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ABSTRACT 

Measurement of heat flux is required in many aerospace and heat treatment 

applications. Temperature data collected at embedded sites are noisy especially when 

measurements are taken in hostile environments. The predicted heat flux, when based on 

the rate of change of temperature, is more accurate than using temperature data as the 

latter data form is ill-posed. In the context of heat flux prediction, calculating the rate of 

change of temperature involves differentiation, which is the primary source of ill-posed 

effects.  

This work involves developing a universal voltage rate sensor interface that 

minimizes these effects and also improves the signal-to-noise ratio. This is based on the 

concept of amplitude modulating the temperature data and differentiating it at a higher 

frequency. The proposed concept of improvement in signal-to-noise ratio was verified by 

the Matlab and PSpice simulations. The experimental outputs matched the simulations 

results. 
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CHAPTER 1: INTRODUCTION 

Sensors are a type of transducer which converts any physical properties into 

electrical signals. Sensors have become a highly active research area because of their 

potential of providing diverse services to broad range of applications, not only on science 

and engineering, but equally importantly on issues related to critical aerospace, defense 

and security, nuclear, health care, the environment, and the potential impact on the 

quality of all areas of life. 

One of the major applications of the sensors is in temperature and flux analysis 

systems. A temperature sensor is a part of a temperature control system that detects the 

temperature and feeds this information to the control device. A perfect temperature 

sensor can be described as one which gives accurate reading and has no effect on the 

medium it is measured and the environment in which the reading is taken.  

The major concern when measuring temperatures is to ensure that the measuring 

device is not affected by the surrounding environment. Accuracy of measurement using 

conventional sensor is inhibited as these sensors are used in various conditions, 

applications and thermal ranges. 

 Signal conditioning of sensor output becomes a major concern in these situations. 

Conditioning can be done in diagnostic and evaluation applications where the collected 

data can be analyzed at a later time. However, in applications like health monitoring 

system, arc jet heat flux measurement and reentry of satellites, there is less time for post 

processing. 

Embedded sensors are used when the measurement with a probe is not possible in 
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the areas of interest. Figure 1.1 shows an example of arc-jet experiments, where 

thermocouple is mounted on the surface of a plate exposed to a high incoming heat flux 

which is used in hypersonic and reentry studies. Noise is one of the major concerns when 

measuring heat flux using embedded sensors. Using these noisy temperature data to 

estimate heat flux leads to an inverse problem where small changes in the input cause a 

large change in the output. This is not similar to normal applications where small changes 

in the input will leads to correspondingly smaller changes in the output. These effects are 

called ill posed as error amplification dominates. 

The arc-jet heat transfer is known to be mathematically ill-posed[1,2,3,4] when 

temperature data are specified. In half-space heat conduction problems, the conventional 

linear heat equation in temperature is given by [1] 

,0),(),,(),( 2

2

≥
∂
∂

=
∂
∂ txtx

x
Tktx

t
TCρ                                   [1.1] 

where ρ is the density, C is the heat capacity and k is the thermal conductivity of the 

medium.  

 
Figure 1-1:Embedded Transducer in Arc-jet experiment (Courtesy of NASA) 
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The heat flux is given by Fourier’s law   
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where the basic energy balance is                
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Using these equations, we can express the heat equation in terms of heat flux, q’’(x,t) 
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where α is thermal diffusivity and is given by α = k/(ρC). The relationship between heat 

flux and temperature within the half space can be given by using classic integral solution  
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which when evaluated at the boundary conditions at x=0, yields 
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Using this equation, we can calculate the surface temperature if we are provided 

with the heat flux data. As the solution involves integration, it is numerically stable, even 

if there is noise present in the flux data with no bias present. Heat flux is calculated from 

temperature data using the Abel integral equation obtained by inverting Eq[1.5] to get 
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Finding the heat flux using discrete noisy surface temperature data is unreliable as 

the process is ill-posed. A system is called ill-posed if small changes in the input cause 
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large changes in the output. This calculation is unstable because it involves numerical 

differentiation which is known to be ill-posed.  

The fundamental problem with electrical differentiators is that the gain of the 

signal is proportional to the signal frequency. The high frequency components in the 

input signal are amplified more than the low frequency components. If we are dealing 

with a signal of low frequency (100 Hz) as is the case with many heat transfer diffusion 

applications, gain of the signal is very low. But the noise which is uniform in all 

frequencies is amplified more at high frequencies. This will cause the signal-to-noise 

ratio to decrease at the output. It has been proven that if temperature data is contaminated 

with white noise in Eq[1.6], then the root-mean-square (RMS) surface heat flux error 

grows as √N where N is the sample size [2].  

Filtering is performed to eliminate these problems which are mainly caused by 

high frequency components. Low pass filtering is a simple way to eliminate the unwanted 

high frequency components and will also improves the signal to noise ratio. This is 

depicted in Figure 1.2. The signal to noise ratio of a corrupted signal is |c|2 which has a 

noise power of |N|2. After the signal is filtered the signal to noise ratio increased.   

 
Figure 1-2:Signal to noise ratio in Frequency domain 
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Gauss low pass filter [1] is used to eliminate high frequency noise in the data 

because of the advantages it offers both in frequency and time domain. The Fourier 

transform of a Gauss function in time produces another Gauss function in frequency, thus 

eliminating ‘wiggles’ from both frequency and time domain. An inspection of the power 

spectral density of the input signal will indicate the cutoff frequency, ωc. This low-pass 

filter offers good differentiability properties i.e., it does not have any side-lobes. The 

filter produces an analytic function i.e., it converted a finite number of samples in the 

original data to infinite so they can be analytical differentiated. 

Heating/cooling rate can be obtained by differentiating the filtered temperature 

data. Heat flux predicted using this data can improve signal-to-noise ratio. The equation 

used for finding heat flux using rate information is given by [1] 

.0),(,
)(

),(),0(''
0

≥
−∂

∂
= ∫

=

tx
ut

duux
u
TCktq

t

uπ
ρ                             [1.7] 

A discrete representation of the above equation is [1] 
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where Tf,i is the filtered temperature data which is sampled uniformly, i.e.  tj=j∆t where 

∆t=tmax/N.  

Using the surface heating/cooling rate instead of surface temperature leads to 

stabilization of the heat flux. The RMS error of heat flux decreases as N
N )log( as N 

increases [2]. For improving the signal to noise ratio one has to increase the sampling rate 

of temperature data. 
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Figure 1.3 compare the RMS heat flux error in calculated heat flux data using 

both temperature and heating rate data [3]. It compares results using two different white 

noise factors ε1 and ε2. Note the gradual increase in RMS error when temperature data are 

used to find the heat flux. The RMS heat flux error is reduced when the noise factor is 

low. In contrast the RMS heat flux error reduces gradually as the number of samples 

increase when heat flux is predicted using rate data. Therefore, using heating/cooling rate 

data allows for accurate real-time heat flux predictions that are critical to health 

management and diagnostics. Using an infinite sample signal i.e. analog signal instead of 

digital signal will reduce the RMS error even further. 

Figure 1.4 shows simulated data of temperature and the predicted heat flux using 

Eq[1.8]. As the simulated input temperature data is coupled with noise the predicted heat 

flux data is unusable. But if the differentiated data is used, (Figure 1.4c), the predicted 

heat flux nearly reconstructs in to a Gauss shaped solution ( Figure 1.4d). Thus a usable 

heat flux is available from differentiated data even if the noise is eight times higher than 

the temperature data. Details of the particular heat transfer study can be found in [4].  

  

 
Figure 1-3: Root Mean Square error of the surface heat flux with sample size N (Taken from [3]) 
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Figure 1-4: Heat flux using Temperature data and heating/Cooling rate (Taken from [4]) 

 

As previously discussed, two techniques have been proposed to estimate heat flux 

namely; filtering the temperature data and differentiating the temperature data using 

digital filtering. There are still some problems in these processes [5]. Firstly, filtering 

does not remove all the noise components present in the input signal and differentiation 

of this signal is still affected by noise. Secondly, differentiator gain depends on input 

frequency. The latter problems can be avoided if the input signal is of high frequency.  

Consider the temperature signal shown in Figure 1.5 [4]. The resulting power 

spectral density shows that frequency components are below 100 Hz. During 

differentiation, different frequency components are amplified to different voltages. For 

example, if the  
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Figure 1-5: Temperature data and power spectral density[taken from [4]] 

 

noise components that vary between 50 Hz to 150 Hz whose magnitude of one, the 

magnitude of the output voltage of the differentiator using a capacitor value of 10 µf and 

resistor of 1 KΩ, will vary between 3.14 V to 9.42 V.  

The error caused by differentiation is minimized if we shift the temperature 

voltage data obtained from thermocouple to higher frequencies using amplitude 

modulation.  If the AM signal is differentiated at this frequency, modulated differentiated 

temperature data can be extracted from it by removing all the unnecessary components. 

This signal can be demodulated to obtain the desired differentiated signal. 

If the same low input signal is amplitude modulated with a carrier frequency of 1 

MHz frequency, the signal is shifted around the carrier frequency. Lower side-lobe will 

vary between 999,850 Hz and 999,950 Hz. Using a differentiator with capacitor of 5 ηf 

and resistor of 1 KΩ, the gain will vary between only between 3.1411 V and 3.1414 V.  

As we can see signal-to-noise ratio can be considerably increased by amplitude 

modulating the signal and differentiating the signal at the higher frequencies. If the signal 

has a pass band of 1 to 100Hz, the signal has a 100% change in frequency domain. But if 

the signal is amplitude modulated by a carrier of 1 MHz the variation will be less than 

0.01% from 1 K to 1.0001 MHz. The noise will also be affected by the same ratio. 
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These principles are followed when developing a universal voltage rate sensor 

interface which inputs the temperature data from the sensor and produces the 

heating/cooling rate for finding heat flux. The general outline of the steps followed in 

developing this interface can be broken down into following steps  

1) Obtaining the noisy, temperature data from the embedded site through an in-situ 

thermocouple 

2) Finding the power spectrum of the signal and estimating the cutoff frequency for 

the filter 

3) Filtering the noisy data 

4) Amplitude modulating the signal with a carrier frequency much higher than the 

highest frequency in the pass band of the input signal 

5) Differentiating the amplitude modulated signal 

6) Extracting the differentiated modulated signal by removing the unnecessary 

components using signal manipulation 

7) Demodulating the signal to obtain the heating/cooling rate 

8) Finding the heat flux using the rate data and using Eq[1.8] 

This rate information does not need any signal processing and can be directly 

used to find the heat flux information in real time. The block diagram of the proposed 

model is shown in Figure 1.6. 

 
Figure 1-6: Block diagram of proposed model 
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Developing of universal voltage-rate interface involves developing a hardware 

interface between the actual in-situ sensor and the analysis software which improves the 

signal- to-noise ratio of the temperature sensor. This is an add-on to the existing hardware 

infrastructure so the cost of up gradation reduces. We can also obtain higher order 

derivatives if these blocks are placed in a cascade structure. This project concentrates on 

developing an amplitude modulated differentiator for diffusive heat flux studies.  

The concept of amplitude modulation and the procedure followed to extract the 

differentiated component is discussed in the Chapter 2. Chapter 3 covers Matlab 

simulations first on a single-tone sinusoidal signal and later on a noisy temperature data. 

The improvement in the signal-to-noise ratio with increase in carrier frequency and also 

with different sampling rate is verified. Chapter 4 covers the design and simulation for 

hardware developed. Orcad PSpice is used to perform simulations for the op amp models. 

Finally, chapter 5 presents the experimental results and the SNR obtained and the 

problems encountered. Chapter 6 presents the conclusions and future work 
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CHAPTER 2: AMPLITUDE MODULATION 

DIFFERENTIATOR 

The amplitude modulation differentiator forms the fundamental building block of 

universal voltage-rate sensor interface. The method of extracting a differentiated signal 

after amplitude modulation and differentiation is presently explained. The concept of 

general amplitude modulation and double sideband suppressed carrier modulation are 

discussed and the advantages of using DSBSC are explained. The method of extraction of 

the desired signal after amplitude modulated differentiation is also explained using a 

single-tone frequency signal. 

2.1 Amplitude Modulation 

Amplitude modulation is defined as a process in which the amplitude of the 

carrier wave )2cos()( tfAtc cc π=  is varied about a mean value, linearly with the baseband 

signal m(t) [6]. Here Ac is the magnitude and fc is the frequency of the carrier wave. The 

amplitude modulated wave can be described as a function of time in the form 

                         [ ] )2cos()(1)( tftmkAtAM cac π+=                            [2.1] 

where ka is the modulation index,  If we assume the modulating signal to be a sine wave 

as shown in Figure 2.1(a) the modulated signal is shown in Figure 2.1(c). The carrier 

wave is also shown as Figure 2.1(b). We can observe that the envelope of the carrier 

wave follows the modulating signal in both positive and negative side of the y axis. 

The amplitude of AM wave as shown in Eq[2.1] is [1 + kam(t)]. Modulation 

factor (|kam(t)|) determines the amount to which the carrier wave is being modulated by 
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Figure 2-1: (a) Modulating signal (b) Carrier signal (c) Amplitude modulated signal 
 

the modulating signal. If AMmax and AMmin are the maximum and minimum values of the 

envelope signal, the modulation factor, µ can be given by 

                                                       
minmax

minmax

AA
AA

+
−

=µ                                               [2.2] 

To avoid over modulation which results in a phase shift where ever the envelope 

crosses zero value, we must ensure that the µ is always be less than 1. But if µ is greater 

than unity, Amax-Amin is greater than Amax+Amin and envelope is phase shifted as both the 

envelopes crosses over. Demodulation of phase shifted signal using ordinary methods 

will not produce the desired results.  If the modulation factor is multiplied by 100 then it 

is called the modulation index of the system. 

  The frequency spectrum of the AM signal can be found by applying the Fourier 

transform to Eq [2.1] 

[ ] [ ])()(
2

)()(
2

)( fcfMfcfMkaAcfcffcfAcfAM ++−+++−= δδ       [2.3] 

If a modulating signal m(t) is band-limited with the spectrum M(ω) as shown in Figure 

2.2(a), then the corresponding frequency spectrum of the modulated signal is shown in 
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 Figure 2.2(b) 

The band of frequencies above the carrier frequency is called the upper sideband, 

and band below is called lower sideband. Here the carrier wave is completely 

independent of the modulating signal and it can be suppressed.  If the carrier wave is 

suppressed from the AM wave it is called double side band suppressed carrier wave form 

or (DSBSC). 

2.2 2.2 Double side band suppressed carrier 

The DSBSC modulation consists of the product of the modulation signal m(t) and 

the carrier wave c(t)  

                     AMDSBSC =   Acm(t)cos(2πfct)                                                       [2.4] 

As the envelope of the modulated signal is dependent upon the amplitude of the 

modulating signal, AMDSBSC  wave undergoes a phase reversal every time it crosses zero. 

This phase reversal is seen in Figure 2.3(a). The frequency components measured using 

the Fourier transform of this AM signal 

AMDSBSC(f) =   [ ])()(
2
1 fcfMfcfMAc ++−

                            
[2.5] 

 
Figure 2-2:(a) Spectrum of the Modulating signal (b) Frequency spectrum of the AM  signal 
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Figure 2-3: Double side band suppressed carrier Amplitude Modulation 

 
      Note that there are only two frequency components at the output and the carrier is 

suppressed Figure 2.3(b). In both simulated and real experiments, the modulation is done 

using DSBSC because of its mathematical simplicity and no extra terms to be dealt with 

during differentiation. But demodulation of DSBSC is different from that of AM wave 

and appropriate technique needs to be used. 

2.3 Mathematical proof 

Direct differentiation of amplitude modulated wave does not result in 

differentiated amplitude modulated wave. Manipulation of the wave is necessary before 

the differentiated signal can be extracted from it. If a modulating signal m(t) and carrier 

signal c(t)  are amplitude modulated we get  

)()()( tmtctAM =                                                     [2.6 (a)] 

If this signal is differentiated we get  

                           )()(')()(')(' tctmtmtctAM +=                                           [2.6 (b)]  

The required component is the amplitude modulated signal of differentiated 

modulating and carrier wave. This is the second term in the Equation 2.6 which can be 



` 15

extracted by selectively choosing this desired frequency components and filtering the 

unnecessary ones.  

There are two important factors that have to be taken into consideration for doing 

this. First, the amplitude modulated signal is divided into two groups of frequencies, the 

lower and upper side bands. Second, during differentiation, different frequencies are 

amplified with different gain. The technique to remove the undesired components after 

differentiation should also take these factors into consideration.  

The procedure of extracting the differentiated component is explained with the 

help of two single tone signals. This theory will also apply to pass band signals. If we 

consider a single tone modulating signal m(t)=Amcos(wmt) and the carrier wave to be at 

frequency fc which can be expressed as c(t) = Accos(wct) 

                                     )cos()cos()( ttAAtAM mccm ωω=                                     [2.7] 

This can be written as sum of two frequency components as 

                                         

[ ]tttAM mcmc )cos()cos(
2
AA

)( cm ωωωω ++−=
                          [2.8]  

The transfer function of the differentiator is shown in Eq[2.9] 

                                                           dt
dVRCVout −=

                                                  [2.9] 

Frequency response of the differentiator is shown in Figure 2.4. Here different 

frequency signal are amplified to different gains. As amplitude modulated signal has two 

different frequencies at ωc-ωm and ωc+ωm, they will be amplified with different gains 

[ ])sin()()sin()(
2

)(
mcmcmcmc

cm AA
RC

dt
tdAM ωωωωωωωω ++−−−−−=

     [2.10] 

If we assume that the total gain of differentiator at frequency ωc-ωm is A1 and the 

gain at frequency ωc+ωm is A2 (A2 > A1). It can be simplified and written in the form of 
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Figure 2-4: Frequency response of the differentiator 

                    

[ ])sin()sin()(
21 mcmc AA

dt
tdAM ωωωω ++−=

                                [2.11] 

Simplifying Eq[2.11] can be written as   

( ) ( )[ ]ttttAttttA
dt

tdAM
mcmcmcmc ωωωωωωωω sin()cos()cos()sin(sin()cos()cos()sin()(

21 ++−=

This can be further simplified into 

         
[ ])sin()cos()()cos()sin()()(

2121 ttAAttAA
dt

tdAM
mcmc ωωωω −++=

                 [2.12] 

Where                                          

ccm ARCAAA ω=+ 21                                          [2.13 (a)] 

mcm ARCAAA ω=− 21                                          [2.13 (b)] 

The differentiation contains two components, the desired component, )sin()cos( tt mc ωω  

and the undesired component, )cos()sin( tt mc ωω . If the undesired component is generated 

and subtracted from the input we are only left with the differentiated input amplitude 

modulated wave. This can be demodulated to obtain the desire result.  
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2.4 Disadvantages of using a phase shifter 

The block diagram proposed to generate the undesired component as discussed in 

[4] is shown in Figure 2.5. Here the signal is first passed through a low pass filter to 

remove the unnecessary noise components. This is then amplitude modulated using a 

carrier generated from the oscillator. The differentiated signal of the amplitude modulated 

wave is summed with the phase shifted amplitude modulated wave. Here the phase 

shifted wave produces the undesired component. The output from the summer is 

demodulated to obtain the desired results. 

If we phase shift the amplitude modulated wave given by Eq[2.8] through 90 deg 

we get 

[ ]tttAMPS mcmc )sin()sin(
2
AA

))(( cm ωωωω +−−−=
                     [2.14] 

Eq[2.14] can be simplified to 

[ ] [ ][ ])sin()cos()cos()sin()sin()cos()cos()sin(
2

)(( tttttttt
AA

tAMPS mcmcmcmc
mc ωωωωωωωω −−+−=

 

which further simplifies to   

[ ])cos()sin())(( ttAcAmtAMPS mc ωω−=                               [2.15] 

If this signal is amplified to a magnitude given by Eq[2.13 (a)]  and passed to the 

summer along with the differentiated amplitude modulated signal given by Eq[2.12], we 

will get the desired result.  

There are many difficulties while implementing this in hardware circuits. 

Generally a phase shifter is designed to produce the desired phase shift at a particular 

frequency. As AM signal is the sum of two frequencies, we can not phase shift these two 

frequencies to the same phase. To achieve this we have to design a complicated phase  
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Figure 2-5: Amplitude modulation differentiation using a phase shifter  

 

shifter which is independent of frequency.  

Even if a phase shifter independent of frequency is designed, the amplitude of the 

undesired signal from the phase shifter will not match the signal at the output of 

differentiator. Additional variable gain amplifier is required whose gain has to be varied 

for different signal has to used after the phase shifter.  

2.5 Changes to the current model 

This problem can be avoided, if the modulating signal is amplitude modulated 

with the differentiated carrier wave. Differentiating the carrier wave amplifies the signal 

to the desired level and eliminates further amplification. The modified block diagram is 

shown in Figure 2.7. In the modified block diagram, we have two differentiators and two 

amplitude modulation blocks. 
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Figure 2-6: Modified block diagram with an extra differentiator and amplitude modulator  

 

From the carrier signal, we give one branch to the amplitude modulation and 

another branch to the differentiator. The amplitude modulated signal is differentiated and 

given to the summing amplifier. The differentiated carrier is also amplitude modulated 

with the modulating signal and the given to the summing amplifier. The output of the 

summing amplifier should contain the amplitude modulated content of the differentiated 

modulated signal.  This component is demodulated to obtain the desired differentiated 

input signal. We expect this signal to contain less noise than the signal differentiated at 

lower frequencies. 

If the carrier is differentiated we get and amplitude modulated we obtain 

)sin()( tRCAtdc ccc ωω−=                                         [2.16] 

If this signal is used as a carrier signal in amplitude modulation, we get  

                                 )sin()cos()(_ ttARCAtdcAm cmcm ωω−=                              [2.17] 
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The amplitude component of the obtained signal is equal to the Eq[2.13(a)], A1+A2, but 

with a negative sign. Adding this component to the differentiated AM signal results in an 

AM signal, which is a product of carrier and differentiated modulating signal. The output 

magnitude of the summer, after the undesired component is removed is a multiple of (A1-

A2). This is only dependent on the modulating frequency and gain the of the differentiator 

and does not depend on the carrier frequency 

2.6 Demodulation of DSBSC 

The output from the summer should be demodulated to obtain the desired 

differentiated modulated signal. The method used for this purpose is depicted in the 

Figure 2.7. The carrier wave which is used to generate the AM signal is used for this 

purpose. This carrier signal must be product modulated with the output of the summer. 

The resultant signal should be passed through a low-pass filter to remove high frequency 

components.  

The output from the summer is given by 

)2cos()2sin()()( 21 tftfAAtS cm ππ−=                                [2.18] 

where A1-A2 is the magnitude of the output which is given by Eq [2.13(b)] and sin(2πfmt) 

is the differentiated modulated signal.  

If this output from the summing amplifier is multiplied with the carrier signal then we 

obtain  

                 )2cos()2cos()2sin()()(1 21 tfAtftfAAtS cccm πππ−=         

or  )2sin()()22cos()2sin()()(1 212
1

212
1 tfAAAtftfAAAtS mccmc πππ −+−=       [2.19] 

This equation has two terms; the first is the AM of differentiated modulating  
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Figure 2-7: Coherent detection of the DSBSC signal 

 
 
signal and the carrier whose frequency components are located at 2fc-fm and 2fc+fm. The 

second term is the differentiated modulated signal which has frequency component 

located at fm, which is the desired signal. Passing the above signal through a low pass 

filter with a cutoff frequency at fm will result in the desired signal. 

2.7 Low pass filter 

In the above discussed example, as the input modulating signal is a sine wave 

with frequency fm, the differentiated signal will also be cosine wave at the same 

frequency. A random signal, when differentiated, will have frequency components 

different from that of original signal. Appropriate cutoff frequency is required to design 

the low pass filter. 

Special care also has to be taken when dealing with carrier frequencies which are 

comparable to the modulating signal. A simple low pass might not remove all the traces 

of the carrier frequency after it is demodulated. Higher order filters are used in these 

cases.  

The output of the filter is a differentiated modulated signal which should have 

high signal-to-noise ratio when compared to the signal differentiated at low frequencies. 
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2.8 Signal-to-noise ratio 

The important parameter in the entire process of differentiation and demodulation 

is the signal-to-noise ratio of the output signal. Signal-to-noise ratio(SNR) can be defined 

as the ratio of the average power of the message signal to the average power of the noise 

signal.  

A noise free signal is differentiated signal and the signal power is calculated. 

Later, white noise is added to the input signal and differentiated at low frequency and the 

corresponding power is measured. The noise power is then measured by subtracting this 

power from the signal power without any noise. The SNR is calculated from the above 

obtained values. The SNR improves for amplitude modulated differentiated data  

Matlab and PSpice simulations of the above described block diagram are 

explained in Chapter 3 and Chapter 4 respectively. Experimental results are described in 

Chapter 5. 
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CHAPTER 3: MATLAB SIMULATIONS 

Simulations in Matlab are performed to verify the results obtained with hand- 

calculations [7]. These results can also be used as a bench mark during PSpice 

simulations and actual experiments. 

3.1 Sine wave input 

Matlab simulations have been performed using the modulating signal of 

Amcos(2πfmt) and carrier signal of Accos(2πfct). The Fourier transform of amplitude 

modulated signal has frequency components at fc-fm and fc+fm with magnitude 

(Ac*Am)/2.  

The transfer function of the differentiator is given by 
dt
dVRC− . It can be 

designed in Matlab by multiplying the RC gain with the slope of the given wave. Its gain 

increases with frequency of the signal in the time domain. In the frequency domain it has 

a +20dB slope crossing zero dB at 
RC

f
π2
1

= . The value of RC determines the zero in 

frequency domain and also gain to be obtained at other frequencies.  

As the gain of the differentiators might be higher that the obtainable in hardware they are 

decreased by using a decade divider. All the other blocks were also simulated in Matlab 

using there transfer functions. Filters are accomplished using Matlab functions butter and 

filter.  

Waveforms at each and every stage of simulation and the frequency domain and 

carrier signal c(t) and the frequency spectrums of the same are shown in Figure 3.1(a),(b) 
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and Figure 3.1(c) and 3.1(d) respectively. The amplitude modulated signal and the 

corresponding FFT are shown in Figure 3.1(e) and 3.1(f). The frequency components are 

located at fc-fm and fc+fm and amplitude of each component will be half the product of the 

amplitude of carrier and modulating wave. To reduce the amplitude it is further divided 

by 10 V.  This AM signal after passing through differentiator is shown in Figure 3.1(g) 

and 3.1(h). Observe that different frequency components in the signal are amplified to 

different magnitudes. The difference in magnitude of the frequency components can be 

given by A1-A2, Eq[2.13(b)]. The amplitude modulation of differentiated carrier and 

modulating signal are shown in Figures 3.1(i) and 3.1(j). The output of the summer and 

the corresponding Fourier spectrum is shown in Figure 3.1(k) and 3.1(l). Here the 

undesired components due to the negative sign difference between them. The only 

component left after summer is the desired modulated signal. The demodulated signal 

and its frequency components are shown in Figure 3.1(m) and 3.1(l) This signal can be 

easily recovered as the difference between fm and 2*fc is high. The output of the low pass 

filter is shown in Figure 3.1(o) and 3.1(p). 

Matlab simulations have been performed using different modulating and carrier 

frequencies. Magnitude of resultant waveforms obtained at each and every stage is 

provided in Table 3.1. The output voltage of the summer is proportional to the 

2πRCfmAcAm. The maximum voltage in the circuit results from the differentiation of 

carrier frequency and it is given by 2πfcAc. Both of them depend on the frequency of the 

modulating and carrier signals. All other terms in the equations are constants. Three 

major conclusions can be inferred from Table 3.1; namely, 
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Figure 3-1:  (a)Modulating signal (b) Frequency spectrum showing a pulse at 100 Hz (c) Carrier 

signal (d) FS of carrier wave (e) Amplitude modulated wave (f) Two frequency components at fc-fm 

and fc+fm (g) Amplitude modulated differentiated signal (h)Frequency components 
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Figure3.1 (i) Amplitude modulation of modulating signal with differentiated carrier (j) Frequency 
spectrum of the same (k)Output from the summer (l) Low amplitude desired frequency components. 
(m) Demodulation signal (n) Frequency components of demodulated wave at fm, 2fc+fm and 2fc-fm 
(o) Filtered differentiated modulating signal (p) Frequency spectrum of filtered signal 
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Table 3-1: Amplitudes obtained of signals during different stages of differentiation 

 

 
 

Modulating 
signal 

 
 
 

Carrier 
Signal 

 
 
 

Diff 
(RC)

 
 
 

AM 

 
 
 

Diff 
of  AM 

Diff of 
Carrier 
wave 

Undesired 
signal 

Summing 
amplifier 

 
(X1+X2) 

 

Demod Output 
voltage 

Units Freq 
(Hz) 

Amp 
(Vpp) 

Freq 
(Hz) 

Amp 
(Vpp)

 Amp 
(Vpp) 

Amp 
(Vpp) 

Amp 
(Vpp) 

Amp 
(Vpp) 

Amp(Vpp) 
Amp 
(Vpp) 

Amp 
(Vpp) 

Magnitude  Am  Ac RC 
20

(AmAc) (A1+A2)/2 
± (A1-A2)/2 

2πRCfcAc (A1+A2)/2 5(A1-A2) 
((A1-

A2)Ac ) 
A1-A2 

Frequency 
components  fm  fc  fc-fm, 

fc+fm fc-fm, fc+fm fc fc-fm ,fc+fm fc-fm, fc+fm fm, 2fc fm 

 100 16 1k 1 1e-3 0.8 
(0.2,0.2) 

19.458 
(4.5,5.5) 6.123 19.458 

(5,5) 
2.010 
(5,5) 

0.9285 
(2.4,1.3) 0.4874 

 100 16 1k 1 1e-4 0.8 
(0.2,0.2) 

0.4864 
(0.45,0.55) 0.6123 0.4864 

(0.5,0.5) 
0.0503 

(0.05,0.05) 0.0232 0.0122 

 100 16 10k 1 1e-4 0.8 
(0.2,0.2) 

4.8980 
(4.95,5.05) 6.123 4.8980 

(5,5) 
0.0503 

(0.05,0.05) 
0.0232 
(0.024, 0.0116 

 100 16 20k 1 1e-4 1 12.24 12.24 12.24 0.0628 0.029 0.0145 

 100 16 10k 2 1e-4 0.8 9.7960 12.2459 9.7960 0.1005 0.0929 0.0464 

 100 20 20k 2 1e-4 2.4 29.3896 
(3.1,3.16) 24.4917 29.3896 

(3.13,3.13) 0.1257 0.1161 0.06 

 100 16 10k 3 1e-4 3.2 19.5920 24.4917 19.5920 0.2011 0.3715 0.1858 
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1) The output amplitude of the differentiated signal is only dependent upon the 

modulating frequency fm and differentiator gain RC as shown in Eq[2.13 b] 

2)  The output magnitude is limited by with the values of RC as the gain from the 

differentiated carrier is also dependent of this term, Eq[2.17]. 

3) The carrier frequency can be increases till the magnitude of the differentiated 

carrier signal does not cross maximum voltage limit of the op-amp being used in 

hardware.  

The maximum upper limit to the carrier frequency occur when the magnitude of 

differentiated carrier frequency exceed the op amp output swing limitation. Limit can 

also be occurred when the output differentiated magnitude is reduced is to a low 

value. 

3.2 Simulated temperature data with noise 

Desired differentiated cosine signal is obtained using a sine wave. The signal to 

noise ration improvement is verified by using a white noise effected simulated 

temperature data used in [4]. This signal is shown in Figure 3.2; it has a pass band of 100 

Hz. This signal is affected with white noise and resultant data obtained using voltage rate 

sensor interface is shown in Figure 3.3.   

 

Figure 3-2: Temperature and heating and cooling rate data 
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Figure 3-3: (a)Modulating signal (b) carrier signal (c) amplitude modulated signal (d) amplitude 

modulated differentiated signal (e) amplitude modulated signal using differentiated carrier (f) the 
output from summing circuit (g) the output from demodulator (h) Demodulated output  
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The output obtained at individual stages of block diagram is shown in Figure 3.3. 

The noisy temperature data is given as modulating signal is shown in Figure 3.3(a). The 

carrier signal , amplitude modulated signal, amplitude modulated differentiated signal, 

amplitude modulated signal using differentiated carrier, the output from summing block, 

the output from demodulator, and the final results obtained after passing through a low 

pass filter are shown in Figure 3.3 (b)-(h) respectively. 

Figure 3.4 shows the results of when the noisy signal is differentiated at low 

frequency. Due to the noise present in the input signal, the obtained output signal will be 

noisy and unreliable. The signal-to-noise ratio obtained is also low. The output obtained 

when differentiating at high frequencies by using amplitude modulated differentiation is 

shown in Figure 3.5. The results match the results obtained when the signal is 

differentiated without any noise. SNR of the signal improves with increase in carrier 

frequency. Table 3.2 shows the SNR obtained using different carrier frequencies. 

 

Figure 3-4: Differentiation of temperature data at low frequency 
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Figure 3-5: Differentiation of temperature data at high frequency 

 
 

Table 3-2: SNR obtained using different carrier frequencies obtained from Matlab 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 

SNR of noisy  
signal  

differentiated 
at low 

frequency 

SNR of  filtered 
signal 

differentiated at 
low frequency 

Carrier 
frequency 

( Hz) 

SNR of noisy 
signal 

differentiated at 
high frequency 

SNR of filtered 
signal 

differentiated at 
high frequency 

10.29 48.4420 10k 44.4697 23.9883 

10.29 48.4420 20k 351.6670 48.3164 

10.29 48.4420 30 k 141.9521 81.4681 

10.29 48.4420 40k 54.0662 119.9552 

10.29 48.4420 50k 73.9511 173.9028 

10.29 48.4420 60k 73.4499 240.1650 

10.29 48.4420 70k 262.0165 343.3325 

10.29 48.4420 80 k 94.58 468.0271 

10.29 48.4420 90k 61.8925 753.4291 

10.29 48.4420 100 k 46.86 1205.02 

10.29 48.4420 110 k 54.54 2220.8 
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The signals are sampled at the rate of 1920100 samples per second.  The signal-

to-noise ratio at low frequency is 10.2 This can be increased to 1205.2 by amplitude 

modulating with a carrier frequency of 100k and differentiating at this higher frequency. 

Figure 3.6 shows the improvement in SNR with increase in carrier frequency. Figure 3.6 

also shows the improvement in signal-to-noise ratio with increase in sampling rate due to 

the decreases in RMS error with increases in sampling rate. 

The circuits used to simulate each block of the Figure 2.6 are explained in detail 

in chapter 4. Design requirements and simulation results are also explained in detail. 

 

 

Figure 3-6 : SNR with increase in carrier frequency 
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CHAPTER 4: PSPICE SIMULATIONS 

Prior to constructing a circuit, careful design is required using simulation 

software. All the electrical simulations are performed in PSpice. PSpice (Simulation 

Program with Integrated Circuit Emphasis)[8] is analog circuit simulation software that 

runs on personal computers, hence the first letter "P" in its name.  

 Each part of the block diagram shown in Figure 2.6 is explained in detail in this 

chapter. The design requirements and the parts used are explained in detail. The 

Simulation results are provided when required. The main components required in the 

experiment are oscillator, for creating the carrier signal, low pass filters for filtering the 

input signal and demodulated signal; multiplier for modulating and demodulating the 

signal and differentiator for differentiating both carrier and amplitude modulated signal. 

Each block is explained in detail in the following sections. 

4.1 Oscillator 

An electronic oscillator produces periodic signal at regular interval of time. 

Voltage controlled oscillator (VCO) is a form of harmonic oscillators which produce sine 

wave whose frequency can be varied by the applied DC voltage. This is used to produce 

the carrier wave required for modulation. 

If the frequency of oscillations has to be varied across a large range of 

frequencies, varactor diode is used. The change in capacitance of the reverse biased 

varactor diode due to applied voltage will cause the change in oscillation frequency. The 

oscillation frequency of the voltage controlled oscillator is stabilized using a Phase 

Locked Loop (PLL). PLL will correct the error frequency during oscillations by feeding 
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its output back to the input signal and producing an error signal. This error signal 

produces an error correcting DC voltage which helps in locking the oscillations to a 

particular frequency.  

The IC in which oscillations from VCO are controlled in a PLL is EXAR XR2206 

[9], which can also be used as function generator. The block diagram and pin 

configuration of the chip is shown in Figure 4.1. The frequency of oscillation can be 

changed from 0.01Hz to 1MHz with an external control voltage applied, while 

maintaining low distortion. It also has excellent temperature specifications of 20ppm/oc.  

XR2206 is capable of producing two independent frequencies. The four main 

functional blocks in XR2206 are VCO, current switches, sine shaper, and unity buffer 

amplifier. The VCO output is dependent on the voltage at the timing resistors which can 

be controlled using current switches. The distortions in the oscillation can be removed 

using external adjustments in the sine shapers block. Unity buffer amplifier is used to 

avoid loading effects on the output of VCO. 

The frequency of oscillation from the VCO is proportional to the current through 

the timing pins at 5,6,7,8. A fixed capacitor(C) is placed between pins 5 and 6 and two 

timing resistors (R1, R2) at pins 7, 8 to produce two different output frequencies. The 

frequency of oscillation is determined mainly by the variable resistors at pin 7 and 8 and 

is given by  

CR
fand

CR
f cc

2
2

1
1

1,1
== .                                           [4.1] 

If pin 9 is open circuited or connected to a bias voltage greater than 2V, R1 is 

activated. But if the voltage is less than 2V, R2 is activated. As we need only one carrier  
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Figure 4-1: (a) Internal Block diagram and(b)  pin configuration of XR2006(taken from [9]) 

 
frequency to generate the AM signal, we only use timing resistor at pin 7. This oscillator 

can be operated in either single supply configuration or split supply. If used in single 

supply configuration the output DC voltage will depend on the voltage at pin 3. Split 

supply is used during simulation to achieve a zero output dc voltage. 

 The configuration used for producing a carrier frequency is shown in Figure 4.2. 

It uses external symmetry adjustment available for removing any distorting present in the 

input. The potentiometer R1 at pin 7 provides frequency tuning. If the symmetry 

adjustment is not used there will be a distortion less than 2.5%. With symmetry 

adjustment this distortion can be further reduced to 0.5%.   

Resistor RA and RB are used for symmetry adjustment. RA is used to adjust the sine 

shaping resistor in the multiplier and sine shaping block. RB is used for fine adjustments 

in the waveform symmetry. The steps to be followed for adjustment are as follows  

1.Set RB at midpoint and adjust RA for minimum distortion  

2.With RA set as above, adjust RB to further reduce distortion 
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Figure 4-2: Sine wave generation with minimum harmonic distortion 

 

4.2 Low Pass Filter 

A filter is a frequency selective network that allows a certain range of frequencies 

to be passed and reject other frequencies. A low pass filter can be realized using a RC 

network. Using only passive elements in designing a filter has limitation of quality factor, 

Q, of the filter is limited to ½. A filter is said to have a high Q if it selects or rejects a 

narrow range of frequencies compared with its centre frequency. Q can be obtained by 

dividing the central frequency by 3dB bandwidth. 

To obtain a higher Q value, we use active filters, i.e. using an amplifying element 

such as an operational amplifier along with the passive elements. The order of the filter 

determines how steep the frequency curve falls from pass band to the stop band. For 

every pole added to the circuit, an additional +20dB slope is added to the curve.  
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The schematic of the Sallen-Key low pass filter[10] is shown Figure 4.3. At low 

frequencies both the capacitors are open circuited so the input is directly transferred to 

the output. At high frequencies both the capacitors are short circuited so the signal does 

not appear at the output. But at the cutoff frequency of the filter when impedance of C1 

and C2 is equal to impedance of R1 and R2, the positive feedback through C2 will help 

improve the quality factor of the circuit. The transfer function of the above circuit can be 

derived as follows. 

Gain of non inverting input is given by  

                                                     
g

f

R
R

k += 1                                                               [4.2] 

The voltage developed at the negative terminal of the op-amp is given by 

                                                    
in

out

V
V

k =                                                                  [4.3] 

If the voltage at node 3 is V3 then the output relation between the output voltage and 

input voltage can be written as 

 
Figure 4-3: Sallen-Key low pass filter 
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The relationship between V3 and Vin can be written as  

                                              )1( 223 CsRVV in +=                                                    [4.5] 

Substituting Eq[4.5] in to Eq[4.4], we find  
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From the Eq[4.6] we can define the cutoff frequency of the filter to be  

                                                       
2121

1
CCRRc =ω                                                   [4.7] 

and the quality factor of the system as  
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The design is greatly simplified by using R1=R2=R and C1=C2=C and the cutoff 

frequency reduces to  

                                             
RC

fc
π2
1

=                                                         [4.8] 

and quality factor of  

                                                
K

Q
−

=
3

1                                                        [4.9] 

The disadvantage of using this configuration is that quality factor is dependent on 

the gain k of the circuit. If a better quality factor is required we have to increase the gain 

by cascading two filters with increasing gains.   
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4.2.1 Design 

Careful design is required for not adding any additional delay in the circuit. Delay 

is caused due to the phase shift between input and output waveform. The phase shift 

between input and output starts a decade before the pole actually occurs in the frequency 

domain. The phase of the signal at the pole frequency is 45 degrees and it reaches 90 

degrees after crossing it. To avoid any phase shift, the cutoff frequency of the filter is 

chosen a decade after the actual pole present in the system. The frequency range of the 

heat transfer signals range from 0 Hz to 100 Hz. The cutoff frequency of the filter chosen 

is 1 KHz. 

Choosing the value of capacitor to be 0.1 µf and using Eq[4.8] the value of 

resistor is equal to R1=R2=1.59 KΩ for cutoff frequency of 1 KHz  The filter designed 

after demodulation of the differentiated signal should have a cutoff frequency that is 

greater than the cutoff frequency for modulating signal. Figure 4.4 shows the difference 

in spectrum of the temperature and rate data. The cutoff frequency of the filter after 

demodulation is above 1500 Hz. 

 

 
Figure 4-4: (a)Temperature and rate data (b) Frequency spectrum of the same 
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4.2.2 Simulation results 

 In the experiment, filtering is performed on a low frequency signal, hence the 

bandwidth required for the op amp is not very high. The experiment also requires that 

offset voltage to be low. The op amp chosen for this block is op-27 which has an offset 

voltage which is less than 10 µf and is also unity gain stable. The frequency response of 

the circuit used in Figure 4.3 is shown in Figures 4.5. The -3 dB point of the circuit is at 1 

KHz . From the frequency response, all the frequency components below 100 Hz are 

passed without any phase shift. Frequency components between 100 Hz and 1 KHz are 

passes with some phase shifted. All the other frequencies are attenuated. The Butterworth 

filter used also ensures zero ripples in the stop band. 

4.3 Differentiator 

An op-amp circuit whose output is proportional to the rate of change of the input 

signal is called a differentiator. Its schematic is shown in Figure 4.6.  

 

Figure 4-5: Frequency response of low pass filter 
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Figure 4-6: Schematic of simple differentiator 

 
The positive terminal is at ground so the voltage of the negative terminal is also at 

ground due to effect of virtual grounding. The current I that flow in capacitor C is   

                                                      
dt
dvcI =                                                            [4.10] 

The current is thus proportional to the rate of change in the input voltage. If the 

input voltage changes at a rapid rate, the current produced increases correspondingly.  

The current flowing into any terminal of an ideal op-amp is zero. Thus the entire current 

from the capacitor has to flows into the resistor. 

                                                
R

V
dt

dV
C outin −=                                                        [4.11] 

                                                 
dt

dV
RCV in

out −=                                                      [4.12] 

as an inverting op amp configuration is used the output will have a negative sign. The 

frequency response of a simple differentiator is shown in Figure 4.7. Its gain crosses zero 

dB when it encounters the zero of the circuit. The location of zero is calculated using  

RC
fc π2

1
=                                                        [4.13] 
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Figure 4-7: Frequency response of simple and practical differentiator 

 
This circuit is not suitable for practical applications. At high frequencies, the gain 

of the circuit increases as the capacitor is short circuited. This results in a larger 

amplification of the noise component in the input signal. Also, the R and C loop acts as a 

low pass filter and provide a 90 degree phase shift to the input signal which results in 

resulting in a total phase shift greater than 180 degrees. As the phase shift is 180 degrees 

the op amp is be positive feedback amplifier which is undesired.   

4.3.1 Practical differentiator 

The circuit in Figure 4.8 is used as differentiator for all practical purposes [11]. 

Resistor R1 is added in series with the differentiating capacitor C1 near the negative input 

terminal and a capacitor C2 is added in parallel to the feedback resistor R2. Adding these 

additional RC pair converts the differentiator into an integrator at high frequencies. Also 

at high frequencies, when both the capacitors are short circuited, the gain is limited to 

1R
Rf

− due to the series resistance.   
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Figure 4-8: Practical differentiator 

 
Current flowing through resistor R1 and capacitor C1 branch is  

1
1

1
sC

R

V
I in

+
=                                                 [4.14] 

neglecting the voltage at the negative input terminal, the equation for output voltage of 

the op amp is 

                                                   )1||.(
2

2 sC
RIV out −=                                          [4.15] 

substituting Eq[4.14] in the above equation 

)1||.(
1 2

2

1
1
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R
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R

V
V in

out

+
−=                                  [4.16] 

Solving Eq[4.16], and substituting s=jω 

                                          
)1)(1(

2211

12

CR
j

CR
j

CR
j

V
V

in

out

ωω

ω

++
−=                                 [4.17] 

The above equation has a zero and two poles. When R1C1=R2C2 , two poles will overlap 

giving a + 40dB change in the slope at the  pole frequency. 
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The zero in Eq[4.17] is given by   

122
1

CR
f Z π

=                                                       [4.18] 

fZ is the frequency where the gain of the differentiator crosses zero dB. The intersecting 

poles are at frequency fh 

2211 2
1

2
1

CRCR
fh ππ

==                                            [4.19] 

fh is the frequency where the gain of differentiator is maximum. After fh the circuit acts as 

an integrator. The relation between these two frequencies is   

 

   Using an additional RC pair adds two additional poles to the circuit and limiting 

the high frequency gain thus attenuating high frequency noise. In addition, R1C1 and R2C2 

form lead networks in the feedback loop which, if placed below the amplifier unity gain 

frequency, provide 90° phase lead to compensate the 90° phase lag of R2C1 and prevent 

loop instability. 

4.3.2 Design 

 The design of differentiator is the most important part in the entire block diagram. 

This differentiator is used in two different instances in the circuit, i.e. for differentiating 

both carrier and amplitude modulated wave. The carrier is a single frequency component 

wave fc, but the amplitude modulated wave is the sum of two individual bands of 

frequencies that are located on either side of carrier frequency fc. 

 As the signal to be differentiated has frequency components around the carrier 

frequency, fZ  is designed to be smaller than the fc to achieve a gain higher than 0dB at the 

hZ ff ≤
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desired frequency range. Also the maximum frequency component in amplitude 

modulation given by fc+fm should be less than the maximum gain of the differentiator. To 

avoid any additional delays because of the phase shift introduced by the poles, fh must be 

a more than 10( fc+fm). 

 The magnitude of the output voltage, given in Eq[2.17], for the entire circuit is 

determined by the differentiator. Thus the major limitation while designing the 

differentiator is the gain of the circuit at the modulating frequency fm. This can be 

explained using Figure 4.9. If the gain at the modulating frequency is small as shown in 

Figure 4.9 (b), the output signal cannot be retrieved. There is no limitation on the value of 

carrier frequency.  

 If we design the gain of the differentiator at fm to be large as shown in Figure 4.9 

(a), the differentiated output wave can be retrieved. There will be limitation on carrier 

signal frequency, as the op amps used cannot deliver the higher gains attained at such 

frequencies. This is explained much better in Table 4.1. 

 

 

Figure 4-9: Effects of zero in differentiator design 
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Table 4-1: Magnitude at every stage obtained using two different differentiator 

 

Input/Output Signals Equations Magnitude (VP-P)  

fC = 10 KHz, 

 R2C1 = 1e-4 

Magnitude (VP-P) 

fC =10 KHz,  

R2C1 = 1e-3 

Modulating signal Am 20 20 

Carrier signal Ac 1 1 

Differentiated carrier 

signal 

2πRCfcAc 6.28 62.8 

Amplitude modulated 

signal 

(AmAc)/20 1 1 

Differentiation of AM 

signal 

A1 

(A1+A2)/2,(A1-A2)/2 

    6.28 

(3.10,3.17) 

62.8 

(62.17,63.4) 

AM signal using 

differentiated carrier 

A1 

(A1/2, A1/2) 

    6.28 

(3.14,3.14) 

62.8 

(31.4,31.4) 

Output from 

summing amplifier 

A1-A2 0.06 0.6 

Demodulator A1-A2 0.06 0.6 
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The value of R2C1 determines the location of where magnitude of the output signal 

crosses 0dB in frequency domain. Table 4.1 explains the tradeoff between the magnitude 

of the differentiated modulated signal obtained at the end of the process and  the 

maximum carrier frequency that can be used which determines the signal-to-noise ratio of 

the output. If the magnitude of the output signal is low, it cannot be retrieved properly. 

Similarly if the SNR is low, the output signal cannot be differentiated from noise signal     

The position of zero in the frequency domain for the circuit determines the output 

magnitudes. If the zero is near the modulating signal the output voltage is high with low 

SNR. However, if the zero is near the carrier frequency, the output magnitude is low with 

an excellent SNR. Table 4.1 is used to determine the values of R2C1 and the carrier 

frequency used in the experiment.  

4.3.3 Simulations 

PSpice simulations have been performed using different carrier and input signal 

values. Figure 4.10 shows the frequency response of the differentiator. An op 27 op amp  

 

 

Figure 4-10: Frequency response of the differentiator 
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is used for simulation where R1= 10 Ω, C1 = 1 µf, R2 = 10 kΩ and C2= 1 ηf. The zero of 

the system is located at 16 Hz, so the gain for a low frequency signal will be greater than 

unity. The overlapping poles are located at 16 KHz. The highest carrier frequency that 

can be used for this experiment with out any additional phase delay in the output is 

around 6 kHz.  Higher carrier frequency can be applied by shifting the position of the 

zero and poles of the circuit. 

The time response of the above circuit is shown in Figure 4.11. Sine wave input 

will result in an amplified cosine wave output. The circuit is also verified with different 

input waves 

4.4 Multiplier 

Multiplier is also one of the most important parts in the entire process of 

amplitude modulation differentiation. It is used in both modulation and demodulation 

methods. The op amp used to perform this task is an AD633 [12], which is a four 

quadrant multiplier. The block diagram is shown in Figure 4.12. 

 

 
Figure 4-11: Time response of differentiator 
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The two high impedance differential input pairs, X and Y,  are useful in making 

loading negligible. These inputs are multiplied and the product is full scaled by 10 V 

using a buried zener diode to increase the output swing. 

The output from this multiplier can be added to the signal (Z). The output of the 

op amp is  

ZYYXXVout +
−−

=
10

))(( 2121                                     [4.20] 

This op amp has a bandwidth of 1 MHz, slew rate of 20 µV/V and noise less than 

100µ which are desired for the required operation. It can also operate on dual power 

supply ranging from ±8 V to ±18 V.  

When two voltage inputs are given as inputs at terminals X and Y, they are first 

converted into differential currents by using voltage to current converters. The product of 

these currents is then generated using the multiplier core. A two quadrant multiplier [13] 

is one where only one signal can be of double polarity but the other is limited to single 

polarity. This can be generated using an emitter coupled pair driven by a current mirror. 

The multipliers will only works in two quadrant of the XY plane. This cannot be used in 

communication applications like modulation and demodulation. 

 

 
Figure 4-12:Functional block diagram of AD633 (taken from [12]) 
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To generate a four quadrant multiplier we have to use a Gilbert’s cell which is 

modification of the emitter coupled pair with balanced multiplier system. The AD633 is a 

four quadrant multiplier.  

The summing node is connected to the carrier input to produce an AM wave 

without suppressing the carrier. To obtain a DSBSC waveform the summing terminal Z 

has to be grounded. If the amplitude of the output signal has to be increase, output 

voltage can be feedback through terminal Z using voltage divider. The configuration used 

for amplitude modulation is shown in the Figure 4.13. The same configuration can be 

used for demodulation process by replacing the modulating signal with the modulated 

signal. 

4.4.1 Simulation 

The results of PSpice simulation of the amplitude modulator is shown in Figure 

4.14. A sine wave carrier with an amplitude of 1 V is used an input. The output has an 

internal divider of 10, so a modulating signal with amplitude to 10 V is applied as other 

input signal. The output voltage is a amplitude modulated signal with a amplitude of 1 V 

obeying Eq[4.20]. Demodulation can also be done using the same setup, and later filter to 

obtain the desired differentiated signal. 

 
Figure 4-13: Double side band suppressed carrier Amplitude Modulation 
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Figure 4-14: Simulation of amplitude modulated signal (a) Both carrier and modulating signal. (b) 

Amplitude modulated signal 

4.5 Summing Amplifier 

          Summing amplifier is used to add any two signals. It is used in the block diagram 

to remove the unnecessary components from the modulated differentiated signal. 

Undesired signal which is out of phase is produced from differentiating the carrier wave 

and amplitude modulating it with the temperature data. The output obtained when these 

signals are added contains only desired frequency component.  

We have to use a non inverting summing amplifier, as we do not want any phase 

shift in the output signal. The configuration used for non inverting amplifier is shown in 

Figure 4.15. Inputs V1 and V2 are applied to the positive input terminal of the op amp. 

The gain of the circuit is given by ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

g

f

R
R

1 where Rf is the feedback resistors and Rg is 

the resistance at negative terminal. The transfer function of Figure 4.15 is derived using 

super position theorem. If we assume that only V1 is applied at a given time and V2 is 

grounded the voltage the positive terminal can be given as 
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Figure 4-15: Summing amplifier 
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similarly, the voltage at the positive terminal due to V2 assuming that V1 is grounded is   

21

1
22, RR

RVV
+

=+                                                 [4.22] 

The total sum of voltages at the positive terminal will be given by 

21

1122 )(
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RVRVV
+
+

=+                                              [4.23] 

The output voltage is given by the main multiplied by the voltage at positive terminal 
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R

Vout f                                 [4.24] 

If R1=R2=Rf=Rg then the output is   

Vout=V1+V2                                                                        [4.25] 

 The output of the summing amplifier will vary from the sum of the two voltages due to 

offset voltage of the op amp. An op amp of very low frequency has to be chosen for the 

implementation. This op amp should also a band width above the carrier frequency used 

in amplitude modulation. OP-27  [14] is used due to its bandwidth of 8 MHz and offset 
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voltage of 3 µV. This offset is removed by applying a DC voltage at the input terminal. 

This can be applied using a variable resistor between the power supplies.  

The simulation of the summer adding two signals is shown in Figure 4.16. Two 

sine wave signals of 100 Hz and 100 KHz are added to obtain the output. 

4.6 Buffer Amplifier 

When output of one circuit is used as an input to the other circuits, the preceding 

circuit does not affect the outputs of the succeeding circuits. If a circuit is driving an 

unknown load, the output voltage will vary according to the load resistance it sees at that 

output node. If the load resistance is very low, the output varies as the current drawn from 

the circuit is large. Loading is caused when the output of a circuit is affected by the 

preceding circuit. Loading can be caused when the circuit is driving a filter or 

differentiator where the output is across a capacitor.  The current drawn from the 

capacitor will discharge the capacitor, reducing the voltage. Loading can also happen 

when the op amp is driving another op amp with negligible input resistance [15]. 

 

 
Figure 4-16: Time response of the summing amplifier 



` 54

A buffer amplifier isolates the output of one system from the input of the other, 

thus avoiding loading. The circuit for buffer amplifier is shown in Figure 4.17. It copies 

the input from one stage and reproduces it as an input to the preceding stage.  It does that 

without drawing any current from wherever the input voltage terminal is attached.  

However, at the output terminal can draw whatever amount of current the operational 

amplifier can supply. 

4.7 Complete circuit 

The complete electrical circuit of universal voltage rate sensor interface is shown 

in Figure 4.18. The output measured after integration of complete circuit matches the 

results obtained during Matlab simulation. Offset adjustment circuits [16] are used before 

the summing amplifier to get accurate results. 

The modulating signal is amplified to a magnitude of 20 Vp-p and filtered using a 

low pass filter. This is amplitude modulated with a carrier signal of 2 Vp-p. The obtained 

AM signal and the output after differentiating it are shown in Figure 4.19. The outputs of 

the differentiating the carrier and AM found using it are shown Figure 4.20. The outputs 

of the summer where the undesired components cancel each other and the demodulating 

the summer output are shown in Figure 4.21. The output obtained after filtering the 

demodulated signal is shown in Figure 4.22. The magnitude of the output differentiated 

voltage is small and should be amplified. 

 

Figure 4-17: Buffer circuit 
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Figure 4-18: Complete circuit of the universal voltage rate sensor    
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Figure 4-19: Amplitude modulated and Differentiated Amplitude modulated signal 

 
 

 

Figure 4-20: Differentiated carrier signal and AM using differentiated of carrier signal 
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Figure 4-21: The output from the summer and the demodulated signal 

 

 
Figure 4-22: The modulated signal and the obtained differentiated carrier signal 
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The Signal to noise ratio improves showing the similar trend shown in Table 3.2 As both 

Matlab and PSpice simulation show an improvement in signal-to-noise ratio, the 

experiment are performed and the results obtained a discussed in Chapter 5. 
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CHAPTER 5: EXPERIMENTAL RESULTS 

This chapter provides the results obtained at individual stages of building of the 

circuit and the final results after integration. These results are then compared with the 

results obtained in Matlab and PSpice simulations. 

For measuring the signal-to-noise ratio, white noise is added to the simulated 

temperature data. This signal is given as input to the amplitude modulated differentiator. 

The signal-to-noise ratio of the output obtained from the experiments does not match the 

results obtained from the simulations. This is due to the additional noise present from the 

electronics components during the actual experimental procedure. The following 

precautions were taken to reduce external noise which affects the SNR. Long wires which 

act as antennas attracting unwanted signals are avoided. Noise from the power supply 

branches is avoided using a filter at every supply node.  

5.1 Analysis 

The temperature data is read from a text file and is used produce a periodic input 

waveform to the sensor interface. The data in the file consists of discrete values 

belonging to a single aperiodic cycle. When these discrete values are to be transformed 

into a continuous set of periodic values, the problem of discontinuity arises at beginning 

of each cycle. This discontinuity between the consecutive cycles leads to the emergence 

of sharp pulses when differentiated. This problem is overcome by using an averaging 

program in Matlab. Thus, the discrete aperiodic values are transformed into a periodic set 

of values using Matlab.  

The output text file of the Matlab is fed to an Agilent waveform generator[17]  
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which generates a continuous waveform. The amplitude and frequency of the input data 

is changed after the waveform is loaded into the computer. This is very useful when high 

values of temperature data have to be normalized and given as voltage signals.   

The results obtained from the circuit are measured using an Agilent oscilloscope. 

The output is also stored into the computer using scope probe software provided by 

Agilent [18]. Data is collected at a sampling rate of 1200 samples/ time scale of the 

oscilloscope. This is a disadvantage when measuring amplitude modulated signals where 

higher sampling rate is required to measure both the carrier and modulated wave in a 

single time scale. In order to acquire data at a higher sampling rate, LabView[19] 

interface is used in the relevant cases. Frequency spectrum of the signal acquired is also 

measured using the oscilloscope.  

Frequency analysis of the circuit is performed using Sleuth analyzer[20]. Both 

magnitude and phase of the circuit in a given frequency range is measured.  

5.2 Waveforms 

The outputs obtained at individual stages of the analysis are presented in this 

section. Figure 5.1 shows the carrier frequency generated using XR2206 with a 

magnitude of 1 Vp-p and frequency of 10 KHz. The output frequency is changed using 

variable resistor.  

The frequency response of the low pass filter measured using the sleuth analyzer is 

shown in Figure 5.2. The gain of the filter is 1.8 with its 3 dB frequency at 1 KHz. The 

low frequency modulating signal of 100 Hz with a magnitude of 10 V p-p is shown in 

Figure 5.3. 
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Figure 5-1: Carrier wave generated using XR2206 

 

 
Figure 5-2: Frequency response of the low pass filter 

 

 

Figure 5-3: Input signal without any noise and differentiated output obtained 
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The output of the amplitude modulation using the multiplier AD633 is shown in 

Figure 5.4. The magnitude of the amplitude modulated signal can be increased by 

increasing the magnitude of the modulating signal using a variable gain amplifier. The 

modulation index of the modulated signal is 100% as DSBSC is implemented. 

 The frequency response of the differentiator used is shown in Figure 5.5. The zero 

of the circuit is located at 15 Hz and two intersecting poles are located at 15.6 KHz. The 

gain of the circuit has a slope of +20dB and crosses 0dB at the frequency where the zero 

is located. The slope is -20dB after the pole frequency. The time response of the carrier 

wave after differentiation is shown in Figure 5.6. The output is 90 degree phase shifted 

with respect to the carrier wave. The differentiation of amplitude modulated signal is also 

calculated. 

The amplitude modulated differentiator and the carrier differentiated amplitude 

modulated signal are given as inputs to the summing amplifier. Figure 5.7 shows the 

output from the summing amplifier. 

 
Figure 5-4: Amplitude modulation  

 



` 63

 
Figure 5-5: Frequency response of the differentiator measured in Sleuth  

 

 
Figure 5-6: Differentiator output 

 

 
Figure 5-7: Output from the summer 
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The output form the summer is given to the demodulator. The output from the 

demodulator is shown in Figure 5.8. This signal is amplified and given to the low pass 

filter circuit.  The output of the filter which is the final output of the entire circuit is 

shown in Figure 5.9. 

The output of the differentiator is verified by giving a triangular wave input. The 

obtained square wave is shown in Figure 5.10. The SNR of the output can be increased 

using higher carrier frequencies.  

The limitation of using a higher frequency carrier signal is that the magnitude of 

the output during differentiation exceeds the rail to rail voltage of the op amp. If the 

carrier is increased further clipping will occur making the output signal irretrievable.  The 

phase difference between the input and the output also changes when using higher 

frequency due to the effect of two intercepting poles. The maximum carrier frequency 

used during simulation is 30 KHz.  

The temperature data as shown in Figure 5.11(a) is given as the input signal to the 

sensor interface.  The expected differentiated output is shown in the Figure 5.11(b).  The 

amplitude modulated wave is shown in Figure 5.12 and the output differentiated signal is 

shown in Figure 5.13.  

The output differentiated signal is acquired into computer using the scope probe 

software for measuring the signal-to-noise ratio. The sampling rate can also be changed 

by using Labview interface. Signal-to-noise in the experiments also improves with 

increase in carrier frequencies but they are not equal to the SNR’s obtained during 

simulations. The SNR obtained during experiments is shown in Figure 5.14. The curve is 

linear and it increases with increase in carrier frequency. 
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Figure 5-8: Demodulated output 

 
Figure 5-9: Filtered output 

 
Figure 5-10: Square wave output using a triangular input 
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Figure 5-11: Temperature data and desired output data  

 

 
Figure 5-12: Amplitude modulation of temperature data 

 

      
Figure 5-13: Output differentiated waveform obtained 
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Figure 5-14: SNR obtained during experiment using different carrier frequencies 

5.3 Problems Encountered  

The improvements in signal-to-noise ratio are comparatively lesser in magnitude 

during the experimental due to external noise added by long wires and power supply 

connections. 

This external noise can be significantly reduced by having a prototype PCB board 

designed for this purpose. However, the design would be based on a single carrier 

frequency and subsequent increments in the carrier frequency would necessitate for a 

different board design.  The PCB board design also dependents on the modulating 

frequency. Hence it would be impractical to design a PCB board.  

The limitations of op amp limit the usage of higher carrier frequency in the 

experiment. The gain during differentiation of the carrier frequency increases beyond the 

rail-to-rail voltage of the op amp. On reducing the gain of the differentiator, the 
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magnitude of the output voltage obtained is low and cannot be retrieved after 

demodulation. 

Also, there should be an exact 180 degree phase difference between the undesired 

signals viz. the differentiated amplitude modulated signal and the signal obtained from 

amplitude modulation of the differentiated carrier. This would ensure cancellation of the 

two undesired signals. The signal-to-noise ratio deteriorates if the phase difference is not 

maintained. Precautions are taken to avoid these detrimental factors. 

The signal to noise ratio increases with increase in carrier frequency. The final 

conclusions of the present work are explained in Chapter 6.  
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CHAPTER 6: CONCLUSIONS  

The goal to improve the signal-to-noise ratio has been achieved by using universal 

voltage rate sensor interface. It was first proved mathematically using equations and later 

using Matlab simulations. The experiments were done based on PSpice simulation 

results. The signal-to-noise ratio improved in both cases. However, improvement in 

signal-to-noise ratio during experiments was equal to that in simulations due to external 

noise factors and opamp limitations.   

It can be incurred that SNR of temperature data when differentiated at low 

frequency is low. The signal-to-noise ratio improves when the noisy signal is passed 

through a filter before differentiation by removing high frequency noise. The signal-to-

noise ratio is further increased if the signal is amplitude modulated and differentiated at 

higher frequency which also validates the theoretical proposal of the project. 

            The predicted heat flux using heating/cooling rate data obtained using universal 

voltage rate sensor interface is reliable and will not have any ill-posed effects. 
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A.1 Matlab code for finding SNR 

close all; 
clear all; 
% Generating Modulating signal 
r=3 
[t,y] = textread('d1.csv','%n%n%*[^\n]','headerlines',0,'delimiter',','); 
b=length(y); 
t=0.01/b:0.01/b:0.01; 
for i=1:2 
    t=av(t); 
    y=av(y); 
end 
 
[t1,xm] = textread('d2.csv','%n%n%*[^\n]','headerlines',0,'delimiter',','); 
for i=1:2 
    xm=av(xm); 
end 
fid=fopen('t.txt','wt'); 
dataset=[t;y]; 
fprintf(fid,'%6.10f,%12.10f,',dataset); 
st=t(length(t)); 
L=length(xm); 
Fs=L/st; 
NFFT =2^nextpow2(2^23); 
wn=1000/Fs; 
[b,a]=butter(1,wn); 
fxm=filter(b,a,xm); 
fy=filter(b,a,y); 
wn=1000/Fs; 
[b,a]=butter(1,wn); 
ffy=filter(b,a,fy); 
%differetiate the carrier signal with out noise 
dt=t(2)-t(1); 
for i=2:length(xm) 
py(i)=1e-3*(y(i)-y(i-1))/dt; 
end 
%differetiate the carrier signal with out noise 
for i=2:length(xm) 
pfy(i)=1e-3*(fy(i)-fy(i-1))/dt; 
end 
%differetiate the carrier signal with out noise 
for i=2:length(xm) 
pffy(i)=1e-3*(ffy(i)-ffy(i-1))/dt; 
end 
fid = fopen('data.txt', 'w'); 
fwrite(fid,y) 
%differetiate the input signal with noise 
dt=t(2)-t(1); 
for i=2:length(xm) 
pxm(i)=1e-3*(xm(i)-xm(i-1))/dt; 
end 
%differetiate the filtered signal 
for i=2:length(xm) 
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pfxm(i)=1e-3*(fxm(i)-fxm(i-1))/dt; 
end 
 
pfy=pfy*max(py)/max(pfy); 
pxm=pxm*max(py)/max(pxm); 
pfxm=pfxm*max(py)/max(pfxm); 
snr_py=0; 
snr_pfy=0; 
snr_pxm=0; 
snr_pfxm=0; 
for i=1:length(xm) 
    snr_py=snr_py+py(i)^2; 
    snr_pfy=snr_pfy+pfy(i)^2; 
    snr_pxm=snr_pxm+pxm(i)^2; 
    snr_pfxm=snr_pfxm+pfxm(i)^2; 
end 
snr_dxm=(snr_py/(snr_pxm-snr_py)) 
snr_f_dxm=(snr_pfy/(snr_pfxm-snr_pfy)) 
% Carrier Signal 
fc=input('enter the carrier frequency'); 
xc=sin(2*pi*t*fc); 
 
 
%differetiate the carrier signal 
 
for i=2:length(xc) 
pxc(i)=1e-3*(xc(i)-xc(i-1))/dt; 
end 
 
%Amplitude modulation 
for i=1:length(t) 
        xm1(i)=xm(i)*xc(i); % am wave with noise 
        xm2(i)=xm(i)*pxc(i);  
        xm0(i)=fxm(i)*xc(i);%am wave without noise 
        xm3(i)=fxm(i)*pxc(i); 
end 
 
%Differentiation of am signal 
dt=t(2)-t(1); 
for i=2:length(xm1) 
dxm1(i)=-1e-3*(xm1(i)-xm1(i-1))/dt;% with noise 
dxm0(i)=-1e-3*(xm0(i)-xm0(i-1))/dt;% without noise 
end 
 
%adder 
for i=1:length(xm1) 
    ad(i)=dxm1(i)+xm2(i);%noise 
    ad1(i)=dxm0(i)+xm3(i);%without noise 
end 
 
%product multiplier 
    for i=1:length(t) 
        dx(i)=ad(i)*xc(i);        %noise 
        dx1(i)=ad1(i)*xc(i);      %without noise  
    end 
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 % Low pass filter 
    wn=1000/Fs; 
    [b,a]=butter(1,wn); 
    %b =[0.0887e-4,0.1774e-4,0.0887e-4]; 
    %a =[1.0000   -1.9916    0.9916]; 
    out=-filter(b,a,dx);%noise 
    out1=-filter(b,a,dx1);%without noise 
    fy2=filter(b,a,y); 
for i=2:length(xm1) 
pfy2(i)=1e-3*(fy2(i)-fy2(i-1))/dt;% with noise 
end 
     
    pffy=pffy*max(pfy2)/max(pffy); 
    out=out*max(pfy2)/max(out); 
    out1=out1*max(pfy2)/max(out1); 
     
snr_pfy2=0; 
snr_pffy=0; 
snr_out=0; 
snr_out1=0; 
for i=1:length(xm) 
    snr_pfy2=snr_pfy2+pfy2(i)^2; 
    snr_pffy=snr_pffy+pffy(i)^2; 
    snr_out=snr_out+out(i)^2; 
    snr_out1=snr_out1+out1(i)^2; 
end 
snr_noise=(snr_pfy2/(snr_out-snr_pfy2)) 
snr_filtered=(snr_pffy/(snr_out1-snr_pffy)) 
 
%figure 2 
figure; 
subplot(4,2,1); 
plot(t,xm); 
subplot(4,2,2); 
plot(t,xc); 
subplot(4,2,3); 
plot(t,xm1); 
subplot(4,2,4); 
plot(t,xm2); 
subplot(4,2,5); 
plot(t,dxm1); 
subplot(4,2,6); 
plot(t,ad); 
subplot(4,2,7); 
plot(t,dx); 
subplot(4,2,8); 
plot(t,out); 
 
 
 
% %figure 
% FFT of mod 
  Y1 = fft(y,NFFT)/L; 
  f = Fs/2*linspace(0,1,NFFT/2); 
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 %FFT of the carrier signal 
 Y2 = fft(py,NFFT)/L; 
 figure; 
 subplot(1,2,1) 
 plot(t,y,t,py); 
 xlabel('time'); 
 ylabel('magnitude'); 
 subplot(1,2,2); 
 plot(f(1:10000),2*abs(Y1(1:10000)),f(1:10000),2*abs(Y2(1:10000)))  
 xlabel('Frequency'); 
 ylabel('dB'); 
%   
% %FFT of the am signal 
  Y = fft(xm1,NFFT)/L; 
  subplot(4,2,3); 
  plot(f(1:100000),2*abs(Y(1:100000)))  
  title('FFT of the phase shifted am signal'); 
  xlabel('Frequency'); 
  ylabel('dB'); 
    
% %FFT of the differentiated carrier am signal 
  Y = fft(xm2,NFFT)/L; 
  subplot(4,2,4); 
  plot(f(1:100000),2*abs(Y(1:100000)))  
  title('FFT of the phase shifted am signal'); 
  xlabel('Frequency'); 
  ylabel('dB'); 
  
%  %FFT of the diffrentiated am signal 
  Y = fft(dxm1,NFFT)/L; 
  subplot(4,2,5); 
  plot(f(1:100000),2*abs(Y(1:100000)))  
  title('FFT of the phase shifted am signal'); 
  xlabel('Frequency'); 
  ylabel('dB'); 
  
%  %FFT of the adder 
  Y = fft(xm2,NFFT)/L; 
  subplot(4,2,6); 
  plot(f(1:100000),2*abs(Y(1:100000)))  
  title('FFT of the phase shifted am signal'); 
  xlabel('Frequency'); 
  ylabel('dB'); 
  
%  %FFT of the demodulated am signal 
  Y = fft(xc,NFFT)/L; 
  subplot(4,2,7); 
  plot(f(1:100000),2*abs(Y(1:100000)))  
  title('FFT of the phase shifted am signal'); 
  xlabel('Frequency'); 
  ylabel('dB'); 
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  %FFT of the output signal 
  Y = fft(xc,NFFT)/L; 
  subplot(4,2,8); 
  plot(f(1:100000),2*abs(Y(1:100000)))  
  title('FFT of the phase shifted am signal'); 
  xlabel('Frequency'); 
  ylabel('dB'); 
 
figure; 
subplot(2,2,1); 
plot(t,py,t,pxm); 
subplot(2,2,2); 
plot(t,pfy,t,pfxm); 
subplot(2,2,3); 
plot(t,pfy2,t,out); 
subplot(2,2,4); 
plot(t,pffy,t,out1); 
 
figure; 
plot(t,y,t,py); 
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A.2 PSPICE output file 

**** 11/04/07 16:54:16 ******* PSpice 15.7.0 (July 2006) ****** ID# 30407096 * 
 
 * Multiplier 
 
 
 ****     CIRCUIT DESCRIPTION 
 
 
****************************************************************************** 
 
 
 
.inc 'ad633.txt' 
 
**** INCLUDING ad633.txt **** 
* AD633 Analog Multiplier Macro Model 12/93, Rev. A 
* AAG/PMI 
* 
* Copyright 1993 by Analog Devices, Inc. 
* 
* Refer to "README.DOC" file for License Statement.  Use of this model 
* indicates your acceptance with the terms and provisions in the License Statement. 
* 
* Node assignments 
*             X1 
*             |  X2 
*             |  |  Y1 
*             |  |  |  Y2 
*             |  |  |  |  VNEG 
*             |  |  |  |  |  Z 
*             |  |  |  |  |  |  W 
*             |  |  |  |  |  |  |  VPOS 
*             |  |  |  |  |  |  |  | 
.SUBCKT AD633 1  2  3  4  5  6  7  8 
* 
EREF 100 0 POLY(2) 8 0 5 0 (0,0.5,0.5) 
* 
* X-INPUT STAGE & POLE AT 15 MHz 
* 
IBX1 1 0 DC 8E-7 
IBX2 2 0 DC 8E-7 
EOSX 10 1 POLY(1) (16,100) (5E-3,1) 
RX1A 10 11 5E6 
RX1B 11 2 5E6 
* 
GX 100 12 10 2 1E-6 
RX 12 100 1E6 
CX 12 100 1.061E-14 
VX1 8 13 DC 3.05 
DX1 12 13 DX 
VX2 14 5 DC 3.05 
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DX2 14 12 DX 
* 
* COMMON-MODE GAIN NETWORK WITH ZERO AT 560 Hz 
* 
ECMX 15 100 11 100 10 
RCMX1 15 16 1E6 
CCMX 15 16 2.8421E-10 
RCMX2 16 100 1 
* 
* Y-INPUT STAGE & POLE AT 15 MHz 
* 
IBY1 3 0 DC 8E-7 
IBY2 4 0 DC 8E-7 
EOSY 20 3 POLY(1) (26,100) (5E-3,1) 
RY1A 20 21 5E6 
RY1B 21 4 5E6 
* 
GY 100 22 20 4 1E-6 
RY 22 100 1E6 
CY 22 100 1.061E-14 
VY1 8 23 DC 3.05 
DY1 22 23 DX 
VY2 24 5 DC 3.05 
DY2 24 22 DX 
* 
* COMMON-MODE GAIN NETWORK WITH ZERO AT 560 Hz 
* 
ECMY 25 100 21 100 10 
RCMY1 25 26 1E6 
CCMY 25 26 2.8421E-10 
RCMY2 26 100 1 
* 
* Z-INPUT STAGE & POLE AT 15 MHz 
* 
IBZ1 7 0 DC 8E-7 
IBZ2 6 0 DC 8E-7 
RZ1 7 6 10E6 
* 
GZ 100 32 7 6 1E-6 
RZ2 32 100 1E6 
CZ 32 100 1.061E-14 
VZ1 8 33 DC 3.05 
DZ1 32 33 DX 
VZ2 34 5 DC 3.05 
DZ2 34 33 DX 
* 
* 50-MHz MULTIPLIER CORE & SUMMER 
* 
GXY 100 40 POLY(2) (12,100) (22,100) (0,0,0,0,0.1E-6) 
RXY 40 100 1E6 
CXY 40 100 3.1831E-15 
* 
* OP AMP INPUT STAGE 
* 
VOOS 59 40 DC 5E-3 
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Q1 55 32 60 QX 
Q2 56 59 61 QX 
R1 8 55 3.1831E4 
R2 60 54 3.1313E4 
R3 8 56 3.1831E4 
R4 61 54 3.1313E4 
I1 54 5 1E-4 
* 
* GAIN STAGE & DOMINANT POLE AT 316.23 Hz 
* 
G1 100 62 55 56 3.141637E-5 
R5 62 100 1.0066E8 
C3 62 100 5E-12 
V1 8 63 DC 4.3399 
D1 62 63 DX 
V2 64 5 DC 4.3399 
D2 64 62 DX 
* 
* NEGATIVE ZERO AT 20 MHz 
* 
ENZ 65 100 62 100 1E6 
RNZ1 65 66 1 
FNZ 65 66 VNC -1 
RNZ2 66 100 1E-6 
ENC 67 0 65 66 1 
CNZ 67 68 7.9577E-9 
VNC 68 0 DC 0 
* 
* POLE AT 4 MHz 
* 
G2 100 69 66 100 1E-6 
R6 69 100 1E6 
C2 69 100 3.9789E-14 
* 
* OP AMP OUTPUT STAGE 
* 
FSY 8 5 POLY(2) VZC1 VZC2 (2.8286E-3,1,1) 
RDC 8 5 28E3 
GZC 100 73 72 69 11.623E-3 
VZC1 74 100 DC 0 
DZC1 73 74 DX 
VZC2 100 75 DC 0 
DZC2 75 73 DX 
VSC1 70 72 0.695 
DSC1 69 70 DX 
VSC2 72 71 0.695 
DSC2 71 69 DX 
GO1 72 8 8 69 11.623E-3  
RO1 8 72 86 
GO2 5 72 69 5 11.623E-3  
RO2 72 5 86 
LO 72 7 1E-7 
* 
* MODELS USED 
* 
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.MODEL QX NPN(BF=1E4) 

.MODEL DX D(IS=1E-15) 

.ENDS AD633 
 
**** RESUMING total.cir **** 
.inc 'op27.txt' 
 
**** INCLUDING op27.txt **** 
.SUBCKT OP-27    2     3    4     6    7 
*              -IN   +IN   VEE   OUT   VCC 
* DEVICE CHAR:  AOL=1.5E6, ZIN=4MEG// 8PF, IB= 15NA,IOS=12NA,RCM=2E9 
*               RO=70, GB=8MHZ,SR=2.8V/US, VOS=30UV, CMRR=120DB,PSRR=2UV/V 
*               VINCM=+-12.5V, VO=+-13.5V, IO(LIMIT)= +35MA,-42MA; POLES AT 
*               5.3HZ;0.8,12,20,30 MHZ; ZEROES AT 0.9,6.5 MHZ. EN=3NV/RTHZ 
*               IN=0.4PA/RTHZ, FB(IN)=140 HZ.LAST NODE=31 
* 
VOS 2 23 30U 
ECMRR 23 24 POLY(2) 22 0 3 0 0 0.5U 0.5U 
EPSRR 24 22 POLY(2) 7 0 4 0 60U -2U 2U 
IOSI 0 2 479NA 
RCMI 2 0 4000MEG 
CIN 2 3 8PF 
RCMN 3 0 4000MEG 
IOSN 0 3 491NA 
VP 11 0 42.6 
R1 11 5 3.36K 
R2 11 10 3.36K 
CC 5 25 25.94PF 
RZ1 25 10 943.2 
Q1 5 22 1 N1 
Q2 10 3 9 N1 
RE1 1 8 109 
RE2 8 9 109 
ICS 8 14 17.94MA 
VN 0 14 15 
D1 12 8 DA 
R3 12 13 100 
V1 13 14 1.4 
G1 0 15 5 10 10M 
R4 15 0 5MEG 
D2 15 17 DB 
D3 17 15 DB 
E1 17 0 16 0 1 
R5 15 16 50 
C1 16 0 5.963NF 
E3 26 0 16 0 1 
RA1 26 27 1.325K 
CA1 27 0 10PF 
E4 28 0 27 0 1 
RA2 28 29 795 
CA2 29 0 10PF 
E5 30 0 29 0 33.33 
RA3 30 31 3.233K 
CA3 30 31 54.64PF 
RA4 31 0 100 
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G2 0 18 31 0 0.02 
R6 18 0 50 
D4 18 19 DA 
D5 19 18 DC 
E2 19 0 6 0 1 
R7 18 6 20 
D6 6 20 DA 
D7 21 6 DA 
V3 7 20 2.2 
RPS 7 4 26K 
IPS 7 4 1.9MA 
V2 21 4 2.2 
.MODEL DA D(IS=5.73E-14) 
.MODEL DB D(IS=1.47E-16) 
.MODEL DC D(IS=3.07E-16) 
.MODEL N1 NPN(IS=1FA BF=1.79E4 RB=150 KF=4.5E-17) 
* 
.ENDS OP-27 
 
 
 
**** RESUMING total.cir **** 
VCC 98 0 15 
VEE 99 0 -15 
 
 
V1 1 0 sin(0 0.1 13000) 
V2 26 0 pwl(0 0 2.5m 5 5m 0 7.5m -5 10m 0 12.5m 5 15m 0 17.5m -5 20m 0) 
V3 25 0 pwl(0 0 2.5m 1 5m 0 7.5m -1 10m 0 12.5m 1 15m 0 17.5m -1 20m 0) 
*V4 31 0 sin(0 0.01 500) 
 
*Summing amplifier 
R17 26 24 1k 
R18 25 24 1k 
*R23 31 24 2k 
R19 23 0 1k 
R20 23 2 1k 
 
*Multipliers 
X2 1 0 2 0 99 0 3 98 AD633  
 
 
*Differentiator 
X4 5 0 99 6 98 OP-27 
*R1 3 4 10 
C1 3 5 1u 
R2 5 6 1k 
*C2 5 6 1n 
 
 
*Differentiator 
X5 9 0 99 10 98 OP-27 
*R3 1 8 10 
C3 1 9 1u 
R4 9 10 1k 
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*C4 9 10 1n 
 
* Inverter 
X6 7 0 99 12 98 OP-27 
R5 10 7 1k 
R6 7 12 1k 
 
 
*Multiplier 
X3 2 0 12 0 99 0 11 98 AD633 
 
 
*inverting amp to remove offset 
X24 100 0 99 97 98 OP-27 
X25 101 82 99 96 98 OP-27 
 
R100 6 100 1k 
R97 100 97 2k 
 
R101 11 101 1k 
R96 101 96 2k  
R82 82 0 500 
 
 
*Summing Amplifier 
X8 14 13 99 15 98 OP-27 
 
R7 96 13 1k 
R8 97 13 1k 
R9 14 0 1k 
R10 14 15 1k 
 
 
*Multiplier 
X7 15 0 48 0 99 45 16 98 AD633 
R45 16 45 1k 
R46 45 0 3k 
 
*Low pass filter 
X9 19 18 99 20 98 OP-27 
R11 16 17 1.59k 
R12 17 18 1.59k 
C5 18 0 .1u 
C6 17 20 .1u 
R13 19 0 10k 
R14 19 20 5.6k 
 
*Amplifier 
X10 21 40 99 22 98 OP-27 
R15 40 0 1k 
R16 21 22 10k 
R30 20 21  1k 
 
*Amplifier 
X14 47 1 99 48 98 OP-27 
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R47 47 0 1k 
R48 47 48 10k 
 
 
*Summing Amplifier 
X11 23 24 99 2 98 OP-27 
 
*differentiator of noise signal at low frequency 
X12 28 0 99 29 98 OP-27 
*R22 2 27 100 
C7 2 28 .1u 
R21 28 29 1k 
*C8 28 29 10n 
 
*differentiator of original signal at low frequency 
X13 33 0 99 34 98 OP-27 
*R32 26 32 100 
C9 26 33 .1u 
R33 33 34 1k 
*C10 33 34 10n 
 
 
.TRAN 0.1u 20m 
.OP 
.PROBE 
.END 
 
**** 11/04/07 16:54:16 ******* PSpice 15.7.0 (July 2006) ****** ID# 30407096 * 
 
 NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE     NODE   VOLTAGE 
 
 
( 1)   0.0000  ( 2) 72.00E-06   ( 3)  .0050         ( 5) 30.00E-06       
(  6)  52.08E-06   (7)  30.00E-06  ( 9)  30.00E-06   (10) 52.08E-06       
(11) .0050    ( 12)  30.00E-06   (13) -.0049     ( 14) -.0049       
(15) -.0098    (16) .0175    (7) .0175    (18)  .0175       
(19) .0175    (20)  .0275    (21) 20.11E-06   (22) -.2741       
(23)  24.96E-06   (24) -5.038E-06   (25) 0.0000    (26) 0.0000       
(28) 30.00E-06   (29)  52.08E-06   (33) 30.00E-06   (34) 52.08E-06       
(40) -10.08E-06   (45) .0125    (47) 30.00E-06   (48) 550.8E-06       
(82) -5.038E-06   (96)  -.0099    (97) 30.00E-06   (98) 15.0000       
(99)   -15.0000   (100)  30.00E-06  (101)  24.97E-06   
 
 
 
 * Multiplier 
 ****     JOB STATISTICS SUMMARY 
*********************************************************************** 
  Total job time (using Solver 1)   =       50.14 
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