59    | 27    | 59    |  |
| Intersection Summary   |          |         |       |       |       |  |
| Cycle Length           |          |         | 70    |       |       |  |
|                        | (ctuate) | d-Coord |       |       |       |  |
| Natural Cycle          |          |         | 65    |       |       |  |

Offset: 10 (14%), Referenced to phase 4:WBT and 8:EBT, Start of Yellow

Splits and Phases: 25: Division Street & 96th Ave

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 68: Division Street & 92nd Ave

| OO. DIVISION OLICEL    | 0. 3211 | u Ave   |         |       |       |       |       |       | 1010 112000 |
|------------------------|---------|---------|---------|-------|-------|-------|-------|-------|-------------|
|                        | 4       | ţ       | •       | 4     | ≯     | t     | 7     | 1     |             |
| Phase Number           | 1       | 2       | 3       | - 4   | 5     | 6     | 7     | 8     |             |
| Movement               | WBL     | EBT     | NBL     | SBT   | EBL   | WBT   | SBL   | NBT   |             |
| Lead/Lag               | Lead    | Lag     | Lead    | Lag   | Lead  | Lag   | Lead  | Lag   |             |
| Lead-Lag Optimize      |         |         |         |       |       |       |       |       |             |
| Recall Mode            | None    | C-Max   | None    | None  | None  | C-Max | None  | None  |             |
| Maximum Split (s)      | 11      | 27      | 10      | 22    | 10    | 28    | 11    | 21    |             |
| Maximum Split (%) 👘    | 15.7%   | 38.6%   | 14.3%   | 31.4% | 14.3% | 40.0% | 15.7% | 30.0% |             |
| Minimum Split (s)      | 8       | 20.5    | 8       | 20.5  | 8     | 20.5  | 8     | 20.5  |             |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5   | 3     | 3.5   | 3     | 3.5   |             |
| All-Red Time (s)       | 0       | 1       | 0       | 1     | 0     | 1     | 0     | 1     |             |
| Minimum Initial (s) 👘  | - 4     | - 4     | - 4     | - 4   | - 4   | - 4   | - 4   | - 4   |             |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3     | з     | 3     | 3     | 3     |             |
| Minimum Gap (s) 👘      | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |             |
| Time Before Reduce (   | s) 0    | 0       | 0       | 0     | 0     | 0     | 0     | 0     |             |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     |             |
| Walk Time (s)          |         | 5       |         | 5     |       | 5     |       | 5     |             |
| Flash Dont Walk (s) 👘  |         | 11      |         | 11    |       | 11    |       | 11    |             |
| Dual Entry             | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |             |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |             |
| Start Time (s)         | 20.5    | 31.5    | 58.5    | 68.5  | 20.5  | 30.5  | 58.5  | 69.5  |             |
| End Time (s)           | 31.5    | 58.5    | 68.5    | 20.5  | 30.5  | 58.5  | 69.5  | 20.5  |             |
| Yield/Force Off (s)    | 28.5    | 54      | 65.5    | 16    | 27.5  | 54    | 66.5  | 16    |             |
| Yield/Force Off 170(s) | 28.5    | 43      | 65.5    | 5     | 27.5  | 43    | 66.5  | 5     |             |
| Local Start Time (s)   | 36.5    | 47.5    | 4.5     | 14.5  | 36.5  | 46.5  | 4.5   | 15.5  |             |
| Local Yield (s)        | 44.5    | 0       | 11.5    | 32    | 43.5  | 0     | 12.5  | 32    |             |
| Local Yield 170(s)     | 44.5    | 59      | 11.5    | 21    | 43.5  | 59    | 12.5  | 21    |             |
| Intersection Summary   |         |         |         |       |       |       |       |       |             |
| Cycle Length           |         |         | 70      |       |       |       |       |       |             |
| Control Type 🖉 🖌       | Actuate | d-Coord | linated |       |       |       |       |       |             |
| Natural Cycle          |         |         | 60      |       |       |       |       |       |             |

Natural Cycle 60 Offset: 54 (77%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Splits and Phases: 68: Division Street & 92nd Ave

| 🖌 a1 | → n2                   | <b>N</b> 63 | t p4        |
|------|------------------------|-------------|-------------|
| 11 s | 27 в                   | 10 a 👘 🖓    | 22 в        |
| ▲ 45 | <b>←</b> <sub>66</sub> | ₩ a7        | <b>1</b> 28 |
| 10%  | 29 *                   | 11 a        | 21 s        |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 70: Division Street & 71st

|                          | +        | <u>۲</u>           |
|--------------------------|----------|--------------------|
| <sup>o</sup> hase Number | 2        | 4                  |
| vlovement                | EBWB     | NBL                |
| .ead/Lag                 |          |                    |
| Lead-Lag Optimize        |          |                    |
| Recall Mode              | C-Max    | None               |
| Maximum Split (s)        | 47       | 23                 |
| Maximum Split (%)        | 67.1%    | 32.9%              |
| Minimum Split (s)        | 20.5     | 10                 |
| Yellow Time (s)          | 3.5      | 3                  |
| All-Red Time (s)         | 1        | 0                  |
| Minimum Initial (s) 👘    | - 4      | 4                  |
| Vehicle Extension (s)    | 3        | 3                  |
| Minimum Gap (s)          | 3        | 3                  |
| Time Before Reduce (     | (s) O    | 0                  |
| Time To Reduce (s)       | 0        | 0                  |
| Walk Time (s)            | 5        |                    |
| Flash Dont Walk (s)      | 11       |                    |
| Dual Entry               | Yes      | Yes                |
| Inhibit Max              | Yes      |                    |
| Start Time (s)           | 25.5     | 2.5                |
| End Time (s)             | 2.5      | 25.5               |
| Yield/Force Off (s)      | 68       | 22.5               |
| Yield/Force Off 170(s)   | 57       | 22.5               |
| Local Start Time (s)     | 27.5     | 4.5                |
| Local Yield (s)          | 0        | 24.5               |
| Local Yield 170(s)       | 59       | 24.5               |
| Intersection Summary     |          |                    |
| Cycle Length             |          |                    |
|                          | Actuate  | d-Coordin <i>a</i> |
| Natural Cycle            | totuate  | a-000101112        |
| Offset: 68 (97 %), Refe  | renced   | to phase 2         |
| onder, oo (ar w), Kele   | renced   | to phase 2         |
| Splits and Phases:       | 70: Divi | sion Stree         |
| <b>1</b>                 |          |                    |
| <b>₩</b> a2              |          |                    |
| <b>9</b> (3              |          |                    |
|                          |          |                    |
|                          |          |                    |
|                          |          |                    |
|                          |          |                    |
|                          |          |                    |
|                          |          |                    |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 71: Division Street & 76th Ave

|                        | 4       | 1          |                                |
|------------------------|---------|------------|--------------------------------|
| Phase Number           | 2       | 4          |                                |
| Vlovement l            | EBWB    | SBL        |                                |
| Lead/Lag               |         |            |                                |
| _ead-Lag Optimize      |         |            |                                |
|                        | C-Max   | None       |                                |
| Maximum Split (s)      | 40      | 30         |                                |
| 1 17                   | 57.1%   | 42.9%      |                                |
| Minimum Split (s)      | 20.5    | 20         |                                |
| Yellow Time (s)        | 3.5     | 3          |                                |
| All-Red Time (s)       | 1       | 0          |                                |
| Minimum Initial (s)    | 4       | 4          |                                |
| /ehicle Extension (s)  | 3       | 3          |                                |
| Minimum Gap (s)        | 3       | 3          |                                |
| Time Before Reduce (s  |         | 0          |                                |
| Fime To Reduce (s)     | », U    | 0          |                                |
|                        | 5       | 5          |                                |
| Walk Time (s)          |         | 11         |                                |
| Flash Dont Walk (s)    | 11      |            |                                |
| Dual Entry             | Yes     |            |                                |
| nhibit Max             | Yes     |            |                                |
| Start Time (s)         | 30.5    | 0.5        |                                |
| End Time (s)           | 0.5     | 30.5       |                                |
| rield/Force Off (s)    | 66      | 27.5       |                                |
| rield/Force Off 170(s) | 55      | 16.5       |                                |
| _ocal Start Time (s)   | 34.5    | 4.5        |                                |
| Local Yield (s)        | 0       | 31.5       |                                |
| Local Yield 170(s)     | 59      | 20.5       |                                |
| ntersection Summary    |         |            |                                |
| Cycle Length           |         |            | 70                             |
| Control Type A         | ctuate  | d-Coordii  | nated                          |
| Natural Cycle          |         |            | 45                             |
|                        | renced  | to phase   | 2:EBWB and 6:, Start of Yellow |
|                        |         |            |                                |
| Splits and Phases: 7   | 1: Divi | ision Stre | eet & 76th Ave                 |
| ophis and Filases. 7   |         |            |                                |
|                        |         |            |                                |
|                        |         |            | → <sub>a4</sub>                |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 5

Timing Report, Sorted By Phase 150: Division Street & 112th Ave

|                        | 4       | +       | •       | Ŧ     | ≯     | t     | 7     | †     |  |
|------------------------|---------|---------|---------|-------|-------|-------|-------|-------|--|
| Phase Number           | 1       | 2       | 3       | 4     | 5     | 6     | 7     | 8     |  |
| Movement               | WBL     | EBT     | NBL     | SBT   | EBL   | WBT   | SBL   | NBT   |  |
| Lead/Lag               | Lead    | Lag     | Lead    | Lag   | Lead  | Lag   | Lead  | Lag   |  |
| Lead-Lag Optimize      |         |         |         |       |       |       |       |       |  |
| Recall Mode            | None    | C-Max   | None    | None  | None  | C-Max | None  | None  |  |
| Maximum Split (s)      | 10      | 30      | 10      | 20    | 10    | 30    | 10    | 20    |  |
| Maximum Split (%)      | 14.3%   | 42.9%   | 14.3%   | 28.6% | 14.3% | 42.9% | 14.3% | 28.6% |  |
| Minimum Split (s)      | 8       | 20.5    | 8       | 20    | 8     | 20.5  | 8     | 20    |  |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3     | 3     | 3.5   | 3     | 3     |  |
| All-Red Time (s)       | 0       | 1       | 0       | 0     | 0     | 1     | 0     | 0     |  |
| MinimumInitial (s) 👘   | - 4     | - 4     | - 4     | - 4   | - 4   | - 4   | - 4   |       |  |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Minimum Gap (s) 👘      | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce (   | (s) O   | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          |         | 5       |         | 5     |       | 5     |       | 5     |  |
| Flash Dont Walk (s) 👘  |         | 11      |         | 11    |       | 11    |       | 11    |  |
| Dual Entry             | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     |         | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Start Time (s)         | 50.5    | 60.5    | 20.5    | 30.5  | 50.5  | 60.5  | 20.5  | 30.5  |  |
| End Time (s)           | 60.5    | 20.5    | 30.5    | 50.5  | 60.5  | 20.5  | 30.5  | 50.5  |  |
| Yield/Force Off (s)    | 57.5    | 16      | 27.5    | 47.5  | 57.5  | 16    | 27.5  | 47.5  |  |
| Yield/Force Off 170(s) | 57.5    | 5       | 27.5    | 36.5  | 57.5  | 5     | 27.5  | 36.5  |  |
| Local Start Time (s)   | 34.5    | 44.5    | 4.5     | 14.5  | 34.5  | 44.5  | 4.5   | 14.5  |  |
| Local Yield (s)        | 41.5    | 0       | 11.5    | 31.5  | 41.5  | 0     | 11.5  |       |  |
| Local Yield 170(s)     | 41.5    | 59      | 11.5    | 20.5  | 41.5  | 59    | 11.5  | 20.5  |  |
| Intersection Summary   |         |         |         |       |       |       |       |       |  |
| Cycle Length           |         |         | 70      |       |       |       |       |       |  |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |       |       |       |       |       |  |
| Natural Cycle          |         |         | 60      |       |       |       |       |       |  |

Natural Cycle 60 Offset: 16 (23%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Splits and Phases: 150: Division Street & 112th Ave

| 🖌 al | <b>→</b> <sub>a</sub> 2 | <b>N</b> 63 | ↓ p4                   |
|------|-------------------------|-------------|------------------------|
| 1D s | 30 *                    | 10 a        | 20 в                   |
| ▲ 45 | ←<br>6                  | ₩ o7        | <b>†</b> <sub>68</sub> |
| 10:0 | 30 *                    | 10 a        | 20 s                   |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6

Timing Report, Sorted By Phase 72: Stark St & 76th Ave

| 72: Stark St & 76th    |          |                  |             |               |   |  |
|------------------------|----------|------------------|-------------|---------------|---|--|
|                        | 1        | ٠.               |             |               |   |  |
| Phase Number           | 2        | 4                |             |               |   |  |
| Movement               | WBTL     | NBL              |             |               |   |  |
| Lead/Lag               |          |                  |             |               |   |  |
| Lead-Lag Optimize      |          |                  |             |               |   |  |
| Recall Mode            | C-Max    | None             |             |               |   |  |
| Maximum Split (s)      | 27       | 18               |             |               |   |  |
| Maximum Split (%) 👘    | 60.0%    | 40.0%            |             |               |   |  |
| Minimum Split (s)      | 20.5     | 18               |             |               |   |  |
| Yellow Time (s)        | 3.5      | 3                |             |               |   |  |
| All-Red Time (s)       | 1        | 0                |             |               |   |  |
| Minimum Initial (s) 👘  | - 4      | 4                |             |               |   |  |
| Vehicle Extension (s)  | 3        | 3                |             |               |   |  |
| Minimum Gap (s) 👘      | 3        | 3                |             |               |   |  |
| Time Before Reduce (   |          | 0                |             |               |   |  |
| Time To Reduce (s) 👘   | 0        | 0                |             |               |   |  |
| Walk Time (s)          | 5        | 4                |             |               |   |  |
| Flash Dont Walk (s) 👘  | 11       | 10               |             |               |   |  |
| Dual Entry             | Yes      | Yes              |             |               |   |  |
| Inhibit Max            | Yes      | Yes              |             |               |   |  |
| Start Time (s)         | 40.5     | 22.5             |             |               |   |  |
| End Time (s)           | 22.5     | 40.5             |             |               |   |  |
| Yield/Force Off (s)    | 18       | 37.5             |             |               |   |  |
| Yield/Force Off 170(s) | 7        | 27.5             |             |               |   |  |
| Local Start Time (s)   | 22.5     | 4.5              |             |               |   |  |
| Local Yield (s)        | 0        | 19.5             |             |               |   |  |
| Local Yield 170(s)     | 34       | 9.5              |             |               |   |  |
| Intersection Summary   |          |                  |             |               |   |  |
| Cycle Length           |          | 45               |             |               |   |  |
| Control Type 💫 🖌 A     | Actuate  | d-Coordinated    |             |               |   |  |
| Natural Cycle          |          | 40               |             |               |   |  |
| Offset: 18 (40%), Refe | renced   | to phase 2:WB1   | L and 6:, S | tart of Yello | w |  |
| Splits and Phases: 7   | TO. 04-  | 4. CL & TOLL 0   |             |               |   |  |
| SDUIS ADD PDASES'      | / Z: Sta | rk St & 76th Ave |             |               |   |  |
|                        |          |                  |             |               |   |  |
| a2                     |          |                  |             | 1 04          |   |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Timing Report, Sorted By Phase 73: Washington St & 92nd Ave

|                                         | - 4      | #           |
|-----------------------------------------|----------|-------------|
| Phase Number                            | 6        | 8           |
| Movement                                | EBTL     | NBSB        |
| Lead/Lag                                |          |             |
| Lead-Lag Optimize                       |          |             |
| Recall Mode                             | C-Max    |             |
| Maximum Split (s)                       | 25       | 20          |
| Maximum Split (%)                       | 55.6%    |             |
| Minimum Split(s)                        | 20.5     | 20          |
| Yellow Time (s)                         | 3.5      | 3           |
| All-Red Time (s)                        | 1        | 0           |
| Minimum Initial (s)                     | 4        | 4           |
| Vehicle Extension (s)                   |          | 3           |
| Minimum Gap (s)                         | 3        | 3           |
| Time Before Reduce                      |          | 0           |
| Time To Reduce (s)                      | 0        | 0           |
| Walk Time (s)                           | 5        | 5           |
| Flash Dont Walk (s)                     | 11       | 11          |
| Dual Entry                              | Yes      | Yes         |
| Inhibit Max                             | Yes      | Yes         |
| Start Time (s)                          | 19.5     | 44.5        |
| End Time (s)                            | 44.5     | 19.5        |
| Yield/Force Off (s)                     | 40       | 16.5        |
| Yield/Force Off 170(s)                  | <i>.</i> | 5.5         |
| Local Start Time (s)<br>Local Yield (s) | 24.5     | 4.5<br>21.5 |
| Local Yield 170(s)                      | 34       | 10.5        |
| .,                                      |          | 10.0        |
| Intersection Summary                    | ý        |             |
| Cycle Length                            |          |             |
| · · · · · · / · · · · · · · · · · ·     | Actuate  | d-Coordina  |
| Natural Cycle                           |          |             |
| Offset: 40 (89%), Refe                  | erenced  | to phase 2  |

Splits and Phases: 73: Washington St & 92nd Ave

| ▲ 26 | <b>11</b> 28 |
|------|--------------|
| 25 s | 20:3         |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 74: Stark St & 92nd Ave

| hase Number                   | 2           | 4                |
|-------------------------------|-------------|------------------|
|                               | WBTL        | NBL              |
| _ead/Lag                      | 00012       | NDE              |
| Lead-Lag Optimize             |             |                  |
|                               | C-Max       | None             |
| Maximum Split (s)             | 25          | 20               |
|                               | 55.6%       | 44.4%            |
| Minimum Split (s)             | 20.5        | 20               |
| Yellow Time (s)               | 3.5         | 3                |
| All-Red Time (s)              | 1           | 0                |
| Minimum Initial (s) 👘         | - 4         | 4                |
| Vehicle Extension (s)         | 3           | 3                |
| Minimum Gap (s) 👘             | 3           | 3                |
| Time Before Reduce (          |             | 0                |
| Time To Reduce (s)            | 0           | 0                |
| Walk Time (s)                 | 5           | 5                |
| Flash Dont Walk (s)           | 11          | 11               |
| Dual Entry                    | Yes         | Yes              |
| Inhibit Max<br>Start Time (s) | Yes<br>32.5 | Yes<br>12.5      |
| End Time (s)                  | 12.5        | 32.5             |
| Yield/Force Off (s)           | 8           | 29.5             |
| Yield/Force Off 170(s)        | -           | 18.5             |
| Local Start Time (s)          | 24.5        | 4.5              |
| Local Yield (s)               | 0           | 21.5             |
| Local Yield 170(s)            | 34          | 10.5             |
| Intersection Summary          |             |                  |
| Cycle Length                  |             | 4                |
|                               | \otu ato /  | 4-Coordinate     |
| Natural Cycle                 | couated     | -coordinate<br>4 |
| Offset: 8 (18%), Refere       | enced to    |                  |
| onset. o (10 %), Kelele       | enced to    | phase 2.00       |
| Splits and Phases: 7          | 74: Star    | kSt&92nd         |
| 4                             |             |                  |
| 🖣 e2                          |             |                  |
|                               |             |                  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 77: Washington St & 76th Ave

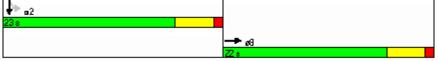
|                        | 4        | 4        |                         |
|------------------------|----------|----------|-------------------------|
| Phase Number           | 2        | 4        |                         |
| Movement               | NBSB     | EBTL     |                         |
| Lead/Lag               |          |          |                         |
| Lead-Lag Optimize      |          |          |                         |
| Recall Mode            | None     | C-Max    |                         |
| Maximum Split (s)      | 20       | 25       |                         |
| Maximum Split (%)      | 44.4%    | 55.6%    |                         |
| Minimum Split(s)       | 20       | 20.5     |                         |
| Yellow Time (s)        | 3        | 3.5      |                         |
| All-Red Time (s)       | 0        | 1        |                         |
| Minimum Initial (s) 👘  | - 4      | - 4      |                         |
| Vehicle Extension (s)  | 3        | 3        |                         |
| Minimum Gap (s)        | 3        | 3        |                         |
| Time Before Reduce     | (s) O    | 0        |                         |
| Time To Reduce (s)     | 0        | 0        |                         |
| Walk Time (s)          | 5        | 5        |                         |
| Flash Dont Walk (s) 👘  | 11       | 11       |                         |
| Dual Entry             | Yes      | Yes      |                         |
| Inhibit Max            | Yes      | Yes      |                         |
| Start Time (s)         | 12.5     | 32.5     |                         |
| End Time (s)           | 32.5     | 12.5     |                         |
| Yield/Force Off (s)    | 29.5     | 8        |                         |
| Yield/Force Off 170(s) | 18.5     | 42       |                         |
| Local Start Time (s)   | 4.5      | 24.5     |                         |
| Local Yield (s)        | 21.5     | 0        |                         |
| Local Yield 170(s)     | 10.5     | 34       |                         |
| Intersection Summary   |          |          |                         |
| Cycle Length           |          |          | 45                      |
|                        | Actuate  | d-Coordi | nated                   |
| Natural Cycle          |          |          | 45                      |
| Offset: 8 (18%), Refer | enced t  | o phase  | 4:EBTL, Start of Yellow |
| Splits and Phases:     | 77·\0/∍< | shinaton | St & 76th Ave           |
| 14                     |          |          |                         |
| <b>†</b> ¶* a2         |          |          | <u>a</u> 4              |
| 20%                    |          |          | 25%                     |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 154: Stark St & 102nd Ave

| 104. OLAIN OL & 102     |         |                     |                       |
|-------------------------|---------|---------------------|-----------------------|
|                         | - ŧt    | $\overline{\nabla}$ |                       |
| Phase Number            | 2       | 4                   |                       |
| Movement                | NBSB    | WBTL                |                       |
| Lead/Lag                |         |                     |                       |
| Lead-Lag Optimize       |         |                     |                       |
| Recall Mode             | None    | C-Max               |                       |
| Maximum Split(s)        | 21      | 24                  |                       |
| Maximum Split (%)       | 46.7%   | 53.3%               |                       |
| Minimum Split (s)       | 20.5    | 20.5                |                       |
| Yellow Time (s)         | 3       | 3.5                 |                       |
| All-Red Time (s)        | 0       | 1                   |                       |
| Minimum Initial (s)     | 4       | 4                   |                       |
| Vehicle Extension (s)   | з       | 3                   |                       |
| Minimum Gap (s)         | 3       | 3                   |                       |
| Time Before Reduce (    | (s) O   | 0                   |                       |
| Time To Reduce (s)      | 0       | 0                   |                       |
| Walk Time (s)           | 5       | 5                   |                       |
| Flash Dont Walk (s)     | 11      | 11                  |                       |
| Dual Entry              | Yes     | Yes                 |                       |
| Inhibit Max             | Yes     | Yes                 |                       |
| Start Time (s)          | 7.5     | 28.5                |                       |
| End Time (s)            | 28.5    | 7.5                 |                       |
| Yield/Force Off (s)     | 25.5    | 3                   |                       |
| Yield/Force Off 170(s)  | 14.5    | 37                  |                       |
| Local Start Time (s)    | 4.5     | 25.5                |                       |
| Local Yield (s)         | 22.5    | 0                   |                       |
| Local Yield 170(s)      | 11.5    | 34                  |                       |
| Intersection Summary    |         |                     |                       |
| Cycle Length            |         |                     | 45                    |
|                         | Actuate | d-Coordin           | ated                  |
| Natural Cycle           |         |                     | 45                    |
| Offset: 3 (7%), Referer | nced to | phase 4:)           | WBTL, Start of Yellow |
|                         |         |                     |                       |
| Splits and Phases:      | 154: St | ank St& 1           | 02nd Ave              |
| 4                       |         |                     | <b>4</b> g4           |
|                         |         |                     |                       |
| ₩ a2                    |         |                     | 74 4                  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 5


Timing Report, Sorted By Phase 155: Washington St & 112th Ave

|                         | 4        | <u> </u>  |
|-------------------------|----------|-----------|
| hase Number             | 2        | 4         |
| Vlovement               | NBSB     | EBTL      |
| Lead/Lag                |          |           |
| Lead-Lag Optimize       |          |           |
| Recall Mode             | None     | C-Max     |
| Maximum Split (s)       | 21       | 24        |
| Maximum Split (%) 🚽     | 46.7%    | 53.3%     |
| Minimum Split (s)       | 19       | 20.5      |
| Yellow Time (s)         | 3        | 3.5       |
| All-Red Time (s)        | 0        | 1         |
| Minimum Initial (s)     | - 4      | - 4       |
| Vehicle Extension (s)   | 3        | 3         |
| Minimum Gap (s)         | 3        | 3         |
| Time Before Reduce (    | s) 0     | 0         |
| Time To Reduce (s)      | 0        | 0         |
| Walk Time (s)           | 5        | 5         |
| Flash Dont Walk (s)     | 11       | 11        |
| Dual Entry              | Yes      | Yes       |
| Inhibit Max             | Yes      | Yes       |
| Start Time (s)          | 11.5     | 32.5      |
| End Time (s)            | 32.5     | 11.5      |
| Yield/Force Off (s)     | 29.5     | 7         |
| Yield/Force Off 170(s)  | 18.5     | 41        |
| Local Start Time (s)    | 4.5      | 25.5      |
| Local Yield (s)         | 22.5     | 0         |
| Local Yield 170(s)      | 11.5     | 34        |
| Intersection Summary    |          |           |
| Cycle Length            |          |           |
|                         | otuate   | d-Coordi  |
| Natural Cycle           |          |           |
| Offset: 7 (16%), Refere | enced t  | o phase   |
| Splits and Phases: 1    | 155:30/  | ashingto  |
|                         | .55. 00. | asiningto |
| <b>₽</b> ¶ @2           |          |           |
| 21 s                    |          |           |
|                         |          |           |
|                         |          |           |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6

Timing Report, Sorted By Phase 166: Washington St & I-205 SB 10/31/2006

|                         | - <b>I</b> P | -         |          |
|-------------------------|--------------|-----------|----------|
| Phase Number            | 2            | 8         |          |
| Movement                | SBTL         | EBT       |          |
| Lead/Lag                |              |           |          |
| Lead-Lag Optimize       |              |           |          |
| Recall Mode             | None         | C-Max     |          |
| Maximum Split (s)       | 23           | 22        |          |
| Maximum Split (%) 👘     | 51.1%        | 48.9%     |          |
| Minimum Split (s)       | 21           | 21        |          |
| Yellow Time (s)         | - 4          | 4         |          |
| All-Red Time (s)        | 1            | 1         |          |
| Minimum Initial (s)     | - 4          | 4         |          |
| Vehicle Extension (s)   | 3            | 3         |          |
| Minimum Gap (s)         | 3            | 3         |          |
| Time Before Reduce (    | s) 0         | 0         |          |
| Time To Reduce (s)      | 0            | 0         |          |
| Walk Time (s)           | 5            | 5         |          |
| Flash Dont Walk (s)     | 11           | 11        |          |
| Dual Entry              | Yes          | Yes       |          |
| Inhibit Max             | Yes          | Yes       |          |
| Start Time (s)          | 13           | 36        |          |
| End Time (s)            | - 36         | 13        |          |
| Yield/Force Off (s)     | 31           | 8         |          |
| Yield/Force Off 170(s)  | 20           | 42        |          |
| Local Start Time (s)    | 5            | 28        |          |
| Local Yield (s)         | 23           | 0         |          |
| Local Yield 170(s)      | 12           | 34        |          |
| Intersection Summary    |              |           |          |
| Cycle Length            |              |           | 45       |
| Control Type 🛛 🖌 A      | Actuate      | d-Coordi  | nated    |
| Natural Cycle           |              |           | 45       |
| Offset: 8 (18%), Refere | enced t      | o phase ( | BEBT, S  |
| Splits and Phases:      | 166: Wa      | ashingtor | n St&l-2 |
| <b>↓</b> <sub>n2</sub>  |              |           |          |



Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Timing Report, Sorted By Phase 172: Stark St & I-205 SB

| Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off 170(s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield 170(s)       12       34         Intersection Summary       Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 172. Stark St & F20                   | 3 90     |                         |             |              |   |  | 10/3 1/200 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|-------------------------|-------------|--------------|---|--|------------|
| Movement         SBT WBTL           Lead-Lag Optimize         Recall Mode         None C-Max           Maximum Split(s)         23         22           Maximum Split(s)         21         21           Yellow Time (s)         4         4           All-Red Time (s)         1         1           Minimum Split(s)         23         3           Minimum Split(s)         24         4           All-Red Time (s)         1         1           Minimum Gap (s)         3         3           Minimum Gap (s)         3         3           Time Before Reduce (s)         0         0           Walk Time (s)         5         5           Flash Dont Walk (s)         11         11           Dual Entry         Yes         Yes           Inhibit Max         Yes         Yes           Inhibit Max         Yes         Yes           Indiffereo Off (s)         31         8           Yield/Force Off (s)         31         8           Vield/Force Off (s)         12         34           Intersection Summary         Control Type         Actuated-Coordinated           Natural Cycle         45         Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 4        | $\overline{\mathbf{v}}$ |             |              |   |  |            |
| Lead-Lag Optimize<br>Recall Mode None C-Max<br>Maximum Split(s) 23 22<br>Maximum Split(s) 21 21<br>Yellow Time (s) 4 4<br>All-Red Time (s) 1 1<br>Minimum Initial (s) 4 4<br>Vehicle Extension (s) 3 3<br>Time Before Reduce (s) 0 0<br>Time To Reduce (s) 0 0<br>Walk Time (s) 5 5<br>Flash Dont Walk (s) 11 11<br>Dual Entry Yes Yes<br>Start Time (s) 36 13<br>Yield/Force Off (s) 31 8<br>Yield/Force Off (s) 31 8<br>Yield/Force Off 170(s) 20 42<br>Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & L-205 SB<br>42<br>Yel Ventice Control Type Actuated Type Actu | Phase Number                          | 2        | 4                       |             |              |   |  |            |
| Lead-Lag Optimize         Recall Mode       None C-Max         Maximum Split(s)       23       22         Maximum Split(s)       51.1% 48.9%         Minimum Split(s)       21       21         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Shart Time (s)       13       36         End Time (s)       36       13         Yield/Force Off 170(s)       20       42         Local Yield (s)       23       0         Local                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Movement                              | SBT      | WBTL                    |             |              |   |  |            |
| Recall Mode       None C-Max         Maximum Split(s)       23       22         Maximum Split(s)       51.1% 48.9%         Minimum Split(s)       21       21         Yellow Time (s)       4       4         Al-Red Time (s)       1       1         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (f)       31       8         Yield/Force Off (70(s)       20       42         Local Start Time (s)       5       28         Local Yield (170(s)       12       34         Intersection Summary       Cycle Length       45         Control Type       Actuated-Coordinated       Natural Cycle         Natural Cycle       45       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow       Splits and P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lead/Lag                              |          |                         |             |              |   |  |            |
| Maximum Split (s)       23       22         Maximum Split (s)       51.1% 48.9%         Minimum Split (s)       21       21         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Minimum Gap (s)       0       0         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       12       34         Intersection Summany       45         Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & 1-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead-Lag Optimize                     |          |                         |             |              |   |  |            |
| Maximum Split (%)       51.1% 48.9%         Minimum Split (s)       21       21         Yellow Time (s)       4       4         All-Red Time (s)       4       4         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield (s)       12       34         Intersection Summary       45         Corle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Recall Mode                           | None     | C-Max                   |             |              |   |  |            |
| Maximum Split (%)       51.1% 48.9%         Minimum Split (%)       21       21         Yellow Time (\$)       4       4         All-Red Time (\$)       4       4         Minimum Initial (\$)       4       4         Vehicle Extension (\$)       3       3         Minimum Gap (\$)       3       3         Time Before Reduce (\$)       0       0         Walk Time (\$)       5       5         Flash Dont Walk (\$)       11       11         Dual Entry       Yes       Yes         Start Time (\$)       13       36         End Time (\$)       36       13         Yield/Force Off (\$)       31       8         Yield/Force Off (\$)       20       42         Local Start Time (\$)       5       28         Local Yield (\$)       23       0         Local Yield (\$)       12       34         Intersection Summary       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         e2       Tet <td>Maximum Split (s)</td> <td>23</td> <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Maximum Split (s)                     | 23       | 22                      |             |              |   |  |            |
| Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       13       36         End Time (s)       31       8         Yield/Force Off (s)       31       8         Yield/Force Off (s)       12       34         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield 170(s)       12       34         Intersection Summary       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & 1-205 SB         a2       a1 <td></td> <td>51.1%</td> <td>48.9%</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 51.1%    | 48.9%                   |             |              |   |  |            |
| Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       31       8         Yield/Force Off (s)       12       34         Intersection Summary       Cycle Length       45         Local Yield 170(s)       12       34         Intersection Summary       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & 1-205 SB         a2       a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 21       | 21                      |             |              |   |  |            |
| All-Red Time (s)       1       1         Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off 170(s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield (s)       23       0         Local Yield 170(s)       12       34         Intersection Summany       45         Cortol Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         a2       a <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |          |                         |             |              |   |  |            |
| Minimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       31       8         Yield/Force Off (s)       31       8         Yield/Force Off (s)       12       34         Local Yield (s)       23       0         Local Yield (s)       12       34         Intersection Summary       12       34         Intersection Summary       12       34         Cycle Length       45       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         a2       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |          |                         |             |              |   |  |            |
| Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield 170(s)       12       34         Intersection Summary       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         a2       a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | 4        | 4                       |             |              |   |  |            |
| Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off 170(s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield 170(s)       12       34         Intersection Summary       Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         a2       a4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 3        | 3                       |             |              |   |  |            |
| Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield TO(s)       12       34         Intersection Summary       2       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         Image: Plane Phase Phase       172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |                         |             |              |   |  |            |
| Time To Reduce (s)       0       0         Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off (s)       20       42         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield TO(s)       12       34         Intersection Summary       2       0         Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         Image: Page       Image: Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.11                                  |          |                         |             |              |   |  |            |
| Walk Time (s)       5       5         Flash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       13       36         End Time (s)       36       13         Yield/Force Off (s)       31       8         Yield/Force Off 170(s)       20       42         Local Start Time (s)       5       28         Local Start Time (s)       5       28         Local Yield (s)       23       0         Local Yield 170(s)       12       34         Intersection Summary       2       0         Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow         Splits and Phases:       172: Stark St & I-205 SB         Image: Phase start Street Start St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |          | 0                       |             |              |   |  |            |
| Flash Dont Walk (s) 11 11   Dual Entry Yes Yes   Inhibit Max Yes Yes   Start Time (s) 13 36   End Time (s) 36 13   Yield/Force Off (s) 31 8   Yield/Force Off 170(s) 20 42   Local Start Time (s) 5 28   Local Yield (s) 23 0   Local Yield 170(s) 12 34   Intersection Summary  Cycle Length  45 Control Type  Actuated-Coordinated Natural Cycle  45 Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow  Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |          | -                       |             |              |   |  |            |
| Dual Entry     Yes     Yes       Inhibit Max     Yes     Yes       Start Time (s)     13     36       End Time (s)     36     13       Yield/Force Off (s)     31     8       Yield/Force Off 170(s)     20     42       Local Start Time (s)     5     28       Local Yield (s)     23     0       Local Yield 170(s)     12     34       Intersection Summary     Cycle     Local Yield       Cycle Length     45       Control Type     Actuated-Coordinated       Natural Cycle     45       Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow       Splits and Phases:     172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -        | -                       |             |              |   |  |            |
| Inhibit Max Yes Yes<br>Start Time (s) 13 36<br>End Time (s) 36 13<br>Yield/Force Off (s) 31 8<br>Yield/Force Off 170(s) 20 42<br>Local Start Time (s) 5 28<br>Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB<br>42<br>42<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |          |                         |             |              |   |  |            |
| Start Time (s) 13 36   End Time (s) 36 13   Yield/Force Off (s) 31 8   Yield/Force Off 170(s) 20 42   Local Start Time (s) 5 28   Local Yield (s) 23 0   Local Yield 170(s) 12 34   Intersection Summary  Cycle Length  A5 Control Type  Actuated-Coordinated Natural Cycle  45 Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow  Splits and Phases:  172: Stark St & I-205 SB  a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |          |                         |             |              |   |  |            |
| End Time (s) 36 13<br>Yield/Force Off (s) 31 8<br>Yield/Force Off 170(s) 20 42<br>Local Start Time (s) 5 28<br>Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB<br>42<br>42<br>42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |          |                         |             |              |   |  |            |
| Yield/Force Off (s) 31 8<br>Yield/Force Off 170(s) 20 42<br>Local Start Time (s) 5 28<br>Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       |          |                         |             |              |   |  |            |
| Yield/Force Off 170(s) 20 42<br>Local Start Time (s) 5 28<br>Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |          |                         |             |              |   |  |            |
| Local Start Time (s) 5 28<br>Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB<br>a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |          |                         |             |              |   |  |            |
| Local Yield (s) 23 0<br>Local Yield 170(s) 12 34<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB<br>a2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |          |                         |             |              |   |  |            |
| Local Yield 170(s) 12 34 Intersection Summary Cycle Length 45 Control Type Actuated-Coordinated Natural Cycle 45 Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |          |                         |             |              |   |  |            |
| Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |          | _                       |             |              |   |  |            |
| Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Intersection Summary                  |          |                         |             |              |   |  |            |
| Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cycle Length                          |          |                         | 45          |              |   |  |            |
| Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow<br>Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Actuated | d-Coordii               | nated       |              |   |  |            |
| Offset: 8 (18%), Referenced to phase 4:WBTL, Start of Yellow Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |          |                         |             |              |   |  |            |
| Splits and Phases: 172: Stark St & I-205 SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · | enced to | o phase 4               | 4:WBTL, Sta | art of Yello | w |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |                         |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Splits and Phases: /                  | 172: Sta | ank St&l                |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a2                                    |          |                         | 1           | e4           |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Z3 s                                  |          |                         |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |                         |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |                         |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |                         |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |                         |             |              |   |  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |          |                         |             |              |   |  |            |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 8

|                                       | 5 NB    |             | 10/31/200              |
|---------------------------------------|---------|-------------|------------------------|
|                                       | -       | -           |                        |
|                                       |         |             |                        |
| Phase Number                          | 2       | 4           |                        |
| Movement                              | WBT     | NBTL        |                        |
| Lead/Lag                              |         |             |                        |
| Lead-Lag Optimize                     |         |             |                        |
|                                       | C-Max   |             |                        |
| Maximum Split(s)                      | 22      | 23          |                        |
|                                       | 48.9%   |             |                        |
| Minimum Split (s)                     | 21      | 21          |                        |
| Yellow Time (s)                       | - 4     | 4           |                        |
| All-Red Time (s)                      | 1       | 1           |                        |
| Minimum Initial (s) 👘                 | - 4     | 4           |                        |
| Vehicle Extension (s)                 | 3       | 3           |                        |
| Minimum Gap (s)                       | 3       | 3           |                        |
| Time Before Reduce (s                 | 5) (    | 0           |                        |
| Time To Reduce (s) 👘                  | 0       | 0           |                        |
| Walk Time (s)                         | 5       | 5           |                        |
| Flash Dont Walk (s) 👘                 | 11      | 11          |                        |
| Dual Entry                            | Yes     | Yes         |                        |
| nhibit Max                            | Yes     | Yes         |                        |
| Start Time (s)                        | 38      | 15          |                        |
| End Time (s)                          | 15      | 38          |                        |
| Yield/Force Off (s)                   | 10      | 33          |                        |
| Yield/Force Off 170(s)                | - 44    | 22          |                        |
| Local Start Time (s)                  | 28      | 5           |                        |
| Local Yield (s)                       | 0       | 23          |                        |
| Local Yield 170(s)                    | 34      | 12          |                        |
| ntersection Summary                   |         |             |                        |
| Cycle Length                          |         |             | 45                     |
|                                       | ctuated | d-Coordin   | nated                  |
| Natural Cycle                         |         |             | 45                     |
| · · · · · · · · · · · · · · · · · · · | enced   | to phase    | 2:WBT, Start of Yellow |
| De l'ite en d Dhanna d                | 75. 01  |             | OOF ND                 |
| Splits and Phases: 1                  | 75: 51/ | ank St & I- |                        |
| -                                     |         |             | a4                     |
| e2                                    |         |             | 2+                     |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

| Timing Report, Sorted By Phase<br>176: Washington St & I-205 NB | 10/31/2006 |
|-----------------------------------------------------------------|------------|
|                                                                 |            |

| Average         EBTL         NBT           .ead/Lag         .ead-Lag Optimize         .ead-Lag Optimize           Secall Mode         C-Max         None           Aaximum Split (\$)         22         23           Maximum Split (\$)         21         21           Value Common Split (\$)         21         21           Value Split (\$)         4         4           Value Split (\$)         4         4           Value Split (\$)         3         3           Value Split (\$)         3         3           Value Split (\$)         0         0           Value Split (\$)         0         0           Value Split (\$)         11         11           Value Split (\$)         11         11           Value Split (\$)         13         36           Value Split (\$)         13         36           Value Split (\$)         0         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | - 4      | . †⊢                    |               |            |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|-------------------------|---------------|------------|------|
| Lead-Lag       Optimize         Aexad-Lag Optimize       C-Max         Aeximum Split (s)       22       23         Maximum Split (s)       21       21         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Ainimum Initial (s)       4       4         Vehicle Extension (s)       3       3         Ainimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Valk Time (s)       5       5         Tiash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Notal Time (s)       36       13         Sind Time (s)       36       13         Field/Force Off (s)       8       31         (field/Force Off (s)       8       31         (field/Force Off (s)       0       23         Local Start Time (s)       28       5         Local Start Time (s)       28       5         Local Yield (s)       0       23         Local Yield (s)       0       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phase Number           | 2        | 4                       |               |            |      |
| Lead-Lag Optimize           Recall Mode         C-Max         None           Aaximum Split (s)         22         23           Maximum Split (s)         21         21           Yellow Time (s)         4         4           All-Red Time (s)         1         1           Yellow Time (s)         4         4           All-Red Time (s)         1         1           Yelnow Time (s)         4         4           Vehicle Extension (s)         3         3           Yelnow Gap (s)         3         3           Yime Before Reduce (s)         0         0           Yelnow Time (s)         5         5           Yelsh Dont Walk (s)         11         11           Yels         Yes         Yes           Natt Time (s)         36         13           Yeld Yeroe Off (s)         8         31           Yield/Force Off (s)         8         31           Yield/Force Off (s)         8         31           Yield Yoro(s)         0         23           Jocal Start Time (s)         0         23           Jocal Yield (s)         0         23           Jocal Yield (s)         0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Movement               | EBTL     | NBT                     |               |            |      |
| Recall Mode         C-Max         None           Maximum Split(s)         22         23           Maximum Split(s)         21         21           Valkinum Split(s)         4         4           Valkinum Split(s)         4         4           Valkinum Split(s)         4         4           Valkinum Split(s)         3         3           Vime Split(s)         3         3           Vime Split(s)         5         5           Valkine (s)         11         11           Valkine (s)         13         13           Valkine (s)         13         36           Vield/Force Off (s)         8         31           Vield/Force Off 170(s)         42         20           Local Yield (s)         0         23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .ead/Lag               |          |                         |               |            |      |
| Aaximum Split (s)       22       23         Aaximum Split (s)       48.9% 51.1%         Ainimum Split (s)       21       21         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Ainimum Initial (s)       4       4         Yellow Extension (s)       3       3         Ainimum Gap (s)       3       3         Ainimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Net Yes       Yes       Yes         Start Time (s)       36       13         End Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         Local Start Time (s)       0       23         Local Yield (s)       0       23         Local Yield 170(s)       34       12         Intersection Summany       20         Local Yield 170(s)       34       12         Intersection Summany       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lead-Lag Optimize      |          |                         |               |            |      |
| Aaximum Split (%)       48.9% 51.1%         Minimum Split (s)       21       21         Yellow Time (s)       4       4         NI-Red Time (s)       1       1         Minimum Initial (s)       4       4         Yellow Time (s)       1       1         Minimum Initial (s)       4       4         Yeliote Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Start Time (s)       16       13         End Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         Local Start Time (s)       0       23         Local Yield (s)       0       23         Local Yield 170(s)       34       12         Intersection Summary       20         Cycle Length       45         Control Type       Actuated-Coordinated         Latural Cycle       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Recall Mode            | C-Max    | None                    |               |            |      |
| dinimum Split(s)       21       21         Yellow Time (s)       4       4         All-Red Time (s)       1       1         Minimum Initial (s)       4       4         Yehole Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Vilk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Nibit Max       Yes       Yes         Nual Entry       Yes       Yes         Nual Entry       Yes       Yes         Nual Entry       Yes       Yes         Start Time (s)       36       13         Sind Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Yield (s)       0       23         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       45         Control Type       Actuated-Coordinated<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Maximum Split (s)      | 22       | 23                      |               |            |      |
| Yellow Time (s)       4       4         All-Red Time (s)       1       1         Adminimum Initial (s)       4       4         Yehicle Extension (s)       3       3         Alinimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Null Entry       Yes       Yes         Nall Entry       Yes       Yes         Nall Entry       Yes       Yes         Nall Entry       Yes       Yes         Start Time (s)       36       13         End Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       Intersection Summary         Cycle Length       45         Control Type       Actuated-Coordinated         Latural Cycle       45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum Split (%)      | 48.9%    | 51.1%                   |               |            |      |
| NI-Red Time (s)       1       1         Minimum Initial (s)       4       4         /ehicle Extension (s)       3       3         film Before Reduce (s)       0       0         Valk Time (s)       5       5         Valk Time (s)       5       5         Valk Time (s)       5       5         Valk Time (s)       11       11         val Entry       Yes       Yes         Nual Entry       Yes       Yes         Start Time (s)       36       13         Field/Force Off (s)       8       31         field/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       Expect Coordinated         Control Type       Actuated-Coordinated         Start Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimum Split(s)       | 21       | 21                      |               |            |      |
| Ainimum Initial (s)       4       4         /ehicle Extension (s)       3       3         Ainimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Valk Time (s)       5       5         Valk Time (s)       5       5         Valk Time (s)       11       11         Volal Entry       Yes       Yes         Nobal Entry       Yes       Yes         Start Time (s)       36       13         Ind Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         Local Start Time (s)       28       5         Local Start Time (s)       0       23         Local Yield (s)       0       23         Local Yield 170(s)       34       12         Intersection Summary       20         Cycle Length       45         Control Type       Actuated-Coordinated         Latural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yellow Time (s)        | - 4      | 4                       |               |            |      |
| Vehicle Extension (s)       3       3         Minimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Nibit Max       Yes       Yes         Start Time (s)       36       13         End Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         Local Start Time (s)       0       23         Local Start Time (s)       0       23         Local Yield (70(s)       34       12         Intersection Summary       Exerced Coordinated         Control Type       Actuated-Coordinated         Latural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | All-Red Time (s)       | 1        | 1                       |               |            |      |
| Alinimum Gap (s)       3       3         Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Nibit Max       Yes       Yes         Start Time (s)       36       13         End Time (s)       13       36         Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         Local Start Time (s)       0       23         Local Yield (s)       0       23         Local Yield 170(s)       34       12         Intersection Summary       Expect Coordinated         Latural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Initial (s) 👘  | - 4      |                         |               |            |      |
| Time Before Reduce (s)       0         Time To Reduce (s)       0         Valk Time (s)       5         Tash Dont Walk (s)       11         Dual Entry       Yes         Yes       Yes         Start Time (s)       36         Start Time (s)       13         End Time (s)       13         Start Time (s)       13         Start Time (s)       13         Cield/Force Off (s)       8         Occal Yield (s)       0         Occal Yield (s)       0         Occal Yield 170(s)       34         12       12         Intersection Summary       20         Cycle Length       45         Optical Type       Actuated-Coordinated         Vatural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Vehicle Extension (s)  | 3        | -                       |               |            |      |
| Time To Reduce (s)       0       0         Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Ish Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Start Time (s)       36       13         End Time (s)       13       36         (ield/Force Off (s)       8       31         (ield/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Start Time (s)       28       5         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       5         Cycle Length       45         Control Type       Actuated-Coordinated         Vatural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Minimum Gap (s)        | 3        | 3                       |               |            |      |
| Valk Time (s)       5       5         Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         Inhibit Max       Yes       Yes         Start Time (s)       36       13         End Time (s)       13       36         Field/Force Off (s)       8       31         (ield/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Start Time (s)       28       5         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       5         Cycle Length       45         Control Type       Actuated-Coordinated         Vatural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time Before Reduce     | (s) 0    | 0                       |               |            |      |
| Tash Dont Walk (s)       11       11         Dual Entry       Yes       Yes         nhibit Max       Yes       Yes         Start Time (s)       36       13         Start Time (s)       13       36         rield/Force Off (s)       8       31         (ield/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Start Time (s)       0       23         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       Exercise         Cycle Length       45         Control Type       Actuated-Coordinated         Latural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Time To Reduce (s)     | 0        | 0                       |               |            |      |
| Dual Entry     Yes     Yes       nhibit Max     Yes     Yes       Start Time (s)     36     13       Start Time (s)     13     36       rield/Force Off (s)     8     31       (ield/Force Off 170(s)     42     20       .ocal Start Time (s)     28     5       .ocal Start Time (s)     0     23       .ocal Yield (s)     0     23       .ocal Yield 170(s)     34     12       Intersection Summary     Expected of the second of the sec | Walk Time (s)          | 5        | 5                       |               |            |      |
| Nhibit Max         Yes         Yes           Start Time (s)         36         13           End Time (s)         13         36           Field/Force Off (s)         8         31           (ield/Force Off 170(s)         42         20           .ocal Start Time (s)         28         5           .ocal Start Time (s)         0         23           .ocal Yield (s)         0         23           .ocal Yield 170(s)         34         12           Intersection Summary         Experimental Summary           Cycle Length         45           Control Type         Actuated-Coordinated           Latural Cycle         46           Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flash Dont Walk (s)    | 11       | 11                      |               |            |      |
| Start Time (s)         36         13           End Time (s)         13         36           Find Time (s)         13         36           Field/Force Off (s)         8         31           Field/Force Off 170(s)         42         20           Local Start Time (s)         28         5           Local Start Time (s)         0         23           Local Yield (s)         0         23           Local Yield 170(s)         34         12           Intersection Summary         20           Cycle Length         45           Control Type         Actuated-Coordinated           Latural Cycle         45           Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dual Entry             | Yes      | Yes                     |               |            |      |
| ind Time (s)       13       36         field/Force Off (s)       8       31         field/Force Off 170(s)       42       20         .ocal Start Time (s)       28       5         .ocal Yield (s)       0       23         .ocal Yield 170(s)       34       12         Intersection Summary       20         Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inhibit Max            | Yes      | Yes                     |               |            |      |
| Yield/Force Off (s)       8       31         Yield/Force Off 170(s)       42       20         Local Start Time (s)       28       5         Local Yield (s)       0       23         Local Yield 170(s)       34       12         Intersection Summary       20         Cycle Length       45         Control Type       Actuated-Coordinated         Natural Cycle       45         Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Start Time (s)         | 36       | 13                      |               |            |      |
| Tield/Force Off 170(s) 42 20<br>Local Start Time (s) 28 5<br>Local Yield (s) 0 23<br>Local Yield 170(s) 34 12<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | End Time (s)           | 13       | 36                      |               |            |      |
| Local Start Time (s) 28 5<br>Local Yield (s) 0 23<br>Local Yield 170(s) 34 12<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yield/Force Off (s)    | 8        | 31                      |               |            |      |
| Local Yield (s) 0 23<br>Local Yield 170(s) 34 12<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yield/Force Off 170(s) |          |                         |               |            |      |
| Local Yield 170(s) 34 12<br>Intersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Local Start Time (s)   | 28       | 5                       |               |            |      |
| ntersection Summary<br>Cycle Length 45<br>Control Type Actuated-Coordinated<br>Latural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Local Yield (s)        | 0        |                         |               |            |      |
| Cycle Length 45<br>Control Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Local Yield 170(s)     | 34       | 12                      |               |            |      |
| ontrol Type Actuated-Coordinated<br>Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ntersection Summary    | (        |                         |               |            |      |
| Natural Cycle 45<br>Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cycle Length           |          |                         | 1.            |            |      |
| Offset: 8 (18%), Referenced to phase 2:EBTL, Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control Type 💦 🖉       | Actuate  | d-Coordina <sup>,</sup> | ted           |            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Natural Cycle          |          |                         | 45            |            |      |
| plits and Phases: 176: Washington St & I-205 NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Offset: 8 (18%), Refer | enced to | o phase 2:B             | BTL, Start of | f Yellow 👘 |      |
| 4-a  t_4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>)</u>               | 176: Wa  | ashington S             |               |            | <br> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 92<br>72 o           |          |                         |               |            |      |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Timing Report, Sorted By Phase 185: Stark St & 96th Ave

|                         | 4       | ۰ŧ       | -       |                 |
|-------------------------|---------|----------|---------|-----------------|
| Phase Number            | 2       | 3        | 4       |                 |
| Movement                | WBTL    |          | NBTL    |                 |
| Lead/Lag                |         |          | Lead    |                 |
| Lead-Lag Optimize       |         |          |         |                 |
| Recall Mode             | C-Max   | None     | None    |                 |
| Maximum Split (s)       | 50      | 20       | 20      |                 |
|                         |         | 22.2%    |         |                 |
| Minimum Split(s)        | 20      | 20       | 20      |                 |
| Yellow Time (s)         | 3.5     | 3        | 3       |                 |
| All-Red Time (s)        | 1       | Ō        | Ō       |                 |
| Minimum Initial (s)     | 4       | 4        | 4       |                 |
| Vehicle Extension (s)   | 3       | 3        | 3       |                 |
| Minimum Gap (s)         | 3       | 3        | 3       |                 |
| Time Before Reduce (    |         | ŏ        | ŏ       |                 |
| Time To Reduce (s)      | Ő       | ŏ        | ŏ       |                 |
| Walk Time (s)           | 4       | 4        | 4       |                 |
| Flash Dont Walk (s)     | 11      | 11       | 11      |                 |
| Dual Entry              | Yes     | Yes      | Yes     |                 |
| nhibit Max              | Yes     |          | Yes     |                 |
| Start Time (s)          | 52.5    | 32.5     | 12.5    |                 |
| End Time (s)            | 12.5    | 52.5     | 32.5    |                 |
| Yield/Force Off (s)     | 8       | 49.5     | 29.5    |                 |
| Yield/Force Off 170(s)  |         | 38.5     | 18.5    |                 |
| Local Start Time (s)    | 44.5    | 24.5     | 4.5     |                 |
| Local Yield (s)         | 0       | 41.5     | 21.5    |                 |
| Local Yield 170(s)      | 79      | 30.5     | 10.5    |                 |
| ntersection Summary     |         |          |         |                 |
| Cycle Length            |         |          | 90      |                 |
| Control Type 🛛 🖌        | Actuate | d-Coord  | inated  |                 |
| Natural Cycle           |         |          | 60      |                 |
| Offset: 8 (9%), Referer | nced to | phase 3  | 2:WBTL, | Start of Yellow |
| Splits and Phases:      | 105. 04 | -4. 04 9 | 96th Au |                 |
| opino anu Filases.      | 100. 31 |          | BOTH AT |                 |
| <del>.</del>            |         |          |         |                 |
| ₹ a2<br>50 s            |         |          |         |                 |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Timing Report, Sorted By Phase 186: Washington St & 96th Ave

|                        | -       | 41        |                         |
|------------------------|---------|-----------|-------------------------|
| Phase Number           | 2       | 4         |                         |
| Movement               | EBTL    | NBSB      |                         |
| Lead/Lag               |         |           |                         |
| Lead-Lag Optimize      |         |           |                         |
| Recall Mode            | C-Max   | None      |                         |
| Maximum Split (s)      | 23      | 22        |                         |
| Maximum Split (%) –    | 51.1%   | 48.9%     |                         |
| Minimum Split (s)      | 20.5    | 19        |                         |
| Yellow Time (s)        | 3.5     | 3         |                         |
| All-Red Time (s)       | 1       | 0         |                         |
| Minimum Initial (s)    | - 4     | - 4       |                         |
| Vehicle Extension (s)  | 3       | 3         |                         |
| Minimum Gap (s)        | 3       | 3         |                         |
| Time Before Reduce     | (s) O   | 0         |                         |
| Time To Reduce (s)     | 0       | 0         |                         |
| Walk Time (s)          | 5       | 5         |                         |
| Flash Dont Walk (s)    | 11      | 11        |                         |
| Dual Entry             | Yes     | Yes       |                         |
| Inhibit Max            | Yes     | Yes       |                         |
| Start Time (s)         | 34.5    | 12.5      |                         |
| End Time (s)           | 12.5    | 34.5      |                         |
| Yield/Force Off (s)    | 8       | 31.5      |                         |
| Yield/Force Off 170(s) | ) 42    | 20.5      |                         |
| Local Start Time (s)   | 26.5    | 4.5       |                         |
| Local Yield (s)        | 0       | 23.5      |                         |
| Local Yield 170(s)     | 34      | 12.5      |                         |
| Intersection Summary   | r i i   |           |                         |
| Cycle Length           |         |           | 45                      |
| Control Type           | Actuate | d-Coordi  | nated                   |
| Natural Cycle          |         |           | 40                      |
| Offset: 8 (18%), Refer | enced t | o phase : | 2:EBTL, Start of Yellow |
| Splits and Phases:     | 186: W. | ashingto  | n St & 96th Ave         |
| A                      |         |           | 11 ed                   |
| → a2                   |         |           |                         |
| 200                    |         |           |                         |
|                        |         |           |                         |
|                        |         |           |                         |
|                        |         |           |                         |
|                        |         |           |                         |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 12

Timing Report, Sorted By Phase 90: Burnside St & Gilham Rd

|                        | *        | L.      | 1       | *     | 4     |
|------------------------|----------|---------|---------|-------|-------|
| Phase Number           | 1        | 2       | 4       | 6     | 8     |
| Movement               | NWL      | SBL     | WBTL    | NWR   | EBTL  |
| Lead/Lag               | Lead     | Lag     |         |       |       |
| Lead-Lag Optimize      |          |         |         |       |       |
| Recall Mode            | None     | None    | None    | None  | None  |
| Maximum Split(s)       | 9        | 19      | 32      | 28    | 32    |
| Maximum Split (%)      | 15.0%    | 31.7%   | 53.3%   | 46.7% | 53.3% |
| Minimum Split (s)      | 8        | 19      | 20.5    | 20    | 20.5  |
| Yellow Time (s)        | 3        | 3       | 3.5     | 3     | 3.5   |
| All-Red Time (s)       | 0        | 0       | 1       | 0     | 1     |
| Minimum Initial (s)    | - 4      | - 4     | - 4     | - 4   | - 4   |
| Vehicle Extension (s)  | 3        | 3       | 3       | 3     | 3     |
| Minimum Gap (s)        | 3        | 3       | 3       | 3     | 3     |
| Time Before Reduce (   | (s) 0    | 0       | 0       | 0     | 0     |
| Time To Reduce (s)     | 0        | 0       | 0       | 0     | 0     |
| Walk Time (s)          |          | 5       | 5       | 5     | 5     |
| Flash Dont Walk (s) 👘  |          | 11      | 11      | 11    | 11    |
| Dual Entry             | No       | Yes     | Yes     | Yes   | Yes   |
| Inhibit Max            | Yes      | Yes     | Yes     | Yes   | Yes   |
| Start Time (s)         | 0        | 9       | 28      | 0     | 28    |
| End Time (s)           | 9        | 28      | 0       | 28    | 0     |
| Yield/Force Off (s)    | 6        | 25      | 55.5    | 25    | 55.5  |
| Yield/Force Off 170(s) | ) 6      | 14      | 44.5    | 14    | 44.5  |
| Local Start Time (s)   | 4.5      | 13.5    | 32.5    | 4.5   | 32.5  |
| Local Yield (s)        | 10.5     | 29.5    | 0       | 29.5  | 0     |
| Local Yield 170(s)     | 10.5     | 18.5    | 49      | 18.5  | 49    |
| Intersection Summary   | r        |         |         |       |       |
| Cycle Length           |          |         | 60      |       |       |
| Control Type Act       | tuated-I | Incoord | linated |       |       |

Control Type Actuated-Uncoordinated Natural Cycle 55

Splits and Phases: 90: Burnside St & Gilham Rd

| • a1 | k ₂  |       |  |
|------|------|-------|--|
| 9*   | 19 * | 32 s  |  |
| t a6 |      | aB aB |  |
| 28%  |      | 32 a  |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 194: Burnside St & 99th Ave

10/31/2006

| Movement         WBL         EBT         SBTL         EBL         WBT         NBTL           Lead/Lag         Lead         Lag         Lead         Lag         Lead         Lag           Lead-Lag         Optimize         Recall Mode         None         C-Max         None         Code                                                                                                                                                       |                       | -        | -+        | 4       | ۶       | +      |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|-----------|---------|---------|--------|----------|
| Lead         Lag         Lead         Lag           Lead-Lag         Optimize         Recall Mode         None         C-Max         None         None         C-Max         Max<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phase Number          | 1        | 2         | 4       | 5       |        | 8        |
| Lead-Lag Optimize           Recall Mode         None C-Max         None         None C-Max         None           Maximum Split(s)         10         30         20         10         30         20           Maximum Split(s)         16.7 % 50.0 % 33.3 % 16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 % 16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 % 16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 % 16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 % 50.0 % 33.3 %         16.7 %         50.0 % 33.3 %         16.7 %         10.0 % 33.3 %         16.7 % 50.0 % 33.3 %         10.0 % 33.5 %         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33         33 | Movement              | WBL      | EBT       | SBTL    | EBL     | WBT    | NBTL     |
| Recall Mode         None C-Max         None         None         C-Max         None         C-Max         None           Maximum Split (s)         10         30         20         10         30         20           Maximum Split (s)         16.7%         50.0%         33.3%         16.7%         50.0%         33.3%           Minimum Split (s)         8         20.5         20         8         20.5         20           Yellow Time (s)         3         3.5         3         3         3.5         3         3.5         3           All-Red Time (s)         0         1         0         0         1         0         1         0           Minimum Initial (s)         4         4         4         4         4         4         4           /ehiole Extension (s)         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                | Lead/Lag              | Lead     | Lag       |         | Lead    | Lag    |          |
| Maximum Split (s)       10       30       20       10       30       20         Maximum Split (w)       16.7%       50.0%       33.3%       16.7%       50.0%       33.3%         Minimum Split (s)       8       20.5       20       8       20.5       20         Yellow Time (s)       3       3.5       3       3.5       3       3.5       3         All-Red Time (s)       0       1       0       0       1       0         Minimum Initial (s)       4       4       4       4       4       4         /ehicle Extension (s)       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                   | Lead-Lag Optimize     |          |           |         |         |        |          |
| Maximum Split (%)         16.7%         50.0%         33.3%         16.7%         50.0%         33.3%           Minimum Split (s)         8         20.5         20         8         20.5         20           (ellow Time (s)         3         3.5         3         3.5         3         3.5         3           All-Red Time (s)         0         1         0         0         1         0           Minimum Initial (s)         4         4         4         4         4         4           /ehiole Extension (s)         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td>Recall Mode</td> <td>None</td> <td>C-Max</td> <td>None</td> <td>None</td> <td>C-Max</td> <td>None</td>                                                                                                                                                    | Recall Mode           | None     | C-Max     | None    | None    | C-Max  | None     |
| Minimum Split (s)       8       20.5       20       8       20.5       20         (ellow Time (s)       3       3.5       3       3       3.5       3       3.5       3         All-Red Time (s)       0       1       0       0       1       0       0       1       0         Minimum Initial (s)       4       4       4       4       4       4       4         /ehiole Extension (s)       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                     | Maximum Split (s)     | 10       | 30        | 20      | 10      | 30     | 20       |
| Yellow Time (s)       3       3.5       3       3.5       3         All-Red Time (s)       0       1       0       0       1       0         Minimum Initial (s)       4       4       4       4       4       4         /ehicle Extension (s)       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3                                                                                                                                                                                                                                                                                                                                                                                                 | Maximum Split (%)     | 16.7%    | 50.0%     | 33.3%   | 16.7%   | 50.0%  | 33.3%    |
| All-Red Time (s)       0       1       0       0       1       0         Minimum Initial (s)       4       4       4       4       4       4       4         /ehicle Extension (s)       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 </td <td>Minimum Split (s)</td> <td>8</td> <td></td> <td>20</td> <td>8</td> <td>20.5</td> <td>20</td>                                                                                                                                                                                                                                                                                       | Minimum Split (s)     | 8        |           | 20      | 8       | 20.5   | 20       |
| Minimum Initial (s)       4       4       4       4       4       4         /ehicle Extension (s)       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3 </td <td>Yellow Time (s)</td> <td>3</td> <td>3.5</td> <td>3</td> <td>3</td> <td>3.5</td> <td>3</td>                                                                                                                                                                                                                                                                                          | Yellow Time (s)       | 3        | 3.5       | 3       | 3       | 3.5    | 3        |
| Vehicle Extension (s)         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                | All-Red Time (s)      | 0        | 1         | 0       | 0       | 1      | 0        |
| Minimum Gap (s)         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3                                                                                                                                                                                                                                                                                      | Minimum Initial (s)   | - 4      | 4         | - 4     | - 4     | - 4    | - 4      |
| Time Before Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                               | Vehicle Extension (s) | ı 3      | 3         | 3       | 3       | 3      | 3        |
| Time To Reduce (s)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                   | Minimum Gap (s)       | 3        | 3         | 3       | 3       | 3      | 3        |
| Walk Time (s)         5         5         5         5           Tlash Dont Walk (s)         11         11         11         11         11           Dual Entry         No         Yes         Yes         Yes         Yes         Yes         Yes           nhibit Max         Yes         Yes         Yes         Yes         Yes         Yes         Yes         Yes           start Time (s)         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.                                                                                                                                                                                    | Time Before Reduce    | (s) 0    | 0         | 0       | 0       | 0      | 0        |
| Tash Dont Walk (s)         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11         11                                                                                                                                                                                                                                 | Time To Reduce (s)    | 0        | 0         | 0       | 0       | 0      | 0        |
| Dual Entry         No         Yes         Y                                                                                                                                                                                        | Walk Time (s)         |          | 5         | 5       |         | 5      | 5        |
| No         Yes                                                                                                                                                                                             | Flash Dont Walk (s)   |          | 11        | 11      |         | 11     | 11       |
| Start Time (s)         10.5         20.5         50.5         10.5         20.5         50.5           End Time (s)         20.5         50.5         10.5         20.5         50.5         10.5         20.5         50.5         10.5           Field/Force Off (s)         17.5         46         7.5         17.5         46         7.5           Grad Start Time (s)         24.5         34.5         4.5         24.5         34.5         4.5           Local Start Time (s)         24.5         34.5         4.5         24.5         34.5         4.5           Local Yield (s)         31.5         0         21.5         31.5         0         21.5           Local Yield 170(s)         31.5         49         10.5         31.5         49         10.5           Local Yield 170(s)         31.5         49         10.5         31.5         49         10.5           Local Yield 170(s)         31.5         49         10.5         31.5         49         10.5           Local Yield 170(s)         31.5         49         10.5         31.5         49         10.5           Intersection Summary         Example         60         Example         55                                                                                                                                                                                                         | Dual Entry            | No       | Yes       | Yes     | No      | Yes    | Yes      |
| End Time (s)         20.5         50.5         10.5         20.5         50.5         10.5           (ield/Force Off (s)         17.5         46         7.5         17.5         46         7.5           (ield/Force Off 170(s)         17.5         35         56.5         17.5         35         56.5           .ocal Start Time (s)         24.5         34.5         4.5         24.5         34.5         4.5           .ocal Yield (s)         31.5         0         21.5         31.5         0         21.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yiel                                                                                                                                                                                                        | Inhibit Max           | Yes      | Yes       | Yes     | Yes     | Yes    | Yes      |
| End Time (s)         20.5         50.5         10.5         20.5         50.5         10.5           (ield/Force Off (s)         17.5         46         7.5         17.5         48         7.5           (ield/Force Off 170(s)         17.5         35         56.5         17.5         35         56.5           .ocal Start Time (s)         24.5         34.5         4.5         24.5         34.5         4.5           .ocal Yield (s)         31.5         0         21.5         31.5         0         21.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yiel                                                                                                                                                                                                        | Start Time (s)        | 10.5     | 20.5      | 50.5    | 10.5    | 20.5   | 50.5     |
| (ield/Force Off (s)         17.5         48         7.5         17.5         48         7.5           (ield/Force Off 170(s)         17.5         35         56.5         17.5         35         56.5           .ocal Start Time (s)         24.5         34.5         4.5         24.5         34.5         4.5           .ocal Yield (s)         31.5         0         21.5         31.5         0         21.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yi                                                                                                                                                                                                        | End Time (s)          | 20.5     | 50.5      | 10.5    | 20.5    | 50.5   | 10.5     |
| (ield/Force Off 170(s)         17.5         35         56.5         17.5         35         56.5           .ocal Start Time (s)         24.5         34.5         4.5         24.5         34.5         4.5           .ocal Yield (s)         31.5         0         21.5         31.5         0         21.5           .ocal Yield (s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yield 170(s)         31.5         49         10.5         31.5         49         10.5           .ocal Yiel                                                                                                                                                                                                        | Yield/Force Off (s)   | 17.5     | 46        | 7.5     | 17.5    | 46     | 7.5      |
| Local Start Time (s) 24.5 34.5 4.5 24.5 34.5 4.5<br>Local Yield (s) 31.5 0 21.5 31.5 0 21.5<br>Local Yield 170(s) 31.5 49 10.5 31.5 49 10.5<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | s) 17.5  | 35        | 56.5    | 17.5    | 35     | 56.5     |
| Local Yield (s) 31.5 0 21.5 31.5 0 21.5<br>Local Yield 170(s) 31.5 49 10.5 31.5 49 10.5<br>Intersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Local Start Time (s)  | <i>.</i> | 34.5      | 4.5     | 24.5    | 34.5   | 4.5      |
| .ocal Yield 170(s) 31.5 49 10.5 31.5 49 10.5<br>ntersection Summary<br>Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Local Yield (s)       |          |           |         |         |        | 21.5     |
| Cycle Length 60<br>Control Type Actuated-Coordinated<br>Natural Cycle 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Local Yield 170(s)    |          | -         |         |         | 49     | 10.5     |
| Control Type Actuated-Coordinated<br>Natural Cycle 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Intersection Summar   | у        |           |         |         |        |          |
| Vatural Cycle 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cycle Length          |          |           |         |         |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control Type          | Actuate  | d-Coord   | linated |         |        |          |
| Offset: 46 (77%), Referenced to phase 2:EBT and 6:WBT, Start o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Natural Cycle         |          |           | 55      |         |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Offset: 46 (77%), Ref | erenced  | l to phas | se 2:EB | T and ( | 8:WBT, | Start of |

Splits and Phases: 194: Burnside St & 99th Ave

| 🖌 al | → a2     | ↓ <sub>n4</sub>        |
|------|----------|------------------------|
| 1Ds  | 3D s     | 2D s                   |
| ▲ a5 | <b>4</b> | <b>1</b> <sub>28</sub> |
| 10:0 | 30 s     | 20:0                   |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2 Timing Report, Sorted By Phase 195: Burnside St & 102nd Ave

| roo. Daniolao ora      | 10210   | armo_   |         |       |       |       |       |       |  |
|------------------------|---------|---------|---------|-------|-------|-------|-------|-------|--|
|                        | 4       | +       | •       | ŧ     | ≯     | ŧ     | 7     | t     |  |
| Phase Number           | 1       | 2       | 3       | 4     | 5     | 6     | 7     | 8     |  |
| Movement               | WBL     | EBT     | NBL     | SBT   | EBL   | WBT   | SBL   | NBT   |  |
| Lead/Lag               | Lag     | Lead    | Lag     | Lead  | Lag   | Lead  | Lag   | Lead  |  |
| Lead-Lag Optimize      |         |         |         |       |       |       |       |       |  |
| Recall Mode            | None    | C-Max   | None    | None  | None  | C-Max | None  | None  |  |
| Maximum Split (s)      | 10      | 20      | 10      | 20    | 10    | 20    | 10    | 20    |  |
| Maximum Split (%)      | 16.7%   | 33.3%   | 16.7%   | 33.3% | 16.7% | 33.3% | 16.7% | 33.3% |  |
| Minimum Split (s)      | 8       | 19.5    | 8       | 19.5  | 8     | 19.5  | 8     | 19.5  |  |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5   | 3     | 3.5   | 3     | 3.5   |  |
| All-Red Time (s)       | 0       | 1       | 0       | 1     | 0     | 1     | 0     | 1     |  |
| Minimum Initial (s)    | - 4     | - 4     | - 4     | - 4   | - 4   | - 4   | - 4   | - 4   |  |
| Vehicle Extension (s)  | 3       |         | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Minimum Gap (s) 👘      | 3       | 3       | 3       | 3     | 3     | 3     | 3     | 3     |  |
| Time Before Reduce (   | (s) 0   | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     | 0     | 0     | 0     |  |
| Walk Time (s)          |         | 4       |         | 4     |       | 4     |       | 4     |  |
| Flash Dont Walk (s) 👘  |         | 11      |         | 11    |       | 11    |       | 11    |  |
| Dual Entry             | No      | Yes     | No      | Yes   | No    | Yes   | No    | Yes   |  |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |  |
| Start Time (s)         | 8.5     | 48.5    | 38.5    | 18.5  | 8.5   | 48.5  | 38.5  | 18.5  |  |
| End Time (s)           | 18.5    | 8.5     | 48.5    | 38.5  | 18.5  | 8.5   | 48.5  | 38.5  |  |
| Yield/Force Off (s)    | 15.5    | 4       | 45.5    | 34    | 15.5  | 4     | 45.5  | 34    |  |
| Yield/Force Off 170(s) | 15.5    | 53      | 45.5    | 23    | 15.5  | 53    | 45.5  | 23    |  |
| Local Start Time (s)   | 4.5     | 44.5    | 34.5    | 14.5  | 4.5   | 44.5  | 34.5  | 14.5  |  |
| Local Yield (s)        | 11.5    | 0       | 41.5    | - 30  | 11.5  | 0     | 41.5  | 30    |  |
| Local Yield 170(s)     | 11.5    | 49      | 41.5    | 19    | 11.5  | 49    | 41.5  | 19    |  |
| Intersection Summary   |         |         |         |       |       |       |       |       |  |
| Cycle Length           |         |         | 60      |       |       |       |       |       |  |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |       |       |       |       |       |  |
| Natural Cycle          |         |         | 60      |       |       |       |       |       |  |

Natural Cycle 60 Offset: 4 (7%), Referenced to phase 2:EBT and 6:WBT, Start of Yellow

Splits and Phases: 195: Burnside St & 102nd Ave

| → a2    | 🖌 al | • •4        | <b>1</b> a3     |
|---------|------|-------------|-----------------|
| 2D 8    | 1D:s | 2Ds         | 1Ds 🛛           |
| <b></b> | ▲ 45 | <b>†</b> 28 | ₩ <sub>97</sub> |
| 20:0    | 10:0 | 20:0        | 10%             |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 3: Glisan Street & I-205 SB Ramp

|                        | +-      | +        |           | -      | - <b>-</b> • |       | al.   | +-    |     |
|------------------------|---------|----------|-----------|--------|--------------|-------|-------|-------|-----|
|                        | ¥       |          | 4         | -      | <u> </u>     | 4     | - ¥*  | ¥     |     |
| Phase Number           | 1       | 2        | 3         | - 4    | 5            | 6     | 7     | 8     | ;   |
| Node Number            | 3       | 3        | 6         | 6      | 6            | 6     | 3     | 3     | ;   |
| Movement               | WBTL    | EBWB     | EBTL      | EBWB   | NBTL         | EBTL  | SBTL  | WBTL  |     |
| Lead/Lag               | Lead    | Lag      | Lead      | Lag    | Lead         | Lag   | Lead  | Lag   | Į.  |
| Lead-Lag Optimize      |         |          |           |        |              |       |       |       |     |
| Recall Mode            | Max     | Min      | Max       | Max    | None         | Min   | None  | Max   | ¢   |
| Maximum Split (s) 👘    | 23      | 24       | 12        | 31     | - 33         | - 14  | - 33  | 10    | j.  |
| Maximum Split (%)      | 25.6%   | 26.7%    | 13.3%     | 34.4%  | 36.7%        | 15.6% | 36.7% | 11.1% | )   |
| Minimum Split (s) 👘    | 6.5     | 23.5     | 6.5       | 23.5   | 32.5         | 9.5   | 32.5  | 9.5   | ;   |
| Yellow Time (s)        | 4       | 4        | 4         | 4      | 4.5          | 4     | 4.5   | 4     | Ł   |
| All-Red Time (s)       | 0.5     | 0.5      | 0.5       | 0.5    | 1            | 0.5   | 1     | 0.5   | ;   |
| Minimum Initial (s)    | 2       | - 5      | 2         | - 5    | 6            | - 5   | 6     | - 5   | j – |
| Vehicle Extension (s)  | 2.3     | 5.5      | 2.3       | 5.5    | 2.3          | 3.5   | 2.3   | 3.5   | ;   |
| Minimum Gap (s)        | 0.5     | 3.5      | 0.5       | 3.5    | 0.5          | 3.5   | 0.5   | 3.5   | j – |
| Time Before Reduce     | (s) 2   | 10       | 2         | 10     | 8            | 0     | 8     | 0     | )   |
| Time To Reduce (s)     | 3       | 10       | 3         | 10     | 3            | 0     | 3     | 0     | )   |
| Walk Time (s)          |         | 5        |           | 5      | - 5          |       | 5     |       |     |
| Flash Dont Walk (s)    |         | 14       |           | - 14   | 22           |       | 22    |       |     |
| Dual Entry             | No      | Yes      | No        | Yes    | No           | Yes   | No    | Yes   | 5   |
| Inhibit Max            | Yes     | Yes      | Yes       | Yes    | Yes          | Yes   | Yes   | Yes   | 5   |
| Start Time (s)         | 0       | 23       | 47        | 59     | 0            | - 33  | 47    | 80    | )   |
| End Time (s)           | 23      | 47       | 59        | 0      | 33           | 47    | 80    | 0     | J.  |
| Yield/Force Off (s)    | 18.5    | 42.5     | 54.5      | 85.5   | 27.5         | 42.5  | 74.5  | 85.5  | i - |
| Yield/Force Off 170(s) | ) 18.5  | 42.5     | 54.5      | 71.5   | 5.5          | 42.5  | 52.5  | 85.5  | j – |
| Local Start Time (s)   | 4.5     | 27.5     | 51.5      | 63.5   | 4.5          | 37.5  | 51.5  | 84.5  | 1   |
| Local Yield (s)        | 23      | 47       | 59        | 0      | 32           | 47    | 79    | 0     | J   |
| Local Yield 170(s)     | 23      | 47       | - 59      | 76     | 10           | 47    | 57    | 0     |     |
| Intersection Summary   | r i     |          |           |        |              |       |       |       |     |
| Cycle Length           |         |          | 90        |        |              |       |       |       |     |
| Control Type           | Sen     | ni Act-U | ncoord    |        |              |       |       |       |     |
| Natural Cycle          |         |          | 85        |        |              |       |       |       |     |
| Splits and Phases:     | 2. 611  | ın Stree | + 2 1.20  | A CD D |              |       |       |       |     |
| opins and Filases.     | 0. Onsa | n Suee   | 1 GE 1-20 | 0 00 N | amp          |       |       |       | _   |

| #3<br>T of | #3<br>#3 |                   | H6<br>4 .3 | #6<br><b>4</b> |           |
|------------|----------|-------------------|------------|----------------|-----------|
| 238        | 24 B     |                   | 12 a       | 31 *           |           |
| #5<br>a5   |          | #5<br><b>4</b> 86 | #3<br>∳ ø7 |                | #3<br>🗣 🔊 |
| 33 x       |          | 14 s              | 39 s       |                | 10 x      |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 28: Glisan Street & 99th Ave

-1 ٭ + \$⊳ ≮ 4 5 Phase Number 2 6 8 Movement EBL WBT NBTL WBL EBT SBTL Lead/Lag Lead Lag Lead Lag Lead-Lag Optimize Recall Mode None C-Max None None C-Max None Maximum Split (s) 10 30 20 10 30 20 Maximum Split (%) 16.7% 50.0% 33.3% 16.7% 50.0% 33.3% Minimum Split(s) 8 20.5 20 8 20.5 20 Yellow Time (s) з 3.5 З з 3.5 З All-Red Time (s) 0 1 0 0 1 0 Minimum Initial (s) 4 4 4 4 4 4 Vehicle Extension (s) 3 3 3 3 3 з Minimum Gap (s) з з з з з з Time Before Reduce (s) 0 0 0 0 0 0 Time To Reduce (s) 0 0 0 0 0 0 Walk Time (s) 5 5 5 5 Flash Dont Walk (s) 11 11 11 11 Dual Entry No Yes Yes No No Yes Inhibit Max Yes Yes Yes Yes Yes Yes Start Time (s) 42.5 32.5 12.5 32.5 42.5 12.5 End Time (s) 42.5 12.5 32.5 42.5 12.5 32.5 Yield/Force Off (s) 39.5 29.5 39.5 29.5 8 8 Yield/Force Off 170(s) 39.5 57 18.5 39.5 57 18.5 Local Start Time (s) 24.5 34.5 4.5 24.5 34.5 4.5 Local Yield (s) 31.5 0 21.5 31.5 0 21.5 Local Yield 170(s) 10.5 31.5 49 31.5 49 10.5 Intersection Summary Cycle Length 60

| -yere eengen       |                          |                            |
|--------------------|--------------------------|----------------------------|
| Control Type       | Actuated-Coordinated     |                            |
| Natural Cycle      | 50                       |                            |
| Offset: 8 (13%), R | eferenced to phase 2:WBT | and 6:EBT, Start of Yellow |

Splits and Phases: 28: Glisan Street & 99th Ave

| A    | <b>4</b> − <sub>0</sub> 2 | <b>1</b> a4           |
|------|---------------------------|-----------------------|
| 1D:s | 3D s                      | 2D 8                  |
| 🖌 a5 | a6                        | <b>↓</b> • <u>a</u> 8 |
| 10:0 | 30%                       | 20:8                  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 29: Glisan Street & 74th Ave

|                                         | -        |                  |                    |  |
|-----------------------------------------|----------|------------------|--------------------|--|
|                                         |          | •                |                    |  |
| Phase Number                            | 2        | 4                |                    |  |
| Movement                                | EBWB     | SBL              |                    |  |
| Lead/Lag                                |          |                  |                    |  |
| Lead-Lag Optimize                       |          |                  |                    |  |
| Recall Mode                             | C-Max    | None             |                    |  |
| Maximum Split (s)                       | 35       | 25               |                    |  |
| Maximum Split (%) 👘                     | 58.3%    | 41.7 %           |                    |  |
| Minimum Split(s)                        | 20.5     | 20               |                    |  |
| Yellow Time (s)                         | 3.5      | 3                |                    |  |
| All-Red Time (s)                        | 1        | 0                |                    |  |
| MinimumInitial (s) 👘                    | - 4      | 4                |                    |  |
| Vehicle Extension (s)                   | 3        | 3                |                    |  |
| Minimum Gap (s) 👘                       | 3        | 3                |                    |  |
| Time Before Reduce                      |          | 0                |                    |  |
| Time To Reduce (s)                      | 0        | 0                |                    |  |
| Walk Time (s)                           | 5        | 5                |                    |  |
| Flash Dont Walk (s) 👘                   | 11       | 11               |                    |  |
| Dual Entry                              | Yes      | Yes              |                    |  |
| Inhibit Max                             | Yes      | Yes              |                    |  |
| Start Time (s)                          | 3.5      | 38.5             |                    |  |
| End Time (s)                            | 38.5     | 3.5              |                    |  |
| Yield/Force Off (s)                     | 34       | 0.5              |                    |  |
| Yield/Force Off 170(s)                  |          | 49.5             |                    |  |
| Local Start Time (s)                    | 29.5     | 4.5              |                    |  |
| Local Yield (s)                         | 0        | 26.5             |                    |  |
| Local Yield 170(s)                      | 49       | 15.5             |                    |  |
| ntersection Summary                     |          |                  |                    |  |
| Cycle Length                            |          | 60               |                    |  |
| ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | Actuated | d-Coordinated    |                    |  |
| Natural Cycle                           |          | 45               |                    |  |
| Dffset: 34 (57 %), Refe                 | renced   | to phase 2:EBW8  | I, Start of Yellow |  |
| Splits and Phases:                      | 29: Glis | an Street & 74th | Ave                |  |
|                                         |          |                  | ₩ a4               |  |
| 2 a2                                    |          |                  | - 64               |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 3

Timing Report, Sorted By Phase 88: Glisan Street & 67th Ave

|                        | -       | ÷.      | -1      | 4      |   |
|------------------------|---------|---------|---------|--------|---|
| Phase Number           | 2       | 4       | 6       | 8      | ľ |
| Movement               | SBTL    | WBTL    | NBTL    | EBTL   |   |
| Lead/Lag               |         |         |         |        |   |
| Lead-Lag Optimize      |         |         |         |        |   |
| Recall Mode            | None    | C-Max   | None    | C-Max  |   |
| Maximum Split (s)      | 25      | 35      | 25      | 35     |   |
|                        | 41.7%   | 58.3%   | 41.7%   | 58.3%  |   |
| Minimum Split (s)      | 20      | 20.5    | 20      | 20.5   |   |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5    |   |
| All-Red Time (s)       | 0       | 1       | 0       | 1      |   |
| Minimum Initial (s)    | - 4     | - 4     | - 4     | 4      |   |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3      |   |
| Minimum Gap (s)        | 3       | 3       | 3       | 3      |   |
| Time Before Reduce (   | (s) O   | 0       | 0       | 0      |   |
| Time To Reduce (s)     | 0       | 0       | 0       | 0      |   |
| Walk Time (s)          | 5       | 5       | 5       | 5      |   |
| Flash Dont Walk (s)    | 11      | 11      | 11      | 11     |   |
| Dual Entry             | Yes     | Yes     | Yes     | Yes    |   |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes    |   |
| Start Time (s)         | 4.5     | 29.5    | 4.5     | 29.5   |   |
| End Time (s)           | 29.5    | 4.5     | 29.5    | 4.5    |   |
| Yield/Force Off (s)    | 26.5    | 0       | 26.5    | 0      |   |
| Yield/Force Off 170(s) | 15.5    | 49      | 15.5    | 49     |   |
| Local Start Time (s)   | 4.5     | 29.5    | 4.5     | 29.5   |   |
| Local Yield (s)        | 26.5    | 0       | 26.5    | 0      |   |
| Local Yield 170(s)     | 15.5    | 49      | 15.5    | 49     |   |
| Intersection Summary   |         |         |         |        |   |
| Cycle Length           |         |         | 60      |        |   |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |        |   |
| Natural Cycle          |         |         | 45      |        |   |
|                        |         |         |         | and 8: |   |

Splits and Phases: 88: Glisan Street & 67th Ave

| ↓ a2        | <del>4</del><br>₩ a4 |
|-------------|----------------------|
| 258         | 35%                  |
| <b>1</b> 26 | <b>4</b> 28          |
| 25%         | 35 s                 |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 190: Glisan St & 102nd Ave

| - 1   | ۰ŧ                                                                                                                                                            | ≁                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - <b>`</b> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 2                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NBL   | SBT                                                                                                                                                           | EBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lead  | Lag                                                                                                                                                           | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| None  | None                                                                                                                                                          | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C-Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11    | 18                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18.3% | 30.0%                                                                                                                                                         | 16.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8     | 20.5                                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3     | 3.5                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     | 1                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | - 4                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - ×   |                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0     |                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12.5  | 18                                                                                                                                                            | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                               | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Lead<br>None<br>11<br>18.3%<br>8<br>3<br>4<br>3<br>3<br>5) 0<br>4<br>3<br>3<br>5) 0<br>4<br>5<br>37.5<br>34.5<br>34.5<br>34.5<br>34.5<br>34.5<br>12.5<br>12.5 | NBL         SBT           Lead         Lag           11         18           18.3%         30.0%           8         20.5           3         3.5           0         1           4         4           3         3           5)         0         0           0         0         0           4         4         11           No         Yes         Yes           26.5         37.5         55.5           34.5         51         34.5           12.5         29         12.5 | NBL         SBT         EBL           Lead         Lag         Lead           11         18         10           18.3%         30.0%         16.7%           8         20.5         8           3         3.5         3           0         1         0           4         4         4           3         3         3           3         3         3           3         3         3           5)         0         0         0           0         0         0         0           4         4         4         3         3           5)         0         0         0         0           0         0         0         0         0           4         11         No         Yes         No           Yes         Yes         No         Se         26.5           37.5         55.5         5.5         34.5         40         2.5           4.5         15.5         33.5         12.5         18         40.5 | NBL         SBT         EBL         WBT           Lead         Lag         Lead         Lag           None         None         None         C-Max           11         18         10         21           18.3%         30.0%         16.7%         35.0%           8         20.5         8         20.5           3         3.5         3         3.5           0         1         0         1           4         4         4         4           3         3         3         3           3         3         3         3           5)         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           0         0         0         0         0           11         11         11         11           No         Yes         Yes         Yes           Yes         Yes | NBL         SBT         EBL         WBT         SBL           Lead         Lag         Lead         Lag         Lead           11         18         10         21         13           18.3%         30.0%         16.7%         35.0%         21.7%           8         20.5         8         20.5         8           3         3.5         3         3.5         3           0         1         0         1         0           4         4         4         4         4           3         3         3         3         3         3           3         3         3         3         3         3         3           3         3         3         3         3         3         3           3         3         3         3         3         3         3         3           3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 | NBL         SBT         EBL         WBT         SBL         NBT           Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag           None         None         None         None         Cone         13         16           11         18         10         21         13         16           18.3%         30.0%         16.7%         35.0%         21.7%         26.7%           8         20.5         8         20.5         8         20.5           3         3.5         3         3.5         3         3.5           0         1         0         1         0         1           4         4         4         4         4         4           3         3         3         3         3         3         3           3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 | NBL         SBT         EBL         WBT         SBL         NBT         WBL           Lead         Lag         Lead         Lag         Lead         Lag         Lead           None         None         None         None         None         None         None           11         18         10         21         13         16         10           18.3%         30.0%         16.7%         35.0%         21.7%         26.7%         16.7%           8         20.5         8         20.5         8         20.5         8         20.5         8           0         1         0         1         0         1         0         1         0           4         4         4         4         4         4         4         4           3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td>NBL         SBT         EBL         WBT         SBL         NBT         WBL         EBT           Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag           None         None         None         None         None         None         None         C-Max           11         18         10         21         13         16         10         21           18.3%         30.0%         16.7%         35.0%         21.7%         26.7%         16.7%         35.0%           8         20.5         8         20.5         8         20.5         8         20.5           3         3.55         3         3.5         3         3.5         3         3.5           0         1         0         1         0         1         0         1           4         4         4         4         4         4         4         4           3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3</td> | NBL         SBT         EBL         WBT         SBL         NBT         WBL         EBT           Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag         Lead         Lag           None         None         None         None         None         None         None         C-Max           11         18         10         21         13         16         10         21           18.3%         30.0%         16.7%         35.0%         21.7%         26.7%         16.7%         35.0%           8         20.5         8         20.5         8         20.5         8         20.5           3         3.55         3         3.5         3         3.5         3         3.5           0         1         0         1         0         1         0         1           4         4         4         4         4         4         4         4           3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 |

| Control Type  | Actuated-Coordinated |  |
|---------------|----------------------|--|
| Natural Cycle | 60                   |  |

Offset: 22 (37%), Referenced to phase 4:WBT and 8:EBT, Start of Yellow

Splits and Phases: 190: Glisan St & 102nd Ave

| 🔨 at            | <b>↓</b> <u>n</u> 2 | ⊷ م         | <b>4</b> − <sub>p4</sub> |
|-----------------|---------------------|-------------|--------------------------|
| 11 8            | 18 *                | 10 *        | 21 *                     |
| ► <sub>25</sub> | f øβ                | <b>6</b> 07 | <b>→</b> 68              |
| 13s             | 16 a                | 10 *        | 21 *                     |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 5

Timing Report, Sorted By Phase 107: Freemont Street & Sandy Blvd

|                                       |            | 1            |              |         |  |  |
|---------------------------------------|------------|--------------|--------------|---------|--|--|
| Phase Number                          | 1          | 2            |              |         |  |  |
| Movement                              | EBWB       | NESW         |              |         |  |  |
| Lead/Lag                              | Lead       | Lag          |              |         |  |  |
| Lead-Lag Optimize                     |            |              |              |         |  |  |
| Recall Mode                           | None       | Max          |              |         |  |  |
| Maximum Split (s)                     | 25         | 35           |              |         |  |  |
|                                       | 41.7%      |              |              |         |  |  |
| Minimum Split (s)                     | 20.5       | 20.5         |              |         |  |  |
| Yellow Time (s)                       | 3.5        | 3.5          |              |         |  |  |
| All-Red Time (s)                      | 1          | 1            |              |         |  |  |
| Minimum Initial (s)                   | 4          | 4            |              |         |  |  |
| Vehicle Extension (s)                 | 3          | 3            |              |         |  |  |
| Minimum Gap (s)                       | 3          | 3            |              |         |  |  |
| Time Before Reduce (                  |            | 0            |              |         |  |  |
| Time To Reduce (s)                    | 0          | 0            |              |         |  |  |
| Walk Time (s)                         | 5          | 5            |              |         |  |  |
| Flash Dont Walk (s)                   | 11         | 11           |              |         |  |  |
| Dual Entry                            | Yes        | Yes          |              |         |  |  |
| Inhibit Max                           | Yes        | Yes<br>25    |              |         |  |  |
| Start Time (s)                        | 0<br>25    | 25           |              |         |  |  |
| End Time (s)<br>Viald/Eases Off (c)   |            | 55.5         |              |         |  |  |
| Yield/Force Off (s)                   | 20.5       |              |              |         |  |  |
| Yield/Force Off 170(s)                | 9.5<br>4.5 | 44.5<br>29.5 |              |         |  |  |
| Local Start Time (s)                  | 4.5        | 29.5         |              |         |  |  |
| Local Yield (s)<br>Local Yield 170(s) | 20<br>14   | 49           |              |         |  |  |
| .,                                    |            | 49           |              |         |  |  |
| Intersection Summary                  |            |              |              |         |  |  |
| Cycle Length                          |            |              | 60           |         |  |  |
| Control Type                          | Serr       | ni Act-Un    |              |         |  |  |
| Natural Cycle                         |            |              | 45           |         |  |  |
| 0                                     |            |              |              |         |  |  |
| Splits and Phases:                    | 1071 FR    | eemont :     | Street & San | ay Bivd |  |  |
| 25 <sub>al</sub>                      |            |              | A a2         |         |  |  |
| 25%                                   |            |              | 35 s         |         |  |  |
|                                       |            |              |              |         |  |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 2206: Prescott Street & Sandy Blvd

| 7        | <del>. 4</del>                                                                                                                                                        | ×.                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | 4                                                                                                                                                                     | 6                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | COTE                                                                                                                                                                  | SWIL                                                                                                                                                                                                                                                     | 0001E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pad      | Pod                                                                                                                                                                   | None                                                                                                                                                                                                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| V-7 -    |                                                                                                                                                                       | -                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -        | -                                                                                                                                                                     | -                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       | -                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17       | 21                                                                                                                                                                    | 0                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Yes      | Yes                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Yes      | Yes                                                                                                                                                                   | Yes                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ès i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0        | - 33                                                                                                                                                                  | 0                                                                                                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | з                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 33       | 0                                                                                                                                                                     | 33                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 28.5     | 56                                                                                                                                                                    | 28.5                                                                                                                                                                                                                                                     | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11.5     | 35                                                                                                                                                                    | 28.5                                                                                                                                                                                                                                                     | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 31.5     | 4.5                                                                                                                                                                   | 31.5                                                                                                                                                                                                                                                     | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0        |                                                                                                                                                                       | 0                                                                                                                                                                                                                                                        | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 43       | 6.5                                                                                                                                                                   | Ō                                                                                                                                                                                                                                                        | 27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                       | 60                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |                                                                                                                                                                       |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| tuated-l | Jncoord                                                                                                                                                               | linated                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | Ped<br>33<br>55.0%<br>14.5<br>4<br>0.5<br>10<br>0.2<br>2<br>(s) 0<br>0<br>0<br>7<br>7<br>7<br>(s) 0<br>7<br>7<br>8<br>5<br>0<br>33<br>28.5<br>11.5<br>31.5<br>0<br>43 | 2 4<br>NETL EBTL<br>Ped Ped<br>33 27<br>55.0% 45.0%<br>14.5 14<br>4 3.5<br>0.5 0.5<br>10 10<br>0.2 0.2<br>2 2<br>(s) 0 0<br>0 0<br>0 0<br>7 7<br>17 21<br>Yes Yes<br>Yes Yes<br>Yes Yes<br>Yes Yes<br>Ses Yes<br>11.5 35<br>31.5 4.5<br>0 27.5<br>43 6.5 | NETL         EBTL         SWTL           Ped         Ped         None           33         27         33           55.0%         45.0%         55.0%           14.5         14         14.5           4         3.5         4           0.5         0.5         0.5           10         10         10           0.2         0.2         0.2           2         2         0.2           (\$)         0         0           0         0         0           7         7         0           17         21         0           Yes         Yes         Yes           Yes         Yes         Yes           13         0         33           28.5         56         28.5           31.5         4.5         31.5           0         27.5         0           43         6.5         0 | 2         4         6           NETL EBTL SWTL WBT           Ped         Ped         None         Non           33         27         33         2           55.0%         45.0%         55.0%         45.0%           14.5         14         14.5         1           4         3.5         4         3.           0.5         0.5         0.5         0.           10         10         10         1           0.2         0.2         0.2         0.           2         2         0.2         0.           0         0         0         0           7         7         0         0           17         21         0         0           Yes         Yes         Yes         Yes           Yes         Yes         Yes         Yes           0         33         0         33           33         0         33         33           28.5         56         28.5         5           31.5         4.5         31.5         4.           0         27.5         0         27. <t< td=""></t<> |

Splits and Phases: 2206: Prescott Street & Sandy Blvd

| 7 02  | <u></u>            |
|-------|--------------------|
| 33 :  | 27.8               |
| K+ a6 | <mark>∌</mark> ≊aB |
| 33 s  | Z7 a               |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 215: Sandy Blvd & 102nd Ave

|                         | *       | -+      | +       | •     |   |
|-------------------------|---------|---------|---------|-------|---|
| Phase Number            | 1       | 2       | 6       | 8     | j |
| Movement                | WBL     | EBT     | WBT     | NBL   |   |
| Lead/Lag                | Lead    | Lag     |         |       |   |
| Lead-Lag Optimize       |         | - 0     |         |       |   |
| Recall Mode             | None    | C-Max   | C-Max   | None  |   |
| Maximum Split (s)       | 13      | 27      | 40      | 20    |   |
| Maximum Split (%)       | 21.7%   | 45.0%   | 66.7%   | 33.3% |   |
| Minimum Split (s)       | 8       | 20.5    | 20.5    | 20    |   |
| Yellow Time (s)         | 3       | 3.5     | 3.5     | 3     |   |
| All-Red Time (s)        | 0       | 1       | 1       | 0     |   |
| Minimum Initial (s)     | 4       | 4       | - 4     | - 4   |   |
| Vehicle Extension (s)   | 3       | 3       | 3       | 3     |   |
| Minimum Gap (s)         | 3       | 3       | 3       | 3     |   |
| Time Before Reduce      | (s) O   | 0       | 0       | 0     |   |
| Time To Reduce (s)      | 0       | 0       | 0       | 0     |   |
| Walk Time (s)           |         | 5       | 5       | 5     |   |
| Flash Dont Walk (s)     |         | 11      | 11      | 11    |   |
| Dual Entry              | No      | Yes     | Yes     | Yes   |   |
| Inhibit Max             | Yes     | Yes     | Yes     | Yes   |   |
| Start Time (s)          | 22.5    | 35.5    | 22.5    | 2.5   |   |
| End Time (s)            | 35.5    | 2.5     | 2.5     | 22.5  |   |
| Yield/Force Off (s)     | 32.5    | 58      | 58      | 19.5  |   |
| Yield/Force Off 170(s)  |         | 47      | 47      | 8.5   |   |
| Local Start Time (s)    | 24.5    | 37.5    | 24.5    | 4.5   |   |
| Local Yield (s)         | 34.5    | 0       | 0       | 21.5  |   |
| Local Yield 170(s)      | 34.5    | 49      | 49      | 10.5  |   |
|                         |         |         |         |       |   |
| Intersection Summary    | 1       |         |         |       |   |
| Cycle Length            |         |         | 60      |       |   |
|                         | Actuate | d-Coord |         |       |   |
| Natural Cycle           |         |         | 55      |       |   |
| Offset: 58 (97 %), Refe | erenced | to phas | se 2:EB | Tand6 | 3 |

Splits and Phases: 215: Sandy Blvd & 102nd Ave

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 217: Sandy & 105th Ave

| · · · ·                | -       | 4       | ۶       | *     | -4    |
|------------------------|---------|---------|---------|-------|-------|
| Phase Number           | 2       | 4       | 5       | 6     | 8     |
| Movement               | EBT     | SBTL    | EBL     | WBTL  | NBTL  |
| Lead/Lag               |         |         | Lead    | Lag   |       |
| Lead-Lag Optimize      |         |         |         | Ť     |       |
| Recall Mode            | C-Max   | None    | None    | C-Max | None  |
| Maximum Split (s)      | 37      | 23      | 12      | 25    | 23    |
| Maximum Split (%)      | 61.7%   | 38.3%   | 20.0%   | 41.7% | 38.3% |
| Minimum Split(s)       | 20.5    | 20      | 8       | 20.5  | 20    |
| Yellow Time (s)        | 3.5     | 3       | 3       | 3.5   | 3     |
| All-Red Time (s)       | 1       | 0       | 0       | 1     | 0     |
| Minimum Initial (s)    | - 4     | - 4     | 4       | 4     | 4     |
| Vehicle Extension (s)  | 3       | 3       | 3       | 3     | 3     |
| Minimum Gap (s)        | 3       | 3       | 3       | 3     | 3     |
| Time Before Reduce     | (s) O   | 0       | 0       | 0     | 0     |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     | 0     |
| Walk Time (s)          | 5       | 5       |         | 5     | 5     |
| Flash Dont Walk (s)    | 11      | 11      |         | 11    | 11    |
| Dual Entry             | Yes     | Yes     | No      | Yes   | Yes   |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   | Yes   |
| Start Time (s)         | 1.5     | 38.5    | 1.5     | 13.5  | 38.5  |
| End Time (s)           | 38.5    | 1.5     | 13.5    | 38.5  | 1.5   |
| Yield/Force Off (s)    | 34      | 58.5    | 10.5    | 34    | 58.5  |
| Yield/Force Off 170(s) | ) 23    | 47.5    | 10.5    | 23    | 47.5  |
| Local Start Time (s)   | 27.5    | 4.5     | 27.5    | 39.5  | 4.5   |
| Local Yield (s)        | 0       | 24.5    | 36.5    | 0     | 24.5  |
| Local Yield 170(s)     | 49      | 13.5    | 36.5    | 49    | 13.5  |
| Intersection Summary   | (       |         |         |       |       |
| Cycle Length           |         |         | 60      |       |       |
|                        | Actuate | d-Coord | linated |       |       |

| Cycle Length       | 60                          |                             |
|--------------------|-----------------------------|-----------------------------|
| Control Type       | Actuated-Coordinated        |                             |
| Natural Cycle      | 50                          |                             |
| Offset: 34 (57 %), | Referenced to phase 2:EBT a | ind 6:WBTL, Start of Yellow |

Splits and Phases: 217: Sandy & 105th Ave

| → a2 | r.          | <b>↓</b> ■4 |
|------|-------------|-------------|
| 37 s |             | 23 B        |
| ▲ 45 | <b>₩</b> 56 | st ∞        |
| 12%  | 25 s        | 23 8        |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 2

Timing Report, Sorted By Phase 220: Sandy & 112th Ave

|                        | 4       | ÷       | -4      | 4     |                         |
|------------------------|---------|---------|---------|-------|-------------------------|
| Phase Number           | 2       | 4       | 6       | 8     |                         |
| Movement               | SBTL    | WBTL    | NBTL    | EBTL  |                         |
| Lead/Lag               |         |         |         |       |                         |
| Lead-Lag Optimize      |         |         |         |       |                         |
| Recall Mode            | None    | C-Max   | None    | C-Max |                         |
| Maximum Split (s)      | 20      | 40      | 20      | 40    |                         |
| Maximum Split (%)      | 33.3%   | 66.7%   | 33.3%   | 66.7% |                         |
| Minimum Split (s)      | 20      | 20.5    | 20      | 20.5  |                         |
| Yellow Time (s)        | 3       | 3.5     | 3       | 3.5   |                         |
| All-Red Time (s)       | 0       | 1       | 0       | 1     |                         |
| Minimum Initial (s)    | - 4     | - 4     | - 4     | - 4   |                         |
| Vehicle Extension (s)  | 3       | 3       | 3       | З     |                         |
| Minimum Gap (s)        | 3       | 3       | 3       | 3     |                         |
| Time Before Reduce     | (s) 0   | 0       | 0       | 0     |                         |
| Time To Reduce (s)     | 0       | 0       | 0       | 0     |                         |
| Walk Time (s)          | 5       | 5       | 5       | 5     |                         |
| Flash Dont Walk (s)    | 11      | 11      | 11      | 11    |                         |
| Dual Entry             | Yes     | Yes     | Yes     | Yes   |                         |
| Inhibit Max            | Yes     | Yes     | Yes     | Yes   |                         |
| Start Time (s)         | 12.5    | 32.5    | 12.5    | 32.5  |                         |
| End Time (s)           | 32.5    | 12.5    | 32.5    | 12.5  |                         |
| Yield/Force Off (s)    | 29.5    | 8       | 29.5    | 8     |                         |
| Yield/Force Off 170(s) | ) 18.5  | 57      | 18.5    | 57    |                         |
| Local Start Time (s)   | 4.5     | 24.5    | 4.5     | 24.5  |                         |
| Local Yield (s)        | 21.5    | 0       | 21.5    | 0     |                         |
| Local Yield 170(s)     | 10.5    | _       | 10.5    | 49    |                         |
| Intersection Summary   | (       |         |         |       |                         |
| Cycle Length           |         |         | 60      |       |                         |
| Control Type           | Actuate | d-Coord | linated |       |                         |
| Natural Cycle          |         |         | 45      |       |                         |
| Offset: 8 (13%), Refer | enced t | o phase | 4:WBT   | Land  | B:EBTL, Start of Yellow |

Splits and Phases: 220: Sandy & 112th Ave

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 3

Timing Report, Sorted By Phase 223: Sandy & NE 121st PL

|                        | 4       | -       |          |              |            |        |
|------------------------|---------|---------|----------|--------------|------------|--------|
| Phase Number           | 4       | 6       | 8        |              |            |        |
| Movement               | WBTL    | NBL     | EBT      |              |            |        |
| Lead/Lag               |         |         |          |              |            |        |
| Lead-Lag Optimize      |         |         |          |              |            |        |
| Recall Mode            | C-Max   | None    | C-Max    |              |            |        |
| Maximum Split (s)      | 34      | 26      | 34       |              |            |        |
| Maximum Split (%)      | 56.7%   | 43.3%   | 56.7%    |              |            |        |
| Minimum Split (s)      | 20.5    | 20      | 20.5     |              |            |        |
| Yellow Time (s)        | 3.5     | 3       | 3.5      |              |            |        |
| All-Red Time (s)       | 1       | 0       | 1        |              |            |        |
| Minimum Initial (s)    | - 4     | - 4     | 4        |              |            |        |
| Vehicle Extension (s)  | 3       | 3       | 3        |              |            |        |
| Minimum Gap (s)        | 3       | 3       | 3        |              |            |        |
| Time Before Reduce     | (s) 0   | 0       | 0        |              |            |        |
| Time To Reduce (s)     | 0       | 0       | 0        |              |            |        |
| Walk Time (s)          | 5       | 5       | 5        |              |            |        |
| Flash Dont Walk (s)    | 11      | 11      | 11       |              |            |        |
| Dual Entry             | Yes     | Yes     | Yes      |              |            |        |
| Inhibit Max            | Yes     | Yes     | Yes      |              |            |        |
| Start Time (s)         | 16.5    | 50.5    | 16.5     |              |            |        |
| End Time (s)           | 50.5    | 16.5    | 50.5     |              |            |        |
| Yield/Force Off (s)    | 46      | 13.5    | 46       |              |            |        |
| Yield/Force Off 170(s) | ) 35    | 2.5     | 35       |              |            |        |
| Local Start Time (s)   | 30.5    | 4.5     | 30.5     |              |            |        |
| Local Yield (s)        | 0       | 27.5    | 0        |              |            |        |
| Local Yield 170(s)     | 49      | 16.5    | 49       |              |            |        |
| Intersection Summary   | r i     |         |          |              |            |        |
| Cycle Length           |         |         | 60       |              |            |        |
| Control Type           | Actuate | d-Coord | linated  |              |            |        |
| Natural Cycle          |         |         | 45       |              |            |        |
| Offset: 46 (77%), Refe | erenced | to phas | se 4:WBT | L and 8:EBT, | Start of ` | Yellow |

Splits and Phases: 223: Sandy & NE 121st PL

|               | et et       |
|---------------|-------------|
|               | 34 :        |
| <b>*</b> √ 26 | <del></del> |
| 26%           | 34 *        |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 4

Timing Report, Sorted By Phase 225: Sandy & 102nd Ave Access

|                        | 4       | •       |         |
|------------------------|---------|---------|---------|
| Phase Number           | 4       | 6       | 8       |
| Movement               | WBTL    | NBL     | EBT     |
| Lead/Lag               |         |         |         |
| Lead-Lag Optimize      |         |         |         |
| Recall Mode            | C-Max   | None    | C-Max   |
| Maximum Split (s)      | 33      | 27      | 33      |
| Maximum Split (%)      | 55.0%   | 45.0%   | 55.0%   |
| Minimum Split(s)       | 20.5    | 20      | 20.5    |
| Yellow Time (s)        | 3.5     | 3       | 3.5     |
| All-Red Time (s)       | 1       | 0       | 1       |
| Minimum Initial (s)    | 4       | 4       | 4       |
| Vehicle Extension (s)  | 3       | 3       | 3       |
| Minimum Gap (s)        | 3       | 3       | 3       |
| Time Before Reduce     | (s) 0   | 0       | 0       |
| Time To Reduce (s)     | 0       | 0       | 0       |
| Walk Time (s)          | 5       | 5       | 5       |
| Flash Dont Walk (s)    | 11      | 11      | 11      |
| Dual Entry             | Yes     | Yes     | Yes     |
| Inhibit Max            | Yes     | Yes     | Yes     |
| Start Time (s)         | 47.5    | 20.5    | 47.5    |
| End Time (s)           | 20.5    | 47.5    | 20.5    |
| Yield/Force Off (s)    | 16      | 44.5    | 16      |
| Yield/Force Off 170(s) | ) 5     | 33.5    | 5       |
| Local Start Time (s)   | 31.5    | 4.5     | 31.5    |
| Local Yield (s)        | 0       | 28.5    | 0       |
| Local Yield 170(s)     | 49      | 17.5    | 49      |
| Intersection Summary   | (       |         |         |
| Cycle Length           |         |         | 60      |
| Control Type           | Actuate | d-Coord | linated |
| Natural Cycle          |         |         | 45      |
| Offset: 16 (27%), Refe | erenced | to phas | se 4:WB |

Splits and Phases: 225: Sandy & 102nd Ave Access

|               | <b>4</b> − |
|---------------|------------|
|               | 33 B       |
| <b>*</b> V ₂6 | ಘಾ ಜಿ      |
| 27 s          | 33 :       |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 5

Timing Report, Sorted By Phase 2202: Sandy Blvd & Killingsworth

| ZZOZ. Ganaj bira (     |        | 901101     |       |       |       |       |
|------------------------|--------|------------|-------|-------|-------|-------|
|                        | -      | <b>}</b> + |       | ف     | ۴.    | Ť     |
| Phase Number           | 1      | 2          | 4     | 5     | 6     | 8     |
| Movement               | WBL    | SEL        | SBTL  | SEL   | WBR   | NBTL  |
| Lead/Lag               | Lead   | Lag        |       | Lead  | Lag   |       |
| Lead-Lag Optimize      |        |            |       |       |       |       |
| Recall Mode            | None   | C-Max      | None  | None  | C-Max | None  |
| Maximum Split (s)      | 14     | 27         | 19    | 19    | 22    | 19    |
| Maximum Split (%)      | 23.3%  | 45.0%      | 31.7% | 31.7% | 36.7% | 31.7% |
| Minimum Split(s)       | 9.5    | 16         | 12.5  | 11.5  | 17    | 12.5  |
| Yellow Time (s)        | - 4    | 4          | - 4   | - 4   | - 4   | - 4   |
| All-Red Time (s)       | 0.5    | 0          | 0.5   | 0.5   | 1     | 0.5   |
| Minimum Initial (s)    | 5      | 12         | 8     | 7     | 12    | 8     |
| Vehicle Extension (s)  | 0.2    | 15         | 0.2   | 0.2   | 15    | 0.2   |
| Minimum Gap (s)        | 10     | 40         | 10    | 20    | 40    | 10    |
| Time Before Reduce     | (s) 0  | 20         | 0     | 0     | 20    | 0     |
| Time To Reduce (s)     | 0      | 10         | 0     | 0     | 10    | 0     |
| Walk Time (s)          | 0      | 4          | 0     | 0     | 0     | 4     |
| Flash Dont Walk (s)    | 0      | 15         | 0     | 0     | 0     | 20    |
| Dual Entry             | No     | Yes        | Yes   | No    | Yes   | Yes   |
| Inhibit Max            | Yes    | Yes        | Yes   | Yes   | Yes   | Yes   |
| Start Time (s)         | 11     | 25         | 52    | 11    | 30    | 52    |
| End Time (s)           | 25     | 52         | 11    | - 30  | 52    | 11    |
| Yield/Force Off (s)    | 20.5   | 48         | 6.5   | 25.5  | 47    | 6.5   |
| Yield/Force Off 170(s) | ) 20.5 | - 33       | 6.5   | 25.5  | 47    | 46.5  |
| Local Start Time (s)   | 41     | 55         | 22    | 41    | 0     | 22    |
| Local Yield (s)        | 50.5   | 18         | 36.5  | 55.5  | 17    | 36.5  |
| Local Yield 170(s)     | 50.5   | 3          | 36.5  | 55.5  | 17    | 16.5  |
| Intersection Summary   | r -    |            |       |       |       |       |
| Cycle Length           |        |            | 60    |       |       |       |

| 60                   |  |
|----------------------|--|
| Actuated-Coordinated |  |
| 45                   |  |
|                      |  |

Offset: 30 (50%), Referenced to phase 2:SEL and 6:WBR, Start of Green

Splits and Phases: 2202: Sandy Blvd & Killingsworth

| 🖌 al | ₩ 2               | ▶ p4     |
|------|-------------------|----------|
| 148  | 27 *              | 19 *     |
| J    | <del>ب</del><br>6 | <b>*</b> |
| 19%  | 22*               | 19*      |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 6

Timing Report, Sorted By Phase 2207: Killingsworth & Columbia Blvd

|                        | -+      | ~ (*    | ٠       | -      |    |
|------------------------|---------|---------|---------|--------|----|
| Phase Number           | 2       | 4       | 5       | 6      |    |
| Movement               | EBT     | SBL     | EBL     | WBT    |    |
| Lead/Lag               | 201     | JDL     | Lead    | Lag    |    |
| Lead-Lag Optimize      |         |         | Leau    | Lay    |    |
| Recall Mode            | C-Max   | None    | None    | C-Max  |    |
| Maximum Split (s)      | 33      | 27      | 10      | 23     | -  |
| Maximum Split (%)      |         | 45.0%   |         |        |    |
| Minimum Split (s)      | 15      |         | 10.7 %  | 15     |    |
| Yellow Time (s)        | 5       | 4       | 3.5     | 5      |    |
| All-Red Time (s)       | 0       | 0       | 0.5     | 0      |    |
| Minimum Initial (s)    | 10      | 6       | 0.5     | 10     |    |
|                        | 10      | -       | 0.2     | 10     |    |
| Vehicle Extension (s)  |         | 0.2     |         |        |    |
| Minimum Gap (s)        | 8       |         | 30      | 8      |    |
| Time Before Reduce     |         | 0       | 0       | 20     |    |
| Time To Reduce (s)     | 10      | -       | 0       | 10     |    |
| Walk Time (s)          | 0       | -       | 0       | 5      |    |
| Flash Dont Walk (s) 👘  | 0       |         | 0       | 19     |    |
| Dual Entry             | Yes     |         |         | Yes    |    |
| Inhibit Max            | Yes     |         |         | Yes    |    |
| Start Time (s)         | 58      |         | 58      | 8      |    |
| End Time (s)           | 31      | 58      | 8       | 31     |    |
| Yield/Force Off (s)    | 26      | 54      | 4       | 26     | i  |
| Yield/Force Off 170(s) | ) 26    | 39      | - 4     | 7      |    |
| Local Start Time (s)   | 50      | 23      | 50      | 0      |    |
| Local Yield (s)        | 18      | 46      | 56      | 18     |    |
| Local Yield 170(s)     | 18      | 31      | 56      | 59     |    |
| Intersection Summary   | r i     |         |         |        |    |
| Cycle Length           |         |         | 60      |        |    |
| Control Type 🛛 🖌       | Actuate | d-Coord | linated |        |    |
| Natural Cycle          |         |         | 40      |        |    |
| Offset: 8 (13%), Refer | enced t | o phase | 2:EBT   | and 6: | :V |

Splits and Phases: 2207: Killingsworth & Columbia Blvd

| → a2            |                   | ₩ <b>5</b> a4 |
|-----------------|-------------------|---------------|
| 33:8            |                   | 27.8          |
| ∕ <sub>45</sub> | <b>e</b> ≏_<br>26 |               |
| 10:0            | 23%               |               |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 7

Timing Report, Sorted By Phase 2223: Killingsworth & I-205 SB Ramp

|                                      | -       |         | *        | +        |
|--------------------------------------|---------|---------|----------|----------|
| Phase Number                         | 1       | 4       | 6        | 8        |
| Movement                             | WBL     | EBT     | SWR      | WBT      |
| Lead/Lag                             |         |         |          |          |
| Lead-Lag Optimize                    |         |         |          |          |
| Recall Mode                          | None    | None    | C-Max    | Max      |
| Maximum Split (s)                    | 25      | 35      | 25       | 35       |
| Maximum Split (%)                    |         | 58.3%   |          |          |
| Minimum Split (s)                    | 6.7     | 20      | 6        | 20       |
| Yellow Time (s)                      | 3.2     | 3.5     | 3        | 5        |
| All-Red Time (s)                     | 0.5     | 0.5     | Ő        | Ö        |
| Minimum Initial (s)                  | 3       |         | 3        | 15       |
| Vehicle Extension (s)                | 0.2     | 3       | 0.2      | 30       |
| Minimum Gap (s)                      | 18      | 3       | 2        | 30       |
| Time Before Reduce                   |         | 0       | Ó        | 20       |
| Time To Reduce (s)                   | (5) 0   | 0       | 0        | 5        |
|                                      | 0       | 5       | 5        | 0        |
| Walk Time (s)<br>Flash Dont Walk (s) | 0       | 11      | 26       | 0        |
|                                      | -       |         |          | -        |
| Dual Entry                           | No      | Yes     | No       | Yes      |
| Inhibit Max                          | Yes     |         | Yes      | Yes      |
| Start Time (s)                       | 48      | 13      | 48       | 13       |
| End Time (s)                         | 13      | 48      | 13       | 48       |
| Yield/Force Off (s)                  | 9.3     | 44      | 10       | 43       |
| Yield/Force Off 170(s)               |         | 33      | 44       | 43       |
| Local Start Time (s)                 | 0       | 25      | 0        | 25       |
| Local Yield (s)                      | 21.3    |         | 22       | 55       |
| Local Yield 170(s)                   | 21.3    | 45      | 56       | 55       |
| Intersection Summary                 | (       |         |          |          |
| Cycle Length                         |         |         | 60       |          |
| Control Type                         | Actuate | d-Coord | linated  |          |
| Natural Cycle                        |         |         | 40       |          |
| Offset: 48 (80%), Refe               | erenced | to phas | se 2: an | d 6:S\0/ |

Offset: 48 (80%), Referenced to phase 2: and 6:SWR, Start of Green

Splits and Phases: 2223: Killingsworth & I-205 SB Ramp

| 🗲 al           | <b>•</b> • • • • • • • • • • • • • • • • • • |
|----------------|----------------------------------------------|
| 25 8           | 35 8                                         |
| <b>≁</b><br>26 | <b>←</b>                                     |
| 25%            | 35%                                          |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 8

Timing Report, Sorted By Phase 152: Market St & 112th Ave

|                        | 井      | +          |             |      |
|------------------------|--------|------------|-------------|------|
| Phase Number           | 2      | 4          |             |      |
| Movement I             | NBSB   | EBWB       |             |      |
| Lead/Lag               |        |            |             |      |
| Lead-Lag Optimize      |        |            |             |      |
| Recall Mode            | Min    | None       |             |      |
| Maximum Split(s)       | 23     | 22         |             |      |
| Maximum Split (%) 5    | 1.1%   | 48.9%      |             |      |
| Minimum Split(s)       | 20.5   | 20.5       |             |      |
| Yellow Time (s)        | 3.5    | 3.5        |             |      |
| All-Red Time (s)       | 1      | 1          |             |      |
| Minimum Initial (s)    | - 4    | 4          |             |      |
| Vehicle Extension (s)  | 3      | 3          |             |      |
| Minimum Gap (s)        | 3      | 3          |             |      |
| Time Before Reduce (s  | ) 0    | 0          |             |      |
| Time To Reduce (s)     | 0      | 0          |             |      |
| Walk Time (s)          | 5      | 5          |             |      |
| Flash Dont Walk (s)    | 11     | 11         |             |      |
| Dual Entry             | Yes    | Yes        |             |      |
| Inhibit Max            | Yes    | Yes        |             |      |
| Start Time (s)         | 0      | 23         |             |      |
| End Time (s)           | 23     | 0          |             |      |
| Yield/Force Off (s)    | 18.5   | 40.5       |             |      |
| Yield/Force Off 170(s) | 18.5   | 29.5       |             |      |
| Local Start Time (s)   | 26.5   | 4.5        |             |      |
| Local Yield (s)        | 0      | 22         |             |      |
| Local Yield 170(s)     | 0      | 11         |             |      |
| Intersection Summary   |        |            |             |      |
| Cycle Length           |        |            | 45          |      |
| Control Type Actu      | ated-l | Jncoordi   | nated       |      |
| Natural Cycle          |        |            | 45          |      |
|                        |        |            |             |      |
|                        | 52: M. | arket St å | 112th Ave   | <br> |
| Splits and Phases: 19  |        |            |             |      |
| Li <b>4</b>            |        |            | *           |      |
| Splits and Phases: 10  |        |            | <b>\$</b> a |      |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 97: Jonesmore St & 74th Ave

| Interview         EBWB         NBSB           ead/Lag         ead/Lag         ead/Lag           ead/Lag         Optimize         ead/Lag           ead/Lag         Min         None           faximum Split (s)         23         22           faximum Split (s)         20.5         20           faximum Split (s)         20.5         3           finimum Split (s)         20.5         3           ill-Red Time (s)         1         0           finimum Initial (s)         4         4           'ehicle Extension (s)         3         3           finimum Gap (s)         3         3           ime Before Reduce (s)         0         0           valk Time (s)         5         5           lash Dont Walk (s)         11         11           val Entry         Yes         Yes           hibit Max         Yes         Yes           tart Time (s)         0         23           ind Time (s)         23         0           ield/Force Off (70(s)         18.5         42           ield/Force Off (70(s)         18.5         31           ocal Start Time (s)         0         23.5 <th></th> <th>- #</th> <th>- 料</th> |                        | - #     | - 料          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|--------------|
| ead/Lag           ead-Lag Optimize           ecall Mode         Min         None           faximum Split (s)         23         22           faximum Split (s)         51.1%         48.9%           finimum Split (s)         20.5         20           'ellow Time (s)         3.5         3           URRE Time (s)         1         0           finimum Initial (s)         4         4           'ehiole Extension (s)         3         3           finimum Gap (s)         3         3           ime Before Reduce (s)         0         0           Valk Time (s)         5         5           Iash Dont Walk (s)         11         11           vual Entry         Yes         Yes           hibit Max         Yes         Yes           'tart Time (s)         0         23           ind Time (s)         23         0           'eld/Force Off (s)         18.5         42           'eld/Force Off (s)         18.5         31           ocal Start Time (s)         0         23.5           ocal Yield (s)         0         12.5           tesection Summary         45                                                      | Phase Number           | 2       | 4            |
| ead-Lag Optimize           secall Mode         Min         None           faximum Split (s)         23         22           faximum Split (s)         51.1%         48.9%           finimum Split (s)         20.5         20           fellow Time (s)         3.5         3           URR of Time (s)         1         0           finimum Initial (s)         4         4           (ehicle Extension (s)         3         3           finimum Gap (s)         3         3           ime Before Reduce (s)         0         0           ime To Reduce (s)         0         0           val Entry         Yes         Yes           start Time (s)         1         11           ual Entry         Yes         Yes           field/Force Off (s)         18.5         42           field/Force Off (s)         18.5         31           ocal Start Time (s)         0         23.5           ocal Yield (s)         0         12.5           tersection Summary         45           sontol Type         Semi Act-Uncoord           altural Cycle         45                                                                            | Movement               | EBWB    | NBSB         |
| Accord         Min         None           Maximum Split (s)         23         22           Maximum Split (s)         51.1%         48.9%           Minimum Split (s)         20.5         20           Yellow Time (s)         3.5         3           Maximum Split (s)         20.5         20           Yellow Time (s)         3.5         3           Minimum Initial (s)         4         4           Yehiole Extension (s)         3         3           Minimum Gap (s)         3         3           Minimum Gap (s)         3         3           Time To Reduce (s)         0         0           Valk Time (s)         5         5           Tash Dont Walk (s)         11         11           Max         Yes         Yes           Time (s)         23         0           Tield/Force Off (s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s) <t< td=""><td>Lead/Lag</td><td></td><td></td></t<>              | Lead/Lag               |         |              |
| faximum Split (s)       23       22         faximum Split (w)       51.1%       48.9%         finimum Split (s)       20.5       20         'ellow Time (s)       3.5       3         ul-Red Time (s)       1       0         finimum Initial (s)       4       4         'ehiole Extension (s)       3       3         finimum Gap (s)       3       3         time Before Reduce (s)       0       0         valk Time (s)       5       5         lash Dont Walk (s)       11       11         the left of time (s)       0       23         ind Time (s)       23       0         'field/Force Off (s)       18.5       42         'field/Force Off f(s)       18.5       31         ocal Start Time (s)       0       23.5         ocal Yield (s)       0       12.5         tersection Summary       45         orotrol Type                                                                                            | Lead-Lag Optimize      |         |              |
| faximum Split (%)         51.1% 48.9%           finimum Split (s)         20.5         20           fellow Time (s)         3.5         3           ill-Red Time (s)         1         0           finimum Initial (s)         4         4           /ehiole Extension (s)         3         3           finimum Gap (s)         3         3           finime Gap (s)         0         0           finime To Reduce (s)         0         0           fine Before Reduce (s)         0         0           vime To Reduce (s)         0         0           viak Time (s)         5         5           lash Dont Walk (s)         11         11           nual Entry         Yes         Yes           tart Time (s)         0         23           ind Time (s)         23         0           field/Force Off (s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield (s)         0         12.5           tesection Summary         45           sontrol Type         Semi Act-Uncoord           atural Cycle                              | Recall Mode            | Min     | None         |
| finimum Split (s)       20.5       20         Yellow Time (s)       3.5       3         Il-Red Time (s)       1       0         finimum Initial (s)       4       4         Yehicle Extension (s)       3       3         finimum Gap (s)       3       3         time Before Reduce (s)       0       0         yime To Reduce (s)       0       0         yalk Time (s)       5       5         lash Dont Walk (s)       11       11         yual Entry       Yes       Yes         yield/Force Off (s)       18.5       42         Yield/Force Off (s)       18.5       31         ocal Start Time (s)       0       23.5         ocal Yield (s)       0       12.5         tersection Summary       yyole Length       45         yyole Length       45         control Type       Semi Act-Uncoord         latural Cycle       45                                                                                                                                                                                                                                                                                                          | Maximum Split (s)      | 23      | 22           |
| Yellow Time (s)         3.5         3           II-Red Time (s)         1         0           finimum Initial (s)         4         4           'ehiole Extension (s)         3         3           finimum Gap (s)         3         3           'ime Before Reduce (s)         0         0           'ime To Reduce (s)         0         0           'alk Time (s)         5         5           Iash Dont Walk (s)         11         11           'ual Entry         Yes         Yes           'hibit Max         Yes         Yes           'tart Time (s)         0         23           ind Time (s)         23         0           'field/Force Off (s)         18.5         42           'field/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         12.5           ttersection Summary         12.5           'ontol Type         Semi Act-Uncoord           iatural Cycle         45           'eplits and Phases:         97: Jonesmore St & 74th Ave                                                                                         | Maximum Split (%)      | 51.1%   | 48.9%        |
| III-Red Time (s)       1       0         finimum Initial (s)       4       4         (ehicle Extension (s)       3       3         finimum Gap (s)       3       3         fime Before Reduce (s)       0       0         valk Time (s)       5       5         lash Dont Walk (s)       11       11         valk Time (s)       6       23         notal Time (s)       0       23         ind Time (s)       23       0         rield/Force Off (s)       18.5       42         rield/Force Off (s)       18.5       31         ocal Start Time (s)       0       23.5         ocal Yield (s)       0       12.5         tersection Summary       45         ontrol Type       Semi Act-Uncoord         altural Cycle       45         splits and Phases:       97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                   | Minimum Split (s)      | 20.5    | 20           |
| finimum Initial (s)       4       4         'ehiole Extension (s)       3       3         finimum Gap (s)       3       3         ime Before Reduce (s)       0       0         'ime To Reduce (s)       11       11         ual Entry       Yes       Yes         'hibit Max       Yes       Yes         'tant Time (s)       0       23         ind Time (s)       23       0         'feld/Force Off (s)       18.5       31         ocal Start Time (s)       26.5       4.5         ocal Yield (s)       0       23.5         ocal Yield 170(s)       0       12.5         tersection Summary       45         control Type       Semi Act-Uncoord         iatural Cycle       45         'iplits and Phases:       97: Jonesmore St & 74th Ave                                                                                                                                                                                                                | Yellow Time (s)        | 3.5     | 3            |
| fehicle Extension (s)         3         3           finimum Gap (s)         3         3           time Before Reduce (s)         0         0           time To Reduce (s)         0         0           time To Reduce (s)         0         0           time To Reduce (s)         0         0           valk Time (s)         5         5           tash Dont Walk (s)         11         11           ual Entry         Yes         Yes           hibit Max         Yes         Yes           tash Time (s)         0         23           ind Time (s)         23         0           field/Force Off (s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           tesection Summary         5         5           type Length         45           control Type         Semi Act-Uncoord           catural Cycle         45                                                                                                                                                                             | All-Red Time (s)       | 1       | 0            |
| finimum Gap (s)         3         3           time Before Reduce (s)         0         0           time To Reduce (s)         0         0           time To Reduce (s)         0         0           walk Time (s)         5         5           tash Dont Walk (s)         11         11           vual Entry         Yes         Yes           thibit Max         Yes         Yes           tant Time (s)         0         23           ind Time (s)         23         0           Tield/Force Off (s)         18.5         42           field/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           tersection Summary         45           control Type         Semi Act-Uncoord           control Type         Semi Act-Uncoord           catural Cycle         45                                                                                                                                                                                                                | Minimum Initial (s)    | - 4     | 4            |
| Time Before Reduce (s)       0       0         Time To Reduce (s)       0       0         Valk Time (s)       5       5         Iash Dont Walk (s)       11       11         truat Entry       Yes       Yes         thibit Max       Yes       Yes         tant Time (s)       0       23         ond Time (s)       23       0         Tield/Force Off (s)       18.5       42         Tield/Force Off 170(s)       18.5       31         ocal Start Time (s)       26.5       4.5         ocal Yield (s)       0       23.5         ocal Yield 170(s)       0       12.5         tersection Summany       45         sontrol Type       Semi Act-Uncoord         latural Cycle       45         splits and Phases:       97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                         | Vehicle Extension (s)  | 3       | 3            |
| Time To Reduce (s)         0         0           Valk Time (s)         5         5           Iash Dont Walk (s)         11         11           rual Entry         Yes         Yes           shibit Max         Yes         Yes           shibit Max         Yes         Yes           start Time (s)         0         23           ind Time (s)         23         0           field/Force Off (s)         18.5         42           field/Force Off 170(s)         18.5         31           ocal Start Time (s)         0         23.5           ocal Yield (s)         0         23.5           ocal Yield (s)         0         12.5           ntersection Summary         12.5           softoot Type         Semi Act-Uncoord           iatural Cycle         45           splits and Phases:         97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                       | Minimum Gap (s)        | 3       | 3            |
| Valk Time (s)         5         5           Iash Dont Walk (s)         11         11           Pual Entry         Yes         Yes           Inibit Max         Yes         Yes           Itash Dont Walk (s)         11         11           Pual Entry         Yes         Yes           Inibit Max         Yes         Yes           Itash Dont Walk (s)         0         23           Inibit Max         Yes         Yes           Itash Time (s)         0         23           Ifeld/Force Off (s)         18.5         42           Ifeld/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield (s)         0         12.5           Intersection Summary         Yes           Yole Length         45           control Type         Semi Act-Uncoord           latural Cycle         45           splits and Phases:         97: Jonesmore St & 74th Ave                                                                                                                                                                | Time Before Reduce (   | (s) O   | 0            |
| Iash Dont Walk (s)         11         11           nual Entry         Yes         Yes           nhibit Max         Yes         Yes           nhibit Max         Yes         Yes           tart Time (s)         0         23           ind Time (s)         23         0           'feld/Force Off (s)         18.5         42           'feld/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           htersection Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Time To Reduce (s)     | 0       | 0            |
| Yes         Yes         Yes           hibit Max         Yes         Yes           hitart Time (s)         23         0           Yeld (s)         0         23.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           htersection Summary         45           worker Length         45           control Type         Semi Act-Uncoord           latural Cycle         45           splits and Phases:         97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                     | Walk Time (s)          | 5       | 5            |
| hibit Max         Yes         Yes           itart Time (s)         0         23           ind Time (s)         23         0           field/Force Off (s)         18.5         42           field/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           itersection Summary         45           iontrol Type         Semi Act-Uncoord           latural Cycle         45           iplits and Phases:         97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flash Dont Walk (s) 👘  | 11      | 11           |
| tart Time (s)         0         23           ind Time (s)         23         0           field/Force Off (s)         18.5         42           field/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           Intersection Summary           type Length         45           control Type         Semi Act-Uncoord           latural Cycle         45           splits and Phases:         97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dual Entry             | Yes     | Yes          |
| ind Time (s)         23         0           ield/Force Off (s)         18.5         42           ield/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Start Time (s)         0         23.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           tresection Summary           tycle Length         45           control Type         Semi Act-Uncoord           latural Cycle         45           splits and Phases:         97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Inhibit Max            | Yes     | Yes          |
| Tield/Force Off (s)         18.5         42           Tield/Force Off 170(s)         18.5         31           ocal Start Time (s)         26.5         4.5           ocal Yield (s)         0         23.5           ocal Yield 170(s)         0         12.5           intersection Summary         45           optiontrol Type         Semi Act-Uncoord           latural Cycle         45           optimesentiation Summary         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start Time (s)         | 0       | 23           |
| Teld/Force Off 170(s) 18.5 31<br>ocal Start Time (s) 26.5 4.5<br>ocal Yield (s) 0 23.5<br>ocal Yield 170(s) 0 12.5<br>Intersection Summary<br>Typle Length 45<br>ontrol Type Semi Act-Uncoord<br>latural Cycle 45<br>Splits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | End Time (s)           | 23      | 0            |
| ocal Start Time (s) 26.5 4.5<br>ocal Yield (s) 0 23.5<br>ocal Yield 170(s) 0 12.5<br>Intersection Summany<br>incle Length 45<br>iontrol Type Semi Act-Uncoord<br>latural Cycle 45<br>iplits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yield/Force Off (s)    | 18.5    | 42           |
| ocal Yield (s) 0 23.5<br>ocal Yield 170(s) 0 12.5<br>Intersection Summary<br>Cycle Length 45<br>Intersection Type Semi Act-Uncoord<br>Interal Cycle 45<br>Semi Set & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Yield/Force Off 170(s) | 18.5    | 31           |
| ocal Yield 170(s) 0 12.5<br>htersection Summary<br>yole Length 45<br>control Type Semi Act-Uncoord<br>latural Cycle 45<br>splits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Local Start Time (s)   | 26.5    |              |
| ntersection Summary<br>cycle Length 45<br>control Type Semi Act-Uncoord<br>latural Cycle 45<br>cplits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Local Yield (s)        | 0       | 23.5         |
| ycle Length 45<br>control Type Semi Act-Uncoord<br>latural Cycle 45<br>iplits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Local Yield 170(s)     | 0       | 12.5         |
| vole Length 45<br>control Type Semi Act-Uncoord<br>latural Cycle 45<br>splits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intersection Summary   |         |              |
| ontrol Type Semi Act-Uncoord<br>latural Cycle 45<br>plits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cycle Length           |         |              |
| atural Cycle 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control Type           | Sen     | ni Act-Unico |
| plits and Phases: 97: Jonesmore St & 74th Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Natural Cycle          |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Splits and Phases: 9   | 97: Jon | esmore St    |
| TP a2 ♥  64<br>3s 22 ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                      |         |              |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P</b> a2            |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 233                    |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |              |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 201: Weidler St & 102nd Ave

|                         |          | 41             |                    |  |
|-------------------------|----------|----------------|--------------------|--|
|                         |          |                |                    |  |
| Phase Number            | 2        | 4              |                    |  |
|                         | WBTL     | NBSB           |                    |  |
| Lead/Lag                |          |                |                    |  |
| Lead-Lag Optimize       | ~ • •    |                |                    |  |
|                         | C-Max    |                |                    |  |
| Maximum Split (s)       | 30       | 30             |                    |  |
|                         | 50.0%    |                |                    |  |
| Minimum Split (s)       | 20.5     | 20             |                    |  |
| Yellow Time (s)         | 3.5      | 3              |                    |  |
| All-Red Time (s)        | 1        | 0              |                    |  |
| Minimum Initial (s)     | 4        | 4              |                    |  |
| Vehicle Extension (s)   | 3        | 3              |                    |  |
| Minimum Gap (s)         | 3        | 3              |                    |  |
| Time Before Reduce (    |          | 0              |                    |  |
| Time To Reduce (s)      | 0        | 0              |                    |  |
| Walk Time (s)           | 5        | 5              |                    |  |
| Flash Dont Walk (s)     | 11       | 11             |                    |  |
| Dual Entry              | Yes      | Yes            |                    |  |
| Inhibit Max             | Yes      | Yes            |                    |  |
| Start Time (s)          | 34.5     | 4.5            |                    |  |
| End Time (s)            | 4.5      | 34.5           |                    |  |
| Yield/Force Off (s)     | 0        | 31.5           |                    |  |
| Yield/Force Off 170(s)  |          | 20.5<br>4.5    |                    |  |
| Local Start Time (s)    | 34.5     |                |                    |  |
| Local Yield (s)         | 49       | 31.5<br>20.5   |                    |  |
| Local Yield 170(s)      | 49       | 20.5           |                    |  |
| Intersection Summary    |          |                |                    |  |
| Cycle Length            |          | 60             |                    |  |
|                         | (ctuate) | d-Coordinated  |                    |  |
| Natural Cycle           |          | 45             |                    |  |
| Offset: 0 (0%), Referen | iced to  | phase 2:008 T  | ., Start of Yellow |  |
| Calife and Dhamer C     | 0.4. 00. | dial ch 2 40   | n d Asia           |  |
| Splits and Phases: 2    | 201:000  | eidler St & 10 |                    |  |
|                         |          |                | <b>1</b> a4        |  |
| 🔰 a2                    |          |                |                    |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee

Synchro 6 Report Page 1

Timing Report, Sorted By Phase 203: Halsey St & 102nd AVE

| - 4-   | - <b>I</b> -                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2      | - 4                                                                                                                                          | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| EBTL   | SBTL                                                                                                                                         | NBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C-Max  | None                                                                                                                                         | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 33   | 27                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 55.0%  | 45.0%                                                                                                                                        | 45.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20.5   | 20                                                                                                                                           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.5    | 3                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1      | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 4    | - 4                                                                                                                                          | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3      | 3                                                                                                                                            | з                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3      | 3                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| s) O   | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0      | 0                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5      | 5                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11     | 11                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Yes    | Yes                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Yes    | Yes                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31.5   | 4.5                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.5    | 31.5                                                                                                                                         | 31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0      | 28.5                                                                                                                                         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 49     | 17.5                                                                                                                                         | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 31.5   | 4.5                                                                                                                                          | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0      | 28.5                                                                                                                                         | 28.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 49     | 17.5                                                                                                                                         | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ctuate | d-Coord                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ced to | phase 2                                                                                                                                      | 2:EBTL,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , Start of Yellow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | C-Max<br>33<br>55.0%<br>20.5<br>1<br>4<br>3<br>3<br>0<br>0<br>5<br>11<br>Yes<br>31.5<br>4.5<br>0<br>49<br>31.5<br>0<br>49<br>31.5<br>0<br>49 | EBTL SBTL<br>C-Max None<br>33 27<br>55.0% 45.0%<br>20.5 20<br>3.5 20<br>3.1 0<br>4 4<br>3 3<br>1 0<br>4 4<br>3 3<br>3 3<br>0 0 0<br>5 5<br>11 11<br>Yes Yes<br>Yes Yes<br>31.5 4.5<br>31.5 4.5<br>31 | EBTL SBTL NBT<br>C-Max None None<br>33 27 27<br>55.0% 45.0% 45.0%<br>20.5 20 19<br>3.5 3 3<br>1 0 0<br>4 4 4<br>3 3 3<br>3 4<br>5 5 5<br>5 5<br>11 11 11<br>Yes Yes Yes Yes<br>Yes Yes 31.5 4.5 4.5<br>4.5 31.5 31.5<br>31.5 4.5 4.5<br>4.5 31.5 31.5<br>31.5 4.5 4.5<br>4.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 4.5 4.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5 31.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 4.5 4.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5<br>31.5 31.5 31.5 31.5<br>31.5 31.5 31.5 31.5<br>31.5 31.5 31.5 31.5<br>31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 120: Killingsworth & 72nd Ave

|                         | 4       | -       | +       | •       | ,  |
|-------------------------|---------|---------|---------|---------|----|
| Phase Number            | 1       | 2       | 6       | 8       | 8  |
| Movement                | WBL     | EBT     | WBT     | NBL     | L  |
| Lead/Lag                | Lead    | Lag     |         |         |    |
| Lead-Lag Optimize       |         | Ť       |         |         |    |
| Recall Mode             | None    | C-Max   | C-Max   | None    | e  |
| Maximum Split (s)       | 10      | 31      | 41      | 19      | 9  |
| Maximum Split (%)       | 16.7%   | 51.7%   | 68.3%   | 31.7%   | Ж. |
| Minimum Split (s)       | 8       | 20.5    | 20.5    | 19      | 9  |
| Yellow Time (s)         | 3       | 3.5     | 3.5     | 3       | 3  |
| All-Red Time (s)        | 0       | 1       | 1       | 0       | 0  |
| Minimum Initial (s)     | 4       | - 4     | - 4     | - 4     | 4  |
| Vehicle Extension (s)   | 3       | 3       | 3       | 3       | 3  |
| Minimum Gap (s)         | 3       | 3       | 3       | 3       | 3  |
| Time Before Reduce (    | (s) O   | 0       | 0       | 0       | 0  |
| Time To Reduce (s)      | 0       | 0       | 0       | 0       | 0  |
| Walk Time (s)           |         | 5       | 5       | 5       | 5  |
| Flash Dont Walk (s)     |         | 11      | 11      | 11      | 1  |
| Dual Entry              | No      | Yes     | Yes     | Yes     | s  |
| Inhibit Max             | Yes     | Yes     | Yes     | Yes     | s  |
| Start Time (s)          | 23.5    | 33.5    | 23.5    | 4.5     | 5  |
| End Time (s)            | 33.5    | 4.5     | 4.5     | 23.5    | 5  |
| Yield/Force Off (s)     | 30.5    | 0       | 0       | 20.5    | 5  |
| Yield/Force Off 170(s)  | 30.5    | 49      | 49      | 9.5     | 5  |
| Local Start Time (s)    | 23.5    | 33.5    | 23.5    | 4.5     | 5  |
| Local Yield (s)         | 30.5    | 0       | 0       | 20.5    | 5  |
| Local Yield 170(s)      | 30.5    | 49      | 49      | 9.5     | 5  |
| Intersection Summary    | r       |         |         |         |    |
| Cycle Length            |         |         | 60      |         |    |
|                         | Actuate | d-Coord |         |         |    |
| Natural Cycle           |         |         | 50      |         |    |
| Offset: 0 (0%), Referei | nced to | phase : | 2:EBT a | and 6:W | :W |

Splits and Phases: 120: Killingsworth & 72nd Ave

| 🖌 al     | → a2 |            |  |
|----------|------|------------|--|
| 1D:s     | 31 8 |            |  |
| <b>←</b> |      | <b>↑</b> ø |  |
| 41 s     |      | 19*        |  |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 216: Prescott & 102nd Ave

| 10/31/2006 |
|------------|
|------------|

|                        | ×       | 1       | <u>_</u> | 4     | ŧ      | *        |
|------------------------|---------|---------|----------|-------|--------|----------|
| Phase Number           | 1       | 2       | 4        | 5     | 6      | 8        |
| Movement               | SBL     | NBT     | EBTL     | NBL   | SBT    | WBTL     |
| Lead/Lag               | Lead    | Lag     |          | Lead  | Lag    |          |
| Lead-Lag Optimize      |         | - v     |          |       |        |          |
| Recall Mode            | None    | C-Max   | None     | None  | C-Max  | None     |
| Maximum Split (s)      | 10      | 20      | 20       | 10    | 20     | 20       |
| Maximum Split (%)      | 20.0%   | 40.0%   | 40.0%    | 20.0% | 40.0%  | 40.0%    |
| Minimum Split (s)      | 8       | 20.5    | 20       | 8     | 20.5   | 20       |
| Yellow Time (s)        | 3       | 3.5     | 3        | 3     | 3.5    | 3        |
| All-Red Time (s)       | 0       | 1       | 0        | 0     | 1      | 0        |
| Minimum Initial (s)    | - 4     | - 4     | - 4      | - 4   | - 4    | - 4      |
| Vehicle Extension (s)  | 3       | 3       | 3        | 3     | 3      | 3        |
| Minimum Gap (s)        | 3       | 3       | 3        | 3     | 3      | 3        |
| Time Before Reduce     | (s) O   | 0       | 0        | 0     | 0      | 0        |
| Time To Reduce (s)     | 0       | 0       | 0        | 0     | 0      | 0        |
| Walk Time (s)          |         | 5       | 5        |       | 5      | 5        |
| Flash Dont Walk (s)    |         | 11      | 11       |       | 11     | 11       |
| Dual Entry             | No      | Yes     | Yes      | No    | Yes    | Yes      |
| Inhibit Max            | Yes     | Yes     | Yes      | Yes   | Yes    | Yes      |
| Start Time (s)         | 2.5     | 12.5    | 32.5     | 2.5   | 12.5   | 32.5     |
| End Time (s)           | 12.5    | 32.5    | 2.5      | 12.5  | 32.5   | 2.5      |
| Yield/Force Off (s)    | 9.5     | 28      | 49.5     | 9.5   | 28     | 49.5     |
| Yield/Force Off 170(s) | 9.5     | 17      | 38.5     | 9.5   | 17     | 38.5     |
| Local Start Time (s)   | 24.5    | 34.5    | 4.5      | 24.5  | 34.5   | 4.5      |
| Local Yield (s)        | 31.5    | 0       | 21.5     | 31.5  | 0      | 21.5     |
| Local Yield 170(s)     | 31.5    | 39      | 10.5     | 31.5  | 39     | 10.5     |
| Intersection Summary   | r i i   |         |          |       |        |          |
| Cycle Length           |         |         | 50       |       |        |          |
| Control Type 👘         | Actuate | d-Coord | linated  |       |        |          |
| Natural Cycle          |         |         | 50       |       |        |          |
| Offset: 28 (56%), Refe | erenced | to phas | se 2:NB  | T and | B:SBT, | Start of |

Splits and Phases: 216: Prescott & 102nd Ave

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1 Timing Report, Sorted By Phase 208: Fremont St & 102nd Ave

| 200.1161110111.01.0                 | 10211    | 37170    |       |       |
|-------------------------------------|----------|----------|-------|-------|
|                                     | Į.       | 2        | 5     | t     |
| Dhara Narahaa                       | •        |          | -     |       |
| Phase Number                        | 2        |          |       | 6     |
| Movement                            | SB1      | . WBF    |       | NBT   |
| Lead/Lag                            |          |          | Lead  | Lag   |
| Lead-Lag Optimize                   |          |          |       |       |
| Recall Mode                         | C-Ma:    |          | None  | C-Max |
| Maximum Split (s)                   | - 30     | ) 20     | 10    | 20    |
| Maximum Split (%)                   | 60.0%    | 6 40.0%  | 20.0% | 40.0% |
| Minimum Split (s)                   | 20.5     | 5 20     | 8.5   | 20.5  |
| Yellow Time (s)                     | 3.6      | 5 3      | 3     | 3.5   |
| All-Red Time (s)                    |          | I 0      | 0     | 1     |
| Minimum Initial (s)                 | 2        | 1 4      | 4     | 4     |
| Vehicle Extension (s)               | 3        | 3 3      | 3     | 3     |
| Minimum Gap (s)                     | 3        |          |       | 3     |
| Time Before Reduce                  |          |          | _     | 0     |
| Time To Reduce (s)                  | <u> </u> |          | 0     | 0     |
| Walk Time (s)                       |          | 5        | -     | 5     |
| Flash Dont Walk (s)                 |          | 11       |       | 11    |
| Dual Entry                          | Ye       |          | No    | Yes   |
| Inhibit Max                         | Ye       |          |       |       |
| Start Time (s)                      | 24.5     |          | 24.5  | 34.5  |
| End Time (s)                        | 43       |          | 34.5  | 4.5   |
|                                     |          |          | 34.5  | 4.0   |
| Yield/Force Off (s)                 | 0<br>0 0 |          | 31.5  |       |
| Yield/Force Off 170(s               | <i>,</i> |          |       | 39    |
| Local Start Time (s)                | 24.5     |          | 24.5  | 34.5  |
| Local Yield (s)                     | 0        |          | 31.5  | 0     |
|                                     |          | ) 10.5   | 31.5  | 39    |
| Local Yield 170(s)                  | (        | , 10.0   |       |       |
| Intersection Summary                |          | , 10.0   |       |       |
| Intersection Summan<br>Cycle Length | ý        |          | 50    |       |
| Intersection Summan<br>Cycle Length | ý        | ed-Coore |       |       |
| Intersection Summan<br>Cycle Length | ý        |          |       |       |

Splits and Phases: 208: Fremont St & 102nd Ave

| ↓ <sub>a2</sub>  | ¥ 64 |
|------------------|------|
| 3D s             | 20 * |
| ▶ a5 <b>†</b> a6 |      |
| 10s 20s          |      |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

Timing Report, Sorted By Phase 235: Airport Way & 122nd Ave

| 200. raipon raj d      | 122110  | 1110    |       |       |       |       |       |       |     |
|------------------------|---------|---------|-------|-------|-------|-------|-------|-------|-----|
|                        | •       | 4       | ≯     | +     | 7     | ţ.    | -     | -     |     |
| Phase Number           | 1       | 2       | 3     | - 4   | 5     | 6     | 7     | 8     |     |
| Movement               | NBL     | SBT     | EBL   | WBT   | SBL   | NBT   | WBL   | EBT   |     |
| Lead/Lag               | Lead    | Lag     | Lead  | Lag   | Lead  | Lag   | Lead  | Lag   |     |
| Lead-Lag Optimize      |         |         |       |       |       |       |       |       |     |
| Recall Mode            | None    | None    | None  | C-Max | None  | None  | None  | C-Max | :   |
| Maximum Split (s)      | 12      | 21      | 15    | 22    | 10    | 23    | 10    | 27    |     |
| Maximum Split (%)      | 17.1%   | 30.0%   | 21.4% | 31.4% | 14.3% | 32.9% | 14.3% | 38.6% |     |
| Minimum Split (s)      | 8       | 20.5    | 8     | 20.5  | 8     | 20.5  | 8.5   | 20.5  | j – |
| Yellow Time (s)        | 3       | 3.5     | 3     | 3.5   | 3     | 3.5   | 3.5   | 3.5   |     |
| All-Red Time (s)       | 0       | 1       | 0     | 1     | 0     | 1     | 1     | 1     |     |
| MinimumInitial (s) 👘   | 4       | - 4     | 4     | - 4   | - 4   | - 4   | 4     |       | -   |
| Vehicle Extension (s)  | 3       | 3       | 3     | 3     | 3     | З     | 3     | 3     |     |
| Minimum Gap (s) 👘      | 3       | 3       | 3     | 3     | 3     | 3     | 3     | 3     |     |
| Time Before Reduce     | (s) O   | 0       | 0     | 0     | 0     | 0     | 0     | 0     |     |
| Time To Reduce (s)     | 0       | 0       | 0     | 0     | 0     | 0     | 0     | 0     |     |
| Walk Time (s)          |         | 5       |       | 5     |       | 5     |       | 5     |     |
| Flash Dont Walk (s) 👘  |         | 11      |       | 11    |       | 11    |       | 11    |     |
| Dual Entry             | No      | Yes     | No    | Yes   | No    | Yes   | No    | Yes   |     |
| Inhibit Max            | Yes     | Yes     | Yes   | Yes   | Yes   | Yes   | Yes   |       |     |
| Start Time (s)         | 35.5    | 47.5    | 68.5  | 13.5  | 35.5  | 45.5  | 68.5  | 8.5   |     |
| End Time (s)           | 47.5    | 68.5    | 13.5  | 35.5  | 45.5  | 68.5  | 8.5   | 35.5  |     |
| Yield/Force Off (s)    | 44.5    | 64      | 10.5  | 31    | 42.5  | 64    | 4     | 31    |     |
| Yield/Force Off 170(s) |         | 53      | 10.5  | 20    | 42.5  | 53    | - 4   |       |     |
| Local Start Time (s)   | 4.5     | 16.5    | 37.5  | 52.5  | 4.5   | 14.5  | 37.5  | 47.5  |     |
| Local Yield (s)        | 13.5    | - 33    | 49.5  | 0     | 11.5  | - 33  | 43    | 0     |     |
| Local Yield 170(s)     | 13.5    | 22      | 49.5  | 59    | 11.5  | 22    | 43    | 59    | 1   |
| Intersection Summary   | r i i   |         |       |       |       |       |       |       |     |
| Cycle Length           |         |         | 70    |       |       |       |       |       |     |
| Control Type 🥢         | Actuate | d-Coord |       |       |       |       |       |       |     |
| Natural Cycle          |         |         | 60    |       |       |       |       |       |     |

Offset: 31 (44%), Referenced to phase 4:WBT and 8:EBT, Start of Yellow

Splits and Phases: 235: Airport Way & 122nd Ave

| ▲ a1                   | <b>↓</b> <sub>n2</sub> | ▲ .3      | <b>4</b> − |
|------------------------|------------------------|-----------|------------|
| 12 s                   | 21 в                   | 15s       | 22 B       |
| <b>№</b> <sub>25</sub> | 1 66                   | 🖌 a7 🚽    | ►ø3        |
| 10:0                   | 23 *                   | 10:8 27:8 |            |

Off-Peak Base 3:50 am 9/29/2006 Baseline University of Tennessee Synchro 6 Report Page 1

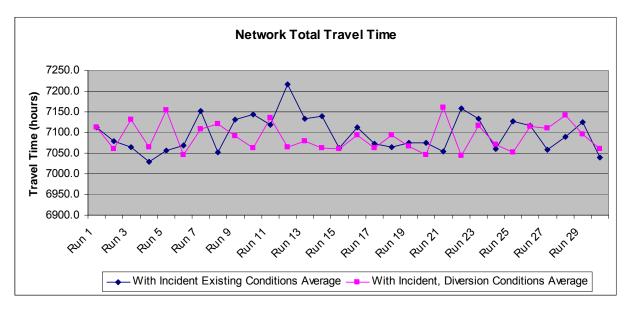
## **APPENDIX E – VISSIM INCIDENT SENSITIVITY SUMMARY**

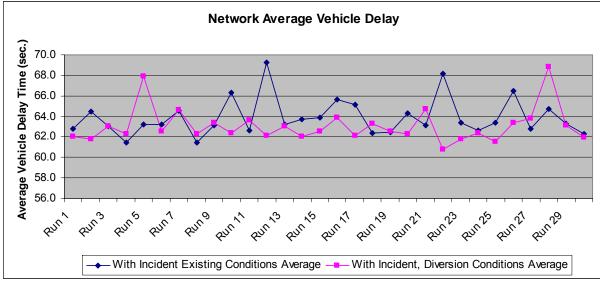
|                                           | 1               | 2               | 3                                        | 4                                        | 5               |
|-------------------------------------------|-----------------|-----------------|------------------------------------------|------------------------------------------|-----------------|
| Incident                                  | 2-lanes blocked | 2-lanes blocked | 2-lanes blocked                          | 2-lanes blocked                          | 3-lanes blocked |
| Duration (min.)                           | 20              | 30              | 45                                       | 60                                       | 20              |
| Approx. Queue Length (ft.) (incident end) | 1500            | 2000            | 5250                                     | 7500                                     | 5500            |
| Approx. Queued Vehicles (incident end)    | 160             | 300             | 750+                                     | 750+                                     | 750+            |
| Upstream On-Ramp Blockage?                | No              | Yes             | Yes                                      | Yes                                      | Yes             |
| Upstream Off-Ramp Blockage?               | No              | No              | Yes                                      | Yes                                      | Yes             |
| Post-Incident Recovery Time (sec.)        | 175             | 275             | Never, gridlock on Glisan due to routing | Never, gridlock on Glisan due to routing | 1050            |

# VISSIM Incident Sensitivity Results\*

\* Random Seed =42 for all tests & existing conditions, no incident traffic assignment cost and path files used (i.e. paths assigned on assumption of no incident & no vehicles divert to alternate path)

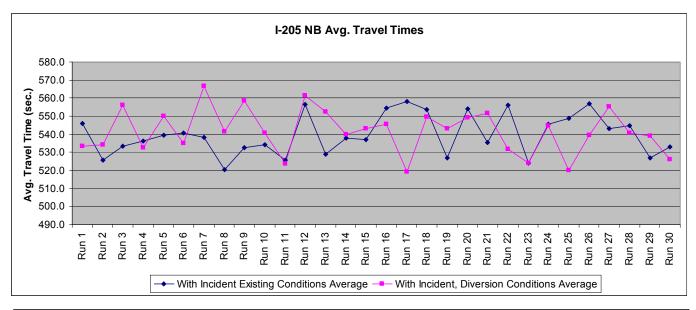
APPENDIX F – VISSIM VAP LOGIC CODE

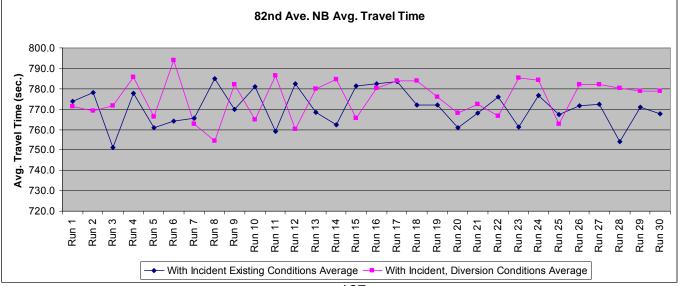

```
PROGRAM INCIDENT;
CONST
TIME\_BEGIN = 600,
DURATION = 1800;
IF NOT INT THEN
      INT := 1;
      START(SIMULATION_TIMER);
      SET_SG_DIRECT(1,OFF);
END;
IF SIMULATION_TIMER >= TIME_BEGIN THEN
      SG_RED(1);
END;
IF SIMULATION_TIMER > (TIME_BEGIN + DURATION) THEN
      SET_SG_DIRECT(1,OFF);
      STOP(SIMULATION_TIMER);
      RESET(SIMULATION_TIMER);
END.
```


# **APPENDIX G – RESULTS OF VISSIM SIMULATION RUNS**

|                              | No Incident Existing<br>Conditions Average | With Incident Existing<br>Conditions Average | With Incident, Diversion<br>Conditions Average |
|------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------|
| Number of arriving vehicles  | 60295                                      | 60288                                        | 60267                                          |
| Travel Time (hours)          | 7006.1                                     | 7097.3                                       | 7089.3                                         |
| Average Speed (mph)          | 32.77                                      | 32.33                                        | 32.35                                          |
| Delay Time (hours)           | 1047.338                                   | 1141.213                                     | 1125.725                                       |
| Average Delay Time (seconds) | 58.6                                       | 63.9                                         | 63.1                                           |
| Stopped Delay (hours)        | 545.085                                    | 596.379                                      | 587.422                                        |
| Number of Stops              | 136538                                     | 140282                                       | 140227                                         |

### Summary of Network Evaluation Results, VISSIM

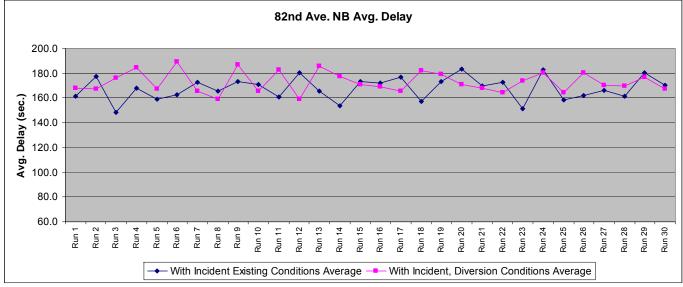

|                     | No Incident Existing | With Incident Existing | With Incident, Diversion | Average Delay Time | No Incident Existing | With Incident Existing | With Incident, Diversion |
|---------------------|----------------------|------------------------|--------------------------|--------------------|----------------------|------------------------|--------------------------|
| Travel Time (hours) | Conditions Average   | Conditions Average     | Conditions Average       | (seconds)          | Conditions Average   | Conditions Average     | Conditions Average       |
| Run 1               | 7034.3               | 7112.8                 | 7112.3                   | Run 1              | 58.2                 | 62.8                   | 62.1                     |
| Run 2               | 7066.1               | 7079.1                 | 7060.0                   | Run 2              | 59.5                 | 64.5                   | 61.8                     |
| Run 3               | 6985.6               | 7064.3                 | 7131.8                   | Run 3              | 58.7                 | 63.0                   | 63.0                     |
| Run 4               | 6992.5               | 7030.2                 | 7063.8                   | Run 4              | 58.0                 | 61.5                   | 62.3                     |
| Run 5               | 6983.6               | 7056.3                 | 7154.6                   | Run 5              | 58.4                 | 63.2                   | 67.9                     |
| Run 6               | 7054.1               | 7067.8                 | 7045.2                   | Run 6              | 59.2                 | 63.2                   | 62.5                     |
| Run 7               | 6989.7               | 7152.2                 | 7108.9                   | Run 7              | 58.7                 | 64.6                   | 64.7                     |
| Run 8               | 7026.6               | 7052.7                 | 7121.4                   | Run 8              | 57.6                 | 61.5                   | 62.3                     |
| Run 9               | 7058.7               | 7130.4                 | 7090.7                   | Run 9              | 59.2                 | 63.1                   | 63.4                     |
| Run 10              | 7001.3               | 7143.8                 | 7061.6                   | Run 10             | 58.0                 | 66.4                   | 62.4                     |
| Run 11              | 7035.2               | 7118.4                 | 7134.4                   | Run 11             | 58.1                 | 62.6                   | 63.7                     |
| Run 12              | 7032.6               | 7215.8                 | 7063.7                   | Run 12             | 59.6                 | 69.3                   | 62.1                     |
| Run 13              | 7033.8               | 7133.3                 | 7079.2                   | Run 13             | 57.5                 | 63.2                   | 63.1                     |
| Run 14              | 7027.3               | 7139.3                 | 7061.5                   | Run 14             | 60.6                 | 63.7                   | 62.1                     |
| Run 15              | 7053.5               | 7061.7                 | 7061.3                   | Run 15             | 59.0                 | 63.8                   | 62.5                     |
| Run 16              | 6944.7               | 7111.5                 | 7094.0                   | Run 16             | 57.0                 | 65.6                   | 63.9                     |
| Run 17              | 7035.0               | 7073.5                 | 7063.5                   | Run 17             | 63.0                 | 65.1                   | 62.1                     |
| Run 18              | 7070.5               | 7064.4                 | 7094.4                   | Run 18             | 60.0                 | 62.4                   | 63.3                     |
| Run 19              | 7029.1               | 7074.4                 | 7067.6                   | Run 19             | 60.7                 | 62.5                   | 62.5                     |
| Run 20              | 6988.4               | 7075.2                 | 7045.5                   | Run 20             | 58.4                 | 64.3                   | 62.3                     |
| Run 21              | 6991.3               | 7054.5                 | 7159.6                   | Run 21             | 58.0                 | 63.1                   | 64.8                     |
| Run 22              | 6941.8               | 7157.3                 | 7043.3                   | Run 22             | 57.0                 | 68.2                   | 60.8                     |
| Run 23              | 6983.7               | 7133.4                 | 7116.0                   | Run 23             | 59.1                 | 63.4                   | 61.8                     |
| Run 24              | 6967.8               | 7059.9                 | 7070.4                   | Run 24             | 57.3                 | 62.7                   | 62.4                     |
| Run 25              | 6993.9               | 7127.4                 | 7051.8                   | Run 25             | 59.2                 | 63.4                   | 61.5                     |
| Run 26              | 6998.2               | 7117.7                 | 7114.7                   | Run 26             | 59.3                 | 66.4                   | 63.4                     |
| Run 27              | 6957.7               | 7058.2                 | 7111.1                   | Run 27             | 56.6                 | 62.8                   | 63.8                     |
| Run 28              | 6958.2               | 7090.2                 | 7140.9                   | Run 28             | 58.1                 | 64.8                   | 68.8                     |
| Run 29              | 6988.6               | 7124.2                 | 7096.1                   | Run 29             | 58.2                 | 63.3                   | 63.1                     |
| Run 30              | 6959.4               | 7039.2                 | 7060.7                   | Run 30             | 56.8                 | 62.3                   | 61.9                     |
| Average             | 7006.1               | 7097.3                 | 7089.3                   | Average            | 58.6                 | 63.9                   | 63.1                     |






Summary of Corridor Evaluation Results, VISSIM\* \* Based on data collected over simulation seconds of 900-7200, collected in 900 second intervals, over 30 iteration runs in VISSIM


| I-205 NB Avg. Travel Times (sec.) | No Incident Existing<br>Conditions Average | With Incident Existing<br>Conditions Average | With Incident, Diversion<br>Conditions Average | 82nd Ave. NB Avg. Travel Time (sec.) | No Incident Existing<br>Conditions Average | With Incident Existing<br>Conditions Average | With Incident, Diversion<br>Conditions Average |
|-----------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------|
| Run 1                             | 493.3                                      | 545.8                                        | 533.2                                          | Run 1                                | 766.8                                      | 774.0                                        | 771.4                                          |
| Run 2                             | 497.5                                      | 525.6                                        | 534.1                                          | Run 2                                | 765.2                                      | 777.9                                        | 769.1                                          |
| Run 3                             | 482.7                                      | 533.2                                        | 556.2                                          | Run 3                                | 757.4                                      | 751.3                                        | 771.7                                          |
| Run 4                             | 479.7                                      | 536.3                                        | 532.6                                          | Run 4                                | 758.2                                      | 777.7                                        | 785.6                                          |
| Run 5                             | 501.6                                      | 539.4                                        | 550.0                                          | Run 5                                | 756.3                                      | 761.0                                        | 766.3                                          |
| Run 6                             | 493.3                                      | 540.9                                        | 535.0                                          | Run 6                                | 762.7                                      | 764.3                                        | 794.0                                          |
| Run 7                             | 494.5                                      | 538.3                                        | 566.6                                          | Run 7                                | 773.9                                      | 765.7                                        | 762.7                                          |
| Run 8                             | 483.3                                      | 520.4                                        | 541.4                                          | Run 8                                | 777.9                                      | 784.8                                        | 754.5                                          |
| Run 9                             | 511.7                                      | 532.5                                        | 558.3                                          | Run 9                                | 775.3                                      | 770.0                                        | 782.2                                          |
| Run 10                            | 480.1                                      | 534.2                                        | 540.9                                          | Run 10                               | 785.5                                      | 781.0                                        | 764.9                                          |
| Run 11                            | 486.5                                      | 525.7                                        | 523.5                                          | Run 11                               | 757.7                                      | 759.3                                        | 786.5                                          |
| Run 12                            | 513.1                                      | 556.5                                        | 561.3                                          | Run 12                               | 743.2                                      | 782.6                                        | 760.3                                          |
| Run 13                            | 484.3                                      | 529.1                                        | 552.3                                          | Run 13                               | 757.1                                      | 768.4                                        | 779.8                                          |
| Run 14                            | 499.8                                      | 538.0                                        | 539.7                                          | Run 14                               | 777.3                                      | 762.2                                        | 784.6                                          |
| Run 15                            | 483.9                                      | 536.9                                        | 542.9                                          | Run 15                               | 776.7                                      | 781.5                                        | 765.7                                          |
| Run 16                            | 479.7                                      | 554.3                                        | 545.6                                          | Run 16                               | 777.8                                      | 782.3                                        | 780.1                                          |
| Run 17                            | 486.4                                      | 558.2                                        | 519.2                                          | Run 17                               | 763.3                                      | 783.5                                        | 784.0                                          |
| Run 18                            | 499.0                                      | 553.5                                        | 549.5                                          | Run 18                               | 799.4                                      | 771.9                                        | 783.7                                          |
| Run 19                            | 487.7                                      | 527.0                                        | 543.1                                          | Run 19                               | 778.8                                      | 771.9                                        | 776.0                                          |
| Run 20                            | 496.1                                      | 554.2                                        | 549.2                                          | Run 20                               | 758.2                                      | 760.8                                        | 768.1                                          |
| Run 21                            | 490.2                                      | 535.2                                        | 551.5                                          | Run 21                               | 771.4                                      | 768.0                                        | 772.5                                          |
| Run 22                            | 488.7                                      | 556.1                                        | 531.7                                          | Run 22                               | 740.3                                      | 776.0                                        | 766.6                                          |
| Run 23                            | 495.3                                      | 524.2                                        | 524.0                                          | Run 23                               | 760.2                                      | 761.2                                        | 785.4                                          |
| Run 24                            | 483.0                                      | 545.6                                        | 544.9                                          | Run 24                               | 769.7                                      | 776.6                                        | 784.4                                          |
| Run 25                            | 492.7                                      | 548.8                                        | 520.0                                          | Run 25                               | 772.6                                      | 767.4                                        | 762.6                                          |
| Run 26                            | 488.2                                      | 556.8                                        | 539.3                                          | Run 26                               | 767.9                                      | 771.8                                        | 782.2                                          |
| Run 27                            | 475.0                                      | 543.1                                        | 555.1                                          | Run 27                               | 747.2                                      | 772.4                                        | 782.1                                          |
| Run 28                            | 502.4                                      | 544.6                                        | 540.8                                          | Run 28                               | 763.7                                      | 754.2                                        | 780.4                                          |
| Run 29                            | 481.6                                      | 526.9                                        | 538.9                                          | Run 29                               | 755.5                                      | 771.1                                        | 778.9                                          |
| Run 30                            |                                            | 533.2                                        | 526.3                                          | Run 30                               | 770.1                                      | 767.7                                        | 778.9                                          |
| Average                           | 490.4                                      | 539.8                                        | 541.6                                          | Average                              | 766.3                                      | 770.6                                        | 775.5                                          |






Summary of Corridor Evaluation Results, VISSIM\* \* Based on data collected over simulation seconds of 900-7200, collected in 900 second intervals, over 30 iteration runs in VISSIM

| I-205 NB Avg. Delay (sec.) | No Incident Existing<br>Conditions Average | With Incident Existing<br>Conditions Average | With Incident, Diversion<br>Conditions Average | 82nd Ave. NB Avg. Delay (sec.) | No Incident Existing<br>Conditions Average | With Incident Existing<br>Conditions Average | With Incident, Diversion<br>Conditions Average |
|----------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------|
| Run 1                      | 48.7                                       | 101.3                                        | 88.5                                           | Run 1                          | 153.3                                      | 161.7                                        | 167.7                                          |
| Run 2                      | 52.4                                       | 83.6                                         | 91.6                                           | Run 2                          | 152.0                                      | 177.4                                        | 167.1                                          |
| Run 3                      |                                            | 88.0                                         | 112.2                                          | Run 3                          | 157.7                                      | 148.4                                        | 176.5                                          |
| Run 4                      |                                            | 92.6                                         | 87.6                                           | Run 4                          | 161.9                                      | 168.2                                        | 184.5                                          |
| Run 5                      | 57.6                                       | 94.2                                         | 105.3                                          | Run 5                          | 152.4                                      | 159.1                                        | 167.1                                          |
| Run 6                      |                                            | 96.7                                         | 90.2                                           | Run 6                          | 151.4                                      | 162.9                                        | 189.0                                          |
| Run 7                      | 50.2                                       | 94.5                                         | 121.3                                          | Run 7                          | 169.5                                      | 172.8                                        | 165.4                                          |
| Run 8                      |                                            | 75.9                                         | 95.9                                           | Run 8                          | 180.5                                      | 165.3                                        | 159.0                                          |
| Run 9                      |                                            | 88.0                                         | 112.8                                          | Run 9                          | 178.9                                      | 173.1                                        | 186.8                                          |
| Run 10                     |                                            | 89.4                                         | 95.5                                           | Run 10                         | 175.9                                      | 171.2                                        | 165.9                                          |
| Run 11                     |                                            | 81.4                                         | 79.2                                           | Run 11                         | 157.8                                      | 160.6                                        | 182.8                                          |
| Run 12                     |                                            | 112.3                                        | 115.2                                          | Run 12                         | 159.4                                      | 180.6                                        | 159.1                                          |
| Run 13                     |                                            | 82.9                                         | 106.2                                          | Run 13                         | 154.3                                      | 165.9                                        | 185.9                                          |
| Run 14                     | 54.3                                       | 93.1                                         | 94.6                                           | Run 14                         | 170.7                                      | 153.8                                        | 177.7                                          |
| Run 15                     | 43.0                                       | 93.2                                         | 98.3                                           | Run 15                         | 181.8                                      | 173.3                                        | 170.8                                          |
| Run 16                     | 35.1                                       | 109.6                                        | 99.5                                           | Run 16                         | 172.1                                      | 172.0                                        | 169.0                                          |
| Run 17                     | 42.8                                       | 113.1                                        | 74.8                                           | Run 17                         | 165.0                                      | 176.6                                        | 165.3                                          |
| Run 18                     | 53.4                                       | 107.6                                        | 104.4                                          | Run 18                         | 198.3                                      | 157.3                                        | 182.2                                          |
| Run 19                     | 42.5                                       | 83.7                                         | 98.2                                           | Run 19                         | 171.1                                      | 173.3                                        | 179.5                                          |
| Run 20                     | 51.9                                       | 110.0                                        | 105.0                                          | Run 20                         | 152.0                                      | 183.6                                        | 171.1                                          |
| Run 21                     | 45.6                                       | 91.0                                         | 107.5                                          | Run 21                         | 175.2                                      | 169.7                                        | 167.8                                          |
| Run 22                     | 43.8                                       | 111.7                                        | 87.7                                           | Run 22                         | 142.6                                      | 172.6                                        | 164.2                                          |
| Run 23                     |                                            | 81.7                                         | 81.0                                           | Run 23                         | 151.7                                      | 151.6                                        | 173.9                                          |
| Run 24                     | 39.0                                       | 101.8                                        | 100.7                                          | Run 24                         | 181.8                                      | 182.7                                        | 180.4                                          |
| Run 25                     |                                            | 102.8                                        | 75.0                                           | Run 25                         | 172.3                                      | 158.5                                        | 164.7                                          |
| Run 26                     |                                            | 111.1                                        | 94.8                                           | Run 26                         | 168.0                                      | 162.3                                        | 180.4                                          |
| Run 27                     |                                            | 98.1                                         | 109.3                                          | Run 27                         | 149.0                                      | 166.2                                        | 170.4                                          |
| Run 28                     |                                            | 99.5                                         | 95.7                                           | Run 28                         | 168.6                                      | 161.2                                        | 169.8                                          |
| Run 29                     |                                            | 83.5                                         | 94.5                                           | Run 29                         | 157.8                                      | 180.3                                        | 177.0                                          |
| Run 30                     |                                            | 87.9                                         | 81.1                                           | Run 30                         | 182.7                                      | 170.4                                        | 167.4                                          |
| Average                    | 45.8                                       | 95.3                                         | 96.8                                           | Average                        | 165.5                                      | 167.8                                        | 172.9                                          |





# Northbound I-205 Volume Comparison\*

(approximately 300 feet north or downstream of incident) \* volume across all 3 lanes, 900-7200 simulation seconds, VISSIM .mes output file

|                | Random | Existing Conditions | Diversion Conditions |       |
|----------------|--------|---------------------|----------------------|-------|
| Simulation Run | Seed   | Traffic Volume      | Traffic Volume       | Delta |
| Run 1          | 42     | 4458                | 4218                 | 240   |
| Run 2          | 2327   | 4330                | 4202                 | 128   |
| Run 3          | 4819   | 4331                | 4153                 | 178   |
| Run 4          | 5826   | 4345                | 4166                 | 179   |
| Run 5          | 4231   | 4343                | 4184                 | 159   |
| Run 6          | 4115   | 4365                | 4144                 | 221   |
| Run 7          | 1039   | 4418                | 4143                 | 275   |
| Run 8          | 4912   | 4415                | 4235                 | 180   |
| Run 9          | 6231   | 4499                | 4147                 | 352   |
| Run 10         | 2833   | 4374                | 4164                 | 210   |
| Run 11         | 3227   | 4465                | 4261                 | 204   |
| Run 12         | 5821   | 4479                | 4109                 | 370   |
| Run 13         | 3588   | 4454                | 4189                 | 265   |
| Run 14         | 3022   | 4427                | 4153                 | 274   |
| Run 15         | 8384   | 4375                | 4157                 | 218   |
| Run 16         | 5675   | 4364                | 4204                 | 160   |
| Run 17         | 551    | 4324                | 4190                 | 134   |
| Run 18         | 5055   | 4410                | 4163                 | 247   |
| Run 19         | 6020   | 4347                | 4189                 | 158   |
| Run 20         | 4070   | 4291                | 4180                 | 111   |
| Run 21         | 3960   | 4380                | 4233                 | 147   |
| Run 22         | 1539   | 4379                | 4206                 | 173   |
| Run 23         | 8934   | 4429                | 4229                 | 200   |
| Run 24         | 730    | 4372                | 4160                 | 212   |
| Run 25         | 273    | 4430                | 4112                 | 318   |
| Run 26         | 6224   | 4361                | 4166                 | 195   |
| Run 27         | 6501   | 4336                | 4132                 | 204   |
| Run 28         | 5658   | 4303                | 4183                 | 120   |
| Run 29         | 5099   | 4430                | 4153                 | 277   |
| Run 30         | 5411   | 4384                | 4194                 | 190   |
| Average        | -      | 4387                | 4177                 | 210   |

# **APPENDIX H – SUMMARY OF STATISTICAL TESTS**

| Test      | alpha |
|-----------|-------|
| Normality | 0.01  |
| Variance  | 0.05  |
| Means     | 0.05  |

| Interstate 205 Corridor             | No Driver Info | With Driver Info |
|-------------------------------------|----------------|------------------|
| Mean Travel Time per vehicle (sec.) | 539.8          | 541.6            |
| Normal                              | Yes            | Yes              |
| Equal Variances                     | Yes            |                  |
| T-Test or Welches                   | T-test         |                  |
| Equal Means                         | Yes            |                  |

| Interstate 205 Corridor       | No Driver Info | With Driver Info |
|-------------------------------|----------------|------------------|
| Mean Delay per vehicle (sec.) | 95.3           | 96.8             |
| Normal                        | Yes            | Yes              |
| Equal Variances               | Yes            |                  |
| T-Test or Welches             | T-test         |                  |
| Equal Means                   | Yes            |                  |

| 82nd Avenue Corridor                | No Driver Info | With Driver Info |
|-------------------------------------|----------------|------------------|
| Mean Travel Time per vehicle (sec.) | 770.6          | 775.5            |
| Normal                              | Yes            | Yes              |
| Equal Variances                     | Yes            |                  |
| T-Test or Welches                   | T-test         |                  |
| Equal Means                         | No             |                  |

| 82nd Avenue Corridor          | No Driver Info | With Driver Info |
|-------------------------------|----------------|------------------|
| Mean Delay per vehicle (sec.) | 167.8          | 172.9            |
| Normal                        | Yes            | Yes              |
| Equal Variances               | Yes            |                  |
| T-Test or Welches             | T-test         |                  |
| Equal Means                   | No             |                  |

| I-205 Point Volume | No Driver Info | With Driver Info |
|--------------------|----------------|------------------|
| Volume             | 4387           | 4177             |
| Normal             | Yes            | Yes              |
| Equal Variances    | No             |                  |
| T-Test or Welches  | T-test         |                  |
| Equal Means        | No             |                  |

| Network-Wide                        | No Driver Info | With Driver Info |
|-------------------------------------|----------------|------------------|
| Mean Travel Time per vehicle (sec.) | 7097.3         | 7089.3           |
| Normal                              | Yes            | Yes              |
| Equal Variances                     | Yes            |                  |
| T-Test or Welches                   | T-test         |                  |
| Equal Means                         | Yes            |                  |

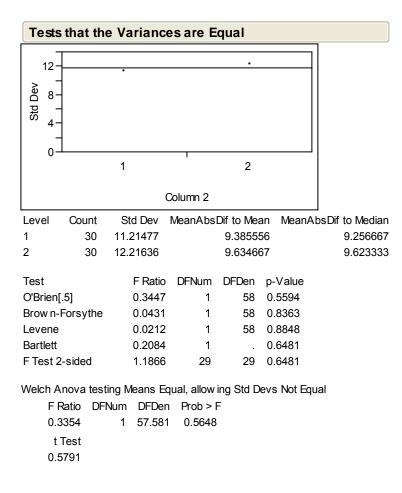
| Network-Wide                  | No Driver Info | With Driver Info |
|-------------------------------|----------------|------------------|
| Mean Delay per vehicle (sec.) | 63.9           | 63.1             |
| Normal                        | No             | No               |
| Equal Variances               | Yes            |                  |
| T-Test or Welches             | Welches        |                  |
| Equal Means                   | Yes            |                  |

# APPENDIX I – JMP (SAS) STATISTICAL ANALYSIS OUTPUT

### Interstate 205 Corridor Average Travel Time Data Set

| No Traveler In | formation l | Normalcv: |
|----------------|-------------|-----------|
|----------------|-------------|-----------|

| Goodness-of-Fit Test                                                       |                      |  |  |  |
|----------------------------------------------------------------------------|----------------------|--|--|--|
| Shapiro-Wilk W Test                                                        |                      |  |  |  |
| W                                                                          | Prob <w< th=""></w<> |  |  |  |
| 0.947404                                                                   | 0.1440               |  |  |  |
| Note: Ho = The data is from the Normal distribution. Small p-values reject |                      |  |  |  |


Ho.

#### With Traveler Information Normalcy:

|  | lness-c |               | Tast |
|--|---------|---------------|------|
|  |         | <b>\T_⊢IT</b> | 1091 |
|  |         |               |      |

Shapiro-Wilk W Test

W Prob<W 0.983106 0.9007



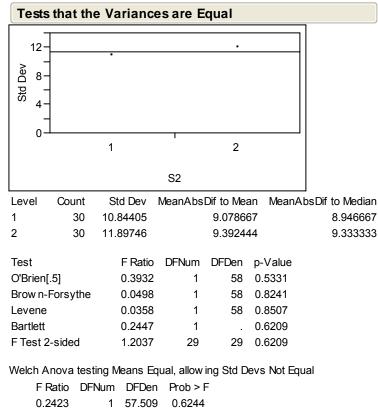
| Analysis | s of Va | ariance        |             |          |
|----------|---------|----------------|-------------|----------|
| Source   | DF      | Sum of Squares | Mean Square | F Ratio  |
| Model    | 1       | 46.1127        | 46.113      | 0.3354   |
| Error    | 58      | 7975.3047      | 137.505     | Prob > F |
| C. Total | 59      | 8021.4173      |             | 0.5648   |

## Interstate 205 Corridor Average Delay Data Set

| No Traveler Information N | ormalcv: |
|---------------------------|----------|
|---------------------------|----------|

| Goodness-o     | f-Fit Test                                               |      |       |  |  |
|----------------|----------------------------------------------------------|------|-------|--|--|
| Shapiro-Wilk W | Fest                                                     |      |       |  |  |
| W              | Prob <w< th=""><th></th><th></th><th></th><th></th></w<> |      |       |  |  |
| 0.946422       | 0.1355                                                   |      |       |  |  |
| <del>.</del>   |                                                          | <br> | <br>~ |  |  |

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.


#### With Traveler Information Normalcy:

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W 0.946422 0.1355

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.



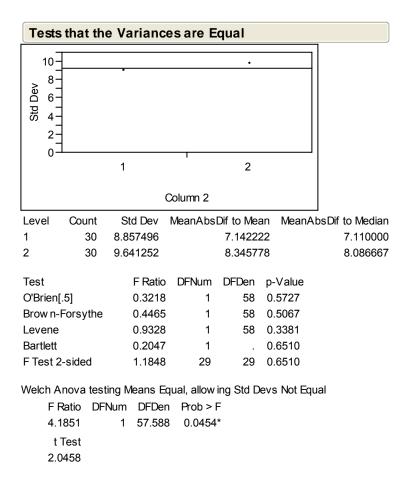
t Test

0.4922

| Analysis | of V | ariance        |             |          |
|----------|------|----------------|-------------|----------|
| Source   | DF   | Sum of Squares | Mean Square | F Ratio  |
| Model    | 1    | 31.3927        | 31.393      | 0.2423   |
| Error    | 58   | 7515.1467      | 129.571     | Prob > F |
| C. Total | 59   | 7546.5393      |             | 0.6244   |

# 82<sup>nd</sup> Avenue Corridor Average Travel Time Data Set

| No Traveler Information Nor | malcv: |
|-----------------------------|--------|
|-----------------------------|--------|


| Goodness-of      | Fit Test                                                  |
|------------------|-----------------------------------------------------------|
| Shapiro-Wilk W T | est                                                       |
| W                | Prob <w< th=""></w<>                                      |
| 0.971471         | 0.5802                                                    |
| Nata La - Tha d  | ate is from the Nermal distribution. Omally values reject |

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

#### With Traveler Information Normalcy:

Shapiro-Wilk W Test

W Prob<W 0.951349 0.1837

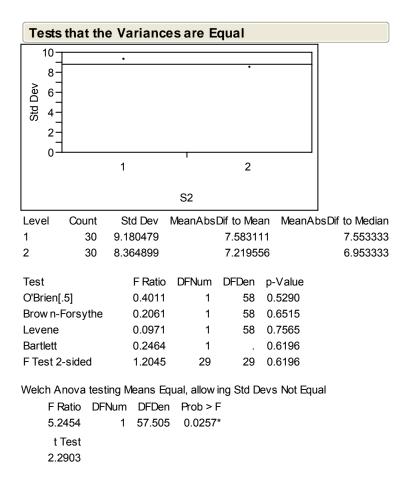


| Analysis | of Va | ariance        |             |          |
|----------|-------|----------------|-------------|----------|
| Source   | DF    | Sum of Squares | Mean Square | F Ratio  |
| Model    | 1     | 358.6815       | 358.682     | 4.1851   |
| Error    | 58    | 4970.8603      | 85.704      | Prob > F |
| C. Total | 59    | 5329.5418      |             | 0.0453*  |

# 82<sup>nd</sup> Avenue Corridor Average Delay Data Set

| No Traveler Information Nor |
|-----------------------------|
|-----------------------------|

Goodness-of-Fit Test Shapiro-Wilk W Test W Prob<W 0.978564 0.7862


Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

#### With Traveler Information Normalcy:

Goodness-of-Fit Test

Shapiro-Wilk W Test

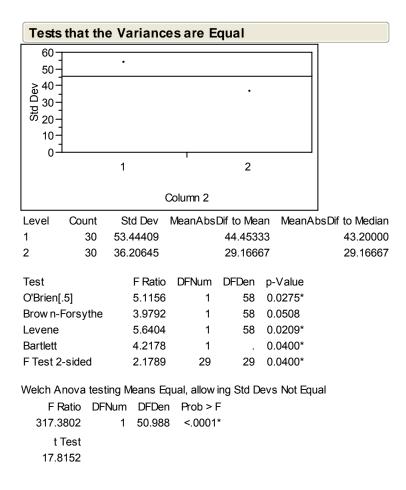
W Prob<W 0.947581 0.1456



| Analysis | of Va | ariance        |             |          |
|----------|-------|----------------|-------------|----------|
| Source   | DF    | Sum of Squares | Mean Square | F Ratio  |
| Model    | 1     | 404.5607       | 404.561     | 5.2454   |
| Error    | 58    | 4473.3293      | 77.126      | Prob > F |
| C. Total | 59    | 4877.8900      |             | 0.0257*  |

#### Interstate 205 Throughput Volumes Downstream of Incident Data Set

| No | Travele | ər Inf | ormation | Normalcy: |
|----|---------|--------|----------|-----------|
|----|---------|--------|----------|-----------|


| Goodness-of      | f-Fit Test           |
|------------------|----------------------|
| Shapiro-Wilk W T | est                  |
| W                | Prob <w< td=""></w<> |
| 0.973332         | 0.6338               |
|                  |                      |

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

#### With Traveler Information Normalcy:

Shapiro-Wilk W Test

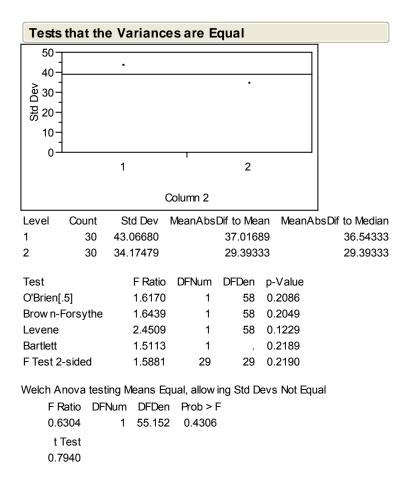
W Prob<W 0.980135 0.8291



## **Network-Level Total Travel Time Data Set**

| No Travele | r Information | Normalcv: |
|------------|---------------|-----------|
|------------|---------------|-----------|

| Goodnes      | s-of-Fit            | Test                 |  |
|--------------|---------------------|----------------------|--|
| Shapiro-Wilk | Shapiro-Wilk W Test |                      |  |
| V            | / F                 | Prob <w< th=""></w<> |  |
| 0.934162     | 2 (                 | 0.0634               |  |
|              |                     |                      |  |


Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

#### With Traveler Information Normalcy:

Goodness-of-Fit Test

Shapiro-Wilk W Test

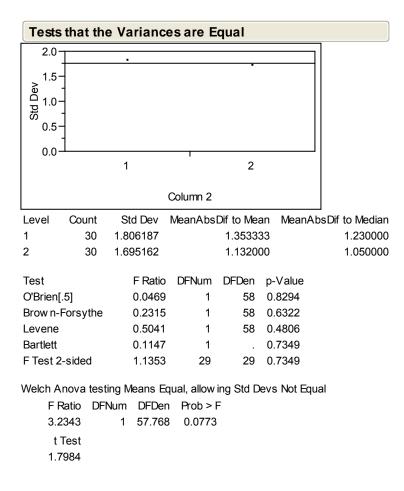
W Prob<W 0.925004 0.0362\*



| Analysis of Variance |    |                |             |          |
|----------------------|----|----------------|-------------|----------|
| Source               | DF | Sum of Squares | Mean Square | F Ratio  |
| Model                | 1  | 952.814        | 952.81      | 0.6304   |
| Error                | 58 | 87657.296      | 1511.33     | Prob > F |
| C. Total             | 59 | 88610.110      |             | 0.4304   |

#### **Network-Level Average Delay Data Set**

| N | o Traveler I     | nformation                    | Normalcy: |
|---|------------------|-------------------------------|-----------|
|   | Goodness-o       | f-Fit Test                    |           |
|   | Shapiro-Wilk W 1 | Test                          |           |
|   | W                | Prob <w< td=""><td></td></w<> |           |
|   | 0.867204         | 0.0015*                       |           |
|   |                  |                               |           |


Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

#### With Traveler Information Normalcy:

Goodness-of-Fit Test

Shapiro-Wilk W Test

W Prob<W 0.773321 <.0001\*



| Analysis of Variance |    |                |             |          |
|----------------------|----|----------------|-------------|----------|
| Source               | DF | Sum of Squares | Mean Square | F Ratio  |
| Model                | 1  | 9.92267        | 9.92267     | 3.2343   |
| Error                | 58 | 177.94067      | 3.06794     | Prob > F |
| C. Total             | 59 | 187.86333      |             | 0.0773   |

# **APPENDIX J – SIMULATION LESSONS LEARNED**

# **Simulation Lessons Learned**

• VISUM model must be as accurate as possible, beyond traditional planning models and towards operations modeling.

#### o Big Picture Issues

- Network size going from a full regional model down to a corridor model can eliminate strategic routes, highway access points, zone generators/destinations, and thus can change the assignment characteristics and traffic flows from the original intent of the regional planning model...do your best to capture the most important zones, routes, and intersections for your operations microsimulation model. Carefully consider where you make your subarea network cuts, remember the larger the network, the longer it will take to run and code as a microsimulation operations model;
- If the corridor is a subnetwork of a larger network, the big issues to ensure occur are:
  - No zone connectors enter an intersection node in VISUM
  - DON'T leave ANY of the subarea network unconnected from other portions of the full network, IMPORTANT!
  - Use NAVTEQ or GIS data as a base for drawing VISUM network
  - Attempt to "cut" subarea network to capture major zone generators and destinations, roadways and intersections;
- Traffic flow recovery post-incident and its relationship to incident length, simulation time & input data available (i.e. 2hour volumes vs. 24-hour volumes)
- Always allow for time to "load" or warm up the microsimulation model before beginning model evaluations, 15 minutes is a typical value, but your value should reflect the time it takes for vehicles to traverse the length of the corridor (i.e. Interstate travel along the longest portion in the network.

## • Areas for accuracy improvement in VISUM

- Grade separated intersections must be coded as such;
- Prohibited turning movements, particularly grade-seperated intersections or directional ramps or other geometry;
- Posted or operating speeds;
- Number of lanes and corresponding capacity;
- Ensure nodes occur at intersections or other appropriate places, EMME/2 tends to put nodes in non-intersection locations;
- Edit link shapes to match an aerial or just reality of the roadway system;
- Zone connectors must not go directly into an intersection, they should join mid-block or via their own node at a link, key for operations in VISSIM;
- Also, no 5-leg or more intersections in VISUM, since conversion to VISSIM cannot handle more than four legs currently (simple NEMA editor limitation);
- Split ramp links and add a node if there is going to be ramp metering in the operations model.

## o Steps that must occur to prepare VISUM to go to VISSIM

- All the above steps first!
- Add lane geometry, turning storage bays (check "use lane geometry for Vissim export");
- Assign major flows to the major movement for each and every intersection, key for priority rule assignment (proper operations) in VISSIM;
- Add signal control at signalized intersections using NEMA simple editor, advanced signal settings can be added once in VISSIM (use VISUM 9.43-10 or higher to eliminate controller bug);
- For the signal controllers to import correctly from VISUM to VISSIM, one must ensure there are TWO coordinated phases and no zero splits in ring 1 in the simple editor. Use dummy phases if necessary to fulfill these requirements;
- Consider importing signal timing from Synchro to VISUM to create timing plans. Intersection numbers must be identical.

- Check all links, nodes, and turns for accuracy
- Rerun multi-equilibrium assignment procedure in VISUM

## • Export configuration for VISUM to VISSIM (this is in VISUM)

- Export Settings "Links" Tab
  - VISSIM connectors, distance node to center default of 32.81 feet should be ok;
  - Zone connectors, define number of lanes using an AddVal user defined attribute, but only if connector lanes in VISSIM should be 2+ in each direction of travel. Max length should be about 100 feet, unless your study geometry dictates otherwise;
  - Define length of weaving lane attributes using a link user defined attribute. This should only be applied to a ramp where there is an acceleration or deceleration weaving lane on the roadway downstream or upstream.
  - Use a user defined attribute (UDA) to define the link attribute offset or separation value between roadway directions of travel in VISSIM (i.e. eastbound and westbound traffic in simulation model)
- Export Settings "PrT" Tab
  - Define route export type, static or dynamic;
  - Define evaluation interval, recommended as 900, 1800, or 3600 depending on your simulation length;
  - In PrT matrix, define "from time", "to time", "factor", and "VISSIM-Category."
- Export Settings in General
  - Define export time period (i.e. start = 15:30 end=17:30)
  - Define VISSIM simulation parameters, simulation period (i.e. 7200) and time steps/sim. Sec. (i.e. 10)
  - Check appropriate boxes in bottom left corner, for this thesis it was generate weaving sections, generate desired speed decisions, generate reduced speed zones, and route export (for Dynamic Assignment).

- Click save and then click export to start export to VISSIM!
- Address any and all errors in VISUM, then rerun multiequilibrium assignment before using exported .inp VISSIM file that is created.

### • Steps in VISSIM after export from VISUM

- First try to run the model in VISSIM
  - Address warning messages and errors
  - Notice where unrealistic operations occur (i.e. signal timing/operations, traffic flows, roadway geometry)
- Make changes to links and connectors if roadway geometry seems to be a problem, first you must redefine the "node" at each intersection by right clicking on the node box imported from VISUM. By redefining the node it should be square in appearance and now belong directly to VISSIM as opposed to reading from VISUM. Only necessary to redefine nodes where an adjustment to links or connectors is necessary. Also check to see if the problem exists in VISUM, if so address in VISUM, rerun VISUM model and reimport as opposed to changing in VISSIM if possible.
- For correct operations in VISSIM, the node sequencing or order MUST remain consistent with that of VISUM (original export), otherwise the cost and path files created in VISUM by the multi-equilibrium assignment process will not be valid in the VISSIM model runs. Important because it given the VISSIM model a sense for traffic assignment values based on runs in VISUM, otherwise it would have to start from scratch and find the best paths and costs then do an assignment which can take many, many additional iterations depending on the size of the VISSIM model.
- Make changes to signal controller if signal operations are incorrect
- Check and make changes to priority rules if vehicles are not yielding appropriately at VISSIM intersections
- Check speed decisions and reduced speed zones to ensure they reflect reality
- Check transit attributes if included in import from VISUM

- Configure offline evaluation parameters, simulation parameters and if applicable, dynamic assignment parameters
- Run in model in VISSIM...remember allow for "loading" or warm up period before beginning model evaluation!

## VITA

Shaun Quayle was born in Portland, Oregon on October 19, 1978. He graduated from Oregon State University with a Bachelor of Science degree in Civil Engineering in 2002. Following graduation, Shaun accepted a position as a Transportation Analyst with Kittelson and Associates, Inc., working in Portland, Oregon in 2002-2003, then moving to Orlando, Florida in 2003-2005 with Kittelson.

In 2005, Shaun took a leave of absence in order to pursue a Master of Science Degree in Civil Engineering at the University of Tennessee. During his graduate studies, Shaun was employed as a graduate research assistant, working both on the NCHRP 3-66, *Traffic Signal State Transition Logic Using Enhanced Sensor Information*, and NCHRP 3-81, *Strategies for Integrated Operation of Freeway and Arterial Corridors*, research projects. While at the University of Tennessee, Shaun served as secretary and vice president of the Institute of Transportation Engineers student chapter. Shaun also received the Tennessee Section ITE student scholarship award and best paper award during the course of his graduate studies.

Upon graduation in December 2006, Shaun returned to work with Kittelson and Associates, Inc., in Portland, Oregon.