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ABSTRACT 

 
 

Thematic maps derived from remote sensing imagery are increasingly being 
used in environmental and ecological modeling. Spatial information in these 
maps however is not free of error. Different methodologies such as error matrices 
are used to assess the accuracy of the spatial information. However, most of the 
methods commonly used for describing the accuracy assessment of thematic 
data fail to describe spatial differences of the accuracy across an area of interest. 
This thesis describes the use of indicator kriging as a geostatistical method for 
mapping the spatial accuracy of thematic maps. The method is illustrated by 
constructing accuracy maps for the forest land-cover classes in the 2001 
National Land Cover Dataset (NLCD) extent covering the conterminous United 
States. Independent reference data collected for the accuracy assessment of the 
2001 NCLD was used. This thesis also describes the use of indicator cokriging 
for improving the thematic accuracy of the forest land-cover classes by adding 
information from other land-cover classes as additional variables. Finally, 
probability surfaces resulted from indicator kriging and indicator cokriging will be 
used to generate alternate realizations of the forest land-cover class through 
stochastic simulation. Such realizations could serve as input parameters to 
spatially explicit models. Result show how thematic accuracy varies across 
regions and it outlines differences between land-cover estimates by NLCD and 
those created through indicator kriging.  
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Chapter 1 Introduction And General Information 
 

1.1 Problem Statement 

 
 The production of thematic land-cover maps is one of the most common 

applications of remote sensing (Foody 2002). These land-cover maps support a 
large range of research efforts studying characteristics of the earth’s surface, 
especially land use planning and environmental studies (Yang et al. 2001). 
These maps are also used as input parameters to model in spatially explicit 
ecological and environmental models. No map created from remote sensing can 
be completely accurate (Steele, Winne and Redmond 1998). The development of 
these maps isn’t completely accurate and errors occur between actual ground-
based information and image-derived data. Errors can be introduced in many 
ways: approximating the extent of vegetation cover as a crisp boundary, scale 
resolution from reality to a map, difficulties in differentiating between land-cover 
classes or badly defined classification schemes among other reasons (Steele et 
al. 1998, Zhang and Goodchild 2002).  Understanding the thematic map 
accuracy is important to be able to use the information correctly when thematic 
maps are used for decision-making.  

 
Thematic mapping accuracy is not spatially uniform and varies across 

landscapes as a result of several factors such as sensor resolution, spectral 
overlap, preprocessing algorithms and classification procedures (Campbell 1983, 
Tran et al. 2005). Accuracy assessment is becoming an important topic with the 
increased use of remotely sensed imagery and mapping, environmental 
modeling and other applications (Carlotto 2009). Many methods have been used 
in the assessment of the thematic map accuracy (Foody 2004). Of the most 
common approaches to describe thematic map accuracy is using a confusion or 
error matrix which identifies differences between the land-cover map and a 
reference data set. A confusion matrix provides an overall measure of 
classification accuracy and it provides summary of omission and commission 
error, and the Kappa coefficient. Errors of omission (producer’s accuracy) refer to 
the proportion of cases where a land-cover class is correctly classified. Errors of 
commission (user’s accuracy) identifies the frequency a land-cover class is 
correctly classified. These two measures are calculated as the proportion of 
correctly classified locations (McGwire and Fisher 2001). However, error 
matrices do not provide information about the spatial pattern of the distribution 
and variation of mapping errors as these matrices do not include information 
about what real areas on the ground are most likely misclassified. Also, the 
confusion matrix assumes the relationship between different land-cover classes 
in the confusion matrix do not vary across the region (Hession, Shortridge and 
Torbick 2006). An aspect of models and analysis using thematic data is the use 
of spatially explicit inputs and outputs. Therefore, it is important to document the 
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uncertainty of input data in a way where it includes the distribution of error across 
the surface map (Kyriakidis 2001).  

 
 The role of uncertainty in spatial decision support has been the focus of 

many studies. Much of the research has been focused on the propagation of 
uncertainty in spatial data and how it can affect the result of a model looking at 
land use allocation (Aerts, Goodchild and Heuvelink 2003). Hession et al. (2006) 
developed a comparative matrix summarizing different model requirements and 
characteristics of methods used to characterize the distribution of categorical 
data such as land-cover by alternative generating realizations. 
 

1.2.  Research Question and Hypothesis 

    
The objectives of this thesis are to: 
 

 To assess the spatial accuracy of thematic maps using indicator kriging 
applied to independent reference data. The method is illustrated by 
constructing accuracy maps for the forest land-cover classes in the 2001 
National Land Cover Dataset (NLCD) extent covering the conterminous 
United States.  

 Improving the thematic accuracy of the forest land-cover classes by 
adding other land-cover classes as additional variables through indicator 
cokriging.  

 To generate alternate realizations from of the forest land-cover class 
probability surfaces from indicator kriging and indicator cokriging.  

 
The NLCD, developed by the Multi-Resolution Land Characteristics (MLRC) 

Consortium, is a primary source of land-cover data in the United States. A 
nationwide land-cover accuracy assessment was conducted for the 2001 NLCD 
which included a collection of ground truth data used to develop a confusion 
matrix that outlines the accuracy of the dataset.  This thesis will use these ground 
truth data to answer the following research questions: 

 

 Can the spatial accuracy of the forest land-cover classes in the 2001 
NLCD be mapped using indicator kriging? 
 

 Does including spatial accuracy information from other land-cover classes 
improve the accuracy of the forest land-cover classes? 

 

 What realizations of land-cover does Monte Carlo simulation provide using 
information from indicator kriging? 
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In this thesis, indicator kriging is used as the approach to map the spatial 
accuracy of forest land-cover classes in the thematic land-cover maps. Level II 
classification for forest includes values 41, 42 or 43. This method will explore 
whether the thematic map accuracy is spatially uniform or changes across 
regions and if different land-cover types show different spatial patterns of 
accuracy.  Cokriging is used as a multi-variable approach to determine if the 
accuracy of the forested land-cover class can be improved. This method will look 
at the effects of adding accuracy information from other spatially correlated data. 
Lastly, Monte Carlo simulation is used to generate alternative realizations of the 
forest land-cover classes creating a sample distribution of the uncertainty on the 
data.  
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Chapter 2 Literature Review 

2.1  Geographic Information and Uncertainty 

 
“Geographic information can be defined as information about features and 

phenomena located on or near the surface of the Earth” (Goodchild et al. 1999).  
Geographic information deals with the need to solve geographical problems 
relating to many fields of studies such as environmental problems, biological 
conservation, or understanding demographics. The gathering of geographic 
information has been taken on by many government organizations such as the 
United States Geological Survey (USGS) or the United States Census Bureau 
and many private organizations (Zhang and Goodchild 2002).  
 
 The process of gathering geographic information was traditionally done by 
field scientists, engineers and other professionals by recording information into 
paper maps. The conversion of these paper maps into digital format has been an 
ongoing process for many organizations. Advances in geographic information 
technologies such as remote sensing have transformed the way data is gathered 
and processed (Zhang and Goodchild 2002). Remote sensing data from 
satellites is being used in many applications such as land cover classification 
(Campbell 1996, Jensen 1979, Fuller, Wyatt and Barr 1998). Geographic 
Information systems (GIS) along with remote sensing are common technologies 
used for managing and handling large amounts of data relevant to many 
disciplines such as geography, agriculture, hydrology, among others (Burrough 
and McDonnell 1998). The common assumption is that output geographic 
information created from any of these processes is error-free. Errors are defined 
as a deviation of a measurement from its true value (Rabinovich, 2005). In 
reality, uncertainty exists throughout the entire process from data acquisition, 
geoprocessing to the use of the use of the data (Zhang and Goodchild 2002).  
Uncertainty is the degree to with a measured value is estimated to vary from its 
true value. Uncertainty can have many sources such as the accuracy of an 
instrument, measurement error or the use of data at different scales in the 
geoprocessing procedure   (Sommer and Wade, 2006). Sources of uncertainty 
will be further described in the following section.  
 

The overall process of data abstraction is selective as it involves the 
approximation of real features in order to produce a conceptual model of the real 
world. The complexity of geographic features cannot be reproduced with perfect 
accuracy. The discrepancies between the modeled and real world contribute 
inaccuracy and uncertainty which can turn into imperfect decision-making 
(Goodchild 1989).  
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2.1.1 Sources of Uncertainty 

 
Uncertainty can be found at different steps through the entire process from 

data acquisition to the use of data through geoprocessing. Data acquisition as a 
first step to obtain the raw components that make up the real world is the subject 
to uncertainty. Data acquisition has several levels of error depending on the skill 
of the data analysis and the instruments used. Though there have been many 
technological advances in such as Global Positioning system and digital image 
processing which have improved the quality of spatial data, it is not possible to 
eliminate all errors during data acquisition (Zhang and Goodchild 2002). 
 

Another form of uncertainty occurs during geoprocessing errors. Many of 
the data acquired are catered to specific research purposes and there are often 
many sources of data representing the same phenomena in different manners. 
Also, it is common to find different GIS software systems using different 
standards and tools. The process to transfer data between one system to 
another is not straightforward and it can be time consuming (Včkovski 1998). 
This is where errors of geoprocessing are found. An example of such errors is 
the conversion of data types from vector to raster structure.  

 
As more sources of data become available, it is likely that various data at 

different accuracy levels will be involved in a decision-making process. Methods 
for combining data sets need to take these accuracy differences into account so 
data combination can produce the best possible output that is scientifically 
sound. Hutchinson (1982) investigated such methods for improving data acquired 
through remote sensing by incorporating additional data. Spatial data however is 
complex and requires special processing (Atkinson and Tate 2000) and often 
data integration procedures do not take into account different levels of accuracy 
and detail on the data and assume scales and precise data during geoprocessing 
tools.  

 
Uncertainty is not only a property of the data itself but also a measure of 

the difference between the actual content of the data and the content users 
would have created through perfect observation of reality. There is no check for 
potential misuse of a spatial data set. Users typically rely on published data by 
government organization. These users do not normally have access to the 
primary source of data from which these final products were derived from and 
must take the data as it is offered (Zhang and Goodchild 2002). 
 

2.1.2 Measuring Uncertainty 

 
According to the University Consortium for Geographic Information 

Science (1996) the goals of research on uncertainty in geographic data are to 
investigate how uncertainties are created and propagated in the GIS process and 
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what effects these uncertainties might have on the results. Obtaining information 
on uncertainties during geoprocessing and tracking the propagation of these 
uncertainties would allow users to assess the accuracy obtainable of a specific 
map analysis (Goodchild and Muller 1991). To accomplish this goal, there is a 
need to effectively identify sources of uncertainty.  

 
As mentioned earlier, there are different sources of uncertainty which can 

affect geographic information and its analysis (Chrisman 1991). Uncertainty may 
be associated with the process of generalizing the real world or uncertainty may 
occur to errors in the measurement of positions and attributes. Inappropriate 
processing of source data may also be prone to errors if data are not used 
correctly. Aronoff (1989) provides a summary of common sources of error found 
in GIS applications showing how errors occur from the data source, through data 
manipulation to data output and use of GIS results.  

 
Once uncertainty has been identified, the next step is to measure it. There 

have been many techniques for uncertainty assessment developed through land 
surveying which are useful in GIS mapping. Classification accuracy through 
remote sensing is usually evaluated by measuring percentage of correctly 
classified pixels as a method to measure nominal scale data (Cohen 1960). 

 
Following the identification and evaluation of uncertainty, researches must 

deal with uncertainty propagation when different data types are integrated. An 
analysis of uncertainty propagation takes information from the uncertainty in the 
input data, knowledge about the process and predicts the uncertainty associated 
with an output. A general approach to uncertainty modeling is to use a technique 
with equal-probably realizations of spatial data which allows for evaluation the 
inherent distribution of the data and examining the range of possible outputs 
(Zhang and Goodchild 2002). Goodchild (1989) defined some of the basic 
concepts of uncertainty modeling. 
 

Having an understanding on how spatial features are modeled is important 
when looking at the uncertainty of data. There are two perspectives on how to 
model geographic data: the object-model and the field-model. Field-based 
models are more common in physical geography and environmental applications 
while object-based models are better for cartography and facilities management. 
The choice between either model depends on the underlying phenomenon being 
studied and whether the geographic feature is considered a set of single-valued 
functions defined everywhere or a collection of discrete objects (Goodchild 
1989). Objects represent spatial data in the form of discrete objects and their 
associated attributes. Fields represent phenomena that are continuous over 
space and time. The choice will have an effect on the possibilities for uncertainty 
modeling (Goodchild 1993).  
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2.1.3  Statistical Methods for Quantifying Uncertainty 

 
Statistical estimation and inference usually assumes data homogeneity 

and independence. This is problematic when dealing with spatial data which is 
characterized by data dependency and heterogeneity.  A characteristic of spatial 
data is spatial dependence since values at individual locations tend to be 
correlated. Using Tobler’s law of geography, things closer to one another tend to 
be more similar than those further apart (Tobler 1970). Spatial dependence is 
fundamental to geographical distributions. Spatial dependency allows the 
inference about a variable and its spatial variation from measured data.Moran 
(1948) evaluated the dependency on the distribution of geographic data and 
derived an assessment of whether the presence of some characteristics in a 
location makes their presence in neighboring locations more likely. Campbell 
(1981) also evaluated the continuity of values in adjacent pixels looking at rural 
land cover classification using Landsat MSS data. 

 
Some well-established statistical methods and tools for error analysis may 

be used for handling geographical uncertainty (Hession et al. 2006). Gaussian 
models provide a starting point for describing and modeling quantitative data sets 
(Bierkens and Burrough 1993).  Gaussian models are commonly used in large 
data samples that follow a normal distribution. The normal distribution of a 
random variable is specified as a probability density function. Based on that 
function, it is possible to evaluate the errors within a certain interval ((Zhang and 
Goodchild 2002). Error analysis on variables measured on continuous scale such 
as elevation or precipitation can be evaluated through standard statistical metrics 
such as root-mean-square error.  Categorical variables however take discrete 
values and error analysis must be performed using other methods. The results of 
accuracy assessment in categorical data tend to be reported by identifying 
agreement/disagreement between classified and referenced categories. 
Accuracy may be evaluated by measures such as the percentage of correctly 
classified objects, and kappa coefficient. This topic was reviewed by Congalton 
(1991), Goodchild (1994) and Congalton and Green (2008). 

 
 The remaining of this chapter will focus on describing methods to 

evaluate uncertainty in categorical data, which is the focus of this thesis.  

2.2  Uncertainty in Categorical Data 

 
Many real-world phenomena are modeled as categorical information. 

Categorical variables take discrete values as the outcomes of classification 
processes. A commonly known example of categorical data is land-cover which 
is differentiated into nominal categories such as residential, forest or shrub land. 
Such information is usually derived from remote sensing information. Thematic 
mapping for remote sensing data is based on image classification where classes 
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are grouped together based on their spectral similarities (Foody 
2002).Uncertainty in remote sensing-derived information can occur for several 
reasons.  
 

Misclassification can be due to the generalization of data into a pixel. This 
is due to the data model used to represent the complexities of the real-world. 
Categorical variables are modeled as fields. There are four field models for 
describing phenomena using categorical variables. These are irregular points, 
regular points, polygons and grid.  Two of these are used to represent areas: the 
grid model, where values are represented into rectangular cells; and the polygon 
model, where information is divided into irregular polygons. In both models, the 
spatial variation within a cell or a polygon is ignored, and the cell or polygon are 
assigned the value of the dominant class. Uncertainty is therefore found in 
categorical variable when spatial variation within cells and polygons are 
generalized during the mapping process. Uncertainty can also occurred from the 
resolution used for data acquisition, classification systems not properly identified, 
or the difficulty of differentiating between different categories such as land-cover 
types or soil types. Another factor is the subjective interpretation and human 
judgment used during the classification process (Zhang & Goodchild, 2002).  
 

Categorical data cannot be interpolated using traditional geostatistical 
methods because those techniques are focused mainly on continuous data. 
Instead, to account for uncertainty in categorical data, probabilistic approaches 
can used to model each field value as a random variable. The cumulative 
probability distribution is used to characterize a location in the field. This 
approach is the basis of geostatistical analysis and exploration of geographical 
data (Journel 1986).  The result of an accuracy assessment is usually evaluated 
by measures such as the percentage of correctly classified objects. In data 
created through remote sensing, such as land-cover classification, ground truth 
data are often used to identify the percentage of pixels were correctly classified 
or misclassified. The general pattern of uncertainty will be spatially dependent 
with locations near ground truth points having smaller inaccuracy in classification 
that those further away.   
 

2.2.1  Uncertainty in Thematic Land Cover Maps 

 
In statistics, accuracy includes bias and precision (Campbell 1996). In 

thematic mapping, the term ‘accuracy’ is used to express the degree of 
correctness in the classification. As with other categorical data, classification 
accuracy is reported as the degree to which the derived image classification 
agrees with reality – represented by ground truth information. Classification error 
therefore occurs when the image classification does not match the ‘truth’ (Foody 
2002).  
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Many methods of accuracy assessment have been discussed in literature 
(Koukoulas and Blackburn 2001, Kyriakidis 2001). The most widely method of 
assessment of classification accuracy for categorical data however is the 
construction of an error matrix. The matrix consists on the cross-tabulation of the 
mapped classes against a set of observed reference data (Campbell 1996). One 
of the most common measurements of accuracy provided by the matrix is a 
comparison of percentages the recorded class agrees with the reference source. 
This is done through two concepts: user’s and producer’s accuracy. User’s 
accuracy is the probability that a location labeled as category k actually belongs 
the category k in the reference source. This is measured as commission error. 
Producer’s accuracy is the probability that a location known to belong to category 
k is correctly labeled. This is a measured of omission error. The overall accuracy 
is calculated by dividing the sum of the diagonal entries in the error matrix by the 
total of all matrix elements. The overall classification accuracy is reported as the 
percent correctly classified (Foody 2002) .  
 

One problem with the use of this approach to estimate accuracy is that it 
ignores those cases where a pixel may have been allocated to the correct land-
cover class by chance. The Kappa Coefficient is included in the calculation to 
account for the effects of chance agreement (Foody 2002). 
 

In the building of a confusion matrix there is an assumption that the 
agreement between classes is stationary; that is class agreement does not vary 
across a region. Often there is a pattern to the spatial distribution of thematic 
errors which are derived from the sensor used, or ground conditions. Examples 
are errors found at the boundaries between different land-cover classes 
(Congalton 1988b). Although the confusion matrix provides useful accuracy 
information, it does not provide information on the spatial distribution of error 
(Steele et al. 1998). Users of thematic maps derived from remote sensing data 
may benefit from a spatial representation of classification accuracy. Various 
approaches have been used to provide this information.  
 

An earlier study by Fisher (1994) proposed a visual method of displaying 
classification errors via animation where accuracy measures such as overall 
accuracy, user and producer accuracy and classification accuracy  are 
embedded in the display of the classified image. Moisen, Cutler and Edwards 
(1996) developed a generalized linear model approach to study misclassification 
errors in relationship to variables such as distance to road, slope and land-cover 
heterogeneity. Others such as Campbell (1987) and Townsend et al. (2000) 
focused on evaluating the misclassification of pixels along boundaries of 
homogeneous patches. More recent methods include extrapolation from training 
dataset (Steele et al. 1998) and the used of geostatistical approach to model the 
variation in accuracy over a mapped region (Kyriakidis 2001). It is the use of 
geostatistical approaches and its use within GIS that are providing a framework 
for integrating data that provides location-dependent models of spatial 



 

 10 

uncertainty (Kyriakidis and Dungan 2001). Geostatistical studies on mapping 
thematic accuracy follow one of two frameworks: probabilistic or fuzzy theory 
methods.  

2.2.2  Fuzzy Methods for Quantifying Uncertainty of Land-Cover Maps 

 
Fuzzy set theory methods have been followed by researches in the GIS 

community to evaluate classification accuracy using fuzzy error matrices and 
fuzzy categorical data presented in terms of levels of fuzzy class memberships. 
Fuzzy approaches are a subject of continuous research (Foody 1996) and have 
been used to evaluate accuracy in classification using fuzzy error matrices and 
fuzzy class memberships.  

 
Spatial categories are treated as crisp set where each location is exactly 

identified as a single category. Therefore a location is either correctly classified 
or totally misclassified resulting in a crisp binary set. Several types of spatial 
categories are vaguely defined. For example, the categorization of low residential 
areas into open space areas is inheritably vague. Fuzziness is used as a way to 
describe this inexactness and vagueness. Vagueness occurs because the 
classification system is vaguely defined. Inexactness occurs because the 
residential area may be incorrectly describe as open space.  

 
The fuzzy theory approach was explored by Zhang and Foody (1998) as 

an application to assess fuzzy mapping of suburban land cover. Another example  
of using fuzzy sets for mapping spatial accuracy using thematic land-cover maps 
was presented by Tran et al. (2005). They defined a multi-level agreement 
between reference data and the corresponding pixel on the map and developed 
six levels of agreement. The multi-level agreement fuzzy set regarding a 
particular land-cover type for each pixel on the map was defined as a discrete 
fuzzy set. Finally, spatial accuracy maps were developed based on information 
from the multi-level agreement fuzzy sets. Their results showed different land-
cover types had different spatial patterns of accuracy.  

 
Critics of the fuzzy methodology however highlight the arbitrary definition 

of membership functions and the short development, less established,  history of 
these approaches (Zhang and Goodchild 2002). 

2.2.3 Probabilistic Methods for Quantifying Land-Cover Uncertainty 

 
Probabilistic methods of assessing accuracy have long been established 

for use in a non-spatial context. Such techniques are available in GIS 
applications for the modeling of geographic data. Probabilities methods follow the 
framework of geostatistical analysis where geographies of interest are modeled 
as random variables. A random variable is a variable that can take a variety of 
outcome values according to a probability frequency distribution (Zhang and 
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Goodchild 2002). The conventional probabilistic approach to accuracy 
assessment evaluates the classification in terms of percent of locations correctly 
classified. Comparison can be made between the classified data and a reference 
data set. These agreements or disagreements are considered to be random 
events. For a discrete variable such as land-cover, the probability function is the 
probability that a specific event will occur.  
 

The idea is that each location on the land-cover map is correctly classified 
or it has a probability of being correctly classified as a particular class. Steele et 
al. (1998) used this approach to review misclassification probabilities at training 
observation locations and then interpolated these estimates using kriging to 
create accuracy maps for thematic land-cover maps. The accuracy map showed 
misclassification percent of each map point if the process of sampling and 
classification rule were repeated infinitely. This method used a straightforward 
application of kriging to predict spatial accuracy; however, the study utilized 
training data used to create the land-cover dataset in the kriging process instead 
of independent reference data collected after the thematic map had been 
developed to create the accuracy assessment of the dataset.  Probabilistic 
methods are also applied in other geostatistical approaches such as indicator 
kriging and indicator cokriging. Both methods are being increasingly used for 
mapping uncertainty in categorical data (Cao, Kyriakidis and Goodchild 2011). 

 
Indicator Kriging is a non-parametric approached that can be used for 

categorical data and was initially presented by Bierkens and Burrough (1993) in 
their work on probabilistic soil mapping. They demonstrated indicator kriging as a 
method to estimate the conditional probability of occurrences of classes of 
categorical data given classes found at observation locations (Bierkens and 
Burrough 1993). Indicator kriging was also used by Kyriakidis and Dungan (2001) 
for mapping thematic accuracy by integrating image-derived data and higher 
accuracy class labels. Their process used indicator coding methods to determine 
the probability of observing a land-cover class on the ground and to update these 
probabilities into posterior probabilities. Stochastic simulation was then used to 
propagate classification uncertainty to ecological model predictions. Indicator 
kriging overcomes the limits from other geostatistical methods in which is 
designed to be used for data that does not follow two assumptions of 
conventional statistics: data follows a normal distribution and samples are 
independent.  
 

In indicator kriging, data are pre-processed where indicator values are 
assigned to each data point using the following criteria: an indicator is set to 0 if 
the data value at a location s is below a set threshold, and 1 if otherwise: 

 
 

I (s) = I (Z(s) < threshold) = 
 

0, Z(s) < threshold; 

1, Z(s) > threshold; 
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These indicator values are used input to ordinary kriging. Ordinary 
produces continuous surface predictions where the unsampled locations are 
given a value between 0 and 1. These predictions are interpreted as the 
probability that the threshold is exceeded at location s. This prediction surface 
can be considered as a probability map of the threshold being exceeded 
(Krivoruchko and Crawford 2005).  

 
Indicator kriging can be applied for mapping individual land-cover classes. 

However, the distribution of land-cover classes in the landscape is not random 
but classes are spatially correlated. The land-cover class of interest (primary 
variable) usually contains one or more correlated land-cover classes (secondary 
variables). The addition of the cross-correlated information in the secondary 
variable helps reduce the variance of the estimation error (Isaaks and Srivastava 
1989) . This method is useful when two variables are known to be spatially 
associated such as in the case of land-cover data. The accuracy on a single 
land-cover type can be improved by combining data of varying accuracies into a 
single data set using cokriging. 
 

2.3 Generating Alternative Land-cover maps 

 
Almost all data stored in a GIS system are uncertain and when data stored 

in a GIS database are used as input to GIS operations, the  uncertainty will 
propagate to the output of the operation (Aerts et al. 2003). Much research has 
been done on reviewing geostatistical tools are available that map the spatial 
accuracy of thematic data. Much research has also been done on spatial 
uncertainty model describing methods for generating land cover realizations that 
can then be used as inputs for error propagation analysis through stochastic 
simulation (Heuvelink 1998).  

 
Stochastic simulation can be used to evaluate uncertainties in the spatial 

distribution of the error in categorical data by generating multiple maps of land 
cover classifications. Hession et al. (2006) provides information on several 
methods capable of generating multiple realizations of categorical data such as 
confusion matrix simulation (Fisher 1994), indicator cokriging with sequential 
indicator simulation (Boucher and Kyriakidis 2006) or simple indicator kriging with 
varying local means and SIS simulation among others. A growing volume of 
research focuses on the use of Monte Carlo simulation because of its simplicity 
for implementation (Kyriakidis and Dungan 2001). Also, the Monte Carlo method 
does not require knowledge on how the data will be used and it is therefore 
suitable for many applications.  

 
The idea of the Monte Carlo method used for categorical data follows these 

basic steps (Krivoruchko and Crawford 2005): 
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1) The probability of a pixel occurring at a specific category is determined 
using indicator kriging. All simulated values range between 0 and 1. 

2) Compute a statistics of interest. 
3) Repeat process 1000+ times. 
4) Compare the observed statistic for a given dataset to the distribution of the 

simulated statistics. 
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Chapter 3 Materials and Methods 
 

3.1 2001 National Land Cover Dataset 

 
The NLCD was developed by MLRC as a source for land cover information 

which has been used by a broad spectrum of scientific and governmental 
applications (Homer et al. 2007). The objective of this dataset is to provide a 
consistent land-cover layer for all 50 States and provide a dataset that can be 
applied to a variety of applications.  

 
MLRC first published the 1992 NLCD as a 30-meter resolution land cover 

data layer over the conterminous United States from 1992 Landsat Thematic 
Mapper (TM). NLCD 1992 consisted of a 21-class land cover classification 
scheme that has been applied across the lower 48 United States at a spatial 
resolution of 30 meters. The classification approach was a modified level 2 
version of the Anderson land-use and land-cover classification system (Anderson 
et al. 1972). Research was pursued to update the 1992 NLCD into a full scale 
land-cover dataset to produce a layer covering all 50 States and Puerto Rico 
(Homer et al. 2004).     

 
  The 2001 NLCD was created as an update to the previously published 
1992 NLCD product. The 2001 NLCD was derived from Landsat 5 and Landsat 7 
images according to methodology outlined in Homer et al. (2004). NLCD 2001 
improves on NLCD92 in that it consists of three elements: land cover, percent 
developed impervious surface and percent tree canopy density. The 2001 NLCD 
maps 16 land-cover classes (Table 3.1 and Figure 3.1) across all 50 States and 
Puerto Rico at a 30-m by 30-m resolution (Homer et al. 2004).  
 

Table 3.1. 2001 NLCD Land-Cover classes 
 

Code Description Code Description 

11  Open Water 42 Evergreen forest 

12 Perennial ice/snow 43 Mixed forest 

21 Developed, open space 52 Shrub/scrub 

22 Developed, low intensity 71 Grassland/herbaceous 

23 Developed, medium intensity 81 Pasture/hay 

24 Developed, high intensity 82 Cultivated crops 

31 Barren land (rock/sand/clay) 90 Woody wetlands 

41 Deciduous forest 95 Emergent vegetation wetlands 
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Figure 3.1. 2001 NLCD Land-Cover Classification  

 

The latest version of the NLCD is the 2006 NLCD. Similar to the 2001 
version, the 2006 NLCD consists of a 16-class land cover classification scheme 
that has been applied across the conterminous United States at a spatial 
resolution of 30 meters. NLCD2006 is based on classification of Landsat 
Enhanced Thematic Mapper+ (ETM+) circa 2006 satellite data. NLCD2006 also 
quantifies land cover change between the years 2001 to 2006.  

 
The 2001 NLCD was used in this thesis. Analysis was focuses on forest 

land-cover classes (Figure 3.2). Forest categories include pixels classified with 
codes 41, 42 and 43. 

http://landsat.usgs.gov/
http://landsat.usgs.gov/
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Figure 3.2. 2001 NLCD Forest/Non-Forest Classification 

 



 

 17 

3.2 Ground Truth Dataset 

 
The accuracy assessment of the 2001 NLCD was published in 2010 by 

Wickham et al. (2010). The conceptual framework for the assessment was 
outlined by Stehman et al. (2008) and it is based on the sampling design 
implemented for the 1992 NLCD.  

 
The sampling design of the 2001 NLCD accuracy assessment was a two-

stage level cluster sample with three levels of stratification. The first level of 
stratification divided the conterminous United States into 10 regions which were 
then further divided into frame cells that were 120-km by 120-km – these frame 
cells are the second level of stratification. The first stage sample was created by 
randomly selecting 12-km by 12-km sampling units within each sampling region. 
Fifty five sampling units were selected within each region. The last layer of 
stratification was a land-cover class level where 100 sample pixels of each land-
cover class were sampled within each of the 10 regions using stratified random 
sampling from the sampling units. The perennial ice/snow land-cover category 
was excluded from the sampling. A total of 15,000 samples were collected for the 
assessment (Wickham et al. 2010). Figure 3.3 shows the location of the ground 
truth points within each of the 10 regions. A copy of the reference dataset was 
obtained from personal contact with Jim Wickham. 
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Figure 3.3. Location of All Sampling Points within the 10 Regions 
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This reference dataset includes the following primary attributes derived 
from the reference data: 1) the primary label, 2) the alternate label, 3) 
photointerpreter confidence. Attributes derived from the map included 4) the 
sample center pixel map label, 5) the modal map label for a 3x3 pixel window 
surrounding the sample pixel, and 6) boolean field listing agreement between 
reference point and pixel.  Primary and alternate labels are based on codes listed 
in Table 3.1. The primary definitions of agreement used by Wickham et al. (2010) 
were either the mapped land-cover class of the sample pixel matched either the 
primary or alternate reference land-cover label or a modal land-cover class 
matched either the primary or alternate reference land-cover label. The model 
map classes were determined on a 3x3 pixel window centered on the sampled 
pixel. Two new definitions of agreements were established for this study.  

 
The first definition of agreement was based on the case where both the 

map label and reference label attributes were attributed with any combination of 
forest land-cover class categories (i.e. 41, 42 or 43). Based on this definition, a 
pixel where, for example, the map label was calculated as 41 and the reference 
label was calculated as either 41, 42 or 43 would be considered to be in 
agreement. In addition, all points where the map label was attributed in any of the 
non-forest categories and the ‘Agree’ field was attributed as 1 was changed to 0. 
This added information about the known location of non-forest points. A field 
called ‘New Agree’ was added to the reference dataset to calculate the 
agreement values as either ‘1’ or ‘0’. A point attributed as ‘1’ in the ‘New Agree’ 
field indicates the points meets the agreement definition. A point attributed as ‘0’ 
when the point did not meet the agreement definition. This definition of 
agreement was used during the indicator kriging analysis. 

 
The second definition of agreement was based on the case where points 

with map label attributed as forest (values 41, 42 or 43) did not match the 
reference label but did match the both alternate label. This definition of 
agreement was used during the indicator cokriging analysis. 

 
Accuracy results for the 2001 NLCD were reported for the 10 geographic 

regions in a series of error matrices listing the user’s and producer’s accuracies 
per region for each land-cover class. Overall nationwide accuracy values are also 
provided.  Additional details about the methodology and results of the accuracy 
assessment have been described in Wickham et al. (2010) . 

3.3 Probabilistics Methods 

3.3.1 Indicator Kriging 

 
 Indicator kriging was used to predict the probability of a pixel at unvisited 
locations belonging to a forest or non-forest land-cover class. A ‘New Agree’ field 
was added to the attribute table and was calculated as 0 or 1 based on the first 
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agreement definition described in the previous section. A point attributed as ‘1’ 
indicated the map label belonging to any of the forest land-cover classes (i.e. 41, 
42 or 43) matches the reference label. This established agreement at the Level 1 
NLCD classification.  Any point attributed as ‘0’ in the dataset indicates map label 
information does not match the Level 1 definition of agreement and those pixels 
does not belong to any of the land-cover categories under review. Figure 3.4 
shows the location of points labeled where there was/wasn’ an agreement. 
Indicator kriging was done using all ground truth points within the conterminous 
U.S. and also dividing points for each mapping region. 
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Figure 3.4. Location of Sampling Points Used for Indicator Kriging 
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Geostatistical Analysis tools such as indicator kriging were developed for 
examining statistical analysis to examine the spatial correlation of the data. If 
data are spatially independent, we cannot predict values at unknown locations.  
The semivariogram and covariance functions can be used to quantify the 
strength of the spatial correlation between data points as a function of (ESRI 
2003). The semivariogram model available in the Geostatistical Analyst 
Extension in ArcGIS 10.0 was used. Using ground truth information, the 
semivariogram was fitted to match a particular model that appropriately defines 
the mathematical properties of the data (O'Sullivan and Unwin 2010). Three 
model parameters were evaluated: model chosen, the effect of anisotropy and 
lag size.  

 
The process of creating the best suited semivariogram for a dataset may 

involve adding information about the effect of direction in the data. This is known 
as anisotropy. Anisotropy accounts for the semivariogram to change not only with 
distance between the points but also with direction. Isaaks and Srivastava (1989)  
described the effect of anisotropy in ordinary kriging. The idea is that in many 
data sets, data values are more continuous in certain directions than in others.  
Local fluctuations may be found in the direction of the anisotropy. ArcGIS 
Geostatistical Analyst extension allows accounting for anisotropy by flagging 
‘Anisotropy’ as ‘True’ in the Semivariogram/Covariance Modeling window. 
Anisotropy was evaluated using the 2001 NLCD ground truth points.    

 
The lag size chosen in the semivariogram modeling process can also 

have an effect on the results. If the lag distance is too large, autocorrelation at 
short distances may be missed. A small lag size may create empty bins in the 
data (ESRI 2003). Selecting the appropriate lag size is not straightforward when 
the data uses an irregular random sampling scheme. The ground truth data used 
in this thesis has an irregular sampling scheme. Different approaches were used 
to determine the most appropriate lag size to use on the NLCD ground truth data. 
One approach was using the ‘Average Nearest Neighbor’ tool available in ArcGIS 
10.0 to determine the average distance between points and their closest 
neighbors. Other approaches used included the default lag size assigned by the 
semivariogram modeling tool and running the ‘Optimized’ tool which focuses on 
minimizing the mean square error of the data (ESRI 2010).  

 
ArcGIS provides several functions to model the semivariogram including 

circular, spherical, Gaussian, and stable among others. The model selected will 
influence the prediction of the unknown values and determine the shape of the 
curve near the origin. The steeper the curve is near the origin, the more influence 
the closest neighbors have on the prediction. The result is a less smooth output 
surface. Also, as local variation in the surface increases, the range decreases 
and the nugget value increases. The spherical, exponential and Gaussian 
models were evaluated as part of the analysis to identify which model best fits 
the data. The exponential model is applied when spatial correlation decreases 
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exponentially with increasing distance, i.e., correlation disappears at a short 
distance. This spherical model shows a progressive decrease of spatial 
autocorrelation (equivalently, an increase of semivariance) until some distance, 
beyond which autocorrelation is zero. The Gaussian model represents very 
smooth behavior at short distances (Kanevski and Maignan 2004). 
 

The final cross-validation process provides information about which model 
provides the best prediction by calculating a series of statistics.  The goal of the 
kriging process is to minimize the variance of the error and to create a mean 
residual of the error which is closest to 0. Many estimation models aim to 
minimize the mean residual error and the distinctive property of ordinary kriging 
method used with indicator kriging is to minimize the variance (Isaaks and 
Srivastava 1989). ArcGIS Geostatistical Analyst tool provides several errors 
estimators on the results which can be reviewed to identify which model will 
produce the best results. Appendix A.1 includes a list of all the error estimators 
described below and the formula used to calculate each prediction.  

 
The ‘mean prediction error’ provides a measurement of bias in the model. 

This value is calculated as the averaged difference between the measured and 
the predicted values. The results looking for are those where the prediction is 
unbiased and has a mean residual error closest to 0.The ‘mean prediction error’ 
calculated depends on the scale of the data. To standardize these results, 
ArcGIS kriging outputs also provide the ‘mean standardized’, which is calculated 
as the ‘mean predictor error’ divided by the prediction standard error at each 
location. These results should also be near 0.  

 
Bias is not the only source for estimating error. An unbiased estimator 

does not imply an estimated value is equal to the true value, it only implies the 
errors are zero on average. In addition to the estimator being unbiased, we aim 
for individual errors and variances to be small. This is reported through the ‘root-
mean-square error’ (RMSE), which is calculated as the square root of the square 
‘mean prediction error.’ The RMSE indicates how closely the model predicts the 
measured values. RMSE is a better indicator of error than the mean prediction of 
error because it includes an estimation of both bias and variance and it indicates 
predictions do not deviate much from the measured values. Taking the square 
differences of  the mean values avoid positive and negative values from 
canceling each other out and it provides a more reliable source of error (Burt, 
Barber and Rigby 2009).  

 
Other estimators of errors provided by ArcGIS are the ‘average standard 

error’, and ‘root-mean-square standardized error’ (RMSSE). The average 
standard error is the average of the prediction standard error. The RMSSE is the 
square root of the squared mean standardized error. This predictor indicates 
whether the variability of model predictions is being over or under estimated.  An 
‘average standard error’ with a value close to RMSE indicates the variability in 
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the prediction is being correctly identified. If the ‘average standard error’ is 
greater than RMSE, the variability in the prediction is being overestimated. The 
RMSSE value should be close to 1 to indicate prediction standard values are 
correct. If the RMSSE is greater than 1, the variability of the estimators is being 
underestimated. A RMSSE value less than 1 indicates the variability of the 
estimators is being overestimated (ESRI 2003).  

 
Indicator kriging produced a probability surface indicating the chance that 

a pixel is classified in the forest or non-forest land-cover category.  
 

3.3.2 Indicator Cokriging 

 
Indicator cokriging was used as a way to minimize the variance and 

residual error estimated from the indicator kriging of the forest land-cover class 
using other land cover categories as secondary variables. The methodology used 
for indicator co-kriging process followed the same as with indicator kriging 
analyzing the effect of the model, lag size and anisotropy in the data. The co-
kriging tools available in ArcGIS allows for using up to four variables. The primary 
variable used was points classified in the forest land-cover category. That 
includes points where both the map and reference labels were attributed as 41, 
42 or 43. The secondary variables used were ground truth points attributed as a 
forest land cover category where the map and reference labels do not match, but 
the map and alternate labels do. Like indicator kriging, cokriging was done using 
all ground truth points within the conterminous U.S. and also dividing points for 
each mapping region. Figure 3.5 shows points used for indicator cokriging.. 
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Figure 3.5. Location of Sampling Points Used for Indicator Cokriging.
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3.3.3 Monte Carlo Simulation 

 
There are many methods which can used for evaluating the propagation of 

quantitative errors in spatial operations. Examples are Taylor series 
approximation, Rosenblueth’s method, and Monte Carlo simulation (Aerts et al. 
2003). Stochastic simulations such as Monte Carlo are used to generate 
alternative outcomes of an unknown parameter over an area of interest and are 
valuable methods for assessing the uncertainty resulting from geoprocessing 
operations in GIS (Kyriakidis 2001, Krivoruchko and Crawford 2005).  The idea is 
to repeat a process many times with input values that are randomly sampled so 
that statistics such as mean, variance, etc, can be computer from a sample 
distribution.  Monte Carlo simulations proceed as follows: 

 
1. Simulated values are created for the probability distribution of the input 

data under study. 
2. Generate a set of random inputs 
3. Evaluate the model and store results.  
4. Process is repeated many times (i.e. 1,000 times) 
5. Compute and analyze the results using histograms, summary statistics, 

etc.  
 
Monte Carlo simulation was the method used in this thesis to create 

multiple realizations of the forest and non-forest land-cover classes using the 
probability surfaces created through the kriging process outlined in the previous 
section of this chapter.  
 

Figure 3.6 outlines the workflow followed. The process involved creating a 
random raster and comparing it with coincident pixels in the probability surfaces 
created from the indicator kriging and indicator cokriging analysis. Pixels where 
the value in the random raster was less or equal to the probability surfaces were 
considered to become a forest pixel. When every location in the raster was 
visited, the realization was stored and the procedure was repeated by following a 
new random path through all cells, generating a new realization. This process 
was run 1,000 times. With geostatistics simulation, multiple realizations of the 
probability surface were created resulting in a distribution of the spatial 
uncertainty in our data. The multiple realizations are possible versions of the 
NLCD forest land-cover classes (Krivoruchko and Crawford 2005). The Monte 
Carlo simulation was run for the probability surface created through indicator 
kriging, and the three probability surface scenarios created through indicator 
cokriging. This workflow was done using Model Builder in ArcGIS 10.0 (See 
details in Appendix A2). 
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Figure 3.6. Monte Carlo Simulation Decision Workflow. 
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Chapter 4 Results and Discussion 
 

4.1 Results  

4.1.1 Indicator Kriging 

 
Indicator kriging was done using ground truth points where the map label 

was a forest land-cover class (values 41, 42 or 43). The ‘New Agree’ field in 
those points was classified as either 1 or 0 depending if the map and reference 
label matched. Ground truth points for other land-cover classes where the map 
and reference labels agreed (‘Agree’=1) were included in the indicator kriging 
process as well but the ‘Agree’ value was recalculated as ‘0’ to indicate these 
points are not classified as forest. Indicator kriging was done for points within the 
conterminous U.S. and also for points in each mapping region. 

Nationwide Results 

  
Figure 4.1 shows the isotropic semivariograms resulting from indicator 

kriging using Gaussian, spherical, and exponential models using all points within 
the U.S. The models shown assume the covariance between the data depend 
only on the distance between points and not on the direction. Default ‘lag size’ of 
107,000 meters was used. The semivariograms indicate spatial correlation reach 
a plateau between 16 km and 27 km (Table 4.1). All graphs show a constant 
pattern after the range distance. Information listed in Table 4.1 indicates the 
Gaussian model shows greater variation in the data as it has the smallest range 
and larger nugget. The exponential model resulted in the smallest nugget and 
largest range, indicating correlation in the data at longer distance.  

 
Table 4.1. Output Parameters of Isotropic Semivariogram Models 

 

Model Co a (km) Co+ C1 

Spherical 0.070 26.5 0.16 

Gaussian 0.070 15.8 0.16 

Exponential 0.064 28.6 0.16 
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Figure 4.1. Semivariogram for Isotropic Spherical, Gaussian and Exponential 
Models (top to bottom). 
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The effect of direction (anisotropy) was evaluated next. Results using all 
ground truth points are shown on the semivariograms in Figure 4.2. Output 
parameters are listed in Table 4.2. Default lag size was used for all models. 
Anisotropy accounts for the fact that values in many datasets may be more 
continuous along certain directions than along others. Using an anisotropic 
model puts more of the weight to sample points in the direction of maximum 
continuity (Isaaks and Srivastava 1989). The semivariogram map (Figure 4.2) 
shows data has maximum continuity is on the SW-NE direction. Anisotropic 
semivariograms were fitted to that direction. Output parameters (Table 4.2) show 
the three models reached range between 18 to 34 kilometers. The range 
increased in the three models when anisotropy was included. Graphs show a 
constant pattern after reaching the range. The nugget also increased in all three 
models when anisotropy was considered. The sill decreased, indicating 
incorporating direction effect decreases the variance on the results.  

 
Table 4.2. Output Parameters of Anisotropic Models.  

 

Model Co a (km) Co+ C1 

Spherical 0.083 27.4 0.13 

Gaussian 0.082 17.6 0.13 

Exponential 0.084 34.2 0.13 
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Figure 4.2. Semivariogram of Anisotropic Spherical, Gaussian and Exponential 

Models. 
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The effect of the lag size selected was also evaluated. Results chosen are 
shown on Figure 4.3 and Table 4.3. Selecting a lag size that is too big may mask 
correlation at short distances. However, selecting a lag size that is too small may 
create empty bins or bins too small to be representative of the data. Different lag 
sizes were tested on the data including the lag size selected using the ‘Optimize 
model’ option in ArcGIS. This tool allows the program to select the ideal lag 
distance for each model that would minimize the error and variance. Optimizing 
the data decreased the lag distance used for all models. Anisotropy was also 
included in these results. The range (Table 4.3) was reached between 34 km to 
47 km.  Using a smaller lag size in combination with an anisotropic model 
reduced the variance in all scenarios and increased both the range and the 
nugget. The semivariograms in Figure 4.3 show how data fluctuates as the range 
becomes larger. The spherical model resulted in the smallest variance and range 
among the three models. 

 
Table 4.3. Output Parameters of Optimized Models 

 

Model Co a (km) Co+ C1 

Spherical 0.053 46.6 0.11 

Gaussian 0.058 34.3 0.12 

Exponential 0.083 34.2 0.11 
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Figure 4.3. Semivariogram for Spherical, Gaussian and Exponential (top to 
bottom) models using lag distance calculated by the Optimized Model. 
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Results indicated the optimized anisotropic semivariogram model created 
the smallest variance for all models. The next step was to use the optimized 
anisotropic scenario within the indicator kriging tool to identify which model is 
better suited for the data. Results using Gaussian, exponential and spherical 
models were compared. Table 4.4 includes prediction errors created by each 
model. Both the mean prediction error and the mean standardized are smallest 
using the exponential model. This indicates the exponential model provides the 
most unbiased results. The exponential model also has the smallest RMSE. The 
average standard error is smaller than the RMSE for all models, indicating all 
models underestimate the variability of the values. The RMSSE is greater than 1 
in all models; also an indication that all models underestimate the variability of 
the datasets.  

 
Table 4.4. Indicator Kriging Prediction Errors for Conterminous United States 

 

Optimized Model 

Model Mean 
Prediction 

Error 

Root-Mean-
Square Error 

Mean 
Standardized 

Root-Mean 
Square 

Standardized 
Error 

Average 
Standard 

Error 

Spherical 0.00047 0.36 0.0020 1.10 0.32 

Gaussian 0.00047 0.36 0.0020 1.13 0.32 

Exponential 0.00032 0.35 0.0016 1.08 0.33 
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Note that the goal of the kriging process is to create an estimation that is 
both unbiased (mean residual error is equal to 0) and the variance is minimized 
(Isaaks and Srivastava 1989). Furthermore, RMSE is the estimator which 
provides the most accurate estimation of error as it takes into account both the 
bias and variance factors. This information suggests the optimized anisotropic 
exponential model better fits the data and will create a more accurate surface 
since it resulted in the smallest RMSE.  
 

The probability surface created by fitting the optimized anisotropic 
exponential model for the conterminous U.S. is shown in Figure 4.4. The 
probability of a pixel to be a forest cell increases from light yellow to dark brown 
areas. The image shows the mapping regions used by Wickham et al. (2010) in 
the NLCD suggest hard boundaries between forest and non-forest areas at 
region boundaries. For example, region 3 shows forest land along its boundaries 
that seem to end abruptly and do not transition to regions 2 and 4. The 
probability surface however shows, for example, the forest land transitions from 
the south-eastern corner of region 3 through region 4. Reviewing the spatial 
distribution of these probability values along boundary lines would allow to better 
delineate where mapping regions should be placed.   
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Figure 4.4. Indicator Kriging Probability surface (top) and 2001 National Land 

Cover Dataset Forest Land-Cover (bottom) 
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Results show that approximately 10% percent of pixels (196 million acres) 
in the probability surface created for the entire United States have a probability 
equal or greater than 50% of being classified as forest (Table 4.6). Approximately 
26% of pixels (460 million acres) nationwide are classified as forest in the 2001 
NLCD.  

 
Tables 4.7 and 4.8 compare the user’s and producer’s accuracies for the 

U.S. in the 2001 NLCD and the probability surface created through indicator 
kriging. Overall accuracy for the probability surface is also reported. NLCD’s 
accuracies are available from Wickham et al. (2010). The overall accuracy of the 
probability surface is 66%.  The producer’s accuracy is “good” (86%), but smaller 
than the producer’s accuracy of the 2001 NLCD (88.5%). Even though the overall 
accuracy of the classification by the probability surface is poor, it is adequate for 
the purpose of mapping the forest class. However, the user’s accuracy of the 
probability surface is only 28%. This indicates that even though 86% of the 
forested areas have been correctly identified as forest, only 27% percent of the 
areas are truly of forest category. On the other hand, the 2001 NLCD did a better 
job at classifying forest land-cover across the U.S as 87% of the areas classified 
as forest are truly of that category.  

 
Figure 4.4 shows the overall spatial distribution of forest land in the 

probability surface coincides that of the forest land in NLCD. The producer’s 
accuracy of both surfaces would indicate that both layers reasonably are able to 
classify forest land within the conterminous U.S. Using a probability greater than 
50% of a cell classified as forest, areas where NLCD and kriging surfaces differ 
can be identified. One example of the differences between both surfaces can be 
found in region 1 where NLCD shows mostly a continuous band of forest land 
along a north-south band in the eastern part of region 1. The kriging results show 
the probability of this area of being forest is less than 50% through the entire 
area. Other differences are found in regions 8 and 10 where NLCD also shows 
consistent forest land coverage but the probability surface shows the change of 
the area along the boundary between those two regions have a probability less 
than 40% of being classified as forest. Table 4.8 shows both the user’ and 
producer’ accuracies in regions 8 and 10 are very small. The kriging process in 
these two regions both was not able to properly map the forest class and those 
pixels classified as forest are not truly forest land.  

Results from the exponential model listed in Table 4.4 shows the mean 
prediction error and mean standardized prediction errors as being 0.0032 and 
0.0016 respectively. These results indicate there is bias in the results as the 
values are not zero. The error in the individual points ranges from -1 to 1, 
indicating points with an indicator value of 1 were predicted to have a value of 0, 
and points with an indicator value of 0 were predicted to have a value of 1. These 
points are scattered throughout all regions. The mean error was 0.00045 while 
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the standard deviation of the error was 0.416 indicating error values are 
dispersed across the country. 

The average standard error of all points was 0.33, which is smaller than 
the RMSE of 0.35. This indicates the variability of the predictions from the true 
values is being underestimated by the indicator kriging process.  The standard 
error in all points ranges from 0.29 to 0.42. It is smaller around data points and 
increases with distance from sampling data points (Figure 4.5). Additionally, the 
RMSSE is greater than 1 which is also an indication the predictions are being 
underestimated.  

 
Figure 4.5. Standard Error Surface from Indicator Kriging Surface. 
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Region Results 

 
The same exponential model scenario was repeated dividing ground truth 

points per the 10 mapping regions used by Wickman et al (2010) in the accuracy 
assessment of the 2001 NLCD. Prediction errors per region are listed in Table 
4.5. The probability surfaces created by fitting the optimized anisotropic 
exponential model mapping region are shown in Figure 4.6. Each region in 
Figure 4.6 is a separate raster. The Figure shows areas in some regions, such as 
region 10, where there were not enough reference points to interpolate 
information about the forest land in these sections. The probability surface does 
not have any values in these areas. Additionally, as it was seen in the nationwide 
probability surface shown in Figure 4.4, the hard boundaries used by Wickham et 
al. (2010) to delineate mapping regions do not always coincide where boundaries 
between regions would be delineated using information in the probability surface. 
Both Figures 4.4 and 4.6 show the same transition area in the probability surface 
between the forest land in the south-eastern corner of region 3 and region 4. The 
NLCD shows the forest land ends at the region 3-side of the boundary between. 
Region 4 does not show any forest land. The mapping regions may not correctly 
divide regions at this location. An example where the mapping regions may be 
accurate can be seen in the boundaries between regions 1 and 2. The NLCD 
shows a band of forest land along the eastern side of region 1. This forest land 
does not appear in region 2. The transition between these two regions however 
is delineated by the Rocky Mountains. The mapping regions are correctly 
delineated.  

 
Figure 4.7 shows the standard error surface per region. The probability of 

a pixel to be a forest cell increases from light yellow to dark brown areas. Table 
4.6 compares the percentage of pixels in each mapping region with a probability 
higher than 50% of being classified as forest and the percentage of pixels 
classified as forest in the 2001 NLCD. Area in acreage is also included.  Overall, 
all regions show the percentage of the pixels with a probability higher than 50% 
of being classified as forest is less than the percentage of forest pixels estimated 
during NLCD classification process. These differences are found throughout all 
regions.  

 
Tables 4.7 and 4.8 compare the user’s and producer’s accuracies for the 

ten mapping regions in the 2001 NLCD and the probability surface created 
through indicator kriging. The overall accuracy of the probability surfaces ranges 
from 23% in region 4 to 98% in region 2. Overall, the producer’s accuracy is 
smaller in the probability surfaces created for all regions except region 4, which 
had a producer’s accuracy of 95.5%.  The producer’s accuracies for the 
remaining regions varied from 13% to 75%. All regions however had poor user’s 
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accuracies. We can conclude that, in general, indicator kriging was poor at 
mapping the forest land cover areas, and worst at correctly classifying areas that 
area truly of the forest category. Overall, the 2001 NLCD did a better job at 
classifying forest land-cover across all regions, with the exception of region 2 
where the user’s accuracy is only 39% in the 2001 NLCD.  
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Table 4.5. Indicator Kriging Prediction Errors for all Mapping Regions in the 
United States 

 
Optimized Model 

Region 
 
 

Mean 
Prediction 

Error 

Root-
Mean-
Square 
Error 

Mean 
Standardized 

Root-Mean 
Square 

Standardized 

Average 
Standard 

Error 

1 0.0058 0.34 0.0040 1.35 0.25 

2 0.0015 0.20 0.0035 1.00 0.21 

3 -0.0062 0.41 -0.014 0.95 0.43 

4 0.0016 0.30 0.0069 1.55 0.25 

5 0.0017 0.27 0.0059 0.93 0.29 

6 -0.0023 0.39 -0.0051 1.18 0.33 

7 0.0020 0.42 0.0095 1.21 0.34 

8 0.0022 0.40 0.010 1.22 0.32 

9 0.0055 0.37 0.016 1.06 0.35 

10 0.00031 0.39 0.0079 1.33 0.28 

 

Table 4.6. Percentage of Pixels in Indicator Kriging Surfaces with a Probability 
Higher than 50% of Forest Classification 

 

Region 
 

Indicator 
Kriging  

Indicator 
Kriging 
Acreage 

2001 
NLCD 

2001 NLCD 
Acreage 

1 16.28% 17,555 849 41.33% 54,355,771 

2 0.59% 851,525 11.45% 29,167,825 

3 7.34% 17,800,730 37.98% 95,063,664 

4 3.35% 13,461,066 6.33% 26,065,911 

5 5.05% 17,015,429 11.40% 32,303,345 

6 21.97% 16,839,985 26.39% 36,238,993 

7 37.73% 52,392,271 39.40% 72,865,941 

8 23.76% 29,128,782 61.92% 87,591,692 

9 9.55% 9,632,661 22.94% 26,350,329 

10 27.52% 21,256,252 56.72% 52,049,783 

Nationwide 10.20% 196,055, 387 25.28% 512,053,254 
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Table 4.7. Commission and Omission Error in the 2001 NLCD (Wickham et al. 
2010) 

 

 User’s accuracy Producer’s 
accuracy 

Region 1 86% 85.3% 

Region 2 39% 97.7% 

Region 3 78.5% 82.6% 

Region 4 77.1% 68.3% 

Region 5 79.6% 73.1% 

Region 6 78.4% 79.8% 

Region 7 80.7% 72.2% 

Region 8 86% 90.5% 

Region 9 96.0% 85.8% 

Region 10 89.7% 90.6% 

U.S. 87% 88.5% 

Table 4.8 Commission and Omission Error in the Indicator Kriging Probability 
Surface 

 User’s 
accuracy 

Producer’s 
accuracy 

Overall 
Accuracy 

Region 1 19.62% 32.53% 87.65% 

Region 2 7.84% 27.69% 97.59% 

Region 3 18.68% 75% 77.32% 

Region 4 6.59% 95.50% 22.67% 

Region 5 31.97% 44.30% 90.05% 

Region 6 20.28% 12.79% 85.35% 

Region 7 1.76% 7.31% 96.70% 

Region 8 2.92% 35.46% 88.88% 

Region 9 41.56% 75.14% 80.71% 

Region 10 1.46% 51.09% 85.67% 

U.S. 27.61% 86.41% 65.84% 
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Figure 4.6. Indicator Kriging Probability surface per Region 
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Figure 4.7. Standard Error Per Region using Exponential Model 
 

Region 7 showed the smallest discrepancy between the percentage of 
pixels in the probability surface with a probability of being classified as forest 
being greater than 50% and the percentage of pixels classified as forest in the 
2001 NLCD. The difference was 28%. The overall accuracy of region 7 in the 
probability surface is also the second highest near 97% (Table 4.8). The overall 
distribution of pixels classified as forest coincides with that shown on the NLCD. 
The user’s and producer’s accuracies for region 7 however indicate that the 
probability surface did a poor job a mapping forest land-covers and correctly 
classifying the pixels as well. Region 7 also has the second smallest producer’s 
accuracy in the 2001 NLCD (Table 4.7) at 7.3%.  The majority of the forest land 
are located along the west and east areas of the region; the length of the 
Mississippi River along the center of the region is the less forested area.  

Other regions in the Midwest (4, 5 and 6) showed fewer discrepancies 
between the percentage of pixels in the probability surface with a probability of 
being classified as forest being greater than 50% and the percentage of pixels 
classified as forest in the 2001 NLCD. The differences were 48%, 47% and 54% 
respectively. The overall spatial distribution of forest lands also coincided with the 
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forest land distribution in NLCD. The producer’s accuracy in the 2001 NLCD for 
regions 4, 5 and 6 was 68%, 73% and 80% respectively. The producer’s 
accuracy were 95.5%, 44.3% and 13% respectively. Region 4 had the smallest 
overall accuracy of all regions (23%) but highest producer’s accuracy (95.5%). 
These results indicate the probability surface does a better job at mapping forest 
land in region 4 than NLCD does; however the user’s accuracy of region 4 in the 
probability surface is only 7%, and 77% percentage in the 2001 NLCD. As it 
occurred with all regions, the probability surface did a poor job at classifying 
pixels as forest that are truly of that category. Most of the forest land in region 4 
is located on the east corner along the boundary with region 3 and along the 
boundary with region 7. The forest lands in region 5 are located mainly along the 
boundary with region 8; forested areas in region 6 are found throughout the 
region, especially around the edges of the lakes.  

 
Cross validation results show regions 4, 5, 6, and 7 had large mean 

prediction errors among all 10 regions. Despite these regions showed the 
smallest difference between the probability surface and NLCD, the predictions 
varied more from the true values in these areas than regions with larger 
differences with NLCD. Region 7 had the largest RMSE of all 10 regions with a 
RMSE value of 0.42. The RMSSE varies among the five areas. Regions 5 and 3 
are the only regions that had RMSSE under 1 and an average standard error 
greater than the RMSE. This region is overpredicting the variability of the 
predicted values. Regions 4, 6 and 7 are all underpredicting the variability of the 
predicted values.  
 

The regions with largest discrepancies between the probability surface 
and NLCD were regions 2 and 3. The probability surface created through 
indicator kriging indicated that less than 1% of pixels in region 2 have a 
probability higher than 50% of being classified as forest. In contrast, the 
percentage of pixels classified as forest in regions 2 in NLCD is approximately 
11%. The difference in region 2 was as much as 97%; the highest among all 
regions. Tables 4.7 and 4.8 show region 2 was poorly mapped in both the 2001 
NLCD and the probability surfaces as user’s accuracies were very small at 39% 
and 8% respectively. The producer’s accuracy for this region in the 2001 NLCD 
however is high at approximately 98%. NLCD shows patches of forest land along 
the center of the region, and a larger area in the north. These areas coincide with 
pixels in the probability surface where the probability values are greater than 0.5. 
However, the probability values mostly range between 0.32 and 0.49. Using a 
threshold of 0.5 leaves most of this region unforested. Despite region 2 showing 
the greatest discrepancy with NLCD, cross validation results show (Table 4.5) 
suggest region 2 has the most accurate results.  The mean prediction error for 
region 2 was closest to zero among all regions which would indicate region 2 
created the most unbiased results. Region 2 also had the smallest RMSE, the 
average error was the closest to its RMSE, and this region also showed the 
smallest error in the prediction variability. The average standard error for region 2 
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was also greater than RMSE, however the RMSSE is equal to 1 which indicated 
the prediction is valid. As stated earlier, the difference between both surfaces 
was the highest among all regions at 97%.  
 

Results in region 3 also differed a lot with NLCD.  The difference between 
the probability surface and the NLCD was approximately 81%. Similar to region 
2, the distribution of forest land seen in the NLCD and that seen on the 
probability surface is very similar. However, the values of these pixels mostly fall 
below the 0.5 threshold value used. In contrast to region 2, the prediction error in 
region 3 was the farthest from zero among all regions, indicating results in this 
region are the most biased. The RMSE of region 3 is also the second largest 
from all regions. The variability of the estimations is being overestimated in this 
region. This is indicated by the average standard error being larger than the 
RMSE and also the RMSSE being smaller then 1. Figure 4.6 shows forest cover 
in NLCD for region 3 is found along the northern area of the region and some 
areas along the western and southwestern boundaries with region 2 as well as 
eastern boundary with region 4. Figure 4.6 shows the central and northern areas 
of Region 3 includes pixels where a probability of being forest land is 50% or 
greater. There are also some patches on the south eastern corner of region 3 
where the probability of the pixels for being classified as forest is greater than 
50%. As it occurred in region 2, the overall extent of forest land shown in region 3 
of the NLCD is larger than that of the probability surface; 38% of pixels area 
classified as forest by NLCD in comparison with 7% of pixels by the probability 
surface (Table 4.6).  
 

The percentage of pixels in the probability surface with a probability of 
being classified as forest being greater than 50% in regions 1, 8, 9 and 10 differ 
from the percentage of pixels classified as forest in the 2001 NLCD between 63% 
and 68%.  Overall, the distribution of forest land in the probability surface in all 
regions and the 2001 NLCD is very similar (Figures 4.4 and 4.5). The differences 
between the results and the NLCD were found in the extent of these forest lands. 
This is true to all 10 regions. 

 
Region 8 also shows one of the biggest discrepancies between NLCD and 

the probability surface. The probability surface created through indicator kriging 
indicates that close to 24% of pixels has a probability higher than 50% of being 
classified as forest. In contrast, NLCD shows the percentage of pixels classified 
as forest is approximately 62%. The difference between both surfaces was about 
67%. Region 8 has the highest percentage of forest land according to NLCD, and 
it shows a consistent extent across the region (Figure 4.4). The distribution of 
forest land in the probability surface coincides with that of the NLCD. The RMSE 
for this region was 0.40, which was the third highest among all regions (Table 
4.5). The variability of the predictions is being underestimating as the RMSS is 
greater than 1 and the average standard error is less than the RMSE.  The 
variability of the estimations is being underestimated in regions 1, 4, 6, 7, 8, 9 
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and 10. The average standard error in all these regions is smaller than RMSE. 
Also, the RMSSE is greater than 1 in all these regions.   

 
The percentage of pixels with a probability greater than 50% to be 

classified as pixels in region 1 is 16%. The NLCD has 41% of the pixels classified 
as forest. The difference (68%) in the spatial distribution of forest lands between 
these two surfaces is seen more clearly in this region than any other region 
(Figures 4.4 and 4.5). NLCD shows two predominant bands of forest land in 
region 1, one along the western coast and one right along the boundary with 
region 2. The distribution of forest land in the probability surface coincides along 
the western band of the region. However, the extent of forest along the boundary 
with region 2 is not as extensive as is seen in the NLCD. This region has the 
second largest mean prediction error with a value of 0.0058. The RMSS is 
greater than 1 (1.35) and the average standard error is 0.25, smaller than the 
RMSE of 0.34. The variability of the predictions in this region is being 
underestimated.  

 
Region 10 has 57% of pixels classified as forest according to the 2001 

NLCD. However, the probability surface only estimates 28% of pixels have a 
probability greater than 50% of being classified as forest. The difference between 
the two surfaces is approximately 66%. Region 10 has the smallest mean 
prediction error. NLCD shows region 10 is forested throughout most of its extent. 
The extent coincides with the extent shown by the indicator kriging surface. The 
probability value in this region ranges from 0 to1 but the mean value is 0.35.  

 
Figure 4.7 shows the standard error surface in all regions. Similarly to the 

nationwide distribution of the standard error (Figure 4.5), the standard error per 
region is smaller around the ground truth points and it increases with distance 
from the points. The map represents data density.  
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4.1.2. Indicator Cokriging 

 
Indicator cokriging was used to determine if the variance and residual 

error estimated from indicator kriging on forest land-cover class are minimized 
using a secondary variable. The secondary variable used included ground truth 
points where the ‘MAP’ field was classified as forest (41, 42, 43) matched the 
alternate label (‘ALT’ field) and not the reference label (‘REF’ field. Like the 
indicator kriging analysis, indicator cokriging was done using all ground truth 
points within the conterminous U.S. and also dividing points for each mapping 
region. 

 

Nationwide Results  

 
Figure 4.8 shows the semivariogram resulting from indicator cokriging 

using an anisotropic exponential model was used in the three models following 
results in Section 4.1.1. The lag distance was changed to 1,000 meters.  

 

 
 

Figure 4.8. Semivariogram for Indicator Cokriging Exponential 
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As seen in Figure 4.1, the semivariogram created from the cokriging 
process showed correlation of the data at a short distance. The data shows a 
constant pattern after reaching the range at approximately 7,000 meters. The 
range was reached at a shorter distance when a secondary variable was used, 
indicating the points are spatially correlated at a longer distance with indicator 
kriging than cokriging.  

 
Table 4.9 includes a comparison of the estimators of errors from both 

indicator kriging and indicator cokriging scenarios using ground truth points in the 
conterminous United States. The RMSE was smaller in indicator cokriging results 
than indicator kriging meaning the cokriging model creates less unbiased results. 
The mean prediction error and the mean standardized are both larger when 
using a secondary variable. Even though the RMSE is smaller, the predictions 
are farther away from the measure values.  

 
The errors in the individual points range from -0.83 to 0.76. The mean 

error was 0.00138 and the standard deviation of the error was 0.15; the errors 
are not as dispersed across the country as the error during indicator kriging.  
 

The average standard error of all points was 0.18, which is larger than the 
RMSE of 0.15, and indicates the model, unlike it was seen in indicator kriging 
results, is overestimating the variability of the dataset. Additionally, the RMSSE in 
the cokriging results was less than 1, which is also an indication of values being 
overestimated. The standard error in all points ranges from 0.12 to 0.26. As it 
was seen during indicator kriging, the standard error is smaller around data 
points and it increases with distance (Figure 4.10). 

 
The probability surface created by fitting the optimized anisotropic 

exponential model for the conterminous U.S. is shown in Figure 4.9. The 
probability of a pixel to be a forest cell increases from light to yellow to dark 
brown. Figure 4.10 shows the standard error surface created from the standard 
error of interpolated values from the indicator kriging.  
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Table 4.9. Comparison of Indicator Kriging and Indicator Cokriging Prediction 
Errors for the Conterminous United States. 

 
 Indicator 

Kriging 
Indicator 
Cokriging  

Mean Prediction Error 0.00032 0.00138 

Root-Mean-Square-
Error 

0.35 0.15 

Mean Standardized 0.0016 0.0081 

Root-Mean-Square-
Standardized-Error 

1.08 0.82 

Standard Error 0.33 0.18 
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Figure 4.9. Probability surfaces from indicator cokriging. 
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Figure 4.10. Standard error surfaces from indicator cokriging.  
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Results shown that approximately 8% of the pixels (159 million acres) in 
the probability surface created for the entire United States have a probability 
equal or greater than 50% of being classified as forest. This is less than the 
results indicator kriging which classified approximately 10% of pixels as forest.  
 

The results shown in the probability surface created through cokriging are 
similar to the results shown in indicator kriging. The overall spatial distribution of 
pixels classified as forest in NLCD coincides with pixels with higher probability of 
being classified as forest. The differences are again mostly found in the extent of 
the distribution of forest land shown in all regions, especially in regions 1, 8 and 
10. Overall, the probability of pixels to be forest narrows down in their extent 
when the secondary variable was added.  

 
Table 4.12 compare the user’s and producer’s accuracies for the U.S. in 

the 2001 NLCD and the probability surface created through indicator cokriging. 
The overall accuracy of the probability surface is 68%, slightly better than the 
overall accuracy of the probability surface created from indicator kriging (Table 
4.8).  The producer’s accuracy is “good” (81%), but again smaller than the 
producer’s accuracy of the 2001 NLCD (88.5%), and also smaller than the 
producer’s accuracy of indicator kriging.  Even though the overall accuracy of the 
classification by the probability surface is again poor, it is adequate for the 
purpose of mapping the forest class. However, the user’s accuracy of the 
probability surface is only 22%. This indicates that even though 81% of the 
forested areas have been correctly identified as forest, only 22% percent of the 
areas are truly forest land.  
 

Region Results 

 
 The same exponential model scenario was repeated diving ground truth 
points per the 10 mapping regions used by Wickman et al (2010) in the accuracy 
assessment of the 2001 NLCD. Prediction errors per region are listed in Table 
4.10. The probability surfaces created by fitting the optimized anisotropic 
exponential model mapping region are shown in Figure 4.11. The probability of a 
pixel to be a forest cell increased from light yellow to dark brown areas. Table 
4.11 compares the percentage of pixels in each mapping region with a probability 
higher than 50% of being classified as forest and the percentage of pixels 
classified as forest and the percentage of pixels classified as forest in the 2001 
NLCD. Area is acreage for each region is also included. Overall, all regions show 
the percentage of the pixels with a probability higher than 50% of being classified 
as forest is less than the percentage of forest pixels estimated during the NLCD 
classification process. These differences are found throughout all regions. 
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Figure 4.12 shows the standard error map produced from the standard 
errors of interpolated values. As it was seen in the nationwide results, the 
standard error is smaller around data points and it increases with distance. 

 
Table 4.12 compares the user’s and producer’s accuracies for the ten 

mapping regions in the probability surface created through indicator cokriging. 
The overall accuracy has improved for all regions except regions 1 and 2 in 
comparison with the overall accuracy from indicator kriging (Table 4.8). The 
producer’s accuracies have decreased for all regions except regions 1 and 2. 
Cokriging does not do as good job at mapping the forest class. With the 
exception of region 4, which had a producer’s accuracy of 96%, the accuracy in 
other regions ranged from 7% to 51%. Furthermore, the user’s accuracy for all 
regions ranged from 2% to 22%. A small percentage is all regions of the areas 
identifies as forest within the classification are truly of that category. As it 
occurred when comparing results from indicator kriging and NLCD, the 2001 
NLCD did a better job at classifying forest land-cover across all regions. 
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Table 4.10. Indicator Cokriging Predictions Per Region 
 

Region Mean Root-mean-
square 

Mean 
Standardized 

Root-Mean 
Square 

Standardized 

Average 
Standard 

Error 

1 0.00021 0.33 0.0012 1.33 0.25 

2 0.0034 0.10 0.02 0.59 0.17 

3 0.0028 0.32 0.0054 0.71 0.46 

4 0.00089 0.12 0.0044 0.57 0.22 

5 0.0021 0.093 0.017 0.77 0.12 

6 0.00050 0.19 0.0033 0.72 0.26 

7 0.0011 0.17 0.0041 0.63 0.27 

8 0.0013 0.13 0.0068 0.66 0.20 

9 0.0010 0.18 0.0050 0.85 0.21 

10 0.0029 0.081 0.046 1.29 0.061 

 

Table 4.11. Percentage of Pixels in Indicator Cokriging surfaces with a 
Probability Higher than 50% of Forest Classification 

 

Region 
 

Indicator 
Cokriging 

Indicator 
Cokriging 
Acreage 

2001 
NLCD 

2001 NLCD 
Acreage 

1 17.46% 22 428 520 41.33% 54,355,771 

2 0.19% 493,717 11.45% 29,167,825 

3 10.80% 26,451,890 37.98% 95,063,664 

4 3.65% 14,247,849 6.33% 26,065,911 

5 4.90% 14,605,164 11.40% 32,303,345 

6 19.08% 25,101,706 26.39% 36,238,993 

7 36.63% 63,821,884 39.40% 72,865,941 

8 24.66% 34,324,420 61.92% 87,591,692 

9 13.43% 12,009,322 22.94% 26,350,329 

10 27.46% 17,853,117 56.72% 52,049,783 

Nationwide 8.27% 158,977,718 25.28% 512,053,254 
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Table 4.12. Commission and Omission Error in the Indicator CoKriging 
Probability Surface 

 User’s accuracy Producer’s 
accuracy 

Overall 
Accuracy 

Region 1 21.68% 34.69% 86.01% 

Region 2 11.11% 50.52% 94.17% 

Region 3 10.11% 44.59% 85.42% 

Region 4 5.20% 95.67% 22.58% 

Region 5 6.62% 16.45% 96.79% 

Region 6 10.19% 6.67% 94.87% 

Region 7 1.72% 6.86% 96.93% 

Region 8 2.62% 8.74% 96.64% 

Region 9 6.06% 20.51% 94.34% 

Region 10 12.84% 18.55% 91.35% 

U.S. 21.72% 80.92% 68.03% 
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Figure 4.11. Probability Surfaces per Region from Indicator Indicator Cokriging  
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Figure 4.12. Standard Error of Surfaces per Region from Indicator Cokriging  

 
 Comparing the spatial distribution and extent between the 2001 NLCD and 
probability surface created through cokriging show similarities to the results 
found in the indicator kriging analysis. Region 7 had the smallest discrepancy 
between the percentage of pixels in the probability surface with a value greater 
than 0.5 and the percentage of pixels classified as forest in the 2001 NLCD. The 
difference however between the two surfaces decreased from 28% to 12% when 
comparing the indicator kriging and cokriging results. The spatial distribution of 
forest land shown in the probability surface is still similar to that in NLCD. Areas 
with higher probabilities of being classified as forest are found on the north-west 
and south-east parts of the region while the probability values in the center of the 
region are range from 0 to 0.40. All indicator cokriging predictions for region 7 are 
smaller in than the indicator kriging predictors. The RMSE decreased from 0.42 
to 0.17; values predicted during cokriging results are closer to the measured 
values than those in indicator kriging results (Table 4.8). The mean standardized 
predictor was reduced to 0.0041, indicating the results are more unbiased. Also, 
the RMSS is now less than 1 and the average standard error is less than the 
RMSE; the variability of the predictions is being overestimated instead of 
underestimated.  
 
 Similarly to indicator kriging results, regions 2 and 3 had the largest 
discrepancies between the percentage of pixels in the probability surface with a 
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value greater than 0.5 and the percentage of pixels classified as forest in the 
2001 NLCD. However, results are different for each region. The probability 
surface created for region 2 through indicator cokriging only classified 0.1% of 
the region area as having a probability greater than 50% of being classified as 
forest.  In contrast, the percentage of pixels classified as forest in region 2 by 
indicator kriging and NLCD surfaces were 0.6% and 11% respectively. The 
difference between NLCD and cokriging increased to 98%. The probability 
surface showed the areas with higher probability of being classified as forest are 
found in two patches; one in the north and one in the center of the region. This 
coincides with the spatial distribution of forest land shown by NLCD in this region. 
However, the highest probability value in the entire region is 0.50. The majority of 
the pixels fall below the 0.5 threshold used in the analysis.  
 

The difference between region 3 and NCLD on the other hand decreased 
from 81% to 72%. The spatial distribution of the forest land matches that of 
NLCD with patches of areas with high probability values across the region mixed 
with areas of low probability values. Some of the cross validation results (Table 
4.8) for both regions differ from the indicator kriging results. The mean prediction 
error for region 2 was closest to zero among all regions in indicator kriging 
analysis; however the mean prediction error in cokriging results for this region 
was farther away from zero among all regions. The RMSE for region 2 was still 
the smallest of all regions and the average error remained still greater than the 
RMSE. The RMSSE however decreased from 1 to 0.59. While the RMSSE for 
region 2 in indicator kriging implied this region had the most valid predictions, the 
predictions now are being overestimated. The RMSE for region 3 is still the 
second largest among all regions but the value decreased from 0.41 to 0.32. The 
variability of the estimations is also being overestimated by indicator cokriging 
since the average standard error is greater than the RMSE (0.46 vs. 0.32), and 
the RMSSE is less than one.  
 

The difference between the percentages of pixels classified as forest in 
NLCD in regions 1, 4, 6, 8 and 9 the percentage of pixels with probability greater 
than 50% in the cokriging surface also decreased from   the results seen in the 
indicator kriging analysis.  Cokriging results estimated larger areas of these 
regions having greater probability of being classified as forest. In region 4, for 
example, approximately 3.5% of region 4 had a probability greater than 50% of 
being forest while 6% of region 4 in NLCD was classified as forest. The 
difference between the two surfaces is 45%.  The difference between NLCD 
classification and indicator kriging results was 48%. As in other regions, the 
spatial distribution of these forest lands coincides with NLCD. The majority of 
forested areas are located near the boundary with region 7. In regions 1, 6, 8 and 
9, the differences between the percentage of pixels classified as forest in NLCD 
and pixels in the cokriging surface with probability greater than 50% were 59%, 
31%, 61% and 54% respectively.      Forested areas in region 1 are mainly found 
in a band extending across the western side of the region and another one along 
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the south-east. Forested areas in regions 6 and 8 are scattered throughout the 
region. Forest lands in region 9 are found mainly in the northern half of the 
region. Cross validation results (Table 4.8) show corkriging reduced RMSE for 
regions 4, 6, 8 and 9; predicted values are closer to true values. Unlike the 
results from indicator kriging analysis, the RMSSE in these regions resulting from 
corkriging was less than 1 indicating the variability of the predictions is being 
overestimated.  Region 9 had a RMSSE closest to 1 among all regions.  The 
average standard error in all these regions is also greater than the RMSE. Cross 
validation values for region 1 did not change much between indicator kriging and 
cokriging results, with the exception of the mean prediction error which 
decreased from 0.0058 to 0.00021. Region 1 has the smallest mean prediction 
error from all regions. The RMSE changed from 0.34 to 0.33 and the RMSSE 
value changed from 1.35 to 1.33. The predictions are still being underestimated 
in this region. The average standard error remained the same at 0.25.  

 
Cokriging results for regions 5 and 10 resulted in smaller percentage of 

the pixels as having a probability greater than 50% of being classified as forest 
compared to the results in the indicator kriging analysis. The difference between 
the percentages of pixels classified as forest in NLCD and pixels with probability 
values greater than 0.5 increased with cokriging. Pixels with probability values 
greater than 0.5 in region 5 are mostly located near the boundary with region 8. 
Region 10 is mostly forested throughout the region but probability values 
increase in the center of the region. Both regions have the smallest RMSE and 
average standard error of all regions (Table 4.8). The predictions for region 5 
were overestimated (RMSSE was smaller than 1) while predictions in region 10 
were underestimated (RMSSE was greater than 1).  

 
Figure 4.12 shows the standard error surface in all regions. Similarly to the 

distribution of the standard error in indicator kriging (Figure 4.7), the standard 
error per region is smaller around the ground truth points and it increases with 
distance from the points. The map represents data density.  
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4.1.3. Monte Carlo Simulation 

 
Monte Carlo simulation was used to generate multiple realizations of the 

forest land cover class from the indicator and cokriging surfaces created in 
Sections 4.1.1 and 4.1.2. These probability surfaces provide a guidance of the 
spatial distribution and percentage of pixels that may be classified as forest. The 
Monte Carlo simulation process used included information of forest and non-
forest areas. The process followed is shown in the workflow outlined in Figure 
3.6. Model Builder in ArcGIS 10.0 was used to create the Monte Carlo 
methodology. The model was run 1,000 times. The results were surfaces with 
pixels classified as either forest or non-forest. Figure 4.13 shows an example of 
the surfaces created. 
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Figure 4.13. Monte Carlo Surfaces from indicator kriging (top) and indicator 

cokriging (middle) and NLCD Forest/Non-Forest surface (bottom). 
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A common method to display result from Monte Carlo simulation is to 
show frequency distribution in histogram format. However, results of the 
simulation process showed less than a 1% difference between the distribution of 
the number of forest and non-forest cells from surfaces created through Monte 
Carlo simulation.  

 
An appropriate method for evaluating probabilistic maps is to check the 

consistency of the distribution of classes between kriged and sample data 
(Zhang and Goodchild 2002). Table 4.13 compares the percentage of pixels 
classified as forest from land-cover realizations created through Monte Carlo 
simulation and 2001 NLCD. Results are shown in nationwide and per region 
extents.  

 

Table 4.13. Comparison of per region percentage of forest pixels in Monte Carlo 
simulation results from indicator kriging, cokriging surfaces and 2001 NLCD 

 

Region 
 

Indicator 
Kriging 

Indicator 
Cokriging 

2001 
NLCD 

1 56.17% 57.19% 41.33% 

2 18.38% 18.53% 11.45% 

3 53.01% 51.74% 37.98% 

4 18.62% 17.52% 6.33% 

5 23.22% 23.74% 11.40% 

6 49.56% 45.82% 26.39% 

7 61.00% 61.19% 39.40% 

8 74.64% 73.95% 61.92% 

9 71.28% 46.45% 22.94% 

10 73.97% 73.24% 56.72% 

Nationwide 39.32% 38.97% 25.28% 
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Indicator kriging and indicator cokriging created probabilistic surfaces 
where approximately 39% of pixels in the conterminous U.S. were classified as 
forest. The percentage of pixels classified as forest in the 2001 NLCD is 26%.  
Indicator kriging maps a higher percentage of forest lands. Results are similar 
when evaluating results per region. Indicator kriging and cokriging surfaces 
resulted in a higher percentage of pixels being classified as forest in all regions. 
Using cokriging classes did not change the simulated percentage of forest cells 
for either region. Overall, realizations of forest land cover created through Monte 
Carlo simulation using cokriging surfaces only changed the percentage of pixels 
classified in region 9.   
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4.2. Discussion 

 
Chapter 2 outlined probabilistic and fuzzy methods that have been used in the 

literature to describe the spatial distribution of uncertainty on a thematic map. 
This related to two research questions of this thesis. The first question was to 
use indicator kriging as a method to map the spatial accuracy of the forest land-
cover class in the 2001 NLCD. The second question was to determine if using 
secondary information through indicator cokriging would improve the results from 
the indicator kriging approach.  
 

The overall results of  indicator kriging analysis show that indicator kriging can 
provide helpful information about the spatial distribution of the forest land-cover 
categories but the percentage of pixels that are shown to have a high probability 
of being classified as forest was underestimated when comparing to the forest 
land-cover classification seen in the 2001 NLCD. The difference between both 
surfaces was 62% when data was analyzed at the nation-level and ranged from 
12% to 98% when data was analyzed at the region-level. Evaluating the 
distribution of the forest land-cover class in the 2001 NLCD shows region 
boundaries are clearly marked (Figure 4.4). For example, the boundary between 
region 2 and regions 1 and 3 show a very distinct change between forest and 
non-forest land. Another example can be found along the boundary of regions 3 
and 4. This is an indication of misclassification of the forest land-cover classes in 
the 2001 NLCD along region boundaries. Probability surfaces are however able 
to interpolate forest land across region boundaries where points across the entire 
country are used. 

 
Differences between the probability surfaces and the classification shown in 

the NLCD may be due to several factors such as the sampling design and 
density of points of the reference dataset, the fragmentation of the landscape in 
each region or the decisions made during the statistical analysis of the data. 

 
Two factors affecting the results can be derived from the statistical analysis. 

One of these factors is the threshold value used to determine the percentage of 
pixels that have a high probability of being classified as forest. A threshold of 
50% was used in this thesis. This threshold resulted in approximately 10% of the 
pixels in the conterminous U.S. to be classified as forest. Approximately 26% of 
pixels in the NLCD were classified as forest. The results suggest that using a 
threshold of 50% forest/non-forest may underestimate the percentage of pixels 
that have a probability of being classified as forest. Changing the threshold used 
in the analysis would not change statistical results outlined in Table 4.5, but it 
would have an effect on the percentage of pixels that would be classified as 
forest. Additional analysis could be done to compare results using different 
threshold values and determine a more appropriate threshold to use.  
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A second factor influencing the results that was derived from the statistical 
analysis was the parameters used in the kriging process. Choosing the correct 
parameters in the Geostatistical Analysis process can be considered an “art.” 
Trial and error and an understanding of the dataset are necessary to choose the 
appropriate parameters. Additional work and research on what parameters 
should be used during the kriging process may improve the results. In addition, 
there are often question to whether geostatistical analysis tools available through 
GIS software are able to provide sound results. GIS however is being used more 
and more in the research community and these tools continue to be tested an 
improved.   

  
The analysis of the results also raises questions about whether the 

characteristics of the reference data developed for the 2001 NLCD used in this 
thesis are appropriate for the type of analysis attempted in this study. Questions 
can be asked about the reference data such as whether changing the sampling 
design of the reference points would affect the results, or whether the complexity 
of the land-cover patterns in different regions are properly captured by the 
density of the reference points.  

 
 Stehman (2009) and Stehman and Czaplewski (1998) described basic 
criteria that should be considered for constructing a sampling design that can be 
implemented for map accuracy assessment. They stated that choosing the 
correct sampling design is based on the objectives of the assessment. As 
described in section 3.2, the sampling design of the 2001 NLCD accuracy 
assessment used a two-stage cluster sample with three levels of stratification. 
The primary objective of this sampling design was to assess per-class accuracy 
of land-cover classes using an approach that would result in the creation of an 
error matrix reporting overall, user’s and producer’s accuracies (Stehman et al. 
2008).  The U.S. was stratified into ten mapping regions to ensure that the 
sample size allocated to “rare” land cover classes would be large enough to 
produce precise estimates of accuracy. The goal of the second stratification was 
to spread the samples geographically within each region while keeping the cost 
down by clustering the points (Wickham et al. 2010). Cluster sampling was used 
because of the cost and convenience of spatially constraining the sample pixels 
to a limited number of clusters (Wickham et al. 2013).  
 

When looking at the land-cover composition of the ten regions according 
to the 2001 NLCD, regions 1, 2, 4 and 5 have the smallest percentage of forest 
land among all regions. Statistically, both indicator kriging and cokriging results 
(Tables 4.5 and 4.8) showed these regions had the smallest RMSE among all 
regions. Region 2 had actually the smallest average standard error and a RMSS 
of 1, suggesting this region had the most accurate results. This would indicate 
that the sampling design was successful at minimizing errors in regions where 
forest land-cover is a “rare” class, therefore meeting the primary objective of the 
accuracy assessment for the NLCD. However, the objective of this thesis was to 
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map the spatial distribution of the accuracy, not just creating a confusion matrix 
of user’s and producer’s accuracy. This objective was not a priority of the 
accuracy assessment of the NLCD. The clustering of points in the two-stage 
cluster approach may have influenced the results of the interpolation of the data 
across all regions and reduced the extent of the pixels classified as forest in the 
probability surfaces. This effect was seen in all regions as the percentage of 
pixels with probability higher than 0.5 was smaller in all regions in comparison 
with the percentage of pixels classified as forest in the NLCD. This is also more 
evident when reference points were analyzed across the entire U.S. as opposed 
to per-region level. The number and density of points used to analyze the spatial 
distribution of the accuracy in the forest land-cover category is not sufficient to 
provide accurate results in large areas.  
 

Results slightly improved when analyzing data at the region-level but the 
clustering on reference points still influenced the results. Regions along the west 
coast (1, 2 and 3) showed the greatest differences between the mapped forest 
land in the 2001 NLCD and the probability surfaces created through indicator 
kriging. These differences were described in the Results section. The percentage 
of pixels in forest category in NLCD and the probability surface in region 2, for 
example, differed by 98%. This difference was found especially in the center of 
the region. The NLCD shows this area as being classified mainly as shrub, not 
forest. Only few reference points in the forest land cover class within region 2 
had an agreement between the map and reference labels and these points were 
spread across the entire region. Points are too far away from each other for the 
results to show pixels with high probability of becoming forest land at a large 
distance from the location of each point. Using additional ground truth points 
through cokriging did not improve the extent of forest land in this region (Table 
4.8) and it also did not change the percentage of pixels classified as forest land 
from the realizations created through Monte Carlo simulations (Table 4.14).  
 

 In general, reference points where there was an agreement between the map 
and reference label were more uniformly spread across the entire area in regions 
along the east coast than on the west coast. Both indicator kriging and indicator 
cokriging results (Tables 4.5 and 4.8) show regions along the eastern United 
States (regions 7, 8 and 10) have higher percentage of pixels classified as forest 
land than regions in the mid-west. This correlates with the proportion of forest 
area in these regions in comparison with the rest of the country. These overall 
findings also coincide with the evaluation of 2001 NLCD accuracy assessment by 
Wickham et al. (2010). They stated that “deciduous forest user’s accuracy 
decreased from east to west.” The distribution of pixels with high probability of 
being classified as forest cell and forest areas the 2001 NLCD is more similar in 
these regions than other regions. The extent of the forest however still differs due 
to not having sufficient reference points and these points being clustered in small 
geographic areas. Among all regions along the eastern U.S, regions 7 and 10 
show the smallest difference between the percentage of pixels in the forest 
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classification in NLCD and the percentage in the probability surface. Statistically, 
regions 7, 8 and 10 also have the highest RMSE of all regions during the 
indicator kriging process. However, adding additional information through 
indicator cokriging improved the RMSE in regions 7, 8 and 10.  

 
The effect of point clustering in the kriging interpolation process when 

looking all points in the conterminous U.S. can be seen in output parameters 
used in both indicator kriging (Figure 4.3) and indicator cokriging (Figure 4.8). In 
both kriging analyses, the semivariogram showed the spatial autocorrelation 
between points occurred at a short distance. The range calculated by the 
indicator kriging was 34 km, and 7 km for indicator cokriging. The nearest 
distance between two sampling points in the conterminous U.S is approximately 
1.5 km. The distance between points within a cluster ranges from 1.5 km to 42 
km. The range is at times shorter than the distance between two points farthest 
away within a cluster. This indicates that the kriging process only uses 
information from all or most points within a group of points to interpolate the 
information. Information from points beyond the clusters is not being considered 
in the kriging process.  

 
Semivariogram parameters for region-level analysis showed the same 

effect. The range used in the kriging process for all regions varied from as little 
as 1.5 km in regions 10 and 8 to 827 km in region 3. Regions where the range 
was smaller tend to have sampling points that are clustered within 1.5 km to 20 
km apart. Distances between clusters are greater than the range distances; the 
spatial autocorrelation between points is shorter than the distances between 
clusters and the kriging process does not have enough information to correctly 
interpolate between those points.  

 
Overall, the clustering of samples causes the variogram and the kriging 

results to be more representative of a particular area around the reference 
points. The use of the results for the entire area of the U.S. or the entire area of a 
region is questionable.  
 

Two-stage cluster sampling provides a more cost-effective alternative, but this 
advantage occurs at the expense of being able to assess the land cover 
composition and landscape pattern. Congalton (1988a) stated that the complexity 
of a given environment dictates the appropriate sampling scheme to use. This 
leads to another objective to consider when choosing reference data for accuracy 
assessment. This objective is to assess the accuracy of landscape features and 
patterns (Stehman et al. 2008). This objective was not a priority in the selection 
of the sampling design of the accuracy assessment of the 2001 NLCD. Further 
analysis of the classification error should incorporate information such as 
landscape characteristics in the analysis (Smith et al. 2003). How do landscape 
characteristics affect the spatial accuracy assessment of the forest land-cover 
classes? 
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Patch size and land-cover heterogeneity are two examples of landscape 
characteristics that are thought to affect classification error (Campbell 1996). 
Both influence the classification error by introducing pixel misclassification when 
the land-cover map and reference data sets are misregistered causing confusion 
as to the land cover actually present at a location. Smith et al (2002), for 
example, used the 1992 NLCD to look at establishing land-cover specific 
relationships between classification accuracy and patch size and heterogeneity. 
They found that accuracy decreases as land cover heterogeneity increases and 
patch size decreases. 

 
This thesis did not include a detailed study of the landscape fragmentation of 

the mapping regions in the NLCD. However, general calculations of the 
percentages composition of each land cover class within each region showed 
that regions 2, 5 and 8 have one predominant land-cover type among other 
types; shrub/scrub, crops and forest respectively. Over 60% of the area in these 
regions consists of these categories. Regions 2 and 5 had smallest RMSE in the 
indicator kriging analysis, while region 8 had the third largest RMSE. The 
differences between the probability surfaces in these regions and the forest 
classification in NLCD varies as region 2 had the largest difference, while region 
5 had one of the smallest differences.  

 
The same can be said of other region.  Forest land-cover categories was the 

predominant classification in regions 7, 10, 6 and 1 with forest land covering less 
than 40% of the area in any of those regions. The most common forest land 
cover category in region 9 is wetlands (25% of the area). Shrub/scrub makes up 
about 42% of region 3 while approximately 42% of the area of region 4 consists 
of grassland. These calculations do not provide enough information to determine 
how fragmented the landscape is in any of these regions.  
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Chapter 5 Conclusions and Recommendations 
 

The goal of this study was to describe a method of mapping spatial 
accuracy of thematic land cover map using indicator kriging and indicator 
cokriging. The study focused on the forest land-cover category outlined by the 
2001 NLCD. The overall results indicate that indicator kriging can provide helpful 
information about the spatial distribution of the forest land-cover categories but 
the percentage of pixels that are shown to have a high probability of being 
classified as forest was underestimate. This percentage however could vary 
based on different factors. 

 
First, the indicator kriging process only used information from one variable. 

The indicator cokriging used as a method to add information from secondary 
land-cover classes did not change the overall results. One reason may be the 
distribution of the ground truth points. The sampling method used by the 
accuracy assessment of the 2001 NLCD was a stratified/cluster method. Points 
in different categories tended to be clustered in a geographic area which may 
have influenced the results of the interpolation of the data across large regions. A 
systematic spatial sample collected throughout the region would ensure a regular 
spacing of points in the area. However, the cost involved in gathering information 
using such sampling method in the entire country would be very expensive and 
very difficult to accomplish. Cluster sampling does provide an advantage of lower 
collection costs. Using ground truth data from a different thematic dataset with a 
different sampling distribution may provide missing information in areas where 
sampling was not done through NLCD.  Two questions could be asked about the 
sampling design: how many samples are required to obtain a reliable estimate of 
the classification accuracy and where in the study should the samples be 
acquired to obtain an unbiased estimate of the accuracy? 
 

A second factor in the results was the threshold value used to determine 
the percentage of pixels that have a high probability of being classified as forest. 
A threshold of 50% was used. This threshold may be too low. Additional research 
should be done to determine a more appropriate threshold. 

 
A third factor is the parameters used in the kriging process. Choosing the 

correct parameters in the kriging process can be considered more an “art.” Trial 
and error and an understanding of the dataset are necessary to choose the 
appropriate parameters. Additional work and research on what parameters 
should be used during the kriging process may improve the results. Also, there 
are often question to whether geostatistical analysis tools available through GIS 
are able to provide sound results. GIS however is being used more and more in 
the research community and these tools continue to be tested an improved.   

 
Even though there are some shortcomings to the method, the overall 

results, however, do provide an understanding of the spatial distribution of the 
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forest land-cover dataset and it can provide some valuable information that is not 
available through a confusion matrix.  
 

The results found in this study show indicator kriging can be used as a tool to 
map the probability distribution of any land cover class. However, the current 
sampling distribution of reference points does not provide sufficient information 
for the kriging interpolation process to create an accurate surface. Results could 
be used to provide an initial understanding of the spatial distribution of the 
uncertainty in the 2001 NLCD but more analysis is needed. 
 

Future area of work remains. Sampling assumes all land-cover classes occur 
with equal frequency in all regions and that classification error occurs with equal 
frequency across all classes. In reality, few land-cover classes tend to dominate 
within a region. 
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A.1. Cross-Validation Summaries 
 

Summary statistics and graphs can be made by comparing the predicted 

value to the actual value from cross-validation. Let  be the predicted value 

from cross-validation, let  be the observed value, and let  be the 

prediction standard error for location  Then some of the summary statistics 
given by Geostatistical Analyst are: 

 
1. Mean Prediction Error 

 

 
 

2. Root-Mean- Square Prediction Error 
 

 
 

3. Average Standard Error 
 

 
 

4. Mean Standardized Prediction Error 
 

 
 

5. Root-mean-square standardized prediction error 
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A.2. Monte Carlo Simulation through Model Builder 
 

 
 

Figure A.2. Monte Carlo Simulation through Model Builder 
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