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ABSTRACT

Clustering proteomics data is a challenging problem for any traditional
clustering algorithm. Usually, the number of samples is much smaller than the number
of protein peaks. The use of a clustering algorithm which does not take into
consideration the number of feature of variables (here the number of peaks) is needed.
An innovative hierarchical clustering algorithm may be a good approach. This work
proposes a new dissimilarity measure for the hierarchical clustering combined with a
functional data analysis. This work presents a specific application of functional data
analysis (FDA) to a highthrouput proteomics study. The high performance of the
proposed algorithm is compared to two popular dissimilarity measures in the
clustering of normal and Human T Cell Leukemia Virus Type 1 (HTLV-1)-infected
patients samples.

The difficulty in clustering spatial data is that the data is multi - dimensional
and massive. Sometimes, an automated clustering algorithm may not be sufficient to
cluster this type of data. An iterative clustering algorithm along with the capability of
visual steering may be a good approach. This case study proposes a new iterative
algorithm which is the combination of automated clustering methods like the bayesian
clustering, detection of multivariate outliers, and the visual clustering. Simulated data
from a plasma experiment and real astronomical data are used to test the performance
of the algorithm.
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CHAPTER 1

INTRODUCTION

The entire work can be broadly divided into two categories:
1) Hierarchical Clustering High Dimensional Proteomics Data using Functional

Data Analysis
2) Clustering Massive Spatial Data using Iterative Clustering Algorithm

1.1 Proteomics Data

A variety of mass spectrometry-based platforms are currently available for
providing information on both protein patterns and protein identity 1,2. Specifically,
the first widely used such mass spectrometric technique is known as surface enhanced
laser desorption ionization (SELDI) coupled with time of flight (TOF) mass
spectrometric detection 3  5. The SELDI approach is based on the use of an
energy-absorbing matrix such as sinapinic acid (SPH), large molecules such as
peptides ionize instead of decomposing when subjected to a nitrogen UV laser. Thus,
partially purified serum is crystallized with an SPH matrix and placed on a metal
slide. Depending upon the range of masses the investigator wishes to study, there are a
variety of possible slide surfaces; for example, the strong anion exchange (SAX) or
the weak cation exchange (WCX) surface. The peptides are ionized by the pulsed
laser beam and then traverse a magnetic field-containing column. Masses are
separated according to their times of flight as the latter are proportional to the square
of the mass-to-charge (m/z) ratio. Since nearly all of the resulting ions have unit
charge, the mass-to-charge ratio is in most cases a mass. The spectrum (intensity level
as a function of mass) is recorded, so the resulting data obtained on each serum
sample are a series of intensity levels at each mass value on a common grid of masses
(peaks).

Proteomic profiling is a new approach to clinical diagnosis, and many
computational challenges still exist. Not only are the platforms themselves still
improving, but the methods used to interpret the high dimensional data are developing
as well 6,7.

A variety of clustering approaches has been applied to high dimentional
genomics and proteomics data 8  11. Hierarchical clustering methods give rise to
nested partitions, meaning the intersection of a set in the partition at one level of the
hierarchy with a set of the partition at a higher level of the hierarchy will always be
equal to the set from the lower level or the empty set. The hierarchy can thus be

1



graphically represented by a tree.

Functional Data Analysis (FDA) is a statistical data analysis represented by
smooth curves or continuous functions it; i  1, . . ,n, where n is the number of
observations and t might or might not necessarily denote time but might have a
general meaning. Here t denotes the mass (M/Z). In practice, the information over
it is collected at a finite number of points, Ti, thus observing the data vector
yi  yi1,. . . . ,yiTi t. The basic statistical model of FDA is given by

yij   itij  itij  itij or i  1, . . . ,n; j  1, . . ,Ti     (1)

where tij is the mass value at which the jth measurement is taken for the ith
function i. The independent disturbance terms itij are responsible for roughness in
yi.

FDA has been developed for analyzing functional (or curve) data. In FDA,
data consists of functions not of vectors. Samples are taken at time points t1, t2, . . . ,
and regard itij as multivariate observations. In this sense the original functional yij
can be regarded as the limit of itij as the sampling interval tends to zero and the
dimension of multivariate observations tends to infinity. Ramsay and Silverman
12,13 have discussed several methods for analyzing functional data, including
functional regression analysis, functional principal component analysis (PCA), and
functional canonical correlation analysis (CCA). These methodologies look attractive,
because one often meets the cases where one wishes to apply regression analysis and
principal component analysis to such data. In the following we describe how to use
the FDA tools for applying functional data analysis and a new disssimilarity measure
to classify the spectra data.

We propose to implement a hierarchical clustering algorithm for proteomics
data using functional data analysis. We use functional transformation to smooth and
reduce the dimensionality of the spectra and develop a new algorithm for clustering
high dimensional proteomics data.

1.2 Spatial Data

Spatial Databases are the database systems for the organization of spatial data
i.e. the point objects extended in a 2-Dimensional or a 3-Dimensional or some other
higher dimensional vector space. Multi-scale databases are a set of spatial databases
with certain limitations

Data mining, an essential element of much detailed process Knowledge
Discovery in Databases (KDD), deals with the extraction of hidden structure of huge
data sets either by clustering or by discovering regularities in the data. The subject of
data mining spatial databases finds its roots from the concept of data mining relational
and transactional databases. Knowledge discovery in large multi-scale databases has
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become essential since data collected from many applications such as satellite images,
astrophysical equipment, X-ray crystallography is stored in such massive spatial
databases. Also, spatial data mining techniques have wide applications ranging from
remote sensing, geographical information systems to crime scene investigations and
environment & planning. Because of the large volumes of the data in these multi-scale
databases it is often expensive and unrealistic to look at every detail for any
information buried in the dataset.

Clustering analysis is a renowned data mining technique, which involves
dividing a large dataset into meaningful subclasses and thus extracting hidden patterns
among the objects. It is a procedure to extract the gist of information present in the
data set. It usually demands some information to be known such as the statistical
distribution of the data (if the data is gaussian distributed) and number of clusters one
can expect. But real time spatial data may not have any of this information available.
Also the shape of the clusters can be very arbitrary such as spherical, linear,
ellipsoidal, elongated etc.

These clusters can be populated with as many as 100,000 points or as few as
10 points in a given time. So uniform generalized cluster analysis is almost
unimaginable in massive multi-scale data mining.

Before we actually delve into spatial data mining, a brief background of the
clustering methods is presented in the next section.

1.3 Clustering Methods

The term cluster analysis (first used by Tryon, 1939) includes a number of
different algorithms and routines for grouping similar objects into particular
categories.

The clustering algorithms are defined to be the procedures, which produce
clusters of data from a given dataset.

Clustering algorithms can be broadly classified into hierarchical clustering
techniques and optimization partitioning algorithms. The hierarchical algorithms
operate in such a way that the dataset is divided into certain groups sequentially
making all the objects similar for a given branch node until higher up the tree. These
algorithms can be further split into agglomerative and splitting procedures. In
agglomerative technique, hierarchical clustering starts from the optimum partition
possible (each observation forms a cluster) and groups them. This procedure depends
on the definition of the distance between two clusters. Single linkage, complete
linkage, average linkage and Ward distance are frequently used distances. Splitting
procedure starts with the crudest partition possible one cluster contains all of the
observations. It proceeds by splitting the single cluster up into smaller sized clusters.
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Divisive methods are not generally available, and rarely have been applied.

The partioning algorithms divide the dataset into homogenous clusters until a
certain score is optimized. The most common algorithm is the k-means algorithm in
this category. Like most other clustering algorithms k-means does not necessarily find
an optimized configuration. It performs differently on different datasets and it is more
biased on the selection of the initial random clusters.

The main difference between the two clustering techniques is that in
hierarchical clustering once groups are found and elements are assigned to the groups,
this assignment cannot be changed. In partitioning techniques, on the other hand, the
assignment of objects into groups may change during the algorithm application.

Clustering algorithms face their toughest problem in implementation when the
dataset is massive and multi dimensional. The hierarchical clustering methods cannot
compute their distance matrices on the basis of which clustering is done. The k-means
algorithm becomes limited once the dataset is considerably large.
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CHAPTER 2

MATERIALS

2.1 Serum Samples

Protein expression profiles generated through SELDI analysis of sera from
HTLV-1 (Human T cell Leukemia virus type 1)-infected individuals were used to
determine the changes in the cell proteome that characterize Adult T cell leukemia
(ATL), an aggressive lymphoproliferative disease from HTLV-1-Associated
Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), a chronic progressive
neurodegenerative disease. Both diseases are associated with the infection of T-cells
by HTLV-1. The HTLV-1 virally encoded oncoprotein Tax has been implicated in the
retrovirus mediated cellular transformation and is believed to contribute to the
oncogenic process through induction of genomic instability affecting both DNA repair
integrity and cell cycle progression 14,15. Serum samples were obtained from the
Virginia Prostate Center Tissue and body fluid bank. All samples had been procured
from concenting patients according to protocols approved by the Institutional Review
Board and stored frozen. None of the samples had been thawed more than twice.

Triplicate serum samples (n  68) from healthy or normal (n1  37), ATL
(n2  20) and HAM (n3  11) patients were processed. A bioprocessor, which holds
12 chips in place, was used to process 96 samples at one time. Each chip contained
one ”QC spot” from normal pooled serum, which was applied to each chip along with
the test samples in a random fashion. The QC spots served as quality control for assay
and chip variability. The samples were blinded for the technicians who processed the
samples. The reproducibility of the SELDI spectra, i.e., mass and intensity from array
to array on a single chip (intraassay) and between chips (interassay), was determined
with the pooled normal serum QC sample [Figure 1].

2.2 SELDI Mass Spectrometry

Serum samples were analyzed by SELDI mass spectrometry as described
earlier 16. The spectral data generated was used in this study for the development of
the novel functional data analysis.
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Figure 1: Three cut-expressions from a normal, HAM and an ATL patient
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2.3 Plasma Experiment

Because of an ever-expanding global population, the world’s demand for
energy grows more and more. Energy sources that come from burning fossil fuels
contribute to environmental stress and release of greenhouse gasses. Nuclear fusion is
an alternative energy source with the potential to provide abundant clean energy.
Unlike current nuclear fission power plants that are based on splitting atoms heavy
elements, nuclear fusion is a process that combines light elements. Unlike fission
processes, nuclear fusion produces no harmful waste. Tokamak facilities [Figure 2]
are experimental test chambers used for testing nuclear fusion energy, where
Hydrogen nuclei can be fused into Helium, mimicking the process that occurs at the
center of the Sun. The common type of tokamak fusion labs have doughnut-shaped
chambers where the fusion reaction occurs. In order to achieve nuclear fusion, the
plasma inside the chamber must be heated to enormous temperatures. Plasma is the
fourth state of matter (solid, liquid, gas, plasma). It is also the most common state of
matter, making up 99% of the visible universe. Best known examples of plasma
include flames, lightning, neon signs and fluorescent lights, and the aurora borealis.
Tokamak chambers apply radio-frequency heating to drive the plasma to high
temperatures in similar way that microwave ovens heat water. They also employ
powerful magnetic fields to contain the plasma inside the vessel. The largest current
tokamak is the Europe’s JET facility (www.jet.efda.org). Larger tokamaks are
planned, including ITER (www.iter.org), a multinational venture that will heat plasma
to 100 million 0C and produce 500 Megawatts of power. ITER is projected to be the
progenitor of a commercially viable fusion energy source.

Because the construction of a tokamak facility is an expensive enterprise, and
the processes governing the behavior of the tokamak are highly complex and
multivariate, researchers rely on computer models and simulations to guide their
designs. For our project, the data was obtained from the All-Orders Spectral
Algorithm (AORSA) computer model for electromagnet wave interaction with
magnetized plasmas that enables physics insights and a quantitative understanding of
a wide range of radio frequency - plasma interactions Jaeger et al. (2002).

The spatial data is obtained from the All-Orders Spectral Algorithm
(AORSA) computer model for electromagnet wave interaction with magnetized
plasmas that enables physics insights and a quantitative understanding of a wide range
of radio frequency - plasma interactions Jaeger et al. (2002). Plasma is the fourth state
of matter (solid, liquid, gas, plasma). It is also the most common state of matter,
making up 99% of the visible universe. Best known examples of plasma include
flames, lightning, neon signs and fluorescent lights, and the aurora borealis.

A typical AORSA computational experiment at the Oak Ridge National
Laboratory (ORNL) runs for many hours on a large parallel supercomputer and
produces large amounts of data.
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Figure 2: Integrated simulation & optimization of fusion systems

We selected a subset of the data that describes radio frequency heating of
tokamak plasma. A tokamak is a toroidal vessel (imagine a fat doughnut) where
electromagnetically confined plasma is radio frequency heated to fusion temperatures.
Our data set consists of four quasi-linear diffusion coefficients, b, c, e, and f, with
units of v2

s (velocity squared per second). Coefficient values are obtained by
averaging around tubes of radius  for given u (perpendicular velocity) and
u ||(parallel velocity). Imagine doughnut-shaped shells of tube radius  and binned
according to perpendicular and parallel plasma velocities u  u ||. We cluster the
four diffusion coefficients by pooling data over   u  u || 32  65  129 for a total
of 268,320 observations. The spatial dimensions   u  u || can be used to map the
resulting clusters and interpret the mapped results.This data set was chosen because it
represents a particularly difficult situation for an automated clustering algorithm while
providing visually stunning clusters. It is a difficult data set not only because it is
large but also because cluster sizes range across several scales. Here we consider
clustering the diffusion coefficient data and leave the mapping in the   u  u ||
space to a separate project.
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CHAPTER 3

METHODS

3.1 Hierarchical Clustering Using FDA

We propose to implement a hierarchical clustering algorithm for proteomics
data using functional data analysis, which consists of detecting hidden group
structures within a functional data set. We apply a new dissimilarity measure to the
smoothed ( transformed) proteomics functions  i. Then we develop a new metric that
calculates the dissimilarity between different curves produced by protein expression.
The development of metrics for curve and time series models was first addressed by
Piccolo and Corduas 1990. Heckman and Zamar proposed a dissimilarity measure
HZ for clustering curves (2000. Their dissimilarity measure considers curve
invariance under monotone transformations. Let i  1

i,2
i, . . . ,mii be the

collection of the estimated points where the curve it has a local maximum and let
mi be the number of maximal per observation or per sample i. HZ is defined as:

HZi, l 
 j1

mi rj
i  ri rj

l  rl

 j1
mi rj

i  ri
2  j1

ml rl  rl
2

where

rj
i  kj

i  uj
i/2,

kj
i  # i, i

i  j
i,

uj
i  # i, i

i  j
i

ri  1
mi 

j1

mi

rj
i

This measure is powerful for regression curves which are mainly monotone.
On the other hand, Cerioli et al. 2003, propose a dissimilarity measure C extending
the one proposed by Ingrassia et al. 2003. Cerioli’s dissimilarity C is defined by:
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di, l 
j1

mi | j
i  j

l|
mi , j

l  j
l : | j

i  j
l|  min, i  1, . . ,n

Ci, l  dil  dli
2

Both dissimilarity measures shows good performance for time series data.
Dissimilarity C does not involve all the indices mi of the smoothed curve. It also uses
the shortest distance between curves by involving few data points obtained by FDA
smoothing.

A flexible dissimilarity measure is the one that may combine the characteristic
of both measures HZ and C. This means that a potential dissimilarity measure
should use the collected estimated points of the original curve obtained from FDA so
that no information is lost and should work on different type of smoothed curves
without using the monotonicity restriction.

In this sense, we propose a functional-based dissimilarity B measure which
uses the rank of the curve proposed by Heckman and Zamar and generalizes Cerioli et
al. dissimilarity measure as the following:

dil 
j1

mi | rj
i  rj

l|
mi ,

rj
l 

h1
ml | rj

i  rh
l|

ml
rj

i  kj
i  uj

i/2 and kj
i  # i, i

i  j
i

uj
i  # i, i

i  j
i and ri  1

mi 
j1

mi

rj
i

Obviously, dii  0 and dil  0, if i and l have the same shape (Ti  Tl.
We can adjust the formula above to obtain a dissimilarity measure that satisfies
symmetry, by taking B as our proposed dissimilarity measure:

Bi, l  dil  dli
2

We used three powerful hierarchical methods to derive clusters or patterns
using B and we compare the performance of B to C and HZ. The hierarchical
algorithms we used are (1) Pam which partitions the data into different clusters
“around their medoids”, (2) Clara works as in ‘Pam’. Once the number of clusters is
specified and representative objects have been selected from the sub-dataset, each
observation of the entire dataset is assigned to the nearest medoid. The sum of the
dissimilarities of the observations to their closest medoid is used as a measure of the

10



quality of the clustering. The sub-dataset for which the sum is minimal, is retained.
Each sub-dataset is forced to contain the medoids obtained from the best sub-dataset
until then, (3) Diana is probably unique in computing a divisive hierarchy, whereas
most other software for hierarchical clustering is agglomerative. Moreover, ’Diana’
provides the divisive coefficient which measures the amount of clustering structure
found. The ’Diana’-algorithm constructs a hierarchy of clustering starting with one
large cluster containing all n observations. Clusters are divided until each cluster
contains only a single observation. At each stage, the cluster with the largest diameter
is selected.

3.2 Model-Based Cluster Analysis

In cluster analysis, we consider the problem of determining the structure of
the data with respect to clusters when no information other than the observed values is
available; from the extensive literature, we mention Hartigan (1975), Gordon (1999),
and Kaufman and Rousseeuw (1990). Important references on the statistical aspects of
cluster analysis include MacQueen (1967) , Wolfe(1978), Scott and Symons (1971),
and Bock(1985). Various strategies for simultaneous determinating of the number of
clusters and the cluster membership have been proposed (e.g. Engelman and Hartigan
(1969)); Bozdogan 1993), for a review see Bock (1996). An alternative is described in
this paper based on the reparameterization of the covariance matrices using a fully
Bayesian framework.

Mixture models provide a useful statistical frame of reference for cluster
analysis. The Bayesian approach is promising for a variety of mixture models, both
Gaussian and non Gaussian (Binder, 1981; Banfield and Raftery, 1993; McLachlan
and Peel, 2000, Ch. 4).

Banfield and Raftery (1993) –hereafter BR– introduced a new approach to
cluster analysis based on a mixture of multivariate normal distributions, where the
covariance matrices k in the classes are modelled in a geometrically interpretable
way. Their approach is based on a variant of the standard spectral decomposition of
k, namely

k  kDkAkDkt     (3)
where k is a scalar, Ak  diag1,ak2, ,akp where 1  ak2 akp  0, and Dk is
an orthogonal matrix for each k  1, ,K.

Bensmail, Celeux, Raftery and Robert (1997) proposed a Bayesian approach
which overcomes the limitations mentioned above ((a),....,(g)). However, only four
models for k were explicitely considered. These are the spherical models  and
kI (in what follows, [.] is used to indicate a particular model for k), the linear
model  and the proportional model k. Dasgupta and Raftery (1998) used the
model DkADkt  to detect features in a spatial point process where the shape matrix A
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Table 1: Different geometric models

was unknown but they constrained the diagonal terms of the shape matrix to be equal:
A  diag1,, , and to have a low value.

Our particular interest is to extend this previous work in two respects, using
the fully Bayesian inference we develop here: first, to the family of models where the
covariance matrix k is represented by DkADkt , kDkADkt and kDkAkDkt
respectively, where all the parameters ,k,A,Ak and Dk k  1, ,K are unknown;
second, to the case where the data contain outliers. The parameters involved in the
parameterization of the covariance matrix k are unknown and not constrained as in
Banfield and Raftery (1993), and Dasgupta and Raftery (1998). The models we are
discussing here can be applied to minefields and seismic faults, earthquake and other
particular problems as discussed by Dasgupta and Raftery (1998). Table 1 shows the
geometric interpretation of the various parametrizations used. We estimate ,  and
the parameters of the models given in Table 1 using Gibbs sampling.

We use the Laplace-Metropolis approximation to calculate the Bayes factor
(Bensmail et al. 1997 and Dasgupta and Raftery 1998); the latter is used to choose the
model and determine the number of groups simultaneously.

3.2.1 Bayesian cluster analysis: bclust

We assume that the data are generated by a mixture of underlying probability
distributions; each component of the mixture represents a different cluster so that the
observations xi i  1, ,n;xi  Rp to be classified arise from a random vector X
with likelihood density p,|X  x as in (2), where fk. |k  k,k is the
multivariate normal density function, k is the mean and k is the covariance matrix

12



for the kth group.   1, ,K is the mixing proportion k  0, k1
K k  1.

We are concerned with Bayesian inference about the model parameters ,  and the
classification indicators . Markov Chain Monte Carlo (MCMC) methods (e.g. Gilks,
Richardson and Spiegelhatler, 1996) provide an efficient and general recipe for
Bayesian analysis of mixtures. In fact, as explained in Gelman, Carlin, Stern and
Rubin (1995) the key to Markov chain simulation is to create a Markov process whose
stationary distribution is a specified p|x and run the simulation long enough that the
distribution of the current draws is close enough to the stationary distribution.When,
as in our case, the posterior conditional distribution of the parameters is a complicated
function of the parameters which in most cases are of high dimension, the MCMC
algorithm is used to simulate a sample from the posterior distribution of each
parameter and after convergence, the posterior mode of each sample is used as the
Bayes estimate of the parameter considered. For instance, many authors have used the
Gibbs sampler or the Data Augmentation method of Tanner and Wong (1987) (Wei
and Tanner 1990 and Green 1995) for estimating parameters in univariate and
multivariate Gaussian mixtures. One important consideration regarding the
implementation of both algorithms is monitoring convergence. Tierney (1994) proved
that both algorithms converge in probability to the true posterior distribution of the
mixture parameters. The models we are investigating in this paper are described in
Table 1.

Given a classification vector   1, ,n, we use the notation
nk  #i : i  k for the number of observations in cluster k, xk   i:ik

xi/nk for
the sample mean vector of all observations in cluster k, and
Wk   i:ik

xi  xkxi  xk t for the sample covariance matrix. We use conjugate
priors for the parameters  and  of the mixture model. The prior distribution of the
mixing proportions is a Dirichlet distribution

1, ,K  Dirichlet 1, ,K,

with joint distribution p  1 K
1K

1
11K

K1

The prior distributions of the means k of the mixture components conditionally on
the covariance matrices k are Gaussian

k|k  Npk,k/k.     (4)
with known scale factors 1, ,K  0 and locations 1, ,K  Rp, and in addition

,1, ,K are independent

1, ,K|,1, ,K are independent under different models
The conjugate prior distribution of the covariance matrices k depends on the model,
and will be given for each model in turn.

We estimate the parameters of the models in [Table 1] by determining the
configurations ,  that maximize the posterior density of ,|x (posterior mode
values). This posterior density is calculated (approximated) by the Gibbs sampler by
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simulating from the joint posterior distribution of ,  and . At iteration t  1, the
Gibbs sampler steps go as follows:
1. Simulate the classification variables i

t1, i  1, ,n, independently
according to the posterior probabilities
pik,  Pi

t  k|,,xi k  1, ,K conditional on the current
values for t and t such that

pik
t1  kfkxi|k

t,k
t/

k1

K

k
tfkxi|k

t,k
t i  1, ,n, k  1, ,K.

There might be classes k which are empty. To solve this problem, we assign
the observation which is closest to k

t to this empty class.
2. Simulate the vector t1  1

t1, ,Kt1 of mixing proportions from its
posterior distribution given t1, in particular from

t1  Dirichlet 1  n1
t1, ,K  nKt1

with k the known parameters of the prior Dirichlet distribution.
3. Simulate the parameter t1 of the model from the posterior distribution

|t1,.
4. Iterate the steps 1 to 3.

(Details on the simulation of the parameters ,k,A,Ak and Dk are
discussed in the paragraphs of the Appendix).

The validity of this procedure, namely the fact that the Markov chain
associated with the algorithm converges in distribution to the true posterior
distribution of , was demonstrated by Diebolt and Robert (1994) in the context of
one-dimensional normal mixtures. Their proof is based on a duality principle, which
uses the finite space nature of the chain associated with the i’s. This chain is ergodic
with state space 1, ,K, and is thus geometrically convergent. These properties
transfer automatically to the sequence of simulated values of  and , and important
properties as the central limit theorem or the law of the iterated logarithm are then
satisfied (Diebolt and Robert 1994).

For the models 1, 2, 3 and 4 of Table 1 the calculations are given in Bensmail
et al. (1997), so we proceed here with the models 5-7. In what follows, we will
describe the simulation steps in step 3 of the algorithm for the parameters to be
estimated which are k, , A and Dk k  1, ,K for the model DkADkt , k, k, A
and Dkk  1, ,K for the model kDkADkt , and k, k k  1, ,K for the
general model kDkAkDkt .

(a) Model DkADkt 

If the prior distribution of the parameter k is as given in (4) and if the prior
distribution of  is assumed to be an inverse gamma distribution
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  IG m0
2 , s0

2  with density p  s0/2
m0
2

 m0
2 


m0
2 1e

s0
2

with m0 and s0 hyperparameters chosen by the user (see Section 5), then the posterior
distribution of k|k, is a multivariate normal distribution with mean
k  nk xk  kk/nk  k and covariance matrix k/nk  k. The posterior
distribution of |A,D1, ,DK, is then given by

IG m0  np
2 , 1

2 s0 
k

trDkA1Dkt xk  kxk  k t
nkk
nk  k Wk  0 .

For the other parameters, we assume that
k  Wp

1m0,0

has the random spectral decomposition k  DkQkDkt  kDkADkt with
random eigenvalues qk1  qk2 . . . qkp  0,Qk  diagqk1, . . ,qkp and we define
k : qk1,A : diag1,qk2/qk1, . . . . ,qkp/qk1. In particular, we assume that A
 diag1,a2, ,ap and Dk are the shape and direction components of an inverse
Wishart random variable Wp

1m0,0 (for the choice of m0, 0 and other priors, see
again Section 5). If we assume that A and Dk are a priori independent (Anderson
1984), the corresponding Gibbs sampler step is to simulate aj|D1, ,DK,,, for
j  1, ,p, independently from the inverse gamma distribution

IG 1
2 n  Km0  p  1, 1

2 k 
1Dkt xk  kxk  k t

nkk
nkk Wk  0 Dk jj

Moreover, the Dk’s are the principal direction vectors from the following
inverse Wishart distribution

Wp
1 nk  m0,0 Wk 

nkk
nkk xk  kxk  k

t .

(b) Model kDkADkt .

Again, Dk and A considered here are unknown. In addition, the k different groups are
allowed to have different volumes k. The prior distribution of k is assumed to be an
inverse gamma distribution

k  IGmk/2, sk/2 independently for k  1, ,K, and the corresponding
Gibbs sampler step 3 is to simulate aj|D1, ,DK,1, ,K,, for j  1, ,p,
independently from

IG 1
2 n  Km0  p  1, 1

2 k k
1Dkt xk  kxk  k t

nkk
nkk Wk  0 Dk jj

k|A,D1, ,DK,, for k  1, ,K, independently from
IG 1

2 mk  nkp,
1
2 sk  trDkA1Dkt  xk  kxk  k t

nkk
nkk Wk  0 

The Dk’s are simulated in the same way as in model (a).

(c) General model kDkAkDkt 

This is the standard Gaussian mixture model considered by Lavine and West
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(1992). In this case, there is no need to use the eigenvalue decomposition of k. The
prior distributions on k and k are assumed:

k|k  Npk,k/k, and k  Wp
1mk,k, k  1, ,K,

and the corresponding Gibbs sampler step 3 is to simulate, k|k,, for k  1, ,K,
independently from

Np k,k/k  nk
where  k  nk xk  kk/nk  k, and k|, for k  1, ,K, from

Wp
1 nk  mk,k Wk 

nkk
nk  k xk  kxk  k

t .

3.2.1.1 Model selection

So far we described the models of interest and working in a mixture-model
framework, we will use the approximate Bayes factors to compare the models. For a
review of Bayes factors, their calculation and their interpretation, see Kass and
Raftery (1995). Here, we have to select not only the parametrization of the model but
also the number of clusters K.

For simultaneously choosing between two models M1,M2 and deciding on the
number of groups, we compute the approximate Bayes factor

BF1,2  px|M2/px|M1

with

px|Mh   px|hph|Mhdh,

where h is the vector of parameters under the model Mh, and ph|Mh is its prior
density (h  1,2. The quantity defined in (10) is called the integrated likelihood of
model Mh. Bayesian model selection is based on Bayes factors, whose key ingredient
is the integrated likelihood of a model. By convention, log(BF12)  2 represents weak
evidence for the model M2, differences between 2 and 6 represent positive evidence,
differences between 6 to 10 represent strong evidence, and differences  10 represents
very strong evidence (Jeffreys 1961). We approximate the integrated likelihood from
the Gibbs sampler output using the Laplace-Metropolis estimator (Raftery 1996),
which is very simple to calculate and was shown to give sufficiently accurate results
by Lewis and Raftery (1997) and Bensmail et al. (1997). In the sequel, the word
”model” refers to a combination of one of the models in Table 1 with a particular
number of clusters K. Using the Laplace-Metropolis estimator, the Bayes factor
becomes

BF1,2 
px|M2
px|M1

 |2|1/2px|2p2
|1|1/2px|1p1

,
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where h, h  1,2 is the posterior mode of h, denoting the parameters  and  of
the model Mh, and h is minus the inverse Hessian of g  logpx|p under
the model h, evaluated at   h. The Laplace method requires us to know the
posterior mode, , and ||. The Laplace-Metropolis estimator estimates these
parameters from the Gibbs sampler output  k, k and  k. The likelihood at the
approximate posterior mode is


i1

n


k1

K

 kfkxi|k, k

which is then substituted into equation of the Bayes factor.

For choosing the appropriate model, we calculate the Bayes factor for each
pair of different combinations for a number of different clusters with the number of
the components varying from 1, ,M for all models. This procedure is exemplified in
Section 5.

3.2.2 Maximum likelihood cluster analysis: mclust

We used the function EMclust to initialize the Bayesian Clustering algorithm.
The iterative algorithm also has the option of clustering the data using stand-alone
‘Mclust’ clustering.

MCLUST provides two functions, Mclust and EMclust, for cluster analysis
combining hierarchical clustering, EM (Expectation Maximization), and BIC.

The EM methods provided are the iterative EM (Expectation-Maximization)
methods for maximum likelihood clustering with parameterized Gaussian mixture
models. In this application, an iteration of EM consists of an ‘E’-step, which computes
a matrix z such that zik is an estimate of the conditional probability that observation i
belongs to group k given the current parameter estimates, and an ‘M-step’, which
computes maximum likelihood parameter estimates given z. In the limit, the
parameters usually converge to the maximum likelihood values for the Gaussian
mixture model.


i1

n


k1

G

kkxi|k,k

where k is the mixing proportions and n is the number of observations in the data.
Here G is the number of groups, which is fixed in the EM algorithm. The
parameterizations of k are currently available for EM in MCLUST are listed in
Table 1.

In both functions, hierarchical clustering is used to initialize EM for various
parameterizations of the Gaussian model. Mclust is intended to be a simplified
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function for one-step model-based clustering, with reasonable defaults. EMclust has
more options and more flexibility, although it may be more complicated to use.
EMclust has more flexibility than Mclust for clustering, by allowing choice of
hierarchical clustering (which need not be model-based) as input to initialize EM and
choice of models for EM. Users can obtain parameters and clustering results through
summary for any model or number of mixture components specified, rather than just
the maximum-BIC model as in Mclust. The input to EMclust includes the data, a list
of models to apply in the EM phase, the desired numbers of groups to consider.
Default starting values for EM are obtained from applying the function hc for
model-based hierarchical clustering to the data using the unconstrained model VVV.
EMclust returns the BIC values for all of the chosen models and number of clusters,
together with auxiliary information that is used by the corresponding summary
method for recovering parameter values.

3.3 Handling Noises In Cluster Analysis

Mahalanobis distance calculation is used to detect the outliers in the
algorithm. This distance was first introduced by P.C Mahalanobis in the year 1936.

For a p-dimensional multivariate sample xii  1,2. . .n, the Mahalanobis
distance is defined by

Di  xi  kTk1xi  k
1
2 for i  1,2. . .n

where k is the estimated multivariate location and k is the estimated covariance
matrix.

It becomes Euclidean distance if the covariance matrix is an identity matrix.
So this distance computation has an advantage of considering the covariance matrix,
compared with other classical statistical approaches.

These distances are chi-square distributed with degress of freedom equal to
the dimensionality of the data. Multivariate outliers are the distances which exceed the
quantile (99.5%) of the chi-square distribution.
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3.4 Iterative Clustering Algorithm

The software is written in R with Rggobi as the visualization tool. This tool
enables the user to observe the points in two dimensional spinning plot and cluster the
data points visually looking at them. Clustering can be done using the different colors
and glyphs provided by the tool.

Let X  X1,X2,X3XN denote the entire data set, where ‘N’ is
significantly very large. Consider the following iterative algorithm:

The software requires to be given the entire data set, and if the log of the
dataset to be clustered is required, as an input.

The software prompts the user to enter any information required for the
algorithm to continue. One can quit at any time during the execution of the program.
1. Choose a random sample ‘s’ of size ‘n’ where nN from X. This is done

from the visualization software – Rggobi.
2. The user needs to shadow the data points that are to be clustered. All the

data points, which comprise the sample, can be shadowed to cluster the
entire sample at once. While using the Mahalanobis distance measurement
also, we need to shadow the data which we think can be potential outliers.

3. Cluster the observations using any appropriate clustering algorithm. Right
now, the available algorithms [Figure 3] are simple visual clustering using
the visualization software, Mclust and Bayesclust. The visual clustering of
the data points will help the user to pertain any details about the grouping of
the data points, that the user knows.

4. Mclust uses the Emclust function to get the different clusters of the sample.
We need to provide with the number of clusters we anticipate for the
shadowed data to be clustered. Different clusters are visually shown with
different colors in Rggobi’s scatterplot.

5. Bayesian Clustering starts with the input of the sample, number of clusters,
type of model and number of iterations. This clustering is an iterative
process by itself and the initial clusters are given from the Mclust algorithm.
The final clusters from Bayesian clustering are shown on the Rggobi’s
scatterplot.

6. Repeat steps 2-5 until the user finds that the clusters are repeatedly giving
the same number of observations of the sample.

If there are clusters, which are not convincing visually, or statistically the
clustering process is overfitting the sample data, we can suspect that there are outliers
for the particular clusters. These outliers can be detected using the Mahalanobis
distance criterion.
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Figure 3: Menu of the iterative algorithm

This distance is almost equivalent to the Euclidean measurement except that it
takes the covariance of the cluster also into account. Right now the outliers are
depicted with the last color present in the color scheme and the points, which belong
to the clusters, are depicted using the same colors as their respective clusters.

Mahalanobis also can be repeated until the software provides with constant
number of outliers. Obviously, the outliers get reduced as the process runs iteratively,
but there may be certain points which are distinct outliers. So, these outliers by
themselves make up another cluster. Again any of the clustering algorithms can be
used to cluster these outliers. Now, once the sample is clustered with the outliers and
the original clusters, all the remaining data can be added to the process. This can be
entirely performed using the Rggobi software. Mahalanobis distance is used to assign
the remaining data points to the sample clusters. There may be many outliers here,
which might not be captured in the sample data. Small portions of the data points,
which are detected as potential outliers can be clustered again by using any of the
three clustering algorithms.
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CHAPTER 4

RESULTS

4.1 Proteomics Data

Functional data transformation reduces the dimensionality of the
spectra. The spectral data were collected from proteomics analysis of a total number
of serum samples (n  68) including healthy or normal (n1  37), ATL (n2  20) and
HAM (n3  11) patients. The data set is represented by a n  p matrix X, where
p  25,196 is the number of variables (peaks) measured on each sample and n  68 is
the number of samples (patients). Any clustering algorithm on data (68  25,196 will
fail because of the singularity of the covariance matrix n  p and it will have
difficult manipulating matrices with 68 rows and 25,196 columns, which has 1.
7133  106 elements. This problem would not be raised for Heuristic-based (i.e.
pairwise similarity based) clustering algorithms.

To reduce the dimensionality of the spectral data, we applied FDA by
fitting a P-spline curve  it to each sample yi. P-splines satisfy a penalized residual
sum of squares criterion, where the penalty involves a specified degree of derivation
for it. For example, cubic splines functions are P-splines of second order,
penalizing the second derivative of it. P-splines curves of order 3, penalize the
third derivative of it. P-splines curves of order 4, lead to an estimate of it with
continuous first and second derivative. We choose here to fit a P-spline curve of order
4. The fitting step is performed by fixing the number of degrees of freedom that are
implicit in the smoothing procedure 23.

The next step performed on the smoothed curves is to find the landmarks
or indices Ti. We collected the first derivative of  it, say  i


t using a smoothing

Pspline function available in R. Those derivatives are crucial at determining the
cut-off points or indices of it. We performed this step by computing an
approximate 95% pointwise confidence interval for the first derivative of it 24.
When the lower limit of this interval is positive, we have the confidence that it will
be increasing. When the upper limit of this interval is negative, we have the
confidence that it will be decreasing. Inside the interval, when the derivative
changes from negative to positive, we have an optimal value which is a minimum.
When the derivative changes from positive to negative, we have an optimal value
which is a maximum. The maximum is set, for convenience, as the largest value of
 i


t in that interval. In this study, we restricted the choice of indices to maximal

values.
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Let i  1
i,2

i, . . . ,mii be the collection of the estimated points
where the curve it has a local maximum and let mi be the number of maximal per
observation or per sample i. Consequently, dissimilarity measure is calculated to
derive the dissimilarity matrices of size n  n for all samples using the maximum
values.

4.1.1 Clustering spectral data using Functional Data
Analysis

The application of functional data transformation led to the reduction of
the dimensionality of the spectra to half. The size of mass indices become 12,598. To
cluster the reduced data, we calculated the three dissimilarity matricesMC ,MB and
MHZ . It appears that an unusual sample (patient 11) hides a possible pattern that we
are trying to discover. Figure 4 shows a clustering dendogram of the data using Diana
approach. Map and Clara gave the same results. This suggests that sample 11 would
be important for further investigation.

When we removed observation 11, we detected a fewer fuzzy patterns with C
[Figure 5], HZ [Figure 6] and B [Figure 7]. To be more specific, we investigated
clusters proposed by C and HZ. A large number of of clusters were proposed by both
approach (about 10 clusters). This strange result might be caused by the monotonocity
assumption when using HZ or the lost of informations when using C .

For B, we provided the dendogram of the data using Diana approach [Figure
8]. Three clusters were apparent. Clara also showed the same result [Figure 9], one
well separated clusters and two overlapped ones. For HZ and C, no structure was
apparent, which confirms the limitations of both dissimilarities as explained before.

To check the performance of our method, we calculated the confusion matrix
between the predicted clusters and the clinical clusters [Table 2]. We find that 3
patients out of 11 were misclassified for Cluster 1 (HAM), 6 out of 20 were
misclassified for Cluster 2 (ATL) and 3 out of 37 were misclassified for Cluster 3
(Normal). HAM and ATL shared the majority of the misclassified observations which
makes sense since both groups gathers patients with a disease caused by the same
retrospective virus. The error rate of misclassification for both clusters (HAM and
ATL) is about 20%. For normal patient, the error rate of misclassification is about
8%. The total rate of misclassification is about 16%.

When we used Clara-based hierarchical cluster algorithm with B, the
classification result has dramatically been improved [Table 3]. The error rate of
misclassification is reduced to 7%.The error rate of misclassification between HAM
and ATL is about 9%, while 5% of normal patients was misclassified.
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Figure 4: Clustering proteomics data with diana
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Figure 5: Pattern recognition using C

Figure 6: Pattern recognition using HZ

Figure 7: Pattern recognition using B
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Figure 8: Dendogram of the B dissimilarity approach with diana.

Figure 9: The B dissimilarity approach with clara
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Table 2: Confusion matrix to show the performance of B using diana.

Predicted Total
HAM ATL Normal

HAM 8 3 0 11
Clinical ATL 5 14 1 20

Normal 1 2 34 37
Total % 0.73 0.70 0.92 0.84

Table 3: Confusion matrix to show the performance of B using clara.

Predicted Total
HAM ATL Normal

HAM 10 0 0 11
Clinical ATL 2 18 0 20

Normal 1 1 35 37
Total % 0.91 0.90 0.95 0.93
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This results shows that a hierarchical B dissimilarity algorithm based on
minimizing the dissimilarity of observations to their closest medoid performs better
than a divisive hierarchical clustering algorithm based on B.

4.2 Spatial Data

4.2.1 Example 1: Simulated data
The first example is the simulated data set with number of observation

n  286,320 and the number of variables p  4.

The log of the data at first looks as in the Figure 10.The initial step of the
software prompts the user to enter as what one needs to do following the menu
choices. We can also quit using the ‘quit’ option. Following the second step of the
process, a random sample of the data is taken, which can be depicted from the Rggobi
tool.

The tool of Rggobi provides with an feature of three – dimensional rotating
plot. So any of the clusters, which are not seen, from one perspective are discovered in
another. Figure 11 is the rotating version of the sample data

Thus, looking at the data, we can conclude that there are some clusters that
can be manually clustered. Hense, I used different colors from the color palette of the
Rggobi brushing tool. The clusters in the initial aqua color are the clusters, which are
clustered in the following stages. So these are to shadowed [Figure 12]. The shadowed
data is clustered into six different clusters in different colors, with the option of
Bayesian clustering, thus making the total of ten clusters [Figure 13].

But the clusters right in the middle of the plot, may be just outliers to the
other clusters, so Mahalanobis option is chosen to find the outliers. The output from R
when Mahalanobis is used.All the Cluster means and covariances are calculated first,
and the Mahalanobis module function gives the number of outliers present. Right
now, there are 276 outliers out of 277 observations.The Mahalanobis o/p from the
Rggobi is shown in Figure 14.The outliers are given the last color which is brown in
the present palette.

Now, the entire data is added to the sample using the Rggobi tool. Then
Mahalanobis is used to assign the entire dataset to the sample and is shown in [Figure
15].

The clusters in brown are the distinct outliers, which need to clustered again.
So the final clusters can be seen in Figure 16.
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Figure 10: Log of the data Figure 11: Sample of the data

Figure 12: Visual clusters Figure 13: Clusters without outliers
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Figure 14: Clusters with outliers

Figure 15: Final clusters

Figure 16: Clusters of the data
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4.2.2 Example 2: Real data

Stars are generally classified into two main groups called Population I and
Population II. The stars of the two populations are very similar. They all use fuse
elements to generate energy in the same way and they follow the same evolutionary
sequence. However, there are important differences in the characteristics which
distinguish the two groups; one of the main differences lies in the metal content of the
stars in each group. Astronomers regard all elements other than Hydrogen and Helium
as a ”metals” because metals were not originally part of the makeup of the universe,
but were manufactured inside the cores of heavy stars and dispersed throughout the
Galaxy by stellar winds, stellar flashes, and supernova explosions.

Population I stars are relatively metal rich stars; they contain about 2-3
percent metals. Because these stars have high metal content, astronomers know that
they are not first-generation stars, but rather were formed from the material fused in
earlier generations of stars. Population I stars inhabit the disk of the Galaxy. They
travel in approximately circular orbits about the center of the Galaxy and they
generally remain in the plane of the Galaxy as they orbit. (The older Population I stars
are found farther out of the plane than the younger stars.) Population I stars are
relatively young stars because they have formed within the last few billion years.
Extreme Population I stars (the most metal rich stars) are found only in the spiral
arms; these are the youngest stars. Intermediate Population I stars, like our Sun, are
located throughout the disk. They are slightly less metal rich. As the galaxy ages,
subsequent generations of stars will become increasingly metal rich because more and
more heavy elements will be fused inside massive stars, and their subsequent
explosions will further enrich the galactic interstellar medium.

By contrast, Population II stars are metal poor; they contain about 0.1 percent
metals. They are found in the spherical components of the Galaxy, the halo and the
bulge. They have randomly tipped, elliptical orbits which can plunge through the disk
of the Galaxy and which take some of them (the halo stars) to large distances from the
center. They are relatively old stars, with ages ranging from 2 - 14 billion years.
Extreme Population II stars (the most metal poor) are found in the halo and the
globular clusters which orbit the center of the galaxy; these are the oldest stars.
Intermediate Population II stars are located in the bulge. They are slightly more metal
rich than the extreme Population II stars, but less metal rich than the intermediate
Population I stars.

The differences in metalicity and age between the two Populations implies
that the Population II stars formed early during the evolution of the Galaxy. At this
time, the Galaxy would have contained gas that was nearly pure hydrogen and helium,
because few stars would have had enough time to generate heavier elements and
disperse these heavier elements into the Galaxy. Consequently, our Galaxy consists of
two stellar populations, the disk and the halo. More recently it has been hypothesized
that there are in fact three stellar populations: the old (thin) disk, the thick disk, and
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the halo, distinguished by their spatial distributions, their velocities and their
metallicities. These hypotheses have different implications for theories of formation
of the Galaxy. Some of the evidence for deciding whether there are two or three
populations is given in Figure 17, which shows radial and rotational velocities for
n  2370 stars from Soubiran (1993). In Celeux and Govaert paper (1995), authors
used the spherical models I and kI.The spherical model with the same volume
was not able to clearly distinguish a dense cluster (Halo or population II). The
spherical model with different volume on the contrary, shows its ability to find
clusters with different sizes.

Here we can show that we can do better since we do not know if the
population is spherical or ellipsoidal. By considering all the models available in Table
1, we will let the data speak out. Figure 18 presents a random sample 0 randomly
selected from the Galaxy data set D. Figure 19 and Table 4 show that the model k
(which means that clusters have different sizes and same shape) is preferred and that
there is a strong evidence for three groups as against two.

The balance of astronomical opinion has also tilted towards this conclusion,
based on more information than just velocities used here. Other information includes
star positions and metallicities (Soubiran 1993). We reached this conclusion with the
present method (Bayesian finite mixture model) using only a relatively small part of
the total available information. No outliers was detected by our method.

The posterior means of the parameters for the preferred model are: 1  1,
2  11.2, 3  2; 1  10,10, 2  2.5,100, 3  16,38;

 
1045 22
22 550

Table 4: Bayes factors for different models

No. groups I kI  k

1 2639 2641 2642 2641
2 2656 2628 2642 2621
3 2712 2601 2716 2566

4 2844 2624 2716 2670
5 2811 2821 2765 2713
6 2823 2822 2851 2810
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Figure 17: Real data

Figure 18: Sample data

Figure 19: Final Bayesian clusters
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CHAPTER 5

DISCUSSION

Cancer biomarkers can be used to screen asymptomatic individuals in the
population, assist diagnosis in suspected cases, predict prognosis and response to
specific treatments, and monitor patients after primary therapy. The introduction of
new technologies to the proteome analysis field such as mass spectrometry have
sparked new interest in cancer biomarkers allowing for more effective diagnosis of
cancer by using complex proteomic patterns or for better classification of cancers,
based on molecular signatures, respectively. These technologies provide a wealth of
information and rapidly generate large quantities of data.

Processing the large amounts of data will lead to useful predictive
mathematical descriptions of biological systems which will permit rapid identification
of novel therapeutic targets and diseases biomarkers. Clustering and analyzing
Proteomics data has proven to be a challenging task.

Proteomics data are provided usually as curves or spectra with thousand
of peaks. A clustering algorithm based on a matrix of n observations (n samples which
is usually small) and p peaks (p variables which is usually a large number) will be
unsuccessful. A covariance matrix of size (n  p) will be singular and any method
based on a matrixM n  p will not be robust enough and will induce errors. A
clustering algorithm based on a well chosen dissimilarity matrix n  n is more
appropriate and more robust given the relatively moderate size of the matrix.

The application of Euclidean or Mahalanobis distances for instance may
not perform well for this proteomics data set, since those distances are usually
successfully applied to a typical data with specific expression, spherical or ellipsoidal
(Normally distributed data). A new dissimilarity measure has to involve other criteria
such as the wealth of data points for each observation and the parallel nature
expressed by the proteomics curve (or time series). On the other hand, a robust
dissimilarity measure may perform badly on a curve with a large data points or peaks.

Functional smoothing of proteomics expression profiles or spectra has
proven to be very helpful. This has allowed us to minimize the number of peaks to
retain only the ones that passed the performance of the FDA smoothing. In this study,
after using FDA, we succeeded in retaining 50% of the smoothed peaks. The FDA
with the dissimilarity measure B shows better performance by comparison to C and
HZ known to perform well along with FDA on times series data or on monotonic
curves.

The two remaining difficulties that naturally arose are 1 to find
meaningful peaks that can be used to provide better discrimination between the
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clusters, and 2 to propose the optimal number of clusters instead of choosing them a
priori. The model selection criteria might be useful to answer those questions. In fact,
model selection scores use two components for selecting the number of variables and
the number of clusters in a given density-based cluster analysis. The first term is the
lack of fit generally proportional to the likelihood function. The second term is the
penalty term (complexity term). For such proteomics data set, we propose to use the
sum of the negative B dissimilarity measure between all the observations to their
closest medoids as a lack of fit function. The penalty term might be simple to derive
but biased using AIC and BIC, for example, or it can be more difficult to derive if one
used a more robust method such as an Information complexity based criterion.

The iterative algorithm being the combination of automated and visual
clustering methods performed well in the clustering of simulated data as well as real
data. Clusters in the simulated data seem to be convincing visually that all the clusters
have been discovered by the algorithm. The algorithm performed well on the real data
also. Three clusters have been discovered in the astronomical data. So, there is a
stronger evidence of the real data being clustered into three clusters rather than two.

There might be some difficulties in clustering the data, especially massive
and gigantic data sets with the itearative software, since RGGobi is used as the
visualization software. Sometimes, the Rggobi tool may not perform well with the
data sets bigger than a million observations, in which case, visual clustering may
become a hassle. Also, the installation of the software in the Linux platform has some
problems since the documentation of the RGGobi is not sufficiently clear. But one
advantage of RGGobi is the three dimensional spinning plots, which make the
multi-scale data clustering more obvious.

Some future work may include working on the clustering of the
non-normal or non-gaussian data. Right now, in the bayesian clustering, data is
assumed to be normal. Also, empty clusters which result in some of the iterations of
the Bayesian clustering method, are now treated by adding some points from the
largest cluster to make the algorithm work. Some other technique can be used to treat
these empty clusters.Thirdly, better initialization of the clusters can be given to the
Bayesian method at the start.
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