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ABSTRACT 

In this research, we associate a graph in a natural way with the zero-divisors 

of a commutative ring. We endeavor to characterize various attributes of the 

graph, including connectivity, diameter, and symmetry. In exploring 

symmetry in the graph, we examine the automorphism group of the graph, 

and provide a complete characterization for the rings ZN. Secondly, we seek 

ring-theoretic properties which may be described in terms of the associated 

zero-divisor graph. These include, among other results, a strong relationship 

between finite local rings and graphs admitting a vertex connected to every 

other vertex. 
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PREFACE 

In an introductory class in ring theory, one learns that the zero-divisor 

relation in a ring is not transitive. That is to say, for a commutative ring R 

and elements x, y, and z in R, the fact that xy=O and yz=O does not 

necessarily imply that xz=O. This statement is true even in the simplest of 

commutative rings. For example, consider the ring of integers modulo 

twelve, Z12. The following relations are immediate: 2 • 6 = 0 and 6 • 4 = 0, 

while 2 • 4 -:;:. 0. One might ask, however, whether there is an underlying 

"organization" to the zero-divisors of a commutative ring. For example, how 

much does the relation deviate from being transitive? The zero-divisor 

relation lends itself to an immediate identification with a simple graph. In 

1988, Istefan Beck [3] associated a graph with a commutative ring using the 

zero-divisor relation, and went on to explore colorings of the graph. We will 

attempt to describe more basic structure of these graphs, and hence develop a 

combinatorial and geometric description of the zero-divisors of a commutative 

ring. 
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I. Introduction 

1.1 Graph-Theoretic Definitions 

A (simple) graph r = (V, E) is a set V, called the vertex set, and a set of 

irreflexive, symmetric relations E, on V, called the edge set. If x and y 

are distinct vertices of r, that is to say, x, y e V with x ::t: y, then if x and 

y are related in E, we call the relation an edge between x and y, denoted 

by (x, y). Note that if (x, y) is an edge, then (y, x) denotes the same edge. 

With this in mind, we may be precise in our association of a graph with the 

zero-divisors of a ring: 

Definition I. Let R be a commutative ring with non-zero identity. We 

define the zero-divisor graph of R, denoted r(R), to be a simple graph 

with vertex set being the set of non-zero zero-divisors of R and with (x, y) 

an edge if and only if x ::t: y and xy = 0. 

A word of explanation is in order. The authors ([1] and [3]) referenced in this 

paper have included all of the elements of R in the vertex set. From a 

perspective of trying to understand the structure of these graphs, the roles 

played by zero and the elements which are not zero-divisors add little. Zero 

is connected to everything and non-zero-divisors are connected to nothing but 

zero. We use the denotation or(R) to indicate this more general case where 
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necessary. If not explicitly stated, most of the results that follow extend in a 

natural way to the latter setting. Throughout, a ring R will always be 

commutative with non-zero identity. We will usually assume that the ring R 

is finite, and hence r(R) is also finite. 

It is necessary to introduce some key graph-theoretic definitions. A 

complete graph is a graph with edge set containing all possible edge 

relations on its vertices, and is denoted Kn, where n is the number of 

vertices. A subgraph of a graph is any subset of vertices together with any 

subset of edges containing those vertices. An induced subgraph is a 

subgraph maximal with respect to the number of edges. If an induced 

sub graph is itself complete, it is called a clique. The number of vertices in a 

maximal clique of a graph r is denoted cl(n. If (x, y) is an edge we say 

that x and y are adjacent, and when convenient we will denote it by x-y. 

A path of length n from a vertex x to a distinct vertex y is a sequence 

of n+ 1 distinct vertices x = Vo , VI , ••• , Vn = y such that Vi and Vi+ I are 

adjacent for 0 :<.::; i :<.::; n-1. For clarity, we will usually denote such a path by 

Vo - VI - ••• - Vn. If x and y are vertices of a graph, we define the distance 

between x and y, d(x, y), to be the length of a shortest path between them. 

If no path exists between x and y, we say that d(x, y) = oo. If in a graph r 

there are vertices x and y such that d(x, y) = oo, we say that the graph is 
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disconnected. A component of r is a maximal connected subgraph. We 

define a cycle by requiring that x = y in the above definition of a path. Note 

that for both the path and the cycle, the length is just the number of edges 

determined by the {vi: 0:::; i:::; n}. In particular, no cycle of shorter length 

may be determined by the {vi : 0:::; i:::; n}. In Figure 1, the sequence a-b-c 

is an example of a path of length 2, the sequence b-e-d-b defines a cycle of 

length three, and a-b-c-d-b is neither a cycle nor a path. (This last sequence 

is often referred to as a walll. We will not make further use of this term.) 

Figure 1: A Graph 

A cycle of length three is commonly called a triangle, a cycle of length four is 

a square, and so on. Thus, the cycle b-d-c-b in the figure above is a 

triangle. 
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Two more definitions are central in characterizing a graph. The diameter 

of a graph r, denoted diam r, is defined to be the maximum of the distances 

d(x, y) as x and y vary over all vertices in the graph. The girth of a graph 

is the length of the shortest cycle. The graph in the figure above has 

diameter two and girth three. 

1.2 Ring-Theoretic Definitions and Elementary Results 

We shall make use of several definitions and general propositions from 

commutative ring theory, and we provide them here. First and foremost, the 

set z(R) = {x e R I xy = 0 for some 0 :;r= y e R} is the set of zero-divisors of 

R. In particular, observe that 0 E z(R), and, for example, if R is an integral 

domain, I z(R) I =1. A ring is Noetherian if each of its ideals is finitely 

generated. If we consider the set of ideals under the partial order of 

inclusion, the height of a prime ideal is the length of the longest chain of 

prime ideals below it. Thus, for example, a prime ideal has height zero if no 

prime ideal is contained properly inside it. The dimension of a ring is the 

supremum of all heights of prime ideals. A ring is quasi-local if it contains 

a unique maximal ideal. In a commutative ring R, the annihilator (ideal) 

of an element x, denoted ann(x), is the set of those elements y for which 

xy = 0. In terms of the zero-divisor graph, this would be the set of vertices 

adjacent to x. Note that x itself may be an element of ann(x). This fact 
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would not be apparent in the zero-divisor graph of R. The proof of the fact 

that ann(x) is an ideal is straight-forward and left to the reader. Another 

important ideal is the nil-radical of R, denoted nil(R). It is defined to be 

the set of nilpotent elements of R. The fact that this is an ideal is again 

straight-forward, and again left to the reader. Another important 

characterization of nil(R) is the fact [5, Theorem 25] that it is precisely the 

intersection of the prime ideals of R. 

We will make use of the following proposition regarding finite rings. 

Proposition 2. If a ring R is finite, then R is zero-dimensional and 

Noetherian. 

Proof: For the first part, since a finite integral domain is a field, each prime 

ideal of R is maximal. Thus R is zero-dimensional. Clearly R is 

Noetherian. • 

Proposition 3. If a ring R is finite, then every element is a unit or a zero

divisor. 

Proof: Suppose R has maximal ideals M1, ... , Mn. Since z(R) c M1 u ... u Mn 

in every case, we need only to demonstrate the reverse inclusion. 
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Let 0 :t= x E Mt, and pick y E M2 n ... n Mn \ Mt (if n = 1, let y = 1). Observe 

that y is not nilpotent since it misses Mt, and hence is not in nil(R). But 

xy E Mt n ... n Mn = nil(R), and hence is nilpotent, so that xmyN = 0 for some 

m 2 1 and N 2 1, and xm·lyN :t= 0. Hence x is a non-zero zero-divisor, and 

hence z(R) c Mt u ... u Mn. • 

Proposition 4. [5, Theorems 6 and 86] An annihilator which is maximal 

among annihilators is prime. If M is a maximal ideal in a finite ring R, 

there is some non-zero x EM with xM = 0. 

Proof: Suppose ann(x) is maximal among annihilators, and let abE ann(x). 

We must show that a or bE ann(x). Assume that a� ann(x). Then ax :t= 0. 

Now ann(ax) ::::> ann(x), since anything which annihilates x also annihilates 

the element ax. Conversely, since ann(x) is maximal, ann(ax) c ann(x). 

Hence, ann(ax) = ann(x). Since b annihilates ax it follows that b E ann(x). 

To prove the second part, note that MM = ann(x/1) for some x E M. Thus if 

M is finite, there exists an s E R\M such that sMx = 0. Hence, we have 

M = ann(sx). • 
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1.3 Some Preliminary Observations 

A very general theorem is provided by !stefan Beck [3, Proposition 2.2]. 

Theorem 5. The following statements are equivalent for a ring R: 

i) or(R) is triangle-free. 

ii) Either R is isomorphic to Z2[X]/(X2) or L, or R is an integral domain. 

Proof: (Beck) Observe that i) =:> ii), trivially. Suppose that or(R) is triangle-

free and is not an integral domain. Let xy = 0, where x and y are non-

zero. Then {0, x, y} is a clique. It follows that x=y. Thus x :;t:. 0 and x2 = 0. 

The ideal xR is a clique and we conclude that I xR I = 2. Now assume that 

z e ann(x). Then {0, x, z} is a clique and therefore z e Rx = {0, x}. Hence 

ann(x) = xR. From the exact sequence 

X 

0 � ann(x) � R � xR � 0 

we conclude that I R I = 4. If the characteristic of R is 4 we have R � Z4, 

and if the characteristic of R is 2, we have R � Z2[X]/(X2). • 
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In the context of the zero-divisor graph we have defined, one which excludes 

zero and units, we may add the following equivalence. 

Theorem 6. The following statements are equivalent for a ring R: 

i) or(R) is triangle-free. 

ii) Either R is isomorphic to Z2[x]/(x2) or L, or R is an integral domain. 

iii) r(R) consists of exactly a single point, or is empty. 

Proof: ii) implies iii) is clear by inspection of the graphs. 

iii) implies i) is clear: the addition of disconnected points and a zero-element 

connected to each point will not result in a triangle. • 

Thus, the only interesting cases arise when R is not an integral domain, and 

we will assume that this is the case throughout the rest of the paper. We are 

mainly interested in the case when r(R) is finite and non-empty. We next 

show that this happens precisely when R is finite and not a field. 

Theorem 7. Let R be a commutative ring. Then 1:::; I r(R) I < oo implies 

that R is finite. Thus r(R) is a finite graph (ie., has finitely many vertices) 

if and only if R is a finite ring or an integral domain. In particular, if 

1 :::; I f(R) I < oo it follows that R is finite and not a field. 
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Proof: If 1 :s; I r(R) I , then there exist x and y in R, neither equal to zero, 

with xy = 0. Let I =  ann(x). Then y c I, and, in fact, ry c I for all r c R. 

Suppose R is infinite with finitely many zero-divisors. Since I is a subset 

of the zero-divisors of R, it is finite. Thus, there exists an i c I such that J 

= {rcR : ry=i} is infinite. For r, s c J , (r - s)y = 0. Thus, ann(y) is infinite, 

contradicting the fact that there are only finitely many zero-divisors. • 
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II. Basic Structure 

11.1 Connectivity 

The class of graphs which are zero-divisor graphs of rings turns out to be 

fairly narrowly defined. They are connected graphs of small diameter and 

girth. Hence, zero-divisors may not be transitive, but in some sense, they 

are not all that far away from being transitive. We next demonstrate that 

the zero-divisor graphs, as we have defined them, are connected graphs of 

exceedingly small diameter and girth. 

Theorem 8. Let R be a commutative ring (not necessarily finite). Then 

r(R) is connected. Moreover, diam r(R) � 3. 

Proof: Let x, y E r(R), with X :1= y. If xy = 0, then d(x, y) = 1. Suppose 

now that xy :1= 0. If x2 = 0 = y2, then x - xy - y is a path of length two, and 

d(x, y) = 2. Suppose x2 = 0 and y2 :1= 0. There exists an element b e r(R) 

with b :1= y such that by= 0. If bx = 0, then x - b - y  is a path of length two 

between x and y. If bx :1= 0, then x - bx - y is a path of length two between 

x and y. In either case, d(x, y) = 2. A symmetric argument holds if y2 = 0 

and x2 :1= 0. Thus we may suppose that neither x2 nor y2 is zero. Then 

there exist non-zero zero-divisors a ,  be r(R) (not necessarily distinct) with 

ax= 0 = by. If a= b, then x - a - y is a path of length 2, and hence 
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d(x, y) = 2. Thus we may assume a:;:. b. Consider the element ab. If ab = 0, 

then x - a - b-y is a path of length three, and hence d(x, y) ::;; 3 .  If ab:;:. 0, 

then x - ab - y is a path of length two, and hence d(x, y) = 2 . In all of the 

cases, there is a path between x and y of length less than or equal to three, 

and since x and y were arbitrary, it follows that the diameter of r(R) is 

less than or equal to three. • 

It is clear that L, Z2xZ2, and Zs have diameters zero, one, and two, 

respectively. Diameter three is also achieved. Consider the ring Z2 x Z2 x Z2. 

The distance between the elements (1,1,0) and (0,1,1) is three. In fact, a 

shortest path is (1, 1,0) - (0,0, 1) - (1,0,0) - (0, 1, 1). 

The fact that the distance between points is small also constrains the length 

of the shortest cycle, that is to say, the girth of the graph. The following 

corollary makes use of the previous theorem to establish a bound for the girth 

of a zero-divisor graph. 

Corollary 9. If R is a ring, then the girth of r(R) is less than eight. 

Proof: It is enough to suppose to the contrary that we could find a ring R 

such that r(R) has a smallest cycle, C, of length exactly eight, say, 
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Vo - Vi - V2- V3- V4 -V5 -vs - V7 - VB= vo . Let Pi denote the path Vo- Vi - V2- V3-

V4, and P2 denote the path vo -V7- vs - V5- V4. To help in visualizing the 

proof, the figure below provides a hypothetical representation of each of the 

two main considerations which follow. 

', 
····· ..... , 

First, observe that for 0 < i < 4 < j < 8, Vi and Vj are not connected. Assume 

the case is otherwise. Then vo -... - Vi - Vj -... - vo is a cycle of length less 

than eight contradicting the assumption that the girth is eight .. Now assume 

there is a path Vo -x - y - v 4 by the previous theorem. (If not, then there is a 

path Vo-x- V4. The proof goes through if in this case we just identify x and 

y. The impossibility of Vo and V4 being adjacent is apparent.) The fact just 

proved implies that the path Vo -x - y- V4 intersects Pi, or perhaps P2 , but 

not both. Thus, by symmetry we may as well assume that the path Vo -x -y -

V4 does not intersect P2. This assumption yields a cycle Vo-x-y - V4 -V5-vs -

V7 - VB = vo of length seven, the final contradiction. • 
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Conjecture 10. If R is any ring, then the girth of f(R) is less than five. 

There are rings whose zero-divisor graphs have girth exactly four, as we will 

demonstrate shortly. And in a later section, we demonstrate that the girth of 

the ring ZN, for any N, never exceeds four. 

One should not interpret this, however, to mean that there cannot be cycles 

of length longer than seven in a given zero-divisor graph. In fact, the 

following corollary shows that there exist rings whose zero-divisor graphs 

admit cycles of arbitrarily specified length. 

Example 11. Let T be an integral domain, and n � 3 an integer. Define R 

= T[Xt, X2, ... , Xn] I (X1 �, � Xa , ... , Xn Xt), and let Xi be the coset of X in 

R. Then XI -x2 -••• -xn -XI is a cycle of length n. 

Proof: Note that Xi Xj = 0 if and only if j = i + 1 mod n. • 

Although the cycles above have length n, they are by no means the shortest 

cycles in the graph, as the following proposition shows. 

Proposition 12. If R is the ring in the previous example, with n = 3, or 

n � 5, then f(R) contains a triangle. That is to say, the girth of f(R) is 

three. 
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Proof: If n = 3, Xt - xz - xa is a triangle. If n � 5, then Xt - xzxn-t - Xn IS a 

triangle. • 

11.2 Rings with Prescribed Zero-Divisor Graphs 

In this section, we consider certain small graphs to determine if they are the 

zero-divisor graphs for some ring. In fact, we note that as the number of 

vertices increases, the necessary complexity of the graphs make it impossible 

for many graphs to be zero-divisor graphs. 

Proposition 13. Let R = Z4 . Then r(R) 1s a point. 

Proof: The only vertex is the element 2. • 

Proposition 14. Let R = Zz x Zz. Then r(R) consists of two vertices 

connected by an edge. 

Proof: The vertices are (1, 0) and (0, 1). • 

Proposition 15. Let R = Zz [x, y] I ( x2, xy, y2). Then r(R) is a triangle. 

(This result is a special case of Proposition 21, which is to follow. Also, 

reference theorems 19 and 20.) 

Proof: The non-zero zero-divisors of R are the cosets x , y and x + y . • 
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This previous result is a special case of Proposition 16. 

Proposition 16. Let R = Z3 X Z:J. Then r(R) is a square. 

Proof: The non-zero zero-divisors are (0, 1), (0, 2), (1, 0), and (2, 0). Thus 

r(R) is: 

• 

Proposition 17. There is no ring R for which r(R) is an n-gon for n � 5. 

Proof: First consider the case n = 5. Suppose z(R) = {0, a, b, c, d, e} with 0 

= ab = be = cd = de = ea, and no other zero-divisor relations. Then (-a)b = 

0 and (-a)e = 0 .  Thus -a= a. Similarly, -x = x for all x E z(R). Also, (b + 

e)a = 0, so b + e = 0, a, b, or e. Clearly we cannot have b + e = b or b + e 

= e, and b + e = 0 implies b = -e = e, which is a contradiction. Hence, b + e 

= a, and thus a2 = 0. Similarly, x2 = 0 for all x e z(R). Thus z(R) = nil(R) 

= {0, a, b, c, d, e}, the unique prime ideal of R since R is finite. Hence 

nil(R) = ann(x) for some non-zero x E z(R). But I ann(x) I = 4 for every 0 * 

x E z(R), a contradiction. The case for n > 5 is similar. • 

15 



11.3 Ring-Theoretic Results 

The discussion in the preceding section describes some of the types of graphs 

which may or may not occur. An interesting question is as follows: can a 

particular characterization of the zero-divisor graph of a ring tell us 

something about the ring itself, or vice-versa. The following theorem is a 

promising example in the affirmative. 

Theorem 18. Let R be a finite ring which is not a field. Then there is a 

vertex of r(R) which is adjacent to every other vertex if and only if either 

i) R::::: Z2 x F, where F is a finite field, or 

ii) R is quasi -local. 

Proof: (<=) If R::::: Zz x F, then the element (1, 0) is connected to every 

other vertex, since each has the form (0, u), where u is non-zero. If R is 

quasi-local, then it must be the case that the ideal generated by r is in that 

unique maximal ideal. Since every maximal ideal is the annihilator of some 

element of R, that element annihilates r. Hence, the element is adjacent to 

every other element in r . 

(=>) Assume that R is not quasi-local. Let 0 :t. a E R be an element which is 

adjacent to every other element. Now a itself cannot be in ann(a), for else R 

would be quasi-local, since in a finite ring, every element is either a zero 
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divisor or a unit. Thus ann(a) is an ideal which is maximal among 

annihilators, and hence is prime by Proposition l1. Now if a2 :t: a ,  then a2 is 

a zero-divisor in ann(a) . Thus a3 = 0. Since ann(a) is prime, this implies 

that a e ann(a), a contradiction. Thus a2 =a. That is, a is an idempotent. 

Hence R = Ra E9 R(1-a). Thus we can assume that R � R1 x R2 and that 

(1, 0) is connected to all non-zero zero-divisors. If 1 :t: c e R1, (c, 0) is a zero

divisor since (c, 0)(0, b)=O for any b e R2. But this implies that (c, 0) = 

(c, 0)(1, 0) = 0, a contradiction unless c = 0. Hence, R1 � Z2. If R2 is not a 

field, then there is a non-zero nonunit be R. Then (1, b) must be a zero 

divisor, but this element cannot be connected to (1, 0). Thus R2 must be a 

field. • 

Theorem 19. Suppose f'(R) is complete for a finite ring R. Then either, 

i) R � Z2 x Z2, or 

ii) R is a quasi-local ring of characteristic p or p2, and I f'(R) I = pN - 1, 

where p is a prime number, and N 2:: 1. 

Proof: For a field F, it is clear that f'(Z2 x F) is not complete unless F� Z2. 

Otherwise, R must be quasi-local with maximal ideal, say, M, by the 

previous theorem. Now R cannot have composite characteristic: suppose p 

and q are distinct primes dividing characteristic R, with p < q. Then 
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p2 < pq implies that p2 is a zero-divisor, but p and p2 cannot be adjacent. 

Thus, the characteristic of R is pn, for some n;?: I. However, if n;?: 3, there 

is some number /.. relatively prime to p such that f..p < pn, so that p and 

"Ap are non-adjacent zero-divisors. (For p=2, put /..=3. If p>2, put A.=2.) 

Thus the characteristic of R is p or p2. Thus, each element of M has 

additive order 1, p, or p2. Hence, as an abelian group, M � ($ Zp) $ ($ Zp2), 

so that I M I = pN for some N ;?: 1. It follows that I r(R) I = pN - I. • 

Theorem 20. The graph r(R) is complete if and only if either 

(1) R � Z2 x Z2, or 

(2) xy = 0 for every x, y e z(R). 

To put the forward (and most interesting) direction in other words, if r(R) 1s 

complete then the zero-divisors of R are nilpotent of order two, except in the 

case R � Z2 x Z2. 

Proof: The if direction is completely clear (pun intended). For the only if 

direction, suppose that (2) fails. Then there is an O:;t:x e z(R) with x2 :;t: 0. 

We show that x2 = x, which will imply (1). Suppose to the contrary that 

x2 :;t: x. Then x3 = x2x = 0. Hence, x2(x + x2) = 0 with x2 :;t: 0, so x + x2 e z(R). 

If x + x2 = x, then x2 = 0, a contradiction. Thus the fact that x + x2 and x 

are zero-divisors of R, together with the fact that x + x2 :;t: x implies that 
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x2 = x2 + x3 = x(x + x2) = 0, another contradiction. Hence, we must have 

x2 = x, as claimed. Thus, R = Rx EB R(1-x):::;; R1 EB R2. Let 1 �a c R1. Then 

(a, 0) c z(R) and (1, 0) c z(R), so 0 = (a, 0)(1, 0) = (a, 0) which implies that 

a=O. Thus Rt :::;; Z2. Similarly R2 :::;; Z2, and so R:::;; Z2 x Z2. • 

More, in fact, can be shown. We demonstrate that for each prime p and 

integer n c.:: 1, there is a ring R with r(R) complete of order P" - 1. 

Proposition 21. Let T be an integral domain and R = T[X1 , X2, ... , Xn] I (all 

degree 2 monomials). Then r(R) is complete on I T I " - 1 vertices. In 

particular, if T = Zp, then I r(R) I = P" - 1. 

Proof: We may write R = {ao + at XI + ... + anxn I ai E T}. Then z(R) is that 

subset of R, where ao = 0. Hence, the product of any two distinct zero

divisors is zero, since each term in the product has degree two. It is clear that 

I r(R) I = I T I " - 1. • 

We give another example: 

Example 22. If p is a prime number, then r(lpz) is complete. 
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Proof: Each zero-divisor is divisible by p. Hence, the product of any two 

zero-divisors is zero. • 

Note that Zp2 and Zp[X]/(X2) are not isomorphic as rings, but we have 

r(Zp2) = r(Zp[X]/(X2)) = Kp-1, the complete graph on p-1 vertices. 
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III. Beck's Theorem and r(ZN) 

111.1 Colorings 

In discussing the problem of coloring the zero-divisor graph, Beck [3] chooses 

as an example the graph of ZN. In doing so, he proves the following 

interesting theorem which we will exploit to prove some specific results 

regarding colorings of r(ZN). In the next section, we make further 

characterizations of the structure of r(ZN). 

Definition 23. A coloring of a graph is an assignment of colors to the 

vertices of a graph in a way such that no two adjacent vertices receive the 

same color. The minimal number of colors needed to color a graph r is 

denoted by z(n, and called chromatic number. 

Theorem 24. (Beck) Let p1, p2, ... , pk, q1, q2, ... qr be distinct prime 

numbers and let N = p12n1 p22nz ... pk2nk q12m1 +l q22mz + 1 ... qr2m.+ 1 . Then 

X.(or(ZN)) = cl(or(ZN)) = Plnl P2nz ... pknk q1ml q2m2 ... qrmr + r. 

Proof: Let yo = P1nl P2n2 ... pknk q1m1 +1 q2m2 + 1 ... qrmr+ 1. Then yo2 = 0 in ZN and 

thus YoZN is a clique with p1n1 p2n2 ... pknk q1m1 q2mz ... qrm• elements. Put 

Yi = yo I qi, where 1 � i � r. The set c = yoZN u {y1, y2, ... , yr} is a clique 

21 



containing t = Pt"1 P2"2 ••• pk"k q1m1 q2m2 • • •  qrmr + r elements. Hence cl(ZN) � t. 

In order to show that cl(ZN) � t, we first attach a distinct color to each of the 

elements in the clique C. Furthermore, let Xi= N I Pi", with 1 � i � k. We 

note that Xt, ... , Xk belong to C and hence have been equipped with a color. 

Let f(y) denote the color of an element y and color the remaining elements 

of ZN as follows: Pick x not in yoZN. If Pt"1 P2"2 ... pk"k divides x define 

f(x) = f(yj) where j = min{i : qim +t fails to divide x}. If pt"t P2"2 ... pk"k does 

not divide x, let f(x) = f(xj), where j = min {i : Pi" fails to divide x}. It is 

easily seen that this coloring attaches different colors to adjacent vertices. • 

Proposition 25. For every positive integer M , there is an N with 

Proof: Let N = pt p2 . .. PM·t, where Pi is the ith prime, and apply Beck's 

theorem. • 

It should be noted that this N is not minimal with respect to the proposition. 

For example, consider M = 7 and let N = 32 22 •t + 1 = 72. By Beck's 

theorem, the calculation 3•2 + 1 = 7 implies that the graph r(Z12) may be 

colored with only seven colors, while the proof of the above theorem would 

have N be 2•3•5•7•11•13 = 30,030. 
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111.2 The Zero-Divisor Graphs of r(ZN) 

In addition to these particular coloring results, we can provide more specific 

characterizations of the structure of r(ZN). We will make use of the following 

graph-theoretic definition. 

Definition 26. A graph whose vertices may be partitioned into sets Vt and 

V2 in such a way that no two vertices in the same vertex set are connected is 

called a bipartite graph. A complete bipartite graph is a bipartite graph 

which is maximal with respect to the number of edges. 

Note that a bipartite graph cannot admit a triangle as a subgraph, for else 

two vertices in the same vertex class would necessarily be connected. 

One can see that the girth of a bipartite graph, if it is defined, must be an 

even number greater than or equal to four. Figure 2 below shows the 

complete bipartite graph for the zero-divisor graph of the ring Z2o. 
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Figure 2: The Zero-Divisor Graph of Z2o 

Proposition 27. r(ZN) is triangle-free if and only if, either N = pq for p 

and q distinct primes, or N = 22p for p a prime, or N = 32, or N = 22, or 

when N is a prime. 

Proof: It is necessary to treat several cases separately. The basic approach 

in each of the following cases is to find 3 distinct mutually adjacent vertices. 

Case a: N is divisible by at least three distinct primes, say p ,  q and r. 

Then prN/q, qpN/r and qrN/p are pairwise adjacent, nonzero distinct 

elements of ZN. Thus prN/q - qpN/r - qrN/p is a triangle. 

Case b: N is divisible by the squares of two distinct primes, say p and q. 

Let d = N I p2q2• Then pq2d - p2qd - pqd is a triangle. 
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Case c: p�5 and p2 divides N. Let d = N I p2. Then p � 5 implies that 

p2d > 3pd, which in turn implies that 0 < pd < 2pd < 3pd < N. It follows that 

pd - 2pd - 3pd is a triangle. 

Case d: N = 2", where n � 4. Then 2n-2- 3•22- 2n-l is a triangle. This is 

because n � 4 implies that 3•22 < 2". 

Case e :  N = 3", where n � 3. Then 3n-2- 2•32- 3n-l is a triangle. This is 

because n � 3 implies that 2•32 < 3n·I. 

Case f :  N = 32p, where p is any prime. Then 3- 3p- 3(2p) is a triangle. 

This is because 3(2p) < 32p. 

Case g: N = 2"p, where p is any prime, and n � 3. Then 2n-I- 2p- 2n-Ip is 

a triangle. 

This leaves the rings listed in the statement of the theorem as the only 

remaining possibilities for admitting triangle-free graphs. Two of the cases 

require argument. 
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Claim 1) If N = 22q, where q is any odd prime, then f(ZN) is triangle-free. 

To see this, let U = {A.2 e l(ZN) : (A., q) = 1} = {A.2 e f(ZN) : A. -:t= q} and V = {A.q : 

A.q < N} = {q, 2q, 3q}. Since q does not divide any element of U, none of the 

elements of U are adjacent. And since no element in V is divisible by 2 

other than 2q, no elements of V are adjacent. The sets U and V partition 

the vertices of r(ZN), and it follows that the graph is bipartite and hence is 

triangle-free. 

Claim 2) If N = pq, where p and q are distinct primes, then we partition 

the vertices into sets U = {A.p e f(ZN) :(A., q)=1} and V = {A.q e f(ZN) : 

(A.,p)=1}. It is clear that this partition shows that f(ZN) is bipartite. 

Furthermore, notice that xy = 0 for every x e U and y e V. Hence, f(ZN) is 

a complete bipartite graph. • 

Theorem 28. diam l(ZN) e {0, 1, 2, 3}. 

Proof: The table at the end of this section gives several examples of the 

cases 0, 1 and 2, and in each the reasoning is straightfoward. A few words 

regarding the case f(ZN) =3 may be useful. If N = 2"p, where p is a prime 

number, then d(2, p) = 3, since the vertex 2 is connected only to 2p, which 

is not connected to p. The vertex 2p is connected to only to vertices 

divisible by 4, any of which are in turn connected to the vertex p. • 
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Theorem 29. Girth(f(ZN)) s {3, 4} or is undefined. 

Proof: If f(ZN) has a triangle, then its girth is three. Otherwise, N must be 

characterized by one of the possibilities in the theorem above. By inspection 

of the triangle-free cases above, the girth is equal to four, or is undefined. 

(Set p=3 and q=5 in the above example to see an example where the girth 

is four.) • 
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N 

p 

22 

32 

p2 

(p�5) 

23 

pn 
(n�3) 

22p 
p�3 

pq 

all 
others 

No. No. Diameter Girth Remarks 
Vertices Ede:es 

0 0 0 undefined r(Zv) = 0 

1 0 0 undefined • 

2 1 1 undefined 

p-1 (p �I) 1 3 complete graph Kv-1 

3 2 2 undefined 

pn·l. 1 L(p·l)lii2J 2 3 quasi-local: pn-t is attached 
to everything 

2p + 1 4p- 4 3 4 bipartite graph (but not 
complete) 

q-1 + p-1 (q-l)(p-1) 2 4 complete bipartite graph 
Kq-I,p·I 

2 3 

r(ZN) Summary Table: (p, q distinct primes) 
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IV. The Automorphism Group of r(ZN) 

A useful measure of symmetry in the graph r(R) is its automorphism group. 

Definition 30. A automorphism of a graph r is a permutation <1> of the 

vertices of the graph which preserves adjacency between points. More 

precisely, (x, y) is an edge of r if and only if (<j>(x), <j>(y)) is also an edge of 

r. This set of automorphisms forms a group under composition. We call this 

group the automorphism group of r, and denote it Aut r. 

One might say that a lack of symmetry in a graph is associated with a trivial 

automorphism group, or perhaps an automorphism group which is small in 

relation to the total number of vertices in the graph. The converse is 

evidently true for zero-divisor graphs of rings, at least as evidenced by the 

following theorem. 

Theorem 31. The automorphism group ofr(Zn) is a direct product of 

symmetric groups. 

Proof: For each d dividing n, with 1 < d < n, let Vd = { A.d & Zn I (A., n) = 1}. 

Let V denote the vertices of r(Zn). Then V is the disjoint union of the Vis. 
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Let x, y E Vd for some d I n, with x -:t:. y. By the Fundamental Theorem of 

Arithmetic, ax = 0 if and only if ay = 0, since the only common divisor of n 

that x and y share is d itself. (Observe that ax = 0 if and only if ad = 0, 

since A. E U(Zn).) Thus, the if direction implies that the transposition (x, y) 

induces an automorphisms of r(Zn) (by fixing all other vertices). The 

collection of these transpositions as x and y vary over V d then generate a 

symmetric group of cardinality I Vd I acting on r(Zn). The only if direction 

implies that the orbit of any fixed x E Vd is restricted to Vd. Specifically, if 

e E Aut(r(Zn)), then the map Aut(r(Zn)) __., rr Sk(d) given by e __., Slvd, where 

k(d) = I Vd I and the product ranges over all d I n with 1 < d < n, is an 

isomorphism. • 

The explicit characterization of the automorphism group of r(Zn) just given 

is worth restating separately. Recall the definition of Vd in the proof above: 

for d I n we define Vd = { A.d E Zn I (A., n) = 1}. 

Theorem 32. Aut(r(Zn)) � IT  S/vd/, where the product ranges over all d I n 

and 1 < d < n. 

Example 33. Consider the ring R = Z12 . The automorphism g:roup of 

r(Z12) is isomorphic to Z2 x Z2 x Z2. This is not hard to see combinatorially. 
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By examining the degrees of the vertices, we see that the orbits indicated in 

Figure 3 below are the only possible ones. To be precise, let us use the 

notation in the proof of the main theorem (31) in this section: we have 

Vz = {2, 10}, Va = {3, 9}, V4 = {4, 8}, and Vs = {6}. (Note that if 1 < d < 12, 

then d I 12 <=> d = 2, 3, 4 or 6.) The elementary abelian group Zz x Zz x Zz 1s 

the only one which is the product of three disjoint involutions. 

l 
1 

Figure 3: The Orbits of the Automorphism Group of r(Zt2) 
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V. Conclusion 

Why look at colorings, or at zero-divisor graphs in the first place? One 

obvious answer is that the graphs are highly connected and exhibit 

considerable symmetry. In these cases, colorings provide some insight into 

the degree to which both are present. The zero-divisor graph seems to 

extract certain essential information relative to zero-divisors. In particular, 

it provides some clarity as to the "non-transitivity'' of the zero-divisor 

relation. Theorem 18 suggests that an understanding of the zero-divisors of 

a ring by themselves provides crucial information about the whole ring. The 

extent to which this relationship can be exploited needs further 

investigation. Furthermore, graphs could be associated with rings in ways 

other than with the zero-divisor relation. For example, one could associate a 

graph with a ring in the following way: let I be an ideal of a ring R . Then 

the vertices of the graph could be the elements of the ring, and two elements 

are related by an edge if their product were an element of the ideal I . 

Another interesting possibility is to consider the zero-divisor graph of a non

commutative ring. In such rings, the relation xy = 0 does not necessarily 

imply the relation yx = 0, and hence we would require the use of directed 

graphs which do not require symmetric edge relations. 

32 



REFERENCES 

33 



REFERENCES 

[1] D.D. Anderson and M. Naser, Beck's Coloring of a Commutative Ring, 

Journal of Algebra 159 (1993), 500-514. 

[2] M. Aschbacher, "Finite Group Theory," Cambridge University Press, 

Cambridge, 1972. 

[3] I. Beck, Coloring of commutative rings, Journal of Algebra 116 (1988), 

208-226. 

[4] F. Harary, "Graph Theory," Addison-Wesley, Reading, MA, 1972. 

[5] I. Kaplansky, "Commutative Ring Theory," Revised Edition, University of 

Chicago Press, 1974. 

34 



VITA 

Philip Stephen Livingston was born in Oak Ridge, Tennessee on June 16, 

1958. He attended Powell Elementary and Powell High School. He attended 

the University of Tennessee from the summer of 1976 until the spring of 

1979, when he began work in the computer industry. Mr. Livingston 

graduated cum laude with a bachelor of Arts degree in Mathematics from the 

University of Maryland, College Park, in May 1984. He continued to work in 

all aspects of the computer industry including several years of management. 

In January of 1992 he returned to the University of Tennessee to pursue an 

advanced degree in mathematics. Presently, he enjoys research in 

Commutative Ring Theory and a continuing instructorship at the University 

of Tennessee. 

35 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-1997

	Structure in Zero-Divisor Graphs of Commutative Rings
	Philip S. Livingston
	Recommended Citation


	tmp.1378411479.pdf.6sCk8

