
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2005

An Infrastructure for the Analysis of Communication Patterns in An Infrastructure for the Analysis of Communication Patterns in

Virtual Topologies Virtual Topologies

Nikhil Bhatia
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Bhatia, Nikhil, "An Infrastructure for the Analysis of Communication Patterns in Virtual Topologies. "
Master's Thesis, University of Tennessee, 2005.
https://trace.tennessee.edu/utk_gradthes/590

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F590&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_gradthes%2F590&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Nikhil Bhatia entitled "An Infrastructure for the

Analysis of Communication Patterns in Virtual Topologies." I have examined the final electronic

copy of this thesis for form and content and recommend that it be accepted in partial fulfillment

of the requirements for the degree of Master of Science, with a major in Computer Science.

Felix Wolf, Major Professor

We have read this thesis and recommend its acceptance:

Jack Dongarra, Shirley Moore

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Nikhil Bhatia entitled "An Infrastructure

for the Analysis of Cornmunication Patterns in Virtual Topologies". I have examined

the final paper copy of this thesis for form and content and recornmend that it be

accepted in partial fulfillment of the requireIIlents for the degree of :Nlaster of Science,

with a major in Computer Science.

-M-.k Gc~
Felix Wolf, lVlajor Professor

We have read this thesis
and recommend its acceptance:

~ --
D

uY~

Shirley ~loore

Accepted for the Council:

Vice Chancellor
and Dean of Graduate Studies

An Infrastructure for the Analysis of

Communication Patterns in Virtual Topologies

A Thesis

Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Nikhil Bhatia

May 2005

..

Acknowledgments

This thesis was written at the Department of Computer Science of University of Tennessee,

Knoxville. I would like to thank my advisor, Dr. Felix Wolf fOJ giving me the opportunity to

work with him and for his equally wise and generous guidance throughout the course of my MS.

Also I would like to thank Dr. Shirley Moore for serving as the second referee. In addition, I would

like to acknowledge Prof. Dr. Jack Dongarra, Director of the Innovative Computing Laboratory, for

his continuous support of my thesis project.

It was great privilege to work with Fengguang Song, I would like to thank him for his constant

help and creative influence.

It was a pleasure to carry out my thesis research as a part of the ICL working group KOJAK,

whose members contributed many ideas and support and helped me complete t.his thesis.

Nikhil Bhatia

III

Abstract

The virtual topology of a parallel application is the neighborhood relationship between com

municating processes developed due to specific communication patterns resulting from domain de

composItion. We present an infrastructure that allows the usage of topological information for the

performance analysis of a parallel application. For this purpose we have implemented an easy to

use extension of the KOJAK performance analysis toolkit.

The KOJAK toolkit defines commumcation patterns for paraHel applications which describe in

efficient behavior. The performance analysis is carried out by calculating the effect of these incf·

ficiency patterns on the application's performance. The distribution of these inefficiency patterns

is studied across a three-dimensional performance space. The knowledge of virtual topology can

be exploited to explain the occurrence of these inefficiency patterns in terms of higher-level events

related to the parallel algorith~ implemented in the application. Also, it can be used to visualize

the relationships between pattern occurrences and the topological characteristics of the affected pro

cesses, To prove these principles, we have used our exten~iODS to KOJAK to analyze two realistic

MP} applications.

v

Contents

1 Introduction 1

1.1 Architectures of Parallel Computers

1.1.1 Di std buted-Memory 2

1.1.2 Shared-Memory 2

1.1.3 Hybrid Systems. j

1.2 Programrmng Models . . '1

1.2.1 Message-Passing 4

1.2.2 Multi-Threaded . .5

1.2.3 Hybrid Model .. .5

1.3 Performance Analysis and Tuning 5

1.3.1 Performance Data. 6

1.3.2 Instrumentation . . 8

1.3.3 Performance Properties, 9

1.4 Virtual Topologies. . . 10

1.5 MPI Topology Support 10

1.5.1 Graph Topology 11

1.5.2 Cartesian Topology . II

1.6 Motivation. . 12

1.7 Contribution . 13

1.8 Outline 14

2 KOJAK IS

vii

2.1 Overall Architecture

2.2 Instrumentation and Trace Generation

2.2.1 Automated Multi-Level Instrumentation

2,2,2 EPILOG Trace Format .

2.2.3 EPILOG Runtime System

2.3 Abstraction Layer . .

2.3. J Introduction.

2.3.2 Data Model

2.4 AnalYSIS Layer ..

2.4.1 Introduction.

2.4.2 Analysis Process

2.4.3 Hierarchical Org&nization of Performance Properties

2.5 Presentation Layer

2.5.1 Data Model

2.5.2 Display ..

3 	 Extensions

3.] Overview

3.2 EPILOG.

3.2.1 Trace Rec0rds

3.2.2 MPI Wrappers

3.2.3 API

3.3 EARL

3.3.1 Extensions to the class CartesIan.

3.3.2 Extensions to the class EventTrace ,

3.3.3 Python Methods to Access Topology Information

3.4 EXPERT

3.5 COBE

3.5.1 CUBE Data Format.

3.5.2 Topology View ...

viii

15

18

18

19

21

22

22

23

25

25

26

26

28

28

30

37

37

38

38

39

40

41

42

43

44

44

44

44

45

4 	 Examples 49

4.1 Sweep3D 	 50

4.1.1 Introduction . 	 50

4.1.2 Domain Decomposition and Parallelism 	 50

4.1.3 Performance Problem in SWEEP3D . 	 52

4.1.4 Topology Analysis with SWEEP3D 	 53

4.2 TRACE 	 57

4.2.1 Introduction . 	 57

4.2.2 Performance Problems in TRACE 57

4.2,3 Topology Analysis with TRACE . 57

5 	 Summary and Future Work 59

5,1 Summary .. 59

5.2 Future Work . 	 60

Bibliography 	 61

Vita 	 67

ix

List of Tables

2.1 EXPERT performance properties 29

3.1 ELG_CART_TOPOLOGY definition record. 39

3.2 ELG_CART_COORDS definition record 40

4.1 Machines used for experiments. 49

xi

List of Figures

2.1 Overall architecture of the KOlAK system. 	 16

2.2 The EPILOG file structure. 	 20

2.3 The EPILOG record structure. 	 20

2.4 Hierarchy of EARL event types .. 	 24

2.5 Hierarchy of EXPERT performance properties 	 27

2.6 Visualization of Performance Problems using CUBE. 	 31

2.7 View menu in the CUBE display. 	 33

2.8 Region Profile with Relative Percentage in the CUBE display. 	 34

3.1 Topology Display 	 46

4.1 Wavefront propagation of data in SWEEP3D 	 51

4.2 Late-sender pattern in MPI applications. 	 53

4.3 CUBE results for SWEEP3D 	 56 .

4.4 	 Distribution of late-sender wait states as a result of pipeline refill from North-We.st 56

4.5 	 Wait at N x N collective operation .. 58

4.6 	 Distribution of wait states caused by inherently synchronIzing a11-to-·all operations

in TRACE. .. 58

xiii

http:North-We.st

Chapter 1

Introduction

Parallel computing is an e~sential paradigm to solve complex scientific problems. Paral1el comput

ing has transformed a number of science and engineering dL;ciplines. The architectures for parallel

computing have been evolving at a rapid rate. Unfortunately, parallel applications often do not

exploit the peak performance of the underlying physical hardware. In parallel computing it i~ de

sirable to obtain performance closest to the peak performance of the underlying hardware.. Thus,

optimizing paralle] application behavior is an integral part of the program development process.

This optimization, however, is a complex process and requires the knowledge of the. underlying

architecture, t,he application's parallelization strategy, and the mappmg of the applicatiun code and

its programmmg model onto the architecture.

Thus, it becomes essential to innovate new methods of investigating the performance behavior

of an application and finding the reasons for limited performance. In paraliel applications, the

communication between processes and threads has a major impact on their performance. Also I

there are common performance patterns observed during this communication. Hence, It becomes

imperative to investigate the correlation of communication patterns with the algorithmi.c details of

parallel applications.

1.1 Architectures of Parallel Computers

Parallel computers are computers with multiple processors that are able to work jointly on one or

more task at the same time. One common way to classify parallel computers is based on mem

1

ory architecture. There are three major dasses distributed-mer:wry. c;hared-memary, and hybl id

systems.

1.1.1 Distributed-Memory

Distributed-memory systems have many uniproces8or computers c0enected by a network. Every

p\'ocessor has a local memory which is often not access!.ble frofY1 another processor. The typical

programmmg model used on such machines consists of separate processes on each computer com

rnunicating by sending messages (i.e., message passing).

The most successful commercial distributed-memory system is the IBM SP family. SP systems,

combine various versions of the successful Rs6000 workstatIOn and server nodes with different in

terconnects to provide a wide variety of parallel systems, from 8 processors to 8192-processor ASCI

\Vhite system. Some distributed-memory systems have been bujItwith special-purpose hardware'

th(lt provides remote memory operations such as pu t and get. The most suceessful of these are

t.he era!' T3D and T3E systems.

1.1.2 Shared-Memory

Shared-memory machines have many processors accessing one shared address space and controlled

by one operating system image. Data is available to all the processors through the load and store

instructions. This makes it possible, for example, to suspend 'a process on one processor and 'to

resume it 'On another processor without copying or moving its addre8s space. Memory in shared

address-space machines can be local when it is exclusive to one processor or it can be global when

it is common to all processors. If in such machine, all the processors have a symmetric access tc

one ~hared-address space, it is referred to as a symmetric multiprocessor (SMP).

The most common problem in shared-memory machines is that of cache coherence. Each pro

cessor has its own cache and so its possible for a given cache line to be present in more than one

cHche. If such a line is altered in one cache, then both main mem0IY ~·nd tpe l)ther caches have an
"

invalid version of that line. Ensuring that the memory system is cache cohe.rent requires additional

hardware and adds to the complexity of the system.

The complexity of providing cache coherency has led to two new \\:ays (If classifying shared

2

memory systems. The first important class is called unifonn memory access (UMA). In this design,

each memory and cache is connected to all others. Each component observes any memory operation

(such as load from a memory location) and ensures that cache coherence is maintained. The name

UMA derives from the fact that the time to access a location from memory (local or global) is

identical. Most of the shared-memory systems provIded by Compaq, HP, IBM, Sun and SGI are

UMA systems.

In non-uniform memory access (NUMA) design, the time taken to access certain memory words

is longer than others. NUMA systems that are cache coherent are referred to as cache coherent NUMA

(CC-NUMA) systems. Some cc-NUMA systems are the SGI Origin 3000 and the HP Superdomc.

1.1.3 Hybrid Systems

There are various ways in which the two memory paradigms are combined. Some distributed

memory machines aHow a processor to directly access a datum in a remote memory. These systems

are referred to as distributed-shared memory systems. On these systems, the latency associated

with a load varies with the distance to the remote memory. Cache coherency on DSM systems is a

complex problem that is usually handled by a sophisticated network interface unit.

Also, some machines are distributed-memory systems in which each of [he individual compo

nents is a symmetric multiprocessor rather than a single processor node, Such systems are n~fc:Ted to

as parallel computers with SMP nodes or SMP clusters. This design permits high parallel ~fficiency

within a multiprocessor node, while permitting systems to scale to hundreds or event thousands of

processors.

1.2 Programming Models

Another consideration in forming a parallel program is which programming model to use. This

decision will affect the programming language and the library for implementing the application.

Two programming m?dels were developed to support the two memory models of parallel machincs

(i.e., distributed-memory and shared-memory models).

The two common programming models used are the message-passing model and the multi

threaded model. The distributed-memory architectures use the message-passing model that consists

3

of separate processes on each computo.!r ..:omnlUnicating by sending messages. The shared .. memory

architectures use the multi-threaded modeL

Although these two programming models are inspired by the corresponding parallel computer

arch!tectures, their use is not restricted. It is possible to implement the multi-threaded model 0n

a distributed-memory computer, either through hardware (distributed-shared memory) or software

systems that simu!ate DSMs (e.g., TreadMarks [9]). Also, message passing can bE, made to work

with rea")onable efficiency on a shared-memory system.

The following subsections give a brief introduction to all three programming models.

1.2.1 Message-Passing

Nlessage-passing is mainly used on distributed memory architectures. A message-passing program

runs multiple pr'xesses, where each process owns one private address space. Communi·.:;ation be-,

tW'een different processes takes place only by sending and receiving messages. The messages may

be sent either via a network or using shared-memory locations, if available. Communication b~·

tween two processes have to invoke an operation. This can be done using point-to- point communI,,:,'

cation, where one process semis a message to another process using send and receive operations.

The MPI (Message Passing Interface) communicatIOn libn:,ry [12] defines a defacto standard for

message passmg and is availa.ble on most parallel computers, MPI supports all traditional message

pa:,;,;sing features, such as point-to-point communication and collective communication, advance\.!

features.; such as process topoiogies. The MPI 2 standard supports features that go beyond pure

message passin6 such as parallei 10 allC. one-sided communication.

More on MPI

MPI is not a new way of programming parallel computers. Rather, it is an attempt to collect the best

features of many message··passing systems that have been developed (~ver the years, improve them

where appropriate, and standardize them.

tvlPI is a library for messagt':-passlllg. It ~pt;cifies the names, calling sequences, and results of

subroutines to be called from Fortran programs, the functions to be called from c programs, and the

cias'les and methods that make up the MPI c++ libra'ry. The programs that users \Hite in Forttan c,

4

and c++ are compiled with ordinary compilers and linked with the MPI library.

The structure of MPI makes it straightforward to port it to existing codes and to write new ones

without learning a new set of fundamental concepts.

1.2.2 Multi-Threaded

A multi-threaded program consists of a collection of tasks. which are assigned to asynchronous]y

working threads. To accomplish these tasks, all threads have an access to shared address space. Syn

chronizing utilizes specific mechanism, such as locks and barriers, to implement coherent control

of shared-memory access.

OpenMP (Open specifications for Multi Processing) [14] is a widespread progra1l1l1llng interface

for scientific shared-memory programming. It defines directives, pragmas, and library calls to con

trol the ,parallelization of loops and other code sections in Fortran, C and c++ programs. Execu:ion

of an openMP program struts with one master thread, which creates a team of slave threads as 800n

. as a parallel region has been entered. After leaving this region. the team terminates and sequen

tial exel:;ution resumes. Synchronization is accomplishe,J either implicitly or t:xplicitly by ceitain

directives, pragmas, or library calls.

1.2.3 Hybrid Model

Coupled SMP systems can be programmed using hybrid combination of message passing and shared

memory techniques, where shared-memory is used for data sharing inside single nodes and message

passing is used for communication across different nodes. Most significant in this context is a

combination of MPI and openMP. In this case, there is usually one MPI process per SMP node, and

openMP parallelization can occur III each process. If the application needs to call MPI routines from

multiple threads belonging to the same process, a thread-safe MPI application is required.

1.3 Performance Analysis and Thning

The process of investigating t.he performance behav:ior ,of an app]ication and finding the reasons for

limited performance is called perfonnance analysis. It usu?lly precedes any modification of the

5

source code ihat is intended to optimize or tune the prcgram. Both activities fonn 3 cycle that must

uftel1 be repeated many times until the application delivers desired performance.

The basic performance tuning cycle consists of four stf:p~:

• 	 Automatic or manual instrumentation. During this step, measur~ment probes are inserted into

the application code and system software. Measuremem prJbes perform special m&k;, S!1ch

;:s measurement of hardware performance counlers

• 	 Execution of the instrumented application and collection of performance data. Such exe

cutions record hardware and software metrics for offline analysis The recorded ddta may

include profiles, event ttaces, hardware counter values. and ejapsed times

" 	 l\naiysis of the captured performance data. Manual or automatic analysis uses the:. recorded

data m:d attempts to relate measurement data. to hatdware ri80urces and application sourc~

code, identifying p03sihle:. optimization points.

c 	 !tlodi.fic,ltiLm of the application source code, recompilation with different (Ipirrrization op··

lions. or modification. of run-time parameters. The go~1 of theo;e modificati(~l1s is to better

match application behavior, hardware, and rhe paranel programming ir:terfaces for higher

performance.

Apart from offline analysis of an application, onljn~ analysi:~ can also be performcd. The exe

cutable of the parallel application can be instrumented at runtime to obtain the perforI:lance behavior

of an apphca60n. For example~ Paradyn [15], leverages tl technique <.;alled dynamic in~trumenta

tion to obtain performance data from unm~ified executabies at runtime. The following subsections

descrihe these aspects to more detail.

1.3.1 Performan(~e Data

Performance data associate program entities with performanct;-re.lated behavioral chan.lcten~;ti~s.

Program entities are either static or dynamic. For example, source code rcgic.ns a{~ ~latic f.;otilizs,

whereas instances of those regions or paths in the dynamIC call grdph are dyn.:urric entitie~,

Performance data may differ in the level of ab~traction they provide both with respect to the

behavioral charac!eri~;tics and with respect to the program entities they refer to. Characterization

6

http:rcgic.ns

may occur, for.example, either in terms of simple events; such as clock cycles, or in terms of more

complex behavior, such as lock competition. Program entities may represent either simple pieces

of source code or entities of the application domain. Observational performance data are usually

generated on a low abstraction level and in a later step may be mapped to a higher abstraction

level. Unmapped performance data are called raw performance data. The most common type of

raw observational data are profiles and event traces.

Profiles

Profiles map accumulated performance metrics (e.g., number of clock cycles, number of function

calls, or number of cache misses). For example, a profile may contain the fraction of execution time

spent in different functions of the program. Profiles are useful to generate a rough overview of an

application's performance characteristics while introducing only limited perturbation of run-time

behavior and requiring 'only moderate storage. Typical methods for profile generation are sampEng

and instrumentation.

Sampling is a statistical approach of· periodically observing the program executIOn under the

control of an interval timer and deriving performance metrics for program parts based on these

observations. In contrast to sampling, instrumentation inserts code directly into the program -;0 that

the program itself is able to trigger actions upon occurrences of certain program-level events.

Event Traces

Event traces are collections of individual run·-time events recorded during program execution. The

information recorded for an event include-; at least a time stamp, the location (e.g., the process or

a node) where the event happened, and the event type. Depending on the type, additional informa

tion may be supplied, such as the function name for function-call events. Message-event records

typically contain details about the current message (e.g., the source and destination location and the

message tag). In order to keep instrumentation simple, the information included in such a event

record is usually restricted to the data available at the location where and at the moment when the

event occurs.

Events are recorded at the point of their occurrence. The application needs instrumentation to

intercept and store away the desired events; that is, additional code needs to be inserted at program

7

locations where their occurrence can be detected. To keep illstrumerrtation low, the event records

are initIally written into a memory buffer. Upon buffer overflow or progra.m termination, the event~

are written to a file. Event traces generated independently fOt each location must be merged and

sorted according to their timestamps. System~ that rfly only ('n the local clocks have to adjust the

timestamps with respect to chronological displacements and clock drifts.

For example, KOJAK performance analysig environment uses event tracing to capture the perfor

mance data of a parallel application The events are . written as trace records using a binary format

trace file. This trace file is then analyzed offline to buiJd d higher-level callpath profile which gives

information about the applIcation's performance.

1.3.2 lnstrumentation

Instrumentation is the process of mserting extra code into a program.'tc observe its execution ~r

performance. Often instrumemationis used 10 makernea.":'>urements for these purposes. Shende [ITI

di8tinguishe~ three dimen~lons of classifying in~;tfljmentation and measurement:

1. 	 How are performance measurements defined and instrumentation altem~tive8 are chosen?

2. 	 Wherz is performance instrumentation added ~ndlor enabled (precompile time, compile time,

link time. run time)?

3. 	 Where in the program performance measurements are fil«de (granularity and location)?

The first question addresses the selection of pheromena to be observed. It includes, for example,

the choice among different metrics (e.g.~ time or cache misses).

The second question deals with the user's level of abstraction. Running a program requires

moving it through several transformation steps: preprvcessing, compilation~ linkage, and executlor,

or interpretation. Each trailsfonnation corresponds to a different level of representing a program\

contents: source code, object code or library, executable or bYL; code. and run-time image. A!wough

each level offers the opportunity to add instrumentation £0 the program, each levei provides different

information to be measured: In particular, the user's ahstmctions may be represented differently on

each leve1. For example, the source code allows access to language-specific abstractions, which

may be hidden in the binary representation.' However, binary instrumentation of the run-time image ;

8

allows instrumentatIOn to be carried at run-time. This is also called dynamic instrumentation. It can

be controlled by feedback, which provides an excellent way of reducing instrumentation.

Programs exhibit a hierarchical structure consisting of different. often nested, elements~ such as

modules, functions, and statements. The third question classifies instrument3tion according to the

level within the program at which the instrumentation takes place, such as function entry and exit,

statement, or instruction. The decision on the best places for adding instrumentation is governed by

the trade-off between the demand for expressive performance data and the desire to avoid program

perturbation.

1.3.3 Performance Properties

Parallel applications may exhibit a large variety of different performance behaviors. For this reason,

a general approach to performance analysis reqU1res a terminology that can be used to refer to

performance be,havlOr independent of its specific characteristIcs.

Fahringer et a1. {7] propose the notion of performance properties (e.g., load imbalanc,,e commu

mcation,cache misses, redundant computatiulls, etc.), which characteril,e a specific perfvnnan'ce

,behavior of a program and,can·be checked by a set of conditions. For every performanc~~ property

a severity measure is provided, whose magnitude specifies the importance ofa property 'n relation

to other properties. Note that a performance property does not necessarily denote negative, that is,

inefficient behaVIOr.

Fahringer et al. further define a perfonnance problem as a performance property whose severity

exceeds a user- or tool-defined threshold. The unique perfomuLnt:e bottleneck i& defined as the

mma sever performance property. If a bottleneck is not a performance problem, then the program's

performance is considered to be acceptable and does, not require any further tuning.

KOJAK [22] is a set of generic and interoperable tool components designed for the performance

analysis of parallel applications. Their functionality addresses the entire analysis process including

instrumentation, post-processing of performance data, and result presentation. Particular emphasis'

is put on automation techniques to transform the collected data into a high-level vIew of perfor

mance behavior. As an essential part of the software, KOJAK provides an integrated event-trace

analysis environment for MPI and OpenMP applications. KOJAK's trace analysis layer represents

performance properties as execution patterns indicating low performance and quantifies them ac

9

cordin!: to their severity. These patterns target pn)bJems resuhing from inefficient communication

and synchronization as well as from low Cpu and memory performance.

1.4 Virtual Topologies·

In many parallel applkations, each process (or thread) comrm.nicates only with a limited number

of other proces~es. For example, a simulation modeling the spread Df pollutants in !he atmosphere

might decomp('se the entire simulation domain mto ~maller process and as~ig.n e:lCh of those to a

I:;,ingle process. Each of these smaller domains is called a sidJdomain.

Given this distribution, a process would then communicate with processes cwning sub domains

adjacent to its OWl}. The mapping of application domain onte processes and the neighborhood

relationship resulting from this mapping is caned virtual topology.. T~e topological informatioE

c~n be Hsed te map the processes onto the under1ying physica! topology of the parallel machine for

better p';!rformance..

Virt.l'al topologies can inc1ude processes or threads depending on ~h:e programming model bt-ing

used. Often, the virtual topology influences the order in which certam computations are performed.

For example, wavefront algorithms [1] propagate data a10ng the diagonals of a multi-dimensional

grid of processes.

In genera] a virtual topology is specified as a graph. l\1any 3.pplications use Cartesian topoIcgies

such as two- or three- dimensional grids. A virtual Cartesian topolcgy is defined dS an n··dimensh::mal

Cartesian grid. The Cartesiun grid may have one or more processes in each dimension The Carte··

sIan grid mayor may not be periodic in each dimension. The:oc,rdin:J.les are spe~ified as a vr.-dor

of integers 0 (n 1) with n being the numbe! af processes in the respective dimei1sion. The order

of the VEctor elements corresponds to the order of dimensions.

1.5 MPI Topology Support

A process group in MPI IS a collection of n processes. Each process 111 the group is assigned a rank

between 0 and n-1. In many parallel applications a linear ranki!lg cf processes does not ade.quately

reflect the logical communication pattern of the processes (whkh is usually determined by the un

10

derlying problem geometry and the numerical algorithm used). Often the processes are arrange·l in

topological patterns such as two- or three-dimensional grids. As discussed in the previous section.

this logical arrangement is known as a virtual topology

The MPI standard [12] offers a set of API functions to create and use vi]tual topologies. The

virtual topologies in the MPI standard are referred to as MPI process topologies. The MPI process

topology support may choose to efficiently map the virtual top0logy of the application onto the

physical topology of the underlying hardware so that communication speeds between neighbors can

be optimized.

MPI process topology support also provides a convenient naming scheme for the processes in

volved in communication, which enables the programmers to name these process("." according to a

convenient naming scheme. This enhances the readability and simplifies the development of MPI

code. There are twotypes of MPI process topologies.

1.5.1 Graph Topology
\

MPI process topologies can be generally ,specified asa graph. Each process is represented by n node

in the graph and the communication links between the processes are represented by the edges of the

graph.

Some common graph topology functions provided by MP} are:

• 	 MPLGRAPH_CREATE makes a new MPl communicator to which the graph topology informa

tion is attached

• 	 MPLGRAPHDIMS_GET returns the number of nodes and edges in the graph

1.5.2 Cartesian Topology

Many MPI applications specify process topologies in terms of a Cartesian grid. Cartesian grids are

special type of graphs. Each process in the topology is specified by a coordinate in the Cartesian

grid. The Cartesian gr,id may be periodic in one or more dimensions to specify complex process

topologies (e.g., a cylindrical vessel or a torus).

The Cartesian topology is specified by three parameters: the number of dimensions in the Carte

sian grid, the number of processes in each dimension and the periodicity of the grid in each dimen

11

sinn.

Some commonly used Cartesian topology functions provided by MPI are:

• 	 MPLCART._CREATE makes a new MPI ;:-ommunicator tn which the Cartesian topology infor

mation i~ attached

• 	 MPLCART _COORDS returns the coordinates of a certain process in the Cartesian grid

• 	 MPLCART-'RANK returns the rank of a pro\:ess "vhich has been assigned to a given coordinate

in the Cartesian grid

1.6 Motivation

Seard:ing event traces of parallel appiicatlOns for pat~erns is a sllccessful method of automatically

gcnenn!ng high-level feedback 0:1 a(1 applic'1ti on's performance [22]. This is done by Id~ntifying

'!/ait states recognizable by tel1lpo~'al dispia;:;ements between individual events across multiple pro

Cf,sses Of threads. For example; durinr, message e'{change between two MPI prvcesses, the receiving

process might enter the receive operatien before the sending process enters the corresponding send

operation and hence suffer from a wait state. Tl-tis is a very common pattern observed in MPI appli"

::ations and is known as the Late Sender pattenl.

Topological knowledge can be used to Identify and explain the OCCUITence of performance prot·

lems, especially as many algorithms are parametrized III terms of a virtual topology. By doing this,

we can study the algorithmic detaiis that correspond to the virma! topology of an applicatiorl. With

more information on the algorithmic details of an application, we may be able to explain the o\.,'cur

ren:::e of certain wait states more clearly.

Topological information has been used eariier tc highlight certain a5pects of parallel perfor

mance. Ahn and Vetter [3] mapped counter data onto the virtual topology of tht SWEEP30 ASCI

benchmark to identify clusters of related behavior by statisticai means.

Miillender [i3] visualized different network topologies including fopr-dimenslOnal hypercubes

as well as upto three-·dimensional gnds and ton usjng a polygor.-likev'ector I~presentation and

maopt;:"d ccrt:1in communication parameters, such :lS the number of messages, OLtO their nodes tQ

better observe communication activities in ~irtual [,hared memory systems.

12

Topological knowledge has also been used for semantic debugging of parallel applications.

Huband and McDonald [10] describe a trace-based debugger called DEPICT that exploits topolog

ical information to identify processes with logically similar behavior in traces of MPI applications

and to dIsplay semantic differences among these groups.

1.7 Contribution

The quality of performance data available has a great influence on the expressiveness of the per

formance p!oblems that can be detected. Enriching the information contained in event traces with

topological knowledge allows the occurrence of certain patterns to be explained in the context of

parallelization strategy applied and, thus, significantly raise;.> the abstraction level of the feedback

returned.

This thesi& presents a framework to map performance data onto the virtua] topology of an ap

plication. For this purpose, an easy-to-use extension to the KOlAK toolkit has hl;!en developed. The

extensu:m to the instrumentation library provides a mealls to record the topological information as

a part of an event trace. We also provide a means to record the topological information for those

applications that don't use the MPI process topology support (e.g., openMP applicC:lti~ms and many

MPI applications). The extension to the analysis component within KOJAK provides an abstraction

toretrieve and use topology information for performance analysis. The visualization component of

KOJAK has been extended to visualize the mapping of performance data onto the virtual topology in

a simple and comprehensive manner.

Using this. extension, we have been able to enhance the quality of the performance analysis

process in KOlAK. By mapping the performance data onto the virtual topology of the application

we can accomplish the fo]]owing tasks:

• 	 Detect higher-level events related to the paral1el algorithm, such as the change in the propa

gation direction in the wavefront scheme.

• 	 Link the occurrence of patterns that represent undesired wait states to such algorithmic higher

level events and, thus, distinguishing wait states by the circumstances causing them.

• 	 Expose the correlation of wait states identified by our analysis with the topological character

13

--------~--... -

istks of affected processes by visually mapp~ng their severity onto the virtual topology.

fo study how the the virtual topology can be llsed to classify certai .." wait ~tat.cs, we applied om

tool extension to two example MPI codes, the ASCI SWEE.t>3D benchma',k [2] ano an environmental

science application called TRACE [8]. The resu1.ts obtained by applying the tool extensions to th~

ASCI benchmark SWEEP3D gave the performance analysts a bettcr undt:~rsi3nding of tne occurrence

of certain wait states in relationship to the parallelization scheme ased, The results obf.ained from

TR ACE helped the user identify semantically meaningful dusters of related behavior.

1.8 Outline

The thE-sis is structured in 5 chapters. Chapter 2 provides an Gvef'tlew uf the KOJAK toolkit and its

lInderlying1ppr oach of anal)"z.ing pattems io e','ent traces. Chapter 3 dec:cribes the eXtensions which

have been made to different components of KOJAK toolkit which prm,jde a mechanism to collect

topo]ogicai information in the event trace and visualize pelformarice data'mapped onto the virt"u~l

topology. Chapter 4 demon3trates the usefuiness of this approach in explaining the occurrence

of specific patterns in two realistic applications. Chapter 5 summanzes the tnesis research and

comments on future work in this area.

14

http:resu1.ts

Chapter 2

KOJAK

This chapter gives an overview of various iayers of KOJAK that perform the necessary steps to do

automatic performance analysis qf parallel appl;cations. KOJAK is a collaborative project between

the Central Institute for Applied Mathematics at Forschungszentrum Jiilich and the Innovative Com

puting L,aboratory at the U~iversity of Tennessee.

2.1 Overall Architecture

KOJAK is a set of generic and interoperable tool components designed for the perforroance analysis

of parallel applications. Their functionality addresses the entire analysis process including instru

mentation, post processing of performance data, and result presentation. Particular emphasis is put

on automation techniques to transform the collected data into a high-level view of performance be

havior. An essential part of the software constitutes an integrated event-trace analysis environment

for MPI and OpenMP applications.

Figure 2.1 shows the entire pr~ess of analyzing an application using KOJAK. First, the appli

cation has to be instrumented at source code or compiler level to get an instrumented executable.

This executable is then linked with the EPILOG run-time system which enables the generation of the

event trace. After this, the instrumented executable is executed on the given platform to generate

the trace file.

The trace file is written in the EPILOG trace format [6], which provides event types covering

MPI point-to-point and collective communication as well as openMP parallelism change. parallel

15

"Source-Code
Preprocessing

Compilation

.'

'. . Figure 2.1: Overall architect\1re of the KOJAK system.

16"

constructs, and synchronization. Also, the trace file may include data from hardware counters.

After program termination, the trace file is analyzed offline using EXPERT [23], which identifies

execution patterns indicating low performance and quantifies them according to their severity. These

patterns target problems resulting from inefficient communication and synchronIzation as \\- ell as

from low CPU and memory performance. The analysis process automatically transforms the traces

into a compact callpath profile that includes the time spent in different patterns.

To simplify the analysis, EXPERT accesses the trace through the EARL library interface [21],

which provides random access to individual events and precalculated abstractions supporting the

search process. EARL is well documented and can be used for a large variety of analysis tasks

beyond the analysis performed by EXPERT. The major benefits of using EARL as an intermediate

layer between th~ analysis and the event trace are reduced size and increased readability of the

pattern specifi~ations. In EXPERT, patterns are specified separately from the actual analysis process

as C++lPython classes. Finally, the analysis results can be viewed in the CUBE performance browser

[19].

KOJAK consists of four layers. Each of them performs different tasks at each Iltep ;n the perfor

mance analysis process. These layers are:

• 	 The instrume.i"ltation and tract generation layer instruments the slmrce-code and generates

event traces which can be later used for offline analysis. KOJAK uses the EPILOG (Event

Processing, Investigating and Logging) runtime system to generate event tra~;es in EPILOG

binary trace format.

• 	 The abstraction layer provides random access to the events in an event trace. KOJAK uses

EARL (Event Analysis and Recognition Library) to access events from an event trace and

thus, simplifies the specification of execution patterns representing performance problems.

• 	 The analysis layer uses the analysis layer to convert the low-level trace file into a high-level

performance profile. This layer also specifies performance properties described by execution

patterns representing performance problems. In KOJAK, the EXPERT trace analyzer does an

offline analysis of the event trace and converts it into a high-level call path profile. It also

specifies performance properties represented as hierarchical patterns that describe inefficient

communication and low CPU utilization.

17

• The presentarion layer reads the high-level performance profile provided bJ the analysis layer

and provides a mechanism to 'v'iew the eftect of performance properties or'< the arplication's

. performance. In KOJA K, the CCBE performance browser is used to view the distribution pf

performance properties in a three··dimensiorlal performance spa~e.

The fotllJwing sections descnbe these layer~ in more detail. ~:e~tion 2.:~ di~cL:;~es the instrumen

tdtion and trace generation in KOJAK. Section 2 3 descrihes the abstr3cti~n !ay~i' In KOlA K, Section

~.4 descrlbe~ the analysis iayer in KOJAK, and sectlon 2.5 describes the pT~sentatic·n!aycr iii KOJAK.

2~2 Instrumentation and Trace Generation

Event tracing provides a very fine grained view of the performance behavior ot parallei appJica

tion:;. Tn contra;;t to pure executior..-time profiling, event tracing pre::1erV es the temperal and spatia!

order of individual events, which may indicate the presence of certain performance propertie~ in

CIT} appiicatioll. K01AK ~tores the event traces generated 2.t runtlme in the EPILOG bina;'Y Haec-data

format [6].

2.2.1 Autonlated Multi~Level Instrumentation

Prior to tra.ce generation, the application needs to be instrumented: Depending !In the platfol;m,

this is done automcttically using a combination of source-code preprocessing and ccrnpiler-based

instrumentation. The various levels at which the application can be instrurne!1ted, depending on the

choice of platform, are described below.

• 	 Source Code Level: Source code inshumentation' can oe done using the TAU (Tuning and

Analysis Utilities) profiling instrumentation [16]. For TAU instrumentation, ma{~r(\~ must be

added ro the source code to identify routine transirions It can be done aut():T:l.ttj(;ally w.:ing

the c+-+ instrumentor - tau_instrumentvL b1sed on the Pwgram Dati.~h~i~'t:' looikit. PDT

is used to parse the application and generate a program databa.,;;e hIe that cGnt.?cins program

entities tsuch as routine locations). The tau_lns trUffi.2ntor IJses this f11e and the ~;ource

code to g~nerat~ an instrumented version of the source code.

18

http:trUffi.2n

OpenMP .applications can be instrumented using OPARI (OpenMP Pragma And Region In

strumentor). OPARI is a source-to-source translation tool that automatically inserts calls to

the POMP runtime measurement library. This allows the collection of runtime performan;:::c

data for Fortran, C or C++ OpenMP applications. POMP directives can also be used ~() manu

ally instrument the user source-code of openMP and non-openMP applications.

• 	 CompzJer Level: Compiler level instrumentation can be perfonned by using profiling inter

faces provided by certain compilers (e.g., PGl compilers on linux platforms).

• 	 Linker Level., MPI functions can be instrumented at the lInker level. A special library, the

PMPI library [12], is used for this purpose. The PMPI library defines all MPI functions with

a prefix PMPI. The tool developers who want to instrument MPI applications can write their

interpOSItion library which contains wrapper functIOns with prefix MPI that perform measure

ment and make calls to the corresponding PMPI routines. FinaIJy, the MPI application can be

linked with the interposition' lIbrary, 'the PMPI library, and the MPI library. For example, EPI

LOG runtimE' system finks MPI applications with the EPILOG interposition library, the PMPI

.library, and the MPI library.

Also, the application can be linked with hardware counter librarIes (e.g., PAP]) to record

hardware counter information in the event trace. . ,

• 	 Binary Level: Finally, certain platforms allow the usage of libraries that can automatically

instrument the executable at various instrumentation points (e.g., function entry and exit).

For example, on IBM powerPC machines, DPCL (Dynamic Probe Class Library) [11] enables

automatic instrumentation of the executable at various instrumentation points.

2.2.2 EPILOG Trace Format

The EPILOG (Event ~rocessing, Investigating, and Logging) binary trace data format has been de

signed to provi~e a uniform data representation suitable for MPI, OpenMP, and hybrid applications.

EPILOG maps events onto their location within the hierarchical hardware as well as to their process

and thread of execution. It supports storage of all necessary source-code and call-site information,

recording of performance metrics, such as hardware counters, and marking of collectively executed

1'9

Figure 2.2: The EPILOG file structure.

Figure 2.3: The EPILOG record structure.

operations for both MPI and OpeIJMP.

File Structure

An EPILOG trace-data me consists of a header tollowed by a sequence of records. The header

(Fig 2.2) consists of the zero terminated string "EPILOG" followed by two bytes contaimng the

major and mmor El'TLOG version number and another byte indicating the byte ordei cf i:he current

platform.

Each rec,)rd (Fig. 2.3) consil;)t~ of the record header followed by the record b(){~y. The header

contains t'NO byte:'. The first byte contaias the length of the record body in byte;; without these two

leading bytt~s. The second byte ~{;ntain~ the record type.

EPILOG distinguishes between definition records and event records Definition records define

identifiers for objects to be referenced by ev~nt rer.ords, Event records can be: kept swal1 by ref'erenc

ing certain obje;:ts instead of specifying these objects as part of the event record. SUl:h objects may

be source-code regions or :fi1e names. Event records repre~ent runtime events and ai ways contain a

location IdentIfier as well as a timc;stamp.

Definition Records

Definition record~ deal with the following entities ,.It '1 parallel application:

• Strings

• Locations

• Source..code entities such as regions and files

• Performance metric~

20

• MPI communicators.

• Virtual Topologies

Event Records

Event records describe the dynamic program behavior and reference objects that are defined in

definition records. By letting event records store only references to those objects, trace file size ..:;an

be reduced since an object, such as a region, is referenced many times. EPILOG provides records for

the following kinds of events:

• Entering and leaving regions

• MPI point-to-point communication

• MPI collective communication

• Open~p fork and join

• OpenMP paral1el execution

• OpenMP lock synchronization

, Tracing events (i.e., events related to the (racing system)

2.2.3 EPILOG Runtime System

As a final step towards trace generation, the application is linked with the EPILOG runtime system,

which includes a PMPI interposition library that intercepts MPJ calls to perform measurements before

and after each call. The EPILOG runtime system writes definition records for program and systerr.

resources and event records for dynamic runtime event& occurring during one run of an MPI, openMP

or a hybrid appJication into a trace file.

The EPILOG runtime system writes all trace records into a buffer to decrease the overhead of

trace file generation. Once the buffer is filled, the runtime system dumps the buffer into the file and

starts writing the buffer again. There are special tracing events that record the buffer full and buffer

empty events. For more details please refer to the EPILOG specification [6].

21

In MPI applications. ec:ch proce~s maintains a kJCal e'/ent trace that contains the definition

records related to the resources used hy the process and the event records for the events occur7ed

during the executIOn cf that pror.:ess. After program termination, these local ev~nt tra(~es are merged

together to forn: a single global event trace that contains an aggregate of all the definittOn records

from the individual trace files and synchronized eve1Jt records for the entire run of lhe application.

In OpenMP applicatiorls, threads have ~heir local event traces which are merged toget}1ef after

program termination to form 3 global eVent trace. Hybrid applications h~ve to go throiJi!h a two

level merging of trace file~. The fi:-silevel merges per-thread local traces to form a rer-ploce~~s t!'ace.

The second level merges the JocaJ per-process traces to form a single global trace file.

1,~J Abstraction Layer

EA.RL is a high·,level interfaCe for ac(~eSSmlg EPILOG event traces and can be used to wnte advanced

:.race-analysis software. EARL provides random aCCf'SS to single events Slid comp:Ites the ex.eClJ.

rion state at the time of a given event i.lS V'lCn as Jinks between pa!rs of i~elated events. EARL is

implemented In C+..f.. and offers both C++ and Python class interfaces.

2.~~.1 Introduction

An event trace is a chronologically sorted 8equence of runtimE. events recorded during program

execution that can be used to analyze prog!'am behavior. In the KOj,\ X pelformance-analysis ~nvi

ronmen! [22], event trace~ are used to identify patterns of inefficient execution.

EARL otTers the following functionality:

• Random access to single events

• Access to the execution state at the time of a given event

• Links between pairs of related events

• Access to virtual topologies.

• Various statistical functions

2']

EARL can be used for a large variety of trace-analysis tasks. The main purpose of EARL within

KOJAK is to simplify, the specification of execution patterns representing performance problems.

within the EXPERT analyzer [23] and, thus, to allow easy extension and customization of the pattern

base used in the analysis process. The first prototype of EARL was completed in 1998 as part of a

master's thesis [21].

2.3.2 D~t~ Model

EARL (Event Analysis and Recognition Library) is based on a simple object-oriented data model

whose simplicity is derived from the fact that all higher-level abstractions, stich as executioH states

and links between related events, are expressed in terms of event sets or event references, (hus never

leaving the familiar notion of an event.

Abstractions

The central abstraction in EARL is an event.· Every event has a type, a timestamp, and a location,

which answers the questions what happened, when it happened,; and where it happened, respecti"ely.

In addition, an event may provide type-specific attributes including iink~~ to related events.

The program resources represented 'in an event trace include files, regions, and :;aH sites. The

system resources associated wIth an event trace' form a hierarc?y consisting of machines. nodes,

processes, and threads. Machines can be made up of multiple (potentially SMP) nodes. Each node

can host multiple processes, which in tum can spawn multiple threads. This model mirrors one

or more parallel computers with SMP nodes and can also accommodate more traditional non-SMP,

single-sMP, or simple desktop architectures. An event location is a tuple consisting of a machine,

a node, a process, and a thread. A location is basically a thread that includes information on the

process, the node, and the machine it is associated With. A single-threaded process always has

one explicit thread because in EARL the thread level is mandatory. Essentially the event location

represents a thread in KOJAK. A system resource on the other hand can be a node, a process, or a

thread.

There are other special types of resources included in an event trace like MPI communicators

and virtual topologies. Also, some events may store the values of certain system metrics, such as the

23

I

pos Event l
~ .
type
enterptr J

:r
r;:;~ I j-J
cnodeptr

cedgeptr

M~IC;:EXIT / ~:EX~

CO" i

;oot I

sent
 J
recvd

Figure '2.4: Hierarchy of EARl, event type&.

number of floating point operations exe'.:uted. A metric may represent a count of event occurrences

(e.g., from a haroware cOilnter) across an. interval, an occurrence rate measured across an interval,

or the current value of a metric',such as the current memory utilization.

Event Model

The event model is defined 'by a hierarchy of abstract and concrete event types, which is shown in

Figure 2.4 using UML notation [4]. Abstract event types do not appear in the event trace, they ar,~

Ilsed only to isolate commonalities in the mudeL In the figure, abstract event types ha"ve been distm

guished by writing the type names in italics. The arrows illustrate an inheritance relationship with

respect to the type attribute:;;, that is, an event type inherits all Httributes from its ancestors. Hatched

boxes represent MPI-specitk types. whereas spotted boxes represent openMP-specific type's.

As shown in the figure, events are arranged in a multi-level hierarchy. For example, the event~

marking the exit of an MPI collective communication operatioli and the end of ur. openMP pt'.ral!el

constlllct are at the same level in the hierarchy and are children of the ~ame parent that represen~z-,

the region EXIT evenH,. Also, MPI SEND and RECV eVents are children of the same parent rhat

represents the MPl point-tn-point communication events.

____--r ___"Y...l... --.

24

Higher-Level Abstractions

EARL provides the following two abstractions which are useful to easily identify related events .

• State sequences

• Pointer attributes

State sequl!nces map individual events onto a set of events that represent one aspect of the

parallel system's execution state at the moment when the event happens. This allows complex

events to be described in the context of the execution state. For example, EARL maintains a region

(call) stack for every location. The initial stack is empty. Whenever an ENTER event occurs, it is

added to the stack and whenever an EXIT event occurs, the corresponding ENTER event is removed

from the stack

Pointer attributes connect,two corresponding events with one another, so that one can define

compound events along a path of ('orresponding events. For example, the attribute sendptr points

from a RECV event'to'the corresponding SEND event.'

2.4 Analysis Layer

EXPERT describes performance problems llsing a high level of abstraction in terms of common

situations that result from an inefficient use of the underlying programming model(s).

2.4.1 Introduction

In EXPERT, the analysis is carried out along three interconnected dimensions: class of performance

behavior (i.e., perfqrmance properties), position within the dynamic call-tree, and a location (e.g.,

node or process). E,ach dimension is arranged in a hierarchy, so that the user can view the behavior

on varying levels of detail. The comprehensiv.e behavioral classification used by EXPERT provides

the ability to explain problems intelligibly in terms of common situations that result from [;on

optimal usage .of the programming model to which they are related. In addition, it is possible to

integrate application specific classifications by using appropriate extension mechanisms.

25

EXPERT uses EARL tc access the event& In an evcnt traCe Its afchite~ture is based on the idea of

separating the analysis proce~s from the specification of properties representing performance prob

lems in parallel applications. In EXPERT, the perforry;.nct properties are ananged in a hierarchical

distribution of execution patterns representi.lg jr,cfficlent behavior. TI)(Python version is mainly

used for prototyping.

2.4.2 Analysis Process

The performance properties are specified in the form of patterns. Pdtterns are C++!Python cla~ses

that a~e responsible for detecting compound events indk'adng inefficient behavior. They provide a

common interface making them exchangeable from the p\!rspec(ive of the tooL The spedfications

us~ the abstractions provided by EARL and, for this reason, are very simple.

The allalysis process follows an event-dr!ven approaC:l. EXPERT walks sequentially through the

event trace and invokes call-back methods for each single event to pattern instances, supplying the

event a~ an argument. A pattf'm c~m provide a different callback method for each event type. The

caB-back mcthod itsdf then tries to locate a compound event representing an inefficiency, thereby

following links (i .e., pointer attributes) emanating from the supplied event or investigating system

states .. This mechanism alJows the simple specification of very complex performance relevant situ

ations and an explanation of mefficiency that is very dose to the terminology of the programming

nlOdeL

2.4.3 Hierarchical Organization of Performance Properties

EXPERT organizes the pcrformance properties in a hierarchy. The upper 1eveL~ of the hierarchy (i.e.,

those that are cioser to the root) correspond to more general behavior a!3pects such as tirne spent

in MPI functions. The deeper levels correspond to more specific situations such as time lost due to

blocking communication. FIgure 2.5 shows the hierarchy of predefined performance properties that

are supported by EXPERT.

The set of performance properties is split into two part5. The first part, which censiitutes the

upper layers of the hierarchy and WhICh is indicated by \Alhite boxes, is mainly u:.;ed on ~,ummary

information invol ving. for example the total execlItion times of special MPI routines, which c(mld

26

http:representi.lg

.. ' p" ...,

Figure ~.5: Hierarchy of EXPERT performance properties

r

.t.•

....-# ,.

27

...... . -... -. F,... '~ ...

also be provided by a profiling tool. Howe\ er, the second part, which constitutes lhe Jower layers of

the hjerarchy and whIch is indicated by gray bJxes. involves idle times that can (mly be deterrnir:ed

by comparing the chronological information between indivIdual ,events. We: have studied two MP~

'applications to demonstrate the usefulness of tl)js work. We have used the topologkal information

to explain the occurrence of certain 'vait stat:'s in these applications Tbese wait states occur due

to standard patterns associated with MPI applications. Hence we provide a descriptjon of typical

conlmunication patterns assocIated with MPI applications. T~ble 2.1 briefly explains some of the

performance properties specified by EXPERT for MPI applications.

2.5 Presentation Layer.

CUBE (CUBE Uniform Behavioral Encoding) is a generic presentation component suitable for dis

playing a wide variety of performance metrics for par~Hel programs including MPI and open~p

appJi..:ations. CUBE allows interactive exploration of a multidimensional metric ~;pace in a !')calab1e .

fashion. ScalabUity is achieved in two ways: hierarchical decemposition of individual dimens:Jr-s

and aggregation across ditferent dimensions. All metric~' are uniformly accommodated in the S3.me

display and thus provide the ability to easily compare the effects of different kinds of program

behavior.

2.5.1 Data Model

CUBE has been designed around a high-level data model of program behavior called the CUBE

perfomzance space. The CUBE performance space consists of three dimensions: a metric dimension.

a program dimension, and a system dimens~on. The metric dimensioI? contains a set of metncs, such

as communication time or cache misses. The program dimension contains the program's call free,

which includes all the call paths onto which metric values can be mapped. The system dimen~ion

contains all the system resources of the program, which can be processes or threads dependin!; on

the parallel programming model. Each point (rn. c,!) of the space can be mapped onto a number

representing the actual measurement for metri;.:: rn while the centrol flow l was executing ,~a!l !Iath

c. This mapping i8 called the severity of the performance space.

Each dimension of the performance space is organized in a hierarchy. First, ihe metric dimen

28

Table 2.1: EXPERl performance properties.

Performance Property
MPI

Communication

Collective

Early Red,uce

I, Late Broadcast

I
Wqitat N X N
Point to Point
Late Receiver

Messages in Wrong Order
(Late Receiver)

I Late Sender

Messages in Wrong Orde r
(Late Sender)
Synchronization(MPI)

Wait at Barrier(MPI)

Description
Time spent on MPI API calls
Time spent on MPI API calls used for communication
Time spent on collective communication
Time lost as a res~lt of a destination process entering in a
all-to-one operation earlier than sending processes
Time lost if the destination processes entering in one-to-aU
operation enter the operation earher than the source pro
cess
Time lost in synchronization in a all-·to-all operation,
Time spent on point-to-point communication
Time lost if a send operation is blocked until the cone
sponding receive operation is called
Late receiver due to sent messages in an order different
from the one expected by the receiving process
Time lost in a wait state caused by blocking receive op
eration that is posted earlier than the corresponding send
operation
Late sender due to the messages sent in a wrong order

Time spent on MPI barrier synchronization
Time lost due to processes waiting to enter a barrier opera·
tion

29

sion is organized in an inclusion hierarchy where a metric at a lower level is a subset of Its parent,

for example, communication time is below execution time. Second, the program dimension is orga

nized in a call-tree hierarchy. Flat profiles can be rep~esented a8 multiple tnvial call trees consisting

only of a o.;ingle node. Finally. the system dimension is orgal1ized if! a mu1ti-level hierarchy consist

ing of the following levels: machine, SMP node, process. and thread.

2.5.2 Display

The CUBE display consists of three tree browsers, r.ach of them relJresen6ng a l~jmension of the

peti'ormance space (Figure '2.6). The left tree displays the metrIC dimension, the mtddle tree displays

the program dimension, and the right tree displays the sy~tcm diu·ension. The nodes in the metric

tr~e reprc,;;ent metrics. The nodes in the !Jrogram dimension can have different semantics depending

on the particular view that has been 8elected. In Figure 2.6, they represent call paths forming a

call tree. The nodes in the system dimension represent machines., nodes, and processes from top to

bottom.

Users can perform two types of actions: sdecting a node 'Jf expanding/collapsing a node. At

any time, there are twc nodes selected, one in the metric tree ;;:nd the other in the call tree. It is .

cllnently not possible to select a node in the system tree,

Each node is associated with a metric value, called the severity, which is displayed using a

numerical value as well as a colored square. Colors enable the eilsy identHication of nodes of interest.

even in a large tree, whereas the numerical values enable; the precise comparison of individual

values. The severity value of a metric describes the rel(ltive importance of the metric with respect

to the other metrics used in the analysis process. \Vhen a node is in a collapsed state, it displays

the inclusive numerical value of the severity of the pattern it repres~nts. That is, it dispJays the

aggregate sum of the exclusive severity for that node and the severili~s of all its chi.ldren nodes. On

the other hand, when the node is in an expanded state, it displays the exclusi':e vallle of the severity

of the pattern It represents.

The color is taken from a spectrum ranging from blue to red repre:.-;eIlting the whole range of

possible values, To avoid an unneceSS(iry distraction, insignifica!lt ';alues close to zero are dis

played in dark gray. Exact zero values just have the background color. Depending on the severity

representation, the color legend shows a numeric scale mapping colors onto values.

30

" ji
o._'t_ ..

.. . j t

, ,
~ . .~ iJ' J- ·Y

J'v=,.,
isie

Figure 2.6: Visualization of Performance Problems 'using-CUBE.

, of, 't·

-,

,~-~ ..)~.. ~ ., .'
" '.1'.'

• ~--'~ ,','$ ""

' ", t'." . ,

3t ,

-

The view menu (Figure 7..7) in the display can be used to alter the way the program dimension is

displayed, to change the numbe!" representation for the entire display, or to hide positive or negative

values.

After opening a dat3 set, the. middle panel shows the call tre~ of the program. However. a user

might wish to know which fraction of a metric can be attributed to i:l particular region regardless of

from where it was called. In thIS case, the user can switch from the cal!··tree mode (default) to lhe

module-profile mode or the regi\Jn-profile mode. In the module-profile mode, the call-tree hierarchy

is replaced with a source-code hierarchy consisting of three Je\'e)s: m0dule, region, and subregiaIis.

The region-profile mode is similar to the module-profile mode except that modules are not shown.

The severity can be displayed in four different ways: as an ahsolute value (default), a per

elm/age, a reiative percentage, or a comparative percentage. The absolute value is the real value

measured. In absolute mode, a11 values are displayed ia scientific notation. To prevent cluttering

the display, only ,'he mantissa is shown at the nodes with the exponer.t displayed at the color legend

\Vht~n displaying a value as a percentage, the percentage refers to the value shown at the root of

th~ n".etric tree when it is in the collapsed state. However, both abs·::>lute mode and pf..rcentagf! mode

have the disadvf.!lltage that va]ue~ can become very small the more one goes to the right, since aggre

gation occurs from right to left. To avoid this problem, the user can switch to rela~ive percentages.

Then., iI percentage in the right or middle tree always refer8 to the s~lection in the neighbor to the

left, that is, a percentage in the system dimension refers to the selection in the program dimension

and :1 percentage in the program dimensbn refers to the selected metric dimension. In this mode,

the percentages in the middk and right tree always sum up to one hundred percent. Figure 2.8

shO\\'s a region profile with relative percentages. Furthermore, to facilitate the comparison of differ

ent experiments, users can choose the comparative percentage mode to di'Jplay percentages reiative

to another data set. The comparative percentage mode is basically like the normal percentage mode

except that the value equal to] OO~-7o is determined by another data set.

If one or more virtual topologies have been defined i!1 the CU BE fiie, the Topology menu item is

~nabled. Otherwise it is disabled. After selecting Topology, the topology-~;election dialog pops up if

the CUBE file has multiple topologies. Through this dialog, users can chom,e a specific topology t.) .

be displayed in a topology window. Each topology is displayed in a separate window. The topology

display is described in more detail in Section 3.5.2. For further information about using the CUBE

3')'

:.

... ~

':i" ":.

51 qJBE: SWeep'3d-?·1l~.cube.

!
I
I:
1.\to; - I 't~~£l'1 j ',Gb 0 ~e , • II tt } ! ~ r--riho\n~r~\i~ n':;J.rr~~ .1: .J O:Oo.)nn~r .}".·lr'

H
j'

·W'··
Ii
~ :
ii
:~
1

• .!,,(. ' !
I

j
I
!
i

;,

'r

-I
I
i~

I
1
)4

. FiglJre 2.7: View menu in the CUBE display.
-1<•• • '~if~"'~ ~ -"., . .. »

.. .~

"-.

.__ I

..'

...

33

....~, .-..... -. J- ~ -"

J ;£1 .f!I ,):23!. ate Rtcej'Jer, •

~. ;3 U 1.?5 L,ai.eSend¢r .

I; . · W ~"S.!f'nl
r~ O.OO!O

:E ill ooo syncbro,{ilCit1;m

- III ·1.25 Vis itt

Figure 2.8: Region Profile with Relative Percentage in the CUBE display.

3"4 .

S£

Chapter 3

Extensions

3.1 Overview

To make the analysis proce~s·topology-aware, va~ous extensions have 'been made to the KOJAK

toolkit. The EPIL0(J trace format has been extended to provide definition records to include the

topology-specific information in the trace file. The EPILOG run-time system haS been extended

to automatically recorll MPI process topology lnformation in applications that utilize t.he MPI pro

cess topology support. Also, an instrumentation API has been provided for c/c++ and FortIan

applications to setup and use virtual topologies. This extends the usage of virtual topologies for per

formance analysis to applicatIOns that do not utilize the MPI topology support (e.g., openMP applI

cations and many MPI applications). EARL has been extended to access topology information from

the event trace and provide an abstraction to map the performance data onto the viltua! topology of

the application. The EXPERT analyzer has been extended to transfer the topology information from

the event trace to the CUBE data format which can be viewed using the CUBE performance browser.

The CUBE data format has been extended to record topology information, and the CUBE GUI has

been extended to incofporate a new window to visualize the distribution of performance data across

the virtual topology in a user-friendly way.

To keep the extension simple, we restricted ourselves to Cartesian topologies as a common case

found in many of today's parallel applications.

The following sections describe the extensions made to all the layers of KOJAK to use topo

logical information for the performance analysis of parallel applications. Section 3.2 describes the

37

extensions made to EPILOG. Section 3.3 describes the extensions made to EAR~,. Section 3.4 de

scribes the extensions made to EXPERT. Fimllly~ section 3.5 describes the exten~ions made to CUBE.

3.2 EPILOG

Two new definition record~ have been added to the EPILOC binary trace t'ol"mat to define CartesIan

topology-specific information. Provision has teen made to automatj,:ally record the topology infor·

mation of applications using the MPI h)pology ,>upport An inSif'lmf;ntatior} API has been provided

fo:' tho~e applications that do !lot utilize MPI process topology support.

3.2.1 Trace Records

Th~ EP!LOG trtlce fomIat COfiSi3ts of (1.r,tlnition rec(wds that Gf"tlrJe Var!PllS system and p~ogram

rCi-ources available to the appJicatbn :n the CUlrent pf(Jgranlllling envinrfirnent TViO definition

records h~ve been added to the trace format to define the Cartesian wpdogies. One record type to

define the fenera~ layout c.f ·~Carter.,iJn 10Pfj!Ogy and one to map a ,;,ysrem rC,OUf(;e (e,g., a process

or a !lOde) OTlto a particuiar c-osilt!(tn within a previousl~t lie-fined topology. The semantics Gf the

topology can be arbitrary and the records can be used to dedare a virtual or a rhysical topJIogy.,

T!1e two definition records added are as follows:

• ELG_CART _TOPOLOGY

• ELG_CART_COORDS

This record defines an identifier topid for a Cartesian topology_ The record aisa defines an idep.

lifter c id of the MPI communicator repn:.senting the topology if it was created using MPl. It is se~

to a special value when MPI process topology support is not used. topid ,:;'an tot' used to) uniquely

identify a topology in this case. The record spedfies the number of dimensions ndims \If the Carte

sian grid and includes a vector dimv [} of sjze ndims containing the numher of system resources

in each dimension and a vectur per iodv [] of size no.ims specifying whether the grid is periodic

38

Table 3.1: ELG_CART_TOPOLOGY definition record

Data
Type

Attribute Description

elg_ui4
elg_ui4
elg_uil

elg_ui4
elg_uil

topid
cid
ndims

dimv[ndims]
[ndims]

Cartesian topology identifier
Communicator identifier
Number of dimensions in the Cartesian
grid
Number of locations in each dimension
Periodicity of the grid in each dimen
sion

in each dimension or not. To specify the periodicity of the grid in a particular dimension, each entry

of per iodv must carry one of the two symbolic constants:

• ELG_TRUE

• ELG....FALSE

Table 3.1 summarizes the various fields of this definition record,

ELG_CART_COORDS

This record specifies the Goordinates of a system resource in a Cartesian topology. It contains the

topology identifier top i d of the Cartesian topology to which the coordinates refer, a location iden

tifier lid for each system resource, the number of grid dimensions ndims, and a vector coordv

of size ndims containing the coordinates of the system resource.

The Table 3.2 explains the various fields of this definition record.

3.2.2 MPI Wrappers

As discussed in the previous chapter, EPILOG uses the PMPI library to instrument MPI applications.

The PMPI library generates MPI-specific events by intercepting calls to MPI functions. These events

then call the EPILOG run-time library, which provides methods for buffering and writing the defini
• >

tion and event records to the trace file.

The PMPI wrapper function for the MPLCART_CREATE routine uses the function parameters

to this MPI function to write the ELG_CART_TOPOLOGY definition record. After processing the

39

Table 3.2: ELGJ'ART.COORDS defin~t~on record

,Data

I Typeelg_ui4

Attribute

topid

Dp-scriptiont._ -C-an-e-s-ia-n--to-p-o--cl-o-g-y-i---cd-er-It-ifi--::-1-er

ela_ui411id . ~'ClCation identifier
I
I elg_ull ndlms Number of dImensIOns III the CartesIan

gnd .

elg_ui4l coorr!-~_~-=-l~~ims ~__ Coordinates of the system reso'!.~~_J

topology outline, the wrapper requests the coordinates of the ca!ling process from the MPI runtime'

system and writes the corresponding ELG_CART..COORDS definition record.

3.2.3 API

!vfost parallel apphcations, rarely usc M?l process topology support. Also, there i:~ no special support

for \il1uaJ topologies in OpeTiMF applications. For these reasons, EPILOG provides a c/c++ and

Fortran ,A.PI to write the topology specific llefinition records. The API consists of (\\10 functions that·

aHow the denll1tion nf upto threcdimensionol Cartesian topologies. Using this API is fauly simple

and requires only minimal effort.

The two functions in c/c++ ::.tart with a pre'5.x e 19 whereas in Fortran these functions stan with:

a prefix elgf. The functions are implemented in Cand the POF-ran fun~tions are wrappers mound

their C implementations.

The two functions in the A.P! are e)'.piajned belovr•

• 	 e1g (f) _cart_.create \sizeu. sizel, size2,periodo,periodl,pcr'iod2) : This function al ..

lows the user tc setup a Cartesian top01ogy. The number of dimensions of the CarteSIail. grid

can be at most three. SiZf_\ is an inte..ger describing the number of ~ystem resource~ in dimen

swn)(. perindx is the integer describing the periodicity in dimension X. Its value is zero if

the Cartesian gnd is nOI~-periodic in that dimension This function is uSiJally called epee. If

more than one system reSU1lfce calls :his function for a gi'.:en topoiogy then th::~ m"Lipl(~ calls

will be redundant. The merge component ensure~ that onl~' ope ddlil1~lOn record per tapology

is written to the global trace file .

• 	 e19 (f) _cart_coords (coon/o, coord} ~ coord2) : This function. allows the calling system

40

resource to define its coordinates in a previously defined Cartesian grid. coordx is an integer

describing the coordinate of a location in dimension X. The range of coordx is [0, sizex

1] where, sizex is the number of system resources in dimension X. This function must be

called exactly once by every system resource that is a part of the Cartesian topology.

The following example defines a three-dimensional 4 x 4 x 4 topology that is periodic in the

first but not in the remaining two dimensions.

if. (rank . eq. 0) then

call elgf_cart_create(4,4,4,l,O,O)

endi'f

call elgf_cart_coords(x,y,z)

Every process executing these lines assigns itself coordinates defined through the variables x,

y, z, containing values between 0 and 3.

3.3 EARL

The EARL abstraction layer has been extended to access the topological information from the event

trace and to create an abstraction that maps the performance data onto the .CartesiaQ topology of the

appJication.

The event trace contains timestamped events that describe the dynamic program behavior. EARL

can access information about the type, time and location of occurrence of an event. This information

can be used to collect the performance data of the application which in tum can he used to simplify

the specification of execution patterns representing Performance problems in the EXPERT analyzer,

With topological knowledge at our disposal, we can map the performance data onto the virtual

topology of the application. This information can be utilized to identify higher-level algorithmic

events related to the parallelization scheme applied in the parallel algorithm. Given this knowledge,

occurrences of certain wait states can be explained more clearly.

th~ clas1ses Cartesian and EventTrace were extended to provide member functions to access

topological information from an event trace. Also, member functions were provided that can convert

the exact system resource where a event occurred to its corresponding coordinate in the Cartesian

41

grid. This abstraction helped map the occurrence of every event to a coordinate in the Cartesian

grid al1d thus, map the performance data onto the topnlog) of the application. Following extensions

were made to the FARL library:

• 	 Extensions to the class Carcesian,and

• 	 Extensions to the class EVE;n t Trace

3.3.. 1 Extensions to the class Cartesian

The Cartesian topology is a special type of reSOUIce in the application and there are tv,,'o types

of definition records in the trace file to define this resource. Th(~ primary purpose of EARL i~ to

access and process EPILOG event traces and thus, to simplify the specification ef execution patterns

representing performance problems lNithin the EXPERT analyzer. Therefore, the c1ass Cartesian

has been added to EARL tD aCCESS topology specific information from the event trace,

This class contain;.;; data tha.t recOlds the t'Jpology information and provides member hlTlctions to

access this ir..formation through an objeGt of this dass. Fol1owing is a list of these ITle.mbi.':f functions:

d () : Returns the unique Cartesian topology identifier. • 	 long

• 	 Communi ca tor * get ..com (): Returns the :rvlP! commun~cator that represents the pro··

ce<)ses defining thi~ topology. It is sei tc NULL when MPI process topologies are liot used.

• get..ndims () : Returns the number of dimensions ,in the grid.

• 	 'loid get_dimv (s t.d: : vector<long>& out): Returns in out the 'lumber of loca

tions in each grid dimension. Note that the size of Ou t is equal to ndims.

• 	 void get_periodv(std: :vector<boGl>& out}: Returns in Gut the periodicity

in each grid dimension. Note that the size of au t. is equal to ndims. A boo!ca~l value of rtUe

indicates that the dimension is penodic.

The member functions to conveniently convert sy:-:tem resources to coordinates in the- Cartesian

grid and vice-a-versa are:

42

• void get_coords (std: : vector<long>& out, Location* loc): Returns in

ou t the coordinates of the location loc in the Cartesian grid. Note that the SIze of ou t is

equal to ndims.

• 	 Location* (std: :vector<long>& coordv): Returns the location cor

responding to the coordinates represented by coordv in the Cartesian grid.

3.3.2 Extensions to the class EventTrace

This class primarily provides random access to all events In the trace file including the execution

state at the time of a given event. This class also provides information on program and system

resources involved in the program execution. The event trace can contain more than one Cartesian

topology. Hence, a couple: of routines were added here ~o access multiple Cartesian topologies in

the event trace. These routines, are the following:

• 	 long () : Returns the toud number of Cartesian topologies.

• 	 Cartesian* get_cart (long cart._id): Returns the Cartesian topology with identi

fier cart_id.

Two member functions have been added to directly access' system resource from the coordinates

and vice-a-versa.

• 	 void get_coords (std: :vector<long>& out, long cart_id, long loc_id):

Returns in ou t the coordinates of the location with identifier I oc_id in the Cartesian topol

{)gy with identifier cart_id. The coordinates are specified by the vector ou t in the order of

dimensions (i.e., first dimension first, etc.).

• 	 Location* get_Ioc (std: :vector<long>& in, long cart_id): Returns the

location at given coordinates in the Cartesian topology with identifier cart_id. The coor

dinates are specified by the vector in in the order of dimensions (i.e., first dimension first,

;etc.).

43

3~3.3 Python Methods to Access Topology Information

The Python' API is a wrapper around the C+-l- API that ha') been generated using SWIG [20]. The main

advantage of the Python interface is th1t it enabies rapid prototypillg as welJ as interactive program

rning. The existing typemaps have been extended to "Iso make the Python interface topology-aware.

3.4 EXPERT

The EXPERT analyzer uses th~ EARL library interface to access the event trace. It then utilizes the

low-level trace-record information to create a high-level callpath profile representing the perfor

mance of an application. This profile is based on the specitication of h;erarchical patterns repn.sen~

jng performance properties of an application.

The EXPERT analyzer has been extended in two ways. First, its been enabled to read the topo

iogic31 information from the event trace and record it in the high-level model.

Secondly, new patterns have been added to analyze a specific algorithm using topological infor

mation onto v,'hich the performance data have btenmapped. These patterns will be discussed in the

next chaptp.r when we descnbe the results of our analysis while investigating wavefront proce~;ses

in the ASC! benchmark SWEEP3D.

3.5 CLTBE

The CUBE data format has been extended to include the tupological information. ·A topology view

has been added to the CUBE CUI. This extension of the GUt can be used to view the distribution o~'

performance data across the Cartesian virtual topology of the application.

3.5.1 CUBE Data Format

New XML elements have been added to the CUBE data fOlmc.t to represeflt the topological informa

tion in the CUBE file

Tbe < topolog i es > element marks the beginning of topology-specific information in the

CUBE file. The <cart> element defines a one, two, or three-dimensional Cartesian topology. The

<dim> element defines the total number of system resources in each dimension. The <coord>

44

element maps each system resource to its coordinate in the Cartesian grid. The following example

shows a typical representation of a three-dimensional Cartesian topology which is non-periodic in

all three dimensions and has two processes in each dimension

<topologies>

<cart ndims="3">

<dim size="2" periodic="FALSE"/>

<dim size="2" periodic="FALSE"!>

<dim size=" 2" periodic~"FALSE"/>

<coord locld="O">O 0 O</coord>

<coord locld="l">O 0 l</coord>

<coord locld="2">O 1 O</coord>

<coord locld="3">O 1 l</coord>

<coord locld=h4">1 0 O</coord>

<cpord locld="5">1 0 l</coord>

<coord locld="6">1 1 O</coord>

<coord locld="'l">l 1 l</coord>

</cart>

</topologies>

3.5.2 Topology View

If one or more virtual topologies have been defined in the CUBE file, the Topology menu item is

enabled. Otherwise it is disabled. After selecting Topology, the Cartesian-selection dialog pops up

if the CUBE file has mUltiple topologies. Through this dialog, users can choose a specific topolog)

to be displayed in the topology view. Each topology can be displayed in a separate view.

If the CUBE file contains topological information, the distribution of the performance metric

across the topology can be examined using the CUBE topology view. The CUBE topology view

shows performance data mapped onto the Cartesian topology of the application. The corresponding

grid is specified by two parameters: the number of dImensions and the size of each dimenSion

Figure 3.1 show the menu bar and the actual Cartesian grid. The Cartesian grid is presented by

45

Figure 3.1: Topology Display

,. ..

, .

46

planes stacked on top of each other in a three dimensional projection. The number of planes depends

on the size of the Z dimension. Each plane is divided into squares. The number of squares depends

on the dimension size. Each square represents a system resource (e.g a process) of the application

and has a coordinate associated with it.

The grid displays the severity of the selected metric in the selected call path for each system

resource participating in the application's topology. The severity is represented as a color. A system

resource might not be a part of the application's virtual topology or may have a zero value for a

metric.

Menu Bar

The menu bar consists of four menus: a view menu, a geometry menu, a zoom menu and, a coJors

menu.

View. The view menu 'can be used to choose one of the three possible orientations of the grid.

The coordinate axes at the bottom of the picture indicate the direction of the X, Y and Z

dimensions in .. the three;-dimtinsional ~pace. In the ~ase of one- or two- dimensional grids,

users are provided wi.th only one orientation of the grid.

Geometry: Due to varying dimension sizes, planes in the grid might overlap with each other and

the size of the squares might be too small to recognize their color. This may pose a problem

for the user to view the topology information effectively. The geometry menu circumvents

this problem by provi,ding options to scale the picture in various ways. The Angle option helps

the user to adjust the skew of the three-dimensional projection. The Plane Distance option

helps to adjust the inter-plane distance. The Plane Length option helps users sca~e the edge

length of each plane.

Zoom: The zoom menu can be used to zoom-in or zoom-out on the grid.

Colors: The colors menu can be used to modify the text color and the background color of

the topology display. Finally, there are two resolution modes to choose from. The Low

Resolution mode assigns colors to the squares according to the severity values shown in the

system dimension (Figure 2.8, rightmost tree browser). The relation between colors and the

47

corresponding values have been described ;n section 2.5.2. Often, these values have small

variatJOns from each other and do not help user IO study the relative distrIbution of severities

across the grid. As described in the hist chapter, the CllBE color spectrum ranges from blue

to red lepresenting the whole range of possible vhlues. To exploit the entire spectrum of

available colors and to enable the user to study the relative distributicn of ~everities, a High

Resolution mode is provided. I'hls mode high!ights the minute differences between severity

vakes uf the system resources. Severity values of zero are assigned the background color of

the display. This mode has its own color legend showing the minimum and maximum values

for the selected severities across the grid. These values c:m be absolute values, percentages,

or relative percentages depending on the CUBE vie~1 mode.

4&

Chapter 4

Examples

We have designed an infrastructure that enables the identification of higher-level algorithmic eVEnts

related to the parallelization scheme applied in a parallel algorithm. We believe that this infras

tructure can be used to study the relation between certain inefficient patterns and these higher-level

algorithmic events. Also, this infrastructure can be used to identify clusters of system resources

that show semantically similar behavior due to their position in the virtual topology of the applica

tion. This infrastructure has been developed by extending the KOJAK performance analysis toolkit

as described in the previous chapter.

To study how virtual topology can be used to accomplish the above mentioned goals, we have

applied our tool extensions to two example MPI codes, the ASCI SWEEP30 benchmark [2] and an

e~vironmental science application called TRACE [8].

This chapter focuses on the results derived from these experiments and thus, shows proof of

concept that mapping performance data onto the virtual topology of a parallel application can help

better understand the performance behavior of these applications.

AlJ the experiments were conducted on different parallel computers. Table 4.1 summarizes

Table 4.1: Machines used for experiments .
....--.

Name Location CPU description OS
-

Jump

I Galaxy
y Beowulf
copper

FZJ, Germany
Houston, USA
Houston, USA
UIUC, USA

IBM Power4+
UltraSparcIII 750 MHz
Intel PentiumIII Xeon 550MHz
IBM power4

AIX
SunSolaris9
Linux
AIX

49

the machines used fCI our experiments. Varioas event traces \V~re collected for both applications

with different configurations of the Cartesian grids used to define the virtual topology of these

application".

4.1 Sweep3D

The first example is the ASCI benchmark S'NEFPjO. Tbs example shows howihe topolGgy-specific

information in the event trace can be utilized tl' identify higher-If,vd algorithmic events in an appli

cation. Also, it demonstrate'i the way in v.,rhich these higher-level events can be used to expiain a

specific performance problem i~ SWEEP3D. For Ollr u:lalysis, we extended the hierarcht::al patterns

described in the EXPERT analyzer to incOrpt1r;lte four new sub-patterns of the late-sender pattern.

This extension was necessary to explain the relation of late-sender wait states to the specific algo

rimm used in SWEEP3D.

4.1.1 Introduction

The benchmark code SWEEF3D is an MPI prog;~am rerfcrm.ing the core computation of a real

ASCI application. It solves a I-group time- independent discrete ,xdinates (Sn) 3D Caztesian gee-"

ometry neutron transport problem by cakalating the flux of neutrons through each cell of a three

di!Tlensional grid (i, j, k) along several possible di recHon;; (ang]es) of traveL The angles are split

into eight octants. each corresponding to one of the eight directed diagonals of the grid.

4.1.2 Domain Decomposition and Parallelism

SWEEP3D exploits parallelislTI via a wavefront proce~s. Fij~t, it map~ the (i, j) planes of the

three-dimensional domain onto a two-dimens!o.'!al grid of proce:.::ses. Thus, S\:l/EEP3D has a twn

dimensional Carte~ian virtual topology. SWEEP]D uses a wavefront algorithm to do its computation.

The eight octants of the three-dimensional cubic domairl re:.. ult in wavefronts crigmating from the

four comers of the two-dimensiona1 Cartesian grid. TLm is, the direction of die wavefront, at any

given time, depends on the octant being proces3ed elt th~lt time.

To improve p('rallel efficiency, blocks of work are pipelined through the domain. The para1Jel

computation fol1mvs a pipelined wavefront process that propagates data along diagonal lInes through

50

.. '

. ~Figure 4.1: Wavefront propagation of data in SWEEP3D

the grid. Responsibl~ for the wavefront computation in th.e code is a subroutine called sweep () ,

which initiates wavefronts from all four corrfers of the two-dimensional grid of processes. The

wavefronts are pipelined to ena~le multiple wavefronts to follow each other along the sarr.edirection

. simultaneously.

Figure 4. 1 shows th~ data ~ependence graph·for a 3 x ~ array. This figure illustrates the propaga:"

hon of wflvefronts iqi9ate~ . at the South-West (i .e . , ~bottq[n-left) corner of the two-dimensional grid.

In this example, each:,o:process is data-dependent on its.We.stern ~nd Southem .ueigbbof!i..The. lfJng,

bold arr.ows symbolize data dependencies. The processes that are to the Nor:.th-West an.9,South-East,

(i,e. , diagonally aligned with a process) of .a.process· are algorithmically independent with .respec.t

to that process. In .the figure, ,diagonal lines. cut through algorithmically independent processes.

The diagonal arrows toward North-East (i.e., top-right) represent the computation as it progresses
. .

in the form of wave{ronts from the lower-Ieft-to the upper-right comer, Thus, the parallelization

in SWEEP3D is based on concl:lrrency among algorithmically independent processes and pipelining

among algorithmically dependent processes.
) , . J. .t

Th~ ,basic code struct.ure of.routine sweep () in pseudo-code notation is as follows;

...... -'.,J ··L
DO octants

DO angles in octant

DO k planes

block i-i'nflows
.. ,... or -. ..

IF neighbor (EIW) ' MPI_RECV(E/W)

51

.... -...y- ~ - ,, .. ,~'" -

! block j-inflows

IF neighbor(N/S) MPI_RECV(N/S)

... compu~e grid cell ...

block i-outflows

IF neighbor(E/N) MPI_SEND(E/W}

! block j-outflows

IF neighbor (N/S; MFI_SEND(N/S)

END DO k planes

END DO angles in octant

END DO octants

It can be seen from the pseudo· code that in the innermost loop, each process execute~ an

M:l:)I ..RECV () to get data from the neighbors it algorithm.cally depends 0n. Then, the process

performs the required (omputc:iion ano sends the result to the ncighbcn: which depend Ot:'l it. This is

do~~ by th~ two MPI -SEND () caih; at. the end of the loop.

4.1..3 Performance Problem in SWEEP3D

SWEEP30 suffer& from W3~t states due to the late-sender patten1. This pattern is explained in the

FIgure 4.2. This pattern is caw.ed aue to two communicating processe~ wheT;;: one process send.:; a

me:;sage to another process. HDwever, the receiver process,might enter ~he receive operation ear]i~r

than the corresponding sender process enters the send operation. Thcrefo!'e it has to wait until the I

sender ~ctual1y sends the message. This is an undesirable wait state in whIch the receiver waits for

the sender to send the message without doing anything useful.

In SWFEP3n this pattern occurs frequently because of the paraIlelization scheme applied. It

can be seen from the sweep {\ pseudo-code that each process has to execute tWG t4PL.RECV ()

calls to get data from the proc{'sses an which it depends for its data. The dire{~t;()n of the wavefrom

;.::hange'i depending on the octant being processed. When the direction of the pipeline changes (e.g ..

from NOlth-East to South-West>. a pipeline refill takes place starting from a ditferent comer. During

the pipeline refill, every process except the process which initiates the wavefront, has to wait for

data from its algorithmically dependent neighbors hefore it can start its computation. Thus, these

52

....

I
e Enter

o Exit

@ Send

~ ReceivE;

Message I

time
wastad

Figure 4.2: Late-sender pattern in MPI applications.

processes will suffe~. /rom late-sender waiting times. The process at the corner reached by the

wavefront last incurs most of the waiting times, whereas the process where the wavefront originates

incurs none. The change in the pipeline direction can be a , major contributor to the late-sender

patterl1s observed in 5WEEP3D.

I.· .. ' .4.1.4 Topology Analysis with SWEEP3D

To perform topology analysis witli SWEEP3D, a three-dimensional problem domain of siz.e 512 x

512 x 150 was chosen. This three-dimensional domai.n was decomposed into a ,two-dimensional

_

~ ' .)00 i".... 1111 r. t

grid of processes. The size of the grid was 8 x 8 (i.e., 64 processes). The instrUInentation of the
~ .. "'&foo"'" ::~

user function~ was. done fully automatically using the platform compiler's pronllng interface.
,..;-* JJ.., ,~r~' !

Setting up a two-dimensional Cartesian topology ,.
r

SWEEP3D does not utilize the functions provided by MPl topology support to setup ~md use virtual
" . . ~... • f

topologies. Therefore, we used the Fortran routines of our instrumentation API (explained in the

previous chapter) to define a two-dimensional Cartesian topology with 8 processes in each dimen
~.... . :.. - .. _... .

sion. The domain"decomposition is done in the file decamp. f. We inserted calls to ~he topology

API in decamp. f. "

The following Fortran call sets up the two-dimensional Cartesian topology which is non-periodic

in 'all dimensions:
... ..

call elgf_cart_create(npe_i, npe_ j. , 0, '0, 0, 0)

The variable npe_i is the number of processes in the X dimension and npe_j is the number

5:3

'1 _ •. --::;,;o. - :;:-~

of processes in the Y dimensIon. Every process also assigns 3 I,;oordina(e to itself according tc its

positicl~ in the Cartesian grid:

cal] 1. 0) J

The variable mype_i 1 is the coordinate ef the procef.g in the X dimGnsion and ffiY".;>e_j ..

1 is its coordinate in the Y dimension. The coord~nates are cakulakd i'1 decamp. f depending on

the MPI rank of the calling process and;ht: total number uf procet~se~ ift the J(dimensiort.

After instrume.nting all user fUilction~ of SWEEP3D fully [luto!"llai:ically, llsing the compIler ~pec

!fleJ profillng interface, it was execut~d with 64 processes on a Solaris Clu;;ter equippec! with

UltraSPARC-III 750 MHz processors. The execution yieJded :1 trace file enriched with topo'ogi

I:al information. This trace file was analyzed offline using the EXPERT analyzer.

EXPERT Analysis'

The r:Xf'ERT analyzer specifIes executlt'll patterns that symbolize perfom1anse problem;) in parallel

applications. Processes in SWEEP]n in.:.'llf weit states due to thl~ late-sf~Jer pattern which can

he attrIbuted to the pipelined wavefront algorithm. The dIrection changes of wavefronts that are

initiated at the four corners of the two·-dimensional Cartesian grid are higher-level events related to

the paralielization scheme of this alg'Jrithm.

Now. according to our discussion above, SWEEP3!) incurs watting times due to the pipeEne

direction change of wavefronts originating from the four corners of the Cartesian grid. A significant

percentage of the waiting times incurred due to the late-sender pattern in SWFEP3D can be attributed

to these waiting times. Thus, four ne'.\' sub-patterns of the late-sender pattern were added to the

EXPERT hierarchy of pelformance patterns.

The EXPERT pattern h;erarchy can be f!asily extended to include new patterns because of its

fleXIble publish and register scheme. In this scheme, pattern classes ell'l ruhl~sh detected pattern

instances and new pattern clas:~e.s can regis~er for instance3 detected by others. For example, the

late-sender pattem c1ass can publish the detected pattern instances. The nevI 3l1h- pattern cla5ses Gan

then register for thE published late-sender pattern instances. Tne new sub-patterns in SWEEP3rJ are

named as follows:

1. Wavefront from NW

54

. 2. Wavefront from SW

3. Wavefront from NE

4. 	 Wavefront from SE

Each sub-pattern class uses the topological information provided by EARL to track the pipeline

direction. If there is a change in the pipeline direction simultaneously with a late-sender instance,

the instance becomes also an instance of that sub-pattern. For example, if the pattern Wm'efmlll

from NW finds out that the direction of the pipeline changed from some other direction to North

West, then that instance of the late-sender becomes an instance of the sub-pattern Wavefront from

NW as welL To identify the pipeline direction change, EXPERT maintains a FIFO queue for each

process which records the directions of the most recent messages received by the process. Finally,

EXPERT records the wait times in the high-level callpath profile which can be vi{~wed using the

CUBE performance browser.

CUBE Display

The high-level callpath profile provided by EXPERT can be viewed with the CUBE performance

browser. Figure 4.3 shows the percentages of late-sender instances caused by the four new sub·

patterns. The new patterns appear ir. the metric tree on the left underneath the late-sender pat~ern

and are labeled with the percentage of execution time spent in wait states caused by them. The total

time spent in wait states, which can be obtained by collapsing the late-sender node, was 25.4%.

Late Sender instances obseryed simultaneously with a pipeline direction change account for about

a little less than 60% of the overall late-sender time. The time measured for individual directions

vary between 6.0% from North-West and 1.7% from pipeline refill from North-East.

Figure 4.4 shows the new topology view rendering the distribution of the late-sender times

for pipeline refill from North-West. The high-resolution mode shows the relative distribution of

s~verities of the selected property with respect to each other. As discussed above, the corner reached

by the wavefront last incurs most of the waiting times, whereas the origin of the wavefront incurs

none,

55

~J

" . .~ ~"-..... . . ,~.: - '..

:. f::J ItI 65.!l E:xecution

9 - !II 1.5 Mr-I

•. i G ··· 0 0.0 CommunlcatioR ~- - CJ 0.1 Process ~

, ;. m IW 6 1 Collectrve ~":"-'.-' I!I r,~1 Proce.s 2

t :7] III 1 5 P2P "U 0.1 Process :-)

i (B . EJ 00 Late Receiver .. [J r .l Process 4

8- ..!!J 10 6 Late Sender .-'" EJ 0.2 Prucess 5

;. ~.. 0 0.2 Process "S

, D 0.2 Prccesc 7

Figure 4.3: CUBE results for SW.EEP3n

,t,•. ' t . . ' ,

... . -' -.t

. '.

Figure 4.4: Distribution of late-sender wait states as a result of pipeline refill from North.. \Vest

56

--~~--------~-- --~.

4.2 TRACE

The second example highlights how visually mapping the results of our pattern analysis onto the

virtual topology can help the user identify semantically meaningful clusters of related behavior.

4.2.1 Introduction

TRACE [8] simulates the subsurface water flow in variably saturated porous media. It solve.s the

generalized Richards equation in three spatial dimensions. The parallelization is based on a paral

lelized CG algorithm, which divides the grid into overlapping subgrids and communicates via MPI.

The main computation is done in a subroutine called 1 () .

We executed the applIcation with 64 processes on a IBM cluster with 41 Power4+ 1.7GHz 32

way nodes. The resulting topology is a three-dimensional Cartesian 16 x 2 x 2 grid (Figure 4.6).

4.2.2 Performance Problems in TRACE

TRACE suffers from wait states caused by inherently synchronizing all-to-all operations that occur

when some processes i!nter the operation earlier than others. The pattern describmg this situation IS

among the standard patterns included in the EXPERT analyzer The pattern is illustrated iT. Fj.gure

4.5. The top three processes enter the synchronizing operation before the last process. Thus, the top

three processes suffer from waiting times until the last process has reached the operation.

4.2.3 Topology Analysis with TRACE

Mostofthe computation and MPI communication in TRACE takes place in the routine parallelcg {) .

Figure 4.6 shows the distribution of wait states in para1 () caused by inherently synchro

nizing all-to-all operations. The figure exhibits clusters of increased waiting times at the comers

of the three-dimensional grid. These processes, due to their exposed location are assumed to have

different computation as well as communication requirements. Without topological knowledge the

affected processes would appear as arbitrary processes and the user would be unaware of the corre

lation between their particular role in the topology and the occurrence of specific inefficiencies.

57

e Enter I.'
e MPICExit

I
I

, l:
• I
__e.!!t~..!!: -+ r

L...--____J

time

. .. . ~

Figure 4.5: Wait at N x N collective operation
. so, .

t . • .

r--------:- .

Figure 4.6: Distribution of wait states caused by inherently synchronizing all-to-all operations in
TRACE

58

1

Chapter 5

Summary and Future Work

This chapter summarizes our effort to demonstrate the importance of mapping the performance data

onto the topology of the application for the analysis of certain communication patterrls. We also

present future work in this area that will generalize this technique for the purpose of performance

analysis of parallel appJications.

5.1 Summary

The main focus of this thesis has been the development of an infrastructure to use topological

iriformation for performance analysis oJ parallel applications. The infrastructure has been build as

an extension to the KOJAK performance analysis environment.

We extended the KOJAK toolkit at various levels, each of which performs necessary tasks at

different stages in the performance analysis process. The EPILOG binary trace format has been

extended to record topological information ill the event trace. The EPILOG runtime system has

been extended to automatically record MPI topology information. An instrumentation API has been

provided to manually instrument the source code to record the topology -specific information in

the event trace when MPI topology support is not used. The abstraction library, EA R L, has been

extended to access topological information from the event trace and provide an abstraction to con

veniently access this information. The EXPERT analyzer has been extended to identify and pass

topological information to the high-level callpath profile produced as output. Finally, the presenta

tion layer, CUBE, has been made topology aware and the CUBE GUI has been extended to visualize

59

the distribution of performance data aciOSS the virtual topology of the application.

We demonstrated the feasibility of our work by performance analysis of two realistic MPI ap

plications based on our concept- The first one is the ASCI benchmark, SWEEP3D, and the~econd

is an environmental ~;,cience application, TRACE, provided by Forschungszentrum Jiilicp, Germctny.

Using SWEEP3D's pipelined wavefront algorithm as an example, we demonstrated that with topo

logical knowledge, EXPEI~T is now able to identify the direction of messages :n the virtual tepnlogy

of SWEEP3D. This information was then used to identify higher-level events related to th\~ r&rd]

lelization scheme u:,ed in SWEEP3D and the correlation of these higher-level eve'.lts with wait states

identified by KOJAK's pattern analysis. This correlation allowed us to reintroduce a dme dimension

into an otherwise ti mcie')s data model of analysi5 results by letting pattern specifications refer to

dis6nct algorithm-~pecific execution phases. Using TRACE as our .!xampJe, we further showed that

visually mapping wc:Jit states identified by KOlAK'S pattern analysis onto the tcpology enables the

cOlTelation of these walt state$ with topological characteristics of the affected processeL

5.2 Future \Vork

Future wurk will address the extension of our infrastructure to generalize the Idea of performmlce

analysis of parallel applications by utj]jzing their topological information. Pre&ently, oUf\.vork is

re3trictCd to C~lItesiaf\ 1op(~logies. We intend to provide support for general graph topologies. A.lso,

we have not used the concept of periodicity of a Cartesian grid in our work. We intend to suppon:

this concept and hence, support more complex Cartesian topologies (e.g., a hypercube or a cylinder),

Future work will also address the understanding of 0perations of wavefront processes in more

detail by studying the overlap between pipelines coming from different directions. We also intend

to extend the scope of the underlying principles to ether algorithms, such as paIallel mult~··frGntai

methods [5].

60

19

Bibliography

[1] 	 O. Lubeck A. Hoisie and H. Wasserman. Performance Analysis of Wavefront Algorithms on

Very Large Scale Distributed Systems. Lecture Notes in Control and Information Sciences,

249:171,1999.

[2] 	 Accelerated Strategic Computing Initiative (ASCI). The ASCI sweep3d Benchmark Code.

http://www .llnl. gOY/ asci_benchmarks I.

[3] D. H. Ahn and J. S. Vetter. Scalable Analysis Techniques for M1croprocessor Performance

Counter Metrics. In Proc. ofthe Conference on Supercomputers (SC2002), Baltimore, Novem··

ber 2002.

(4] 	 G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modelling Language User Guide

Addison Wesley, October 1998.

[5] 	 lain S. Duff. Parallel implementation of multifrontal schemes. Parallel Computing, 3:193

204,1986.

[6} 	 B, Mohr F. Wolf. EPILOG Binary Trace-Data Format. Technical Report FZJ-ZAM-IB-2004··

06, Forschungszentrum JUlich, May 2004.

[7] 	 T. Fahringer, M. Gerndt, B. Mohr, G. Riley, J. L. Tdiff, and F. Wolf. Knowledge Specification

for Automatic Performance Analysis. Technical Report FZJ-ZAM-IB-2001-08, ESPRIT IV

Working Group APART, Forschungszentrum Julich, August 200 1. Revised version.

[8] Forschungszentrum 	 Jiilich. Solute Transport in Heterogeneous Soil-Aquifer Sys

tems. http://www . kfa- juelich. del icg I icg4 IGroupsiPollutgeosys/

trace_e. htrnl.

63

http://www
http://www

191 	 Lei Huang, Barbara Chapman, and Ricky Kendall. Executing openmp on distIibuted memory

systems via global arrays. Jounlal of Parallel Computing, 2004 to appear.

!1 (I] 	S. Hllband and C. McDonald. A Preliminary Topological Debugger for MPI Programs. In

R. Buyya. G. Mohay, and P. Roe, editors, Proc. of the First IEEEIACM lnternational Sympo

sium Oil Cluster Computing and the Grid, pages 422-429. IEEE Computer Society, 2001.

[11] 	 IBl\A. Dynamic Probe Class Library. http: / / dpcl . sourceforge. net/.

[12J Message Passing Interface Forum. MPI: A Message Passing Interface Standard, June 1995.

http://www.mpi- forum. ~rg.

(13) 	C. Miillender. Visnalisierung Jer SpeicheraktivitateII von parallelen Programmer. in Syste

men mit virtuell gemeinsamen Speicher. Master's thesis, RWTH Aachen, ForschungszentrlJm

Jiilich. May 1994.

l14] OpenMP Architecture Review Board. Opl?r;MP Fortran Application Program Tnterface - Ver

sioll2.0, November 2000. http://wwl/'l. opemnp. erg.

(15] The Pamdyn Project. Homepage Fehfvary 2004. http://www . cs. wise. edul

'~paradyrl/ .

o

[16] S. Shcnde, A. D. Malony, J. Cuny, K. Lindlan, P. Beckman, and S. Karmesin. Portable Profiling

and Tracing fOl Parallel Scientific Applications using C++. In Proc, of the SIGMETRICS

Symposium on Parallel and Distributed Tools. pages 134--145. ACM, August 1998.

[J 7] S. S. Shende. The Role qf Instrumentation and Mapping in Perfonnancp Measuremenl. PhD

theSIS, University of Oregon, Augusr 2001.

[18] 	F. Song and F. Wolf. CUBE User Manual. Technical Report ICL-UT-04-01 University of

Tennessee, Innovative Computing Laboratory. Knoxville, TN, February 2004.

[19] 	 F. Song, F. Wolf, N. Bhatia, J. Dongarra, and S. M~ore. An Algebra for Cress· Expeliment l>er

formance Analysis. In Proc. of the International Cor~rerence on Parallel Processing (lef'P),

MOl1treal, Canada, August 2004.

[20] 	 SWIG. Simplified Wrapper Interface Generator. : / /www. swig. org/.

64

http://www
http://wwl/'l
http://www.mpi-forum

[21] 	F. Wolf. EARL - Eine programmierbare Umgebung zur Bewertung paralleler Prozesse auf

Message-Passing-Systemen. Master's thesis, RWTH Aachen, Forschungszentrum JUlich. JUI

Bericht 3551, June 1998.

[22] 	 F. Wolf and B. Mohr. Automatic performance analysis of hybrid tv:IPIIOpenMP applications.

Journal ofSystems Architecture, 49(10-11):421-439, 2003. Special Issue "Evolution~ in par

allel distributed and network-based processing".

[23] 	F. Wolf, B, Mohr, J. Dongarra, and S. Moore. Efficient Pattern Search in Large Traces through

Successive Refinement. In Proc. of the European Conference on Parallel Computing (Euro

Par), Pisa, Italy, August - September 2004.

65

Vita

Nikhil Bhatia was born in Delhi, India, on September 16, 1980, the son of Raj an Bhatia and Kam]a

Bhatia. After graduating in 1998 from Ramjas School Pus a Road, New Delhi, India, he attended

the Mumbai University where he received a Bachelor of Engineering degree from the Computer

Engineering department in 2002.

After his undergraduate studies, Nikhil attended the University of Tennessee, Knoxville, Ten

nessee, where he received 3 Master of Science degree in 2005 from the Computer Science de

partment. During his stint at the University of Tennessee, NikhiI worked as a Graduate Research

Assistant in the Innovative Computing Laboratory.

Nikhil is currently working in the Computer Science and Mathematics division of the Oak Ridge

National Laboratory as a junior member of the Future Technologies group. In the future, Nikhil

hopes to develop systems software for next generatIOn parallel computers which would help parallel

applications to achieve optimal performance on these sophisticated machines.

67

	An Infrastructure for the Analysis of Communication Patterns in Virtual Topologies
	Recommended Citation

	tmp.1276016329.pdf.3EAHg

