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Abstract

Schramm-Loewner Evolution (SLE) has both mathematical and physical roots that

extend as far back as the early 20th century. We present the progression of these

humble roots from the Ideal Gas Law, all the way to the renormalization group and

conformal field theory, to better understand the impact SLE has had on modern

statistical mechanics. We then explore the potential application of the percolation

exploration process to crack propagation processes, illustrating the interplay between

mathematics and physics.
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Chapter 1

Introduction

Schramm-Loewner Evolution has a lengthy history characterized not by its rapid

rise or immediate consequences, but rather by quiet decades of solitary anticipation,

accented with moments of discovery which coalesced during auspicious circumstances

to yield a uniquely innovative mathematical formalism. Mathematically, the roots

of Schramm-Loewner Evolution (SLE) are found in the Bieberbach conjecture. This

was only half of the story however, as the need for physicists to rigorously justify their

numerical simulations proved to be the impetus for the other half of SLE’s inception.

The Bieberbach conjecture, which states that every conformal map f(z) =∑∞
n=1 anz

n defined on the unit disc satisfies |an| ≤ n|a1| [6], was studied extensively

by mathematicians in the early 20th century, and Charles Loewner was one such

mathematician. Charles Loewner received his PhD from the University of Prague in

the Czech Republic. Loewner immigrated to the US during the onset of World War

II to escape Nazi persecution, having been born to a Jewish family. Loewner went on

to much acclaim and success at Brown University, Syracuse and ultimately Stanford

University. It was Loewner’s work on the Bieberbach conjecture that would be of

renewed interest in the early part of 21st century.

Loewner proved a particular case of the Birberbach conjecture using a differential

equation he invented, now known as the Loewner equation. Many years later, Oded
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Schramm used Loewner’s differential equation in a probabilistic context. Schramm

named his process Stochastic-Loewner Evolution, but it soon became known as

Schramm-Loewner Evolution (SLE) as a tribute to Oded Schramm, who died in

2008. Schramm’s discovery was met with much praise. Two fellow mathematicians,

Stanislav Smirnov and Wendelin Werner who helped Schramm develop SLE, were

later awarded the Fields Medal for their contributions. Unfortunately, Schramm was

excluded due to an age eligibility stipulation for the Fields Medal.

Schramm-Loewner Evolution found exciting applications to problems in statistical

mechanics and quantum physics; for instance, the application of SLE to the

percolation process through materials. In general, SLE has proven most applicable

to physical problems demanding a scaling limit. Essentially, SLE has the unique

ability to accurately translate complicated problems in some continuous space to a

well understood discrete space, where explicit calculations and analysis are generally

more manageable. Ongoing research of SLE promises more exciting applications,

including but certainly not limited to: Turbulent fluid flow, crystalline structure, and

planar circle packing. As the journey of discovery continues for SLE, the future looks

more promising than ever.

Thesis Structure

This thesis is divided into three sections. The first section, chapter 2, is designed to

provide a mathematically inclined reader some physical context for the motivation

and creation of SLE. We explore the evolution of statistical mechanics and see how

SLE can provide additional insight and address fundamental questions about certain

models. In particular, we introduce and explore the Ising model to illustrate basic

statistical mechanics concepts. Additionally, we provide a non-rigorous introduction

to conformal field theory, the renormalization group and note their contributions to

the development of lattice models in statistical mechanics as well as their deficiencies.

This motivates the second section of the thesis in chapter 3, where a more technical
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introduction to SLE is given, including a brief introduction of some of the relevant

probabilistic concepts. The chapter concludes with a description of the connection

between SLE and certain physical models. The last section of the thesis, chapters

4 and 5, pertain to the exploration of a model for crack propagation processes.

We discuss our motivation and model choice, as well as the algorithm we wrote

to implement our ideas. We conclude this section and the thesis with our results,

potential improvements, and future work.
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Chapter 2

Motivational Physics

2.1 Physical Context

As the title of this chapter implies, we hope to provide sufficient physical motivation

for SLE, and perhaps more importantly, to develop some context for that motivation.

This requires us to first consider the fundamental physical question being asked, and

then examine the progression of its solutions. The question physicists sought to

answer was simple: How does matter transition between its phases of solid, liquid,

and gas? The most common example of a phase transition is ice melting into liquid

water, or water boiling into stream. Although a simple question, years of study would

reveal a very complicated, chaotic and poorly understood process. It is at the end

of this process that SLE will provide a compelling alternative to past mathematical

descriptions and yield new insights to this old question.

The first step in this process is to become familiar with some of the basic

terminology and concepts of phase transitions. This is easiest by looking at a phase

diagram, a visual tool used to illustrate the relationship between various physical

properties, typically temperature and pressure. Figure (2.1) is a basic phase diagram

for the molecule of water. We see the now familiar phenomena of boiling and freezing

points dividing the diagram into the ice, water, and steam sections. A point that
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Figure 2.1: Phase diagram of water courtesy David Mogk

will become of interest later is the critical point. This is the point at the end of the

liquid-gas coexistence curve, where we see at high enough temperatures, the liquid

and gas phases of water become indistinguishable, regardless of pressure. We will

go over that in more detail later. Now that we are familiar with the basics we can

proceed with the first attempts to quantify the interaction of these various physical

properties.

The Ideal Gas Law

Physicist and chemists wanted to try and understand how transitions took place and

how these transitions affected various properties of matter. When water boils and

turns into steam, what happens to the temperature, pressure, and volume? The first

attempt to mathematically encapsulate these properties and their interaction was the

Ideal Gas Law proposed in 1834. The law is quite simple and can be stated as follows:

PV = nRT
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where P, V, T are pressure, volume, and temperature respectively. The remaining

terms, R, n are the ideal gas constant and the number of moles of the molecule in

question [19]. As we can see the Ideal Gas Law directly relates pressure and volume,

with temperature. This accurately captures the fact that as we heat substances

they increase in volume and thus exert more pressure. The Ideal Gas Law was

massively over simplified in its most fundamental assumption; namely, that all gases

at all temperatures and pressures behave ‘ideally’. This entails that a gas has no

intermolecular forces and that the gas particles have no size. In experiments the Ideal

Gas Law failed to predict accurate values above one atmosphere, a measurement unit

for pressure. An obvious improvement was needed, and came in the form of the Van

der Waals equation.

Van der Waals Equation

The Van der Waals equation was created in 1873 by Johannes van der Waals, and

sought to include the two main properties the Ideal Gas Law neglected: Intermolecular

forces and the size of particles. As a result the Ideal Gas Law became

nRT = (P +
n2a

V 2
)(V − nb).

In the two new terms, n2a
V 2 and nb, the constants, a and b, represented the attraction

between particles and their size respectively. This was an improvement over the

Ideal Gas Law, but problems still remained. The value of b was found non-constant,

fluctuating with temperature and pressure [12]. The most significant result stemming

from the Van der Waals equation was the Theorem of Corresponding States. In

lieu of describing this concept myself, I quote Van der Waals, “Substances behave

alike at the same reduced state. Substances at the same reduced states are at

corresponding states.”[11]. The essence of the Theorem of Corresponding States

is the normalizing of properties of matter. While the concept of normalization is

common place to mathematicians, this idea in the physical context at this time was
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Figure 2.2: The x and y axis are P , T respectively, [11]

quite novel. Mathematically these reduced states were expressed thusly,

T =
T

Tc
, P =

P

Pc
, V =

V

Vc

Quite literally and figuratively the common denominator amongst all of these reduced

states is their value at their critical points. The elegant Theorem of Corresponding

States was a theorist’s dream, but in the physical world, experimental data is required

to support theoretical predictions. A particularly convincing example of such evidence

is the Guggenheim plot, shown in Figure (2.2). The experimental data supporting the

Theorem of Corresponding States is the reason understanding of the physics at and

around critical points becomes of such importance. For more information regarding

the relevant work of Van der Waals and others, I refer the interested reader to the

following sources [11, 19].

Understanding the physics around the critical point requires a new approach. In

order to understand what is happening at these all important points, we first need to
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pick a property that we suspect will provide some insight. If we return to the water

example, we choose to examine the densities of water in its liquid (ρliq) and gaseous

phases (ρgas), and consider their differences (∆ρ = ρliq − ρgas). Figure (2.3) plots

how this parameter, ∆ρ, varies with temperature. As we can see, the difference in

densities goes to zero as we approach the critical point, as expected based on the fact

that above the critical temperature the differences between the liquid and gas states

of water are indistinguishable. This behavior can be encapsulated by the following

equation:

∆ρ = |Tc − T |1/2

where T < Tc. The value 1/2 is known as the critical exponent. Its numeric value

dictates the behavior of the order parameter, ∆ρ, as we approach the critical point.

As a result, critical exponents will be largely used to judge the accuracy of any

theoretical model as it relates to experimental data. Thus, critical exponents become

the main focus of much research in the field of statistical mechanics. Many questions

arise, such as: Are there different values for different critical exponents, for different

order parameters, or for different models? We shall see a very convenient phenomena

will be observed, which will simplify the questions of different critical exponents for

different models, much to the relief of physicists. Now let’s examine a basic statistical

mechanical model, to illustrate some of these concepts.

2.2 The Ising Model

The Ising model was developed in 1925 by Ernst Ising at the suggestion of his

dissertation advisor. Ising was directed to investigate the phenomena of spontaneous

magnetization in magnetic materials. Spontaneous magnetization occurs in certain

materials, at specific temperatures, in the presence of some external magnetic field.

So what exactly is spontaneous magnetization? Before we can understand that we

need to briefly review a little basic physics.
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Figure 2.3: Notice the exponential decline of ∆ρ as T → Tc.

Atoms, the building blocks of all matter, are made up of a nucleus, consisting

of positively charged protons and charge-less neutrons, as well as negatively charged

electrons which travel in various orbits about the nucleus with some angular velocity.

Additionally, every elementary particle has an intrinsic spin, which can be thought

of as the spin of a tennis ball rotating about its own axis. (Although not strictly

an accurate physical representation, it is sufficient for our intuition.) The concept of

intrinsic spin will be of significant physical importance later in the paper. Any charged

particle in motion creates its own magnetic field, and thus every individual particle

has some small local magnetic field generated by its intrinsic spin. Furthermore, any

atom has its own local magnetic field generated by the combination of its constituent

charged particles motions, interactions, and inherent spins. Consequently, every atom

has what is called a magnetic moment, which is a way of quantifing and capturing

the nature of the atomic magnetic field. The two most basic properties are relative

strength and direction of the field. As you can imagine the strength and direction of

atomic magnetic fields vary widely based on many interacting factors. Ising simplified

this problem by assuming every atom had an overall spin pointing in either the
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‘up’ or ‘down’ direction as illustrated in the one dimensional case by Figure (2.4).

The relative orientation of atomic spins will relate to the phenomena of spontaneous

magnetization in the Ising model. Now we are ready to define the Ising model.

Figure 2.4: One dimensional Ising set-up, [5]

Let us recall that the primary objective of the Ising model is to capture the

interaction between atoms, as it relates to magnetism. More specifically, the

Ising model seeks to discover and describe the conditions under which spontaneous

magnetization occurs in a material. A natural place to start is to represent and

construct a model for a material. We let our material be represented by a lattice, in

dimension d. This is a finite number n of equally spaced points, called vertices. Every

point is connected to its nearest neighbors exactly once by straight lines called edges.

In general the number of edges connected to any given lattice site or vertex is given

by 2d. The vertices now represent individual atoms and the edges can be thought of

as bonds. See Figure (2.5) for the d = 2 case.

Now that we have our model for the material, it is time to decide how we quantify

the properties of the material or system as a whole. This is done with what is called

the Hamiltonian, which is a mathematical expression for the energy of a system

derived from the relationship between the potential and kinetic energy equations.

We can and will, from this point on, think of the Hamiltonian as the overall energy of

the system. Before writing the Hamiltonian for the Ising model explicitly, let us recall

that the Ising model seeks to capture the interaction between atoms; so in the one

dimensional case for example, given any atom we wish to know how it interacts with

its neighboring left and right atoms. This interaction, in the context of magnetism, is

the interaction of atomic spins. Let’s make some of these qualitative notions concrete

with the explicit expression of atomic interaction and hence overall energy H (the

Hamiltonian) of the system for the Ising model.
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Figure 2.5: Two dimensional Ising model set-up, courtesy Alexander Papageorge.

Let σ = {1, 2, . . . , n} be the vertices of our d-dimensional lattice and let σ =

{σ1, . . . , σn} with σi = +1 represent the ‘spin up’ and σ = −1 ‘spin down’, for,

i ∈ {1, . . . , n}. Then the total energy of the system H can be represented by

H(σ) = −J
∑
〈i,j〉

σiσj (2.1)

where J > 0 is known as the coupling constant, and the notation 〈i, j〉 means to

sum over all nearest neighbor vertex pairs. There is a symmerty about the model,

so H(σ) = −H(σ). In other words the spin values are symmetric: if we multiply the

model by -1, all the spins flip and become their inverses. Here H is given as a function

of σ because the value of H depends upon the various distributions of +1’s and -1’s

‘spins’. Also we see that the interaction between atoms is given by the product of

values that the vertices take. So if the spins of one neighboring pair of atoms point

in the same direction, i.e. σi = σj = +1 or σi = σj = −1, then their interaction,

the product σiσj always equals 1. We also see, due to the negative sign in front of

the sum and the fact that J > 0 the neighboring spins have a preference to align,

in physical terms. This is what is known as ferromagnetism. Let’s consider a quick
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example in 1-dimension with n = 3. Suppose σ1 = σ3 = +1 and σ2 = −1. Then,

H(σ) = −J
∑
〈i,j〉

σiσj

= −J [σ1σ2 + σ2σ3]

= −J [(1)(−1) + (−1)(1)]

= 2J

Equation (2.1) is the basic Ising model; however, it is not the complete Ising

model, which takes into account an external magnetic field. As with all magnetic

fields, there is a specific direction associated with the external magnetic field. For

simplicity’s sake, Ising again chose the direction to either be up or down. The effect

of the external magnetic field depends on several factors. In addition to its direction,

the strength of the external field and the temperature of the material are important

parameters. The reason temperature is related to the magnetism of a material is

due to the two main types of magnetism: ferromagnetism and paramagnetism. The

point which separates theses two types of magnetism is the Currie point, and it

is akin to the boiling point of liquid. A material’s transition from ferromagnetic to

paramagnetic is in fact a phase transition: a material is ferromagnetic below its Currie

temperature, where all atomic spins align in the same direction, and remains magnetic

even in the absence of an external magnetic field. The everyday magnetics on our

refrigerator are examples of ferromagnetic materials. In contrast, a material can

only be paramagnetic above its Currie temperature. Paramagnetism is characterized

by random atomic spin directions. Additionally, when a material is paramagnetic

the randomized spins will align in the presence of an external magnetic field. The

order parameters associated with ferromagnetism and paramagnetism are average

magnetization (M) and magnetic susceptibility (χ) respectively. See Figures (2.6,

2.7).
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Figure 2.6: Average magnetization
order parameter

Figure 2.7: Magnetic susceptibility
order parameter

This makes sense intuitively, since at temperatures above the Currie point, where

a material becomes paramagnetic, we are quite literally measuring how susceptible

its random spins are to the influence of an external magnetic field. We quantify this

behavior in a similar fashion to the order parameters already encountered before.

Below the Currie point, i.e. for T < Tc the average magnetization (M) is given by

M ∼ |Tc − T |α

Similarly, when we are above the Currie point, i.e. Tc < T the magnetic susceptibility

(χ) is given by,

χ ∼ 1

|T − Tc|γ

Notice the critical exponets α and γ play the same important role as they did before.

Figure (2.8) graphs both of these parameters, with predicted values of the critical

exponets. We refer the reader to the following sources for more information on how

to explicitly calculate critical exponets [4, 5, 8]. We can see as temperature continues

to increase, random thermal fluctuations begin to overpower the influence of the

external magnetic field and dominate the system. The goal of the Ising model is to

13



Figure 2.8: Notice the mutual asymptotic behavior at the critical temperature.

model gain a greater understanding of the interplay and relationships between these

relevant parameters.

As both of these order parameters indicate, magnetic properties are a function of

temperature, and as a consequence the distribution of spins across the Ising model

also varies with temperature. In other words parts of the model may have up spins,

others down. In the absence of an external magnetic field, the distribution of these

spins across the model is a function of temperature only. At temperatures above the

Currie point, thermal fluctuations overpower any magnetic properties the model may

have, hence the small clusters of aligned spins as the Tc < T portion of Figure (2.9)

illustrates. As temperature decreases, the first point at which magnetic properties can

begin to overpower thermal fluctuations is critical temperature. At this temperature

the model develops more equally sized clusters of up and down spins, as shown at

T=Tc in Figure (2.9). The boundary which divides the two largest continuous clusters

is known as the domain wall. The domination of the magnetic properties continues as

temperatures decrease, changing the direction of the remaining pockets of spins whose

directions are opposite that of the larger cluster surrounding it. This continues until

an equilibrium is reached, with an equal distribution of up and down spins across the

model, as indicated by Figure (2.9) at T < Tc.
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Figure 2.9: The Ising model with Dobrushin boundary conditions, and no external
magnetic field, at various temperatures, notice the appearance of the red-blue
interface known as the domain wall at T = Tc [9].

We now introduce the complete Ising model,

H(σ) = −J
∑
〈i,j〉

σiσj − h
∑
i

σi (2.2)

where h is a parameter representing the strength of the external magentic field. The

second sum represents the external magnetic field acting on each lattice site equally.

Note the similarity to our previous version of the Ising model; in fact, this model

reduces to (2.1) when h = 0.

Now that we have a complete model capturing basic atomic interaction in the

presence of an external magnetic field, we need to discuss what we do with the

Hamiltonian in order to derive more useful information from this model. The

way we do this is by utilizing a cornerstone of Statistical Mechanics, the partition

function. The partition function is an entirely mathematical tool formed by taking the

exponential of the Hamiltonian and then summing over all the possible distributions

of ±1’s spins. To be clear, if we consider as before the case of n = 3 then we have

23 sets to sum over. Examples of such sets are σ1 = {1, 1, 1} or σ2 = {1, 1 − 1}.

15



Since each σi can take one of two values namely, +1 or -1, and because the number

of vertices is 3, we see there are 23 = 8 possible sets to sum over. In general, we will

be summing over 2n sets. For simplicity and introductory purposes we can introduce

the partition function over the Hamiltonian with no external magnetic field. Then

we have the partition function defined as follows,

Z =
∑
{σi}

e−βH(σi) (2.3)

where β is a parameter used to cancel whatever units the Hamiltonian may have.

Typically, β = 1
kT

where T represents temperature and k is Boltzmann’s constant,

and this is how we will think of β throughout the rest of this paper. The partition

function allows us to obtain a weighted value representing the probability that we

will find our system in a particular state:

Prob(σk) =
e−βH(σk)

Z
(2.4)

Here we can see Z as the normalizing denominator since by definition it includes all

of the possible states the model may obtain.

The most basic Ising model did not exhibit a phase transition in one dimension,

and its oversimplification of atomic interactions needed to be rectified. Physicists

introduced mean field theory to the Ising model to solve this inadequacy. In actuality,

the interaction between atomic magnetic fields are far more complex than the original

Ising model assumed. Atoms do not interact one at a time with each other, but

rather are constantly all acting on each other simultaneously. As a analogy consider

a network of buckets full of water, all connected to each other by a series of hollow

tubes allowing water to flow between the buckets. Each bucket is either full of hot

or cold water, mimicking the spin up or spin down of the Ising model. As the Ising

model is originally defined, the water in the center bucket interacts only with one

neighboring bucket at a time; meaning that, at any given time only two buckets are
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exchanging water. We want the water in all the buckets to be mixing with all the other

buckets simultaneously. In other words, we want all the water, from all the buckets,

to freely flow between the buckets all the time. As the entire amount of water mixes,

the hot and cold water combine, reaching an average or mean temperature over the

network of buckets. This is exactly the atomic interaction we want to achieve and

it is known as mean field theory. In the context of the Ising model, the necessary

adjustment to achieve the mean field theory effect amounts to a small mathematical

change illustrated below.

The first thing we need to do to capture this average or mean behavior over a set

of lattice sites, is to first rewrite the atomic interaction. As it stands now the atomic

interaction is the product σiσj. So we rewrite it as the following,

σiσj = [(σi −m) +m][(σj −m) +m]

= (σi −m)(σj −m) + (σi −m)m+ (σj −m)m+m2

where m is the average spin. So we are considering the difference between any given

spin and the mean spin of over all its neighbors. We are also assuming that the spin of

any given lattice site deviates only slightly from the average spin of all its neighbors,

so (σi −m) ≈ 0 and (σj −m) ≈ 0. So when we sum over all pairs in calculating the

new Hamiltonian we can neglect the (σi −m)(σj −m) term. Thus the Hamiltonian

for the mean field theory approximation can be formulated as,

H = −J
∑
〈i,j〉

[m(σi + σj)−m2]− h
∑
i

σi

=
1

2
Jm2nd− (Jmd+ h)

∑
i

σi (2.5)

where the factor nd/2 is the number of nearest neighbor pairs since d is the dimension

and n is the number of edges connecting the vertices. This equation is a modification

of equation (2.2) because we were able to neglect the (σi−m)(σj −m) term, so they
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Figure 2.10: High temperature Figure 2.11: Low temperature

are not equivelent equations. The interactions for this version of the Ising model have

been changed in that a spin is now effected by the mean spin of its neighbors. This

local magnetic field can now contribute to the force of the external magnetic field, as

indicated by the (Jmd+ h) term. The term (Jmd+ h) is the new external magnetic

field and we will denote it as hm = Jmd+ h. So what effect does this new term have

on the overall system, and what is the effect when there is no external magnetic field

versus when there is one? Well lets compare the equations when h = 0 and when

h = Jmd.

When h = 0 then hm = Jmd. So our the partition function for the mean field

approximation can be written as,

Z = e−
1
2
βm2Jnd(e−βhm + eβhm)n

= e−
1
2
βm2Jnd2n coshn(βhm) .

Note that in the term hm = Jmd + h, the values J, h and d are fixed. Thus hm

depends on the mean value m. But what is the value of m? We can solve for m using

the expression of our partition function Z, and we find that

m = tanh(βh+ 2βJdm).
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To investigate the value of m further let us consider the case when h = 0,

then hm = Jmd, thus m = tanh(βJdm). Recall β = 1/kT so we are able to

relate the value of m with temperature based on the above equation. Figures (2.10,

2.11) illustrate the relationship between the values of m and the temperature T .

Firgure (2.10) can be interpreted as a system at high temperatures, hence the lack

of any average magnetization. Figure (2.11) depicts the case where Jnd > 1, where

we have three distinct solutions: +m,−m and 0. The solutions represent atomic

interactions overcoming the effects of temperature and thus yielding a non-zero mean

magnetization value. The temperature dividing these two cases is known as the

critical temperature and is given by kTc = J2d.

Next, lets consider the effect on the system when h 6= 0. Since the term tanh(βh+

2βJdm) now has the βh term we see a left or rightward shift of the entire graph

depending on the sign h takes. See Figure (2.12).

Figure 2.12: h > 0 so we see positive m is the only solution.

Now that we have a good idea of the physics underlying the Ising model and how

it works, we can ask ourselves the most important question of all: How well does the

model work? One way to address this question is to use the model to predict critical

exponents and then compare them to experimental data. Sadly, the Ising models

predicted critical exponents do not agree with experimental data. The table below
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provides the theoretical and experimental values of critical exponents for both the

Ising model and the more familiar liquid-gas phase transition.

Table 2.1: Comparison of Ising model data [16]

Variable parameter predicted experimental

χ mag susp 1 1.2
M avg mag 1/2 .32
∆ρ ∆ density 1/2 .32
κ compressibility 1 1.2

The most fascinating fact about this table is the exact same results for two

completely different physical processes. The fact that the Ising model provided the

same results, albeit incorrect, for liquid-gas transition as it did for magnetic phase

transitions greatly simplified the physicist’s task. Instead of creating different models

with different order parameters for various types of phase transitions there seemed

to a universality to the underlining physics, hinting at the possibility of creating one

general model which could describe many if not all processes in statistical mechanics.

This hope brought many mathematicians to the realm of statistical mechanics, as they

attempted to construct or apply the appropriate mathematical theory that would yield

an elegant general model.

2.3 Advanced Physics

The Renormalization Group

In the previous sections we discussed some basic physics and one of the most

prominent statistical mechanics models, the Ising model. In that discussion we saw

how the all-important critical exponents serve as our gauge of validity for a particular

model. We also saw that even with the addition of mean field theory, the Ising model

still did not quite agree with experimental data. The next step in our journey is to

discuss the physicists proposed solution to fix the Ising model.
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The failure of both the basic and improved Ising models is the inability

to accurately capture the atomic fluctuations within a material at or near its

critical value, as Table (2.1) illustrated numerically. In order to rectify these

shortcomings the physics community essentially created two new mathematical tools:

the renormalization group and conformal field theory. Without going into much detail

describing either one of these advanced concepts, I would like to take a moment

to discuss the ideas behind them, illustrate what they achieve, and mention their

shortcomings. Understanding these ideas is the key to realizing the need for a more

rigorous mathematical formalism and thus directly motivating the development of

Schramm-Loewner Evolution.

As the above example illustrated, the basic and improved Ising models fail

to take into account the fluctuations of atomic interaction near critical values.

Intuitively, these models are too rough of an approximation to capture the fine,

complex interactions happening on the smallest scales at critical values; interactions

which in turn, dictate the macroscopic behavior of the model. This is the problem

that the renormalization group intended to solve. The renormalization group is a

mathematical method used to effectively calculate and recalculate various model

parameters, as the scale on which these parameters are observed changes. As an

analogy, if one observes, from the height of 100 ft above some track, a car moving

at a constant speed of 100 mi/hr around said track, one could accurately confirm its

speed given information like how big the track is, lap times, etc. If we increase our

observational height to 10,000 ft we cannot see the car or the track well enough

to confirm the car’s speed. If we could zoom in enough to replicate the 100 ft

perspective we could then confirm the speed of the car. The renormalization group

plays the role of the zooming in action needed to reacquire the 100 ft perspective.

Just as the analogy seeks to verify the velocity of the car, in reality an experimenter

can try to measure the velocity of a particle. One can renormalize many physically

observable parameters of a system. Examples of this include, velocity, momentum,

spin, and position, of a particle in a thermodynamic system. To restate, renormalizing
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Figure 2.13: Coarse-graining process. image courtsey Andreas Dengenhard and
Javier Rodriguez-Laguna

a parameter of a model ensures the numerical value of that parameter stays consistent

with respect to the original scaling, once we have changed the observational scale.

Examples of this scaling problem are abundant across the various realms of physics.

Perhaps most notably is the Theory of Relativity’s inability to accurately describing

the universe on the quantum scale, although succeeding brilliantly on cosmic scales.

Conversely, quantum mechanics flourishes on the quantum scale but falters on any

scale larger than the microscopic.

The main procedure for renormalizing a system is called coarse-graining. The

process for the Ising model proceeds as follows. Given a finite lattice with some

distribution of spins on it, we first divide the lattice into blocks of equal size. Next,

assign the entire block the spin that occurs most frequently within it. The belief being

that if we replace the many spins within the blocks across the entire model with only

one spin per block, we are effectively changing the observation scale appropriately for

the model. See Figure (2.13) for illustration. If this process was repeated sufficiently

many times, on the Ising model for example, the belief was that at the critical

temperature, as we refined our lattice over and over, the model would ‘converge’ to a

continuous, and thus most realistic, version of the Ising model. This would also allow

the Ising model to then fall within the scope of a quantum field theory, since the spaces

between our atoms would have gone to zero, we would have a continuous field of atoms

as opposed to a discrete lattice of atoms. This limiting process is what physicists call

the continuum limit and what mathematicians call the scaling limit, which I will
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discuss below. But first note, if we can make a model such as Ising’s converge to a

continuous space at criticality, what is to stop us from doing the same for any lattice

model? This is the concept of universality, eluded to in Table (2.1), and in this new

context states that as long as models belong to the same so-called renormalization

space then the scaling or continuum limit should always be the same. As a result, the

scaling limit must be invariant under rotations and translations, and it was further

suggested that since the scaling limit is now a quantum field theory, it should or may

be conformally invariant. [8] This triggered an onslaught of research in the subject of

conformal field theory, as both mathematicians and physicists hoped to confirm these

new conjectures. See [1, 15] for more details regarding the renormalization group.

Conformal Field Theory

While the mathematical mechanics of the renormalization group is daunting, I do want

to briefly mention one of its chief components, conformal field theory. Conformal field

theory is a subset of quantum field theory, and as such, the objects it examines are

fundamental particles and other phenomena on the quantum scale. Because these

particles tend to possess some inherent symmetry, the mathematical discipline of

algebra, as one might expect, is the natural tool used for their analysis. In particular,

the symmerty and interactions of these quantum objects is such that they may be

represented as fields. This allows all of the tools of group and field theory to be fully

utilized in their study. Conformal fields are distinguished form ordinary fields in that

their symmetry groups are invariant under a conformal mapping, hence the name

conformal field theory. Conformal field theory has been extensively researched and is

the machinery of choice when analyzing behaviors of two dimensional lattice models

at criticality. The predictions of conformal field theory, including the all-important

values of critical exponents, have provided the closest agreement with experimental

data to date. While conformal field theory itself is mathematically justified, many

of the physical and mathematical presumptions which originally inspired the use of
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conformal field theory were not fully justified. For as much success as conformal

field theory was enjoying, there were still some very basic cases, namely that of the

percolation process model, where conformal field theory failed to provide complete or

convincing answers. For more details concerning conformal field theory see [10].

Shortcomings

The problem with the renormalization group and conformal field theory approaches

stem from a very subtle difference between the continuum and scaling limits as defined

by the physics and mathematical communities respectively. Physicists often need to

move impossibly difficult problems in a continuous space, which is where they occur

in nature, to a discrete space where the problem becomes more manageable. A lattice

is an example of this discretization of continuous space. In order to recapture the

continuous space, the lattice spacing is taken to zero, hence the name continuum

limit. Mathematicians refer to this as the scaling limit, because it refers to the size

of the lattice scale being taken to zero. And as described in the renormalization

group section, it is in the limit, at criticality, which gives rise to the conformally

invariant object. But it is in the nature of the object in question where the subtle

but important distinction between these two definitions occurs. The continuum limit

refers to recapturing the behavior of the entire discrete model in continuous space.

This is at odds with the mathematical notion of the scaling limit because the scaling

limit depends on a specific object defined on the model. For mathematicians, “the

meaning of the scaling limit depends on the object we wish to study (interfaces,

size of clusters, crossing, etc.),” rather than the limit of an entire model. [8] The

differences between these two definitions is further compounded by the assumption

physicists assert regarding the existence of such a limit, whereas mathematicians

before considering a limiting object, must first be able to prove its existence. This

is a detail that is often glazed over by both disciplines and one which poses a

fundamental obstacle in connecting the numerical predictions of physicists to the
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rigorous mathematical justifications necessary to make such predictions. Schramm-

Loewner Evolution addresses this fundamental problem and provides the rigorous

mathematical foundation necessary to realize this connection. For the interested

reader, in addition to the sources I have already provided I highly recommend

David Tong’s home page from the University of Cambridge for any and all interests

pertaining to physics.

A Quick Recap

We have introduced a large amount of physics thus far, and it can be easy to

loose sight of the bigger picture. Figure (2.13) provides you with a basic overview

and progression of the essential physical ideas we have discussed. We set out to

investigate the mechanisms and properties of phase transitions of matter. This led

us to Van der Waals Equation, which admitted critical exponents. Fundamentally

incorrect assumptions about the constants in the model and disagreement between

experimental theoretical data highlighted the need for a new approach. This came in

the form of conformal field theory, which drastically increased the accuracy of critical

exponents and made many strong predictions about model behavior supported by

numerical simulations. As we shall see at the end of chapter 3, SLE will rigorously

confirm these numerical simulations, and provided insight to many other statistical

mechanical models.

25



Figure 2.14: Highlights of our journey thus far.
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Chapter 3

Introduction to Schramm-Loewner

Evolution Concepts

3.1 Schramm-Loewner Evolution

Statistical mechanics and condensed matter physics had just undergone a revolution.

Substantial progress on the simple yet vexing question of phase transitions in lattice

models had recently been made with the advent and application of two new elaborate

and mathematically dense methods: the renormalization group and conformal field

theory. While the physics community celebrated and supported their hypotheses with

compelling numerical simulations, mathematicians were still grappling with some of

the underlying assumptions their physicist brethren had assumed to be true, without

rigorous proof. What mathematicians wanted was an organic and rigorous process

which could duplicate the same successes and insights the renormalization group and

conformal field theory had generated. The Schramm-Loewner Evolution, as it would

come to be called, was created to accomplish excatly that.

The intent of Schramm-Loewner Evolution (SLE) is twofold: To solve the

physical problems posed by physicists and to satisfy the mathematicians need

for rigor and proof. As previously mentioned, in order to solve the physicist
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problems we need a continuous, conformally invariant object. But we also require

a mathematically rigorous process which satisfies these requirements. We begin first

with an introduction to the relevant concepts from probability.

Necessary Probability

The first and most basic concept is that of a simple random walk. In the one

dimensional case, consider the integers on a number line. After picking an arbitrary

starting point, we can then only move the distance of one integer at a time. For

example, if we start at 0, we can only move to -1 or +1. Whether we move to -1 or

+1 is dictated by probability, in this case an equal 50-50 chance of moving to either

number. Supposing we move to +1, then the same probability applies for the next

step, a 50% chance of moving to either +2 or back to 0. This process repeats itself

any number of times, and the resulting movement along the number line is known as

a random walk. A simple random walk can be defined in any dimension. If we want a

random walk on a lattice, we can think of it in the following way: Imagine you start

at any vertex on the lattice at time zero, and you can only move one vertex at every

time interval. In the case of a two dimensional square lattice, there is an equal 25%

chance of moving to the vertex on your left, right, straight ahead, or behind. This

process repeats just as in the one dimensional case, and the path traversed is known

as a simple random walk. See Figure (3.1). A slight variation of the simple random

walk is the loop erased random walk (LERW). This is just a simple random walk with

the additional condition that any loops created while preforming the random walk

are eliminated. See Figure (3.2).

In the 1950’s Donsker proved that as the step size goes to zero, a simple random

walk, when appropriately scaled, converges to the well known process called Brownian

motion [7]. Brownian motion was originally created to study the random movements

of gas particles. The path Brownian motion creates is everywhere continuous but

nowhere differentiable in the usual sense. (It is differentiable using a stochastically
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Figure 3.1: An example of a 2-d random walk on a square lattice, courtesy Tom
Alberts.

developed form of calculus known as Itō calculus.) Schramm was trying to understand

the same problem for other random walks, such as LERW. Intuitively, this is a simple

idea. Figure (3.2) is a LERW on a square lattice, but what happens to the curves as we

shrink the size of the squares? Does this discrete LERW on a square lattice converge

to a continuous curve in a continuous space as we take the square size to zero? This is

the notion of a scaling limit Schramm began to investigate. In addition to showing the

scaling limit existed, he also wanted to prove that the limit is conformally invariant,

a property held by Brownian motion. This was desirable because as predicted by

conformal field theory, continuous and conformally invariant curves were qualities

associated with two dimensional lattice models at criticality. But we still need to tie

in the physical models explicitly, and relate them to the mathematics, in order to

achieve that we need one additional concept from probability, the martingale.
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Figure 3.2: An example of a 2-d LERW, courtesy Tom Alberts.

A martingale is a random process where the future depends only on the current

state, and not on the past. An example of a martingale is a simple random walk. As

previously described, the next step in a random walk is not affected by past events,

and all future steps have an equal probability of occurring. So we see the properties of

a martingale occurring in the context of a simple random walk. It has also been shown

that Brownian motion is a martingale in [13]. In the SLE context, the mathematical

representation of a physical observable may be represented as a martingale. Intuitively

speaking an observable is any measureable quantity of a physical system, for example

position, momentum, or spin. Mathematically speaking, the observation takes place

in the realm of quantum theory, so a particular continuous linear operator is assigned

to each observable quantity. For example, if you wish to observe momentum, a specific

continuous linear operator, usually in the form of a matrix, will be associated with

momentum. This operator acts on the states of the system which are represented by
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vectors. The representation of an observable as a martingale is how SLE knits itself

into the physical models of statistical mechanics.

Now we need a way to connect all of these ideas together, concisely and rigorously.

We need a way to ensure our discrete random walk converges to a continuous curve

in a continuos space of physical relevance. The mechanism which would provide all

of this was the Loewner Equation.

The Loewner Equation

We start this section with an introduction to the basic Loewner before discussing

Schramm’s unique utilization of it. The Loewner equation is defined as the following

differential equation.

Definition. Denote H = {z ∈ C : Im(z) > 0} as the upper half-plane. Let z ∈ H and

λ(t) be a continuous real valued function for t ∈ [0, T ]. Then the Loewner equation

is the initial value problem,

∂

∂t
g(z, t) =

2

g(z, t)− λ(t)
, g(z, 0) = z . (3.1)

The existence and uniqueness theorem for differential equations guarantees that

for every z ∈ H there exists a unique solution to the Loewner Equation on some

time interval [0, t0). There are two sets of interest which result from (3.1). The first

relates to the set of times for which the solution to (3.1) makes sense. We define this

set in the following way: Let Tz = sup{t0 ∈ [0, T ] : g(z, t) exists on [0, t0)}. This

defines our set of valid times for a fixed z. The second set we need to consider is

the set of valid points in H such that g(z, t) 6= λ(t). For a fixed t ∈ [0, T ] define

Gt = {z ∈ H : t < Tz}, and define Kt = H \Gt, which is called the hull. It is a classic

result that the solution to (3.1) is a conformal mapping from Gt onto H.

Starting with λ(t), which is also known as the driving function, we know that

through the mechanics of (3.1) a simply connected domain in the form of Gt and

the related hull, Kt will be produced. Additionally, the solution to (3.1) yields a

31



Figure 3.3: An example of the Loewner trace when λ(t) = 0 and the corresponding
mapping onto H, courtesy Joan Lind.

conformal map, gt(z) : Gt → H. Properties of λ(t) affect the geometry of Kt. In

some cases Kt = γ(0, t] for a simple curve γ in H with γ(0) ∈ R. In a slightly more

complicated situation, Kt may be determined by a non-simple curve γ in H that is

allowed to touch back on itself or on the real line, but not cross over itself. Then Kt

is the union of the curve γ(0, t] with all the bounded components of H \ γ(0, t]. In

both cases, the curve, called the trace, completely determines the hull Kt. When a

hull is defined by a trace curve γ, then λ(t) = gt(γ(t)), or in other words, the driving

function is image of the tip of the curve under the conformal map gt. As we can

see, the choice of λ(t) underpins everything in the Loewner Equation, including the

conformal mapping.

Now that we understand the basic properties of the Loewner Equation let’s

illustrate them with a simple example.

Example 1. Let the driving function λ(t) = 0 for all t ∈ [0, T ]. Then (3.1) reduces

very nicely to

∂

∂t
g(z, t) =

2

g(z, t)
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We can solve this simply by seperation of variable as follows:

g(z, t)
∂

∂t
g(z, t) = 2∫ (

g(z, t)
∂

∂t
g(z, t)

)
dt =

∫
2dt

1

2
g(z, t)2 = 2t+ C

g(z, t) =
√

4t+ 2C

To find C, we use the initial condition: g(z, 0) =
√

2C = z. Thus,

g(z, t) =
√

4t+ z2

In example 1, the conformal map generated by the Loewner equation is g(z, t) =
√

4t+ z2, which is a conformal map from H with a vertical slit removed onto H, as

shown in Figure (3.3). In this example, the hull is the vertical slit {iy : 0 ≤ y ≤ 2
√
t},

and the trace is the curve γ(t) = 2i
√
t. We see that g(z, t) takes the tip of the trace

and maps it to 0 since gt(2i
√
t) =

√
4t− 4t = 0 = λ(t).

Now that we have a grasp on the Loewner Equation we are ready to give a

definition of SLE.

Definition. SLE(κ) is the random trace curve generated by the Loewner Equation

when λ(t) =
√
κBt, where Bt is Brownian motion.

The stochastic nature of Brownian motion enabled the Loewner Equation to

produce a random families of curves, which were by definition continuous and

conformally invariant. In the case of SLE, the parameter κ dictates the properties

of the trace and hence these randomly produced curves. It has been shown in [17]

that there is a unique and continuous path γ : [0,∞) → H such that the hull is

the union of γ[0, t] and the connected componets of H \ γ[0, t]. The evolution of

γ(t) along with its shape and properties when λ(t) =
√
κBt is the defining aspect

of SLE. Figures (3.4, 3.5) gives some examples of such curves when κ = 2 and
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Figure 3.4: The curve γ(t) when
λ(t) =

√
6Bt, courtesy Joan Lind

Figure 3.5: The curve γ(t) when
λ(t) =

√
2Bt, courtesy Tom Alberts

κ = 6. These curves were the candidates for the scaling limits mathematicians

sought. In order to identify the appropriate SLE curve for a particular model, say the

domain wall in the Ising model or the LERW for example, mathematicians needed

a way to use features of the model to determine a particular value of κ. This was

accomplished by finding a physical observable connected with the model at hand

that could be mathematically represented as a martingale. Then Itō calculus could

be used to determine the necessary value of κ, which related that martingale to

a conformally invariant, continuous SLE(κ) curve. This is where the advantage of

SLE was clearly evident. SLE connected a physical observable to a curve which

was already conformally invariant by definition; in contrast, conformal field theory

and the methods of the renormalization group sought to prove conformal invariance,

something which they were never able to do. As a result SLE gave physicists the

properties they wanted in their physical models but also satisfied mathematicians

demanded for a natural and rigorous process. It was not long after SLE was invented

that it started making an impact. One of SLE’s most notable applications was in the

context of the Ising model.
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Figure 3.6: The SLE(3) curve as the Ising model domain wall, courtesy Stanislav
Smirnov.

The application found success in the way the Ising model’s martingale and

observable were defined. To begin we assume the basic initial set up of the non-

mean field theory Ising model as described in the Ising model section. The first step

is to define the observable, which for this model is defined as the fermionic spin. A

fermion is a fundamental particle and as such it has an intrinsic spin. The fermionic

spin observable was defined by the celebrated mathematician Stanislav Smirnov and

is based roughly on the winding number of the domain wall in the Ising model. It was

a great achievement, accomplished by Stanislav Smirnov, to prove that the domain

wall could be represented as the SLE(3) curve in [9], see Figure (3.6). For more details

regarding SLE and its relationship to observables we refer the interested reader to

the following additional sources for more information [3, 8, 9, 14, 17, 18].
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Chapter 4

Crack Propagation Application

4.1 The Percolation Model

Now that we have seen the Ising model in detail, explored the need for SLE, and

seen how it resolves both the desires of the physics community and the rigor of the

mathematical community we can now look at a different model which inspired our

application of crack propagation. The model we will now discuss is the percolation

model.

The purpose of the percolation model is to model how a liquid percolates through

a porous material. To achieve this, the model is first defined on any lattice where

every tile is independently colored either white or black. In Figure (4.1) we show

percolation on a hexangle lattice, with each tile having an equal probability of being

either white or black, with the exception of the boundary tiles. The boundary tiles

colors are fixed. There are several choices for boundary conditions but the ones we

will use are known as Dobrushin boundary conditions. These boundary conditions

fix half of the boundary tiles as white and the other half as black. The random of

assignment of black and white colors to the remaining tiles is what generates the

stochastic nature of this model. The last aspect of this model that needs introducing

is the exploration process and its resulting path. In order to replicate the process of a
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Figure 4.1: Percolation model image courtesy Tom Alberts

liquid percolating through this medium, a path must be defined. The path obeys the

following law: the path must always have black tiles on one side and white tiles on the

other. Following this rule a path is created which, under these boundary conditions,

traverses the entire lattice. See Figure(4.1). This path was proven to converge to

an SLE(6) process by Stanislav Smirnov, via the crossing probabilities and Cardy’s

formula. For more details on Smirnovs work, consult [2, 3].

4.2 Crack Propagation Simulations

The phenomena we wished to investigate were the evolution of cracks through

heterogeneous materials. We hoped to use the percolation model as a analog for

any variety of imperfect materials, and to investigate curves that modeled the path

a crack would take as it progressed through a material. See Figure (4.2, 4.3). The

nature of the cracks we hoped to model would be tearing in nature similar to the

action of tearing a piece of paper. This tearing action led us to apply our boundary

conditions to the initializing side of our model and nowhere else. We also assumed

our crack would propagate laterally from left to right. The next step was to actually
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Figure 4.2: Percolation model repre-
sentation

Figure 4.3: Crack process we hoped
to model

see if the exploration process could be used to create a viable candidate for such a

process.

Initial Observations

After simulating the percolation process, we analyzed its behavior. In particular, we

noted that the curve often created large meandering paths that looped back close

to a past point on the path. See Figure (4.2). This obviously did not make much

physical sense. Cracks moving across a material do not loop back on themselves under

our tearing force assumption. Consequently, we wished to modify the percolation

exploration process to give a more realistic result. After much experimentation, failed

simulations, and false starts, a potential solution emerged.

The Pinch Process

Our goal was to eliminate near closed loops created by the exploration process. The

physical rationale was that we would allow the crack to break through a sufficiently

small piece of material. In this context the breaks would only occur over black tiles.

In other words only portions of black clusters could break-off or could be crossed. We

programmed this, via Matlab code, by first following the exploration path; when the
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Figure 4.4: Failings of the percolation model.

exploration path came within one tile of a point it had already been, in the x-direction

only, thus creating a near closed loop, we allowed the path to jump across the black

tile containing those points. The result was a less meandering path without large

near closed loops, which is exactly what we wanted. We ran a small scale simulation

to test this idea, as seen in Figure (4.5). The resulting curve looked more promising

than the pure exploration process due to its more directed travel across the lattice.

The next step was to scale up the size of our lattice. The larger scale simulation

preformed as expected and was successful regardless of the distribution of black and
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Figure 4.5: Small scale pinch process.

white tiles. See Figures (4.6, 4.7). It is important to note this algorithm takes effect

only if a loop is created by the exploration path. If the exploration process proceeds

across the lattice in a linear fashion, with no loops created, the algorithm is not used.

Future Work

Numerous interesting questions emerged from these simulations, such as: Is this new

curve an SLE process, or related to one? Both of these question are far outside the

scope of this paper, and I hope others interested in this area will explore it further.

Additionally, other modifications could be made to explore our pinch process further.

Allowing the curve to jump over both white and black tiles is one such modification.

Another idea to investigate is the nature of local processes and global results. We

toyed with several different locally driven algorithms, most of which resulted in global

results which were not as we desired. The natural next question is whether certain

local rules can create a process that better models the crack propogation.
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Figure 4.6: Large scale pinch process.

The next physical step in our analysis is to compare our results with some real

world data. When working in an applied setting the ultimate test of a theoretical

model is its validity with experimental data, and as of now, we have yet to carry out

such a comparison.

In addition to the more mathematical questions, we see many other places SLE

could potentially be applied as well. The relationship between curves created by

electronic discharge and SLE, the outline of clouds and their evolution, are just a few

potential places SLE may prove to provide additional insight.
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Figure 4.7: Large scale comparison.
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Chapter 5

Conclusions

We have covered a very broad range of topics in this thesis, and in a very broad

manner. If successful, the reader should now understand many things about the

physical origins and motivations of SLE. We began with the study of phase transitions

at its most fundamental level with the Ideal Gas Law. This simple mathematical

expression then evolved into a more complicated and accurate model in the Van der

Waals equation. These models and their implications highlighted the importance

of critical exponents as they relate to the order parameters of statistical mechanical

models. In particular, we discussed the details of the Ising model and if this section of

the thesis was a success then the reader should now possess a basic working knowledge

of the Ising model and consequently many other two dimensional lattice models. The

new found insight that resulted from the Ising model allowed for the powerful and

accurate mathematical tools the renormalization group and conformal field theory

to be applied, where they significantly improved the accuracy of critical exponents.

We then saw the limits of these new methods, directly motivating SLE’s creation.

The most important outcome of this section is the reader’s exposure to statistical

mechanics and understanding its motivation and connection to SLE.

The second outcome of this thesis was a basic introduction to SLE and its relevant

concepts. Several topics in probability were discussed including Brownian motion,
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random walks, and martingales. We then saw how these concepts are utilized in SLE

and in a slightly more mathematical tone, how the probabilistic details of SLE tie

back into certain physical models.

The final outcome of this thesis was to introduce and explore a potential new

model of crack propagation processes. We succeeded in implementing our proposed

model in the form of the pinching process. Initial results suggest that this process

holds potential in this application, but needs additional analysis to confirm that

hope. Additionally, several important questions came out of our simulations. These

questions involve most notably, the relationship between local processes, global

results, and the relevant SLE processes. The most important outcome of this entire

thesis is to spark curiosity, to encourage new ideas and perspectives, ultimately leading

to a better understanding of this subject and those directly related to it.
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Matlab Code

clear all

%%%%%%%%%%%%%%%%%%%%%%%% create lattice %%%

MG = 24; %MG-2= number of XY columns/rows

HP = (MG/2)+1; %Half-way point

[X Y]= meshgrid(1:1:MG);

n = size(X,1);

X = sqrt(3)/2 * X;

Y = Y + repmat([0 1/2],[n n/2]);

figure(1);

voronoi(X(:),Y(:));

[VX VY] = voronoi(X(:),Y(:));

plot(VX,VY,’-b’);

axis equal, axis([1 34 1.5 38]);

dt = delaunayTriangulation(X(:),Y(:));

%dt = DelaunayTri(X(:),Y(:));

%hold on;

%triplot(dt,’-r’);

%hold off;
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tidx = dt.pointLocation(2,4);

cc = dt.circumcenter(tidx);

%hold on;

%plot(cc(1),cc(2),’o g’,’MarkerSize’,25);

%hold off;

LY = zeros(size(Y,1),1);

for i = 1:size(Y,1) %LY is my y-cord for line

LY(2*i-1,1) = Y(i,1);

LY(2*i,1) = Y(i,2);

end

VT_1 = zeros(size(LY,1)-1,2);%begin to find boundry verts

%VT_1 are the left verts

for j = 1:size(LY,1)-1;

tidy = dt.pointLocation(1.4434,LY(j,1));

VT_1(j,:) = dt.circumcenter(tidy);

end

VT_2 = zeros(size(LY,1)-1,2); %VT_2 are the right verts

for j = 1:size(LY,1)-1;

tidy = dt.pointLocation(2.0207,LY(j,1));
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VT_2(j,:) = dt.circumcenter(tidy);

end

%%%%%%%% end work to find boundry vertices

VT_end = zeros(size(LY,1)-1,2); %VT_2 are the right verts

for j = 2:size(LY,1)-1;

endy = dt.pointLocation(X(1,MG),LY(j,1));

VT_end(j,:) = dt.circumcenter(endy);

end

[V,R] = voronoiDiagram(dt);

m = size(R(:));

m = m(1,1);

%%%%%%%%%%%%% begin random tile test

RV = rand(m,1); %random number comparison vector

WT = cell(m,1); %cells for white tile index data

for i = 1:m

if RV(i,1) > .5

WT{i} = R{i};

end

end
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for i = 1:m

if length(WT{i}) < 6;

WT{i} = [];

end

end

WT(any(cellfun(@isempty,WT),2),:) = [];

WT = cell2mat(WT);

for j = 1:m

if RV(j,1) > .5

R{j}=0;

end

end

for i = 1:m

if length(R{i}) < 6;

R{i} = [];

end

end

R(any(cellfun(@isempty,R),2),:) = [];
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%%%%%%%%%%%%%%%%% prepare data to patch

BT = cell2mat(R); %convert cells into matrix

SV = 6*size(BT,1); %number of vertices

SR = size(BT,1); %number of faces

verts = zeros(SV,2); %preallocate vertex storage

zdata = ones(6,SR);

faces = zeros(SR,6);

for j = 1:SR

for i = 1:6

faces(j,i) = (j-1)*6 + i;

end

end

for i = 1:size(BT)

for j = 1:6

RR((i-1)*6 + j) = BT(i,j);

end

end

for v = 1:SV;

verts(v,:) = V(RR(v),:);

end

p = patch(’Faces’,faces,’Vertices’,verts,’FaceColor’,’k’);
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%%%%%%%%%%%%%%%boundry condition tiles

P = (size(VT_1,1)-3)/2;

numberBlackTiles = P/2;

Bverts = zeros(numberBlackTiles,2);

q = numberBlackTiles ;

j = size(VT_1,1);

for i = 1:q

Bverts(1+6*(i-1),:) = VT_2(j,:);

Bverts(2+6*(i-1),:) = VT_1(j,:);

Bverts(3+6*(i-1),:) = VT_1(j-1,:);

Bverts(4+6*(i-1),:) = VT_1(j-2,:);

Bverts(5+6*(i-1),:) = VT_2(j-2,:);

Bverts(6+6*(i-1),:) = VT_2(j-1,:);

if j-2 > q

j =j-2;

else

break

end

end

Bfaces = zeros(q,6);

for j = 1:q

for i = 1:6
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Bfaces(j,i) = (j-1)*6 + i;

end

end

bzdata = ones(6,q);

Bp = patch(’Faces’,Bfaces,’Vertices’,Bverts,’FaceColor’,’k’);

BWverts = zeros(6*q,2);

w=3;

for i = 1:q

BWverts(1+6*(i-1),:) = VT_2(w+2,:);

BWverts(2+6*(i-1),:) = VT_1(w+2,:);

BWverts(3+6*(i-1),:) = VT_1(w+1,:);

BWverts(4+6*(i-1),:) = VT_1(w,:);

BWverts(5+6*(i-1),:) = VT_2(w,:);

BWverts(6+6*(i-1),:) = VT_2(w+1,:);

if w+2 <= (size(VT_1,1)+3)/2;

w = w +2;

else

break

end

end

BWfaces = zeros(q,6);

for j = 1:q
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for i = 1:6

BWfaces(j,i) = (j-1)*6 + i;

end

end

bwzdata = ones(6,q);

BWp=patch(’Faces’,BWfaces,’Vertices’,BWverts,’FaceColor’,’w’);

VVT_1 = zeros(1/2*(size(VT_1,1)-1),2);

for i = 1:(size(VT_1,1)-1)/2

VVT_1(i,:) = VT_1(2*i,:);

if VVT_1(i,2) > HP

upperhalf(i,:) = VVT_1(i,:);

else

lowerhalf(i,:) = VVT_1(i,:);

end

end

lowerhalf(1,:) = [];

upperhalf( ~any(upperhalf,2), : ) = [];

Iupperhalf = zeros(size(upperhalf,1),1);

%Iupperhalf is row index of unique boundry verts above HP

for j = 1:size(upperhalf,1)

for i = 1:size(V,1)
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vvt_1c = abs(V(i,:)- upperhalf(j,:));

if vvt_1c < 0.001

Iupperhalf(j) = i;

end

end

end

Ilowerhalf = zeros(size(lowerhalf,1),1);

%same thing as Iupperhalf just for lower vertices

for j = 1:size(lowerhalf,1)

for i = 1:size(V,1)

vvt_1c = abs(V(i,:)- lowerhalf(j,:));

if vvt_1c < 0.001

Ilowerhalf(j) = i;

end

end

end

%%%%%%%%%%%%%%%%%% trial for exploration data

BT(:,7) = 1;

WT(:,7) = 0;

%creates 7th column in BT,WT to distinguish

Hex = [BT;WT];
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BIhex = {size(Iupperhalf,1)};

for i = 1:size(Iupperhalf,1) %cell contains

[a b] = find(Hex == Iupperhalf(i));%indx for rows

BIhex{i} = [a b]; %for vertex in certain hex

end

for i = 1:size(Iupperhalf,1)

Hex(BIhex{i}(1,1),7)= 1;

end

LBIhex = {size(Ilowerhalf,1)};

for i = 1:size(Ilowerhalf,1)

[e f] = find(Hex == Ilowerhalf(i));

LBIhex{i} = [e f];

end

for i = 1:size(Iupperhalf,1)

Hex(LBIhex{i}(1,1),7) = 0;

end

UBindex = zeros(size(VVT_1,1),1);

for j = 1:size(upperhalf,1)

for i = 1:size(V,1)

if abs(upperhalf(j,:) - V(i,:)) < 0.01

UBindex(i,1)= i;

end

end
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end

UBindex( ~any(UBindex,2), : ) = [];

LBindex = zeros(size(VVT_1,1),1);

I = intersect(WT,BT); %common w & b verts

ExpData = zeros(size(I,1),2); %preallocate

IP = [2.0207,HP]; %create intial conditions%

Path = zeros(size(ExpData,1),2);% ’’ %

Path(1,:) = [1.4434,HP]; % ’’ %

Path(2,:) = IP; % ’’ %

u = 3; % ’’ %

Dist = zeros(size(V(:,1),1),1); % preallo Dist mat

while(u < size(ExpData,1))
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for i = 1:size(V(:,1),1) %for loop to find

XX = [Path(u-1,:);V(i,:)]; %distance from path

Dist(i,1) = pdist(XX,’euclidean’);%& all verts

end

q=1;

Three = zeros(3,2); %Holds the 3 nearest pts

for i = 1:size(V(:,1),1)

if Dist(i,1) > 0.01 && Dist(i,1)<0.6

Three(q,:) = V(i,:);

q = q+1;

end

end

for i = 1:3

ccc = abs(Three(i,:) - Path(u-2,:));%potential pts

if sum(ccc) < 0.01

Three(i,:)= [];

break

end

end

IV = zeros(2,1);

for j = 1:2

for i =1:size(V,1)

cv = abs(Three(j,:) - V(i,:));

if sum(cv) < 0.01;

IV(j) = i;

break

end
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end

end

for i = 1:size(V,1)

ccv = abs(Path(u-1,:)- V(i,:));

if sum(ccv) < 0.01;

IV(3) = i;

break

end

end

Points = {3*size(IV,1),2};

for i = 1:size(IV,1)

[c d] = find(Hex == IV(i));

Points{i} = [c d];

end

G = intersect(Points{1}(:,1),Points{2}(:,1));

K = intersect(Points{2}(:,1),Points{3}(:,1));

H = intersect(Points{1}(:,1),Points{3}(:,1));

commontile = intersect(G,H);

if isempty(commontile)== 1; %stop the path when

break %comparison fails

end

P1 = Points{1}(find(Points{1}(:,1)~=commontile));

P2 = Points{2}(find(Points{2}(:,1)~=commontile));
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P3 = Points{3}(find(Points{3}(:,1)~=commontile));

KK = intersect(P2,P3);

HH = intersect(P3,P1);

comparetiles = [KK;HH];

for i = 1:size(comparetiles,1)

if Hex(commontile,7)+Hex(comparetiles(i,1),7) == 1

Path(u,:) = Three(1,:);

else Path(u,:) = Three(2,:);

end

end

u = u + 1;

end

Path( ~any(Path,2), : ) = [];

hold on

plot(Path(:,1),Path(:,2),’r’,’linewidth’,3)

hold off

%%%%%%%%%%%%% Begin Loop-Erased Path

LEpath(1,:) = Path(1,:);
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LEpath(2,:) = Path(2,:);

jj = 2;

ii = 2;

temp = zeros(2,1); %stores row hex index

while jj < size(Path(:,1),1)+1

DD = zeros(size(Path(:,1),1)-jj,1);

for kk = jj+1: size(Path(:,1))

DD(kk-jj) = abs(LEpath(ii,2)-Path(kk,2));

end

EE = find( DD < 0.1);

if sum(EE) < 0.01

LEpath(ii+1,:) = Path(jj,:);

ii = ii+1;

jj= jj+1;

else

FF = Path(EE(1)+jj,:);

if abs(FF(1,1) - LEpath(ii,1)) < .65

%check hex%%%%%%%%%%%%%
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for kk = 1:size(V,1)

if abs(V(kk,1)-FF(1,1)) < 0.01 &&

abs(V(kk,2)-FF(1,2)) < 0.01

temp(1) = kk;

end

end

for kk = 1:size(V,1)

if abs(V(kk,1)-LEpath(ii,1))< 0.1 &&

abs(V(kk,2)-LEpath(ii,2)) < 0.1

temp(2) = kk;

end

end

[row,col] = find(Hex == temp(1));

AA = [row];

[row,col] = find(Hex == temp(2));

BB = [row];

CC = intersect(AA,BB);

if (Hex(CC(1),7)+ Hex(CC(2),7))< 2.1 &&

(Hex(CC(1),7)+ Hex(CC(2),7))> 1.9

LEpath(ii+1,:)= FF(1,:);

ii = ii+1;

jj = EE(1)+jj;

else LEpath(ii+1,:) = Path(jj,:);

jj = jj+1;

ii = ii+1;
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end

%%%%%%%%%%%%%%%%%

else

LEpath(ii+1,:) = Path(jj,:);

ii = ii+1;

jj= jj+1;

end

end

end

hold on

plot(LEpath(:,1),LEpath(:,2),’c’,’linewidth’,3);

hold off
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