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ABSTRACT 

A study was conducted to compare the efficiency of detection of 

Escherichia coli O157:H7 EDL 933 on external beef trim by commercial recovery 

systems based upon of the Microbial-Vac System (M-Vac) and excision 

sampling.  Escherichia coli O157:H7 EDL 933 was cultured in tryptic soy broth for 

24 hr at 37°C and transferred for three consecutive days before diluting and spot 

inoculating onto a 684 cm2 piece of beef trim (10 CFU/684 cm2).  Beef trim was 

sampled with the M-Vac by passing the sampling head over the entire surface 

area in a vertical sampling pattern.  The sampling head sprayed sterile buffer 

over the beef surface and instantly vacuumed the contents into a sample 

collection bottle.  For the excision method, samples were cut from the beef trim 

using a coring knife. Sixty cores (3.8 cm diameter) were used per sample with 

one core directly inoculated by the E. coli O157:H7.  Samples (M-Vac collection 

fluid and 60 excised cores) were held overnight at 4°C to simulate processing 

conditions, enriched in mEHEC broth at 42°C for up to 18 h, and confirmed 

positive using the BioControl Assurance Genetic Detection System (polymerase 

chain reaction based).   

Of 75 inoculated beef trim surfaces, 96 (± 3.86) and 76% (± 3.86) of 

samples tested positive for E. coli O157:H7 by the M-Vac and excision methods, 

respectively. The ability of the M-Vac to detect E. coli O157:H7 significantly 
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better (P<0.05) than excision, combined with the nondestructive nature of the M-

Vac demonstrates that it is a suitable choice for sampling beef surfaces.   
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CHAPTER I 

Literature Review 

 

Hazard Analysis and Critical Control Points 

 The microbiological safety of beef related products remains an area of 

great concern among food processors regulatory authorities.  To combat the 

occurrence of physical, chemical or biological hazards in a meat production 

facility, a scientific process to control these vulnerabilities was mandated in 1996 

by the Food Safety and Inspection Service (USDA, 1996).  This process is known 

as the Hazard Analysis Critical Control Point (HACCP) system.  The HACCP 

system for meat inspection is based on inspection of products and equipment for 

visible contamination and then subjective testing to determine the effects created 

by individual operations within the production process itself (Brown et al., 2000).  

To properly identify Critical Control Points (CCPs) within a production process, it 

is suggested to base these locations on microbiological data that allow the 

estimation of indicator organisms at multiple stages throughout the process (Gill 

et al., 2003).    

 In meat production, specifically beef, the HACCP system can be based on 

interventions, a non-intervention system or combination of both techniques.   The 

use of intervention strategies allows a consistent reduction in bacterial 
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contamination with minimal manual input.  Examples of decontamination steps 

are spraying/washing of carcasses by hot water or steam vacuuming at 85°C.  

The bactericidal effect of these techniques is mainly thermal, although an 

additional physical effect by removal of the bacteria may occur also (Bolton et al., 

2001). There are inherent negatives that accompany these operations such as 

the use of 85 to 90 gallons of water per second with possibilities of discoloration 

of the carcass surfaces (Bolton et al., 2001).  Also, in some areas the carcass 

surface may only reach temperatures of 34-49°C and fecal contaminates may 

just be redistributed rather than removed (Bolton et al., 2001).   

 The use of organic acid sprays, such as lactic or acetic acid, is also an 

intervention method.  This is widely used in the US, but prohibited in many other 

countries.  Considered more a Good Manufacturing Practice (GMP) rather than a 

CCP, organic acid sprays are not applied to carcasses with an open wound or 

leaking abscess and may cause discolorations (Gill et al., 1999).  Also it is not 

clear if significant lethal effect occurs on its own and use may cause respiratory 

or skin/ eye irritation to operators (Bolton et al., 2001).  This can be used in 

combination with hot water washing to create a synergistic effect against 

microorganisms.  These interventions are done at different stages during the 

slaughter process such as first/second legging, hide removal, pre-evisceration 

and/or trimming (Pearce et al., 2004).   

 The introduction of ‘zero tolerance’ with organisms such as E. coli 

O157:H7 has created a greater reliance on trimming as an intervention step.  If 

there is any visible contamination such as feces, ingesta or milk (in the case of 
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cows) it is trimmed off of the carcass surface (Bolton et al., 2001).  A significant 

decrease in carcass contamination occurs as long as knives and hooks are 

properly sterilized.   

 Chilling does not generally get recognized as an intervention step due to 

its use for holding.  It does however reduce the number of reported carcasses 

contaminated with pathogens.  Borch et al. (2002) reported that confirmed  E. coli 

O157:H7 was reduced from 32 to 7% and presumptive E. coli O157:H7 reduced 

from 42 to 22% on beef carcasses.  The exact parameters (air temperature, 

relative humidity, air speed and carcass spacing) that create such a reduction in 

microbiological counts have yet to be determined and established, but any such 

parameters are seen as positive effects (Bolton et al., 2001).   

 Many processing plants, such as European, see intervention HACCP 

strategies as a means to conceal or compensate for poor hygiene standards 

within the process (Bolton et al., 2001).  It is seen that achieving proper hygiene 

measures throughout the meat processing will overcome the threat of E. coli and 

avoid detrimental effects as discoloring of the meat carcass that intervention 

methods provide.  These non-intervention systems contain four CCPs: de-hiding; 

evisceration; removal of the spinal cord; and chilling.  The goal is to keep utensils 

sterile and through proper techniques and monitoring preventing the cross-

contamination of fecal and other possibly pathogen rich material (Bolton et al., 

2001).  If properly done at these CCPs, Bolton et al. (2001) reports carcass 

contamination levels decreasing approximately from 8 to 1.5% with an affiliated 

decrease of aerobic plate count (APC) of 99.8%.   
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Pathogenic microorganisms on raw beef 

 Foodborne pathogens have been demonstrated to be associated with red 

meat and meat products since the time of Pasteur.  Salmonella, Staphylococcus 

aureus, Bacillus cereus and Clostridium botulinum are pathogens that have been 

shown to be associated with meats since the early 1900s.  More recently the 

emergence of Campylobacter spp., Listeria monocytogenes and Escherichia coli 

O157:H7 have been shown to be associated with red meat products and have 

been involved with a number of foodborne illness outbreaks and recalls (Borch 

and Arinder, 2002).   

The first identification of a microorganism that could cause an epidemic 

diarrheal disease occurred in 1888.  A German hygienist and bacteriologist, 

August Anton Hieronymus Gärtner, revealed a pathogen that would be later 

described as Salmonella enteritidis, causing such gastroenteritis in rodents and 

humans (Merriam-Webster, 2008). In 1953, raw meat was implicated as the 

origin of a Salmonella Typhimurium outbreak in Sweden, causing 8845 reported 

cases leading to 90 deaths (Borch and Arinder, 2002).  It continues to be a 

problem today with antibiotic resistant strains emerging in the 1990s and causing 

difficulties in eradicating from infected farms (Borch and Arinder, 2002).   

One of the earliest foodborne outbreaks reported occurred in 1906. The 

symptoms described were similar to the attributes of the pathogen Bacillus 

cereus found in meat products (Borch and Arinder, 2002).  B. cereus is of 

concern because of psychotropic strains that can withstand heat and refrigerated 
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temperatures.  These strains are mainly found in dairy products but have 

occurred in broth mediums used with meat products (Reid et al., 2002).  

 Many of these pathogens are found naturally in the gastrointestinal 

tracts of cattle or in the surrounding environment (soil, water, etc) where cross-

contamination can easily occur.  This leads to high prevalence rates in cattle 

such as with Salmonella and Campylobacter spp., which have rates of 5.5% and 

5.0-53.0%, respectively (Reid et al., 2002).   C. botulinum is also widespread in 

such environments with non-proteolytic types present in 73% of cattle feces.  The 

main foods associated with C. botulinum are canned, especially home-preserved, 

creating an ideal anaerobic environment.  In the early nineteenth century, it is 

thought to be responsible for deaths associated with home-cured hams and 

sausages (Hauschild, 1989).   

 The severity of verotoxigenic E. coli (VTEC) along with its use of 

ruminants as a reservoir to survive increases its ruthlessness in meat processing 

facilities (Borch and Arinder, 2002).  The VTEC group, which consists of E. coli 

O157:H7 and other serotypes, creates a similar if not identical toxin to that of 

Shigella dysenteriae.  This verotoxin can attack the colon of an infected individual 

causing the initiation of abdominal disorders.  When the eae gene is present, 

attachment and effacement of the cell occurs causing bloody diarrhea. If left 

untreated, hemolytic ureic syndrome (HUS) can occur, with a possible result of 

renal failure (Elder et al., 200).  E. coli O157:H7 has a typical prevalence rates in 

cattle range from 1.0 to 27.8% and even up to 68% in heifers (Reid et al., 2002).  

Seasonal variation creates influences on the pathogens presence, but Elder et al. 
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(2000) report that typically a 10.7% incidence rate of E. coli O157:H7 can be 

found on cattle hides in the USA.  Several of the VTEC serotypes that are shed 

in cattle feces have been traced to human illness cases (Reid et al., 2002).  

 It is estimated that annually 10,000 cases attributed to E. coli O157:H7 

occur in the United States.  In 1993, between the months of March and August, 

an epidemic of E. coli O157:H7 infected a restaurant chain in Northwestern U.S.  

The outbreak was attributed to cross-contamination, most likely by raw beef 

(Jackson et al., 2000).  More recently, a multi-state outbreak of E. coli O157:H7 

was attributed to a manufacturer of frozen beef patties.  Between July and 

September of 2007, 40 documented cases were linked to the beef patties 

resulting in a recall of 21.7 million pounds of frozen ground beef (Centers for 

Disease Control and Prevention, 2007).    

 

Modes of contamination with Escherichia coli O157:H7 

 Beginning in 1982, Escherichia coli O157:H7 was recognized as the 

source of epidemic bloody diarrhea from foodborne sources and outbreaks are 

continually seen today (Jackson et al., 2000). Of the documented cases, over 

half of them have been attributed or linked to foods originating from cattle.  Cattle 

are a primary reservoir of E. coli because the microorganism exists naturally in 

the gut of ruminant animals such as cattle (Elder et al., 2000).  The cattle then 

become a carrier for the bacteria that is harbored in the processing environment 
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(Borch and Arinder, 2002).  The bacterium that originates from the animal, either 

via feces or from the hide, subsequently is a possible source of cross-

contamination during processing. 

 Initial cross-contamination points occur at pre-evisceration stages in which 

feces to hide or hide to hide contamination occurs.  It is suspected that during 

holding and transport of cattle, the close quarters create greater chance of hide 

cross-contamination occurring (Elder et al., 2000).  In a study conducted by Elder 

et al. (2000), almost half (45.5%) of the tested carcasses had E. coli O157:H7 

recovered.  It is to be noted that the study was conducted during the peak time 

for E. coli O157:H7 shedding for North American cattle, late summer and early 

fall.  Contamination to the hide can further be seen in feedlots in which feces 

carrying the bacteria appeared on the hides of cattle and ultimately contaminated 

carcasses in the processing plant (Aslam et al., 2003).   

 The association of fecal matter and E. coli creates an influence in how the 

hide removal occurs during processing.  Tag (mud, bedding or manure) is carried 

on the hide and its mixture of soil and feces (both sources of E. coli) can 

contaminate the hide with upwards of 9.0 log10 bacteria per cm2 (Van 

Donkersgoed et al., 1997).  If not properly detached prior or during hide removal, 

contamination could occur further down the processing line.  The removal, 

however, provides a new problem as labor costs increase and production speed 

decreases by 10 to 12% increasing those costs also (Van Donkersgoed et al., 

1997).   
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 It is typically presumed that if equipment is routinely cleaned to standards 

that the E. coli found on meat is deposited from dressing the carcass and that 

few to no additional E. coli is added during breaking of the carcass (Gill et al., 

2001).  Some recent studies have revealed that E. coli numbers actually 

increased for some meat cuts at the end of the carcass breaking process rather 

then prior to any evisceration stages.  It has even been seen in some lots that 

when no fecal or hide tests were seen as positive that carcass samples post 

processing were positive (Elder et al., 2000).  These results suggest cross-

contamination or recontamination occurring during the breaking and splitting of 

the carcass.  McEvoy et al. (2004) observed logarithmic increases in E. coli 

numbers during evisceration and almost a full order of magnitude increase during 

splitting.  One site that saw this increase was at the cranial back which is never in 

direct contact with the visceral contents.  It was seen to contact elevated sides on 

the evisceration table and the splitting stand as it moved downward past the site 

during processing.  These sites are in contact with visceral contents and possible 

fecal matter showing a possible route of contamination.   Further studies by Gill 

et al. (2001) showed similar numbers of recovered E. coli and coliforms on 

equipment surfaces as meat carcasses after the passage of the product through 

the processing line.  These studies indicate possible contamination during 

processing by sub-standard cleaning of processing equipment. 
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Attachment 

 In order to survive and grow, microorganisms show attraction to surfaces 

that contain necessary nutrients.  A food system, such as a meat surface, 

provides such necessary qualities and is sought out by microorganisms.  Once a 

microorganism is deposited upon a surface, they quickly attach, begin to grow 

and actively create a colony of cells (Kumar and Anand, 1998).  This causes 

severe problems in meat products as spoilage and pathogenic bacteria are of 

major concern.  The understanding of what influences bacteria’s attachment and 

how these strong bonds to the meat matrix occur is thereby essential for 

determining prevention and removal methods.    

 In general, the process of bacterial attachment is seen as a two stage 

process.  This process may be active or passive with strong dependence on the 

motility of the bacterium or the transportation of planktonic (free floating) cells by 

diffusion, gravity or fluid forces from the surrounding environment (Kumar and 

Anand, 1998).  The first phase is seen as a reversible stage in which mainly long 

range physio-chemical forces occur (Kumar and Anand, 1998, Benito et al., 

1997).  These forces include van der Walls attraction forces, electrostatic forces 

and hydrophobic interactions (Kumar and Anand, 1998).  As these weak 

electrostatic interactions occur, the bacteria still show motion and can easily be 

removed through fluid shear forces such as rinsing (Kumar and Anand, 1998, 

Warringer et al., 2001).   



10 
 

Bacterial hydrophobicity refers to the tendency of the microbial cell to have 

a stronger affinity toward similar cells or molecules on the target surface rather 

then water molecules (Rivas et al., 2006).  It is highly debated whether or not a 

positive relationship between attachment and hydrophobicity truly exists.  

Different methods for determination of bacterial adherence relationship to 

hydrophobic interactions exist, such as bacterial adherence to hydrocarbons 

(BATH), hydrophobic interaction chromatography (HIC) and the salt aggregation 

test (Kumar and Anand, 1998).   Benito et al. (1997) concluded a significant 

correlation in the relationship by use of BATH while Dickson and Koohmaraie 

(1989) found no correlation between the two in use of the same test.  Instead 

Dickson and Koohmaraie (1989) determined that the surface charge of the 

bacteria, not hydrophobicity, held the important factor in initial attachment.  It is 

generally agreed that bacterial attachment has a stronger affinity for adipose 

tissue than lean tissue, but due to what forces is in high disagreement.  To even 

further the debate, such surface properties as muscle or tissue type, age, pH and 

temperature of the contact surface can change and influence initial attachment 

(Kumar and Anand, 1998, Rivas et al., 2006).   

It is also highly disputed whether surface structures, including flagella and 

fimbriae, are important factors in the attachment process.  Past studies have 

shown that nonfimbriated and nonflagellated cells have attachment rates similar 

to those consisting of those structures while other reports indicate motile bacteria 

have increased rates of attachment (Dickson and Koohmaraie, 1989).  It has also 

been shown that E. coli O157:H7 shows an increase in hydrophobicity when 
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such surface structures are expressed, indicating that the structures do increase 

attachment rates (Rivas et al., 2006).  Furthermore, if the bacterium has motility it 

may increase its ability to find home in surface pores or crevices located on the 

substratum of the meat. During rigor these spaces are formed by the shrinkage 

of muscle fibers and the resulting channels provide entrapped bacteria with much 

protection from outside influences (Rivas et al., 2006).  Overall it is most likely 

that the role of flagella in attachment is more dependent on the specific strain 

and growth conditions at the time of attachment and aid in the adhesion opposed 

to causing the bonding.   

After initial bacterial adherence to the meat surface the second stage, 

irreversible adhesion, occurs through short-range forces.  These are stronger 

interactions such as dipole-dipole, hydrogen, ionic and covalent bonding along 

with bridges forming between the bacterial cell and substratum by polymeric 

fibrils (Kumar and Anand, 1998).  Often in the second stage, the bacteria will 

secrete extracellular polysaccharides leading to stronger attachment and 

formation of a complex community of cells (Benito et al., 1997).  The bacterial 

cells then grow and divide by use of the nutrients present on the substratum of 

the meat surface.  This present microcolony then produces additional polymer 

(EPS) which increases the stability and anchorage of the colony to the surface 

(Kumar and Anand, 1998).  This stabilizing factor allows the cells to endure the 

fluctuations of the surrounding environment, such as heat, acid, and osmotic 

stresses.  These protections from killing effects of these stresses make 

eradication of the bacterial cells even harder (Kinsella et al., 2007).  Removal 
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must now be done by strong forces like scrubbing or scrapping which ultimately 

may damage the integrity of the meat surface itself (Kumar and Anand, 1998).  If 

not removed, the bacterial cells will continually attach and grow forming a biofilm 

over time.  A fairly slow process, but such a matrix can overtake a surface with a 

damaging millimeter thick layer of spoilage or pathogenic microorganisms 

(Kumar and Anand, 1998).    

  

Detection methods for E. coli  

Sponge/Swab 
 
 Since the early 1900’s, how to detect and enumerate microorganisms on 

surfaces has been of great concern to microbiologists.  As a great deal of 

circumstantial evidence implicated multiple use eating utensils in the spread of 

viral and bacterial infections, the rise of sampling techniques began.  The first 

technique designed to assess the contamination levels of such surfaces was the 

swab-rinse technique designed in 1917 by Manheimer and Ybanez (Favero et 

al., 1968).  This initial use of the swab-rinse technique used a moistened cotton 

swab that was rubbed on the targeted surface.  The swab head was then 

aseptically placed into a test tube containing a sterile diluent, mixed vigorously 

and the resulting fluid was plated out onto the appropriate culture media for 

enumeration.   

 The swab technique has evolved over time to create more sensitivity 

toward the microorganisms targeted and the surface being sampled.  As it was 
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initially used for the smaller area food contact surfaces, now with larger surface 

areas being sampled, the cotton swab has been replaced in some instances by a 

larger sponge for carcass surfaces (Eblen et al., 2005).  The United States 

Department of Agriculture (USDA) Food Safety and Inspection Service (FSIS) 

have created guidelines on the proper technique for swabbing cattle carcass 

surfaces.  A sterile sponge is first hydrated with 10 mL of sterile diluent which is 

used to swab three areas as defined by a sterile template.  Each area is 

recommended to be a minimum of 10 by 10 cm and swabbed in 10 vertical 

strokes followed by 10 horizontal strokes with the same sponge.  It is advised to 

use the reversed side for the final site of the three designated for sampling, but 

not required.  The three designated areas should be on the outer trim side of the 

flank, brisket and rump of the cattle carcass.   The sponge is then aseptically 

placed into a sterile stomacher bag where an additional 15 mL of sterile diluent is 

added, making a total of 25 mL.  The combination of the sponge and the diluent 

is then stomached in the original bag for 2 min and analyzed according to FSIS 

regulations (USDA, Food Safety and Inspection Service, 1998).  

 The majority of processing plants adopt the USDA-FSIS method despite it 

explicitly stating that methods deemed equivalent are acceptable (Gill and Jones, 

1998).  Recommendations provided by the USDA-FSIS may actually create 

awkwardness when performing (such as holding a template and swabbing at 

hard to reach angles) and could be improved upon.  The swabs are generally still 

accepted in the industry because they do provide the best access to such 

geometrically abnormal spaces (Foschino et al., 2003).  Also the swab method 
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inherently obtains simplicity of use, familiarity and ability to be adequate in a 

variety of settings, despite its downsides including generally low recovery on 

porous surfaces (Kang et al., 2007).   

 A surface sampling method is deemed efficient by its ability to remove 

microorganisms from a surface and in turn displace those cells from the 

collection material (Buttner et al., 2007).  The swab sampling technique has 

many factors that can influence this efficiency and repeatability, including 

sampling collection material and size, the sample processing protocol, the 

surface material, the properties of the target microorganism, the manual skill of 

the operator, the recapture technique and the analysis method (Buttner et al., 

2007).  For instance, Buttner et al. (2007) found that using a cotton swab 

opposed to a sponge generally found more efficiency in collection.  Using even 

the same swab technique has seen greater mean aerobic plate counts (APC) for 

smaller areas, 25 cm2, compared to larger areas, 100 cm2 (Miraglia et al., 2005).  

However, due to the larger area the sponge was able to cover compared to the 

cotton swab, when results were expressed by templates collected per sample, 

the two were comparable.  Also the greater area covered by the sponge allows 

less materials used and a greater chance of capturing pathogenic 

microorganisms that exist at low numbers, such as E. coli O157 or Salmonella 

(Lindblad, 2007).   

 As microorganisms attach to the meat carcass surface, they eventually 

begin to form stronger attachment bonds that need greater scrubbing or 

scratching to remove (Kumar and Anand, 1998).  Due to this the material that the 
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swab/sponge is designed out of provides an essential role.  The traditional 

material used for swab/sponge design was cotton wool, but recent studies have 

employed other materials such as cheesecloth, griddle screens, 3M mesh, 

macrofoam, rayon, polyester, cellulose acetate and calcium alginate wool.  Dorsa 

et al. demonstrated that the more abrasive materials have higher recovery of 

microorganisms than cotton wool, and rates similar to the excision technique.  A 

recent study even revealed that macrofoam swabs recovered ≥ 30% more 

spores then that of rayon, polyester and cotton wool (Rose et al., 2004).  The 

material viewed under a scanning electron micrograph showed the macrofoam to 

be the most open structure; having what would be characterized as a traditional 

sponge matrix visualization (Rose et al., 2004).  The use of cellulose acetate in 

sponges has also shown statistically significant recovery rates greater than 

cotton wool, but only seemingly has advantageous recovery on beef carcasses 

and not those of lamb or pork (Pearce and Bolton, 2005). 

 The ability for the sampling device to release the microorganisms from its 

woven matrix is highly important to a sampling technique.  Swabs made from 

calcium alginate wool present the ability for the swab to dissolve in the presence 

of Ringer’s or sodium hexametaphosphate solutions releasing caught 

microorganisms.  Unfortunately, evidence shows that the material recovers lower 

levels of cells then that of traditional cotton wool and inhibits growth of some 

microorganisms (Rose et al., 2004, Favero et al., 1968).  When experimenting 

with cotton, macrofoam, rayon and polyester, Rose et al. showed that polyester 

released significantly lower percentages of microorganisms then the other 
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materials (83.8%, p < 0.01).  Further assistance in the detachment of the 

microorganism from the swabbing material is in the extraction method.  

Traditionally a stomacher machine or manual hand massaging is used to 

physically release the microorganisms into the diluent, but more recent studies 

have used novel technology such as vortexing and sonication.  Rose et al. 

revealed that vortexing had significantly greater recovery than sonication and 

past traditional techniques.  It has been further seen that use of a surfactant 

combined into the sterile diluent allows for the ‘washing’ or releasing of certain 

microorganisms at a higher rate then diluent itself.  Traditional extraction 

methods, however, are still adopted by processing plants at a higher percentage 

because they provide a familiarity, simplicity, and are cost and time efficient 

(Rose et al., 2004).   

 The type of surface material being sampled also highly attributes to the 

recovery rate of the swab sampling technique.  Higher concentrations of cells are 

typically recovered from smooth, non-porous material such as glass and metal 

(Buttner et al., 2007). The surface of a beef carcass provides the furthest 

opposite, with multiple cracks and crevices that attachment of microorganisms.  

Removal of cells at high concentrations from such a porous surface takes a great 

degree of pressure and scrubbing action from the technician of the swab/sponge.  

This creates a large decline in accuracy and repeatability for a non-automated 

method, dependent solely on the manual operation of the technician (Kang et al., 

2007).  Standardization of the swabbing pattern and particularly the angle and 

degree of pressure applied to the swab is also problematic in the reproducibility 



17 
 

and repeatability which can lead to variability in results from study to study 

(Moore and Griffith, 2002).  

 

Excision 
 
 The number of techniques designed to enumerate microorganisms from 

meat surfaces has been vast over the past 100 years.  Separated in two 

categories, destructive and non-destructive, the non-destructive techniques have 

shown the highest prominence of designing novel techniques.  The contact 

method has vast arrays of techniques (agar syringes, RODAC plates, agar 

sausages, membrane filter blots, self-adhesive tapes, etc.) with the main 

advantages of no surface damage and the simplicity and quickness that it takes 

to perform the tasks.  However, such methods are found to be inapplicable when 

bacterial counts are greater then 100 CFU/cm2 because of plate overcrowding.  

Also counts are not representational of larger surfaces and provide little to no 

suitability for crevices in meats, giving them less than 1% of accuracy compared 

to excision and sponge techniques (Capita et al., 2004).  Direct rinsing and 

shaking of surfaces in diluents finds removal close to stomaching and greater 

then sponge technique with no damage to surfaces, however, it is only suitable 

when dealing with substantially small meat cuts, not emblematic of an entire 

carcass. Excision and swabbing methods are the most accepted techniques as 

they are simple in use with little required amounts of specialized material and 

provide high reproducibility in data.  Excision is deemed the most accurate while 

swabbing has the highest practicality (Capita et al., 2004).    
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 The majority of relevant studies reveal that excision and blending or 

stomaching is the most effective carcass sampling method.  The excision 

technique removes pieces of tissue via sterile blade or round coring knife and the 

removed piece is aseptically placed in a peptone saline solution for 

homogenization.  Proper maceration provides less variable and more reliable 

bacteria counts and results in almost complete recovery of firmly attached 

bacteria (Capita et al., 2004).  Ware et al. (1999) demonstrated that on a beef 

carcass inoculated with E. coli at a level of 106 CFU/cm2, after 24 hr chilling 

excision was still able to recover 2.5 to 4 log CFU/cm2.  This was significantly 

greater then sponge sampling (1.7 to 2.4 log CFU/cm2; p ≤ 0.05) however both 

had similar results when sampling was followed directly after inoculation.  The 

period after inoculation during chilling may have allowed for firmer bacterial 

attachment, penetration or biofilm formation, thereby reducing the cell recovery 

and efficacy of sponge sampling but still allowing excision sampling to recover 

significant results (Capita et al., 2004).   

 The variability of recovery for sponge technique is quite high, ranging 

between 0.01 and 89% of what is achieved by the excision method (Pepperell et 

al., 2005).  This difference in recovery results is related to numerous factors, 

such as the fore mentioned storage time before sampling.  A high microbial load 

on the carcass surface effects recovery by increasing the ease of removal of cell 

colonies, thus increasing swabbing results to levels more similar to excision 

(Capita et al., 2004).  The surface being sampled creates recovery variation 

depending on if its fat content, with high adipose tissue samples leading to lower 
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relative counts in swabbing but less variation for excision occurs (Pepperell et al., 

2005).  Pepperell et al. (2005) revealed that differences even exist by species-

related microflora, as results were more similar to excision for swabbing when 

recovered from beef compared to pork.  These variations are not seen in the 

excision method, nor do the chances of recovered cells being redistributed to the 

sampled surface exist as do with the swabbing technique (Pepperell et al., 2005).   

 In a study performed by Palumbo et al. (1999) swine carcasses were 

analyzed for bacterial counts (E. coli) after a 24 hr refrigerated storage.  The 

excision method recovered an average of 2.35 ± 1.05 log CFU/cm2 from the 

surface samples which was significantly higher then using a three-site swab 

method (0.27 ± 0.95 log CFU/cm2).  This is very consistent with results from other 

publications.  Similar results were found by Mirigalia et al. (2005) as swabbing 

only produced a mean log CFU/cm2 of 2.26 compared to the significantly higher 

(p < 0.05) excision mean of 3.46.  Such results demonstrate that excision 

consistently recovers greater bacterial counts then other non-destructive 

methods.  However, because the excision method is time consuming, requires 

high level of expertise, is destructive in nature and involves sampling only small 

limited areas, the nondestructive sponge/swab technique is presently used by 

most processing facilities (Capita et al., 2004).  

 The effectiveness of swab recovery compared to excision is highly 

dependent on the swab material.  As excision yields the highest recovery results, 

and cotton wool swabbing the least effective, a variety of sponges, cloths and 

meshes of different degrees of abrasiveness fall in between, with some similar to 
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excision (Byrne et al., 2005).  Pearce and Bolton (2005) performed a study 

comparing abrasive sponge materials to the excision method and found that with 

polyurethane sponge on pork and lamb carcasses similar recovery counts to 

excision were obtained.  Other authors report similar results from use of more 

abrasive sponge material (Gill and Jones, 2000).  Despite that, there is still no 

true consensus of the relative numbers that either method recovers, thereby also 

no conversion factor exists to better compare relative hide cleanliness between 

sampling techniques (Gill et al., 2001).   

 As it is generally unnecessary to have large sample size for enumerating 

total aerobes on a carcass, it is quite desirable for enumerating microbes that are 

vast and unevenly distributed on a carcass, such as E. coli O157:H7 and 

Salmonella.  Data provided by Gill and Jones indicates that for such sparse 

microbes, increasing the surface area sampled by 10-fold will nearly double the 

incidence of their recovery.  This makes swabbing very beneficial for detection of 

bacteria with low incidence and uneven distribution on the carcass.  When 

comparing three Swedish abattoirs, Lindblad (2007) revealed that excision 

reported significantly less percentage of positive samples (3, 14 and 3%) at the 

abattoirs as did the sponge method (55, 84 and 52%).  The size restrictions on 

the excision method only allowed for a total area of 20 cm2 to be evaluated per 

sampling compared to 400 cm2 for the sponge method. The ability for the 

swabbing to cover such a large area, increasing reliability for monitoring sparse 

pathogenic microorganisms, and being less laborious with no compromising of 
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the meat surface, makes it highly advantageous for the meat industry (Lindblad, 

2007).    

 

Contact and rinse methods 

 Nondestructive sampling techniques provide simplicity and quickness that 

are beneficial for the operator.  A large demographic of the nondestructive 

methods are described as contact techniques.  These methods utilize direct 

contact with the targeted surface and the growth media.  Seen in a variety of 

variations (agar syringes, agar sausages, impression plates), each provide the 

possibility of direct microscopic examination or plating and incubation (Moore and 

Griffith, 2002).  The direct contact of the two surfaces produces a mirror image of 

the distribution of bacteria on the targeted surface (Capita et al., 2004).   

 Contact methods have been seen to provide results closely correlated with 

the excision methods when E. coli are low in number and attached to smooth 

surfaces.  Counts greater then 100 CFU/cm2 cause problems for contact 

methods as plate overcrowding occurs.  Further, on porous surfaces microbial 

counts are less than 1% then that of excision or blending because of the inability 

to recover microbes within surface crevices (Capita et al., 2004).  Surface areas 

sampled are only as large as the contact method apparatus, leading to multiple 

sites sampled to yield representative data. 

 The rinse method is a non-destructive method that utilizes full submersion 

of the targeted surface within the sterile buffer and retrieval of that entire mixture.  

Its ability to use fluid force to detach microbes from porous surfaces have led it to  
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recovery levels similar to excision and up to 10 fold greater then swabbing 

(Capita et al., 2004).  Izat et al. (1989) saw greater recover on poultry carcasses 

with the rinse method then sponging and hand message sampling methods.  The 

inherent disadvantage with the rinse method is surface size.  Recovering all the 

rinse solution is essential and is impractical with larger surfaces as carcasses 

and only find true validity with poultry and small meat cuts (Moore and Griffith, 

2002).  

 

M-Vac 
 
 Since the creation of the rinse/swab technique by Manheimer & Ybanez in 

1917, little innovation has been seen with surface sampling techniques (Gill and 

Jones, 1998, Favero et al., 1968).  The current techniques have collected far less 

attention in improvements then that of detection techniques.  The contradictory 

problem with improvements in detection and not sampling is no matter how 

advanced the detection method, identification of microorganisms cannot occur if 

they are not recovered.  Pathogenic detection is directly linked to the sampling 

technique (Microbial-Vac Systems, 2008).   

 In attempt to increase the standards of recovery for surface sampling, the 

Microbial-Vac (M-Vac) was created.  The M-Vac consists of a vacuum pump 

housed in a support equipment case (SEC) along with a sterile diluent delivery 

system with an included high efficiency particulate air (HEPA) filtered exhaust 

system (Figure 1).  The M-Vac provides a sampling area of approximately 1,800 



23 
 

cm2 with its independently mobile sampling head (Figure 2).  This allows for a 

higher percentage chance of discovering low level and highly dispersed 

pathogens (Microbial-Vac Systems, 2008).  The powerful spray of sterile diluent 

from the sampling head allows penetration into deep cracks and crevices of 

porous surfaces.  The simultaneous vacuuming of the solution allows for retrieval 

of present pathogens into the sampling collection bottle (Figure 3).  The 

combination of diluent spray and vacuuming creates a high turbulence that helps 

release pathogens from the meat surface (Microbial-Vac Systems, 2008).  The 

retrieved solution is then contained in the sampling collection bottle where direct 

laboratory testing can occur without any further elution steps.   

 The nature of the M-Vac allows for it cover a larger surface area then that 

of the excision method while being non-destructive.  This ability gives the M-Vac 

a heightened sensitivity to sparse pathogens not evenly distributed about a meat 

surface (Gill et al., 1998).  The nature of the M-Vac further creates an increased 

turbulence on the meat surface creating higher detachment of pathogens that are 

directly collected into a sample collection bottle.  This not only increases 

pathogen recovery but also decreases lab time and supplies.  The Microbial-Vac 

Systems®, Inc. demonstrated with low level inoculums the M-Vac’s ability to 

collect similar levels of E. coli from beef surfaces (52%) compared to the excision 

method (54%) with significantly higher levels than the sponge technique (16%).  

On another porous surface (cantaloupe) the M-Vac was able to, in comparison to 

the excision method, recover similar levels of a high inoculum (6.9 log cfu/100 
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cm2) and significantly greater levels of a low level inoculum (2.9 log cfu/100 cm2) 

(Microbial-Vac Systems, 2008).   

 

Objectives 

 This study was conducted to determine the extraction efficiencies of the 

M-Vac and excision methods for sampling external beef trim. The M-Vac will be 

tested to see if recovery efficiency is statistically similar or greater then that of the 

‘gold standard’ excision method to help justify its use in the meat processing 

industry. A low contamination level (~10 CFU/684 cm2) will be used for 

determining extraction/recovery efficiencies for both sampling methods.  As a 

secondary aim, the potential for contamination carry-over from one sample to the 

next when using the same M-Vac sampling head kit for multiple samples will be 

evaluated.  
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CHAPTER II 

Materials and Methods 

 

Preparation of inoculum 

 Escherichia coli O157:H7 EDL 933 was used for inoculation of external 

(hide-side) trim meat surfaces.  The test strain was cultured in tryptic soy broth 

(TSB; Difco Becton Dickinson Microbiology Systems; Sparks, MD) for 24 hr at 

37°C. Cultures were transferred a minimum of three times at 24 hr intervals 

before use.  The culture was serially diluted in 0.1 M phosphate buffer (PB; 

Becton Dickinson Microbiology Systems; Sparks, MD) to produce a population of 

approximately 1 CFU/mL for use as inoculum for meat samples.  Target inoculum 

populations were confirmed by spread plating (0.1 mL) onto sorbitol MacConkey 

agar (SMAC; Difco Becton Dickinson Microbiology Systems; Sparks, MD) 

followed by incubation for 24 hr at 37°C.    

  

Meat surface preparation and inoculation 

 Beef trim meat (60-lb. boxes) was obtained from a large US meat 

producer.  Sanitized knives were used to trim meat samples to a thickness of 

0.32-0.64 cm.  For M-Vac samples, the beef samples were further trimmed to 

obtain a hide-side surface area of 684 cm2.  For excision samples, a stainless 
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steel sterile meet coring knife was used to create circular pieces with a diameter 

of 3.8 cm; one sample consisted of 60 core pieces equating to the 684 cm2 hide-

side surface area.   

 For M-Vac samples, 1 mL of the diluted E. coli O157:H7 culture 

suspension was inoculated in 10 aliquots at random locations over the entire 684 

cm2 hide-side surface by an individual other than the one who ultimately would 

conduct surface sampling.  For excision samples, 1 mL of the diluted E. coli 

O157:H7 culture suspension was inoculated onto a single 3.8 cm diameter hide-

side core piece. Only 1 core piece from the allotted 60 per sample was 

inoculated.     

Storage 

 All beef trim meat was held overnight 4°C in plastic totes covered with 

plastic wrap to simulate normal processing/holding conditions of beef carcasses.  

Non-inoculated beef were segregated inoculated beef to prevent cross-

contamination.   

 

Sampling 

For M-Vac samples, a sterile stainless steel wire grate provided a guide 

for the sampling head (Figure 2) on the beef trim. Beginning in the upper right-

hand corner of the sample, the sampling head was passed over the entire 

surface area in vertical patterns, simultaneously dispensing 120 mL of surface 
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rinse solution (SRS) and vacuuming the rinsate fluid into the sample collection 

bottle (Figure 2). The 120 mL recovered sample was combined with 30 mL of 5x 

strength mEHEC broth and incubated at 42°C for up to 18 hr for enrichment.   

In an effort to determine the potential for M-Vac system contamination 

carry-over, E. coli O157:H7 was inoculated (1 mL) into sterile Petri dishes (10 

CFU/dish), and the inoculum was collected using the M-vac and 120 mL of SRS. 

Prior to collection, the sampling head was dipped for approximately 2 seconds 

into a hot water bath (85°C) two consecutive times with the vacuum in the on 

position.  The 120 mL recovered sample was combined with 30 mL of 5x strength 

mEHEC broth and incubated at 42°C for up to 18 hr for enrichment.  

For excision samples, an inoculated core piece (removed from 4°C 

storage) was combined with 59 non-inoculated core pieces to create a single 

sample.  The core pieces were aseptically placed into a 1650 mL sterile sampling 

bag (VWR international, Batavia, IL) with 1.2 L of mEHEC broth (Biocontrol, 

Bellevue, WA) and hand massaged through the bag for 2 min. Samples were 

incubated at 42°C for up to 18 hr for enrichment. 

 

Controls 

Controls were made, positive and negative, for each run for both sampling 

procedures.  Preparation, storage and sampling procedures were carried out 

identical to all test samples.  For the inoculation step, sterile phosphate buffer 

was used in place of the E. coli O157:H7 culture suspension.  For positive 

controls, the post sampling mEHEC enrichments were directly inoculated with 1 



28 
 

mL of the E. coli O157:H7 culture suspension.  The E. coli O157:H7 culture 

suspension was held at 4°C overnight to simulate stress attributed to storage.   

Detection  

 Enriched samples were confirmed positive using the Assurance Genetic 

Detection System (GDS) (BioControl; Bellevue, WA), an automated real-time 

polymerase chain reaction procedure. Briefly, 1 mL of enriched sample was 

added to 20 μL of a concentration reagent containing immunomagnetic beads.  

Samples were mixed on a vortex and held for 5 min to allow for IMS beads to 

attach to E. coli O157:H7 cells via specific antibody-antigen reaction.  A magnetic 

PickPen™ (Biocontrol, Bellevue, WA) was used to transfer the magnetic beads 

into 35 μL of re-suspension buffer. The re-suspended sample was then added to 

10 μL of DNA polymerase inside an amplification tube.  Prepared amplification 

tubes were placed into the Assurance GDS Rotor-Gene® (Biocontrol, Bellevue, 

WA).  A real-time polymerase chain reaction (PCR) occurs within the innovative 

rotary cycler presenting definitive positive or negative results after 75 minutes.    

 

Data Analysis 
 

The statistical model consisted of a random block design. Statistical 

analysis was conducted using the mixed models procedure (PROC MIXED) of 

SAS® 9.1 (SAS Institute Inc.; Cary, NC) (figure 4) and significance of factors set 

at P<0.05 (Saxton and Augé, 2008). Analysis of variance was used to determine 
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differences in the positive recovery of E. coli O157:H7 on meat trim surfaces.  

Analysis of variance (P<0.05) was conducted through sums of squares 

comparison.  
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CHAPTER III 

Results and Discussion 

Overview  

 The number of correctly identified positive E. coli O157:H7 samples by 

each method, excision and M-Vac, are shown in Table 1.  Generally, it is agreed 

upon that the excision method has a higher degree of accuracy then non-

destructive methods (Capita et al., 2004).  The current research comparing the 

excision method to the novel non-destructive M-Vac method has shown 

significantly different results.  The M-Vac method correctly identified a greater 

percentage (96%) of samples inoculated with 10.3 CFU/684cm2 of E. coli 

O157:H7 (enumeration counts were 16, 4 and 12 for the first 15, 30 and final 30 

samples for each method, respectively) than that of the excision technique 

(76%).  The non-destructive nature and greater recovery rate of the M-Vac 

technique allows it to be a highly practical and accurate methodology in 

comparison to currently used procedures.   

 After sanitizing the sampling head in 85°C water, sterile diluent was 

recovered through the system to show if cross-contamination from sample to 

sample occurs.  Results of this evaluation revealed that 1 out of 75 samples 

tested positive for E. coli O157:H7, indicating that carry-over occurred in one 

sample.  This provides no significant data that point to a concern for cross-

contamination occurring within the M-Vac system.  The resulting positive sample 
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could be also be contributed to cross-contamination occurring during post-M-Vac 

sampling, such as during detection steps leading to the sample entering the 

BioControl Assurance GDS PCR machine.   

 

Recovery of pathogens from surfaces  

 The accuracy of excision sampling is related to its direct ability to detach 

irreversibly adhered cells from meat surfaces after 24 hours of storage.  Once 

cells enter the second stage of attachment, the various short-range forces 

created need strong forces to remove them from the substratum (Kumar and 

Anand, 1998).  The M-Vac method creates an intense surface scrubbing force by 

the intensity of SRS delivered from the spray nozzle (Figure 2) across the beef 

surface.  In addition, the force created by the vacuum adds to the ability to 

detach cells from the surface.   

 The porous nature and multiple crevices located on meat carcasses can 

present difficulty for non-destructive methods to retrieve cells located in those 

spaces.  Aided by surface appendages such as fimbriae, bacterial cells are 

afforded protection when aggregated to the collagen fibrils found in these areas 

making detachment even more complex (Kinsella et al., 2007).  Traditional non-

destructive methods (e.g., sponge swabbing) prove inadequate to retrieve 

attached and embedded cells. Excision, followed by pummeling in a stomacher 

improves recovery, but this is a destructive and laborious method of sampling.  
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As such, methods that enable suitable extraction of attached and embedded cells 

are essential for accurate detection of target microorganisms. 

 Although excision and the M-Vac have the ability to retrieve attached cells, 

this study demonstrated that overall recovery from inoculated samples is greater 

using the M-Vac.  A possible variation could be two-way bacterial transfer 

between the macerated meat sample and the surrounding solution post 

pummeling or stomaching.  As reported in cases between a swab and meat 

surface by Pepperell et al. (2005), the pummeled carcass could relinquish the 

cells to the buffer solution, followed by a reattachment of the cells from the 

solution to the meat carcass.  Thus, especially with low levels of inoculum (~10.3 

CFU/684cm2 in the current study) the cells could reconstitute themselves into 

crevices and pores of the pummeled meat creating a protective effect that would 

prohibit detection (Kinsella et al., 2007).  Further, as in the excision procedure in 

this study, when multiple pieces of meat are pummeled or stomached at one time 

as done with cores, the inoculated side of one core could combine with another 

core.  This would in turn place the targeted cells in between two interlocked 

pieces of meat, not allowing them to go into solution. 

 The design of the M-Vac prevents any recontamination or hidden 

attachment of the cells.  The flow of the expulsed buffer solution will initiate 

detachment and collect the cells in the solution.  Immediate uptake through the 

vacuum port sends the solution containing the target microorganism into the 

sample collection bottle.  As long as proper protocol is followed, the solution 

collected in the sample collection bottle can be directly plated onto agar media or 
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enrichment media (as in the current study) can be added into the sample 

collection bottle for improved detection.  From start to finish during sampling the 

targeted microorganisms should stay in solution without re-adherence. 

   

Nature of the procedure 

 The non-destructive nature of the M-Vac adds another benefit over the 

excision method.  As previously mentioned the excision method is destructive in 

nature and in turn devalues the carcass (Capita et al., 2004).  This makes the 

excision method neither practical nor acceptable in the industry as the technique 

is financially undesirable.  The M-Vac is itself nondestructive in nature causing no 

harm to the surface it covers.  The rinse solution that is expelled and immediately 

vacuumed into the M-Vac system presents no visual harm to the surface of the 

carcass. It causes little to no damage to the surface of a meat carcass and would 

cause no degree of financial loss from physical or esthetic damage aspect.  

 The current study compared surface sampling techniques over the same 

area amount, 684 cm2.  However, in practical use the excision method typically 

only covers smaller areas typically ranging from 5 to 100 cm2.  The destructive 

nature of the procedure forces limitation on the area covered, due to carcass 

devaluation, along with the inevitable increase in materials, time and required 

expertise (Capita et al., 2004).  The current study used a very large sampling 

area that equated to a total of 1.2 L of enrichment broth per excision sample 

compared to only 150 mL for each M-Vac sample.  Such an increase in materials 
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used by the excision method is highly expensive along with highly space 

consuming, as approximately 10 M-Vac sample collection bottles equate to the 

volume taken by one excision sample in 1.6 L of enrichment broth.  Further, the 

increased amount of mEHEC used by the M-Vac samples yields a less 

concentrated overall cell volume after enrichment.  This puts the excision method 

at an immediate disadvantage. 

 The M-vac was able to easily cover the 684 cm2 area, recovering 120 mL 

of sample.  The ability to cover larger areas than the excision method results in a 

more reliable method for monitoring pathogenic organisms that exist in sparse 

and sporadic numbers upon a meat carcass (Lindblad, 2007).  As the meat 

industry primarily targets pathogens that are sporadically located in low numbers, 

such as E. coli O157:H7 and Salmonella, the greater surface area coverage by 

the M-Vac would be beneficial for improving detection.  Gill and Jones (2000) 

showed that when using a non-destructive method (swabbing) that covered 100 

cm2 compared to the excision method covering only 10 cm2, a 1 log increase in 

recovered cells occurred.  This increase in cell recovery was primarily due to the 

increased area sampled, not because of method as it has been shown that the 

swab technique is less reliable in cell recovery.  Thus, as shown by the current 

research, since the M-Vac has the ability to detect sparse pathogenic 

microorganisms better than the excision method, it can be assumed that the 

increased sample area would produce greater than 1 log increases in microbial 

counts.   
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 After sampling with the M-Vac, the solution captured within the sample 

collection bottle can be directly plated or have enrichment broth added for   

molecular detection.  The excision method on the other hand requires further 

processing before plating or enrichment occurs.  Samples would need to be 

taken for further homogenization (i.e., stomaching, pummeling, etc.) and possible 

filtration (Pepperell et al., 2005).  Laboratory analyses must then be done with 

greater expertise and are highly time-consuming and costly.  

  The advantages of the M-Vac are great, with mainly its ability to recover a 

greater percentage of low level microbes than the excision method.  The 

inadequately recovery and destructive nature of the excision technique makes it 

a less practical procedure in the detection of sparse and sporadic 

microorganisms.  The ability of the M-Vac to detect other pathogens on beef trim 

surfaces compared to the excision method needs to be further studied.  Also, 

since the study was done using only one operator of the M-Vac, further studies 

should be done also to determine the reproducibility from one technician to 

another.   

 

Future experimental designs 

 The natural occurrence of microorganisms on a meat carcass can present 

great dilemmas.  E. coli O157:H7 can have prevalence in cattle at a range of 1.0 

to 27.8% and even up to 68% in heifers (Reid et al., 2002).  Cattle are a primary 

reservoir for numerous coliforms and other serotypes of E. coli because of the 
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natural existence of these organisms in the gut of ruminant animals.  All such 

microorganisms can through cross-contamination by hide-to-hide or feces-to-hide 

become present on the beef trimmings during processing.  If meat samples are 

not properly taken care of before use in a study, results can be skewed.  Ideally 

sampling should occur immediately after processing without such effects as 

freezing, transporting, etc. causing problems.  

 If background flora exists to a high degree, removing it to dismiss any 

microbiological competition creates difficulties.  One solution could be the use of 

organic acid sprays, such as lactic or acetic acid, for bactericidal effects.  

Unfortunately such effects would affect the target microorganisms and further for 

some countries this technique is not used so the procedure would not be 

universal (Gill et al., 1999).  The use of large amounts of hot water is a 

possibility, but it is highly expensive and may redistribute microorganisms more 

than removing them (Bolton et al., 2001).   Both of these spray wash types of 

intervention have also been seen to cause discolorations and changes in the 

meat surface (Gill et al., 1999).  Such structural changes also occur when UV 

rays are introduced to the meat surface to remove microorganisms, causing 

oxidation to compounds in the meat.  These types of changes in the meat 

surface composition would then make the experiment not representational of 

practical implications in the food industry.   

 Further setbacks can occur by the naturally high adipose concentration 

existent on beef trimmings.  When a sample is taken, whether by excision or M-

Vac, the hydrophobic lipid particles are mixed into the buffer solution creating a 
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very heterogeneous system of fat particles.  These lipid deposits are too large to 

wash through the 0.45μm direct filter membrane and prevent the proper recovery 

and enumeration of target microorganisms making such an enumeration method 

unusable.   

 The area of each sample presented a problem for the excision 

methodology.  The typical area excised in practice is 5-100 cm2 because of the 

increased cost, time and materials when larger areas are examined.  The current 

study used 684 cm2 areas that required 1.2 L of mEHEC per sample.  Such a 

volume presented problems during homogenization and storage.  These 

problems made post sampling procedures take a greater amount of time per 

sample compared to that of the nondestructive technique.  Also the higher 

volume (1.2 L) used for the excision method compared to that of the M-Vac (175 

mL total) created a less concentrated sample.  If each sample recovered the 

maximum 10 cells, the excision method begins at a disadvantage of having near 

10 times less of concentration then that of the M-Vac.  The probability of 

recovering cells then to use for detection is inevitably less. 

 

Experimental improvements 

  Main changes necessary are to avoid the interferences of the fatty nature 

of the beef trimmings.  Since the research needs to be relatable to practical 

applications, the adipose tissue cannot be just removed from the carcass.  

Filtration steps could still be used, but the apparatus for each sample should be 
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disposable, causing high costs.  Water baths may have bactericidal effects, but 

their ability to reconstitute the lipids upon the apparatus during washing causes 

grave effects.  Avoiding the use of filtration, vortexing collected samples in order 

to concentrate the targeted microorganisms may be possible.  After vortexing, 

the lipids should separate from the target microorganisms and can then be 

decanted off.  The resulting cell pellet can then be suspended in a phosphate 

buffer of lesser volume to then be directly plated by pour or spread methods.  

The vortexing method, however, does take time and the necessity of the proper 

materials and expertise.  The use of more rapid based detection systems such as 

real-time PCR can be very helpful. 

The ability to distinguish between the targeted E. coli O157:H7 and 

background microflora also must occur.  Barkocy-Gallagher et al. (2005) 

demonstrated that the use of imunomagnetic separation (IMS) beads with E. coli 

allowed for easier and increased recovery rates, as in this study.  However, IMS 

beads are expensive and still create nonspecific binding to background flora 

which can make identifying positive colonies difficult (Barkocy-Gallagher et al., 

2005).  Others have used nalidixic acid resistant strains of E. coli to help in 

selectivity of growth during enumeration (Gill and Landers, 2004).  Strains of the 

targeted pathogen are cultured in a nalidixic acid rich tryptic soy broth (TSB) to 

create a resistance to the acid.  Tryptic soy agar enriched with nalidixic acid 

(TSAN) can be used for enumerating and the nalidixic acid can act as selective 

agent (Gill and Badoni, 2005).  Other selective media such as ntCHROM-
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O157agar can be helpful by preventing growth of background microflora with 

such antimicrobials as novobiocin (Brichta-Harhay et al., 2007). 
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CHAPTER IV 

Summary 

 

 The detection efficiencies of the M-Vac and excision sampling methods on 

low level pathogenic microorganisms were determined.  The M-Vac, with its 

nondestructive nature, was able to significantly detect more inoculated samples 

as positive then that of the ‘gold standard’ excision method.  This can be widely 

attributed to the M-Vac’s greater ability to detach strongly adhered cells from and 

within the porous beef trim surface.  The nature of the excision method allows for 

the meat surface to stay in contact with the targeted cells and other meat 

surfaces which could by random physical interactions block or hide the cells from 

following enrichment and detection steps.  Especially when multiple pieces, as 

with coring, are in one single buffer filled bag, the inoculated surfaces could 

combine with another surface hiding the cells between the two pieces, for 

example.  The M-Vac has no step in which the cells could be hidden or 

redistributed to other areas; instead the cells remain in suspension in the buffer 

solution.   

 The M-Vac has the combination of abilities of greater detection and area 

coverage then that of the excision method.  This makes it more reliable when the 

concern is detecting sparse and sporadically distributed microorganisms, such as 

E. coli O157:H7.  Even furthering its positive attributes are its time and material 
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saving characteristics.  Unlike the excision method, no following maceration or 

filtration steps are necessary for the M-Vac.  This saves time and limits the level 

of expertise necessary to sample with the technique.  Also it saves approximately 

10-fold the amount of materials (e.g., buffer solutions) than that of the excision 

technique. 

   Future work does, however, need to be done comparing the M-Vac’s 

ability to accurately detect other strains of E. coli and other pathogens.  Future 

studies should look into the use of such techniques as centrifugation 

concentration, IMS concentration, or highly selective media to distiguish 

background flora and lipid deposits inherent to beef trimmings. Also, smaller 

sample sizes are necessary to allow for equivalent enrichment buffers to be used 

per sample technique. 
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(Source: Microbial Vac Systems, Inc., with permission) 

Figure  1.  M-Vac support equipment case (SEC)
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1

1 Hook for hanging SRS 
bag 

2 Pressure chamber door 
3 Notch for SRS bag port 
4 Guide for closing 

pressure chamber door 

5 Tension knob 
6 M-Vac support 

clip/arm 
7 Sampling head 

support clip/arm 

8 Vacuum Power Switch 
9 SRS Pressurization Switch 
10 Main System Power Switch 
11 Vacuum Tubing Quick Connect Port 
12 Vacuum Pressure Gauge 
13 Airflow Meter (Rotameter) 
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(Source: Microbial Vac Systems, Inc., with permission) 

 
 

Figure  2  M-Vac sample collection
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The M-Vac sprays sterile solution across surface to penetrate cracks and 
crevices while simultaneously vacuuming solution plus surface pathogens into 
sterile collection bottle. This turbulence greatly increases ability to extract 
pathogens. 
 
 

 
 
 

(Source: Microbial Vac Systems, Inc., with permission) 

 
Figure  3. How the M-Vac works
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SAS Program 
 
E. coli O157:H7 recovery accuracy by excision and M-Vac methodologies 
(Saxton and Augé, 2008) 
 

proc import datafile='C:\MvacExruns.xls' out=one replace; 

run; 

%include'C:\DandA.sas'; 

%mmaov(one, positive, class=method run, fixed=method, random=run); 

run; 
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Table 2. Number of correctly identified positive samples by the Excision and M-

Vac methods1 
 

 

1 Beef trim samples were inoculated with an average of 10.3 CFU/684cm2 per 
sample 
 
2 Percentages of positive samples with different letters differ significantly (P< 
0.05). 
 

 

 

 

 

 

 

 

 

 

Sampling 
method 

Number of 
samples taken 

Number of positive 
samples 

Percentage of 
recovered positive 

samples2 
Standard 

error 

Excision 75 57 76 B ± 3.86 

M-Vac 75 72 96 A ± 3.86 
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