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Abstract 

 

Geospatial data of national infrastructure are a valuable resource for visualization, 

analysis, and modeling. Building these foundation-level geospatial infrastructure data sets 

presents numerous challenges. Among those challenges is that of acquiring non-visible 

attribution of particular infrastructure entities for which there is no viable tabular source. 

In the case of electric power transmission lines, these data are difficult to acquire, 

particularly nation-wide. The route, or geometry of transmission lines can be determined 

from aerial imagery, but nominal voltage, a fundamental requirement for analysis and 

modeling, is not readily apparent. However, inferences can be made about the nominal 

voltage based on visual characteristics, or predictors. This study develops a methodology 

to extract predictors from high-resolution aerial imagery and test the efficacy of those 

predictors for classifying the nominal voltage of transmission lines using a supervised 

classifier.  
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Chapter 1 

Introduction 

Critical Infrastructure and Geospatial Data Sets  

As its designation implies, critical infrastructure is a selection of national 

infrastructure that is crucial to a country. On February 12, 2013, the White House 

released Presidential Policy Directive 21 (PPD-21), which outlined sixteen sectors of 

critical infrastructure. Communications, Emergency Services, Food and Agriculture, 

Transportation Services, and Energy are a few of the critical infrastructure sectors 

identified in this directive (1). According to PPD-21, the infrastructure within these 

sectors provides services that are critical for the nation to function (1); therefore, 

increasing and preserving their stability is of great national importance (1). 

From a national perspective, the importance of critical infrastructure data 

arguably equals that of the physical infrastructure components themselves. In particular, 

geospatial data of critical infrastructure are a valuable resource for many communities for 

the purposes of visualization, analysis, and modeling. Of the three strategic imperatives 

articulated by PPD-21, the second states the priority to “Enable effective information 

exchange by identifying baseline data...” (1). This imperative not only underscores the 

importance of critical infrastructure data but also identifies the need for data to be shared 

effectively. The directive also charges federal agencies “to map geospatially, image, 

analyze, and sort critical infrastructure…” (1). So while identifying and sharing data is an 

overall priority for critical infrastructure security and resilience, geospatial data is of 

particular importance. An existing program that carries out this directive is the Homeland 
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Security Infrastructure Program (HSIP), which combines high-quality geospatial 

infrastructure data provided by all levels of government and the private sector for use by 

many communities, particularly Homeland Defense, Homeland Security, and National 

Preparedness - Protection, Prevention, Mitigation, Response, and Recovery (NP-

PPMR&R)(2). The HSIP databases, which encompass foundation-level geospatial data 

sets from all critical infrastructure sectors, are used by the aforementioned communities 

for many applications, including “planning, situational awareness, threat and impact 

analysis (natural or man-made), modeling emergencies, protection of borders, and 

decision making during response and recovery operations” (2). In short, these geospatial 

data offer considerable utility to many communities for numerous applications. This 

study stems from an effort to create one of these geospatial data sets for the HSIP 

community.  

The Problem – Nominal Voltage Data 

 Building these geospatial infrastructure data sets presents numerous challenges. 

Among those challenges is that of acquiring non-visible attribution of particular 

infrastructure components for which there is no publically available tabular source. This 

issue presents itself in many of the data sets within the energy sector. In the case of 

electric power transmission, the route, or geometry, of an overhead transmission line can 

be identified from high-resolution aerial imagery. However, nominal voltage data is not 

widely available in public sources. 

Nominal voltage is a valuable datum in a transmission data set. Voltage is the 

difference in potential energy between two points on a circuit. The nominal voltage of a 
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transmission line is the voltage at which the line is designed to operate. These data are an 

essential input for power flow modeling and simulation. For HSIP users, particularly the 

NP-PPMR&R community, nominal voltage data provide emergency planners and 

responders with a gauge of a particular transmission line’s relative importance as an 

infrastructure asset. However, voltage data for a particular transmission line may not be 

available in public sources. Herein lies the problem that this study will address: how can 

this gap in nominal voltage data be filled for a geospatial data set of transmission lines?  

Electric Power Transmission Background  

Transmission lines transmit electricity over long distances from electric power 

generators to substations near major load centers at nominal voltages above 69 kilovolts 

(kV) (3; 4). The majority of transmission lines in the U.S. are three-phase alternating 

current (AC)(3). Transmission lines above 69kV and up to 230kV are referred to as high 

voltage lines, while 345kV, 500kV, and 765kV are considered extra-high-voltage lines 

(EHV)(3). A single-circuit AC transmission line is comprised of three conductors, or 

three bundled conductors—one conductor, or bundle, per phase of AC (3). For the 

purposes of this study, transmission circuits will be referred to as transmission lines. 

Though the electric power transmission industry includes many nominal voltages, 

transmission owners tend to use a small selection of voltages to provide their territory 

with power (4; 3). The reasons for this are both historical and economic. Generally, when 

peak energy demand exceeds four times the peak demand at the time the current highest 

transmission voltage was introduced, the utility will introduce new transmission lines 

with twice the voltage of the existing lines (4). Likewise, adjacent utilities generally 
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service their territory with similar voltages since it is more economical to build 

interconnections between transmission infrastructure without a transformer (4). 

Therefore, the voltage portfolios of neighboring utilities are likely to be similar, whereas 

utilities in different parts of the country may use voltages portfolios that are quite 

different from each other. 

Inferences can be made about the nominal voltage of a transmission line based on 

its visual characteristics. Steel towers, for example, typically support very high voltage 

lines, while wood poles typically support lower voltage lines (3). Likewise, right-of-ways 

(ROW) are typically wider and support structures are usually taller when accommodating 

higher voltage transmission lines (3). What if characteristics such as these could be 

quantified as predictors of nominal voltage? What if those predictors could be extracted 

from high-resolution aerial imagery and used for a supervised classification? 

Objective 

Develop a methodology to estimate the nominal voltage of electric power 

transmission lines from high-resolution aerial imagery using supervised classification. 

Research Questions 

1. What predictors of nominal voltage can be extracted from aerial imagery and 

how can they be quantified? 

2. How effective are these predictors in a supervised classification and how 

reliable is the classification? 
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Chapter 2  

Previous Work 

Introduction 

Geospatial data sets of transmission lines, including voltage data, exist in various 

forms. However, existing sources of the transmission line data have significant 

limitations. Among the most notable communities in possession of these data are 

commercial vendors, utilities and electric power companies, and Volunteered Geographic 

Information (VGI) projects. The data sets within these communities vary considerably, 

despite representing the same physical infrastructure. More specifically, the accessibility, 

shareability, and quality of these existing data sets differs. In an attempt to justify the 

value of creating a new transmission line data set using the methodology outlined in this 

study, each of the aforementioned data sets will be assessed in terms of accessibility, 

shareability, and data quality.  

Commercially Licensed Data Sets 

Arguably, the best geospatial data of U.S. transmission lines are owned and 

maintained by commercial vendors. Three of the forerunners in this sector are Platts, 

Ventyx, and MAPSearch.com. Platts, a division of McGraw Hill Financial, provides 

expertise, as well as spatial and market data pertaining to energy, petrochemicals, metals, 

and agriculture, to customers from numerous industries, utilities, and government 

agencies (8). Ventyx, an ABB Company, provides similar services and information, with 

an additional emphasis on enterprise software for use by various industries (9). The 

PennWell Corporation’s MAPSearch.com offers nationwide GIS data sets of various 
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energy infrastructure, including transmission lines (10), but very few details were found 

about this data set. 

The accessibility of their respective transmission data sets varies slightly between 

Platts and Ventyx, while the use restrictions attached to their products are similar. As 

commercial products, access to these data sets requires that they be purchased. By 

purchasing these copyrighted data, users agree to abide by their commercial licenses. 

However, the manner in which these data sets are made available to users differs. 

Whereas Platts data can be ordered as a standalone GIS layer (11), Ventyx offers 

transmission data within their commercial software application called EV Energy Map—

a component of Velocity Suite, their conglomeration of software and data for the energy 

industry (12). However, the Ventyx data set can also be accessed apart from their 

software. The U.S. Energy Information Administration (EIA) hosts a selection of Ventyx 

transmission line data for public viewing outside EV Energy Map via their U.S. Energy 

Mapping System and other interactive web maps (13). Due to copyright restrictions, 

however, these transmission data do not include voltage, are not available for download, 

nor are they viewable at scales larger than 1:4,622,324 (13). 

In terms of data quality, the geospatial transmission data sets provided by Platts 

and Ventyx are perhaps the best available for the U.S., but each has notable issues. As a 

testament to the overall quality of the Ventyx data set, the Homeland Security Geospatial 

Concept of Operations (GeoCONOPS), an initiative to improve coordination of 

geospatial activities among all levels of government, the private sector, academia, and the 

public (14), documents the Ventyx data set as an authoritative geospatial data source and 
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cites that it has been incorporated into the HSIP database (15). The Platts data include 

transmission lines for North America with voltages between 110kV and 765kV in 

addition to some lower voltage lines (16). The attribution of the data set is extensive, 

effectively capturing data about primary, secondary, and tertiary line ownership, the 

number of circuits represented by the line, the type of line, the status, the substations on 

either end of the line, positional reliability, and voltage (16). With regard to horizontal 

positional accuracy, the data comply with, and in some areas exceed, National Map 

Accuracy Standards for a 1:250,000 map scale (16). However, the data lineage, or 

provenance, which describes the source, acquisition method, compilation, and any 

derivations of the information (17; 18), is not provided (16). The lineage of a data set is 

perhaps the most important element in data quality, particularly when assessing how 

appropriate the data are for a given application (17). Without any metadata to exposit the 

history and development of the data set, its quality is uncertain. This issue is compounded 

by the absence of a source field in the attribution that could offer insight about the 

provenance of particular features (16), especially those that are not immediately apparent 

based on appearance, such as voltage. It must be noted, however, that this assessment is 

based on the metadata available on the Platts website. 

The Ventyx data set appears to suffer from the same quality issue, though to a 

lesser degree. Although not publicly available on the Ventyx website, selections of EV 

Energy Map transmission line metadata, as well as selections of the data, are available in 

the public domain as a part of the Bureau of Land Management’s Rapid Ecological 

Assessment of the Middle Rockies and Northwestern Plains ecoregions (19; 20; 21). 



 
8 

According to the metadata, published in June, 2013, the data are a part of EV Energy 

Map and include transmission lines typically 115kV and above that have been clipped to 

the boundary of ecoregions (20; 21). The metadata do not explicitly name Ventyx as the 

data supplier. Nevertheless, as the source for the non-ESRI attributes, the metadata cite 

Global Energy Decisions—a provider of software and information that was acquired by 

Ventyx in June, 2007 (20; 21; 22). The attribution fields are nearly identical to the Platts 

data set, including voltage, but also include a source field to preserve the origin of each 

feature (20; 21). However, the lineage section of the metadata is empty, apart from citing 

EV Energy Maps (20; 21). This void could exist due to a failure to preserve the complete 

lineage information from the Ventyx data set when the data were copied. Regardless, an 

examination of the attribute data does not dismiss uncertainty surrounding the 

provenance. The source field for these data sets includes a combination of designations 

such as “Aerial Imagery”, “USGS Digital Line Graph”, “Regional Maps”, “Company 

Maps”, “Company Digital Data”, “Holding Company Maps”, and “EV Research” (20; 

21). For a given feature, the field typically includes two or three sources, the first of 

which is one of the first six sources listed above (20; 21); the final source provided in this 

field is “EV Research”, with a few exceptions (20; 21). Six of these designations point to 

reasonable sources for transmission line geometry, but the last and most common 

designation, “EV Research”, which must refer to the origin of the tabular data values, 

describes a method, rather than a particular source. Given that the source field cites an 

unspecified method as the origin of the tabular data associated with particular features, 

users are left to make a judgment about the reliability of the data based on the credentials 
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of the originator, rather than an authoritative source.  Thus, the provenance, and 

therefore, the quality of the tabular data—particularly voltage—is uncertain. 

In addition to issues with accessibility and provenance, commercially licensed 

data sets have restrictive terms of use. As licensed data, these products cannot be shared 

by the product’s consumer, or licensee. Distributing licensed data to any person, 

organization, or agency other than the licensee would be a violation of the terms of use. 

While not necessarily a significant restriction for some uses of transmission line data, this 

stipulation can be notably constraining if data are intended for distribution to a wide 

community of numerous agencies and organizations. 

Utility and Electric Power Company Data Sets 

Utilities and electric power companies that own transmission lines also have 

geospatial transmission data, but access to these data sets is limited. The Tennessee 

Valley Authority releases information regarding their ongoing and future transmission 

projects which includes a PDF map of the proposed route and the surrounding electric 

power infrastructure (23). However, the geospatial data displayed in these maps is not 

made available to the public. Similarly, Xcel Energy Inc. and American Electric Power 

release information pertaining to select ongoing transmission projects but access to the 

GIS data is not open to the public (24; 25). Other utility companies disclose limited 

information about current projects and instead encourage interested parties to contact 

them for additional information (26). Furthermore, utility companies may not own the 

geospatial data they use, as suggested by project maps released by Texas Entergy, Inc., a 
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part of the Entergy Corporation, which cite the Ventyx Velocity Suite as the data source 

(27). 

In contrast to the previous examples of very limited data access, the utilities in 

Minnesota combined their geospatial data into a unified data set as a part of the 

Minnesota Electric Transmission Project, a collaborative effort between the Minnesota 

Department of Commerce and the Minnesota Geospatial Management Office (28). A 

statewide PDF map of the data set is publicly available. Accessing the GIS data, 

however, requires a formal request (28). Furthermore, the use constraints, as articulated 

in the metadata, prevent users who have been granted access to the GIS data from 

transmitting or sharing the data with a third party (28). These restrictions are in place due 

to security concerns (28). Whether this a common reason for utilities and electric power 

companies to restrict access to their data or an exception, cannot be determined. 

Regardless of the reason or reasons, accessibility remains a primary issue for utility and 

electric company-owned data. 

Volunteered Geographic Information 

Electric power infrastructure has not been passed over by the VGI community, 

particularly the OpenStreetMap (OSM) project. In sharp contrast to the data sets 

discussed previously, OSM allows unrestricted access to its database, which contains data 

of numerous geospatial phenomena worldwide, including roads, buildings, airports, 

railway stations, and more (29). These data are collected, contributed, and edited by 

thousands of ordinary volunteers either working independently or in project-oriented 
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groups (29). OSM contributors collect data in the field using GPS and out-of-copyright 

local maps, or remotely by tracing aerial imagery, with a particular reliance on local 

knowledge (30; 31). With regard to electric power infrastructure, OSM contains locations 

and basic descriptions of generation plants, substations, transmission and distribution 

lines, towers, and poles (32). Contributors have the option to record voltage values for 

transmission and distribution lines (32), and based on the ITO web map, attribution of 

230kV lines and above appear extensive (33). 

 While OSM data can be freely accessed and used by the public, it bears a 

restriction regarding its use. The Creative Commons Open Database License (ODbL), 

under which OSM data are licensed, allows users to distribute, create, and adapt the data, 

provided users properly attribute OSM and share derivations of the data under the same 

open license if they are used publicly (29). The ODbL preserves the intentions of the 

contributors to distribute their data openly and prevents entrepreneurial parties from 

repackaging the data under an alternate license. 

 The most pertinent issue with OSM data and VGI in general, pertains to data 

quality. The issue stems from the volunteered nature of the data. Data are collected by 

ordinary people with varying amounts of local knowledge and experience with data 

collection (29). As a guide to help contributors determine line voltages, the OSM Wiki 

provides the following simple, yet problematic metric: “the length of the isolator 

(separating wires from tower) is 1 meter per 100 000 Volt” (34). Aside from potential 

error involved in estimating these measurements from the ground, the metric stated above 

is not valid. The rating of an insulator depends on its design, material, and configuration 
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(3), not its length directly. If a contributor possessed this knowledge, their estimates 

could be quite accurate. However, without a way to assess the qualifications of 

contributors and no quality control (29), verifying the accuracy of volunteered voltage 

data becomes a necessary requirement for establishing reliability of the data. In the 

absence of local knowledge or access to an alternate, authoritative source, verifying 

voltage data remains an issue for the OSM data set. 

Summary 

 While geospatial transmission data sets with voltage are already available, they 

have limitations in the areas of data accessibility, shareability, and quality. Access to and 

shareability of commercial and utility data sets is limited—the former, due to licenses, 

the latter, security concerns. The provenance of voltage data included in commercial 

products can be unclear, while the reliability of these data, in the case of VGI, is entirely 

unknown. A data set created using the method outlined in this study has advantages over 

the aforementioned data sets in the key areas previously addressed. In particular, this 

study contributes a clearly defined, quantifiable, and repeatable methodology to estimate 

nominal voltage which can be used in the creation of a more accessible and shareable 

transmission line data set. 
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Chapter 3  

Data and Methodology 

Study Area 

This study focused on a selection of transmission lines in the state of Minnesota. 

There are five commonly used transmission voltages in Minnesota—namely, 69kV, 

115kV, 161kV, 230kV, and 345kV. By limiting the geographic extent to a state, the 

complexity of the classification should be less than if a wider area was considered, since 

a wider region might include additional voltages and therefore, additional classes. The 

reason for selecting this study area was pragmatic, since it was the only area where 

authoritative transmission data could be acquired. 

Training Data 

The training data used in this study was created from data provided by the 

Minnesota Geospatial Management Office, mentioned previously, which included a 

shapefile of transmission lines for the state of Minnesota. From this shapefile of 3,528 

transmission line features, a selection of 56 transmission lines was taken for training 

purposes. 

The selection of training features was made based on voltage, spatial distribution, 

and positional accuracy. Of the total features in the Minnesota data set, 3,457 features 

belong to one of the five voltages used in this study: 69kV, 115kV, 161kV, 230kV, and 

345kV. A map of all transmission lines in this data set—symbolized by voltage—can be 

seen in Figure 8 (see Appendix). Other voltages in the shapefile include 34kV, 42kV, 



 
14 

138kV, 250kV, 400kV, and 500kV. These voltages, represented by 71 features, were 

excluded from the study due to their rarity—many corresponded to fewer than three 

transmission circuits. At least eight features were selected as training lines for each 

voltage in an effort to adequately represent each voltage class. Table 1 shows the number 

of original line features in the Minnesota data set by voltage class. The number of 

original line features is misleading. For example, while there were 2,218 69kV line 

features in the original data set, only 503 circuits could be identified. As many as 29 

original line features could comprise a single transmission circuit. Therefore, the original 

features were dissolved based on their unique circuit designations. As a result of this step, 

1,216 original features could not be successfully tied to a circuit and were therefore 

excluded from subsequent steps. Training lines were selected from the remaining 886 

circuits. 

 

Table 1. Original Minnesota transmission line data, circuits, training lines by voltage 

Voltage (kilovolts) Original Line 

Features 

Original Circuits Sample Lines 

69 

115 

161 

230 

345 

Total 

2,218 

785 

152 

176 

126 

3,457 

503 

287 

30 

42 

24 

886 

13 

14 

10 

11 

8 

56 
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In an effort to adequately sample a variety of transmission lines across the entire 

state, training features were also selected based on their location. Rather than examining 

lines clustered in a small region of the state, a dispersed collection of lines was selected. 

By selecting lines distributed across the state, the effect of differing geographies on 

transmission line characteristics could be better represented. Likewise, this approach 

attempted to account for the effect of varying transmission line construction practices of 

multiple transmission owners. For example, one transmission owner may prefer using 

wood supports for 115kV lines while another favors steel supports for the same voltage. 

If the selection of lines were limited to small area with a single transmission owner, this 

variation between owners would be missing from the training data set. 

 Likewise, the training selection was limited to features with good positional 

accuracy. Upon further examination of the original data set, numerous line features were 

ruled out because their corresponding transmission lines could not be identified from 

aerial imagery. Only features located close to their physical phenomena were practical 

candidates for the training data set. 

 Drawing from existing applications of supervised classification in remote sensing, 

there are at least two approaches that could have been undertaken in this study. 

Conceptually, the transmission circuits in this study could be pictured as the equivalent of 

objects in an object-based classification. However, if each circuit is thought of as a single 

object, then the total number of objects in the training data would be small, comprised of 

fifty six lines. Furthermore, if an entire line, which may be many miles long, is associated 

with only one value for each predictor, any variation in the line’s characteristics along its 
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entire length would be lost. However, if a conceptual comparison is drawn between this 

study and pixel-based classification, then a single point along a given transmission line 

could be conceptualized as a pixel in an image. Just as an object in an image is 

represented by numerous pixels, each with slightly different values, so a transmission line 

can be represented with numerous observations by taking multiple measurements at 

different locations along the line. By using this cluster method, the size of the sample 

data could be expanded and each class can be more proportionally represented. Likewise, 

this method was expected to more accurately capture variation along each line. 

A random sample of seven locations, hereafter referred to as sample points, were 

selected along each line feature. For a given line, the location of these points was selected 

by generating seven random digits between zero and the total length of the line. The 

locations associated with these measurements was then identified via linear referencing. 

The sample points were then moved to the closest support structure. These data were 

stored as point features in the File Geodatabase. Predictor measurements, detailed below, 

were made in ESRI’s ArcMap environment at each of these locations—three-hundred 

ninety-two in total. A map of the sample lines and sample points used in this study can be 

seen in Figure 1. 

Predictors 

Overview 

Predictor measurements were collected via image interpretation methods of 0.3 

and 1-meter resolution aerial imagery. Acquiring adequate imagery in the exact locations 
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Figure 1. Map of Minnesota transmission lines and sample points used in this study 
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needed proved quite time-intensive. Most predictor measurements could be made from 

tiled basemap imagery, with the exception of support height. These measurements 

required imagery with a precise date and time of when the image was captured. Finding, 

acquiring, and managing these images proved slow. Once acquired, these images, along 

with the basemap imagery, were used to interpret and measure predictors. 

Support Height 

 Generally, a higher clearance between the ground, or other obstacles, and the 

conductors is required the greater the line voltage, which necessitates taller supports (3). 

The distance between the base and the top of the support varies greatly depending on the 

support type and orientation of the conductors. A single pole with vertically oriented 

conductors sacrifices greater height for a smaller footprint. An H-frame line of the same 

voltage would not be as tall, but would have a wider footprint since the conductors are 

oriented horizontally. In an attempt to minimize this variation, support height was 

measured from the center of the base of the support to the cross-section or post insulator 

with the lowest conductor, rather than the top of the structure. 

 These measurements were taken from 1-meter resolution aerial imagery using 

mensuration tools available in ArcMap. Assuming an image has precise metadata on the 

date and time it was taken, the mensuration tools can be used to estimate the height of a 

structure by measuring the length of its shadow, assuming flat topography and a vertical 

structure. 

 Acquisition of aerial images with precise metadata proved quite challenging, and 

the process entailed avoidable setbacks. Images were acquired from DigitalGlobe via the 
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EnhancedView Web Hosting Service. In the first attempt, batches of images were 

selected, mosaicked, and downloaded. During collection of support height measurements, 

the date of one image, which depicted a snow-covered landscape, was identified as 

falling within the summer months. Upon review, the measurements collected from these 

images had no discernable relationship to voltage, which prompted closer examination of 

the images and metadata. It was then discovered that metadata records had been 

duplicated as a part of the mosaicking process. To avoid this issue in the final attempt, 

images were selected and downloaded individually, prior to measurement collection. 

Support Span 

The support span predictor was measured as the average distance between the 

support and the closest supports on the circuit. This predictor was expected to be more 

indicative of support height than voltage and therefore, a poor predictor. It was, however, 

easier to measure than the support height. However, the span is affected by the local 

topography (3), so this predictor was suspected to be a weaker input for the classifier. 

Phase Spacing 

The phase spacing predictor was measured as the average distance between the 

each phase of the circuit. Higher voltage lines require greater spacing between phases to 

ensure insulation standards are met (4). Collecting measurements of structures with 

horizontally-aligned phases was straightforward; structures with vertically-aligned phases 

was not feasible. 
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Right of Way Width 

The right of way width predictor was measured as the distance between the tree 

line on either side of and perpendicular to the circuit. In the event that the circuit shared a 

right of way with another circuit, the distance from the support to the nearest tree line 

was measured and then doubled. Typically, utilities are required to maintain wider cuts 

through trees and vegetation to accommodate higher voltage lines and reduce the risk of 

circuit failure due to falling trees (4). An obvious constraint of this predictor is that it 

cannot be collected in areas without trees or tall vegetation. 

Insulator Type 

 The insulator type predictor was measured as a binary variable. Insulators were 

identified as being either string insulators, which are suspended beneath a cross-section 

or arm of the support, or post insulators, which are attached above a cross-section or 

mounted perpendicularly to a single pole support. Post insulators are typically used on 

lower voltage transmission lines with lighter conductors (3), making them a suspected 

predictor of voltage. Generally, insulator type was determined by first identifying the 

support type or by examining the support shadow. 

Support Type 

The support type predictor was comprised of qualitative variables that describe 

the type of structure supporting the circuit. As an example, a support type could be a 

single pole, a double pole, otherwise known as an H-frame, or a tower. This variable was 

suspected to be an important prerequisite to a more accurate classification, not 

necessarily as a predictor of voltage directly, but rather, as a predictor of sub-classes. As 
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an example, a 115kV line supported by a single pole is likely to have a more narrow 

right-of-way than a 115kV line supported by a double pole, or H-frame, support since the 

former aligns the conductors vertically and therefore, occupies less horizontal space than 

the latter (3). Depending on this predictor, subsequent predictors may exhibit differing 

distributions within the same class, which was examined prior to classification.  

While initially collected as three binary variables, corresponding to single pole, 

H-frame, and pylon, these variables did not perform well in the classification. In attempt 

to improve the importance of this predictor, as determined by the goodness measure, the 

H-frame and pylon variables were combined, and then merged with the single pole 

variable to create a single, binary predictor of support type. 

Support Material 

 The support material predictor was comprised of a qualitative, binary variable that 

describes the construction material of the support: wood, or metal/concrete. Wood-pole 

supports are generally most economical for lines up to 230kV (3), while the mechanical 

strength of concrete and especially metal make them optimal for higher voltage lines (3). 

Distinguishing between concrete and metal poles was found to be infeasible, so these 

variables were merged. 

Multi-circuit 

 The multi-circuit predictor was measured as a binary variable. Some transmission 

supports are designed to accommodate more than one transmission circuit. Based on 

observations of transmission lines in the MN data set, these multi-circuit supports 

appeared to be more prevalent among some voltage classes. 
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Bundled Conductors 

The bundled conductors predictor was also measured as a qualitative, binary 

variable that indicated whether each phase of AC is carried by more than one conductor. 

Bundled conductors are commonly used on EHV transmission lines to reduce corona 

discharge, whereby the air surrounding an energized conductor is ionized, resulting in 

power loss (4). Ideally, this variable would be measured on a continuous scale, since the 

number of bundled conductors tends to increase with higher voltage (3), but making this 

distinction was infeasible using 0.3-meter imagery so a binary measurement was used. 

Classification 

Classification trees are a form of decision tree, and like all classifiers, are used to 

predict categorical outcomes based on observations with known outcomes, or classes 

(35). The classification is accomplished in part through a processes of segmenting, or 

splitting the data into groups based on rules (35). If observations were plotted on an x-y 

plane, classification trees successively divide this plane into regions in an attempt to 

minimize the heterogeneity of classes within regions based on the training data set (35). 

Conceptually, this method resembles a tree where each rule splits the data into branches, 

at the end of which are terminal nodes, or leaves (35). An example of a tree produced in 

this study can be seen in Figure 2. 

The classification tree method was used due to its simplicity and suitability for 

qualitative variables. Although decision-tree based methods do not perform as well as 

other classifiers, they can be interpreted relatively easily (35). Likewise, classification 
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Figure 2. A classification tree produced using this method 

 

trees are well-suited for qualitative predictors (35), of which there were many in this 

study. As for their weaker performance compared to other classifiers, for this 

foundational study, this was an acceptable trade-off for clearer interpretability. This study 

is primarily concerned with a new application of classification methods, and therefore, 

the framework of the overall voltage classification method must be affirmed before 

additional, more complex classifiers are introduced. Once this foundational methodology 

has been tested, future work could involve the use of alternative classifiers to improve the 

predictive accuracy. 

 Classification trees in this study were created in R using the rpart package. The 

rpart module uses a recursive partitioning method that repeatedly partitions observations 

using maximal impurity reduction criteria, or rules that attempt to split the data such that 



 
24 

the impurity, or heterogeneity, of nodes are minimized (36). Prior to a split, all predictors 

are ranked according to their impurity reduction criteria—or goodness measure—and the 

best is used to split the observations, after which the process is repeated (36). Predictors 

that are used for these splits are referred to as primary variables (36). In the event that an 

observation is missing a value for a primary variable, a surrogate variable is used (36). 

The surrogate variable and split are determined using the partitioning method again to 

best separate observations into the nodes decided by the original primary variable split 

(36). 

In order to avoid overfitting a model to the training data, the tree must be pruned, 

or restrictions placed on the number of partitions, or splits. Overfitting occurs when the 

model conforms too closely to the training data—indicated by numerous splits—to be 

useful when applied to other data. Trees in this study were pruned by selecting the 

complexity parameter—and therefore the number splits—related to the lowest cross-

validation error. Rpart calculates a complexity parameter (cp), or cost associated with 

adding additional partitions to the tree (36). A lower cp results in more splits and 

increased risk of overfitting the training data, so rpart also performs 10-fold cross-

validation for each additional split (36). Selecting the complexity parameter tied to the 

lowest cross-validation error is an attempt to parse the tree to a size that adequately 

classifies the observations without overfitting the training set. 

To train and test the tree, the sample point data set was divided into a training data 

set and a test, or validation data set. This partition was executed based on the sample 

lines, rather than the sample points. In this way, sample points from the same sample line 
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were not used to both train and test the classification; rather, all sample points belonging 

to each individual sample line were either used for training or testing purposes. 

 The validation set approach was used to evaluate the performance of the 

classification tree when applied to new data. At the sample line level, the data were 

divided into two equal halves with 196 sample points from twenty-eight sample lines in 

each half. The first half was used to train the classification tree, while the other half was 

set aside to test the performance of the tree. Since the performance of the classification 

depends greatly on which samples were used in training and which we set aside for 

testing, this splitting processes was performed randomly in thirty iterations. 

  The predictive accuracy and Kappa-Coefficient were calculated and recorded for 

each validation set iteration. Predictive accuracy was measured simply as the number of 

true positives divided by the total number of observations in the test set, represented as a 

percentage. The Kappa-Coefficient is a measure of classification performance that, unlike 

predictive accuracy, accounts for chance accuracy, and is calculated as 

𝐾 =
Pr(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) − Pr (𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)

1 − Pr (𝑐ℎ𝑎𝑛𝑐𝑒 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
 

where the probability of correct classification is the number of true positives divided by 

the total test observations (37). Chance classification is calculated by first dividing the 

product of observations belonging to class x and classified as x by the total number of 

observations squared, then adding this value for all classes (37). By this measure, a 
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Kappa-Coefficient of 0 would indicate the supervised classification was no better than a 

random classification and 1 would indicate a perfect classification. 

Likewise, the user accuracy and producer accuracy were calculated for each class 

in each iteration. The user accuracy is the probability that the actual class of a given 

observation is x considering it was classified as x, and was calculated as the number of 

true positives for that class divided by the number of observations classified as that class 

(37). The producer accuracy is the probability that an observation belonging to class x 

will be classified as x, and was calculated as the number of true positives for that class 

divided by the number of observations belonging to that class (37). 

As a part of post-processing, the final output of the classifier was aggregated to 

the line features. Each line was assigned to the class with the highest frequency based on 

the mode of its sample points. As an example, if four out of seven sample points 

associated with a single transmission line feature were predicted to be from the 161kV 

class while the remaining three, the 230kV class, the transmission line would be assigned 

to the 161kV class. In this way, outlier sample points that were misclassified can be 

smoothed over in the final cluster classification. 
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Chapter 4  

Results 

Exploring Predictors 

Continuous Predictors  

  An examination of the predictors revealed a distinct signature, of varying 

strengths, with respect to voltage, especially among the continuous predictors. As 

expected, support height and phase spacing, exhibit a distinct, positive relationship to 

voltage. As shown in Table 2, the mean of these predictors increased with each 

consecutively higher voltage. The lowest mean in each of these variables is found in the 

lowest voltage, 69kV, while the highest mean was associated with the highest voltage. 

Exceeding expectations, the support span predictor exhibited an equally distinct signature 

with respect to voltage, as shown by the mean which increased in each consecutive class. 

To a degree, the right of way predictor shares this trend, but the signature was less 

distinct. While overall, the mean right of way was less in the lower classes and greater in 

the higher classes, the mean did not increase with each sequentially higher voltage. In 

particular, the mean right of way for the 161kV lines stood out as an outlier because it 

was greater than the 230kV class and nearly equal to the 345kV class. This was likely 

due to a disproportionately high number of missing right of way values in the 161kV 

class compared to other classes, as evident by the Nulls field. Therefore, among the 

continuous predictors, support height, support, span, and conductor spacing were found 

to exhibit noticeable, positive relationships to voltage, while a weaker trend was shown 

by the right of way width predictor. 
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Table 2. Summary statistics of continuous predictors by voltage 

 69kV 115kV 161kV 230kV 345kV Total 

Sample Points 91 98 70 77 56 392 

Support Height 

  Min. 

 

22.0 27.0 32.0 47.0 65.0  

  Mean 37.6 46.9 57.1 69.5 83.5  

  Std. Dev. 8.7 6.0 10.7 13.2 11.6  

  Max. 70.0 64.0 88.0 110.0 126.0  

  Nulls 0 0 3 0 0 3 

Support Span 

  Min. 225.0 209.0 300.0 581.0 474.0  

  Mean 414.1 573.1 613.7 967.2 980.8  

  Std. Dev. 103.0 134.3 197.4 245.6 141.4  

  Max. 798.0 788.0 1000.0 1660.0 1264.0  

  Nulls 0 0 0 0 0 0 

Conductor Spacing 

  Min. 9.0 10.0 15.0 12.0 15.0  

  Mean 10.1 12.5 16.2 21.0 25.1  

  Std. Dev. 0.7 1.6 1.1 3.6 4.4  

  Max. 11.0 16.0 20.0 29.0 34.0  

  Nulls 80 24 30 7 26 167 

Right of Way Width 

  Min. 40.0 65.0 90.0 90.0 110.0  

  Mean 73.8 90.8 143.3 125.1 150.6  

  Std. Dev. 18.7 12.2 55.1 18.1 69.9  

  Max 130.0 120.0 200.0 160.0 320.0  

  Nulls 65 60 67 47 48 287 
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 While overall, a given continuous predictor might exhibit a distinct, general 

relationship to voltage, some classes displayed stronger signatures than others. As an 

example, Figure 3 shows a frequency plot of support height wherein almost every class 

features a dominant prominence along the x-axis. The 161kV prominence, however, is 

overshadowed by the 115kV and 230kV classes, which was a common characteristic of 

the 161kV class across all continuous predictors. The effect of this lack of dominant 

signature for this class was seen clearly in the classification performance. 

 Furthermore, the variation of continuous predictor values differed notably across 

voltages. The standard deviation rows in Table 2 provide a gauge of the variation within 

classes for any given predictor. Compared to the 69kV, 115kV, and 345kV classes, the 

161kV and 230kV had much higher standard deviations with respect to support span, 

 

 

 
Figure 3. Frequency plot of support height by voltage 
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suggesting that these latter classes have more variation than the former classes. To a 

lesser degree, this trend was also seen in the support height of the 230kV class and in the 

conductor spacing of both 230kV and 345kV. With respect to support height, the 

differing shapes and widths of frequency curves in Figure 3 also illustrates this intra-class 

variation. The 115kV class has a narrow, near-normal curve while the 345kV class 

features a wide, positively-skewed shape. However, the conductor spacing predictor 

showed little variation within classes, excluding the classes mentioned. As noted above, 

industry standards are quite strict in regard to the spacing of conductors in order to 

minimize phase interference, which could account for this finding. Furthermore, the 

presence of any perceived variation within this predictor could be a result of inaccurate 

measurements during data collection. 

 In addition, the intra-class variation resulted in ranges that often overlapped with 

each other—some more so than others. The minimum and maximum rows in Table 2 

showcase a wide range of values within any given class. The support span of the 69kV 

class, for example, varied from 225 to 798ft. while the 115kV class, from 209 to 788ft.—

a considerable overlap, despite having means of 414 and 573ft., respectively. This 

overlap can also be seen in Figure 3. The range of support height of any given class 

overlapped with the range of every other class, which presented a challenge for a tree-

based classification used in this study. The variation within and overlapping among 

classes is also evidenced in Figure 4, which plots support height against support span. 

The scatterplot displays relatively tight, uniform clusters of 69kV, 115kV, and, to a lesser  
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Figure 4. Support span and support height by voltage for sample points 
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extent, 345kV samples. The 161kV class, in contrast, is dispersed—lacking any strong 

clustering or dominance anywhere on graph. As is evident by the classification result, the 

absence of a strong signature in the 161kV across the predictors present negatively 

impacted the predictive accuracy of the classifier vis-à-vis the 161kV class. 

Once again, conductor spacing was an exception to this trend of overlapping 

classes. Apart from the 161kV and 230kV classes, there was relatively little overlap 

among voltages, as seen in Table 2. Again, this was likely due to the nature of industry 

standards and the construction of transmission line supports. 

Regarding variation in the 230kV class, Figure 4 provides further insight. Unlike 

the 161kV class, which lacked a strong signature in neither support height nor support 

span, the 230kV class exhibited two clear signatures, as evident by the two clusters on 

either side of the 345kV class. This class displayed intra-class variation in the form of 

two distinct distributions. The cause of this binary signature stemmed from ownership, 

and brought an important piece of geographic insight to this methodology. The point 

samples with the higher support height and support span were taken from 230kV 

transmission lines owned by two companies in the middle part of Minnesota. A map of 

transmission ownership, produced from the original Minnesota data set, can be seen in 

Figure 9 (see Appendix). These companies built their lines using pylon supports which, 

as seen in Figure 4, were taller and spaced further apart than other 230kV lines sampled 

in this study. The remaining samples were from 230kV lines located in the north, which 

are owned and operated by different companies than those in the middle of the state. The 

northern companies constructed their lines with wooden H-frame supports. Therefore, 
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while two transmission owners may utilize the same transmission voltage, the signatures 

of their respective lines may be vastly different. This finding suggests that consideration 

should be given to ownership, and therefore, geographic regions when training 

transmission voltage classifiers. 

 As expected, collecting some predictor measurements was infeasible for many 

observations. For example, right of way width could not be collected for 237 sample 

points, or approximately 73% of observations due to the absence of a tree line or tall 

vegetation. Likewise, 167 conductor spacing values, or 42% of observations could not be 

measured because the conductors were vertically aligned.  

Binary Predictors 

 Signatures of voltage were less apparent among the binary predictors but visible, 

regardless. Most of the predictors displayed some distinctly lopsided classes, particularly 

for the lower and higher classes, as shown in Table 3. The support type of the 69kV class, 

for example, were mostly single poles, while the 115kV class was mostly H-frames or 

pylons. Likewise, the 230kV class was made up of exclusively H-frames or pylons. 

Similarly, bundled conductors were most commonly found in the 345kV class, rarely in 

the 230kV class, and never in the 69kV and 115kV classes. The 69kV class was made up 

of mostly wooden supports, while the 345kV class was mostly metal or concrete. 

Signatures in the middle classes were less distinct. For example, the 161kV class fails to 

clearly stand out in any predictor. In the support type variable, the class was nearly split 

evenly. In the insulator type and multi-circuit variables, it resembled lower classes. In  
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Table 3. Summary of binary predictors by voltage 

 69kV 115kV 161kV 230kV 345kV Total 

Sample Points 91 98 70 77 56 392 

Insulator Type 

  String 73 88 56 77 56 350 

  Post 18 10 14 0 0 42 

Support Material 

  Wood 66 62 29 36 11 204 

  Metal / Concrete 25 36 41 41 45 188 

Support Type 

  H-Frame / Pylon 12 74 40 77 42 245 

  Single Pole 79 24 30 0 14 147 

Bundled Conductors 

  Yes 0 0 11 6 44 61 

  No 91 98 59 71 12 331 

Multi-circuit 

  Yes 1 3 5 17 26 52 

  No 90 95 65 60 30 340 
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bundled conductors and support type variables, 161kV displayed patterns similar to 

higher classes. 

Classification Results 

Predictor Performance 

 As was apparent after exploring the individual predictors, some predictors 

performed better than others in the classification. For each iteration of the validation set 

approach, wherein the data were randomly divided and half were used to train a tree 

while the other used to test, the predictors used as primary variables in tree construction 

and their rank—determined by variable importance—was recorded. The results can be 

found in Table 4. 

Out of all predictors used in this study, the continuous variables—with the 

exception of right of way—performed best in the classification. Conductor spacing, 

 

Table 4. Predictor performance in tree construction 

 Total Trees as Primary Split Mean Variable Importance Rank 

Conductor Spacing 29 3.55 

Support Height 27 1.60 

Support Span 24 1.60 

Bundled Conductors 15 4.18 

Support Type 14 4.10 

Multi-circuit 1 6.12 

Support Material 0 6.25 

Insulator Type 0 6.71 

Right of Way 0 Null 
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support height, and support span were used as a primary variable for at least one partition 

in 29, 27, and 24 out of 30 trees, respectively. These predictors also performed best in 

terms of their average variable importance rank. The rpart package calculated variable 

importance by taking the sum of the goodness measure of all partitions where the 

predictor was used as the primary variable and the product of goodness measures where it 

was used a surrogate and the adjusted agreement, after which rpart normalized these 

values to combine to 100 for each tree (36). For each tree, variable importance was sorted 

and ranked between 1 and 9, with one corresponding to the highest variable importance 

in that tree. The mean of these importance ranks is found in column two of Table 4. By 

this metric, support height and support span were most effective in the classification, 

followed by conductor spacing. On the other hand, right of way width performed the 

worst of any predictor. It was never used as a primary or surrogate variable, likely due to 

wide variation and numerous missing values. 

Performance of the binary predictors was mixed. Bundled conductors and support 

type were used as primary splits in 15 and 14 trees out of 30, respectively. The only other 

binary predictor used as a primary variable was multi-circuit, and only once. The 

remaining variables were never used for a primary split, but they served as surrogate 

variables, as indicated by their mean variable importance rank. Based on these two 

metrics, bundled conductors and support type performed best among the binary 

predictors. 
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Predictive accuracy 

The overall performance of this method was fair, as seen in Figure 5. The mean 

predictive accuracy of thirty iterations was 62.1%. As expected from the validation set 

approach, the results varied greatly depending on how the samples were randomly 

divided into testing and training sets, which is shown by the wide range of predictive 

accuracies. The worst tree had a predictive accuracy of only 45.4% and the best tree, 

70.9%. However, the overall distribution of the predictive accuracies was slightly 

negatively skewed by the 45.4% outlier, as suggested by the shape of the green curve in 

Figure 5. The frequency plot shows that most of the trees produced predictive accuracies 

between 60% and 70%. So while some trees yielded accuracies below 50%, the majority 

correctly classified 60% or more observations. Unsurprisingly, the Kappa-coefficient 

showed a more conservative assessment of overall performance. Figure 6 shows a similar 

frequency plot of Kappa-Coefficient for the thirty iterations. The mean Kappa-

Coefficient was 0.523, and most trees produced scored greater than 0.5. While not a high 

score, this method consistently yielded results well above a chance classification. 

A granular look at the classification result provided a more insightful assessment 

of its strengths and weaknesses. Table 5 includes a confusion matrix with the results 

produced by the tree seen above in Figure 2. Matrix columns are classes predicted by the 

tree and rows are actual classes. In this example, forty-four out of forty-nine 69kV 

samples were correctly classified as such, and likewise, seventeen out of twenty eight 

345kV samples were correctly labeled. The middle class, 161kV, performed very poorly; 

twenty out of forty-two samples—less than half of the observations—were correctly  
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Figure 5. Frequency of predictive accuracy for thirty iterations 

 

 

 

 
Figure 6. Frequency of Kappa-Coefficient for thirty iterations 
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classified, yielding a low producer accuracy. Furthermore, nineteen observations were 

incorrectly classified as 161kV, which gave it a low user accuracy as well. Given the 

weak signatures of the 161kV class relative to other classes, as seen above, this result was 

unsurprising. This result was not limited to this example, however. Table 6 shows the 

user accuracy and producer accuracy results for all iterations. As shown by the mean user 

and producer accuracies, this method consistently underperformed with regard to the 

161kV class, relative to other classes. 

The disparity between the model’s ability to handle higher and lower voltage 

classes verses middle classes is seen clearly in Figure 7. This plot displays producer 

accuracy against user accuracy for all thirty iterations, symbolized by class. Wide 

variation was found in all classes with respect to these two metrics. However, most trees 

handled the classes reasonably well, as shown by the concentration in the upper right 

section of the graph. The 161kV class was the notable exception, as evident by the 

clustering of yellow points in the middle of the graph, distinctly separated from the 

majority of the other class scores. Given the weak signatures of the 161kV class 

 

 

Table 5. A confusion matrix generated using this method 

 Sample Points Sample Lines (Cluster) 

 69kV 115kV 161kV 230kV  345kV 69kV 115kV 161kV 230kV 345kV 

69kV 

115kV 

161kV 

230kV 

345kV 

44 

10 

9 

0 

0 

5 

23 

11 

0 

0 

0 

2 

20 

14 
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0 

0 

2 

28 
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0 

0 

0 

0 

17 
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0 
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0 

0 
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3 

1 
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0 

0 
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0 

0 

3 
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Table 6. Summary classification statistics for thirty iterations 

 Min. Mean Median Std. Dev. Max. 

Prediction Accuracy 45.4% 62.1% 64.3% 5.9% 70.9% 

Kappa 0.332 0.523 0.536 0.069 0.632 

Prediction Accuracy 

(cluster) 
46.4% 70.1% 71.4% 8.4% 78.6% 

Kappa (cluster) 0.346 0.623 0.639 0.103 0.729 

User Accuracy 

  69kV 
0.396 0.682 0.679 0.146 0.962 

  115kV 0.311 0.635 0.639 0.152 0.960 

  161kV 0.000 0.483 0.471 0.179 1.000 

  230kV 0.000 0.705 0.747 0.197 0.931 

  345kV 0.282 0.665 0.697 0.203 1.000 

Producer Accuracy 

  69kV 
0.408 0.740 0.806 0.173 1.000 

  115kV 0.286 0.620 0.639 0.176 0.898 

  161kV 0.000 0.397 0.405 0.176 0.714 

  230kV 0.000 0.684 0.750 0.230 1.000 

  345kV 0.095 0.746 0.779 0.163 0.952 

No. of Primary 

Splits 
3 5.9 6 1.5 8 
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compared to other classes, the classifier had difficulty distinguishing it from other 

classes, particularly 115kV and 230kV. A spatial perspective offered an explanation of 

and possible solution to this issue with the middle classes. A closer look at Figure 8 (see 

Appendix) revealed a significant pattern in the distribution of transmission voltages 

within the state. The 161kV class is only present in the southern part of the state, while 

the 230kV class is only found in the middle and northern regions. Likewise, the 345kV 

lines are predominantly located in the southern and middle regions, while the 115kV 

class is most commonly found in the middle and northern regions. In short, there is little 

overlap in the regions served by 161kV and 345kV lines and those served by 115kV and 

230kV lines. The capacity of 161kV lines makes them a middle ground between 115kV 

and 230kV lines, so the overlapping signatures of this class with the others should have 

been expected since the classification was performed at the state level. 

Given the ordinal structure of voltage classes, the trees in this study performed 

better than the overall predictive, producer, and user accuracy suggests. In practice, a 

classification would not be performed with so few observations in the training data set, as 

was the case for some trees included above. For this reason, trees with fewer than four 

sample lines, or 28 sample point observations, per class in the training data set were 

excluded from the following tabulation. The confusion matrices of the remaining 

seventeen trees were normalized by row, or actual class, and corresponding records 

across all matrices were summed, and then divided by seventeen to produce the average 

classification rate for each class, as shown in Table 7. The table shows that on average 

the vast majority of observations were classified within one position of their true class. 
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Figure 7. Producer and user accuracy results by voltage for thirty iterations 
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For example, an average of 0.966 observations belonging to the 69kV class, seen in the 

first row, were either classified as 69kV or one class higher, 115kV. On average, far 

fewer observations were classified as 161kV, fewer as 230kV, and even fewer, as 345kV. 

This trend can be seen in all classes, wherein the classification rate declines in positions 

further from the true class, with the exception of the 161kV class, which has a nearly 

even rate beyond the true class. 

As expected, the final post-processing step in the clustering approach significantly 

improved the overall performance of the classification by smoothing out 

misclassifications. The smoothing effect of identifying the most frequently predicted 

class of the sample points as the final class of the corresponding sample line can be seen 

in the confusion matrix in Table 4. While the producer accuracy improved only slightly, 

the user accuracy increased greatly since many observations incorrectly classified as 

161kV were smoothed out. Likewise, some noisy misclassifications in the 69kV, 115kV, 

and 345kV classes were smoothed over. Likewise, the effect of this post-processing step 

 

Table 7. A confusion matrix of average classification rate by class across select iterations 

 Sample Points Sample Lines (Cluster) 

 69kV 115kV 161kV 230kV  345kV 69kV 115kV 161kV 230kV 345kV 

69kV 

115kV 

161kV 

230kV 

345kV 

0.791 

0.264 

0.162 

0.000 

0.000 

0.175 

0.595 

0.192 

0.006 

0.002 

0.023 

0.136 

0.393 

0.139 

0.040 

0.009 

0.005 

0.116 

0.668 

0.179 

0.001 

0.000 

0.136 

0.186 

0.779 

0.858 

0.222 

0.157 

0.000 

0.000 

0.142 

0.657 

0.201 

0.000 

0.000 

0.000 

0.121 

0.422 

0.088 

0.029 

0.000 

0.000 

0.102 

0.776 

0.088 

0.000 

0.000 

0.118 

0.137 

0.882 
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on the average classification rate can be seen in the right-hand matrix in Table 7, wherein 

misclassifications by more than two class positions are entirely eliminated, and some, by 

just one class position. However, this smoothing effect also negatively affected the 

classification, as evident by the two 161kV lines misclassified as 69kV in Table 4—the 

equivalent of 14 misclassified sample points compared to the 9 misclassified sample 

points from the original classification. Figures 5 and 6 show the predictive accuracy and 

Kappa-Coefficient of each iteration’s cluster classification, as compared to the original, 

sample point classification. The frequency curves of the cluster classification show 

significant improvement over the sample point classification. As indicated by the blue 

curve in Figure 5, most trees had a predictive accuracy greater than 70% after the 

clustering classification, and the best trees correctly classified 78.6% of observations. The 

mean predictive accuracy increased by 8.0% and the Kappa-coefficient by 0.099 as 

shown in Table 5. By taking the most frequently predicted voltage from the point samples 

as the most likely voltage of the transmission line, noisy predictions were smoothed out 

and the overall performance of the classification increased. Therefore, this simple step 

was a significant improvement over the original classification. 
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Chapter 5 

Conclusions and Recommendations 

  This study developed and tested a foundational methodology to classify 

nominal transmission line voltage using measurements taken from aerial imagery. Using 

the methods outlined in this study, predictors of voltage were successfully measured from 

aerial imagery using imagery interpretation and mensuration techniques. Of the 

predictors identified and collected, the height of transmission supports and span between 

supports were found to be the most effective for classifying voltage, followed by the 

spacing between conductors, the type of support, and presence of bundled conductor 

phases. 

 The tree-based classification used in this study yielded fair classification 

performance. In the majority of iterations, the tree produced a predictive accuracy 

between 60% and 70% and Kappa-Coefficient greater than 0.5, up to 0.632. However, 

examination of the average classification rate showed that most misclassified 

observations were only one class higher or lower than the true class. Furthermore, both 

metrics mentioned above improved significantly in the clustered classification step. By 

identifying the most frequently predicted class for samples from a given line and labeling 

that line as such, noise in the classification was smoothed out and the overall 

performance improved. After this step, the majority of iterations reached a predictive 

accuracy greater than 70%, up to 78.6%., and a Kappa-Coefficient greater than 0.65, up 

to 0.729. Likewise, the clustering step eliminated misclassifications more than two class 

positions from the true class. 
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 A granular look at the results of the classification with respect to individual 

classes revealed weaker performance among the middle classes, particularly the 161kV 

class. An exploration of the predictors showed weak signatures in the 161kV class 

compared to other classes. As a result, the trees developed in this study consistently 

yielded lower user and producer accuracies for that class, often mistakenly labeling 

observations as 161kV and classifying 161kV observations as other classes. 

 Further examination of the 161kV class with a spatial perspective revealed 

important insights. The 161kV class and its neighboring classes, 115kV and 230kV, were 

located in distinct, non-overlapping regions. This suggests that careful consideration 

should be given to delineating the geographic region within which the classification is 

applied. In so doing, the number of transmission voltages—and therefore, the number of 

target classes—in the classification is reduced. The class signatures, in turn, should be 

more pronounced. While this would requiring training more classifiers, the classification 

performance would likely improve. 

 A regional approach is also supported by examining signatures of transmission 

lines belonging to the same voltage class in different parts of Minnesota. By exploring 

the support height and support span of the 230kV class, two very different signatures 

were found—one corresponded to lines in the middle part of the state, the other, to lines 

in the north.  Had lines from both of these regions not been sampled and used to train the 

classifier, the classification would have performed more poorly. Therefore, in future 

applications and expansions on this methodology, it should not be assumed that the 
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signature of a class as determined in one region necessarily applies to the same class in 

another region. 

 Although the results of this study suggest a regional approach to voltage 

classification to be advantageous, delineating appropriate regions presents a challenge. 

While some utilities may publish maps of their service territory—implying clearly 

defined boundaries—these boundaries are difficult to delineate. Transmission lines near 

these boundaries may be owned by another utility. Although neighboring utilities are 

more likely to use similar voltages, this should not be assumed. Future work on this 

subject should be devoted to addressing this challenge. One possibility for exploration 

would be to infer voltage boundaries from power plant data published by the Energy 

Information Administration, which includes the grid voltage at the point of 

interconnection for each power plant. Although not a comprehensive portfolio of nominal 

voltage, since it would not necessarily capture intermediate voltages between power 

plants, it may be used to generate a point cloud from which to delineate regions with 

common transmission voltage portfolios. 

 Another means of improving the voltage classification would be to generalize 

classes. Assuming companies in a given region use five or more transmission voltages, 

classifying voltage in that area may result in the same issues encountered in this study. 

However, if classes were merged into generalized classes, such as “below 100kV”, “115-

161kV”, “230-287kV”, etc. the predictive accuracy would increase, at the expense of 

precision. This approach would generate a more conservative estimate of nominal 

voltage, while still offering a degree of distinction between transmission lines. The 



 
48 

average classification rate lends further support for this approach, given that most 

misclassifications were within on class of the true class. Future work could be devoted to 

determining the most appropriate voltage groupings. 

 Given the limited predictive capacity of tree-based methods, future study could 

implement and compare the results of other classifiers. As noted above, classifications 

trees were used in this study primarily for their advantage in interpretability over other 

methods. Because of the foundational nature of the methodology outlined in this study, 

this characteristic was essential. Since the groundwork has been established and the 

methodology produced a fair result, more robust classifiers, such as support vector 

machines and neural networks could be utilized to improve the predictive accuracy of this 

method. 

 One obstacle to the scalability of this method is the time-intensive nature of 

collecting predictor measurements for numerous sample points. To address this issue, 

future work could focus on reducing the number of sample points necessary to capture 

variation of a line while maintaining an acceptable accuracy threshold for the cluster 

classification. The methodology outlined in this study could be repeated but with a 

smaller collection of sample points from each line. The cluster classification could be 

repeated with fewer sample points and the overall performance assessed with each 

iteration to determine the optimal number of sample points. 

 Another opportunity to improve the scalability of this method would be to 

leverage non-imagery data sets to extract key predictors identified in this study. For 
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example, collecting support span and support height—the latter in particular—

measurements was time-intensive using the methods in this study. Capturing support 

height required imagery with precise metadata about date and time, which can be difficult 

to acquire. However, both of these predictors could hypothetically be extracted from 

vertical aeronautical obstruction data collected by the Federal Aviation Administration, 

since transmission line supports fall under this designation. 

 The primary contribution of this study is a clearly documented lineage and 

repeatable methodology to estimate transmission voltage for the creation of foundational 

geospatial data sets. The output of this methodology has the potential to bring a data set 

with limited accessibility to a wider audience. For example, it could be useful to the open 

source community. Users could compare the output of a classifier created using this 

methodology to data from OSM and other VGI sources for validation purposes. 

Alternatively, trained participants could collect voltage data in the field from a selection 

of transmission lines, which could then be used to classify additional, less accessible 

lines. This could be particularly useful in other parts of the world where transmission data 

sets may have missing voltage data. On its own, this methodology may not be the best 

means of filling gaps in transmission data, nor was it intended to be. Rather, this 

methodology is intended as a supplement to other sources and means of collecting 

voltage data. 
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Figure 8. Map of transmission line voltage in Minnesota 
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Figure 9. Map of transmission line ownership in Minnesota 
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