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Abstract 

The virtual topology of a parallel application is the neighborhood relationship between com

municating processes developed due to specific communication patterns resulting from domain de 

composItion. We present an infrastructure that allows the usage of topological information for the 

performance analysis of a parallel application. For this purpose we have implemented an easy to 

use extension of the KOJAK performance analysis toolkit. 

The KOJAK toolkit defines commumcation patterns for paraHel applications which describe in

efficient behavior. The performance analysis is carried out by calculating the effect of these incf· 

ficiency patterns on the application's performance. The distribution of these inefficiency patterns 

is studied across a three-dimensional performance space. The knowledge of virtual topology can 

be exploited to explain the occurrence of these inefficiency patterns in terms of higher-level events 

related to the parallel algorith~ implemented in the application. Also, it can be used to visualize 

the relationships between pattern occurrences and the topological characteristics of the affected pro

cesses, To prove these principles, we have used our exten~iODS to KOJAK to analyze two realistic 

MP} applications. 
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Chapter 1 

Introduction 

Parallel computing is an e~sential paradigm to solve complex scientific problems. Paral1el comput

ing has transformed a number of science and engineering dL;ciplines. The architectures for parallel 

computing have been evolving at a rapid rate. Unfortunately, parallel applications often do not 

exploit the peak performance of the underlying physical hardware. In parallel computing it i~ de

sirable to obtain performance closest to the peak performance of the underlying hardware.. Thus, 

optimizing paralle] application behavior is an integral part of the program development process. 

This optimization, however, is a complex process and requires the knowledge of the. underlying 

architecture, t,he application's parallelization strategy, and the mappmg of the applicatiun code and 

its programmmg model onto the architecture. 

Thus, it becomes essential to innovate new methods of investigating the performance behavior 

of an application and finding the reasons for limited performance. In paraliel applications, the 

communication between processes and threads has a major impact on their performance. Also I 

there are common performance patterns observed during this communication. Hence, It becomes 

imperative to investigate the correlation of communication patterns with the algorithmi.c details of 

parallel applications. 

1.1 Architectures of Parallel Computers 

Parallel computers are computers with multiple processors that are able to work jointly on one or 

more task at the same time. One common way to classify parallel computers is based on mem
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ory architecture. There are three major dasses distributed-mer:wry. c;hared-memary, and hybl id 

systems. 

1.1.1 Distributed-Memory 

Distributed-memory systems have many uniproces8or computers c0enected by a network. Every 

p\'ocessor has a local memory which is often not access!.ble frofY1 another processor. The typical 

programmmg model used on such machines consists of separate processes on each computer com

rnunicating by sending messages (i.e., message passing). 

The most successful commercial distributed-memory system is the IBM SP family. SP systems, 

combine various versions of the successful Rs6000 workstatIOn and server nodes with different in

terconnects to provide a wide variety of parallel systems, from 8 processors to 8192-processor ASCI 

\Vhite system. Some distributed-memory systems have been bujItwith special-purpose hardware' 

th(lt provides remote memory operations such as pu t and get. The most suceessful of these are 

t.he era!' T3D and T3E systems. 

1.1.2 Shared-Memory 

Shared-memory machines have many processors accessing one shared address space and controlled 

by one operating system image. Data is available to all the processors through the load and store 

instructions. This makes it possible, for example, to suspend 'a process on one processor and 'to 

resume it 'On another processor without copying or moving its addre8s space. Memory in shared

address-space machines can be local when it is exclusive to one processor or it can be global when 

it is common to all processors. If in such machine, all the processors have a symmetric access tc 

one ~hared-address space, it is referred to as a symmetric multiprocessor (SMP). 

The most common problem in shared-memory machines is that of cache coherence. Each pro

cessor has its own cache and so its possible for a given cache line to be present in more than one 

cHche. If such a line is altered in one cache, then both main mem0IY ~·nd tpe l)ther caches have an 
" 

invalid version of that line. Ensuring that the memory system is cache cohe.rent requires additional 

hardware and adds to the complexity of the system. 

The complexity of providing cache coherency has led to two new \\:ays (If classifying shared
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memory systems. The first important class is called unifonn memory access (UMA). In this design, 

each memory and cache is connected to all others. Each component observes any memory operation 

(such as load from a memory location) and ensures that cache coherence is maintained. The name 

UMA derives from the fact that the time to access a location from memory (local or global) is 

identical. Most of the shared-memory systems provIded by Compaq, HP, IBM, Sun and SGI are 

UMA systems. 

In non-uniform memory access (NUMA) design, the time taken to access certain memory words 

is longer than others. NUMA systems that are cache coherent are referred to as cache coherent NUMA 

(CC-NUMA) systems. Some cc-NUMA systems are the SGI Origin 3000 and the HP Superdomc. 

1.1.3 Hybrid Systems 

There are various ways in which the two memory paradigms are combined. Some distributed

memory machines aHow a processor to directly access a datum in a remote memory. These systems 

are referred to as distributed-shared memory systems. On these systems, the latency associated 

with a load varies with the distance to the remote memory. Cache coherency on DSM systems is a 

complex problem that is usually handled by a sophisticated network interface unit. 

Also, some machines are distributed-memory systems in which each of [he individual compo

nents is a symmetric multiprocessor rather than a single processor node, Such systems are n~fc:Ted to 

as parallel computers with SMP nodes or SMP clusters. This design permits high parallel ~fficiency 

within a multiprocessor node, while permitting systems to scale to hundreds or event thousands of 

processors. 

1.2 Programming Models 

Another consideration in forming a parallel program is which programming model to use. This 

decision will affect the programming language and the library for implementing the application. 

Two programming m?dels were developed to support the two memory models of parallel machincs 

(i.e., distributed-memory and shared-memory models). 

The two common programming models used are the message-passing model and the multi

threaded model. The distributed-memory architectures use the message-passing model that consists 
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of separate processes on each computo.!r ..:omnlUnicating by sending messages. The shared .. memory 

architectures use the multi-threaded modeL 

Although these two programming models are inspired by the corresponding parallel computer 

arch!tectures, their use is not restricted. It is possible to implement the multi-threaded model 0n 

a distributed-memory computer, either through hardware (distributed-shared memory) or software 

systems that simu!ate DSMs (e.g., TreadMarks [9]). Also, message passing can bE, made to work 

with rea")onable efficiency on a shared-memory system. 

The following subsections give a brief introduction to all three programming models. 

1.2.1 Message-Passing 

Nlessage-passing is mainly used on distributed memory architectures. A message-passing program 

runs multiple pr'xesses, where each process owns one private address space. Communi·.:;ation be-, 

tW'een different processes takes place only by sending and receiving messages. The messages may 

be sent either via a network or using shared-memory locations, if available. Communication b~· 

tween two processes have to invoke an operation. This can be done using point-to- point communI,,:,' 

cation, where one process semis a message to another process using send and receive operations. 

The MPI (Message Passing Interface) communicatIOn libn:,ry [12] defines a defacto standard for 

message passmg and is availa.ble on most parallel computers, MPI supports all traditional message 

pa:,;,;sing features, such as point-to-point communication and collective communication, advance\.! 

features.; such as process topoiogies. The MPI 2 standard supports features that go beyond pure 

message passin6 such as parallei 10 allC. one-sided communication. 

More on MPI 

MPI is not a new way of programming parallel computers. Rather, it is an attempt to collect the best 

features of many message··passing systems that have been developed (~ver the years, improve them 

where appropriate, and standardize them. 

tvlPI is a library for messagt':-passlllg. It ~pt;cifies the names, calling sequences, and results of 

subroutines to be called from Fortran programs, the functions to be called from c programs, and the 

cias'les and methods that make up the MPI c++ libra'ry. The programs that users \Hite in Forttan c, 
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and c++ are compiled with ordinary compilers and linked with the MPI library. 

The structure of MPI makes it straightforward to port it to existing codes and to write new ones 

without learning a new set of fundamental concepts. 

1.2.2 Multi-Threaded 

A multi-threaded program consists of a collection of tasks. which are assigned to asynchronous]y 

working threads. To accomplish these tasks, all threads have an access to shared address space. Syn

chronizing utilizes specific mechanism, such as locks and barriers, to implement coherent control 

of shared-memory access. 

OpenMP (Open specifications for Multi Processing) [14] is a widespread progra1l1l1llng interface 

for scientific shared-memory programming. It defines directives, pragmas, and library calls to con

trol the ,parallelization of loops and other code sections in Fortran, C and c++ programs. Execu:ion 

of an openMP program struts with one master thread, which creates a team of slave threads as 800n 

. as a parallel region has been entered. After leaving this region. the team terminates and sequen

tial exel:;ution resumes. Synchronization is accomplishe,J either implicitly or t:xplicitly by ceitain 

directives, pragmas, or library calls. 

1.2.3 Hybrid Model 

Coupled SMP systems can be programmed using hybrid combination of message passing and shared

memory techniques, where shared-memory is used for data sharing inside single nodes and message 

passing is used for communication across different nodes. Most significant in this context is a 

combination of MPI and openMP. In this case, there is usually one MPI process per SMP node, and 

openMP parallelization can occur III each process. If the application needs to call MPI routines from 

multiple threads belonging to the same process, a thread-safe MPI application is required. 

1.3 Performance Analysis and Thning 

The process of investigating t.he performance behav:ior ,of an app]ication and finding the reasons for 

limited performance is called perfonnance analysis. It usu?lly precedes any modification of the 
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source code ihat is intended to optimize or tune the prcgram. Both activities fonn 3 cycle that must 

uftel1 be repeated many times until the application delivers desired performance. 

The basic performance tuning cycle consists of four stf:p~: 

• 	 Automatic or manual instrumentation. During this step, measur~ment probes are inserted into 

the application code and system software. Measuremem prJbes perform special m&k;, S!1ch 

;:s measurement of hardware performance counlers 

• 	 Execution of the instrumented application and collection of performance data. Such exe

cutions record hardware and software metrics for offline analysis The recorded ddta may 

include profiles, event ttaces, hardware counter values. and ejapsed times 

" 	 l\naiysis of the captured performance data. Manual or automatic analysis uses the:. recorded 

data m:d attempts to relate measurement data. to hatdware ri80urces and application sourc~ 

code, identifying p03sihle:. optimization points. 

c 	 !tlodi.fic,ltiLm of the application source code, recompilation with different (Ipirrrization op·· 

lions. or modification. of run-time parameters. The go~1 of theo;e modificati(~l1s is to better 

match application behavior, hardware, and rhe paranel programming ir:terfaces for higher 

performance. 

Apart from offline analysis of an application, onljn~ analysi:~ can also be performcd. The exe

cutable of the parallel application can be instrumented at runtime to obtain the perforI:lance behavior 

of an apphca60n. For example~ Paradyn [15], leverages tl technique <.;alled dynamic in~trumenta

tion to obtain performance data from unm~ified executabies at runtime. The following subsections 

descrihe these aspects to more detail. 

1.3.1 Performan(~e Data 

Performance data associate program entities with performanct;-re.lated behavioral chan.lcten~;ti~s. 

Program entities are either static or dynamic. For example, source code rcgic.ns a{~ ~latic f.;otilizs, 

whereas instances of those regions or paths in the dynamIC call grdph are dyn.:urric entitie~, 

Performance data may differ in the level of ab~traction they provide both with respect to the 

behavioral charac!eri~;tics and with respect to the program entities they refer to. Characterization 
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may occur, for.example, either in terms of simple events; such as clock cycles, or in terms of more 

complex behavior, such as lock competition. Program entities may represent either simple pieces 

of source code or entities of the application domain. Observational performance data are usually 

generated on a low abstraction level and in a later step may be mapped to a higher abstraction 

level. Unmapped performance data are called raw performance data. The most common type of 

raw observational data are profiles and event traces. 

Profiles 

Profiles map accumulated performance metrics (e.g., number of clock cycles, number of function 

calls, or number of cache misses). For example, a profile may contain the fraction of execution time 

spent in different functions of the program. Profiles are useful to generate a rough overview of an 

application's performance characteristics while introducing only limited perturbation of run-time 

behavior and requiring 'only moderate storage. Typical methods for profile generation are sampEng 

and instrumentation. 

Sampling is a statistical approach of· periodically observing the program executIOn under the 

control of an interval timer and deriving performance metrics for program parts based on these 

observations. In contrast to sampling, instrumentation inserts code directly into the program -;0 that 

the program itself is able to trigger actions upon occurrences of certain program-level events. 

Event Traces 

Event traces are collections of individual run·-time events recorded during program execution. The 

information recorded for an event include-; at least a time stamp, the location (e.g., the process or 

a node) where the event happened, and the event type. Depending on the type, additional informa

tion may be supplied, such as the function name for function-call events. Message-event records 

typically contain details about the current message (e.g., the source and destination location and the 

message tag). In order to keep instrumentation simple, the information included in such a event 

record is usually restricted to the data available at the location where and at the moment when the 

event occurs. 

Events are recorded at the point of their occurrence. The application needs instrumentation to 

intercept and store away the desired events; that is, additional code needs to be inserted at program 
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locations where their occurrence can be detected. To keep illstrumerrtation low, the event records 

are initIally written into a memory buffer. Upon buffer overflow or progra.m termination, the event~ 

are written to a file. Event traces generated independently fOt each location must be merged and 

sorted according to their timestamps. System~ that rfly only ('n the local clocks have to adjust the 

timestamps with respect to chronological displacements and clock drifts. 

For example, KOJAK performance analysig environment uses event tracing to capture the perfor

mance data of a parallel application The events are . written as trace records using a binary format 

trace file. This trace file is then analyzed offline to buiJd d higher-level callpath profile which gives 

information about the applIcation's performance. 

1.3.2 lnstrumentation 

Instrumentation is the process of mserting extra code into a program.'tc observe its execution ~r 

performance. Often instrumemationis used 10 makernea.":'>urements for these purposes. Shende [ITI 

di8tinguishe~ three dimen~lons of classifying in~;tfljmentation and measurement: 

1. 	 How are performance measurements defined and instrumentation altem~tive8 are chosen? 

2. 	 Wherz is performance instrumentation added ~ndlor enabled (precompile time, compile time, 

link time. run time)? 

3. 	 Where in the program performance measurements are fil«de (granularity and location)? 

The first question addresses the selection of pheromena to be observed. It includes, for example, 

the choice among different metrics (e.g.~ time or cache misses). 

The second question deals with the user's level of abstraction. Running a program requires 

moving it through several transformation steps: preprvcessing, compilation~ linkage, and executlor, 

or interpretation. Each trailsfonnation corresponds to a different level of representing a program\ 

contents: source code, object code or library, executable or bYL; code. and run-time image. A!wough 

each level offers the opportunity to add instrumentation £0 the program, each levei provides different 

information to be measured: In particular, the user's ahstmctions may be represented differently on 

each leve1. For example, the source code allows access to language-specific abstractions, which 

may be hidden in the binary representation.' However, binary instrumentation of the run-time image ; 
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allows instrumentatIOn to be carried at run-time. This is also called dynamic instrumentation. It can 

be controlled by feedback, which provides an excellent way of reducing instrumentation. 

Programs exhibit a hierarchical structure consisting of different. often nested, elements~ such as 

modules, functions, and statements. The third question classifies instrument3tion according to the 

level within the program at which the instrumentation takes place, such as function entry and exit, 

statement, or instruction. The decision on the best places for adding instrumentation is governed by 

the trade-off between the demand for expressive performance data and the desire to avoid program 

perturbation. 

1.3.3 Performance Properties 

Parallel applications may exhibit a large variety of different performance behaviors. For this reason, 

a general approach to performance analysis reqU1res a terminology that can be used to refer to 

performance be,havlOr independent of its specific characteristIcs. 

Fahringer et a1. {7] propose the notion of performance properties (e.g., load imbalanc,,e commu

mcation,cache misses, redundant computatiulls, etc.), which characteril,e a specific perfvnnan'ce 

,behavior of a program and,can·be checked by a set of conditions. For every performanc~~ property 

a severity measure is provided, whose magnitude specifies the importance ofa property 'n relation 

to other properties. Note that a performance property does not necessarily denote negative, that is, 

inefficient behaVIOr. 

Fahringer et al. further define a perfonnance problem as a performance property whose severity 

exceeds a user- or tool-defined threshold. The unique perfomuLnt:e bottleneck i& defined as the 

mma sever performance property. If a bottleneck is not a performance problem, then the program's 

performance is considered to be acceptable and does, not require any further tuning. 

KOJAK [22] is a set of generic and interoperable tool components designed for the performance 

analysis of parallel applications. Their functionality addresses the entire analysis process including 

instrumentation, post-processing of performance data, and result presentation. Particular emphasis' 

is put on automation techniques to transform the collected data into a high-level vIew of perfor

mance behavior. As an essential part of the software, KOJAK provides an integrated event-trace 

analysis environment for MPI and OpenMP applications. KOJAK's trace analysis layer represents 

performance properties as execution patterns indicating low performance and quantifies them ac
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cordin!: to their severity. These patterns target pn)bJems resuhing from inefficient communication 

and synchronization as well as from low Cpu and memory performance. 

1.4 Virtual Topologies· 

In many parallel applkations, each process (or thread) comrm.nicates only with a limited number 

of other proces~es. For example, a simulation modeling the spread Df pollutants in !he atmosphere 

might decomp('se the entire simulation domain mto ~maller process and as~ig.n e:lCh of those to a 

I:;,ingle process. Each of these smaller domains is called a sidJdomain. 

Given this distribution, a process would then communicate with processes cwning sub domains 

adjacent to its OWl}. The mapping of application domain onte processes and the neighborhood 

relationship resulting from this mapping is caned virtual topology.. T~e topological informatioE 

c~n be Hsed te map the processes onto the under1ying physica! topology of the parallel machine for 

better p';!rformance.. 

Virt.l'al topologies can inc1ude processes or threads depending on ~h:e programming model bt-ing 

used. Often, the virtual topology influences the order in which certam computations are performed. 

For example, wavefront algorithms [1] propagate data a10ng the diagonals of a multi-dimensional 

grid of processes. 

In genera] a virtual topology is specified as a graph. l\1any 3.pplications use Cartesian topoIcgies 

such as two- or three- dimensional grids. A virtual Cartesian topolcgy is defined dS an n··dimensh::mal 

Cartesian grid. The Cartesiun grid may have one or more processes in each dimension The Carte·· 

sIan grid mayor may not be periodic in each dimension. The ....:oc,rdin:J.les are spe~ified as a vr.-dor 

of integers 0 (n 1) with n being the numbe! af processes in the respective dimei1sion. The order 

of the VEctor elements corresponds to the order of dimensions. 

1.5 MPI Topology Support 

A process group in MPI IS a collection of n processes. Each process 111 the group is assigned a rank 

between 0 and n-1. In many parallel applications a linear ranki!lg cf processes does not ade.quately 

reflect the logical communication pattern of the processes (whkh is usually determined by the un
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derlying problem geometry and the numerical algorithm used). Often the processes are arrange·l in 

topological patterns such as two- or three-dimensional grids. As discussed in the previous section. 

this logical arrangement is known as a virtual topology 

The MPI standard [12] offers a set of API functions to create and use vi]tual topologies. The 

virtual topologies in the MPI standard are referred to as MPI process topologies. The MPI process 

topology support may choose to efficiently map the virtual top0logy of the application onto the 

physical topology of the underlying hardware so that communication speeds between neighbors can 

be optimized. 

MPI process topology support also provides a convenient naming scheme for the processes in

volved in communication, which enables the programmers to name these process("." according to a 

convenient naming scheme. This enhances the readability and simplifies the development of MPI 

code. There are twotypes of MPI process topologies. 

1.5.1 Graph Topology 
\ 

MPI process topologies can be generally ,specified asa graph. Each process is represented by n node 

in the graph and the communication links between the processes are represented by the edges of the 

graph. 

Some common graph topology functions provided by MP} are: 

• 	 MPLGRAPH_CREATE makes a new MPl communicator to which the graph topology informa

tion is attached 

• 	 MPLGRAPHDIMS_GET returns the number of nodes and edges in the graph 

1.5.2 Cartesian Topology 

Many MPI applications specify process topologies in terms of a Cartesian grid. Cartesian grids are 

special type of graphs. Each process in the topology is specified by a coordinate in the Cartesian 

grid. The Cartesian gr,id may be periodic in one or more dimensions to specify complex process 

topologies (e.g., a cylindrical vessel or a torus). 

The Cartesian topology is specified by three parameters: the number of dimensions in the Carte

sian grid, the number of processes in each dimension and the periodicity of the grid in each dimen
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sinn. 

Some commonly used Cartesian topology functions provided by MPI are: 

• 	 MPLCART._CREATE makes a new MPI ;:-ommunicator tn which the Cartesian topology infor

mation i~ attached 

• 	 MPLCART _COORDS returns the coordinates of a certain process in the Cartesian grid 

• 	 MPLCART-'RANK returns the rank of a pro\:ess "vhich has been assigned to a given coordinate 

in the Cartesian grid 

1.6 Motivation 

Seard:ing event traces of parallel appiicatlOns for pat~erns is a sllccessful method of automatically 

gcnenn!ng high-level feedback 0:1 a(1 applic'1ti on's performance [22]. This is done by Id~ntifying 

'!/ait states recognizable by tel1lpo~'al dispia;:;ements between individual events across multiple pro

Cf,sses Of threads. For example; durinr, message e'{change between two MPI prvcesses, the receiving 

process might enter the receive operatien before the sending process enters the corresponding send 

operation and hence suffer from a wait state. Tl-tis is a very common pattern observed in MPI appli" 

::ations and is known as the Late Sender pattenl. 

Topological knowledge can be used to Identify and explain the OCCUITence of performance prot· 

lems, especially as many algorithms are parametrized III terms of a virtual topology. By doing this, 

we can study the algorithmic detaiis that correspond to the virma! topology of an applicatiorl. With 

more information on the algorithmic details of an application, we may be able to explain the o\.,'cur

ren:::e of certain wait states more clearly. 

Topological information has been used eariier tc highlight certain a5pects of parallel perfor

mance. Ahn and Vetter [3] mapped counter data onto the virtual topology of tht SWEEP30 ASCI 

benchmark to identify clusters of related behavior by statisticai means. 

Miillender [i3] visualized different network topologies including fopr-dimenslOnal hypercubes 

as well as upto three-·dimensional gnds and ton usjng a polygor.-likev'ector I~presentation and 

maopt;:"d ccrt:1in communication parameters, such :lS the number of messages, OLtO their nodes tQ 

better observe communication activities in ~irtual [,hared memory systems. 
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Topological knowledge has also been used for semantic debugging of parallel applications. 

Huband and McDonald [10] describe a trace-based debugger called DEPICT that exploits topolog

ical information to identify processes with logically similar behavior in traces of MPI applications 

and to dIsplay semantic differences among these groups. 

1.7 Contribution 

The quality of performance data available has a great influence on the expressiveness of the per

formance p!oblems that can be detected. Enriching the information contained in event traces with 

topological knowledge allows the occurrence of certain patterns to be explained in the context of 

parallelization strategy applied and, thus, significantly raise;.> the abstraction level of the feedback 

returned. 

This thesi& presents a framework to map performance data onto the virtua] topology of an ap

plication. For this purpose, an easy-to-use extension to the KOlAK toolkit has hl;!en developed. The 

extensu:m to the instrumentation library provides a mealls to record the topological information as 

a part of an event trace. We also provide a means to record the topological information for those 

applications that don't use the MPI process topology support (e.g., openMP applicC:lti~ms and many 

MPI applications). The extension to the analysis component within KOJAK provides an abstraction 

toretrieve and use topology information for performance analysis. The visualization component of 

KOJAK has been extended to visualize the mapping of performance data onto the virtual topology in 

a simple and comprehensive manner. 

Using this. extension, we have been able to enhance the quality of the performance analysis 

process in KOlAK. By mapping the performance data onto the virtual topology of the application 

we can accomplish the fo]]owing tasks: 

• 	 Detect higher-level events related to the paral1el algorithm, such as the change in the propa

gation direction in the wavefront scheme. 

• 	 Link the occurrence of patterns that represent undesired wait states to such algorithmic higher 

level events and, thus, distinguishing wait states by the circumstances causing them. 

• 	 Expose the correlation of wait states identified by our analysis with the topological character

13 
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istks of affected processes by visually mapp~ng their severity onto the virtual topology. 

fo study how the the virtual topology can be llsed to classify certai .." wait ~tat.cs, we applied om 

tool extension to two example MPI codes, the ASCI SWEE.t>3D benchma',k [2] ano an environmental 

science application called TRACE [8]. The resu1.ts obtained by applying the tool extensions to th~ 

ASCI benchmark SWEEP3D gave the performance analysts a bettcr undt:~rsi3nding of tne occurrence 

of certain wait states in relationship to the parallelization scheme ased, The results obf.ained from 

TR ACE helped the user identify semantically meaningful dusters of related behavior. 

1.8 Outline 

The thE-sis is structured in 5 chapters. Chapter 2 provides an Gvef'tlew uf the KOJAK toolkit and its 

lInderlying1ppr oach of anal)"z.ing pattems io e','ent traces. Chapter 3 dec:cribes the eXtensions which 

have been made to different components of KOJAK toolkit which prm,jde a mechanism to collect 

topo]ogicai information in the event trace and visualize pelformarice data'mapped onto the virt"u~l 

topology. Chapter 4 demon3trates the usefuiness of this approach in explaining the occurrence 

of specific patterns in two realistic applications. Chapter 5 summanzes the tnesis research and 

comments on future work in this area. 
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Chapter 2 

KOJAK 

This chapter gives an overview of various iayers of KOJAK that perform the necessary steps to do 

automatic performance analysis qf parallel appl;cations. KOJAK is a collaborative project between 

the Central Institute for Applied Mathematics at Forschungszentrum Jiilich and the Innovative Com

puting L,aboratory at the U~iversity of Tennessee. 

2.1 Overall Architecture 

KOJAK is a set of generic and interoperable tool components designed for the perforroance analysis 

of parallel applications. Their functionality addresses the entire analysis process including instru

mentation, post processing of performance data, and result presentation. Particular emphasis is put 

on automation techniques to transform the collected data into a high-level view of performance be

havior. An essential part of the software constitutes an integrated event-trace analysis environment 

for MPI and OpenMP applications. 

Figure 2.1 shows the entire pr~ess of analyzing an application using KOJAK. First, the appli

cation has to be instrumented at source code or compiler level to get an instrumented executable. 

This executable is then linked with the EPILOG run-time system which enables the generation of the 

event trace. After this, the instrumented executable is executed on the given platform to generate 

the trace file. 

The trace file is written in the EPILOG trace format [6], which provides event types covering 

MPI point-to-point and collective communication as well as openMP parallelism change. parallel 
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constructs, and synchronization. Also, the trace file may include data from hardware counters. 

After program termination, the trace file is analyzed offline using EXPERT [23], which identifies 

execution patterns indicating low performance and quantifies them according to their severity. These 

patterns target problems resulting from inefficient communication and synchronIzation as \\- ell as 

from low CPU and memory performance. The analysis process automatically transforms the traces 

into a compact callpath profile that includes the time spent in different patterns. 

To simplify the analysis, EXPERT accesses the trace through the EARL library interface [21], 

which provides random access to individual events and precalculated abstractions supporting the 

search process. EARL is well documented and can be used for a large variety of analysis tasks 

beyond the analysis performed by EXPERT. The major benefits of using EARL as an intermediate 

layer between th~ analysis and the event trace are reduced size and increased readability of the 

pattern specifi~ations. In EXPERT, patterns are specified separately from the actual analysis process 

as C++lPython classes. Finally, the analysis results can be viewed in the CUBE performance browser 

[19]. 

KOJAK consists of four layers. Each of them performs different tasks at each Iltep ;n the perfor

mance analysis process. These layers are: 

• 	 The instrume.i"ltation and tract generation layer instruments the slmrce-code and generates 

event traces which can be later used for offline analysis. KOJAK uses the EPILOG (Event 

Processing, Investigating and Logging) runtime system to generate event tra~;es in EPILOG 

binary trace format. 

• 	 The abstraction layer provides random access to the events in an event trace. KOJAK uses 

EARL (Event Analysis and Recognition Library) to access events from an event trace and 

thus, simplifies the specification of execution patterns representing performance problems. 

• 	 The analysis layer uses the analysis layer to convert the low-level trace file into a high-level 

performance profile. This layer also specifies performance properties described by execution 

patterns representing performance problems. In KOJAK, the EXPERT trace analyzer does an 

offline analysis of the event trace and converts it into a high-level call path profile. It also 

specifies performance properties represented as hierarchical patterns that describe inefficient 

communication and low CPU utilization. 
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• The presentarion layer reads the high-level performance profile provided bJ the analysis layer 

and provides a mechanism to 'v'iew the eftect of performance properties or'< the arplication's 

. performance. In KOJA K, the CCBE performance browser is used to view the distribution pf 

performance properties in a three··dimensiorlal performance spa~e. 

The fotllJwing sections descnbe these layer~ in more detail. ~:e~tion 2.:~ di~cL:;~es the instrumen

tdtion and trace generation in KOJAK. Section 2 3 descrihes the abstr3cti~n !ay~i' In KOlA K, Section 

~.4 descrlbe~ the analysis iayer in KOJAK, and sectlon 2.5 describes the pT~sentatic·n!aycr iii KOJAK. 

2~2 Instrumentation and Trace Generation 

Event tracing provides a very fine grained view of the performance behavior ot parallei appJica

tion:;. Tn contra;;t to pure executior..-time profiling, event tracing pre::1erV es the temperal and spatia! 

order of individual events, which may indicate the presence of certain performance propertie~ in 

CIT} appiicatioll. K01AK ~tores the event traces generated 2.t runtlme in the EPILOG bina;'Y Haec-data 

format [6]. 

2.2.1 Autonlated Multi~Level Instrumentation 

Prior to tra.ce generation, the application needs to be instrumented: Depending !In the platfol;m, 

this is done automcttically using a combination of source-code preprocessing and ccrnpiler-based 

instrumentation. The various levels at which the application can be instrurne!1ted, depending on the 

choice of platform, are described below. 

• 	 Source Code Level: Source code inshumentation' can oe done using the TAU (Tuning and 

Analysis Utilities) profiling instrumentation [16]. For TAU instrumentation, ma{~r(\~ must be 

added ro the source code to identify routine transirions It can be done aut():T:l.ttj(;ally w.:ing 

the c+-+ instrumentor - tau_instrumentvL b1sed on the Pwgram Dati.~h~i~'t:' looikit. PDT 

is used to parse the application and generate a program databa.,;;e hIe that cGnt.?cins program 

entities tsuch as routine locations). The tau_lns trUffi.2ntor IJses this f11e and the ~;ource 

code to g~nerat~ an instrumented version of the source code. 
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OpenMP .applications can be instrumented using OPARI (OpenMP Pragma And Region In

strumentor). OPARI is a source-to-source translation tool that automatically inserts calls to 

the POMP runtime measurement library. This allows the collection of runtime performan;:::c 

data for Fortran, C or C++ OpenMP applications. POMP directives can also be used ~() manu

ally instrument the user source-code of openMP and non-openMP applications. 

• 	 CompzJer Level: Compiler level instrumentation can be perfonned by using profiling inter

faces provided by certain compilers (e.g., PGl compilers on linux platforms). 

• 	 Linker Level., MPI functions can be instrumented at the lInker level. A special library, the 

PMPI library [12], is used for this purpose. The PMPI library defines all MPI functions with 

a prefix PMPI. The tool developers who want to instrument MPI applications can write their 

interpOSItion library which contains wrapper functIOns with prefix MPI that perform measure

ment and make calls to the corresponding PMPI routines. FinaIJy, the MPI application can be 

linked with the interposition' lIbrary, 'the PMPI library, and the MPI library. For example, EPI

LOG runtimE' system finks MPI applications with the EPILOG interposition library, the PMPI 

.library, and the MPI library. 

Also, the application can be linked with hardware counter librarIes (e.g., PAP]) to record 

hardware counter information in the event trace. . , 

• 	 Binary Level: Finally, certain platforms allow the usage of libraries that can automatically 

instrument the executable at various instrumentation points (e.g., function entry and exit). 

For example, on IBM powerPC machines, DPCL (Dynamic Probe Class Library) [11] enables 

automatic instrumentation of the executable at various instrumentation points. 

2.2.2 EPILOG Trace Format 

The EPILOG (Event ~rocessing, Investigating, and Logging) binary trace data format has been de

signed to provi~e a uniform data representation suitable for MPI, OpenMP, and hybrid applications. 

EPILOG maps events onto their location within the hierarchical hardware as well as to their process 

and thread of execution. It supports storage of all necessary source-code and call-site information, 

recording of performance metrics, such as hardware counters, and marking of collectively executed 
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Figure 2.2: The EPILOG file structure. 

Figure 2.3: The EPILOG record structure. 

operations for both MPI and OpeIJMP. 

File Structure 

An EPILOG trace-data me consists of a header tollowed by a sequence of records. The header 

(Fig 2.2) consists of the zero terminated string "EPILOG" followed by two bytes contaimng the 

major and mmor El'TLOG version number and another byte indicating the byte ordei cf i:he current 

platform. 

Each rec,)rd (Fig. 2.3) consil;)t~ of the record header followed by the record b(){~y. The header 

contains t'NO byte:'. The first byte contaias the length of the record body in byte;; without these two 

leading bytt~s. The second byte ~{;ntain~ the record type. 

EPILOG distinguishes between definition records and event records Definition records define 

identifiers for objects to be referenced by ev~nt rer.ords, Event records can be: kept swal1 by ref'erenc

ing certain obje;:ts instead of specifying these objects as part of the event record. SUl:h objects may 

be source-code regions or :fi1e names. Event records repre~ent runtime events and ai ways contain a 

location IdentIfier as well as a timc;stamp. 

Definition Records 

Definition record~ deal with the following entities ,.It '1 parallel application: 

• Strings 

• Locations 

• Source..code entities such as regions and files 

• Performance metric~ 
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• MPI communicators. 

• Virtual Topologies 

Event Records 

Event records describe the dynamic program behavior and reference objects that are defined in 

definition records. By letting event records store only references to those objects, trace file size ..:;an 

be reduced since an object, such as a region, is referenced many times. EPILOG provides records for 

the following kinds of events: 

• Entering and leaving regions 

• MPI point-to-point communication 

• MPI collective communication 

• Open~p fork and join 

• OpenMP paral1el execution 

• OpenMP lock synchronization 

, Tracing events (i.e., events related to the (racing system) 

2.2.3 EPILOG Runtime System 

As a final step towards trace generation, the application is linked with the EPILOG runtime system, 

which includes a PMPI interposition library that intercepts MPJ calls to perform measurements before 

and after each call. The EPILOG runtime system writes definition records for program and systerr. 

resources and event records for dynamic runtime event& occurring during one run of an MPI, openMP 

or a hybrid appJication into a trace file. 

The EPILOG runtime system writes all trace records into a buffer to decrease the overhead of 

trace file generation. Once the buffer is filled, the runtime system dumps the buffer into the file and 

starts writing the buffer again. There are special tracing events that record the buffer full and buffer 

empty events. For more details please refer to the EPILOG specification [6]. 
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In MPI applications. ec:ch proce~s maintains a kJCal e'/ent trace that contains the definition 

records related to the resources used hy the process and the event records for the events occur7ed 

during the executIOn cf that pror.:ess. After program termination, these local ev~nt tra(~es are merged 

together to forn: a single global event trace that contains an aggregate of all the definittOn records 

from the individual trace files and synchronized eve1Jt records for the entire run of lhe application. 

In OpenMP applicatiorls, threads have ~heir local event traces which are merged toget}1ef after 

program termination to form 3 global eVent trace. Hybrid applications h~ve to go throiJi!h a two

level merging of trace file~. The fi:-silevel merges per-thread local traces to form a rer-ploce~~s t!'ace. 

The second level merges the JocaJ per-process traces to form a single global trace file. 

1,~J Abstraction Layer 

EA.RL is a high·,level interfaCe for ac(~eSSmlg EPILOG event traces and can be used to wnte advanced 

:.race-analysis software. EARL provides random aCCf'SS to single events Slid comp:Ites the ex.eClJ.

rion state at the time of a given event i.lS V'lCn as Jinks between pa!rs of i~elated events. EARL is 

implemented In C+..f.. and offers both C++ and Python class interfaces. 

2.~~.1 Introduction 

An event trace is a chronologically sorted 8equence of runtimE. events recorded during program 

execution that can be used to analyze prog!'am behavior. In the KOj,\ X pelformance-analysis ~nvi

ronmen! [22], event trace~ are used to identify patterns of inefficient execution. 

EARL otTers the following functionality: 

• Random access to single events 

• Access to the execution state at the time of a given event 

• Links between pairs of related events 

• Access to virtual topologies. 

• Various statistical functions 
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EARL can be used for a large variety of trace-analysis tasks. The main purpose of EARL within 

KOJAK is to simplify, the specification of execution patterns representing performance problems. 

within the EXPERT analyzer [23] and, thus, to allow easy extension and customization of the pattern 

base used in the analysis process. The first prototype of EARL was completed in 1998 as part of a 

master's thesis [21]. 

2.3.2 D~t~ Model 

EARL (Event Analysis and Recognition Library) is based on a simple object-oriented data model 

whose simplicity is derived from the fact that all higher-level abstractions, stich as executioH states 

and links between related events, are expressed in terms of event sets or event references, (hus never 

leaving the familiar notion of an event. 

Abstractions 

The central abstraction in EARL is an event.· Every event has a type, a timestamp, and a location, 

which answers the questions what happened, when it happened,; and where it happened, respecti"ely. 

In addition, an event may provide type-specific attributes including iink~~ to related events. 

The program resources represented 'in an event trace include files, regions, and :;aH sites. The 

system resources associated wIth an event trace' form a hierarc?y consisting of machines. nodes, 

processes, and threads. Machines can be made up of multiple (potentially SMP) nodes. Each node 

can host multiple processes, which in tum can spawn multiple threads. This model mirrors one 

or more parallel computers with SMP nodes and can also accommodate more traditional non-SMP, 

single-sMP, or simple desktop architectures. An event location is a tuple consisting of a machine, 

a node, a process, and a thread. A location is basically a thread that includes information on the 

process, the node, and the machine it is associated With. A single-threaded process always has 

one explicit thread because in EARL the thread level is mandatory. Essentially the event location 

represents a thread in KOJAK. A system resource on the other hand can be a node, a process, or a 

thread. 

There are other special types of resources included in an event trace like MPI communicators 

and virtual topologies. Also, some events may store the values of certain system metrics, such as the 
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Figure '2.4: Hierarchy of EARl, event type&. 

number of floating point operations exe'.:uted. A metric may represent a count of event occurrences 

(e.g., from a haroware cOilnter) across an. interval, an occurrence rate measured across an interval, 

or the current value of a metric',such as the current memory utilization. 

Event Model 

The event model is defined 'by a hierarchy of abstract and concrete event types, which is shown in 

Figure 2.4 using UML notation [4]. Abstract event types do not appear in the event trace, they ar,~ 

Ilsed only to isolate commonalities in the mudeL In the figure, abstract event types ha"ve been distm

guished by writing the type names in italics. The arrows illustrate an inheritance relationship with 

respect to the type attribute:;;, that is, an event type inherits all Httributes from its ancestors. Hatched 

boxes represent MPI-specitk types. whereas spotted boxes represent openMP-specific type's. 

As shown in the figure, events are arranged in a multi-level hierarchy. For example, the event~ 

marking the exit of an MPI collective communication operatioli and the end of ur. openMP pt'.ral!el 

constlllct are at the same level in the hierarchy and are children of the ~ame parent that represen~z-, 

the region EXIT evenH,. Also, MPI SEND and RECV eVents are children of the same parent rhat 

represents the MPl point-tn-point communication events. 

____--r ___"Y...l... --.
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Higher-Level Abstractions 

EARL provides the following two abstractions which are useful to easily identify related events . 

• State sequences 

• Pointer attributes 

State sequl!nces map individual events onto a set of events that represent one aspect of the 

parallel system's execution state at the moment when the event happens. This allows complex 

events to be described in the context of the execution state. For example, EARL maintains a region 

(call) stack for every location. The initial stack is empty. Whenever an ENTER event occurs, it is 

added to the stack and whenever an EXIT event occurs, the corresponding ENTER event is removed 

from the stack 

Pointer attributes connect,two corresponding events with one another, so that one can define 

compound events along a path of ('orresponding events. For example, the attribute sendptr points 

from a RECV event'to'the corresponding SEND event.' 

2.4 Analysis Layer 

EXPERT describes performance problems llsing a high level of abstraction in terms of common 

situations that result from an inefficient use of the underlying programming model(s). 

2.4.1 Introduction 

In EXPERT, the analysis is carried out along three interconnected dimensions: class of performance 

behavior (i.e., perfqrmance properties), position within the dynamic call-tree, and a location (e.g., 

node or process). E,ach dimension is arranged in a hierarchy, so that the user can view the behavior 

on varying levels of detail. The comprehensiv.e behavioral classification used by EXPERT provides 

the ability to explain problems intelligibly in terms of common situations that result from [;on

optimal usage .of the programming model to which they are related. In addition, it is possible to 

integrate application specific classifications by using appropriate extension mechanisms. 
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EXPERT uses EARL tc access the event& In an evcnt traCe Its afchite~ture is based on the idea of 

separating the analysis proce~s from the specification of properties representing performance prob

lems in parallel applications. In EXPERT, the perforry;.nct properties are ananged in a hierarchical 

distribution of execution patterns representi.lg jr,cfficlent behavior. TI)( Python version is mainly 

used for prototyping. 

2.4.2 Analysis Process 

The performance properties are specified in the form of patterns. Pdtterns are C++!Python cla~ses 

that a~e responsible for detecting compound events indk'adng inefficient behavior. They provide a 

common interface making them exchangeable from the p\!rspec(ive of the tooL The spedfications 

us~ the abstractions provided by EARL and, for this reason, are very simple. 

The allalysis process follows an event-dr!ven approaC:l. EXPERT walks sequentially through the 

event trace and invokes call-back methods for each single event to pattern instances, supplying the 

event a~ an argument. A pattf'm c~m provide a different callback method for each event type. The 

caB-back mcthod itsdf then tries to locate a compound event representing an inefficiency, thereby 

following links (i .e., pointer attributes) emanating from the supplied event or investigating system 

states .. This mechanism alJows the simple specification of very complex performance relevant situ

ations and an explanation of mefficiency that is very dose to the terminology of the programming 

nlOdeL 

2.4.3 Hierarchical Organization of Performance Properties 

EXPERT organizes the pcrformance properties in a hierarchy. The upper 1eveL~ of the hierarchy (i.e., 

those that are cioser to the root) correspond to more general behavior a!3pects such as tirne spent 

in MPI functions. The deeper levels correspond to more specific situations such as time lost due to 

blocking communication. FIgure 2.5 shows the hierarchy of predefined performance properties that 

are supported by EXPERT. 

The set of performance properties is split into two part5. The first part, which censiitutes the 

upper layers of the hierarchy and WhICh is indicated by \Alhite boxes, is mainly u:.;ed on ~,ummary 

information invol ving. for example the total execlItion times of special MPI routines, which c(mld 
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also be provided by a profiling tool. Howe\ er, the second part, which constitutes lhe Jower layers of 

the hjerarchy and whIch is indicated by gray bJxes. involves idle times that can (mly be deterrnir:ed 

by comparing the chronological information between indivIdual ,events. We: have studied two MP~ 

'applications to demonstrate the usefulness of tl)js work. We have used the topologkal information 

to explain the occurrence of certain 'vait stat:'s in these applications Tbese wait states occur due 

to standard patterns associated with MPI applications. Hence we provide a descriptjon of typical 

conlmunication patterns assocIated with MPI applications. T~ble 2.1 briefly explains some of the 

performance properties specified by EXPERT for MPI applications. 

2.5 Presentation Layer. 

CUBE (CUBE Uniform Behavioral Encoding) is a generic presentation component suitable for dis

playing a wide variety of performance metrics for par~Hel programs including MPI and open~p 

appJi..:ations. CUBE allows interactive exploration of a multidimensional metric ~;pace in a !')calab1e . 

fashion. ScalabUity is achieved in two ways: hierarchical decemposition of individual dimens:Jr-s 

and aggregation across ditferent dimensions. All metric~' are uniformly accommodated in the S3.me 

display and thus provide the ability to easily compare the effects of different kinds of program 

behavior. 

2.5.1 Data Model 

CUBE has been designed around a high-level data model of program behavior called the CUBE 

perfomzance space. The CUBE performance space consists of three dimensions: a metric dimension. 

a program dimension, and a system dimens~on. The metric dimensioI? contains a set of metncs, such 

as communication time or cache misses. The program dimension contains the program's call free, 

which includes all the call paths onto which metric values can be mapped. The system dimen~ion 

contains all the system resources of the program, which can be processes or threads dependin!; on 

the parallel programming model. Each point (rn. c,!) of the space can be mapped onto a number 

representing the actual measurement for metri;.:: rn while the centrol flow l was executing ,~a!l !Iath 

c. This mapping i8 called the severity of the performance space. 

Each dimension of the performance space is organized in a hierarchy. First, ihe metric dimen
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Table 2.1: EXPERl performance properties. 

Performance Property 
MPI 

Communication 

Collective 

Early Red,uce 


I, Late Broadcast 

I 
Wqitat N X N 
Point to Point 
Late Receiver 

Messages in Wrong Order 
(Late Receiver) 

I Late Sender 

Messages in Wrong Orde r 
(Late Sender) 
Synchronization(MPI) 

Wait at Barrier(MPI) 

Description 
Time spent on MPI API calls 
Time spent on MPI API calls used for communication 
Time spent on collective communication 
Time lost as a res~lt of a destination process entering in a 
all-to-one operation earlier than sending processes 
Time lost if the destination processes entering in one-to-aU 
operation enter the operation earher than the source pro
cess 
Time lost in synchronization in a all-·to-all operation, 
Time spent on point-to-point communication 
Time lost if a send operation is blocked until the cone
sponding receive operation is called 
Late receiver due to sent messages in an order different 
from the one expected by the receiving process 
Time lost in a wait state caused by blocking receive op
eration that is posted earlier than the corresponding send 
operation 
Late sender due to the messages sent in a wrong order 

Time spent on MPI barrier synchronization 
Time lost due to processes waiting to enter a barrier opera·
tion 
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sion is organized in an inclusion hierarchy where a metric at a lower level is a subset of Its parent, 

for example, communication time is below execution time. Second, the program dimension is orga

nized in a call-tree hierarchy. Flat profiles can be rep~esented a8 multiple tnvial call trees consisting 

only of a o.;ingle node. Finally. the system dimension is orgal1ized if! a mu1ti-level hierarchy consist

ing of the following levels: machine, SMP node, process. and thread. 

2.5.2 Display 

The CUBE display consists of three tree browsers, r.ach of them relJresen6ng a l~jmension of the 

peti'ormance space (Figure '2.6). The left tree displays the metrIC dimension, the mtddle tree displays 

the program dimension, and the right tree displays the sy~tcm diu·ension. The nodes in the metric 

tr~e reprc,;;ent metrics. The nodes in the !Jrogram dimension can have different semantics depending 

on the particular view that has been 8elected. In Figure 2.6, they represent call paths forming a 

call tree. The nodes in the system dimension represent machines., nodes, and processes from top to 

bottom. 

Users can perform two types of actions: sdecting a node 'Jf expanding/collapsing a node. At 

any time, there are twc nodes selected, one in the metric tree ;;:nd the other in the call tree. It is . 

cllnently not possible to select a node in the system tree, 

Each node is associated with a metric value, called the severity, which is displayed using a 

numerical value as well as a colored square. Colors enable the eilsy identHication of nodes of interest. 

even in a large tree, whereas the numerical values enable; the precise comparison of individual 

values. The severity value of a metric describes the rel(ltive importance of the metric with respect 

to the other metrics used in the analysis process. \Vhen a node is in a collapsed state, it displays 

the inclusive numerical value of the severity of the pattern it repres~nts. That is, it dispJays the 

aggregate sum of the exclusive severity for that node and the severili~s of all its chi.ldren nodes. On 

the other hand, when the node is in an expanded state, it displays the exclusi':e vallle of the severity 

of the pattern It represents. 

The color is taken from a spectrum ranging from blue to red repre:.-;eIlting the whole range of 

possible values, To avoid an unneceSS(iry distraction, insignifica!lt ';alues close to zero are dis

played in dark gray. Exact zero values just have the background color. Depending on the severity 

representation, the color legend shows a numeric scale mapping colors onto values. 
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The view menu (Figure 7..7) in the display can be used to alter the way the program dimension is 

displayed, to change the numbe!" representation for the entire display, or to hide positive or negative 

values. 

After opening a dat3 set, the. middle panel shows the call tre~ of the program. However. a user 

might wish to know which fraction of a metric can be attributed to i:l particular region regardless of 

from where it was called. In thIS case, the user can switch from the cal!··tree mode (default) to lhe 

module-profile mode or the regi\Jn-profile mode. In the module-profile mode, the call-tree hierarchy 

is replaced with a source-code hierarchy consisting of three Je\'e)s: m0dule, region, and subregiaIis. 

The region-profile mode is similar to the module-profile mode except that modules are not shown. 

The severity can be displayed in four different ways: as an ahsolute value (default), a per

elm/age, a reiative percentage, or a comparative percentage. The absolute value is the real value 

measured. In absolute mode, a11 values are displayed ia scientific notation. To prevent cluttering 

the display, only ,'he mantissa is shown at the nodes with the exponer.t displayed at the color legend 

\Vht~n displaying a value as a percentage, the percentage refers to the value shown at the root of 

th~ n".etric tree when it is in the collapsed state. However, both abs·::>lute mode and pf..rcentagf! mode 

have the disadvf.!lltage that va]ue~ can become very small the more one goes to the right, since aggre

gation occurs from right to left. To avoid this problem, the user can switch to rela~ive percentages. 

Then., iI percentage in the right or middle tree always refer8 to the s~lection in the neighbor to the 

left, that is, a percentage in the system dimension refers to the selection in the program dimension 

and :1 percentage in the program dimensbn refers to the selected metric dimension. In this mode, 

the percentages in the middk and right tree always sum up to one hundred percent. Figure 2.8 

shO\\'s a region profile with relative percentages. Furthermore, to facilitate the comparison of differ

ent experiments, users can choose the comparative percentage mode to di'Jplay percentages reiative 

to another data set. The comparative percentage mode is basically like the normal percentage mode 

except that the value equal to ] OO~-7o is determined by another data set. 

If one or more virtual topologies have been defined i!1 the CU BE fiie, the Topology menu item is 

~nabled. Otherwise it is disabled. After selecting Topology, the topology-~;election dialog pops up if 

the CUBE file has multiple topologies. Through this dialog, users can chom,e a specific topology t.) . 

be displayed in a topology window. Each topology is displayed in a separate window. The topology 

display is described in more detail in Section 3.5.2. For further information about using the CUBE 
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Chapter 3 

Extensions 

3.1 Overview 

To make the analysis proce~s·topology-aware, va~ous extensions have 'been made to the KOJAK 

toolkit. The EPIL0(J trace format has been extended to provide definition records to include the 

topology-specific information in the trace file. The EPILOG run-time system haS been extended 

to automatically recorll MPI process topology lnformation in applications that utilize t.he MPI pro

cess topology support. Also, an instrumentation API has been provided for c/c++ and FortIan 

applications to setup and use virtual topologies. This extends the usage of virtual topologies for per

formance analysis to applicatIOns that do not utilize the MPI topology support (e.g., openMP applI

cations and many MPI applications). EARL has been extended to access topology information from 

the event trace and provide an abstraction to map the performance data onto the viltua! topology of 

the application. The EXPERT analyzer has been extended to transfer the topology information from 

the event trace to the CUBE data format which can be viewed using the CUBE performance browser. 

The CUBE data format has been extended to record topology information, and the CUBE GUI has 

been extended to incofporate a new window to visualize the distribution of performance data across 

the virtual topology in a user-friendly way. 

To keep the extension simple, we restricted ourselves to Cartesian topologies as a common case 

found in many of today's parallel applications. 

The following sections describe the extensions made to all the layers of KOJAK to use topo

logical information for the performance analysis of parallel applications. Section 3.2 describes the 
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extensions made to EPILOG. Section 3.3 describes the extensions made to EAR~,. Section 3.4 de

scribes the extensions made to EXPERT. Fimllly~ section 3.5 describes the exten~ions made to CUBE. 

3.2 EPILOG 

Two new definition record~ have been added to the EPILOC binary trace t'ol"mat to define CartesIan 

topology-specific information. Provision has teen made to automatj,:ally record the topology infor· 

mation of applications using the MPI h)pology ,>upport An inSif'lmf;ntatior} API has been provided 

fo:' tho~e applications that do !lot utilize MPI process topology support. 

3.2.1 Trace Records 

Th~ EP!LOG trtlce fomIat COfiSi3ts of (1.r,tlnition rec(wds that Gf"tlrJe Var!PllS system and p~ogram 

rCi-ources available to the appJicatbn :n the CUlrent pf(Jgranlllling envinrfirnent TViO definition 

records h~ve been added to the trace format to define the Cartesian wpdogies. One record type to 

define the fenera~ layout c.f ·~Carter.,iJn 10Pfj!Ogy and one to map a ,;,ysrem rC,OUf(;e (e,g., a process 

or a !lOde) OTlto a particuiar c-osilt!(tn within a previousl~t lie-fined topology. The semantics Gf the 

topology can be arbitrary and the records can be used to dedare a virtual or a rhysical topJIogy., 

T!1e two definition records added are as follows: 

• ELG_CART _TOPOLOGY 

• ELG_CART_COORDS 

This record defines an identifier topid for a Cartesian topology_ The record aisa defines an idep.

lifter c id of the MPI communicator repn:.senting the topology if it was created using MPl. It is se~ 

to a special value when MPI process topology support is not used. topid ,:;'an tot' used to) uniquely 

identify a topology in this case. The record spedfies the number of dimensions ndims \If the Carte

sian grid and includes a vector dimv [ } of sjze ndims containing the numher of system resources 

in each dimension and a vectur per iodv [ ] of size no.ims specifying whether the grid is periodic 
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Table 3.1: ELG_CART_TOPOLOGY definition record 

Data 
Type 

Attribute Description 

elg_ui4 
elg_ui4 
elg_uil 

elg_ui4 
elg_uil 

topid 
cid 
ndims 

dimv[ndims] 
[ndims] 

Cartesian topology identifier 
Communicator identifier 
Number of dimensions in the Cartesian 
grid 
Number of locations in each dimension 
Periodicity of the grid in each dimen
sion 

in each dimension or not. To specify the periodicity of the grid in a particular dimension, each entry 

of per iodv must carry one of the two symbolic constants: 

• ELG_TRUE 

• ELG....FALSE 

Table 3.1 summarizes the various fields of this definition record, 

ELG_CART_COORDS 

This record specifies the Goordinates of a system resource in a Cartesian topology. It contains the 

topology identifier top i d of the Cartesian topology to which the coordinates refer, a location iden

tifier lid for each system resource, the number of grid dimensions ndims, and a vector coordv 

of size ndims containing the coordinates of the system resource. 

The Table 3.2 explains the various fields of this definition record. 

3.2.2 MPI Wrappers 

As discussed in the previous chapter, EPILOG uses the PMPI library to instrument MPI applications. 

The PMPI library generates MPI-specific events by intercepting calls to MPI functions. These events 

then call the EPILOG run-time library, which provides methods for buffering and writing the defini
• > 

tion and event records to the trace file. 

The PMPI wrapper function for the MPLCART_CREATE routine uses the function parameters 

to this MPI function to write the ELG_CART_TOPOLOGY definition record. After processing the 
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Table 3.2: ELGJ'ART.COORDS defin~t~on record 

,Data 

I Typeelg_ui4 

Attribute 

topid 

Dp-scriptiont._ -C-an-e-s-ia-n--to-p-o--cl-o-g-y-i---cd-er-It-ifi--::-1-er

ela_ui411id . ~'ClCation identifier 
I 
I elg_ull ndlms Number of dImensIOns III the CartesIan 

gnd . 

elg_ui4l coorr!-~_~-=-l~~ims ~__ Coordinates of the system reso'!.~~_J 

topology outline, the wrapper requests the coordinates of the ca!ling process from the MPI runtime' 

system and writes the corresponding ELG_CART..COORDS definition record. 

3.2.3 API 

!vfost parallel apphcations, rarely usc M?l process topology support. Also, there i:~ no special support 

for \il1uaJ topologies in OpeTiMF applications. For these reasons, EPILOG provides a c/c++ and 

Fortran ,A.PI to write the topology specific llefinition records. The API consists of (\\10 functions that· 

aHow the denll1tion nf upto threcdimensionol Cartesian topologies. Using this API is fauly simple 

and requires only minimal effort. 

The two functions in c/c++ ::.tart with a pre'5.x e 19 whereas in Fortran these functions stan with: 

a prefix elgf. The functions are implemented in Cand the POF-ran fun~tions are wrappers mound 

their C implementations. 

The two functions in the A.P! are e)'.piajned belovr• 

• 	 e1g (f) _cart_.create \sizeu. sizel, size2,periodo,periodl,pcr'iod2) : This function al .. 

lows the user tc setup a Cartesian top01ogy. The number of dimensions of the CarteSIail. grid 

can be at most three. SiZf_\ is an inte..ger describing the number of ~ystem resource~ in dimen

swn )(. perindx is the integer describing the periodicity in dimension X. Its value is zero if 

the Cartesian gnd is nOI~-periodic in that dimension This function is uSiJally called epee. If 

more than one system reSU1lfce calls :his function for a gi'.:en topoiogy then th::~ m"Lipl(~ calls 

will be redundant. The merge component ensure~ that onl~' ope ddlil1~lOn record per tapology 

is written to the global trace file . 

• 	 e19 ( f) _cart_coords (coon/o, coord} ~ coord2 ) : This function. allows the calling system 
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resource to define its coordinates in a previously defined Cartesian grid. coordx is an integer 

describing the coordinate of a location in dimension X. The range of coordx is [0, sizex

1] where, sizex is the number of system resources in dimension X. This function must be 

called exactly once by every system resource that is a part of the Cartesian topology. 

The following example defines a three-dimensional 4 x 4 x 4 topology that is periodic in the 

first but not in the remaining two dimensions. 

if. (rank . eq. 0) then 

call elgf_cart_create(4,4,4,l,O,O) 

endi'f 

call elgf_cart_coords(x,y,z) 

Every process executing these lines assigns itself coordinates defined through the variables x, 

y, z, containing values between 0 and 3. 

3.3 EARL 

The EARL abstraction layer has been extended to access the topological information from the event 

trace and to create an abstraction that maps the performance data onto the .CartesiaQ topology of the 

appJication. 

The event trace contains timestamped events that describe the dynamic program behavior. EARL 

can access information about the type, time and location of occurrence of an event. This information 

can be used to collect the performance data of the application which in tum can he used to simplify 

the specification of execution patterns representing Performance problems in the EXPERT analyzer, 

With topological knowledge at our disposal, we can map the performance data onto the virtual 

topology of the application. This information can be utilized to identify higher-level algorithmic 

events related to the parallelization scheme applied in the parallel algorithm. Given this knowledge, 

occurrences of certain wait states can be explained more clearly. 

th~ clas1ses Cartesian and EventTrace were extended to provide member functions to access 

topological information from an event trace. Also, member functions were provided that can convert 

the exact system resource where a event occurred to its corresponding coordinate in the Cartesian 
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grid. This abstraction helped map the occurrence of every event to a coordinate in the Cartesian 

grid al1d thus, map the performance data onto the topnlog) of the application. Following extensions 

were made to the FARL library: 

• 	 Extensions to the class Carcesian,and 

• 	 Extensions to the class EVE;n t Trace 

3.3.. 1 Extensions to the class Cartesian 

The Cartesian topology is a special type of reSOUIce in the application and there are tv,,'o types 

of definition records in the trace file to define this resource. Th(~ primary purpose of EARL i~ to 

access and process EPILOG event traces and thus, to simplify the specification ef execution patterns 

representing performance problems lNithin the EXPERT analyzer. Therefore, the c1ass Cartesian 

has been added to EARL tD aCCESS topology specific information from the event trace, 

This class contain;.;; data tha.t recOlds the t'Jpology information and provides member hlTlctions to 

access this ir..formation through an objeGt of this dass. Fol1owing is a list of these ITle.mbi.':f functions: 

d ( ) : Returns the unique Cartesian topology identifier. • 	 long 

• 	 Communi ca tor * get ..com ( ): Returns the :rvlP! commun~cator that represents the pro·· 

ce<)ses defining thi~ topology. It is sei tc NULL when MPI process topologies are liot used. 

• get..ndims ( ) : Returns the number of dimensions ,in the grid. 

• 	 'loid get_dimv (s t.d: : vector<long>& out): Returns in out the 'lumber of loca

tions in each grid dimension. Note that the size of Ou t is equal to ndims. 

• 	 void get_periodv(std: :vector<boGl>& out}: Returns in Gut the periodicity 

in each grid dimension. Note that the size of au t. is equal to ndims. A boo!ca~l value of rtUe 

indicates that the dimension is penodic. 

The member functions to conveniently convert sy:-:tem resources to coordinates in the- Cartesian 

grid and vice-a-versa are: 
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• void get_coords (std: : vector<long>& out, Location* loc): Returns in 

ou t the coordinates of the location loc in the Cartesian grid. Note that the SIze of ou t is 

equal to ndims. 

• 	 Location* (std: :vector<long>& coordv): Returns the location cor

responding to the coordinates represented by coordv in the Cartesian grid. 

3.3.2 Extensions to the class EventTrace 

This class primarily provides random access to all events In the trace file including the execution 

state at the time of a given event. This class also provides information on program and system 

resources involved in the program execution. The event trace can contain more than one Cartesian 

topology. Hence, a couple: of routines were added here ~o access multiple Cartesian topologies in 

the event trace. These routines, are the following: 

• 	 long () : Returns the toud number of Cartesian topologies. 

• 	 Cartesian* get_cart (long cart._id): Returns the Cartesian topology with identi

fier cart_id. 

Two member functions have been added to directly access' system resource from the coordinates 

and vice-a-versa. 

• 	 void get_coords (std: :vector<long>& out, long cart_id, long loc_id): 

Returns in ou t the coordinates of the location with identifier I oc_id in the Cartesian topol

{)gy with identifier cart_id. The coordinates are specified by the vector ou t in the order of 

dimensions (i.e., first dimension first, etc.). 

• 	 Location* get_Ioc (std: :vector<long>& in, long cart_id): Returns the 

location at given coordinates in the Cartesian topology with identifier cart_id. The coor

dinates are specified by the vector in in the order of dimensions (i.e., first dimension first, 

;etc.). 
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3~3.3 Python Methods to Access Topology Information 

The Python' API is a wrapper around the C+-l- API that ha') been generated using SWIG [20]. The main 

advantage of the Python interface is th1t it enabies rapid prototypillg as welJ as interactive program

rning. The existing typemaps have been extended to "Iso make the Python interface topology-aware. 

3.4 EXPERT 

The EXPERT analyzer uses th~ EARL library interface to access the event trace. It then utilizes the 

low-level trace-record information to create a high-level callpath profile representing the perfor

mance of an application. This profile is based on the specitication of h;erarchical patterns repn.sen~

jng performance properties of an application. 

The EXPERT analyzer has been extended in two ways. First, its been enabled to read the topo

iogic31 information from the event trace and record it in the high-level model. 

Secondly, new patterns have been added to analyze a specific algorithm using topological infor

mation onto v,'hich the performance data have btenmapped. These patterns will be discussed in the 

next chaptp.r when we descnbe the results of our analysis while investigating wavefront proce~;ses 

in the ASC! benchmark SWEEP3D. 

3.5 CLTBE 

The CUBE data format has been extended to include the tupological information. ·A topology view 

has been added to the CUBE CUI. This extension of the GUt can be used to view the distribution o~' 

performance data across the Cartesian virtual topology of the application. 

3.5.1 CUBE Data Format 

New XML elements have been added to the CUBE data fOlmc.t to represeflt the topological informa

tion in the CUBE file 

Tbe < topolog i es > element marks the beginning of topology-specific information in the 

CUBE file. The <cart> element defines a one, two, or three-dimensional Cartesian topology. The 

<dim> element defines the total number of system resources in each dimension. The <coord> 
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element maps each system resource to its coordinate in the Cartesian grid. The following example 

shows a typical representation of a three-dimensional Cartesian topology which is non-periodic in 

all three dimensions and has two processes in each dimension 

<topologies> 

<cart ndims="3"> 


<dim size="2" periodic="FALSE"/> 


<dim size="2" periodic="FALSE"!> 


<dim size=" 2" periodic~"FALSE"/> 


<coord locld="O">O 0 O</coord> 


<coord locld="l">O 0 l</coord> 


<coord locld="2">O 1 O</coord> 


<coord locld="3">O 1 l</coord> 


<coord locld=h4">1 0 O</coord> 


<cpord locld="5">1 0 l</coord> 


<coord locld="6">1 1 O</coord> 


<coord locld="'l">l 1 l</coord> 


</cart> 


</topologies> 


3.5.2 Topology View 

If one or more virtual topologies have been defined in the CUBE file, the Topology menu item is 

enabled. Otherwise it is disabled. After selecting Topology, the Cartesian-selection dialog pops up 

if the CUBE file has mUltiple topologies. Through this dialog, users can choose a specific topolog) 

to be displayed in the topology view. Each topology can be displayed in a separate view. 

If the CUBE file contains topological information, the distribution of the performance metric 

across the topology can be examined using the CUBE topology view. The CUBE topology view 

shows performance data mapped onto the Cartesian topology of the application. The corresponding 

grid is specified by two parameters: the number of dImensions and the size of each dimenSion 

Figure 3.1 show the menu bar and the actual Cartesian grid. The Cartesian grid is presented by 
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Figure 3.1: Topology Display 
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planes stacked on top of each other in a three dimensional projection. The number of planes depends 

on the size of the Z dimension. Each plane is divided into squares. The number of squares depends 

on the dimension size. Each square represents a system resource (e.g a process) of the application 

and has a coordinate associated with it. 

The grid displays the severity of the selected metric in the selected call path for each system 

resource participating in the application's topology. The severity is represented as a color. A system 

resource might not be a part of the application's virtual topology or may have a zero value for a 

metric. 

Menu Bar 

The menu bar consists of four menus: a view menu, a geometry menu, a zoom menu and, a coJors 

menu. 

View. The view menu 'can be used to choose one of the three possible orientations of the grid. 

The coordinate axes at the bottom of the picture indicate the direction of the X, Y and Z 

dimensions in .. the three;-dimtinsional ~pace. In the ~ase of one- or two- dimensional grids, 

users are provided wi.th only one orientation of the grid. 

Geometry: Due to varying dimension sizes, planes in the grid might overlap with each other and 

the size of the squares might be too small to recognize their color. This may pose a problem 

for the user to view the topology information effectively. The geometry menu circumvents 

this problem by provi,ding options to scale the picture in various ways. The Angle option helps 

the user to adjust the skew of the three-dimensional projection. The Plane Distance option 

helps to adjust the inter-plane distance. The Plane Length option helps users sca~e the edge 

length of each plane. 

Zoom: The zoom menu can be used to zoom-in or zoom-out on the grid. 

Colors: The colors menu can be used to modify the text color and the background color of 

the topology display. Finally, there are two resolution modes to choose from. The Low 

Resolution mode assigns colors to the squares according to the severity values shown in the 

system dimension (Figure 2.8, rightmost tree browser). The relation between colors and the 
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corresponding values have been described ;n section 2.5.2. Often, these values have small 

variatJOns from each other and do not help user IO study the relative distrIbution of severities 

across the grid. As described in the hist chapter, the CllBE color spectrum ranges from blue 

to red lepresenting the whole range of possible vhlues. To exploit the entire spectrum of 

available colors and to enable the user to study the relative distributicn of ~everities, a High 

Resolution mode is provided. I'hls mode high!ights the minute differences between severity 

vakes uf the system resources. Severity values of zero are assigned the background color of 

the display. This mode has its own color legend showing the minimum and maximum values 

for the selected severities across the grid. These values c:m be absolute values, percentages, 

or relative percentages depending on the CUBE vie~1 mode. 
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Chapter 4 

Examples 

We have designed an infrastructure that enables the identification of higher-level algorithmic eVEnts 

related to the parallelization scheme applied in a parallel algorithm. We believe that this infras

tructure can be used to study the relation between certain inefficient patterns and these higher-level 

algorithmic events. Also, this infrastructure can be used to identify clusters of system resources 

that show semantically similar behavior due to their position in the virtual topology of the applica

tion. This infrastructure has been developed by extending the KOJAK performance analysis toolkit 

as described in the previous chapter. 

To study how virtual topology can be used to accomplish the above mentioned goals, we have 

applied our tool extensions to two example MPI codes, the ASCI SWEEP30 benchmark [2] and an 

e~vironmental science application called TRACE [8]. 

This chapter focuses on the results derived from these experiments and thus, shows proof of 

concept that mapping performance data onto the virtual topology of a parallel application can help 

better understand the performance behavior of these applications. 

AlJ the experiments were conducted on different parallel computers. Table 4.1 summarizes 

Table 4.1: Machines used for experiments . 
....--. 

Name Location CPU description OS 
-

Jump 

I Galaxy 
y Beowulf 
copper 

FZJ, Germany 
Houston, USA 
Houston, USA 
UIUC, USA 

IBM Power4+ 
UltraSparcIII 750 MHz 
Intel PentiumIII Xeon 550MHz 
IBM power4 

AIX 
SunSolaris9 
Linux 
AIX 
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the machines used fCI our experiments. Varioas event traces \V~re collected for both applications 

with different configurations of the Cartesian grids used to define the virtual topology of these 

application". 

4.1 Sweep3D 

The first example is the ASCI benchmark S'NEFPjO. Tbs example shows howihe topolGgy-specific 

information in the event trace can be utilized tl' identify higher-If,vd algorithmic events in an appli

cation. Also, it demonstrate'i the way in v.,rhich these higher-level events can be used to expiain a 

specific performance problem i~ SWEEP3D. For Ollr u:lalysis, we extended the hierarcht::al patterns 

described in the EXPERT analyzer to incOrpt1r;lte four new sub-patterns of the late-sender pattern. 

This extension was necessary to explain the relation of late-sender wait states to the specific algo

rimm used in SWEEP3D. 

4.1.1 Introduction 

The benchmark code SWEEF3D is an MPI prog;~am rerfcrm.ing the core computation of a real 

ASCI application. It solves a I-group time- independent discrete ,xdinates (Sn) 3D Caztesian gee-" 

ometry neutron transport problem by cakalating the flux of neutrons through each cell of a three

di!Tlensional grid (i, j, k) along several possible di recHon;; (ang]es) of traveL The angles are split 

into eight octants. each corresponding to one of the eight directed diagonals of the grid. 

4.1.2 Domain Decomposition and Parallelism 

SWEEP3D exploits parallelislTI via a wavefront proce~s. Fij~t, it map~ the (i, j) planes of the 

three-dimensional domain onto a two-dimens!o.'!al grid of proce:.::ses. Thus, S\:l/EEP3D has a twn

dimensional Carte~ian virtual topology. SWEEP]D uses a wavefront algorithm to do its computation. 

The eight octants of the three-dimensional cubic domairl re:.. ult in wavefronts crigmating from the 

four comers of the two-dimensiona1 Cartesian grid. TLm is, the direction of die wavefront, at any 

given time, depends on the octant being proces3ed elt th~lt time. 

To improve p('rallel efficiency, blocks of work are pipelined through the domain. The para1Jel 

computation fol1mvs a pipelined wavefront process that propagates data along diagonal lInes through 
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. ~Figure 4.1: Wavefront propagation of data in SWEEP3D 

the grid. Responsibl~ for the wavefront computation in th.e code is a subroutine called sweep ( ) , 

which initiates wavefronts from all four corrfers of the two-dimensional grid of processes. The 

wavefronts are pipelined to ena~le multiple wavefronts to follow each other along the sarr.edirection 

. simultaneously. 

Figure 4. 1 shows th~ data ~ependence graph·for a 3 x ~ array. This figure illustrates the propaga:" 

hon of wflvefronts iqi9ate~ . at the South-West (i .e . , ~bottq[n-left) corner of the two-dimensional grid. 

In this example, each:,o:process is data-dependent on its.We.stern ~nd Southem .ueigbbof!i..The. lfJng, 

bold arr.ows symbolize data dependencies. The processes that are to the Nor:.th-West an.9,South-East, 

(i,e. , diagonally aligned with a process) of .a.process· are algorithmically independent with .respec.t 

to that process. In .the figure, ,diagonal lines. cut through algorithmically independent processes. 

The diagonal arrows toward North-East (i.e., top-right) represent the computation as it progresses 
. . 

in the form of wave{ronts from the lower-Ieft-to the upper-right comer, Thus, the parallelization 

in SWEEP3D is based on concl:lrrency among algorithmically independent processes and pipelining 

among algorithmically dependent processes. 
) , . J. .t 

Th~ ,basic code struct.ure of.routine sweep ( ) in pseudo-code notation is as follows; 

...... -'.,J ··L
DO octants 

DO angles in octant 

DO k planes 

block i-i'nflows 
.. ,... or -. .. 

IF neighbor (EIW) ' MPI_RECV(E/W) 
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! block j-inflows 

IF neighbor(N/S) MPI_RECV(N/S) 

... compu~e grid cell ... 

block i-outflows 

IF neighbor(E/N) MPI_SEND(E/W} 

! block j-outflows 

IF neighbor (N/S; MFI_SEND(N/S) 

END DO k planes 

END DO angles in octant 

END DO octants 

It can be seen from the pseudo· code that in the innermost loop, each process execute~ an 

M:l:)I ..RECV () to get data from the neighbors it algorithm.cally depends 0n. Then, the process 

performs the required (omputc:iion ano sends the result to the ncighbcn: which depend Ot:'l it. This is 

do~~ by th~ two MPI -SEND ( ) caih; at. the end of the loop. 

4.1..3 Performance Problem in SWEEP3D 

SWEEP30 suffer& from W3~t states due to the late-sender patten1. This pattern is explained in the 

FIgure 4.2. This pattern is caw.ed aue to two communicating processe~ wheT;;: one process send.:; a 

me:;sage to another process. HDwever, the receiver process,might enter ~he receive operation ear]i~r 

than the corresponding sender process enters the send operation. Thcrefo!'e it has to wait until the I 

sender ~ctual1y sends the message. This is an undesirable wait state in whIch the receiver waits for 

the sender to send the message without doing anything useful. 

In SWFEP3n this pattern occurs frequently because of the paraIlelization scheme applied. It 

can be seen from the sweep {\ pseudo-code that each process has to execute tWG t4PL.RECV ( ) 

calls to get data from the proc{'sses an which it depends for its data. The dire{~t;()n of the wavefrom 

;.::hange'i depending on the octant being processed. When the direction of the pipeline changes (e.g .. 

from NOlth-East to South-West>. a pipeline refill takes place starting from a ditferent comer. During 

the pipeline refill, every process except the process which initiates the wavefront, has to wait for 

data from its algorithmically dependent neighbors hefore it can start its computation. Thus, these 
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Figure 4.2: Late-sender pattern in MPI applications. 

processes will suffe~. /rom late-sender waiting times. The process at the corner reached by the 

wavefront last incurs most of the waiting times, whereas the process where the wavefront originates 

incurs none. The change in the pipeline direction can be a , major contributor to the late-sender 

patterl1s observed in 5WEEP3D. 

I.· .. ' .4.1.4 Topology Analysis with SWEEP3D 

To perform topology analysis witli SWEEP3D, a three-dimensional problem domain of siz.e 512 x 

512 x 150 was chosen. This three-dimensional domai.n was decomposed into a ,two-dimensional 

_ 

~ ' . )00 i".... 1111 r. .... t 

grid of processes. The size of the grid was 8 x 8 (i.e., 64 processes). The instrUInentation of the 
~ .. "'&foo"'" ::~ .... 

user function~ was. done fully automatically using the platform compiler's pronllng interface. 
,..;-* JJ.., ,~r~' ! 

Setting up a two-dimensional Cartesian topology .... ,. 
r 

SWEEP3D does not utilize the functions provided by MPl topology support to setup ~md use virtual 
" . . ~... • f 

topologies. Therefore, we used the Fortran routines of our instrumentation API (explained in the 

previous chapter) to define a two-dimensional Cartesian topology with 8 processes in each dimen
~.... . :.. - .. _... . 

sion. The domain"decomposition is done in the file decamp. f. We inserted calls to ~he topology 

API in decamp. f. " 

The following Fortran call sets up the two-dimensional Cartesian topology which is non-periodic 

in 'all dimensions: 
... .. 

call elgf_cart_create(npe_i, npe_ j. , 0, '0, 0, 0) 

The variable npe_i is the number of processes in the X dimension and npe_j is the number 
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of processes in the Y dimensIon. Every process also assigns 3 I,;oordina(e to itself according tc its 

positicl~ in the Cartesian grid: 

cal] 1. 0 ) J 

The variable mype_i 1 is the coordinate ef the procef.g in the X dimGnsion and ffiY".;>e_j .. 

1 is its coordinate in the Y dimension. The coord~nates are cakulakd i'1 decamp. f depending on 

the MPI rank of the calling process and;ht: total number uf procet~se~ ift the J( dimensiort. 

After instrume.nting all user fUilction~ of SWEEP3D fully [luto!"llai:ically, llsing the compIler ~pec

!fleJ profillng interface, it was execut~d with 64 processes on a Solaris Clu;;ter equippec! with 

UltraSPARC-III 750 MHz processors. The execution yieJded :1 trace file enriched with topo'ogi

I:al information. This trace file was analyzed offline using the EXPERT analyzer. 

EXPERT Analysis' 

The r:Xf'ERT analyzer specifIes executlt'll patterns that symbolize perfom1anse problem;) in parallel 

applications. Processes in SWEEP]n in.:.'llf weit states due to thl~ late-sf~Jer pattern which can 

he attrIbuted to the pipelined wavefront algorithm. The dIrection changes of wavefronts that are 

initiated at the four corners of the two·-dimensional Cartesian grid are higher-level events related to 

the paralielization scheme of this alg'Jrithm. 

Now. according to our discussion above, SWEEP3!) incurs watting times due to the pipeEne 

direction change of wavefronts originating from the four corners of the Cartesian grid. A significant 

percentage of the waiting times incurred due to the late-sender pattern in SWFEP3D can be attributed 

to these waiting times. Thus, four ne'.\' sub-patterns of the late-sender pattern were added to the 

EXPERT hierarchy of pelformance patterns. 

The EXPERT pattern h;erarchy can be f!asily extended to include new patterns because of its 

fleXIble publish and register scheme. In this scheme, pattern classes ell'l ruhl~sh detected pattern 

instances and new pattern clas:~e.s can regis~er for instance3 detected by others. For example, the 

late-sender pattem c1ass can publish the detected pattern instances. The nevI 3l1h- pattern cla5ses Gan 

then register for thE published late-sender pattern instances. Tne new sub-patterns in SWEEP3rJ are 

named as follows: 

1. Wavefront from NW 

54 



. 2. Wavefront from SW 

3. Wavefront from NE 

4. 	 Wavefront from SE 

Each sub-pattern class uses the topological information provided by EARL to track the pipeline 

direction. If there is a change in the pipeline direction simultaneously with a late-sender instance, 

the instance becomes also an instance of that sub-pattern. For example, if the pattern Wm'efmlll 

from NW finds out that the direction of the pipeline changed from some other direction to North

West, then that instance of the late-sender becomes an instance of the sub-pattern Wavefront from 

NW as welL To identify the pipeline direction change, EXPERT maintains a FIFO queue for each 

process which records the directions of the most recent messages received by the process. Finally, 

EXPERT records the wait times in the high-level callpath profile which can be vi{~wed using the 

CUBE performance browser. 

CUBE Display 

The high-level callpath profile provided by EXPERT can be viewed with the CUBE performance 

browser. Figure 4.3 shows the percentages of late-sender instances caused by the four new sub· 

patterns. The new patterns appear ir. the metric tree on the left underneath the late-sender pat~ern 

and are labeled with the percentage of execution time spent in wait states caused by them. The total 

time spent in wait states, which can be obtained by collapsing the late-sender node, was 25.4%. 

Late Sender instances obseryed simultaneously with a pipeline direction change account for about 

a little less than 60% of the overall late-sender time. The time measured for individual directions 

vary between 6.0% from North-West and 1.7% from pipeline refill from North-East. 

Figure 4.4 shows the new topology view rendering the distribution of the late-sender times 

for pipeline refill from North-West. The high-resolution mode shows the relative distribution of 

s~verities of the selected property with respect to each other. As discussed above, the corner reached 

by the wavefront last incurs most of the waiting times, whereas the origin of the wavefront incurs 

none, 
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Figure 4.4: Distribution of late-sender wait states as a result of pipeline refill from North.. \Vest 
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--------------------------------------------------------------------------~~--------~-- --~. 

4.2 TRACE 

The second example highlights how visually mapping the results of our pattern analysis onto the 

virtual topology can help the user identify semantically meaningful clusters of related behavior. 

4.2.1 Introduction 

TRACE [8] simulates the subsurface water flow in variably saturated porous media. It solve.s the 

generalized Richards equation in three spatial dimensions. The parallelization is based on a paral

lelized CG algorithm, which divides the grid into overlapping subgrids and communicates via MPI. 

The main computation is done in a subroutine called 1 ( ) . 

We executed the applIcation with 64 processes on a IBM cluster with 41 Power4+ 1.7GHz 32

way nodes. The resulting topology is a three-dimensional Cartesian 16 x 2 x 2 grid (Figure 4.6). 

4.2.2 Performance Problems in TRACE 

TRACE suffers from wait states caused by inherently synchronizing all-to-all operations that occur 

when some processes i!nter the operation earlier than others. The pattern describmg this situation IS 

among the standard patterns included in the EXPERT analyzer The pattern is illustrated iT. Fj.gure 

4.5. The top three processes enter the synchronizing operation before the last process. Thus, the top 

three processes suffer from waiting times until the last process has reached the operation. 

4.2.3 Topology Analysis with TRACE 

Mostofthe computation and MPI communication in TRACE takes place in the routine parallelcg { ) . 

Figure 4.6 shows the distribution of wait states in para1 ( ) caused by inherently synchro

nizing all-to-all operations. The figure exhibits clusters of increased waiting times at the comers 

of the three-dimensional grid. These processes, due to their exposed location are assumed to have 

different computation as well as communication requirements. Without topological knowledge the 

affected processes would appear as arbitrary processes and the user would be unaware of the corre

lation between their particular role in the topology and the occurrence of specific inefficiencies. 
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Chapter 5 

Summary and Future Work 

This chapter summarizes our effort to demonstrate the importance of mapping the performance data 

onto the topology of the application for the analysis of certain communication patterrls. We also 

present future work in this area that will generalize this technique for the purpose of performance 

analysis of parallel appJications. 

5.1 Summary 

The main focus of this thesis has been the development of an infrastructure to use topological 

iriformation for performance analysis oJ parallel applications. The infrastructure has been build as 

an extension to the KOJAK performance analysis environment. 

We extended the KOJAK toolkit at various levels, each of which performs necessary tasks at 

different stages in the performance analysis process. The EPILOG binary trace format has been 

extended to record topological information ill the event trace. The EPILOG runtime system has 

been extended to automatically record MPI topology information. An instrumentation API has been 

provided to manually instrument the source code to record the topology -specific information in 

the event trace when MPI topology support is not used. The abstraction library, EA R L, has been 

extended to access topological information from the event trace and provide an abstraction to con

veniently access this information. The EXPERT analyzer has been extended to identify and pass 

topological information to the high-level callpath profile produced as output. Finally, the presenta

tion layer, CUBE, has been made topology aware and the CUBE GUI has been extended to visualize 
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the distribution of performance data aciOSS the virtual topology of the application. 

We demonstrated the feasibility of our work by performance analysis of two realistic MPI ap

plications based on our concept- The first one is the ASCI benchmark, SWEEP3D, and the~econd 

is an environmental ~;,cience application, TRACE, provided by Forschungszentrum Jiilicp, Germctny. 

Using SWEEP3D's pipelined wavefront algorithm as an example, we demonstrated that with topo

logical knowledge, EXPEI~T is now able to identify the direction of messages :n the virtual tepnlogy 

of SWEEP3D. This information was then used to identify higher-level events related to th\~ r&rd]

lelization scheme u:,ed in SWEEP3D and the correlation of these higher-level eve'.lts with wait states 

identified by KOJAK's pattern analysis. This correlation allowed us to reintroduce a dme dimension 

into an otherwise ti mcie')s data model of analysi5 results by letting pattern specifications refer to 

dis6nct algorithm-~pecific execution phases. Using TRACE as our .!xampJe, we further showed that 

visually mapping wc:Jit states identified by KOlAK'S pattern analysis onto the tcpology enables the 

cOlTelation of these walt state$ with topological characteristics of the affected processeL 

5.2 Future \Vork 

Future wurk will address the extension of our infrastructure to generalize the Idea of performmlce 

analysis of parallel applications by utj]jzing their topological information. Pre&ently, oUf\.vork is 

re3trictCd to C~lItesiaf\ 1op(~logies. We intend to provide support for general graph topologies. A.lso, 

we have not used the concept of periodicity of a Cartesian grid in our work. We intend to suppon: 

this concept and hence, support more complex Cartesian topologies (e.g., a hypercube or a cylinder), 

Future work will also address the understanding of 0perations of wavefront processes in more 

detail by studying the overlap between pipelines coming from different directions. We also intend 

to extend the scope of the underlying principles to ether algorithms, such as paIallel mult~··frGntai 

methods [5]. 
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