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Abstract

This study explores the topic of N -person cooperative game theory. The

following paper begins with an introduction to the basic definitions and the-

orems of game theory. These definitions and theorems are then used to in-

troduce various solution methods and methods of coalition formation. These

results are then applied to the airport game, to the supplier-firm-buyer game,

and to evolutionary games.
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Chapter 1

Definitions and Notation

Introduction

Chapter 1 will provide basic definitions and notation necessary to discuss the

two major issues at the center of n-person cooperative game theory: coalition

formation and distribution of wealth gained through cooperation. The reader

will be introduced to the characteristic equation and the properties it may

possess. We will define a (0, 1)-normalized game and prove that every essen-

tial cooperative game is strategically equivalent to one and only one game in

this form. The payoff vector is also discussed in this chapter as well as the

properties it may hold. The main references of chapter 1 are Colman [2] and

[1a], Driessen [3], Forgó-Szép-Szidarovszky [4] , Jianhua [7], Luce-Raiffa [10],

Owen [12], Rapoport [13], Thomas [18], and Vorobév [20].

An n-person cooperative game involves n players, where n > 2, and agree-
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ments regarding the correlation of strategies between two or more players are

permitted.

The most concise representation for cooperative games is the character-

istic function form.

Definition 1.1 Let N = {1, ..., n} represent the n players. If v(S) is a

real-valued function defined on the set of all subsets S of N , satisfying

v(∅) = 0, (1.1)

v(N) ≥
n
∑

i=1

v({i}), (1.2)

we say that Γ ≡ [N, v] is an n-person cooperative game, and v(S) is said

to be the characteristic function of the game Γ.

Definition 1.2 Any non-empty subset S of the set N (S ⊂ N) is a possible

coalition .

Suppose S ⊂ N is a coalition, then v(S) represents the maximum utility (for

simplicity, money) S can get without correlating strategies with the other

N \ S players.

Definition 1.3 A coalition which contains all n players is called the grand

coalition, and v(N) represents the maximum expected payoff of this coali-

tion.
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There are several properties which can be used to classify an n-person

cooperative game. For example, games can be divided into categories such

as constant-sum or non-constant-sum, and essential or inessential.

Definition 1.4 A game is said to be constant-sum if

v(S) + v(N \ S) = v(N)

for every S ⊂ N.

Definition 1.5 If the sum of expected payoffs, given by v(S), in a game Γ

is different depending on which players form a coalition, then game is called

a non-constant-sum game.

Suppose S and T are disjoint coalitions, then clearly if they form a coali-

tion, they should receive at least as large a payoff as they would by remaining

separate.

Theorem 1.1 Jianhua [7] Let Γ ≡ [N, v] be an n-person cooperative game.

Then

v(S ∪ T ) ≥ v(S) + v(T ) (1.3)

for all S, T ⊆ N , S ∩ T = ∅.
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Proof: The coalition S can guarantee obtaining an amount v(S) and no

more. Similarly, the coalition T can guarantee obtaining the amount v(T )

and no more. Hence, the coalition S ∪T can obtain the amount v(S) + v(T )

even if S and T fail to cooperate with each other. Since the maximum the

coalition S ∪ T can obtain under any condition is v(S ∪ T ), this implies

v(S ∪ T ) ≥ v(S) + v(T ).

Definition 1.6 Inequality (1.3) is called the superadditive property of

the characteristic function v. If equality holds in (1.3), that is for all S, T ⊆

N,S ∩ T = ∅, we have

v(S ∪ T ) = v(S) + v(T ),

we say v is additive .

The superadditive property of the characteristic function implies that

the ”union” of all players (i.e. the grand coalition) (and unions of smaller

coalitions into larger ones) is profitable because the corresponding payoff is

increased. If the additive property holds in the characteristic function, then

the players gain nothing by forming coalitions in the given game.

Definition 1.7 An n-person cooperative game with additive characteristic
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function is called an inessential game. All other cooperative games are

essential.

Inessential games are trivial, because players have nothing to gain by

forming a coalition. This can be seen in Theorem 1.2.

Theorem 1.2 Jianhua [7] In order that a characteristic function be addi-

tive, it is necessary and sufficient that the equality

n
∑

i=1

v({i}) = v(N) (1.4)

be satisfied.

Proof: Necessity of equality (1.4) is directly implied by the additivity as-

sumption. For sufficiency of the condition, assume that (1.4) holds. Let

S, T ⊆ N,S ∩ T = ∅. Using the superadditivity of v successively, we have

v(N) =
n
∑

i=1

v({i})

=
∑

i∈S

v({i}) +
∑

i∈T

v({i}) +
∑

i∈N\S∪T

v({i})

≤ v(S) + v(T ) + v(N \ S ∪ T )

≤ v(S ∪ T ) + v(N \ S ∪ T )

≤ v(N)

5



Hence v(S) + v(T ) = v(S ∪ T ).

Since there are many types of cooperative games, it is beneficial to classify

them in a manner such that games with similar basic properties belong to

the same class. To do this, we must determine what makes two characteristic

functions strategically equivalent.

Definition 1.8 Two characteristic functions, v and v ′ associated withN , are

strategically equivalent if a positive number k and arbitrary real numbers

ci (i ∈ N) exist such that for any coalition S ⊂ N , the equality

v′(S) = kv(S) +
∑

i∈S

ci

is satisfied.

It is this property that enables us to normalize a cooperative game.

Definition 1.9 A game Γ = {N, v} is said to be (0, 1)− normalized if

v({i}) = 0 for all i ∈ N,

v(N) = 1.

It is clear that all (0, 1)-normalized games are essential.
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Theorem 1.3 Forgó-Szép-Szidarovszky [4] Among games strategically equiv-

alent to an essential game Γ = [N, v], there is exactly one (0, 1)-normalized

game.

Proof: Taking Γ
′

≡ [N, v
′

] with v
′

(S) = cv(S) − c
∑

i∈S v({i}) and c−1 =

v(N)−
∑n

i=1 v({i}) shows that there is a (0,1)-normalized game strategically

equivalent to Γ ≡ [N, v]. To show there is only one such game, we need to

have a solution to the following system of equations

kv({i}) + ci = 0, for all i ∈ N (1.5)

kv(N) +
n
∑

i=1

ci = 1.

for unknowns k, c1, ..., cn.

Since Γ is essential, v(N) −
∑n

i=1 v({i}) > 0. By elementary algebra, we

can find the unique solution of (1.5):

k =
1

v(N)−
∑n

i=1 v({i})
> 0

ci = −kv({i}),

which is the game with the desired property.

Every player of a cooperative game has a right to receive his share of the

total payoff v(N) available. Let us assume that the distribution of utilities
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available to the set of players in N is such that each player i ∈ N receives

the amount xi. The assignment of utilities can be represented by the payoff

vector x = (x1, ..., xn). These assignments cannot be arbitrary; they must be

governed by certain restrictions.

Definition 1.10 A payoff vector x is called an imputation if it satisfies

the following conditions:

xi ≥ v({i}), for all i = 1, ..., n, (1.6)

n
∑

i=1

xi = v(N). (1.7).

If relation (1.6) is not true, then player i will certainly refuse to accept the

distribution since he or she is guaranteed the amount v({i}) without forming

any coalitions. Thus, relation (1.6) is known as the condition of individual

rationality .

Relation (1.7) is the condition of group rationality, also known as the

condition of Pareto optimality . This condition is necessary, for if

v(N) >
n
∑

i=1

xi,

then the players can form the grand coalition N to obtain the total payoff

v(N), in which case each player i could receive an additional amount besides
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xi. This distribution scheme would never be accepted by the players. On the

other hand,

v(N) <
n
∑

i=1

xi

is impossible, since v(N) by definition of the grand coalition is the greatest

amount possible and the total distribution cannot exceed the total income.

Theorem 1.4 Vorobév [20] An inessential game has only one imputation.

This imputation is

x = (v({1}), ..., v({n})).

Proof: Let x = (x1, ..., xn) be an imputation of an inessential game Γ =

[N, v]. Assume that

xi > v({i})

for some i. Then by (1.6)

n
∑

i=1

xi >
n
∑

i=1

v({i}).

Now the left-hand side of this inequality equals v(N) by (1.7). By the addi-

tivity of the characteristic function, the right-hand side of the inequality also

equals v(N). This implies that v(N) > v(N), which is impossible. Thus, for

every i we have

xi = v({i}).
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This proves the game has a unique imputation

x = (v({1}), ..., v({n}).

As will be seen in the following chapter, imputation domination plays a

key role in several solution methods.

Definition 1.11 Given v, we say imputation x dominates imputation y

through coalition S (notation x >S y) if

xi > yi, i ∈ S (1.8)

∑

i∈S

xi ≤ v(S). (1.9)

Condition (1.8) states that all the members of coalition S prefer imputation x

to imputation y, since each player i, a member of S, receives a larger payoff

via imputation x. Relation (1.9) says that coalition S was guaranteed to

obtain what imputation x give them.
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Chapter 2

Solution Methods

Introduction

This chapter supplies the reader with information about several solution

concepts used in cooperative game theory. By a solution, we mean how

payoffs will be disbursed among players. Some of the earliest defined concepts

are that of the core, the strong ε-core, the least core, and the von Neumann

and Morgenstern solution. More recent solution theories include the Shapley

value and the nucleolus. References in this chapter are taken from Driessen

[3], Forgó-Szép-Szidarovszk [4], Jianhua [7], Owen [12], Thomas [18], and

Vorobév [20].
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2.1 The Core

The solution concept known as the core of an n-person cooperative game

was first defined by Gillies [6]. In Chapter 1, we discussed both group and

individual rationality, thus defining an imputation. Placing a further collec-

tive rationality stipulation on all possible coalitions of players produces the

solution concept known as the core.

Definition 2.1 The set of all undominated imputations for a game Γ is

called the core . The core of a game Γ is denoted by C(Γ).

Theorem 2.1 Thomas [18] In order that imputation x belong to the core

of a cooperative game with the characteristic function v, it is necessary and

sufficient that the inequality

v(S) ≤
∑

i∈S

xi for all S ⊂ N (2.1)

be satisfied.

Proof: Necessity. It is sufficient to consider games in (0,1)-normalized form.

Let

v(S) >
∑

i∈S

xi > 0
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for the imputation x and for some coalition S. Observe that the coalition S

must consist of more than one player, otherwise that last inequality violates

the individual rationality of imputation x. For a similar reason, S should be

different from N . We now have

∑

i6∈S

xi = v(N)−
∑

i∈S

xi ≥ v(S)−
∑

i∈S

xi > 0.

Now choose ε such that

0 < ε <
1

|S|

(

v(S)−
∑

i∈S

xi

)

,

and construct the vector y = (y1, ...yn) by setting

yi =

{

xi + ε, if i ∈ S,
1

|N\S|
(
∑

i6∈S xi − |S|ε), if i 6∈ S.

Direct verification shows that y is an imputation and moreover y >s x.

Therefore, x does not belong to the core and the necessity of (2.1) is verified.

Sufficiency. Assuming that imputation x is dominated by imputation y, we

have for some coalition S

∑

i∈S

xi <
∑

i∈S

yi ≤ v(S),

which violates (2.1) and proves the sufficiency of the condition.

The previous theorem implies that for an imputation to belong to the

core of a given cooperative game, the components of the imputation must

13



satisfy a finite system of linear inequalities. The most likely case in which

a core exists is that of an inessential game. Finding a solution using the

concept of the core is not so easily done for essential games. In fact, this is

impossible for the constant-sum case as proved by the following theorem.

Theorem 2.2 Owen [12] Let Γ ≡ [N, v] be an essential constant-sum n-

person cooperative game. The core of the game is the null set.

Proof: Assume the core is not empty, and let x ∈ C(Γ). Then by definition,

for every i we have

v({i}) ≤ xi,

v(N \ {i}) ≤
∑

j∈N\{i}

xj.

Now sum the two inequalities. Since the game is constant sum, the sum of

the two left-hand terms is v(N). On the other hand by the definition of an

imputation, the two right-hand terms also add to v(N). Hence equality holds

in the first inequality for all i, i.e.,

v({i}) = xi, i = 1, ..., n. (2.2)

It follows from (2.2) that the game is inessential. Therefore, C(Γ) = ∅.
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In Examples [2.1] and [2.2] of Chapter 2 the graphs are created using

barycentric coordinates. In general, points X = (x1, x2, x3) satisfying

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, (1)

x1 + x2 + x3 = 1, (2)

may be represented graphically using barycentric coordinates. Let 123 be an

equilateral triangle with unit perpendicular bisectors and with its vertices

labeled 1, 2, and 3. For every point X in this closed triangle, let x1, x2, x3

be the distance from X to the sides of the triangle opposite the vertices 1, 2,

3, respectively. Then x1, x2, x3 satisfy the conditions (1) and (2); see Figure

(2.1). They are called the barycentric coordinates of X.

The barycentric coordinates of the vertices 1, 2, and 3 are (1,0,0), (0,1,0)

and (0,0,1), respectively. The equations of the three sides 23, 31, and 12 of

the triangle are

x1 = 0, x2 = 0, x3 = 0,

respectively.
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Figure 2.1: Graph of X = (x1, x2, x3)

Consider the values of the characteristic function v of a general 3-person

cooperative game in (0,1)-normalization

v(i) = 0, i = 1, 2, 3,

v(N) = 1, v(1, 2) = c3, v(1, 2) = c2, v(2, 3) = c1,

where c1, c2, c3, are constants in the closed interval [0,1]. Domination of

imputations is impossible with respect to either a one-person coalition or the

grand coalition N . Consider domination with respect to the coalition {1,2}:

y Â{1,2} x,

where x and y are imputations in X. By definition

v(1, 2) = c3 ≥ y1 + y2,

16



y1 > x1, y2 > x2.

Since y is an imputation, we know y1 + y2 + y3 = 1 using substitution, we

get

y3 ≥ 1− c3.

This inequality means that point y should lie on or to the right of the line

y3 = 1− c3. Similarly, y2 ≥ 1− c2 means that point y should lie on or to the

left of y2 = 1 − c2 and y1 ≥ 1 − c1 means that y should lie on or above the

line y1 = 1− c1.

Example [2.1] Jianhua[7] Suppose the values of the characteristic function

of a three-person cooperative game Γ are

v({i}) = 0, i = 1, 2, 3,

v({1, 2}) =
2

3
, v({1, 3}) =

7

12
, v({2, 3}) =

1

2
,

v({1, 2, 3}) = 1.

By definition of the core, the imputation x = (x1, x2, x3) ∈ C(Γ) if and

only if

v({1}) = 0 ≤ x1, v({2}) = 0 ≤ x2,

v({3}) = 0 ≤ x3, v({1, 2}) =
2

3
≤ x1 + x2,

17



Figure 2.2: Graphical representation of core in Ex [2.1]

v({1, 3}) =
7

12
≤ x1 + x3, v({2, 3}) =

1

2
≤ x2 + x3.

By means of the condition of group rationality (1.7), the last three of the

above inequalities reduce to

x3 ≤
1

3
, x2 ≤

5

12
, x1 ≤

1

2
.

Therefore, the core of Γ is the shaded area in figure (2.2). It is a triangle

including its sides.

2.2 The Strong ε-Core and The Least Core

Since the core is often empty, the strong ε-core was introduced.

18



Definition 2.2 An n-dimensional payoff vector which does not satisfy the

condition of individual rationality

xi ≥ v(i), for all i = 1, ..., n

but does satisfy the condition of group rationality

x(N) = v(N)

is called a pre-imputation.

Note that
∑

i∈N xi = x(N) and X∗ is the set of all pre-imputations.

Definition 2.3 Let Γ ≡ [N, v] be an n-person cooperative game. For every

pre-imputation x ∈ X∗ and every coalition S ⊆ N , define the excess of S on

x by

e(S, x) = v(S)− x(S).

The excess represents the difference between v(S) and the sum of the payoffs

that the distribution scheme x offers to the members of S, if the coalition is

formed. If e(S, x) is positive, then there is a gain in the total payoff to the

members of S with respect to x. Clearly, if e(S, x) is negative, there is a loss

to coalition S compared to the payoff offered to them in vector x.

19



Definition 2.4 Let Γ ≡ [N, v] be an n-person cooperative game, and let ε

be a real number. The set of pre-imputations

Cε(Γ) = {x : x ∈ X∗; e(S, x) ≤ ε, for all S ⊂ N, S 6= ∅,N}

is called the strong ε-core of Γ.

By placing the following stipulation on the strong ε-core of an n-person

cooperative game one can reduce the number of possible solutions and form

the least core.

Definition 2.5 Let Γ ≡ [N, v] be an n-person cooperative game. If ε0 is the

smallest ε for which Cε(Γ) 6= ∅, then Cε0(Γ) is called the least core of Γ and

is denoted byLC(Γ).

To clarify the relationship between the core, strong ε-cores and the least

core, the following example is given.

Example [2.2] Jianhua [7] Let us begin by simplifying our notations as

follows:

v(1) = v({1}), x(1) = x1 = x({1}),

e(1) = e({1}, x), v(13) = v({1, 3}),

etc.
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Figure 2.3: Graphical representation of Ex [2.2]

The characteristic function v of a three-person cooperative game Γ has

the following values:

v(i) = 0, i = 1, 2, 3,

v(12) =
1

3
, v(13) =

1

6
, v(23) =

5

6
,

v(123) = 1.

Figure (2.2) shows the core C(Γ) = C0(Γ) and the strong ε-cores for

ε = 1
6
. C(Γ) is a quadrangle and C 1

6

is a pentagon. The least core is C−1

12

(Γ).

It is the line segment parallel to the side 23 of the imputation triangle.
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2.3 The von Neumann and Morgenstern So-

lution

We now introduce another solution-finding method. The von Neumann and

Morgenstern solution was developed in 1944 and is also known as the stable

set solution. This solution set is partly based on a relationship between

imputations called domination.

Definition 2.6 Let X be the set of all imputations of an n-person coopera-

tive game Γ. If V ⊆ X is a set of imputations satisfying the conditions:

1. for any x ∈ V and y ∈ V ,x 6> y

2. if w 6∈ V , then there exists z ∈ V such that z > w,

then the set V is called the von Neumann-Morgenstern solution of Γ.

If property (1) holds then S is said to be ”internally stable”, and if property

(2) holds S is said to be ”externally stable.”

Now that we have a method for determining whether an imputation is

part of the solution set, how useful is this in finding a solution for a large

class of games?

Theorem 2.3 Forgó-Szép-Szidarovszk [4] Every superadditive, essential,

three person game has at least one von Nuemann and Morgenstern solution.
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Proof: Due to the length of the proof it will not be included in this text.

The proof can be found in an Introduction to the Theory of Games[4].

It has been proved that von Nuemann and Morgenstern solutions do exist

in four-person games, however there has been no success in either proving

or disproving that all five- to nine-person games have a von Neumann and

Morgenstern solution. A 10-person game without a stable set has been con-

structed. There has been no success in finding a stable set solution in the

case of constant-sum games.

Despite all this uncertainty there are a few special n-person games for

which stable sets always exist.

Definition 2.7 A superadditive (0, 1)-normalized game is said to be simple

if for each S ⊂ N , either v(0)=0 or v(S)=1.

Theorem 2.4 Forgó-Szép-Szidarovszky [4] Let Γ = [N, v] be a simple game

and let S be a minimal winning coalition (such that v(S) = 1, but v(T ) = 0

for all T ⊂ S, T 6= S). Let VS be the set of all x ∈ I (I is the set of

imputations) such that xi = 0 for all i 6∈ S. Then VS is a stable set.

Proof: If S = N , then VS = I is a trivial stable set. So we assume S 6= N .

To prove internal stability suppose that x, y ∈ VS. x >M y is only possible

for a coalition M ⊂ S, if xi > 0, i ∈ M and
∑

i∈M xi ≤ v(M). Since S is a
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minimal winning coalition, S = M . Since
∑

l∈S xl =
∑

x∈S yl = 1 if xj > yj

for some j, then there is a k 6= j such that xk < yk, k ∈ S, making domination

impossible. (Note that |S| > 1.)

For proving external stability take y 6∈ VS, yk > 0 and thus δ = 1 −

∑

i∈S yi > 0. Define z = (z1, ..., zn) as

zi =

{

yi +
δ

|N\S|
if i ∈ S,

0 if i 6∈ S.

It is elementary to see that z ∈ VS, and z >S y.

2.4 The Nucleolus

The solution known as the nucleolus has two very useful properties:

(a) every game has one and only one nucleolus, and

(b) if the core exists, the nucleolus is part of it.

The basic idea is to make the most unhappy coalition under the given impu-

tation happier than the most unhappy coalition under any other coalition.

The question is then how do we know which coalition is the most unhappy.

A coalition’s unhappiness is determined by looking at what the coalition

expected to get given the characteristic function versus what payoff was ac-

tually received, i.e., v(S)−x(S). The larger this number is the more unhappy

the coalition is with imputation x.
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Given an n-person game Γ and payoff x = (x1, ...xn), define the 2
n-vector

θ(x) as the vector whose components are the excesses of the 2n subsets S ⊂

N , arranged in decreasing order, i.e.,

θk(x) = e(Sk, x),

where S1, S2, ..., S2n are the subsets of N . These values should be arranged

by

e(Sk, x) ≥ e(Sk+1, x).

Example [2.3] Owen [12]In a three-person game Γ, where v(S) = 1

if S has two or three players and v(S) = 0 otherwise, the payoff vector

(0.2, 0.4, 0.3) gives us the excesses displayed in Table 2.1. Thus, θ(x) =

(0.5, 0.4, 0.3, 0.1, 0,−0.2,−0.3,−0, 4). Suppose we have a payoff vector y =

(0.3, 0.5, 0.2); then θ(y) = (0.5, 0.3, 0.2, 0, 0,−0.2,−0.3,−0.5).

Table 2.1 Excesses found for Ex [2.3]

S v(S)− x(S) = e(S, x)
∅ 0 - 0 = 0
{1} 0 - 0.2 = - 0.2
{2} 0 - 0.4 = - 0.4
{3} 0 - 0.3 = - 0.3
{1,2} 1 - 0.6 = 0.4
{1,3} 1 - 0.5 = 0.5
{2,3} 1 - 0.7 = 0.3
N 1 - 0.9=0.1
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Definition 2.8 The nucleolus of an n-person cooperative game Γ is the set

N(Γ) of imputations x ∈ X such that θ(x) of is minimal in the

lexicographical ordering.

Suppose we are given two vectors

α = (α1, ..., αq) and β = (β1, ..., βq).

Then α is lexicographically smaller than β if there exists some integer k,

1 ≤ k ≤ q, such that

α` = β` for l ≤ ` < k,

αk < βk.

The notation α <L β shall be used for this relation, and α ≤L β if either

α <L β or α = β. In the previous example, we find that θ(y) <L θ(x),

because θ1(x) = θ1(y) but θ2(y) < θ2(x).

Theorem 2.5 Jianhua [7] Let Γ ≡ [N, v] be an n-person cooperative game.

Then the nucleolus N(Γ) of the game is non-empty.

Proof: This proof shall be omitted, however it can be found in The Theory

of Games [7].
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Theorem 2.6 Forgó-Szép-Szidarovszk [4] Let N(Γ) be the nucleolus of an

n-person cooperative game. Then |N(Γ)| = 1, i.e., N(Γ) consists of one

element.

Proof: Due to the length of this proof it shall be included in the text. The

reader can find this proof in Introduction to the Theory of Games [4].

The nucleolus is called a one-point solution due to Theorem 2.6.

2.5 The Shapley Value

One of the most famous one-point solution concepts is the Shapley value.

This value represents the payoff a given player will expect to get before play

begins. Shapley [16] developed three axioms, which he felt φi(v), player i’s

expectation in a game with characteristic function v, should satisfy. Before

stating these axioms, the following definitions will be introduced.

Definition 2.9 A carrier for a game v is a coalition T such that, for any

S, v(S) = v((S ∩ T )).

Definition 2.10 Let Γ be an n-person game, and let π be any permutation

of the set N . Then by πv we mean the game u such that, for any S =

{i1, ..., iS},

u({π(i1), π(i2), ..., π(iS)}) = v(S).
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By the value of the game Γ, we mean an n-vector,φ[v] satisfying,

1. If S is any carrier of Γ, then

∑

S

φi[v] = v(S).

2. For any permutation π, and i ∈ N ,

φπ(i)[πv] = φi[v].

3. If u and v are any games,

φi[u+ v] = φi[u] + φi[v].

These are Shapley’s axioms. They are sufficient to determine a value φ

uniquely for all games.

Theorem 2.7 Owen [12] There is a unique function φ, defined on all games,

satisfying Axioms 1-3 namely:

φi(v) =
∑

S⊂N

(s− 1)!(n− s)!

n!
(v(S)− v(S − {i}) (2.8)

where s = |S| (the number of members of S).

Proof: This proof shall be ommited. It can be in several text including

Game Theory [12]. This function φi is called the Shapely value.
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Now we will use the Shapely value to determine the disbursement of

payoffs for the three-person cooperative game used as an example in the

least core section of this chapter.

Example [2.4] The game had the following values:

v(i) = 0 i = 1, 2, 3,

v(12) =
1

3
, v(13) =

1

6
, v(23) =

5

6
,

v(123) = 1.

To find φ1(v), we sum over the coalitions S = {1}, {12}, {13}, {123} and

substituting into (2.8) gives:

φ1(v) =
0!2!

3!
(0− 0) +

1!1!

3!

(

1

3
− 0

)

+
1!1!

3!

(

5

6
− 0

)

+
2!0!

3!

(

1−
1

6

)

= 0 +
1

18
+

1

36
+

1

18

=
5

36
.

For φ2(v) we sum over S = {2}, {12}, {23}and{123} so :

φ2(v) =
0!2!

3!
(0− 0) +

1!1!

3!

(

1

3
− 0

)

+
1!1!

3!

(

5

6
− 0

)

+
2!0!

3!

(

1−
1

6

)

= 0 +
1

18
+

5

36
+

5

18

=
17

37
.
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For φ3(v) we sum over S = {3}, {13}, {23}and{123} so :

φ3(v) =
0!2!

3!
(0− 0) +

1!1!

3!

(

1

6
− 0

)

+
1!1!

3!

(

5

6
− 0

)

+
2!0!

3!

(

1−
1

3

)

= 0 +
1

36
−

5

36
−

2

9

=
14

36
.

Thus, the Shapley value of this game is

φ(Γ) =
(

5

36
,
17

36
,
14

36

)

.
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Chapter 3

Coalition Formation

Introduction

Thus far we have addressed the question of how payoffs will be divided among

players of an n-person cooperative game. In this chapter, we ask which

particular coalitions are likely to form. There are three such theories that

will be discussed. Komorita’s [8] equal excess model is one of the few theories

designed to deal with both the coalition formation and payoff division. The

minimal winning coalition strategy, developed by Riker, [14] is based on the

idea that if a coalition is large enough to win then, it should avoid adding

new members, since payoffs must be shared amongst these new members.

Gamson’s [5] minimum resource theory assumes that players in the winning

coalition should demand payoffs corresponding to their voting strength in the

coalition. The main references used in Chapter 3 are Gamson [5], Komorita
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[8], and Riker [14].

3.1 Equal Excess Model

There are two basic principles that make up the equal excess model. An

individual’s “bargaining strength” is one such principle. Bargaining strength

in negotiations is based on the alternative coalitions the player can form.

The second underlying principle assumes that members of a potential

coalition are most likely to agree on a division based on sharing equally the

excess of what can be gained by the coalition, relative to the total outcomes

if each chose his best alternative.

We shall assume that individuals are motivated to maximize expected

payoffs, which is typically a goal in most theories of coalition formation.

Unlike other theories, however, we shall assume social psychological motives

also play a role in coalition formation. Furthermore, we shall assume that

the value of each coalition represents transferable utilities. The following

three-person game will be used to illustrate the model:

Example [3.1] Komorita [8] Here and elsewhere in this chapter we will

denote the players by letters rather than integers. Let

v(A) = v(B) = v(C) = 0; v(ABC) = 0;
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v(AB) = 6; v(AC) = 5; v(BC) = 4.

Players must determine their initial demands in negotiations. An indi-

vidual’s preferences and expectations during various stages are specified in

Assumptions (1) and (2). We will illustrate the assumptions afterward with

this example.

Assumption (1) Prenegotiations are driven by an individual’s desire to

form the coalition that maximizes initial expectation, given by:

E0
iS =

v(S)

s
(3.1)

where E0
iS denotes the initial expectation of individuals i in coalition S. Note

that s represents the number of players in coalition S.

It is impossible for any player to obtain a payoff unless a coalition with

exactly two members is formed. In the above example, initial expectations of

the three possible coalitions and their payoffs defined by (3.1) are 3 each for

A and B in the AB coalition; 2.5 each for A and C in the AC coalition; and

2 each for the B and C in the coalition BC. It is obvious that by Assumption

(1) A and B will initiate negotiations. The dividing of rewards is negotiated

based on a player’s expectations in other possible coalitions. It goes without

saying that the better the quality of a player’s alternatives, in comparison

to the alternatives of the other players, the greater his or her bargaining
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strength. Due to different expectations of players, one or more players may

concede to reach an agreement. These concessions will likely be made in

random stages of negotiations. Assumption (2) is designed to account for

these concessions.

Assumption (2) Since expectations of players change when a coalition

forms after a round of negotiations, the most likely coalition to form is the one

in which all players’ expectations are jointly maximized. The most probable

distribution of payoffs is represented by the equal excess norm, as follows:

Er
iS = maxS 6=TE

r−1
iT +

(v(S)−
∑

maxEr−1
jT )

s
(3.2)

where Er
iS represents the expectation of individual i in coalition S on round

r; max Er−1
iT denotes individual i’s maximum expectation in alternative coali-

tions on round r − 1; and the summation is over the members of coalition

S.

Definition 3.1 A sequential process in which each person makes an offer

or counteroffer, and each player accepts or rejects offers, which are received,

determines a round of the game.

Assumption (2) implies that if v(S) exceeds the sum of players’ expecta-

tions, the excess will be divided equally among the players of the coalition.

34



Returning to the example, if player A and B negotiate in the first round,

player A would have a maximum expectation of 2.5 via coalition AC, while

B’s maximum expectation would only be 2.0 from the BC coalition. Applying

(3.2) we have:

E1
A(AB) = 2.5 +

[6.0− (2.5 + 2.0)]

2
= 3.25

E1
B(AB) = 2.0 +

[6.0− (2.5 + 2.0)]

2
= 2.75

Given the model, we conclude that if the AB coalition forms on the first

interchange of offers, the payoff would be divided as 3.25 − 2.75 for players

A and B, respectively.

Based on the iterations of (3.2), expectation predictions of this model can

be made for later rounds. A few of these predictions are listed in Table 3.1.

Analyzing the predictions, we see that player A’s expectations increase as

the number of rounds increases regardless of the coalition in which A resides.

However, player C’s expectations decrease in both the AC and BC coalition.

As rounds progress, player B increases expectation if coalition BC is formed,

but decreases expectation when coalition AB is formed. Also note that at the

limit, the predicted shares of the players equals their maximum expectations

in alternative coalitions. If players reach an agreement at the limiting value,
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the above fact implies that no player will be tempted to leave the coalition.

Given a player’s desire to maximize expectation, we can deduce from

Table 1 that if coalitions form in an early round of play, coalition AB will

most likely form. However as the number of rounds increases, the likelihood

of coalition BC forming increases. In theory, all three coalitions are equally

likely to form if there are an indefinite number of rounds.

A certain degree of indeterminacy is found in this model since the number

of rounds necessary for an agreement to be reached is unknown. This number

depends partially on the competitiveness of the players. Assuming the players

are highly competitive, it may take many rounds of negotiations to reach an

agreement. In this case, the asymptotic expectations probably yield the best

estimate of payoffs. Now suppose the players are not very competitive. In

this case only a few rounds of play will be required for an agreement to be

made and expectations found for earlier rounds are likely to yield the best

estimate of payoffs.

Table 3.1 Predictions for Ex [3.1]

Coalition Expectations over Rounds
˜ 0 1 2 5 Asymptote

AB 3.0-3.0 3.25-2.75 3.37-2.62 3.49-2.51 3.50-2.50
AC 2.5-2.5 3.00-2.00 3.25-1.75 3.48-1.52 3.50-1.50
BC 2.0-2.0 2.25-1.75 2.38-1.62 2.48-1.52 2.50-1.50
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3.2 Minimal Winning Coalition Strategy

The focus of this theory is how a players “influence of position” affects payoff

distribution.

Definition 3.2 A decision is a selection among alternatives.

A decision made by the players will lead to a particular payoff. Often a

player may be capable of influencing decisions more than deemed possible

given his “resources”. This is due to his ability to influence other players

with his position.

Definition 3.3 A resource is a weight associated with each player in a way

that some critical quantity of these weights is necessary for a decision to be

made.

Definition 3.4 Any group or individual who carries out the same coalition

strategy until a decision is made is called a social unit.

A coalition is a social unit from its conception until a decision is made.

Definition 3.5 Any coalition capable of controlling a decision through suf-

ficient resources is a winning coalition.
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Definition 3.6 The decision point is the minimum proportion of resources

necessary to control the decision.

Definition 3.7 Losing coalitions which have the power to prevent the other

coalitions from winning are called blocking coalitions.

According to Gamson[5], a full-fledged coalition situation is one in which

the following conditions are present:

1. There is a decision to be made and there are more than two social units

attempting to maximize their shares of the payoff.

2. No single alternative will maximize the payoff of all participants.

3. No participant has dictatorial powers.

4. No participant has veto power.

Conditions one and two deem that every player has some bearing on the

game’s outcome. Condition three says no one player initially has the re-

sources to control the decision by himself or herself. In condition four we

find that no member is included in every winning coalition. This game may

be classified as essential if conditions one, two, and three hold. Note that

essential is defined differently here than from Chapter 1. These conditions
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also prevent the occurrence of the trivial solution. Blocking coalitions are

prevented by condition four.

The model requires information about several matters the to predict coali-

tion formation. These are identified and discussed next.

1. “The initial distribution of resources.” We must know which resources

are of value for a particular decision. Then for some starting point an

inventory must be taken of each player’s resources.

2. ”The payoff for each coalition.” The characteristic function defined

in chapter one is determined by computing payoffs to any subset of

players and an assumption is made that the remaining players will form

a single coalition. This assumption reduces every game to a two-player

game. The minimal winning coalition strategy does not make such

an assumption. We must know every alternative coalition, including

partitions into more than two classes of players. This implies that

a particular subset may receive one payoff when the complementary

set is partitioned in one manner and an entirely different payoff if the

complementary set is partitioned in a different way.

If would seem that the function which is required to supply all such
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partitions would be more complicated than the characteristic function.

Since the Gamson theory yields only one winning coalition and the pay-

off to all other players, which are not members of the winning coalition,

is zero, we need only know the possible winning coalitions.

The probability of achieving future rewards is reflected in the payoff

since it includes anticipation of future events.

Definition 3.8 The expected value or payoff for a coalition is found

by multiplying the total payoff of that coalition by the probability of

the coalition’s achieving that payoff.

3. “Non-utilitarian strategy preferences.” Each player must make a list,

which ranks every other player in the order he or she would be inclined

to join them in a coalition. Ties are allowed and ranks should be

assigned with no regard to the other player’s control or resources.

4. “The effective decision point.” Often the rules of the game assign a

specific amount of resources necessary to control the decision. This

amount is known as the formal decision point. This amount, however,

may be more than sufficient to gain control of the decision. If control

of the decision is possible with fewer resources than specified in the
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rules of the game, then that smaller amount of resources is an effective

decision point.

Definition 3.9 A winning coalition that is no longer winning if one player

leaves the coalition is called a minimal winning coalition.

We use the term minimal here to show that this is the smallest number of

players whose total resources are large enough to control the decision.

Definition 3.10 The minimal winning coalition with total resources closest

to the decision point is called the cheapest winning coalition .

Definition 3.11 For an empirical value K in a given coalition situation, a

set of payoffs, of which the lowest is no more than K percent less than the

highest, is defined as a payoff class.

The theory applies to full-fledged coalition situations in which we assume

the following to be true:

Assumption (1) The same information about initial distribution of re-

sources and the payoffs to any coalition are known by all the players. This

assumption does not imply that the players have perfect information.

Assumption (2) Payoffs in the same payoff class are indistinguishable by

players.
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Assumption (3) A rank ordering of non-utilitarian coalition preferences

for joining with other players is done by every player. By non-utilitarian we

mean an ordering not based resources.

The general hypothesis of the theory states that any player will expect

others to demand from a coalition, a share of the payoff proportional to the

amount of resources that they contribute to a coalition.

It is possible for a player A to know a personal payoff value from any

possible coalition formation. To calculate a personal payoff player A multi-

plies his proportion of the resources in the coalition by the total payoff of the

coalition. These values can then be assigned to payoff classes which A will

prefer the highest. The coalition whose members have the highest mean rank

on player A’s scale of non-utilitarian preferences will be A’s preference within

a payoff class. When the total payoff to the winning coalition is constant,

player A will seek to maximize his payoff by maximizing his shares, i.e., he

will favor the cheapest winning coalition.

Example [3.2] Gamson [5] Suppose player A has 30 percent of the re-

sources, B has 19 percent, C has 30 percent, and D has 21 percent where the

decision point is 51 percent. Player A should consider the minimal winning

coalitions of AC and AD. Since both player A and player C own 30 percent of
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the resources, they would half the payoff. However if player A joined player

D, he would expect about 3
5
of the payoff. If the payoff for each coalition

is different, then A’s payoff could possibly be higher in coalition AC than

in coalition AD. In accordance with the minimal winning coalition theory, if

the payoffs are in the same payoff class, player A would choose to join the

one in which he ranks higher on non-utilitarian strategy preference.

A coalition will form if and only if there are reciprocal strategy choices

between two players. For example, in a three person game, if player A desires

to form a coalition with player B, and player B prefers either coalition AB

or BC, and player C wants to form a coalition with player A, only A and B

have reciprocal strategy choices. Therefore, the theory predicts coalition AB

will form.

3.3 The Minimal Resource Theory

Before a discussion of Riker’s strategy for coalition building can begin, a

brief dynamic model should be introduced. Players are often referred to as

the decision-making body, N . This model operates under the rules of an

n-person zero-sum game with “side payments” allowed.

Definition 3.12 A player’s weight refers to his influence, power, or signif-
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icance in relation to other players.

A coalition with weight m, where m > 1
2

∑n
i=1 wi where wi is the weight of a

member, i, can act for or impose its will on all players.

Coalition building begins when a leader allies himself with other players

on a particular issue for decision.

Definition 3.13 A member who manages the growth of a coalition is known

as the leader.

Definition 3.14 To form a coalition, a leader must lure followers, which

are members of the body who join the association the leader forms.

We will now make a distinction between a coalition and a proto-coalition.

Definition 3.15 The word coalition will describe the end product of the

decision-making process.

Definition 3.16 The association (leading to a coalition) a follower joins is

a proto-coalition.

More precisely a proto-coalition is any subset of N , when N is partitioned

into three or more disjoint subsets such that no subset has the weight m.
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Definition 3.17 The acts of joining or resigning from a proto-coalition is

defined as a move .

Definition 3.18 If two or more members or proto-coalitions agree upon

simultaneous actions, we refer to them as simultaneous moves .

When moves occur, the proto-coalition will change size. After a move the

internal structure of the body changes and a player’s strategy will also change.

Definition 3.19 A stage is defined as the interrelationship of proto-coalitions

just before (or after) a move is made.

In stage one, there are n single-member proto-coalitions. The second

stage will have one two-player proto-coalition and (n−2) single player proto-

coalitions. The final stage, r, is reached when there exists a winning coalition

or two blocking coalitions. Players are not aware when they are in the (r−1)th

stage.

Definition 3.20 A side payment is the gift of anything of value in order

to lure followers into a proto-coalition.

Leaders make use of side-payments to attract followers into proto-coalitions.

The leader may possess the side payment before his offer, or he may be
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making the offer in hopes of paying the follower from the payoff received by

the winning coalition.

Since side payments are made with items of value, they obviously affect

the coalition-building process. They will limit the number of players a leader

asks to become followers. This fact in turn will cause opposition, since some

players being left out will form another proto-coalition.

A player’s quest to belong to the winning coalition in the rth stage of

the game will guide his moves in stage (r − 1), as well as in previous stages.

Leaders of proto-coalitions must know how alternative outcomes in the rth

stage are affected by moves made in all previous stages to insure they will

be members of the winning coalition.

Definition 3.21 The last member to join a minimal winning coalition is

said to occupy the pivotal position.

In order to determine his options at a given stage (other than the initial),

a leader needs to know his chance of winning given the immediate state

of arrangements into proto-coalitions. At this point he is not concerned

with his chance of pivoting. There are three general considerations that

may affect a leader’s chance of winning. One such consideration is how

much dependence upon unique events occurring during the course of play
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a winning coalition may have. Traditions may also play a major role in a

leader’s chance of forming a winning coalition. It may depend, in part, on

general considerations inherent in the game model, such as the size principle.

The size principle limits in some way the range of possible outcomes of

a game and may place drastic restrictions on coalitions that are likely to

form. Any proto-coalition in the jth stage that can form a minimal winning

coalition, while others cannot, has a strategic advantage. To assure situations

arise in which such advantages exist the leader of a proto-coalition needs

specifications of the situations. Riker [14]formalizes these situations as:

1. uniquely preferable winning coalitions

2. uniquely favorable proto-coalitions

3. uniquely essential proto-coalitions

4. unique coalitions

5. strategically weak proto-coalitions.

Discussion of the uniquely preferable winning coalition will be limited (1)

to the (r − 1)th stage and (2) to those situations in which there are no more

than five proto-coalitions.
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Example [3.3] Riker [14] Suppose there are five proto-coalitions, A,B,C,D, andE,

which are disjoint subsets of N . Note that A ∪ B ∪ C ∪D ∪ E = N . Then

their weights must satisfy the inequality m > w(A), w(B), w(C), w(D), w(E)

since A,B,C,D, and E are proto-coalitions. Without loss of generality we

may assume w(A) ≥ w(B) ≥ w(C) ≥ w(D) ≥ w(E). If only three subsets

are nonempty, then we label them A, B, and C and D and E do not occur.

Similarly if the set is partitioned into four subsets, then only subset E does

not occur. Notation for partitions of N into a different number of subsets is

needed. Thus, An will be used for the weightiest proto-coalition (or one of the

equally weightiest) when the players are partitioned into n proto-coalitions.

This would imply that A1 is equivalent to N . If N is partitioned into two

subsets then A2 and B2 are the names of the winning and losing coalition (or

of two blocking coalitions). Assume that A2 is the winning coalition. This

does not tell us specifically which coalition is formed since it may refer to any

coalition for which m ≤ w(A2) ≤ w(N). To distinguish amongst the win-

ning coalitions, arrange them in order of increasing weights from w(A2) = m

to w(A2) = w(N). The minimal winning coalition, for which w(A2) = m,

should be given “rank” 1 and written as A2
1. For w(A2) = m + a, where a

is the weight of player i such that 0 < w(i) ≤ w(j), for all i, j ∈ N assign
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A2 a rank of 2 and write A2
2. If A2 < m, i.e. a blocking coalition, assign

it rank zero written as A2
0. B2 will have ranks which are the negative of

A2. The losing coalitions are written as B2
−1, B

2
−2, ...B

2
−s and for the blocking

coalitions write B2
0 , Assume that i < j < ... < s for i, j, ..., s numbers of

ranks.

Two conditions must be placed on the proto-coalitions to insure they are

viewed as indivisible units. First, when a follower joins a proto-coalition, he

is not allowed to leave. Secondly, a leader must distribute the side payment

amount he offered the follower to join the proto-coalition. A lower amount

may be given only if the follower agrees.

The symbol αXk will be used to define the payoff to a particular proto-

coalition,Xk, and an imputation will be a set of numbers ({αAk , αBk , ..., αEk})

such that
∑Ek

Xk=Ak αXk = 0. Also note that αi designates the payoff to player,

i. In a zero-sum game that imputation is defined as the set of numbers

({α1, α2, ..., αn}) such that
∑n

i−1 αi = 0.

It is time to supply the reader with formal definitions for Gamson’s initial

expectation and the five situations in which an advantage exists.

Definition 3.22 An initial expectation, E(Xk), for a proto-coalition, Xk,

is an imputation in the rth stage anticipated by Xk in the (r − 1)th stage.
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Note that this is not the same definition found for initial expectation in

Komorita’s equal excess theory.

Definition 3.23 Given a partition in the (r−1)th stage such that A2
i , A

2
j , ...

may exist in the rth stage, then a uniquely preferable winning coalition

P 2
i , is a coalition such that

1. v(A2
i ) > v(A2

j) and

2. A2
i may have an imputation (γXk

, γY k , ...) such that, for Xk and Yk ∈

A2
i , γXk

≥ αXk and γYk
≥ βY k , where E(Xk) = (αXk , αY k , ...) and

E(Y k) = (βXk , βY k , ...).

Definition 3.24 A uniquely favored proto-coalition , is a proto-coalition,

Xk, such that

1. for A2
i , where Xk ∈ A2

i , and for A2
j , where Xk 6∈ A2

j , then v(A2
i ) >

v(A2
j); and

2. for Xk, Y k, ... satisfying condition 1, some A2
k is possible such that

Xk ∈ A2
k and Y k 6∈ A2

k.

Definition 3.25 A proto-coalition, which is contained in all winning coali-

tions when no other proto-coalition holds that same property, is called an

uniquely essential proto-coalition .
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Definition 3.26 A unique coalition is a coalition that is the only possible

winning coalition.

Definition 3.27 A strategically weak proto-coalition , Xk, is one that

cannot become a part of the most valuable winning coalition due to the given

partition in the (r − 1)th stage, i.e., Xk 6∈ A2
i .

Given the above definitions, it is possible to examine behavior in the

(r − 1)th stage of the model. Our discussion will be limited to one case. If

the reader wishes to explore all cases, they can be found in Appendix II of

Riker’s Theory of Political Coalitions[14].

Example [3.4] Riker [14] Partition the set N into three proto-coalitions,

A3, B3, C3 in the (r − 1)th stage. Assume that w(A3) > w(B3) > w(C3). If

m = n+1
2

or if m = n
2
+1, then the possible winning coalitions in the rth stage

are (B3 ∪ C3), (A3 ∪ C3), and (A3 ∪B3). The size principle implies that the

values of these coalitions are related thus:

If

v((B3 ∪ C3) = a = −v(A3)

v((A3 ∪ C3) = b = −v(B3)

v((A3 ∪B3) = c = −v(C3),

51



then a > b > c. We must determine whether a uniquely preferable winning

coalition exists. In other words,

1. Is there a coalition which has a greater value than any other?

2. Are the initial expectations of every member of that coalition satisfied?

Since a > b > c, the answer to the first question is yes, clearly v(B3∪C3) has

a larger value than any other possible coalition. This leaves us with question

two. To answer this question we need to calculate the initial expectation of

B3. If B3 joins A3 in a coalition and A3 receives a payoff of zero from the

value of v((A3 ∪B3), B3 would obtain the whole payoff, c. Suppose that B3

and C3 form a coalition; the imputation would then be: αA3 = −a, αQ3 =

c, αR3 = (a− c), which is written precisely as (−a, c, a− c). Similarly C3 has

an initial expectation of b. The coalition containing B3 and C3 can expect

(−a, a−b, b). Knowledge of the relative sizes of a, b, c are needed to determine

if a uniquely preferable winning coalition exists. The size of a, b, c would be

determined by the shape of the curve of the characteristic function. Suppose

that c < a − b; then b < a − c and, C3 would receive the expected initial

payoff of b and the remaining amount, a− b would be more than enough to

pay B3 its initial expected value. Therefore, if the players in the model are
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rational, then the uniquely preferable winning coalition (B3 ∪C3) will form.

Observations made during analysis of the relative position of proto-coalitions

when N is partitioned into three, four, and five subsets produce some general

strategies of coalition-building.

If coalitions are not equally weighted, it is possible that near the end

of the process of coalition-building one or more proto-coalitions will have

some unique advantage. The terms “uniquely favored,” “uniquely prefer-

able,” “uniquely essential,” and “unique” have been used to describe these

situations. A general theory of strategy for end-play is as follows:

1. Any proto-coalition, which finds itself in an advantageous situation,

should exploit the advantage.

2. If a proto-coalition fails to have some sort of advantage, then it should

seek to eliminate or diminish the advantage of other proto-coalitions.

It seems that smaller proto-coalitions more often have uniquely advantageous

positions than do the larger, weighter ones. Since one coalition or proto-

coalition frequently has an advantage, this implies the model has a bias

toward a decision and in turn has no kind of equilibrium.
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Chapter 4

Applications

Introduction

Chapter 4 provides the reader with three applications of game theory. This

chapter includes definitions and examples dealing with airport games, supplier-

firm-buyer games, and evolutionary games. Information found in this chapter

is based primarily on the research of Colman [1a], Driessen [3], Littlechild

and Owen [9] and Stuart [17].

4.1 The Airport Game

One of the most popular applications of game theory is that which determines

the landing fees at airports. It is our desire to develop a “fair” allocation of

these fees. We will show that the simple rules proposed for calculating airport

landing charges are precisely those of the Shapley value for an appropriately
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defined game.

At any airport there occur two types of expenses:

1. variable operating cost due to landing planes of different types and

2. a fixed capital cost for things such as terminal and runway construction.

The problem is determining the fees different types of aircraft will be charged

for landing. It is easy to determine the amount of money each aircraft should

be responsible for paying due to operating cost. Since these costs are directly

connected with the number of times a plane uses the airport, charges are

assigned on a per-landing basis. Fixed capital costs, however, are not so easily

distributed among aircraft. Since larger planes require enlarged runways, it

would not be appropriate to force smaller planes to share in the expense of

maintaining this portion of the runway.

For this reason the following rules, proposed by Baker[1], will be used to

allocate the fixed capital costs to aircraft.

1. Divide the cost of catering for the smallest type of aircraft equally

among the number of landings of all aircraft.

2. Divide the incremental cost of catering for the second smallest type of

aircraft equally among the number of landings of all but the smallest
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type of aircraft.

3. Continue this process until the incremental cost of the largest type of

aircraft is divided equally among the number of landings made by the

largest aircraft type.

The landing charges found as a result of the previous rules is precisely the

Shapley value where the characteristic function is a “cost” function and the

cost of any subset is equal to the cost of the “largest” player in the subset.

Divide the planes intom types (m ≥ 1). Let Nj denote the set of landings

by planes of type j (j = 1, ...m) and let there be nj > 0 landings by aircraft

of type j. Let N = ∪mj=1Nj denote the set of all landings at the airport. Let

Cj be the “cost” associated with providing an adequate runway for planes of

type j. Without loss of generality, assume that

0 = C0 < C1 < C2 < ... < Cm.

Let S ⊂ N , S 6= ∅. Then the cost c(S) of a runway adequate to receive all

landings in S is given by

c(S) = max({Cj| 1 ≤ j ≤ m,S ∩Nj 6= ∅}) (4.1)

and c(∅) = 0.
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Theorem 4.1 Driessen [3] Let (N, c) be the airport cost game of (4.1) and

put mj =
∑m

k=j |Nk| for all 1 ≤ j ≤ m. Then

Φi(c) =
j
∑

k=1

m−1
k (Ck − Ck−1)

for i ∈ Nj. (Note that Φi(c) is simply the Shapley value defined in chapter

2.)

Proof: The essential idea in the proof is to write the game of (4.1) as

the sum of m related cost games for which the Shapley values can easily be

determined with the aid of the standard properties for values. Formally, for

any type j = 1, 2, ...,m, we define the cost game (N, cj) by

cj(S)=

{

Cj − Cj−1 if S ∩Mj 6= ∅
0 if S ∩Mj = ∅

where Mj = ∪
m
k=jNk represents the set of all landings by planes of type j and

larger planes.

1. We assert that c(S) =
∑m

k=1 ck(S) for all S ⊂ N (4.2). Let S ⊂ N ,

S 6= ∅. By the definition of the airport game c, there exists a unique

1 ≤ j ≤ m such that c(S) = Cj. Then we obtain S ∩ Nj 6= ∅ and

S ∩Nk = ∅ for all j < k ≤ m. Particularly, S ∩Mk = ∅ if and only if

j < k ≤ m. Now it follows that

m
∑

k=1

ck(S) =
j
∑

k=1

(Ck − Ck−1) = Cj − C0 = Cj = c(S).
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So, (4.2) holds.

2. Let 1 ≤ j ≤ m. We assert that any i ∈ N −Mj is a dummy in the

game cj. Let i ∈ N −Mj and S ⊂ N − {i}. Then we have cj({i}) = 0

and further, S ∩Mj 6= ∅ if and only if (S ∪ {i}) ∩Mj 6= ∅. It follows

that cj(S ∪ {i}) − cj(S) = 0 = cj({i}), and thus any i ∈ N −Mj is

a dummy in the game cj. Now we conclude from the dummy player

property of the Shapley value that

Φi(cj) = cj({i}) = 0 for all i ∈ N−Mj.

3. Let 1 ≤ j ≤ m. We assert that the players in Mj are symmetric in the

game cj. Let i1 ∈ Mj, i2 ∈ Mj and let θ : N → N be a permutation

such that θ(i1) = i2, θ(i2) = i1 and θ(i) = i, for all i ∈ N −{i1, i2}. For

any coalition S 6= ∅, we have the equivalence S ∩Mj 6= ∅ if and only if

θS ∪Mj 6= ∅ and therefore, (θcj)(θS) = cj(S) = cj(θS). It follows that

θcj = cj. Now we conclude from the symmetry property of the Shapley

value that

Φi1(cj) = Φθ(i2)(θcj) = θi2(cj) for all i1, i2 ∈ Mj.

4. Let 1 ≤ j ≤ m. Together with parts (2),(3), the efficiency property of

the Shapley value yields
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Φi(c)=

{

0 if i ∈ N−Mj

m−1
j (Cj − Cj−1) if i ∈ nj

From this, the formula (4.2) and the additivity property of the Shapley

value, it follows that for all i ∈ nj

Φi(c) = Φi(
m
∑

k=1

ck) =
m
∑

k=1

Φi(ck) =
j
∑

k=1

m−1
k (Ck − Ck−1).

Example [4.1] Littlechild-Owen [9] For a numerical example we shall look

at the total landings at the Birmingham (U.K.) airport during 1968 and 1969.

In this example there are a total of 13,572 landings of 11 different types of

aircraft. As mentioned earlier, there are two types of expenses. A complete

list of notation to be used in Tables [4.1] is the following:

nj = the number of landings by type− j planes

cj = annual capital cost (runway construction)

`j = variable cost per landing

aj = actual landing fee charged

Φj = capital charge for a type− j plane by the Shapley value

(j = 1, ..., 11)
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Table 4.1 Numeric solutions for Ex [4.1]

Aircraft type j cj nj `j Φj Φj + aj aj
Fokker Friendship 27 1 65889 42 5.23 4.86 10.09 5.80
Viscount 800 2 76725 9555 6.09 5.66 11.75 11.40
Hawker Siddeley Trident 3 95200 288 7.55 10.30 17.85 21.70
Britannia 100 4 97200 303 7.71 10.85 18.56 29.80
Caravelle VLR 5 97436 151 7.73 10.92 18.65 20.30
BAC 11 (500) 6 98142 1315 7.79 11.13 18.92 16.70
Vanguard 953 7 102496 505 8.13 13.40 21.53 26.40
Coment 4B 8 104849 1128 8.32 15.07 23.39 29.40
Britannia 300 9 113322 151 8.99 44.80 53.79 34.70
Convair Corronado 10 115440 112 9.16 60.61 69.77 48.30
Boeing 707 11 117676 22 9.34 162.24 171.58 66.70

4.2 Supplier-Firm-Buyer Games

In this section we shall demonstrate how cooperative game theory can be

applied to business strategy. In particular we will examine the Supplier-

Firm-Buyer game. This example of unrestricted bargaining can be modeled

by either the core of the game or the added-value principle.

Definition 4.1 The added value of a coalition S ⊂ N is defined to be the

coalition’s marginal contribution: v(N)− v(N \ S).

Definition 4.2 An outcome satisfies the added-value principle if no player

captures more than his or her added value, that is, if

∀i ∈ N, xi ≤ v(N)− v(N \ {i}), and x(N) = v(N).
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Note that if an outcome is in the core of a game it must also satisfy the added

value principle. The supplier-firm-buyer game is a “three-sided assignment

game” with the following restrictions:

aijk = wjk − cij for all i ∈ N1, j ∈ N2, k ∈ N3. (4.3)

Sets N1,N2,and N3 represent sets of suppliers, firms, and buyers, respectively.

The term wjk denotes buyer k’s willingness to pay for transacting with firm

j, while cij represents supplier i’s opportunity cost for transacting with firm

j.

Definition 4.3 A three-sided assignment game consists of three disjoint

sets, N1,N2, and N3, and a three dimensional assignment matrix, A. The

dimensions of the matrix are n1 × n2 × n3 where ni = |Ni|. The disjoint sets

represent the sets of players. A matching is a 3-tuple ijk consisting of a

player i from set N1, a player j from set N2, and a player k from the set N3.

Element aijk of the matrix A is interpreted as the value that can be created

by the matching ijk. We say the matchings iajaka and ibjbkb are distinct

if ia 6= ib, ja 6= jb, ka 6= kb. An assignment of size r is a set of r distinct

matchings.
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There are two principles that govern the construction of a cooperative game

from an m-sided assignment game. First, distinct matchings determine value

creation. Second, this value is taken to be as large as feasibly possible. We

derive equations (4.4), (4.5) and (4.6) from these principles.

Define the player set, N , to be N1 ∪N2 ∪N3. The characteristic function

v is defined by v(∅) = 0, and for all T ⊆ N ,

v(T ) = 0 if T ∩ Nm = ∅,m ∈ {1, 2, 3}, (4.4)

v({i, j, k}) = aijk ∀i ∈ N1, j ∈ N2, k ∈ N3, and (4.5)

v(T ) = maxr,ASr
(ai1j1k1 + ...+ airjrkr), (4.6)

where r ≤ min{|T ∪N1|, |T ∪N2|, |T ∪N3|} and ASr is the set of assignments

of size r constructed from set T .

Example [4.2] Stuart [17] The game described below has two suppliers,

two firms, and only one buyer. Our goal is to determine which firm and

supplier will actually sell to the buyer.

N1 = {s1, s2}, N2 = {f1, f2}, N3 = {b1};

w11 = 100, w21 = 150; c11 = c12 = c21 = c12 = 10.

We can use equations (4.3)-(4.6) to construct the characteristic function

for this example. Since this example has only one buyer, there is only one
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possible matching. Now equation (4.6) dictates that v(N) is the largest

possible matching, namely the buyer with the second firm and either of the

two suppliers. This implies v(N) = 140.

The guaranteed minimum for a given player, `, can be calculated by

max{0, v(N) −
∑

m∈N\{`}(v(N) − v(N \ {m})}. Since, by the added value

principle, no player can receive more than his added value, the above calcu-

lation holds. Note that if every player receives his added value and if there

is still some remaining value, then player ` gains that value. Table [4.2]

provides the added value analysis of the game.

The opportunity cost for each supplier to provide resources is $10 regard-

less of which firm is used. The added value can be interpreted in terms of

competition. Since there is only one supplier needed and all suppliers are

identical, the added value for each supplier is $0. The buyer is willing to

pay $100 for the first firm’s product and willing to pay $150 for the second

firm’s product. Thus, the first firm has an added value of zero, while the

second firm has an added value of $50. Competition between the suppliers

and partial competition between the firms guarantee $90 to the buyer, and

the remaining $50 is divided between the second firm and the buyer.
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Table 4.2 Solutions for Ex [4.2]

Player ` v(N) v(N \ {`}) Added Value Guaranteed Minimum
Buyer 140 0 140 90
Firm 1 140 140 0 0
Firm 2 140 90 50 0

Supplier i 140 140 0 0

4.3 Evolutionary Games

This section provides information about one of the most unusual applications

of game theory. It is in the area of biological evolution. Characteristics

that affect the reproducing capacity of the individuals in a population are

not easily analyzed. The evolution of such characteristics is dependent on

interaction among individuals.

Mating behavior of animals, more specifically the male individual’s need

to establish dominance, will be the focus of this section. The males challenge

each other, but often the battle is one of endurance rather than a battle to

death. It would be unusual, from a biological view point, that animals would

seek to do what is best for the group, i.e. not killing one of its own.

These conflicts are modeled as games by Maynard-Smith [11]. In this

model it is thought each individual chooses from among a set of strategies.

Suppose the first individual chooses strategy, x, and his opponent uses strat-

egy, y; the resulting payoff to the first individual is E(x, y). To biologists
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payoffs are related to the fitness of the individual. Genetics prompt an in-

dividual to choose strategy x and this individual will pass this gene to his

offspring. Since this individual survives he is able to pass this gene. Indi-

viduals whose strategies have a high payoff will produce more offspring than

those with less successful gene types and thus will eventually dominate the

population.

Definition 4.4 Let X be the set of strategies in an evolutionary game. A

strategy x∗ ∈ X is called an evolutionary stable strategy (ESS) if for

every y ∈ X, y 6= x∗ ,and for x̄ = (1− ε)x∗ + εy, then e(x∗, x̄) > e(y, x̄), for

sufficiently small ε > 0.

Note that y may be thought of as a mutation which affects ε of the population.

Definition 4.5 A strategy x∗ ∈ X is an ESS if for every y ∈ X, y 6= x∗,

e(x∗, x∗) ≥ e(y, x∗),

and, moreover, if e(x∗, x∗) = e(y, x∗), then

e(x∗, y) > e(y, y). (4.7)

Before examining a certain multi-person game model, we must first look

at the two-person model. Suppose each individual has to choose between two
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pure fighting strategies. The Hawk (H) strategy involves intensifying the fight

until the opponent is injured and must withdraw. Basically this means the

Hawk always attacks. The Dove (D) strategy involves conventional fighting.

The Dove will retreat before injury occurs if the opponent escalates fighting.

In other words, the Dove always runs.

The payoff, involved when a Hawk is in battle with a Dove is written

as E(H,D). The payoff is a measure of the increase or decrease in the

individual’s expected lifetime reproductive success in comparison to some

baseline measure. This payoff measure is often referred to as the change

in Darwinian fitness of the individual and is dependent upon three factors.

According to Maynard-Smith and Price these factors are as follows:

1. The advantage of winning: the resources over which the contest

takes place is assumed to be worth V (for victory) units of Darwinian

fitness to the winner.

2. The disadvantage of being injured: injury alters an animal’s fit-

ness by −W (for wounds) units.

3. The time and energy wasted in a long contest: the alteration

of the fitness of each contestant by −T (for time) units in conventional
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fights.

Using the components described above, we can determine payoffs for every

possible combination of strategies. Matrix 4.1 gives a summary of the payoffs

for the Hawk-Dove game.

Hawk Dove

Hawk V−W
2

V

Dove 0 V
2
− T

Matrix 4.1

Since there are equal chances of success and injury when the two similar

strategies compete, we must divide the payoff by two. Now we shall analyze

examples of two different cases.

Example [4.3] Thomas [18] In this case the advantage of winning outweighs

any disadvantage due to injury; i.e., V ≥ D. Put V = 4,W = 2. Then we

get the following matrix:

Hawk Dove

Hawk 1 4
Dove 0 2

.

Matrix 4.2

67



Look at the pure Hawk strategy, x = (1, 0), and take any other strategy

y = (y, 1− y), y 6= 1:

e(x, x) = 1 ≥ y = e(y, x),

and so Hawk is an ESS.

Example [4.4] Thomas [18] In this scenario injury outweighs the advantage

of winning; i.e., V ≤ W . Put V = 2,W = 4. Thus we get the following

matrix:
Hawk Dove

Hawk −1 2
Dove 0 1

.

Matrix 4.3

In this game strategy x = ( 1
2
, 1

2
) is an ESS, as shown below. Let y = (y, 1−

y) y 6= 1
2
; then

e(x, x) =
1

2
= e(y, x).

and by condition (4.7)

e(y, y)− = 1− 2y2, e(x, y) =
3

2
− 3y.

Now (3
2
− 2y)− (1− 2y2) = 2(y − 1

2
)2 > 0, so since y 6= 1

2
, we have

e(x, y)− e(y, y) > 0,
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which proves x is an ESS.

Let us now turn our attention to a multi-person game model. Colman [2]

suggests constructing a compound multi-person game in which the players

compete in a series of two-person contests, which follow the payoff structure

found in Matrix 4.1.

The expected payoff will be a linear function of the proportion of other

members of the population playing Hawk or Dove. This is due to the fact that

animals have to adopt either a Hawk or a Dove strategy. It is not important

that each animal plays every other animal, but only that animals are involved

in the same number of competitions. Our focus is on the expected payoffs

per contest since our only concern is the relative fitness of the genotypes.

If members of the population play the two-person game given by Matrix

4.1, then payoffs in each contest are based on two factors. The first is the in-

dividual’s own strategy, and the second, is the proportion of other animals in

the population adopting the Hawk strategy. Let k represent that proportion,

where 0 ≤ k ≤ 1; then it follows that the proportion of Dove opponents is

1− k. Suppose the individual adopts the Hawk strategy; then the expected

payoff E(H) is E(H) = k V−W
2

+ (1 − k)V and if the individual adopts the

Dove strategy then,the expected payoff E(D) is E(D) = (1− k)( V
2
− T.)
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Suppose for illustrative purposes that V = 10, W = 20, T = 3; then

Figure (4.1) depicts the resultant compound game. From this figure we

can conclude there is no pure ESS. If the population contains mostly Doves

(k is small) then, the expected payoff E(H) to a Hawk is higher than the

expected payoff E(D) to a Dove. If this is true, the population of Hawks will

increase by natural selection shifting the outcome toward the equilibrium. At

equilibrium the payoff to the Hawk and Dove are equal and the proportion

of population of Hawks to Doves will remain stable.
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Figure (4.1) Resultant of the Hawk verses Dove Game
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Suppose the population contains mostly Hawks (k is large). In this case the

payoff E(D) to Doves is higher. Therefore the Hawk population will decrease

until equilibrium is reached. This implies that no matter what proportions

of Hawks and Doves initially exit, the population will evolve to the ESS

equilibrium.
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