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ABSTRACT 

 

We have developed an integrated probabilistic prediction method, which 

combines the information from protein-protein interactions, protein complexes, 

microarray gene-expression profiles and functional annotations for known proteins. Our 

approach differs from the other approaches to use high-throughput data in a variety of 

ways. First, we utilize the GO biological process functional annotation in comparison to 

the MIPS classification followed by others. Second, we incorporate information from 

multiple sources of high-throughput data, including genetic interactions, to develop a 

better model for function prediction. By incorporating information from the multiple 

sources of high-throughput data, we identify the parameters important for protein 

function prediction. Third, we estimate the probability for the proteins to have a function 

of interest by designing a new statistical method for function prediction. Fourth, our 

approach assigns multiple functions to the hypothetical proteins and allows confidence 

assessment, based on the supportive evidences from the high-throughput data. Our work 

demonstrates the power of integrating multiple sources of high-throughput data with 

biological functional annotations, in the function prediction for unknown proteins. In 

addition to this, we have also developed a Web server for function prediction in yeast as 

well as other organisms. We have applied our method to the Saccharomyces cerevisiae 

proteome and are able to assign function to 1548 out of the 2472 unannotated proteins in 

yeast with our approach.  
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1. INTRODUCTION 

 

 Determination of protein function is one of the most challenging problems of the 

post-genomic era. With the advent of the whole genome sequencing, the focus has shifted 

towards identification of genes and the prediction of their function. 108 bacterial, 16 

archaeal and 9 eukaryotic genome sequences are complete, while 128 bacterial, 2 

archaeal and 35 eukaryotic genome sequences are in progress at NCBI [1], as of June 

2003. However, only 50-60 percent of genes have been annotated. The traditional method 

of wet laboratory experiments can assign function accurately, however the process is very 

time-consuming and costly. This leaves the field of bioinformatics with the challenging 

task of assigning function to the unannotated proteins and developing more efficient and 

accurate methods for function prediction. What is also important is the type of the 

functional annotation.  A protein has two types of functions i.e biochemical and cellular. 

Biochemical function refers to the biochemical activity, e.g. cyclase or kinase, and is 

relatively easy to annotate, since it can be assigned based on sequence similarity. 

However, the difficult task here is to assign the cellular function, which refers to the 

biological objective, e.g. pyrimidine metabolism or signal transduction, of the 

unannotated proteins. Our aim is to be able to assign the cellular function to the proteins, 

which is similar to the GO biological process functional annotation. 

There have been many approaches in the past to assign protein function. 

Information derived from sequence similarity, phylogenetic profiles, clustering patterns 

of co-regulated genes, protein-protein interactions, protein complexes and gene 

expression profiles, has been utilized in function prediction approaches. The classical 
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way to infer function based on sequence homologies is using programs such as FASTA [2] 

and PSI-BLAST [3]. Another method to predict function based on sequence information is 

the Rosetta Stone method [4]. Two proteins are inferred to share the same function, if they 

are both present together in another genome. Function can also be inferred based on the 

phylogenetic patterns of a protein in multiple genomes. It is believed that genes with 

similar functions are likely to have similar phylogenetic patterns [5].  

Today there is an ever-increasing flow of biological data generated by the high-

throughput methods such as yeast two-hybrid systems [6], protein complexes 

identification by mass spectrometry, microarray gene expression profiles and systematic 

synthetic lethal analysis. High-throughput experiments are designed to acquire 

information about thousands of genes at the same time and to study the relationships 

among them. High-throughput data is generated from technology driven studies at the 

whole genome or the proteome scale, as against hypothesis driven experiments in the 

laboratory, designed to study a particular protein or gene of interest. With the availability 

of entire genome sequences and high-throughput data, which can determine gene co-

expression profiles, research scientists are focusing on whole proteome-wide studies, as 

against the study of single proteins or a small group of proteins in the past. This change in 

the strategy has made it necessary to design and implement reliable methods to assign 

protein function. 

 Many approaches have been designed to assign function based on gene expression 

profiles, mutant phenotypes data and protein-protein interactions. Cluster analysis of the 

gene-expression profiles is the most common approach used to predict function from 

high-throughput data. This approach is based on the assumption that genes with similar 
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functions are likely to be co-expressed [7, 8, 9]. Using protein-protein interaction data to 

assign function to novel proteins is another common approach. Proteins interact with one 

another in an interaction network to achieve a common objective. It is therefore possible 

to infer the function based on the functions of its interaction partners. Schwikowski et al. 

[10] applied neighbor-counting method in trying to predict the function. They assigned 

functions to the unknown proteins based on the frequencies of its neighbors having 

certain functions. Hishigaki et al. [11] used χ2 statistics to infer protein function. Both 

these approaches give equal significance to the functions contributed by the l-neighbors 

of the protein. Deng et al. [12,13] developed a mathematical model based on the theory of 

Markov random fields, to infer protein function using protein-protein interaction data and 

functional annotation of the interaction partners. Instead of searching for the simple 

consensus among the functions of the interacting partners, they used the Bayesian 

approach to assign a probability for a hypothetical protein to have the annotated function.  

However, high-throughput data is very noisy and may have many false positives 

and false negatives. The main drawback of these approaches lies in the use of only single 

type of data. There are limitations of the high-throughput technologies as is evident from 

the inability of the yeast two-hybrid assays to detect a few protein-protein interactions 

dependent on post-translational modifications or multi-body effects, while mass 

spectrometry may fail to detect some transient and weak interactions. In a microarray 

clustering analysis the genes with similar functions may not be clustered together due to 

lack of similar expression profiles. Though noisy and inconsistent, high-throughput data 

are a rich and valuable source of information, which when utilized in a careful manner 

can yield valuable information. Our aim is to combine the information from the various 
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types of high-throughput data, in an effort to remove the in-consistencies in the data, to 

validate the available information and to use all of it. It is a challenging task to combine 

the information together, since every type of high-throughput data has its own errors and 

is highly noisy.  

We have developed a method for cellular functional annotation of the novel 

proteins in Saccharomyces cerevisiae using high-throughput biological data including 

yeast two-hybrid, protein complexes, genetic interactions and microarray gene 

expression. We decided to use the yeast Saccharomyces cerevisiae, as it is a well-studied 

and good model for the eukaryotic systems and rich high-throughput data are available 

for yeast. Our ultimate aim is to be able to extend the prediction method to assign 

function to the proteins in other organisms. At present, about 3866 yeast genes have been 

annotated, which leaves about 2400 genes yet to be assigned a function. All the data is 

encoded together into a graph of interaction network, where each node represents a 

protein and each edge represents an interaction between them. This is a novel approach to 

assign function to the unannotated proteins using multiple sources of high-throughput 

data. The use of multiple sources of high-throughput data allows cross validation between 

the different sources of information and increases the confidence in any single type of 

data.  

We acquired the various types of high-throughput data and created a database for 

the centralized storage of this information, as is detailed in Chapter 2. Chapter 3 explains 

the estimation of the a-priori probabilities from the analysis of the various types of high-

throughput data and the rationale behind our function prediction method. The results of 

function prediction and the validation of our method are discussed in Chapter 4. In 
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Chapter 5 we describe the web-based function prediction tool GeneFAS, developed to 

query the results of function prediction in yeast and in other organisms. We also try to 

extend our method for cross-species function prediction, as outlined in Chapter 6.  
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2. MATERIALS 

 

The first step towards development of the function prediction method is the 

acquisition of the multiple sources of high-throughput data and the functional annotation 

data for the known proteins. As mentioned earlier, we use yeast Saccharomyces 

cerevisiae our model organism. 

 

2.1 DATA SOURCES 

The yeast (Saccharomyces cerevisiae) data was acquired from various sources. 

Primarily two types of data were downloaded and stored for yeast, namely main data and 

supportive data. The gene names, ORF names and SGDID were acquired from 

Saccharomyces Genome Database (SGD) [14].  The main data includes protein-protein 

interaction data, protein complexes data and cellular functional annotation from Gene 

Ontology (GO) [15] and MIPS [16]. The microarray gene expression data set is from the 

paper of Roberts et al. [17], including 56 experiments conditions.  The protein-protein 

interaction data are of three types, i.e physical binary interactions, genetic binary 

interactions and protein complex interactions. The binary physical and genetic 

interactions data were acquired from MIPS Comprehensive Yeast Genome Database 

(CYGD). Cellular function annotation from MIPS along with other supportive data 

including mutant phenotype, protein classes, motif, EC number and sub-cellular 

localization information was also obtained from CYGD. The GO annotation was acquired 

from the Gene Ontology website. For the genes for which the sub-cellular localization 

information was unavailable at MIPS, their localization was predicted using the Yeast 
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Protein Localization Server [18]. All the data were complied together and collected using 

Perl [19]. 

 

2.2 CREATION OF YEAST DATABASE 

 We created a YEAST Database for the centralized storage of all the information. 

This allows for easy retrieval, processing and manipulation of the data. The YEAST 

Database was created in the XML [20] format. The use of XML for the database 

architecture allows us to define tags for the various types of information and also allows 

easy expansion of the database to accommodate new data in the future, without making 

any changes to the basic architecture. All the information for each ORF was stored in a 

separate file. The various attributes of the ORF were defined in the form of XML tags 

(Figure 1). Index files were created for each deeper classification of functional 

annotation, GO annotation, sub-cellular localization, protein classification, mutant 

phenotype and motifs. The indices were stored in the database as a reference to the 

original information (Figure 2).  

 

2.2.1 PROTEIN-PROTEIN INTERACTIONS  

 The protein-protein interactions that we consider fall into two categories, physical 

interactions and genetic interactions. In physical interactions the proteins are involved in 

physical contact through a binary interaction or the formation of a protein complex. In 

genetic interactions, the change of one gene may affect the expression of another gene, or 

mutations of two genes at the same time can produce a novel phenotype that is not 

displayed by either mutation alone. The two-hybrid experiments allow the 
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ORF name  <orfname name="  "> 

Gene name  <genename> </genename> 
SGD id   <sgdid>  </sgdid> 
GO annotation   <goannotation> 
   <biological-process> 
    <goid>  </goid> 
    <P-function> </P-function> 
    <P-evidence> </P-evidence> 
   </biological-process> 
   <molecular-function> 
    <goid>  </goid> 
    <F-function> </F-function> 
    <F-evidence> </F-evidence> 
    </molecular-function> 
    <cellular-component> 
     <goid>  </goid> 
     <C-function> </C-function> 
     <C-evidence> </C-evidence> 
    </cellular-component> 
   </goannotation> 
Sub-cellular Localization <subcellular-localization> 
     <C> </C> 
     <N> </N> 
     <M> </M> 
     <T> </T> 
     <E> </E> 
    </subcellular-localization> 
MIPS functional annotation <functional-classification> 
     <function> </function> 
          </functional-classification> 
Protein Classification  <protein-classification> 
     <protein-class> </protein-class> 
    </protein-classification> 
Motif  <prosite-motif> 
   <motif> </motif> 
  </prosite-motif> 
EC Number <EC-number> 
   <EC> </EC> 
  </EC-number> 
Mutant Phenotype <mutant-phenotype> 
    <phenotype> </phenotype> 
   </mutant-phenotype> 
Interaction  <interaction> 
   <physical-interaction> 
     <interactor> </interactor> 
   </physical-interaction> 
   <genetic-interaction> 
    <interactor> </interactor> 
   </genetic-interaction> 
   <complexes> 
    <complex> </complex> 
   <complex-interactor> </complex-interactor> 
  </interaction> 
Gene Expression <microarray-expression> </microarray-expression> 
 
 

Figure 1. Example of yeast ORF XML file for the database. 
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<?xml version ="1.0"?> 

<yeast> 
<orfname name="YLR094C"> 
<genename>GIS3</genename> 
<sgdid>S0004084</sgdid> 
<goannotation> 
<biological-process> 
<goid>GO:0000004</goid> 
<P-function></P-function> 
<P-evidence>IEA</P-evidence> 
</biological-process> 
<molecular-function> 
<goid>GO:0005554</goid> 
<F-function></F-function> 
<F-evidence>ISS</F-evidence> 
</molecular-function> 
<cellular-component> 
<goid>GO:0008372</goid> 
<C-function></C-function> 
<C-evidence>ND</C-evidence> 
</cellular-component> 
</goannotation> 
<subcellular-localization> 
<C>0.081</C> 
<N>0.605</N> 
<M>0.226</M> 
<T>0.053</T> 
<E>0.036</E> 
</subcellular-localization> 
<functional-classification> 
<function>99</function> 
</functional-classification> 
<protein-classification> 
</protein-classification> 
<prosite-motif> 
</prosite-motif> 
<EC-number> 
</EC-number> 
<mutant-phenotype> 
</mutant-phenotype> 
<interaction> 
</interaction> 
<microarray-expression>-0.97 -0.45 -0.32 -0.4 -0.18 0.07 -0.42 -0.0374265939597316 -0.14 0.23 0.1 -0.15 0.19 0.48 -
0.01 0.24 0.66 0.2 -0.09 0. 
43 0.45 0.42 0.24 0.29 0 -0.04 -0.17 0.12 -0.04 0.12 -0.01 0.25 0.08 0.03 -0.23 -0.64 -0.6 -0.29 -0.69 -0.3 -0.18 0.12 -
0.34 -0.03 -0.06 -0.62 
 -0.62 -0.64 -0.43 -0.42 -0.58 -0.36 -0.76 -0.69 -0.2 -0.266232464929859 -0.145391609836744 -0.54 -0.34 0.1 0.16 
0.37 0.1 -0.14 -0.22 -0.76 0. 
11 0.55 -0.12 -0.17 -0.45 -0.43 -0.58 -0.56 -0.4 -0.22 -0.04 0.06 0.8 0.08 -0.29 0.29 0.25 0.07 0.32 0.06 0.16 0.15 0.07 -
0.172978436657681 -1 
.091 0.224 1.05 0.25 0.28 0.4 0.15 -0.25 -0.04 0.62 0.11 -0.25 -0.04 -0.47 -0.22 -0.25 0.14 0.24 0.36 0.44 -0.01 0.1 -
0.04 -0.09 0.38 0.26 0.0 
8 -0.14 0.08 0.296 -0.26 -0.001 0.011 -0.003 0.144 -0.018 -0.224 -0.138 -0.367 1.25 1.45 1.01 -1.08 -1.2</microarray-
expression> 
 
Figure 2. Example of ORF YLR094C in the Yeast Database. 
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reconstruction of the binary interactions among a set of proteins in a proteome and is 

commonly used to identify the physical interactions. The synthetic lethality screen is a 

very powerful method for identifying genetic interactions [21, 22]. It identifies non-allelic 

and non-lethal mutations that are lethal in combination with a non-lethal mutation in a 

gene of interest. The physical interaction data acquired from MIPS, Uetz et al. [23] and Ito 

et al. [24] were combined and this set of physical interactions were used in the predictions. 

Genetic interactions data was obtained from MIPS, which included data from synthetic 

lethal screens, suppression and over-expression experiments. There are total 6516 

physical binary interactions and 1019 genetic binary interactions for yeast.  

 

2.2.2 PROTEIN COMPLEXES 

 Proteins in a protein complex are typically identified by enrichment of the 

complexes in a cell extract using a chromatographic technique that captures one protein 

and its associated proteins, followed by subsequent mass spectrometric identification of 

the proteins in the complex. The protein complexes data is obtained from Gavin et al. [25] 

and Ho et al. [26]. Gavin et al. [25] used TAP (tandem affinity purification) for protein 

complex identification. Ho et al. [26] used HMS-PCI (high-throughput mass spectrometric 

protein complex identification) method to identify protein complexes. Since in the protein 

complexes it is unclear which proteins are in physical contact and interact directly with 

which other protein of the complex, it is hard to construct a specific interaction network. 

Despite this lack of clarity in the protein physical interactions within a complex, the 

protein complexes data is a very rich resource. In order to utilize this information we 

have converted each protein complex into a set of binary interaction of proteins within 
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the complex. For each complex, we added one interaction edge to the interaction network 

between each protein in the complex.  Thus in general, if there are n ORF's in a protein 

complex, n*(n-1)/2 edges are added to the interaction network. The protein complexes 

data that we use consist of 232 complexes, involving 1440 distinct proteins. These data, 

when converted to binary interactions, add 49,313 edges to the interaction network. 

 Once all the interaction edges are added to the interaction network, the final 

network has 6516 physical binary interactions, 1019 genetic interactions and 49,313 

binary complex interactions.  

 

2.2.3 MICROARRAY GENE EXPRESSION DATA 

Analysis of microarray gene expression data is currently one of the most active 

research areas in the field of genomics. Computationally clustering individual gene 

expression measurements provides a novel approach to exploit and infer information in 

order to characterize biological processes. For example, based on the assumption that 

groups of genes that are co-expressed are likely to share similar function, cluster analysis 

of gene-expression profiles results in hypotheses of function. The microarray gene 

expression data was acquired from the published research of Roberts et al. [17] that 

considered 56 experimental conditions. For each experiment if there was data missing, 

we substituted it with the average ratio of all the ORF’s under that specific experimental 

condition, to maintain the dimension of the observations. A correlation coefficient was 

calculated for each of the possible ORF pairs to quantify the correlation between the gene 

pairs.  

 

 11 



2.2.4 SUB-CELLULAR  LOCALIZATION 

 The sub-cellular distribution of proteins within a proteome is useful and important 

for a global understanding of the molecular mechanisms of a cell. Protein localization can 

serve as an indicator of protein function. Localization data can be used as supportive 

evidence to evaluate protein information inferred from other resources. In a physical 

protein-protein interaction, if two proteins are involved in direct physical contact with 

each other, they should have the same sub-cellular localization.  If an interaction pair has 

the same sub-cellular localization, it acts as supportive evidence raising the confidence 

level for that interaction. Therefore, the study of the relationship between protein-protein 

interactions and the sub-cellular localizations of the interaction partners can help validate 

the protein-protein interaction data generated from high-throughput experiments, which 

otherwise may be very noisy. The sub-cellular localization information is acquired from 

MIPS. We consider five main sub-cellular localization compartmental categories namely, 

Cytoplasmic, Nuclear, Mitochondrial, Transmembrane, Endoplasmic Reticulum pathway 

proteins. (Table 1) 

 Based on the localization information obtained from CYGD, each ORF was 

assigned the value of 1 for the main localization compartment. Value 1 indicates a high 

localization quality with a high level of confidence in this assignment. For the ORF’s 

with no localization information in CYGD, the localization was predicted using the Yeast 

Protein Localization Server. The results are in the form of prediction values between 0 

and 1 for each of the five main localization compartments. The compartment with the 

highest prediction value is the most likely localization compartment for the ORF. The  

 12 



 

 

 

 

 

 

 

 

 

Table 1. Sub-cellular localization compartments. 

Compartment Description 
C  Cytoplasmic (excluding cytoskeletal)  
N  Nuclear  
M  Mitochondrial  
T  Transmembrane (including plasma membrane proteins)  
E  Endoplasmic Reticulum (ER) pathway proteins: ER, golgi, 

extracellular, peroxisomal, vacuolar, vesicular  
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results for all the predicted compartments for each ORF were stored in the database. If 

the localization server failed to predict the localization for the ORF, a value of 0 was 

assigned for the localization. Value 0 indicates a low localization quality as reflected 

from its predicted or unknown nature. In the MIPS database, 2358 ORF’s have known 

sub-cellular localizations from experimental evidence, out of which 169 ORF’s can be 

localized in more than one sub-cellular compartment [27, 28]. After predicting the 

localization for the remaining ORF’s, we had sub-cellular localization for 6034 yeast 

ORF’s. An index was created to refer to the deeper localization classification and the 

information was stored in the database with the index numbers (Table 2). 

2.2.5 MIPS FUNCTIONAL ANNOTATION 

 The functional annotation for the known proteins in yeast was acquired from the 

MIPS database. The functions were divided into 17 broad functional categories. Each 

higher-level category has further functional sub-classes. We assigned a numerical index 

to each of these ORF’s according to its hierarchical function classification. That also 

included a functional category sub-cellular localization, and classification not yet clear 

and unclassified proteins categories.  

Example : 

Cellular communication/signal transduction mechanism ……10  

Intracellular signaling ……01 

Enzyme mediated signal transduction ……03  

G-protein mediated signal transduction ….05  
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Table 2. Sub-cellular localization categories and indices. 

 
Sub-cellular Localization Main Category Sub-cellular Localization Index and Deeper Categories 

E 0       extracellular 
T 1       cell wall 
T 2       plasma membrane 
C 3       cytoplasm 
C 4       cytoskeleton 
C 5       actin cytoskeleton 
C 6       tubulin cytoskeleton 
C 7       spindle pole body 
C 8       intermediate filaments 
E 9       ER 
E 10      ER membrane 
E 11      ER lumen 
E 12      golgi 
E 13      golgi membrane 
E 14      transport vesicles 
E 15      ER-golgi transport vesicles 
E 16      golgi-ER transport vesicles 
E 17      inter-golgi transport vesicles 
E 18      golgi-plasma membrane transport vesicles 
E 19      golgi-vacuole transport vesicles 
E 20      endocytotic transport vesicles 
E 21      other transport vesicles 
N 22      nucleus 
N 23      nuclear envelope 
N 24      nuclear matrix 
N 25      nucleolus 
N 26      nuclear pore 
N 27      chromosome structure 
M 28      mitochondria 
M 29      mitochondrial outer membrane 
M 30      mitochondrial intermembrane space 
M 31      mitochondrial inner membrane 
M 32      mitochondrial matrix 
E 33      peroxisome 
E 34      peroxisomal membrane 
E 35      peroxisomal matrix 
E 36      endosome 
E 37      vacuole 
E 38      vacuolar membrane 
E 39      vacuolar lumen 
E 40      microsomes 
E 41      lipid particles 
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2.2.6 GO FUNCTIONAL ANNOTATION 

 The GO functional annotation has three categories. Biological process refers to 

the biological objective and hence annotates cellular function of a protein, e.g. signal 

transduction, pyrimidine metabolism. Molecular function refers to the biochemical 

activities and hence annotates the biochemical functions of a protein, e.g. enzyme, 

adenylate cyclase. Cellular component refers to the localization of the proteins in the cell, 

e.g. ribosome, nuclear membrane.  Each category has a hierarchical structure. We were 

interested in assigning cellular function to the unannotated proteins and hence we 

followed the biological process category. After acquiring the biological process 

functional annotation for the known proteins along with their GO ID, we generated a 

numerical GO INDEX, which represents the hierarchical structure of the classification. 

All the functions begin with 1, which represents a biological function, to distinguish them 

from the other molecular and cellular functions in the GO annotation. The highest level 

of INDEX is 13.  

Example : 

1-4       cell growth and/or maintenance  GO:0008151 

1-4-3       cell cycle      GO:0007049 

1-4-3-2      DNA replication and chromosome cycle    GO:0000067  

1-4-3-2-4      DNA replication GO:0006260 

1-4-3-2-4-2   DNA dependent DNA replication GO:0006261,  

GO:0006262, GO:0006263 

    1-4-3-2-4-2-2   DNA ligation    GO:0006266 

 Table 3 shows the GO biological process annotation for Saccharomyces  
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Table 3. GO biological process annotation for Saccharomyces cerevisiae proteins. 

GO INDEX Number of ORFs Function Description 

1-1 1 behavior        GO:0007610 
1-1-11 1 rhythmic behavior       GO:0007622 

1-3 362 cell communication      GO:0007154 
1-3-1 12 cell adhesion   GO:0007155 
1-3-5 6 host-pathogen interaction       GO:0030383 
1-3-7 3 response to endogenous stimulus GO:0009719 
1-3-8 246 response to external stimulus   GO:0009605 
1-3-9 143 signal transduction     GO:0007165 
1-4 3775 cell growth and/or maintenance  GO:0008151 

1-4-1 24 autophagy       GO:0006914 
1-4-2 99 budding GO:0007114 
1-4-3 506 cell cycle      GO:0007049 
1-4-4 4 cell growth     GO:0016049 

1-4-6 976 cell organization and biogenesis        
GO:0016043 

1-4-7 5 cell proliferation      GO:0008283 
1-4-8 93 cellular morphogenesis  GO:0000902 
1-4-10 95 homeostasis     GO:0019725 
1-4-11 15 membrane fusion GO:0006944 
1-4-12 2835 metabolism      GO:0008152 
1-4-13 208 response to stress      GO:0006950 
1-4-14 83 sporulation     GO:0030435 
1-4-16 732 transport       GO:0006810 

1-5 3 death   GO:0016265 
1-5-1 3 cell death      GO:0008219 
1-6 192 development     GO:0007275 

1-6-2 16 aging   GO:0007568 
1-6-11 55 growth  GO:0040007 
1-6-16 93 morphogenesis   GO:0009653 
1-6-20 91 reproduction    GO:0000003 
1-6-22 19 sex determination       GO:0007530 

1-8 95 physiological processes GO:0007582 
1-8-6 91 conjugation     GO:0000746 
1-8-22 2 nutritional response pathway    GO:0007584 
1-8-30 2 respiratory gaseous exchange    GO:0007585 

1-9 7 viral life cycle        GO:0016032 
1-9-8 6 virus-host interaction  GO:0019048 
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cerevisiae annotated proteins with the function description and the number of ORFs that 

belong to the observed GO INDEX. 

 The GO functional annotation appears to be a more systematic and robust 

classification as compared to the MIPS functional annotation. MIPS has a coarser 

functional classification scheme. We therefore decided to follow the GO biological 

process annotation for the functional assignment. 
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3. METHOD 

 

 Our function prediction method consisted of two steps. We estimated the a-priori 

probabilities for the different types of high-throughput data in the first step. In the second 

step we utilized these estimated a-priori probabilities to predict the functions of 

unannotated proteins.  

 

3.1 ESTIMATION OF A-PRIORI PROBABILITIES 

For each type of high-throughput data including protein-protein interactions, 

protein complexes and gene expression data, we considered every pair of genes 

represented and compared them with each other to examine if they shared similar 

functions and if so what level of function INDEX similarity they had. In order to 

accomplish this we assessed every such pair from the available data by comparing the 

GO INDEX for the annotated protein.  

Eg. Consider ORF1 and ORF2 that have a physical binary interaction with each other. 

ORF1 has a function represented by GO INDEX 1-4-3-3-4 and ORF2 has a function 

represented by GO INDEX 1-4-3-2. When compared with each other for the level of 

matching GO INDEX, they match with each other through 1-4-3 i.e INDEX level 1 (1-4) 

and INDEX level 2 (1-4-3).  

A similar approach was used for the analysis of all the four types of data namely, 

physical binary interactions, genetic binary interactions, binary interactions generated 

from the protein complexes data and gene expression data. For the microarray gene 

expression data, we calculate the correlation coefficient for each gene expression pair. 
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3.1.1 PROTEIN-PROTEIN INTERACTIONS AND PROTEIN COMPLEXES 

 Figure 3 shows the results of the analysis of the protein-protein interactions data. 

The physical interaction data used for the analysis was combined from MIPS, Uetz et al. 

and Ito et al. It showed a decrease in the percentage of pairs sharing the same function 

with an increase in the INDEX level. The genetic interactions and the physical 

interactions data were more informative in terms of matching function, in comparison to 

the protein complexes data. This may be the effect of the different techniques used to 

derive these data. It showed the percentage of pairs sharing the same function was higher 

with the lower INDEX levels, which represent a less specific function class, in 

comparison to the higher INDEX levels. Our conclusion was that there was a clear 

relationship between the protein-protein interaction pairs and similarity in function, 

which can be utilized to make future predictions based on these data. This relationship is 

more evident in the genetic and physical interactions in comparison to the protein 

complexes. The relationship was strong with the lower INDEX levels and weakened with 

increasing INDEX levels. 

 

3.1.2 MICROARRAY GENE EXPRESSION  

 We calculated the correlation coefficient for all the gene expression pairs, based 

on the assumption that groups of genes that are co-expressed are likely to share similar 

function [29]. The range of the correlation coefficient is from –1 to +1. The value +1 

means a perfect correlation between the two expression profiles, while the values below 

0, indicate no correlation. We calculated the value 1- correlation coefficient to plot the 

percentage of pairs with matching function for each INDEX level, to quantify the  
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Figure 3. Percentage of pairs with matching function for INDEX levels 1 to 13 

against protein-protein interactions data (physical, genetic and binary interaction 

from complexes). 
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relationship between the correlated gene expressions pairs. The range of value 1- 

correlation coefficient is from 0 to 2 (Figure 4). The value 0 means perfectly correlated as 

compared to values greater than 1, which indicate no correlation. Results of this analysis 

clearly showed a decrease in the probability of sharing the same function with an increase 

in the value (1- correlation coefficient). It also showed a decrease in the probability of 

sharing the same function with an increase in the INDEX level. The slope of the curves 

indicated a clear relationship between the microarray data value 1- correlation coefficient 

≤ 0.6 and similarity in function. This relationship was lost above this value, where the 

curves become flat. Thus it is possible to utilize this relationship for the data with value 

1- correlation coefficient ≤ 0.7 to make future predictions regarding function.  

Based on these results we decided to concentrate more on the values of 1- 

correlation coefficient, in the range of 0 to 0.7. Figure 5 is the blowup of the region with 

1- correlation coefficient values between 0 and 0.7. In this range, we recalculated the 

percentage of pairs with matching function for INDEX levels 1 to 13, at an interval of 

0.025. The data point at 0.025 shows a smaller percent of pairs sharing same function, 

due to the very small data size for this data point.♣ 

 

3.2 PREDICTION USING A-PRIORI PROBABILITIES 

 Our method visualizes the protein-protein interaction data as a network graph in 

which a node represents a protein and the edges represent the interactions between the  

 

 
                                                 
♣ For information regarding cross hybridization, refer to Appendix App-1. 
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proteins. The function predictions were based on the assumption that the interacting 

proteins share at least one function in common and therefore belong to at least one 

common functional class. Therefore knowledge of the functional class of a few 

interacting proteins in the network, may lead to an accurate prediction of the function for 

the remaining uncharacterized interaction partners. Thus each protein can belong to one 

or more functional classes, depending upon the scheme of functional classification used 

in determining the functions. Thus the functional classification scheme used would affect 

the number of possible functions for each protein. Two types of classification schemes 

may exist. A coarse or less detailed functional classification scheme will have fewer 

function classes and will be less stringent. As compared to this a deeper, more detailed 

classification will have more functional classes and will be more stringent. Keeping these 

criteria in mind we decided to use the GO hierarchical functional classification in our 

prediction method as against the MIPS classification. Our approach was to assign 

functions to the uncharacterized unannotated proteins on the basis of the most common 

functions identified among the annotated interaction partners for this protein and the 

estimated a-priori probabilities. This approach is similar to the majority rule assignment. 

For each protein in addition to the probable function prediction we report its interactions 

partners along with their functions. We attribute a higher confidence to the predicted 

function, which have a higher rate of occurrence. 

In this method we find all the possible protein-protein interactions that the query 

yeast protein may have, based on the collected high-throughput data. For one type of data 

at a time (physical interactions, genetic interactions, protein complex binary interactions 

and microarray gene expression with correlation coefficient ≥ 0.8, we identified the 
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possible interactors for the query protein. We compared the function for the query protein 

and each interactor in terms of the GO INDEX namely, series of the numbers, which 

represents the function.  

For example, if for a query protein the interactor had a GO INDEX 1-3-4-2, the possible 

GO function INDICES for the query protein were 1-3, 1-3-4 and 1-3-4-2. 

For each potential GO INDEX we assigned a score based on the type of high-

throughput data, which identified this interactor. This score was assigned based on the a-

priori calculated probabilities from the analysis of that type of high-throughput data for 

each INDEX level 1 to 13. If one or more interactors were identified, then based on their 

function GO INDEX, the query protein potential INDICES were predicted. 

For example, if for a query protein the interactor 1 had a GO INDEX 1-3-4-2, and 

interactor 2 had a GO INDEX 1-3-4-3, then the possible GO function INDICES for the 

query protein were 1-3, 1-3-4, 1-3-4-2 and 1-3-4-3.  

 The final GO INDEX predictions for the query protein were sorted based on the 

reliability score for each predicted GO INDEX. The reliability score was a combined 

score calculated based on the types of the high-throughput data used for the prediction. 

For each GO INDEX let P1 = probability from genetic interactions, 

P2 = probability from physical interactions, 

P3 = probability from complex interactions, 

P4 = probability from microarray gene expression, then 

(1-P1) gives the probability of a protein not sharing the same function as its physical 

interaction partner, and respectively for all the other types of data.  

 26 



We considered all the types of data to be independent of each other and thus do 

not estimate the parameters in the form of weights. Instead we combined them all 

together and then estimated the probability for the protein to have the same function as 

that of the known interaction partners, by calculating the prediction score as, 

 

Reliability score = 1- [(1-P1) (1-P2) (1-P3) (1-P4)] 

 

But since the value is a very small number, we could loose precision due to this 

method of calculation. Instead we calculated the final reliability score by taking a log 

value of the terms, 

 

Reliability score = 1- exp [ ( Log(1-P1) + Log(1-P2) + Log(1-P3) + Log(1-P4) ) ] 

 

3.2.1 NORMALIZATION 

 If more than one interactors for a query protein from a single type of data, had the 

same GO INDEX function, then the GO INDEX function prediction for the query protein 

was normalized based on the number of interactors supporting it. 

For example, if for a query protein the interactor 1 had a GO INDEX 1-3-4-2, and 

interactor 2 had a GO INDEX 1-3-4-3, then the possible GO function INDICES for the 

query protein were 1-3, 1-3-4, 1-3-4-2 and 1-3-4-3. In this case the scores for INDEX 1-3 

and 1-3-4 had two interactors supporting this function, so the scores for them were 

normalized as follows: 
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If (1-P1) is the probability for this INDEX from this high-throughput data type, and K is 

the number of interactors supporting this INDEX from this high-throughput data type, we 

normalized the score as, 

 

(1-P1) = (1-P1
’ ) K 

 

and we now used the score (1-P1
’ ) instead after normalization. 

 

3.2.2 TESTING AND TRAINING 

For the purpose of testing and training, we split the 3866 annotated proteins with 

known GO id into two sets. The training set had 2866 proteins and the testing set had the 

remaining 1000. All the values were re-calculated for the testing and the training sets and 

the corresponding values were used. The testing set of 1000 was done in 10 sets of 100 

each.  

At one time only 100 proteins out of the 3866 known proteins were considered as 

having no known function and then with the new calculated probabilities the prediction 

was done. As expected the sensitivity and specificity values matched for the testing and 

training sets (Figure 6). 
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Figure 6. Sensitivity and specificity for testing-training. 
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4. RESULTS AND DISCUSSION 

 

Sensitivity and specificity are two important measures to evaluate the accuracy of the 

prediction method. We estimated the sensitivity to determine the success rate of the 

method and specificity to assess the confidence in the predictions of the method. Let us 

take a brief look at the two measures. For a given set of proteins K, let ni be the number 

of the known functions for protein Pi. Let mi be the number of functions predicted for the 

protein Pi by the method. Let ki be the number of predicted functions that are correct 

(known). Thus sensitivity (SN) and specificity (SP) are defined as, 
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 SN and SP give a quantitative evaluation of the prediction accuracy and the 

reliability of the predictions. One can also observe the change in the SN and SP with 

respect to the variation in the cutoff for reliability score. Both the values are within the 

range 0 to 1. In practice, if a method tends to predict most of the known functions, it has 

high sensitivity and it tends to also predict many more functions than the known 

functions, thus having a low specificity. Thus for a particular method and a data set, an 

 30 



increase in sensitivity typically correlates with a decrease in specificity and vice-versa. A 

good prediction method will yield higher sensitivity and specificity values.  

 Figure 7 shows the sensitivity and specificity of the method with the use of 

microarray gene expression data, with different cutoff values for the correlation 

coefficient from 0.6 to 0.8. It is evident from the plot that the sensitivity decreases 

slightly with the increase in cutoff values for 1-correlation coefficient, whereas the 

specificity improves substantially with the increase in cutoff values for 1-correlation 

coefficient. As a tradeoff between the sensitivity and specificity, we decided to use the 

microarray gene expression data with values for 1-correlation coefficient >= 0.8, to 

achieve the best results for the method. 

Our initial approach was to use a curve–fitting method for the microarray gene 

expression data and use the equations for the a-priori probabilities estimated from the 

microarray data analysis. Mathematica [30] was used to fit the microarray data points to 

the different exponential curves for the different INDEX levels and to obtain the 

equations for the different curves. The general equation for the curve is  

 

XeCY βα −+=  

where C, α and β are constants and X is the value 1-correlation coefficient for the 

microarray data. But, we were not satisfied with the sensitivity and specificity obtained 

by this approach. So we tried a different approach for estimating the a-priori probabilities 

i.e linear lookup. In this we estimated the a-priori probabilities for the different intervals 

for the value 1-correlation coefficient for the microarray data. 
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Figure 7. Sensitivity and specificity for microarray correlation coefficient 0.6-0.8. 
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For example, if the value 1-correlation coefficient was anywhere in the interval 0.15 to 

0.25, we used the estimated a-priori probability for the value 0.2. Yet, unsatisfied with 

the results, we decided to use the linear interpolation approach. In the linear interpolation 

approach, we calculated the a-priori probability for the specific microarray 1-correlation 

coefficient value, based on the neighboring two data points. For example, let X be the 1-

correlation coefficient value for point A for which we want to estimate Y, the a-priori 

probability for the value X. Let X1 and X2 be the 1-correlation coefficient value for the 

two neighboring data points on either side of A and Y1 and Y2 be the respective a-priori 

probabilities. Then the a-priori probability Y for the value X is given by, 
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   Figure 8 shows the results obtained with the curve-fitting, linear lookup and linear 

interpolation approaches, used to utilize the microarray gene expression data. As is 

evident from the results (Figure 8) the performance of the method was better with the 

linear extrapolation method as against the curve fitting and the linear lookup approaches. 

 The performance of the method when judged against the cutoff value for 

reliability score from 0 to 0.9, has a sensitivity and specificity of around 58% (Figure 9, 

10). The difference in the reliability score and the probability may be due to the fact that 

we consider all the types of data as independent data, whereas in reality this may not be 
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Figure 8. Sensitivity and specificity for curve fitting, linear lookup and linear 

interpolation methods for utilizing microarray correlation coefficient data. 
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Figure 9. Sensitivity and specificity for the testing set, training set and all 3866 

known protein. 
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Figure 10. Sensitivity and specificity of the method. 

 

 

 

 

 

 

 

 36 



the case. The final prediction along with the predicted GO INDEX, reliability score, 

function description and GO id also outputs the probability of predictions being correct. 

Using our method, we have been able to assign function to 1548 out of the 2472 

unannotated proteins in yeast. Figure 11 shows the distribution of the 1548 unannotated 

yeast proteins for which GeneFAS predicted function, against the reliability score cutoff 

and INDEX level. It shows the percentage of the unannotated proteins predicted for a 

particular reliability score cutoff as well as for particular INDEX levels. For example, 

consider the reliability score cutoff to be 0.8, as shown by the purple curve. For a 

reliability score cutoff of 0.8, 92.8 percent unannotated proteins out of 1548 have 

predictions for INDEX level 1, while 48.2 percent unannotated proteins out of 1548 have 

predictions for INDEX level 2 and so on. Table 4 shows the distribution of the 1548 

unannotated yeast proteins for which GeneFAS predicted function, against the probability 

cutoff and INDEX level. It shows the percentage of the unannotated proteins predicted 

for a particular probability cutoff as well as for particular INDEX levels. For example, for 

a probability cutoff of 0.5, 54.6 percent unannotated proteins out of 1548 have 

predictions for INDEX level 1, while 25.6 percent unannotated proteins out of 1548 have 

predictions for INDEX level 2 and so on. 

Our approach differs from the other approaches in many aspects. We follow GO 

functional annotation in comparison to MIPS annotation followed by others. In our 

approach we incorporate more data by including genetic interactions in addition to the 

physical interactions, protein complexes and microarray gene expression. We develop a 

new statistical model and provide confidence assessment for the predictions. We have 

also developed a web server to query the results of function prediction and allow cross- 
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Figure 11. Percentage of 1548 unannotated yeast proteins for which GeneFAS 

predicted function, against the reliability score cutoff and INDEX level. 
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Table 4. Percentage of 1548 unannotated yeast proteins for which GeneFAS 

predicted function, against probability cutoff and INDEX level. 

 
Probability 

 
 
 
 

INDEX 

≥ 0.9 ≥ 0.8 ≥ 0.7 ≥ 0.6 ≥ 0.5 ≥ 0.4 ≥ 0.3 ≥ 0.2 ≥ 0.1 ≥ 0.0 

1 20.2 24.9 29.5 36.4 55.8 55.8 92.9 95.6 97.5 100 

2 7.88 11 13.8 16.7 24.7 24.7 48.3 80.9 96.6 100 

3 0.45 1.03 2.58 4.52 9.63 9.63 21.8 55.4 85.6 99.6 

4 0 0 0.06 1.16 4.26 4.26 11.4 22.4 72.4 99 

5 0 0 0.71 2.07 4.26 4.26 9.75 18.3 51.3 96 

6 0 0 0 0 0.13 0.13 4.97 11.8 42.5 93 

7 0 0 0 0 0 0 4.01 7.24 17.2 83.7 

8 0 0 0 0 0 0 3.42 5.75 10.6 63 

9 0 0 0 0 0 0 0 0 0.32 40.8 

10 0 0 0 0 0 0 0 0 0 30.1 

11 0 0 0 0 0 0 0 0 0 16.3 

12 0 0 0 0 0 0 0 0 0 4.07 
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species application of the method. We are able to assign function to 1548 out of the 2472 

unannotated proteins in yeast.♣ Our method has an advantage over the other purely 

computational methods methods, as it involves both, the use of raw data as well as 

experimental evidences and analysis. 

 

                                                 
♣ For detailed list of 1548 unannotated proteins in yeast for which GeneFAS can predict function, refer to 
Appendix App-2. 
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5. GENEFAS : WEB-BASED TOOL 

 

GeneFAS is the web based tool developed for functional annotation of yeast 

genes using multiple sources of high-throughput data, such as yeast two-hybrid data, 

genetic interactions data, protein complexes data derived from mass-spectrometry, 

microarray gene expression data and functional annotation for known yeast proteins 

(Figure 12). The website is http://compbio.ornl.gov/genefas/index.html (Figure 13) 

 

5.1 USAGE 

The user can either enter a yeast orf /gene name or enter a protein sequence from 

any other organism.  

1. Select the first option. 

Enter yeast ORF name eg. YAL001C or yal001c or Gene name eg. ADE5 or ade5.  

Select the appropriate type eg. ORF name or Gene name. 

OR 

2. Select the second option. 

Enter a protein sequence from any organism in raw or fasta format. 

Select the E-value, matrix and the number of hits to be displayed from the options. 

AND 

For either case select an option from the type of high-throughput data to be used.  
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Figure 12. Architecture of GeneFAS. 
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Figure 13. GeneFAS input interface. 
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If a complete yeast ORF / gene name is entered the tool outputs the function 

prediction for the entered gene using the selected high-throughput data to be used for 

prediction (Figure 14). If a partial matching yeast gene name is entered the tool outputs a 

list of all possible gene names with the respective orf names and the user can then choose 

the gene and the high-throughput data type to output the function prediction (Figure 15). 

If a protein sequence is entered (Figure 16), the tool blasts the query sequence 

against the database of all yeast proteins and outputs a list of the hits from the yeast as per 

the selected E-value, matrix and number of hits. From this list the user can select a yeast 

protein and the high-throughput data type to predict the function for the selected yeast 

protein. Each hit is linked to the BLAST alignment for the query sequence and the hit and 

has the bit score and E-value specified with it. 

For each orf /gene the function prediction results, if the gene is already annotated 

the results specify the GO biological process annotation for the same followed by the 

function prediction for all the possible indexes based on the type of high-throughput data 

selected. The annotation is linked to the GO hierarchical tree for that specific GO ID. 

Function prediction lists the index, reliability score, probability, function 

description and the GO id associated with the predicted function. The index is the GO 

INDEX i.e the series of numbers that represent the hierarchical structure for the GO 

biological process functions. The reliability score is the predicted score for the orf to have 

the specified function. The predicted specificity of the method is not the same as that of 

the expected specificity as is evident from the sensitivity and specificity plots. We state 

the confidence in the predictions by performing a lookup for the probability value on the 

basis of the sensitivity and specificity plots. Thus the probability score specifies the level  
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Figure 14. Function prediction results for hypothetical protein YER079W in yeast. 
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Figure 15. Selection options for partial matching gene names in yeast. 
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Figure 16. Arabidopsis protein sequence input for function prediction. 
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of confidence for this prediction. The function description and GO id describe the 

function represented by the index. The GO id is linked to the GO hierarchical tree for that 

GO id.  

Following the function prediction are the evidences used to predict the function. 

As per the selected high-throughput data type for the function prediction the supportive 

evidences in the form of protein interactors from physical binary interactions, genetic 

interactions, protein complex interactions and microarray gene expression interactors 

along with their GO annotation and GO id are specified. With the microarray gene 

expression interactors, the value 1- correlation coefficient is also mentioned. Each of the 

orf evidence is also linked to the SGD. 
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6. CROSS-SPECIES APPLICATION 

 

Our aim was to extend our function prediction method developed using yeast 

high-throughput data, to predict function for hypothetical proteins in other organisms. 

Toward this end we were interested in exploring the Arabidopsis data, to see how well 

the analysis matches with that of the Yeast. To achieve this objective we collected the 

data for Arabidopsis and are interested in finding the homology between Yeast and 

Arabidopsis. 

 

6.1 ARABIDOPSIS DATA SOURCE 

The GO id’s for the annotated Arabidopsis genes was obtained from the Gene 

Ontology website (http://geneontology.org). The GO ids were downloaded from under 

the current annotations (http://geneontology.org/#annotations), from the TAIR database 

for the Arabidopsis thaliana. The Arabidopsis sequences were downloaded from the 

TAIR website (http://www.arabidopsis.org/). GO annotations are available for 7526 

Arabidopsis genes. We created the Arabidopsis database with protein sequences for 7587 

Arabidopsis proteins, downloaded from TAIR. 

 

6.2 RESULTS  

We used BLAST and FASTA to find matching hits in Arabidopsis database for 

every Yeast protein (Table 5). As seen in the plot, the number of pairs identified, are 

fewer with the FASTA as against the BLAST best hits. The hits were then grouped based  
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Table 5. Number of Yeast-Arabidopsis homology pairs. 

Method Number of Yeast-Arabidopsis pairs 

BLAST (all hits) 89013 
BLAST (best hits only) 2415 
FASTA (best hits only) 2442 
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on the E-value ranging from 1e-1 to 1e-100, with the intervals of e-10 each. All the hits 

with the E-value ≤ the range E-value fall into one category. We collected the GO 

annotation for the known Arabidopsis genes and applied the same GO INDEX created for 

the yeast. The yeast Arabidopsis pair in each such category was then compared for 

percentage of pairs with matching function for each INDEX level. For any Yeast-

Arabidopsis pair, if the E-value was ≤ the specified threshold E-value, the pairs fall in the 

respective category. 

Figure 17 shows the probability of Yeast and Arabidopsis best hits pair identified 

by FASTA, to share the same function. Figure 17 also shows that there is an increase in 

the probability of Yeast and Arabidopsis pairs sharing the same function with the 

decrease in the E-value. The probability decreases with an increase in the INDEX level. 

However, it is important to know the baseline probability for any non-homologous Yeast 

and Arabidopsis pair, to share the same function. Figure 18 shows the normalized score 

for the Yeast and Arabidopsis FASTA best hits pair to share the same function, against 

the probability of non-homologous pairs sharing the same function. Clearly the 

probability of homologous pairs sharing the same function INDEX level, is significantly 

more in comparison to that of non-homologous pairs.♣ 

 

 

 

 

                                                 
♣ For detailed information regarding Yeast-Arabidopsis homology pairs identification using BLAST and 
FASTA, refer to Appendix App-3. 
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Figure 17. Probability of matching function for INDEX level 1-10 for Yeast and 

Arabidopsis homology pairs, for FASTA best hit pairs. 
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Figure 18. Normalization of FASTA Yeast and Arabidopsis best hit pairs 

probability of matching function for INDEX level 1-7 for against the probability of 

non-homologous pairs sharing the same function. 
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WEB LINKS 

1. Gene Ontology 

 http://www.geneontology.org 

2. Saccharomyces Genome Database  

http://genome-www.stanford.edu/Saccharomyces/ 

3. MIPS  

http://mips.gsf.de/proj/yeast/CYGD/db/index.html 

4. Yeast Protein Localization Server 

http://bioinfo.mbb.yale.edu/genome/localize/ 
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App-1. CROSS-HYBRIDIZATION. 

We compared the microarray data plots before and after the removal of pairs with 

≥ 85 percent sequence similarity, to check if there is any effect of cross-hybridization on 

the microarray data (Figure A-1). To our observation, we encountered no significant 

difference in the values before and after removal of pairs with ≥ 85 percent sequence 

similarity, except in the first category of 1-correlation coefficient value 0.025. This 

difference is primarily due to the very small data size in this category. For all the other 

categories the values are nearly the same before and after removal of microarray pairs 

with ≥ 85 percent sequence similarity (Figure A-1).  
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Figure A-1. Plot of microarray 1-correlation coefficient for percentage of pairs with 

matching function for INDEX levels 1 to 5, before and after removal of pairs with ≥ 

85 percent sequence similarity. 
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App-2. LIST OF 1548 UNANNOTATED PROTEINS FOR WHICH GENEFAS CAN PREDICT 
FUNCTION. 
 
 

YAL011W YBL081W YBR138C YBR281C YCR095C YDL167C YDR111C 
YAL014C YBL086C YBR139W YBR284W YCR099C YDL172C YDR117C 
YAL017W YBL094C YBR141C YBR285W YCR101C YDL178W YDR119W 
YAL027W YBL095W YBR144C YBR287W YDL001W YDL183C YDR122W 
YAL028W YBL101W-A YBR147W YBR293W YDL002C YDL186W YDR124W 
YAL034C YBL104C YBR150C YBR300C YDL011C YDL193W YDR128W 
YAL036C YBL107C YBR157C YBR301W YDL012C YDL199C YDR130C 
YAL045C YBL108W YBR158W YBR302C YDL023C YDL203C YDR131C 
YAL049C YBL109W YBR161W YCL005W YDL025C YDL204W YDR132C 
YAL053W YBL113C YBR162C YCL011C YDL026W YDL211C YDR133C 
YAL061W YBR004C YBR168W YCL019W YDL027C YDL213C YDR140W 
YAL064W YBR012W-A YBR174C YCL020W YDL033C YDL218W YDR152W 
YAL065C YBR012W-B YBR184W YCL022C YDL037C YDL221W YDR154C 
YAL066W YBR013C YBR187W YCL023C YDL041W YDL233W YDR161W 
YAR009C YBR014C YBR190W YCL028W YDL046W YDL237W YDR162C 
YAR018C YBR025C YBR197C YCL039W YDL050C YDL241W YDR169C 
YAR027W YBR027C YBR203W YCL042W YDL053C YDL246C YDR170W-A 
YAR030C YBR028C YBR204C YCL044C YDL062W YDR003W YDR184C 
YAR042W YBR042C YBR209W YCL045C YDL063C YDR008C YDR193W 
YAR047C YBR043C YBR216C YCL046W YDL070W YDR010C YDR196C 
YAR061W YBR046C YBR219C YCL049C YDL071C YDR018C YDR198C 
YAR064W YBR047W YBR220C YCL056C YDL072C YDR020C YDR199W 
YAR066W YBR051W YBR225W YCL058C YDL076C YDR026C YDR203W 
YAR069C YBR052C YBR226C YCL063W YDL086W YDR031W YDR215C 
YAR075W YBR053C YBR227C YCL069W YDL089W YDR032C YDR219C 
YBL004W YBR054W YBR230C YCL076W YDL091C YDR042C YDR223W 
YBL009W YBR056W YBR231C YCR001W YDL096C YDR049W YDR229W 
YBL028C YBR059C YBR233W YCR007C YDL099W YDR056C YDR230W 
YBL029W YBR063C YBR238C YCR013C YDL100C YDR061W YDR233C 
YBL031W YBR064W YBR239C YCR015C YDL104C YDR063W YDR239C 
YBL036C YBR074W YBR241C YCR016W YDL105W YDR067C YDR247W 
YBL044W YBR077C YBR242W YCR022C YDL110C YDR068W YDR249C 
YBL046W YBR089W YBR246W YCR030C YDL115C YDR070C YDR255C 
YBL048W YBR094W YBR250W YCR041W YDL118W YDR071C YDR262W 
YBL049W YBR096W YBR255W YCR043C YDL121C YDR078C YDR266C 
YBL051C YBR099C YBR261C YCR045C YDL124W YDR084C YDR267C 
YBL053W YBR101C YBR262C YCR050C YDL129W YDR091C YDR269C 
YBL054W YBR108W YBR267W YCR072C YDL133W YDR095C YDR271C 
YBL059W YBR113W YBR269C YCR076C YDL139C YDR100W YDR275W 
YBL065W YBR116C YBR270C YCR079W YDL144C YDR101C YDR279W 
YBL066C YBR124W YBR271W YCR082W YDL152W YDR102C YDR282C 
YBL067C YBR125C YBR273C YCR087C-A YDL156W YDR105C YDR286C 
YBL071C YBR134W YBR277C YCR087W YDL158C YDR106W YDR287W 
YBL077W YBR137W YBR280C YCR091W YDL162C YDR107C YDR290W 
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YDR295C YDR520C YER064C YFL054C YGL128C YGR058W YGR223C 
YDR304C YDR526C YER066C-A YFL061W YGL131C YGR064W YGR228W 
YDR306C YDR527W YER066W YFL067W YGL132W YGR066C YGR235C 
YDR307W YDR531W YER067W YFL068W YGL138C YGR067C YGR236C 
YDR314C YDR532C YER071C YFR003C YGL139W YGR068C YGR237C 
YDR317W YDR533C YER076C YFR006W YGL146C YGR069W YGR242W 
YDR319C YDR541C YER077C YFR008W YGL149W YGR071C YGR243W 
YDR326C YDR542W YER078C YFR011C YGL157W YGR073C YGR248W 
YDR330W YEL005C YER079W YFR012W YGL161C YGR079W YGR250C 
YDR333C YEL008W YER084W YFR016C YGL165C YGR081C YGR251W 
YDR339C YEL015W YER087C-A YFR017C YGL168W YGR086C YGR259C 
YDR340W YEL016C YER087W YFR018C YGL177W YGR090W YGR263C 
YDR344C YEL017W YER092W YFR024C-A YGL179C YGR100W YGR265W 
YDR346C YEL018W YER093C-A YFR024C YGL185C YGR102C YGR266W 
YDR348C YEL020C YER101C YFR026C YGL188C YGR106C YGR268C 
YDR350C YEL023C YER113C YFR038W YGL193C YGR110W YGR269W 
YDR357C YEL033W YER121W YFR039C YGL196W YGR111W YGR272C 
YDR359C YEL038W YER128W YFR042W YGL198W YGR114C YGR275W 
YDR361C YEL041W YER138C YFR043C YGL204C YGR115C YGR277C 
YDR365C YEL043W YER139C YFR044C YGL217C YGR117C YGR278W 
YDR366C YEL048C YER140W YFR046C YGL220W YGR122W YGR283C 
YDR367W YEL049W YER150W YFR054C YGL221C YGR127W YGR290W 
YDR371W YEL057C YER156C YFR057W YGL226W YGR130C YGR291C 
YDR373W YEL059W YER158C YGL004C YGL230C YGR136W YGR293C 
YDR383C YEL068C YER160C YGL010W YGL231C YGR139W YGR294W 
YDR412W YEL070W YER163C YGL015C YGL232W YGR145W YGR295C 
YDR413C YEL072W YER170W YGL021W YGL239C YGR146C YGR296W 
YDR415C YEL074W YER175C YGL024W YGL242C YGR149W YHL005C 
YDR417C YEL075C YER181C YGL036W YGL245W YGR150C YHL006C 
YDR425W YEL076W-C YER182W YGL039W YGL250W YGR151C YHL008C 
YDR428C YEL077C YER184C YGL046W YGL258W YGR153W YHL010C 
YDR430C YER004W YER186C YGL047W YGL259W YGR154C YHL013C 
YDR433W YER006W YER189W YGL052W YGL261C YGR160W YHL017W 
YDR438W YER007C-A YFL006W YGL057C YGL263W YGR163W YHL018W 
YDR441C YER010C YFL007W YGL059W YGR002C YGR168C YHL021C 
YDR444W YER030W YFL010C YGL060W YGR004W YGR173W YHL023C 
YDR445C YER036C YFL012W YGL068W YGR016W YGR182C YHL026C 
YDR455C YER037W YFL013C YGL069C YGR017W YGR187C YHL035C 
YDR459C YER038C YFL015C YGL074C YGR018C YGR189C YHL039W 
YDR474C YER039C YFL020C YGL079W YGR024C YGR196C YHL042W 
YDR479C YER041W YFL030W YGL081W YGR031W YGR198W YHL044W 
YDR482C YER047C YFL034W YGL083W YGR033C YGR201C YHL045W 
YDR489W YER048C YFL040W YGL091C YGR035C YGR203W YHL046C 
YDR496C YER049W YFL042C YGL096W YGR042W YGR205W YHL049C 
YDR505C YER051W YFL044C YGL101W YGR043C YGR207C YHR003C 
YDR512C YER053C YFL049W YGL102C YGR046W YGR210C YHR009C 
YDR514C YER054C YFL051C YGL110C YGR052W YGR213C YHR020W 
YDR516C YER057C YFL052W YGL117W YGR053C YGR219W YHR022C 
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YHR033W YHR214W-A YIR014W YJL175W YJR116W YKL153W YLL023C 
YHR034C YHR214W YIR016W YJL178C YJR119C YKL161C YLL025W 
YHR035W YHR215W YIR024C YJL182C YJR120W YKL168C YLL029W 
YHR036W YIL001W YIR035C YJL184W YJR122W YKL174C YLL030C 
YHR040W YIL007C YIR036C YJL185C YJR124C YKL177W YLL033W 
YHR045W YIL011W YIR039C YJL192C YJR127C YKL183W YLL034C 
YHR047C YIL017C YIR040C YJL197W YJR134C YKL187C YLL037W 
YHR049W YIL019W YIR042C YJL199C YJR136C YKL195W YLL044W 
YHR057C YIL023C YIR044C YJL200C YJR138W YKL202W YLL049W 
YHR059W YIL025C YJL010C YJL202C YJR141W YKL206C YLL051C 
YHR063C YIL027C YJL015C YJL207C YJR146W YKL215C YLL053C 
YHR074W YIL028W YJL017W YJL211C YJR154W YKL218C YLL054C 
YHR076W YIL032C YJL023C YJL213W YJR157W YKL222C YLL065W 
YHR080C YIL039W YJL032W YJL215C YJR162C YKL224C YLR001C 
YHR081W YIL040W YJL048C YJL218W YKL014C YKR005C YLR003C 
YHR083W YIL045W YJL057C YJL225C YKL023W YKR007W YLR004C 
YHR085W YIL054W YJL058C YJR003C YKL034W YKR011C YLR008C 
YHR087W YIL055C YJL064W YJR008W YKL036C YKR016W YLR011W 
YHR097C YIL056W YJL065C YJR011C YKL039W YKR017C YLR016C 
YHR100C YIL057C YJL066C YJR012C YKL044W YKR018C YLR020C 
YHR105W YIL059C YJL067W YJR014W YKL047W YKR021W YLR021W 
YHR112C YIL060W YJL069C YJR015W YKL050C YKR022C YLR030W 
YHR113W YIL077C YJL070C YJR024C YKL051W YKR030W YLR031W 
YHR115C YIL086C YJL072C YJR026W YKL056C YKR032W YLR035C-A 
YHR117W YIL087C YJL078C YJR027W YKL061W YKR033C YLR037C 
YHR121W YIL091C YJL079C YJR028W YKL063C YKR038C YLR049C 
YHR122W YIL092W YJL082W YJR029W YKL065C YKR040C YLR050C 
YHR127W YIL096C YJL084C YJR030C YKL067W YKR043C YLR051C 
YHR130C YIL097W YJL086C YJR037W YKL069W YKR046C YLR052W 
YHR133C YIL103W YJL091C YJR038C YKL072W YKR049C YLR053C 
YHR140W YIL105C YJL097W YJR041C YKL075C YKR051W YLR054C 
YHR145C YIL108W YJL103C YJR056C YKL076C YKR060W YLR057W 
YHR149C YIL110W YJL107C YJR067C YKL077W YKR070W YLR063W 
YHR156C YIL127C YJL114W YJR070C YKL082C YKR071C YLR064W 
YHR168W YIL130W YJL120W YJR071W YKL086W YKR073C YLR065C 
YHR177W YIL135C YJL122W YJR072C YKL088W YKR079C YLR068W 
YHR179W YIL136W YJL131C YJR079W YKL090W YKR087C YLR072W 
YHR180W YIL137C YJL132W YJR080C YKL091C YKR088C YLR073C 
YHR186C YIL141W YJL135W YJR082C YKL095W YKR089C YLR076C 
YHR192W YIL151C YJL142C YJR083C YKL102C YKR090W YLR077W 
YHR195W YIL152W YJL144W YJR084W YKL107W YKR096W YLR090W 
YHR197W YIL157C YJL149W YJR087W YKL111C YKR100C YLR095C 
YHR198C YIL158W YJL151C YJR097W YKL123W YKR105C YLR096W 
YHR199C YIL163C YJL152W YJR098C YKL124W YLL012W YLR097C 
YHR207C YIL169C YJL160C YJR100C YKL128C YLL014W YLR101C 
YHR209W YIL174W YJL161W YJR108W YKL133C YLL017W YLR104W 
YHR212C YIL177C YJL162C YJR110W YKL137W YLL020C YLR108C 
YHR214C-B YIR003W YJL163C YJR115W YKL151C YLL022C YLR112W 

 65 



 
YLR114C YLR257W YLR437C YMR044W YMR233W YNL112W YNL266W 
YLR118C YLR266C YLR440C YMR046C YMR237W YNL114C YNL274C 
YLR123C YLR267W YLR446W YMR051C YMR244W YNL115C YNL276C 
YLR124W YLR269C YLR449W YMR057C YMR253C YNL116W YNL285W 
YLR125W YLR271W YLR455W YMR067C YMR265C YNL119W YNL300W 
YLR128W YLR283W YLR456W YMR071C YMR266W YNL120C YNL303W 
YLR132C YLR457C YMR075W YMR269W YNL123W YNL305C 
YLR136C YLR289W YLR459W YMR086W YMR278W YNL127W YNL311C 
YLR137W YLR290C YLR460C YMR087W YMR279C YNL132W YNL313C 
YLR140W YLR294C YLR461W YMR088C YMR289W YNL133C YNL319W 
YLR149C YLR297W YLR465C YMR090W YMR290C YNL134C YNL320W 
YLR151C YLR301W YLR466W YMR097C YMR291W YNL135C YNL321W 
YLR152C YLR311C YML011C YMR102C YMR295C YNL144C YNL324W 
YLR154C YLR312C YML013W YMR107W YMR298W YNL146W YNL326C 
YLR156W YLR315W YML014W YMR110C YMR304C-A YNL152W YNL335W 
YLR164W YLR323C YML018C YMR114C YMR310C YNL156C YNR004W 
YLR168C YLR324W YML020W YMR116C YMR315W YNL157W YNR005C 
YLR171W YLR326W YML023C YMR118C YMR316C-B YNL158W YNR009W 
YLR177W YLR327C YML027W YMR123W YMR317W YNL165W YNR024W 
YLR181C YLR331C YML029W YMR124W YMR321C YNL171C YNR025C 
YLR183C YLR338W YML030W YMR130W YMR322C YNL174W YNR028W 
YLR187W YLR339C YML036W YMR134W YMR323W YNL175C YNR036C 
YLR190W YLR343W YML040W YMR135C YMR325W YNL176C YNR040W 
YLR193C YLR345W YML053C YMR141C YNL010W YNL181W YNR042W 
YLR196W YLR346C YML056C YMR144W YNL013C YNL182C YNR046W 
YLR198C YLR350W YML059C YMR147W YNL018C YNL187W YNR048W 
YLR199C YLR351C YML072C YMR148W YNL022C YNL190W YNR051C 
YLR201C YLR352W YML074C YMR151W YNL023C YNL191W YNR054C 
YLR202C YLR356W YML079W YMR155W YNL024C YNL194C YNR061C 
YLR211C YLR358C YML082W YMR157C YNL026W YNL195C YNR065C 
YLR213C YLR365W YML089C YMR160W YNL028W YNL196C YNR066C 
YLR215C YLR366W YML101C YMR163C YNL034W YNL200C YNR068C 
YLR217W YLR376C YML108W YMR171C YNL035C YNL201C YNR069C 
YLR218C YLR379W YML117W YMR173W-A YNL036W YNL203C YNR071C 
YLR221C YLR387C YML118W YMR178W YNL040W YNL205C YNR073C 
YLR224W YLR392C YML125C YMR181C YNL042W YNL207W YOL002C 
YLR225C YLR400W YML131W YMR184W YNL043C YNL208W YOL003C 
YLR230W YLR409C YML132W YMR187C YNL046W YNL211C YOL008W 
YLR235C YLR412W YML133C YMR192W YNL047C YNL212W YOL014W 
YLR236C YLR413W YMR002W YMR193C-A YNL050C YNL215W YOL015W 
YLR238W YLR416C YMR003W YMR196W YNL056W YNL224C YOL022C 
YLR241W YLR419W YMR009W YMR204C YNL058C YNL226W YOL030W 
YLR243W YLR422W YMR018W YMR206W YNL063W YNL228W YOL032W 
YLR247C YLR424W YMR019W YMR209C YNL086W YNL235C YOL036W 
YLR251W YLR426W YMR027W YMR210W YNL087W YNL237W YOL042W 
YLR252W YLR427W YMR029C YMR215W YNL092W YNL253W YOL045W 
YLR254C YLR434C YMR030W YMR222C YNL105W YNL260C YOL046C 
YLR255C YLR435W YMR041C YMR226C YNL109W YNL265C YOL048C 

YLR285W 
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YOL050C YOR090C YOR286W YPL093W YPR031W 
YOL053W YOR091W YOR287C YPL095C YPR038W 
YOL063C YOR097C YOR289W YPL098C YPR044C 
YOL070C YOR102W YOR292C YPL102C YPR045C 
YOL073C YOR104W YOR298W YPL105C YPR048W 
YOL083W YOR105W YOR302W YPL107W YPR050C 
YOL084W YOR111W YOR309C YPL108W YPR053C 
YOL085C YOR112W YOR311C YPL109C YPR059C 
YOL087C YOR114W YOR314W YPL110C YPR061C 
YOL093W YOR121C YOR315W YPL113C YPR076W 
YOL098C YOR138C YOR318C YPL114W YPR077C 
YOL099C YOR141C YOR324C YPL136W YPR084W 
YOL101C YOR145C YOR325W YPL142C YPR085C 
YOL106W YOR146W YOR331C YPL146C YPR090W 
YOL107W YOR154W YOR333C YPL150W YPR093C 
YOL109W YOR155C YOR345C YPL158C YPR096C 
YOL111C YOR161C YOR350C YPL159C YPR098C 
YOL118C YOR164C YOR352W YPL165C YPR099C 
YOL124C YOR169C YOR353C YPL166W YPR106W 
YOL131W YOR172W YOR364W YPL170W YPR114W 
YOL132W YOR173W YOR367W YPL171C YPR115W 
YOL137W YOR175C YOR378W YPL181W YPR118W 
YOL146W YOR179C YOR379C YPL183C YPR126C 
YOL150C YOR186W YOR385W YPL186C YPR127W 
YOL152W YOR189W YOR387C YPL201C YPR130C 
YOL154W YOR205C YOR389W YPL205C YPR136C 
YOR004W YOR206W YOR390W YPL207W YPR143W 
YOR006C YOR214C YOR392W YPL208W YPR144C 
YOR007C YOR215C YOR393W YPL216W YPR148C 
YOR009W YOR220W YPL004C YPL222W YPR152C 
YOR019W YOR225W YPL005W YPL226W YPR157W 
YOR021C YOR227W YPL009C YPL229W YPR169W 
YOR034C YOR228C YPL014W YPL230W YPR171W 
YOR042W YOR243C YPL024W YPL236C YPR172W 
YOR050C YOR246C YPL025C YPL238C YPR174C 
YOR051C YOR248W YPL034W YPL245W YPR179C 
YOR053W YOR251C YPL044C YPL246C YPR188C 
YOR054C YOR252W YPL052W YPL247C YPR203W 
YOR059C YOR258W YPL054W YPL251W Q0032 
YOR060C YOR263C YPL056C YPL260W Q0092 
YOR062C YOR264W YPL064C YPL263C 
YOR066W YOR271C YPL066W YPL276W 
YOR068C YOR277C YPL068C YPL280W 
YOR072W YOR279C YPL070W YPL283C 
YOR073W YOR282W YPL071C YPR003C 
YOR082C YOR283W YPL073C YPR004C 
YOR086C YOR284W YPL074W YPR014C 
YOR088W YOR285W YPL077C YPR015C 
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App-3. YEAST-ARABIDOPSIS HOMOLOGY PAIRS IDENTIFICATION. 
 
 
 

Figure A-2 shows the results for BLAST with all hits and best hits only. Figure A-

2 shows that there is an increase in the probability of Yeast and Arabidopsis pairs sharing 

the same function with the decrease in the E-value. The probability decreases with an 

increase in the INDEX level. The probability is better when only the best-hits pairs are 

considered. Figure A-3 shows the distribution of the total number of all Yeast and 

Arabidopsis pairs identified by BLAST. 

We also compared the results of FASTA with BLAST for the best hits pairs. 

Figure A-4 shows that in addition to the above observations, the probability of sharing 

the same function is more with the Yeast and Arabidopsis best hits pair identified by 

FASTA as against that identified by BLAST. Figure A-5 shows the distribution of the 

total number of best hits Yeast and Arabidopsis pairs identified by FASTA and BLAST. 

In addition to these results, it is also important to know the baseline probability for any 

non-homologous Yeast and Arabidopsis pair, to share the same function (Figure A-6). It 

is evident from this plot that the probability of any non-homologous Yeast and 

Arabidopsis pair, to share the same function also decreases with the increase in the 

INDEX level. Clearly, the probability of homologous pairs sharing the same function 

INDEX level is significantly more in comparison to that of non-homologous pairs. 

Yet we were not very satisfied with the results from FASTA and BLAST based 

on the E-value. So we instead decided to use a different approach based on the percentage 

of the sequence identity between the pairs identified by BLAST. Figure A-7  
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Figure A-2. Probability of matching function for INDEX level 1-8 for Yeast and 

Arabidopsis homology pairs, for BLAST all against best hits pairs. 
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Figure A-3. Distribution of Yeast-Arabidopsis homology pairs in each E-value range 

for all BLAST-hit pairs.  
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Figure A-4. Probability of matching function for INDEX level 1-10 for Yeast and 

Arabidopsis homology pairs, for FASTA and BLAST best hit pairs. 

 

 

 

 71 



 

 

 

 

 

 

FASTA Vs BLAST best hit #pairs

0
500

1000
1500
2000
2500
3000

1e
-1

1e
-10

1e
-20

1e
-30

1e
-40

1e
-50

1e
-60

1e
-70

1e
-80

1e
-90

1e
-10

0

E-value

#p
ai

rs FASTA
BLAST

 

Figure A-5. Distribution of Yeast-Arabidopsis pairs in each E-value range for 

FASTA and BLAST best hits pairs. 
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Figure A-6. Probability of matching function for INDEX level 1-13 for Yeast-

Arabidopsis non-homologous pairs. 
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Figure A-7. Probability of matching function for INDEX level 1-8 for Yeast and 

Arabidopsis homology pairs, against percentage of sequence identity for BLAST. 
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shows the results based on the percentage of sequence identity. There is an increase in the 

probability of Yeast and Arabidopsis pairs sharing the same function with an increase in 

the percentage of sequence identity between the pairs. The probability decreases with an 

increase in the INDEX level. The results of sequence identity are better in comparison to 

those from FASTA and BLAST based on E-value. It is an indication that the function can 

be transferred from Yeast to its homologs in Arabidopsis. 
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