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Abstract 

 

Global air temperatures are predicted to rise 1° to 4.5°C by the year 2100 and 

perhaps greater at high latitudes. In order to correctly identify the effects of climate 

change on tree species, the present thesis is an assessment of the sensitivity, response 

and acclimation potential of southern Appalachian red spruce (Picea rubens Sarg.) to 

the impact of warming. This objective was approached through examinations of 

synthesis (instantaneous and short-term acclimation rates of photosynthesis and 

respiration) as well as investment (biomass accumulation and partitioning, growth rate, 

and carbohydrate allocation) of carbon assimilates. 

Red spruce from two southern Appalachian provenances were germinated and 

grown in two separate growth chambers set at day/night temperatures of 19.9/12.9°C 

and 23.9/16.9°C (means of 17° and 21°C). At weeks 8, 12 and 16 after germination, 

concurrent analyses of carbon gas exchange and biomass accumulation were 

conducted. Seedlings grown at 21ºC had low photosynthetic rates at week 8, but fully 

acclimated by week 16 to rates equal to seedlings grown at 17ºC. Daytime dark 

respiration and Q10 values remained near equal throughout the study duration and 

showed minimal dependence on treatment temperature. Despite equivalent carbon 

assimilation, seedlings grown at the low temperature had significantly lower whole plant 

mass at every measurement date. Throughout the study duration, plants grown at 17ºC 

allocated more mass to roots, while seedlings in our elevated temperature partitioned 

more to foliage. Relative growth rate was 154% greater for plants grown at 21ºC than for 

plants at 17ºC. As supply of photosynthate surpassed growth demand for seedlings 

grown at low temperature conditions, these seedlings had higher concentrations of 

starch in both roots and shoots.  

We conclude that carbon assimilation in southern Appalachian red spruce has 

the potential for physiological acclimation to temperature. As the cool adapted spruce 

seedlings performed better at 21ºC rather than at 17ºC, as displayed by increased 

growth rate and dry mass accumulation, we question the temperature limitations of the 

deciduous-boreal ecotone as it relates to this species. Interspecific variations to warmer 

temperatures leading to modifications in interspecific competition may be a greater 

determinate of a displacement of this ecotone.  
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Introduction 

 

One of the most challenging questions confronting foresters and ecologists is the 

extent to which the future health of forest ecosystems can be predicted in a reliable 

manner on time scales of biological, economical and societal relevance. Concern with 

the management of forest ecosystems has been amplified by recent awareness of global 

climate change. Climate change presents a major challenge to forest ecologists studying 

the dynamics of natural and managed forest ecosystems. Not only must these ecologists 

contend with changes that all forests are constantly undergoing, but they must try to 

separate this natural variation from changes induced by climate. Many forests have an 

added complexity of management activities that result in further alterations to the 

ecosystem. Thus, determining the effects of climate change on these highly dynamic 

systems is a complex and daunting task. 

The foundation of most forest ecological processes is the carbon budgets of 

trees, at individual, community and ecosystem levels. An enormous body of literature 

has developed concerning factors that directly or indirectly control carbon budgets of 

trees and one can conclude that climate affects forests in a variety of ways. Stand and 

leaf level mechanisms may interact to cause deviations in carbon assimilation, thus net 

primary production is the result of the interaction of extrinsic (environmental) and intrinsic 

(physiological) factors. Extrinsic factors are associated with the physical environment, 

which is often modified by structure or competitive processes associated with biotic 

communities. Intrinsic factors are related to inherent abilities of tree species or 

individuals to use available resources for growth. Thus, the intrinsic adaptedness of 

populations and plasticity of individuals to their extrinsic environment is a primary 

condition for the stability of any natural ecosystem.  

Adaptability of species is a display of the genetic variation and phenotypic 

plasticity at all levels of biological scaling, from molecular to community. Genetic 

variation is fundamental for the permanence of a species as it provides the necessary 

short term acclimation potential (plasticity) of an individual to the current biotic and 

abiotic conditions, while on the long term it enables changes in the genetic composition 

to react with changes in the environment (van Delden 1994). If the reproductive and/or 

genetic structure within a species or population is jeopardized due to population 

reduction and isolation, then the stability of the forest ecosystem in response to a 
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changing environment may also be compromised (DeHayes et al. 2000). The fossil 

record documents both successes and failures of species to persist, evolve, and spread 

in response to climatic change. Successes are the result of evolutionary adaptation of 

species and phenotypic acclimation of individuals to enable them to survive the changes 

in climate and temperature extremes that occur over their lifetime. 

As most extant slow-migrating tree species have survived past climatic changes 

of moderate intensity, there must be sufficient plasticity in individuals (or genetic 

variability of species) to tolerate such changes. But because there have been substantial 

changes in landscapes (management leading to fragmentation for example), ecological 

and economic systems may not be able to adapt to robust changes of spatial or 

temporal magnitude. Genetic constraints due to reduced gene flow are likely to reduce 

the level of heterozygosity (which may be used as a measure of evolutionary 

adaptability) to levels below what is needed to match environmental changes. Long-lived 

and relatively immobile ecosystems, such as mature forests are likely to be especially 

sensitive to climate change, and vulnerable to abrupt change (Alley et al. 2003).  

The coniferous forests of mid- and high-latitudes may be particularly affected by 

global environmental change (Smith and Hinckley 1995, Körner 2003). These cool-

adapted forest types are often considered ecological specialists and as such, the 

probability for adaptive improvement declines with an increase in severity of climate 

change. The deciduous-boreal ecotone is the transition zone between lower elevation 

(or latitude) northern hardwood forests and upper elevation (or latitude) boreal-type 

communities. The deciduous-boreal ecotone has been suggested as a possible 

monitoring location for the effects of global environmental change (Noble 1993, Kupfer 

and Cairns 1996) because plant communities are often at a dynamic equilibrium with 

climate at these transitory sites. As such, changes in major community types with 

changing climate are predicted to occur earliest at their margins, or at least be the most 

visible. Because ecotones are the boundaries between such community types, they are 

a logical place to begin looking for the effects of climate change. 

Within the scientific and popular press, there is a growing interest in the declining 

growth rate and increased mortality of red spruce (Picea rubens Sarg.) in the eastern 

United States. In the Great Smoky Mountains National Park of the southern 

Appalachians, 80% of high elevation red spruce exhibit slow growth, canopy dieback 

and needle thinning (Peine 1986). Red spruce live basal area has steadily dropped from 
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26.0 m2/ha in 1951 to 18.7 m2/ha in 1990, and to15.4 m2/ha in 2000; -41% over 50 years 

(Oostings and Billings 1951, Mancusi 2004). Beyond natural montane forest dynamics, 

suspected causes of this decline have been air pollution (Eager and Adams 1992, 

DeHayes et al. 1989), high soil aluminum concentrations (McLaughlin et al. 1990, Borer 

et al. 2004) and direct and indirect effects of the balsam woolly adelgid (Adelges piceae 

Ratz.) (Eager 1983) on the associated Fraser fir (Abies fraseri Pursh). The recently 

available evidence of global climate change presents an additional, but not yet 

quantified, potential factor in forest decline.  

A climate change may manifest itself by a shift in the altitudinal range of alpine 

ecotonal species. The combination of changing climate (warming) and disturbance 

regimes potentially could result in the replacement of many native tree species by more 

competitively superior tree species. As such, the deciduous-boreal ecotone of the 

southern Appalachians (red spruce / Fraser fir forests abutted with hardwood species 

such as yellow birch) may be displaced upwards in elevation by 10s to 100s of meters 

(Delcourt and Delcourt 1998). The present thesis is designed to assess the sensitivity, 

response and acclimation potential of select natural populations of southern Appalachian 

red spruce to the impact of warming. Through examinations of synthesis (instantaneous 

and short-term acclimation rates of photosynthesis and respiration) as well as 

investment (biomass accumulation and partitioning, growth rates, and carbon allocation) 

of carbon assimilates, this thesis will identify the effects of increased temperature on 

upland southern Appalachian red spruce. 

 

Spruce-Fir Forests 

 

All natural systems exist in time and space; there can be no atemporal systems 

any more than there can be a non-spatial process. As climate change is continuous, and 

not finite, vegetation may be considered in disequilibrium with its climate on scales of 

time and space (Davis 1986, Webb et al. 1993) and rapid changes in climate create 

disturbances with which vegetation may not be able to successfully respond. Present 

day communities are often regarded as “transitory combinations of taxa that respond (or 

have been responding) individualistically to continual (or abrupt) climate change” (Ritchie 

1987), and as individual taxa respond to change so does the community. Since 

ecosystems are not homogenous and pass through a continuous development cycle, 
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their state variables vary in time and space. Ecosystems can however be characterized 

by mean values of state variables (e.g. species composition) and their variances in 

space and time.  

 

Pre-historical development and distribution 

  

Historic temporal patterns of distribution lend themselves readily to the 

interpretation that glacial ice separated many species of the same genus into north-

south or east-west populations during the long glaciations, probably via refugia. These 

populations developed distinct morphologic, physiologic and genetic characteristics by 

which they can be differentiated. Such adaptations to site specific microclimates have 

arisen to support the argument that genus speciation is largely a function of evolutionary 

adaptations to their environment, and genetic divergences among populations are the 

response by many species in accommodating or adapting to spatial variation. For 

example, Auckland and colleagues (2001) reviewed monoterpene and nuclear DNA 

content of balsam fir (Abies balsamea L. Mill.), Canaan fir (A. balsamea var 

phanerlepsos Fern.) and Fraser fir (A. fraseri) and concluded that these three species 

probably arose from a single species and individualized less than 7000 years from 

present. This conclusion is in agreement with results stemming from monoterpene 

relationships (Zavarin and Snajberk 1971) and cone scale / bract ratio data (Myers and 

Bormann 1963). 

The distribution and composition of eastern North American spruce forests have 

continuously changed in response to the past 20,000 years of changing climates, and 

more recently in response to direct and indirect human impact (Delcourt and Delcourt 

1991). Historically, the major climate controls have included change in insolation, 

glaciations, atmospheric concentrations and oceanic circulation and temperature. The 

expanding and contracting ice sheets, not always in synchrony with changing climate, 

contribute to the difficulty in determining generalizations about the full-glacial vegetation 

south of the ice front (Ritchie 1987). Climatic alteration in concert with a receding or 

advancing glacial ice sheet has produced a relatively uninterrupted geographic shift of 

suitable habitats for a species’ distribution. Instead of physiological adaptation to new 

conditions, local populations may die away and new populations establish in distant 

locations where conditions are closer to the species optimum (Davis 1986).  
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The conclusion to be drawn as to the response of vegetation to these events is 

that genera, and sometimes species, demonstrate a sensitivity to temperature range, 

and perhaps other physical aspects of the physical environment. During the Eocene and 

Miocene, some species were able to survive in northern ice-free areas, whereas others 

migrated south before the edge of the advancing ice along the north - south Appalachian 

mountain chain (Larson 1989). For example, the boundary of spruce trees in 

northeastern North America spread north around 8 thousand years before present 

(kybp) into the area formerly occupied by ice sheets, and has since shifted south in 

recent millennia coinciding with the Little Ice Age (1550 – 1850 AD; Huntley 1997). 

Although competition and disturbance (mainly wind) affect the abundance and 

distribution of this species, it is primarily influenced by the changing climate occurring at 

the decade-, century- and millennia-level. As the distribution of spruce is closely linked to 

climate, the warming beginning ca. 14-12 kybp allowed Picea to follow the retreating 

Laurentide ice sheet northward (Ritchie 1988). Spruce was the first to migrate on the 

newly exposed land surfaces and thereby assumed dominance due to the lack of 

competitors. Progressive climate change towards longer, warmer growing seasons and 

milder winters subsequently enabled temperate taxa to move north. By 10-9 kybp, the 

spruce woodlands in the northern sites were being replaced by various mixtures of pine 

and deciduous tree species. The southern Appalachian extension of spruce became 

established by 6 kybp, and became completely disjunct from the full expanse by 2 kybp. 

A more thorough investigation of the changing distribution of Picea is presented 

elsewhere (Delcourt and Delcourt 1987, Delcourt and Delcourt 1991). 

Red spruce remains boreal in distribution, with the center of the continuous range 

limited to northern New England and the Atlantic provinces of Canada. The western and 

southernmost extensions occur as disjunct and highly fragmented metapopulations in 

Ontario and the southern Appalachians respectively. Water relations are a strong 

determinate of local tree distribution in these forests, with red spruce occupying more 

mesic, closed canopy locations. Because of geomorphic instability imparted both by 

present-day slope processes and past periglacial activity, soils in the high-elevation 

spruce-fir forest zone of the southern Appalachians are often shallow (as little as 50 cm 

deep) Haplumbrepts and lack significant accumulation of clay minerals (Feldman and 

Zelazny 1987). These soils are undergoing early stages of podzolization and are more 

similar to northern Appalachian Spodosols than they are to adjacent low-elevation soils 
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of the southern mountains (Feldman et al 1991). Natural plant uptake and acidic 

deposition are both imposing negative effects on these soils, leading to nutrient 

depletion and leaching. Spruce-fir nutrient budgets indicate that current Ca and Mg 

leaching loss rates are of the same magnitude as losses to whole tree harvest removals 

spread out over a 50-yr rotation (Joslin et al. 1992). This Ca leaching is associated with 

a variety of physiological impairments in red spruce, including reductions in membrane 

stability, stomatal responsiveness and cold hardiness, among others (Schaberg et al. 

2000, Borer et al. 2005) 

 Red spruce currently extend along the Appalachian Mountains of eastern North 

America from 35º to 49ºN (figure 1.1). Southern Appalachian populations (below 38ºN) 

are limited to high elevation sites, as a result of a retreat during the last post-glacial era 

to the coolest and most moist sites available (Cogbill and White 1991). Within the 

Holocene, red spruce and balsam fir of the central and northern Appalachians (> 38ºN) 

migrated to higher latitudes, while red spruce and Fraser fir of the southern 

Appalachians (38 – 35ºN) migrated to higher altitudes, generally above 1370m. This 

elevation limitation declines inversely with latitude with suitable sites at 1650m at 35ºN to 

150m at 49ºN (Oostings and Billings 1951, Whittaker 1956, Cogbill and White 1991). 

The altitudinal transition of the deciduous-boreal ecotone is very gradual, and with the 

exception of stream margins, red spruce is rarely found below 1190m (Whittaker 1956, 

Schofield 1960). This site-specific occurrence implies that climate is a driving force in the 

distribution of montane red spruce. 

 Inter-mountain differences in microclimate, however, contribute to the difficulty in 

generalizing climate-vegetation relationships, even within a region (Richardson et al. 

2004). Climatic controls that can be extrapolated however, include annual and seasonal 

temperatures ranging from -18ºC in January to 24ºC in July (average annual of 9ºC at 

1525m), growing season duration of 90 – 150 frost free days, seasonal distribution and 

annual amounts of precipitation totaling up to 250 cm, desiccating winds, high humidity, 

inconsistent snow cover (often greater than 100 days), cloud base elevation and rime ice 

associated, and all of the above as they relate to the frequency of natural disturbances 

(Siccama 1974, Larsen 1989, Burns and Honkala 1990, Cogbill and White 1991, 

Thompson et al. 2000, Richardson et al. 2003).   

The transition of such climatic factors is often abrupt at certain altitudes, thereby 

determining the position of ecotones (Noble 1993). Temperature-based parameters are 
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Figure 1.1. Natural distribution of Picea rubens of eastern North America. 
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perhaps the most consistent, thus often cited as the most important climatic parameter 

for vegetation ecotones. Throughout the natural range (35 – 47ºN), the ecotone between 

spruce-fir forests and adjacent deciduous forest vegetation has been found to coincide 

with a mean July temperature of 17°C (Cogbill and White 1991). The temperature limit of 

upper treeline was found to coincide with 13ºC, although no treeline is evident in the 

southern Appalachians, due to the paucity of high peaks available to accommodate such 

a bioclimatic threshold. 

 Below the lower edge of the montane spruce-fir zone (as defined by the climatic 

and topographic requirements above) lie deciduous northern hardwoods. Species of this 

forest type include yellow birch (Betula alleghaniensis Britton, B. lutea Michx.), red 

maple (Acer rubrum L.), mountain maple (A. spicatum Lam.), mountain ash (Sorbus 

Americana Marsh.), serviceberry (Amelanchier arborea Michx. f.), mountain laurel 

(Kalmia latifolia L.), black cherry (Prunus serotina Ehrh.) and to a lesser importance 

American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis L.) and 

other cove forest species (Whittaker 1956, Bailey and Ware 1990, Wiser 1998). 

 

Stand dynamics 

 

 “The meaning of any natural thing or event can not be fully grasped or explained until 

we discover its relations to the components of the orderly flow of process”.  

- C. Judson Herrick  

 

The product of space fixed and time changing, forest succession may be defined 

as a sequential change in relative structure, kind and relative abundance of the dominant 

species. Ecosystem change and forest succession never end, so as opposed to defining 

succession as the movement towards a chosen climax, a more suitable phrase may be 

change away from a stochastically determined beginning. Unlike Aristotle’s telos, which 

centers on a predestined final goal, the primary focus of succession is on intervals 

between disturbances. Ecosystem distribution and species composition vary across 

landscape scales and are strongly influenced by site and environmental variables, such 

as disturbance history, including time since last disturbance and stand age. 

Successional vegetation change over the last 1000 years has been for the most part a 
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result of natural forcing, however, judicious use of chronosequences can provide only 

approximations of succession at a particular site (Jackson et al. 1988). 

Unlike that of Europe or China, the vegetation of eastern North America has not 

been extensively disturbed or modified by human activities over a time scale of millennia 

(Jackson et al. 1988, Liu 1988). Changes in vegetation occurring within the last 150 

years undoubtedly have resulted from activities following European settlement of the 

region. Disturbances within the spruce-fir forests of the southern Appalachians strongly 

affect stand composition, structure and dynamics. While topographic and geologic 

factors of high-elevation spruce forests offered little to farmers and herders, the major 

disturbance in this forest type prior to the 1930’s was logging and subsequent slash fires 

(Pyle 1984).  

Logging began in the 1880’s and diminshed around 1930 (Shafer 1984) with the 

initial stages of regional National Park development. The Forney Creek watershed of the 

Great Smoky Mountains National Park (GSMNP) currently contains 809 ha of spruce-fir 

forest out of a total of 12,696 ha prior to logging activities (Pyle 1988). Of this logged 

area, 10% was considered to have been heavy cut, 10% was light cut, and 80% was cut 

and burned. Fire following logging was so common that, according to Korstian (1937), 

“practically all cut-over spruce lands have been burned one or more times”, leading to a 

loss of spruce due to destruction of soil organic matter and encroachment by 

hardwoods. As natural fires in the GSMNP are infrequent and small due to high humidity 

and fuel moisture, they create an unusually abrupt transition from spruce-fir to 

hardwoods, because spruce and fir do not regenerate well (if at all) in burned cut-over 

areas (Pyle 1988).  

The southern Appalachian upland spruce-fir forest is presently being directly and 

indirectly damaged by the Balsam wooly adelgid (BWA). The BWA has eliminated 95% 

of the mature Fraser fir from the forest and the residual fir individuals rarely reach 

greater than 40 years of age (Eager 1983). As the insect reduces canopy closure and 

leads to fir mortality, gaps are created in the forest canopy thereby increasing 

susceptibility of spruce to damage by other factors. Due to these gaps, spruce, which 

characteristically has a shallow root system, is affected by increased wind exposure. 

Busing and Pauley (1994) observed that 94% of red spruce mortality in BWA infested 

stands was caused by wind-induced snapping and/or uprooting. Additionally, Moore et 

al. (2005) found that between 1993 and 1998, overstory live biomass decreased at a 
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rate of 1028 kg/ha/yr, mostly due to windthrow of large stems. Conversely, some plant 

pests allow red spruce to thrive. For example, in the Blue Ridge Mountains of North 

Carolina, the percentage of spruce increased considerably in 1935 as the Chestnut 

Blight (Cryphonectria parasitica) lead to a decrease in the percent density of American 

chestnut (Castanea dentata)(Shafer 1984).  

The high degree of deterioration in the overstory caused by the BWA has also 

led to a positive response in understory growth (Busing 1985, Busing and Pauley 1994, 

Mancusi 2004) resulting in a structure resembling a two-aged forest. Under this 

disturbance regime, the old-growth and second-growth forests studied herein appear to 

be close to compositional equilibrium. However, synergistic disturbances are operating 

and canopy gaps are changing, more specifically, expanding. Environmental severity 

(e.g. low temperatures, high wind speeds, and frequent ice storms) and air pollutant 

disturbances found at high elevation sites are only recently being quantified. Sunlight 

exposure, which reflects overstory canopy structure, has been shown to be an important 

factor influencing the survival, establishment and distribution of newly emerged Fraser fir 

(Johnson and Smith 2005).  

Natural disturbance in the southern Appalachian spruce-fir forest is almost solely 

in the form of small (<0.02 ha) gaps that are often colonized by highly successful spruce 

and fir saplings. Larger, non-expanding gaps, involving a few canopy trees, allow the 

regeneration of mid-tolerant tree species, such as yellow birch, which can not continue 

under a continuous canopy (Worrall et al. 2005). Trees that have been exposed to gap 

initiation and expansion suffer crown damage due to wind and deterioration as decay 

fungi invade damaged branches. Eventually, a new conifer cohort, spruce and fir already 

present in the understory, will dominate, and as they increase in size and age, will be set 

up for another disturbance / gap. Auclair (2005) has recently identified coherent, cyclical 

patterns of disturbance in the mixed species forests of the northeastern United States, 

including red spruce, sugar maple (Acer saccharum Marsh.) and Betula spp. By 

addressing issues of spatial scale and long-term population dynamics, the author 

identified ‘predictable’ characteristics of forest dieback between 1950 and 1995, 

including: abrupt and cyclical episodic events enduring 13.6 years on average, with a 

frequency of 22.3 years between recurrences (Auclair 2005).  

Development has also compromised the health of the spruce-fir forests of 

eastern North America. The Blue Ridge Parkway as well as the road to Clingman’s 
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Dome (GSMNP) has been responsible for the presence of potential stress factors not to 

be expected with such frequency elsewhere in these high-elevation sites. Such stresses 

include erosion and soil modification, auto exhaust, increased windthrow and a 

distribution outlet for the BWA (Pyle and Schafale 1985). Development, along with 

erosion, fire, and logging, has created disturbances that may have major impacts on 

ecosystem resilience during stress.   

During the intervals without disturbances, competitive strategies among species 

result in the “partitioning of realized niches”, and as a consequence, biological 

interactions become a major factor in structuring plant communities (Delcourt and 

Delcourt 1991). Consequently, there are strong feedbacks between succession, species 

dominance, resource competition, disturbance regime and trophic structure. The species 

with the lowest density in the understory (birch) has the fastest growth rate in open gaps, 

the species with the highest density in the understory (fir) will not reach full maturity due 

to the BWA, and the species with intermediate density (spruce) lives the longest and has 

the best survivorship. Indeed, Mancusi (2004) observed an increase in understory 

spruce sapling (>1.37 m in ht) density since 1990 on high elevation sites in the GSMNP.  

Collectively from these data, one can postulate that the inherited competitive 

traits of these species are important at different successional stages. Huston and Smith 

(1987) state that “facilitation, tolerance, and inhibition describe processes and properties 

that are relative, not absolute” (p. 190), and these processes and properties can, and 

often do, occur simultaneously during every successional sequence. Hence, as a result 

of the severe limitations of fir due to the BWA, in concert with documentation that spruce 

can remain idle in the understory for many (50+) years (Landis and Peart 2005) 

suggests that local spruce-fir populations may never obtain the old-growth un-even-aged 

structure that existed prior to BWA infestation. 

The dictating factors of forests (or any ecosystem) are important at different 

space and time scales. The spatial and temporal distribution of disturbances result not 

only from stochastic events such as high winds, ice storms, and unusually cold winters 

(Peart et al. 1992 and sources within), but also from specific host agents of disturbance 

and their tendency to attack certain age classes of trees attacking at gap-phase cycles 

nested within long-term, landscape-level cycles (Worrall et al. 2005). Given the variety of 

processes that control a forests’ structure (e.g. climate cycles, soil modification, fuel 

loading), and the complex interaction of these processes, even similar sites will not 
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necessarily result in the development of similar forests. There can be no question that 

natural stand dynamics are influencing the spruce-fir forests and the deciduous-boreal 

ecotone; all natural ecosystems undergo temporal patterns of disturbance. However the 

processes that control patterns can change in importance, just as the scales of the 

pattern are changed. Ignoring the effects of stand dynamics is hazardous, while insisting 

that such processes explain all ecosystem patterns is dangerously simplistic. Within the 

southern Appalachian spruce-fir forests, one can assume that, despite the unsightly 

dead fir trees, nothing beyond the scope of natural disturbances are at play. However, 

these natural disturbances are making the ecotone between the spruce-fir and northern 

hardwoods vulnerable to serious successional or forced change. 

 

Temperature Effects on Whole-Plant Carbon Balance 

 

Photosynthesis is the basis of ecosystem processes, including those which 

human society depends on, therefore photosynthetic adaptation to microclimate is more 

than an academic interest. Different genera, and more often different species within 

each genus, have different combinations of adaptation as expressed via shade 

tolerance, water requirements, and temperature optimum for photosynthesis. For tree 

species, a physiological range of existence, a physiological optimum of best growth and 

an existence optimum (range in which they can compete) can be distinguished (Puhe 

and Ulrich 2001). Those individuals with the greatest net carbon gain (amount of carbon 

fixed through P exceeds the amount of carbon lost to respiration) under a specific set of 

environmental conditions are often the best competitors at that site. Additional internal 

ecosystem developments, environmental influences and management practices can all 

act as destabilizing or stabilizing effects on carbon gain. It is through this diversity of 

functional characteristics that ecosystem properties are intimately linked to population 

and community dynamics.  

As mentioned earlier in the text, climate is not static and due to the immobile 

status of plant individuals, they are generally the last to migrate in response to 

environmental change. Ecotone adjustments may occur rapidly or they may lag 

significantly behind biological or environmental change. Ecotones can change in both 

their position and strength along environmental gradients, depending upon changes in 

both magnitude and rapidity of changing climate. Understanding the nature of 
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temperature adjustments in forest trees (both short-term physiological acclimation 

potential of individuals and population-level adaptations to climatic regimes) is important 

for predicting whole-forest responses.  

As temperature not only affects the distribution of plant species, it is also an 

important determinant of how a plant performs within its natural range. In order to 

understand the processes that may alter plant distribution, an insight into how plant 

performance is affected by temperature is required. For example, some conifers are able 

to adapt to sub-optimal environmental conditions such as sufficient P and tissue 

production on sites that have otherwise suppressive microclimates. In general, however, 

evergreen trees generally have ½ to < ¼ the photosynthetic capacities of co-occurring 

deciduous species (Waring 1991), due in part to high weight per unit surface area and 

low foliar nutrient levels. Thus, specific analyses on the adaptability and efficiency of 

conifer carbon balance are valid in any context, and must include the processes involved 

in carbon synthesis: photosynthesis and respiration. 

 

Temperature effects on photosynthesis 

 

The temperature response of photosynthesis (P) is complex, reflecting the 

temperature dependencies of several interacting physical and biochemical processes. 

Temperature can influence carbon gain and utilization through several physiologic 

pathways. High temperatures can result in denaturation of enzymes critical to 

photosynthetic light harvesting and carboxylation pathways, and further result in carbon 

losses to maintenance respiration. Temperature is a critical variable in determining 

relative activity of Rubisco in carbon fixation (photosynthetic pathway) as opposed to 

oxygen fixation (photorespiratory pathway). In addition, temperature determines the 

saturation vapor pressure in the boundary layers of air at foliar surfaces, and thus leaf to 

air vapor pressure deficit (VPD, defined as the water vapor pressure of air at saturation 

minus actual vapor pressure). 

Several factors suggest that red spruce is sensitive to high air temperatures and 

low humidity. Optimum conditions for regeneration of red spruce have been associated 

with partially closed, or fully closed, canopies (Seymour 1992), indicating that 

environmental conditions associated with open, or absent, canopy covers may inhibit 

early growth. The diurnal temperature regime experienced by a plant is closely 
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associated with sunlight and sky exposure. Germino et al. (2002) found that microsite 

facilitation by surrounding vegetation (reduced sky exposure) was critical for survival of 

alpine silver fir (Abies lasiocarpa Hook. (Nutt)) and Englemann spruce (Picea 

englemanni Parry ex Engelm.) seedlings in the Rocky Mountains of western North 

America. Similarly, Johnson and Smith (2005) have found that Fraser fir seedlings in 

open canopy sites of the southern Appalachians were estimated to assimilate 3.3 – 4.5 

times more carbon than seedlings at closed sites. However, excessive gap sizes, or 

open sites, were found to limit seedling establishment due to excessive sky exposure.  

Although recent observations of gas exchange in red spruce at low temperatures 

have been conducted (DeHayes et al. 1989, Schaberg et al. 1995, Schaberg et al. 

1998), few have explored the relative importance of high temperatures in influencing P. 

Those studies concentrating on high temperature effects have been conducted solely in 

the northern portions of red spruce range (Vann et al. 1994, Schwarz et al. 1997, Day 

2000), and have included only instantaneous response, rather than acclimation potential. 

No systematic examination of southern red spruce physiological response to elevated 

growth temperatures has been reported.  

A study conducted in the northern Appalachians (Vermont), indicated that net P 

of understory red spruce generally remains near a maximum between 15°C and 20°C, 

which is at or below average growing season temperatures of this region. This peak in P 

was followed by a decline to 47% at 30°C (Alexander et al. 1995). This optimum 

temperature (Topt) for P coincides with the differential selectivity of Rubisco for current 

ambient CO2 (300 -350 µmol CO2 mol-1 air) and O2 (21%) and the effects of temperature 

on water solubility of the two gases (Ku and Edwards 1977). However, as temperature 

increases, the affinity of Rubisco for CO2 falls, as does the solubility of CO2, the affinity 

of Rubisco for O2 also falls, but not as fast, so the proportion of oxygenation reaction 

increases. As carboxylation and oxygenation are in competition with one another, an 

increase in oxygenation may make Rubisco activity for carbamylation or carboxylation 

less efficient, thereby decreasing P. 

Red spruce needles of Whiteface Mountain, NY displayed visible chlorosis and 

thermal inhibition occurring between 32 and 40°C (Vann et al. 1994), which is lower than 

the range reported for heat shock in temperate plants (Salisbury and Ross 1978). This 

suggests the needle tissue of trees sampled may have been sensitized to additional 

stress, possibly resulting in a deterioration of phospholipid membranes or accumulating 
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active oxygen species within photosystem I or II. This elevated temperature did not 

surpass the temperature threshold (generally > 40ºC) that would lead to the disruption of 

one or more components of the photosynthetic carboxylation pathway, as this 

temperature is lower than the temperature generally associated with disruption of 

enzymatic and membrane systems (Ku and Edwards 1977, Salisbury and Ross 1978).  

The role of temperature in concert with leaf-to-air vapor pressure deficit (VPD) in 

regulating P of red spruce was recently investigated in a field and greenhouse study in 

central Maine (Day 2000). VPD calculation is an improvement over relative humidity 

measurement alone, because VPD considers the effect of temperature on water holding 

capacity of the air, which roughly doubles with every 11ºC increase in temperature 

(Prenger and Ling 2001). The author noted strong influences of increasing temperatures 

and VPD on P and stomatal conductance, and stomatal response (resistance) provided 

significant control over gas exchange. Four-yr-old trees grown in highly variable 

environments with daytime temperatures of 15 to 38ºC displayed a relatively flat 

response to temperatures between 16 and 32ºC, followed by a drop at 36ºC (Day 2000). 

 

Temperature effects on respiration 

 

While the effects of elevated temperature on P have received considerable 

attention, much less is known about the response of respiration. Respiration (R) in plants 

may consume 30-80% of the CO2 fixed by P (Farrar 1985, DeLucia et al. 2005), and 

subsequently contributes up to 65% of the total CO2 released into the atmosphere at the 

ecosystem level; with the remaining CO2 being derived from heterotrophic soil activity 

(Xu et al. 2001, Atkin et al. 2005). This efflux is thus important for the whole-plant, 

ecosystem and global carbon balance. Most studies that have investigated acclimation 

of R to temperature have shown some degree of population-level adaptation, and even 

less acclimation of individuals, to temperature. Such studies have reported that when 

measured at a standard temperature, plants acclimated to low temperatures have 

greater rates of R than plants acclimated to higher temperatures (Tjoelker et al. 1999, 

Gunderson et al. 2000, Bolstad et al. 2003), but the results are not universal.  

Increasing foliar temperature can have substantial influence on carbon gain by 

increasing losses to maintenance respiration. Maintenance R is in essence carbon loss 

due to routine metabolic activity, and is a relatively complex function of temperature, 
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substrate availability and other allogenic influences (Tjoelker et al. 1999, Bolstad et al. 

2003). A major sink of maintenance R is related to the changes in morphology and 

physiology of trees as they age. Older trees generally have an inherently reduced 

carboxylation activity (reduced P rate), possibly resulting from greater R, lower 

investments in photosynthetic systems, or reduced chlorophyll concentrations (Adams et 

al. 2005). In addition to its role as a catalyst in the carboxylation of ribulose-1,5-

bisphosphate in the C3 cycle, the enzyme Rubisco also acts as a catalyst for 

oxygenation in the C2, or photorespiratory, cycle. 

Mass- and area- specific R rates typically increase exponentially with 

temperature, at least when this change in temperature occurs over a period of 1 hour or 

less (Bolstad et al. 2003). This exponential increase in physiologic (enzymatic) reactions 

with an increase in temperature is defined as the Q10 function. Q10 is often assumed to 

be 2.0 (doubling with a 10ºC increase); however the Q10 value is not static, it declines 

near linearly with a rise in temperature (Atkin and Tjoelker 2003). Being that Q10 is an 

increase in R of near 100% for 10ºC, then even a 1ºC increase in growing temperature 

may elevate R loss by 10%.  

Temperate conifers generally have Q10 values between 1.8 and 2.4, while no Q10 

values specific to red spruce have been published. The shade-adapted red spruce may 

allocate a greater proportion of photosynthetically fixed carbon to maintenance R due to 

lower photosynthetic rates (Alexander et al. 1995). Further, acclimation might involve 

changes in Q10 of R with cold-grown plants being more temperature sensitive than their 

warm counterparts (Atkin et al. 2000). However, an earlier study on sugar maple (Acer 

saccharum Marsh.) reported no effect of growth temperature on Q10 values, but the 

authors did find a seed source effect with cold-adapted trees from Michigan having 

higher Q10 values than warm-adapted trees from Tennessee (Gunderson et al. 2000). 

 

Intraspecific Variation Along Altitudinal Gradients 

 

 As one may intuitively expect, phytomass increases as one goes south along the 

global ecotypes of the northern hemisphere (Schultz 1995). This north-south gradient 

reflects the improvement in climatic growing conditions with an increased distance from 

the pole, more specifically an elevated temperature and a longer growing season. Plant 

responses to altitude follow many of the assumptions of plant-latitude relationships. For 
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example the climatic tolerance of extremes increases with latitude as with altitude, thus 

so does the range of the species (Stevens 1992). Thus, plant production increases with 

a decrease in altitude along with latitude as a response to environmental gradients.  

Plant dry matter production is the net result of uptake and loss of carbon, and 

photosynthetic capacity does not tend to differ with elevation. Photosynthetic capacity is 

defined here, after Körner 2003a, as the highest rate of P that can be measured under 

optimum temperature, light and moisture condition. Based on analyses of the ecological 

and climatic factors associated with alpine forests, it has been suggested that 

photosynthetic carbon gain may not be limiting at high-elevation sites or tree line, but 

rather trees are restricted in their ability to process acquired carbon (i.e. growth limitation 

hypothesis; Hoch and Körner 2003, Smith et al. 2003, Körner 2003a, 2003b). As trees 

become carbon saturated, they may not always respond to increased CO2, unless the 

increase is paralleled with increased nutrient availability or more favorable temperatures 

for growth during the growing season (Kirschbaum 2000, Sigurdsson et al. 2001). At 

cooler temperatures photosynthate remains in the form of sugar and starch rather than 

transforming to constructive cellulose. Such increases in carbon storage have been 

found with increasing altitude, thereby further supporting a ‘growth limitation’ hypothesis 

(Johnson et al. 2004). This type of carbon storage may in fact be a display of adaptation 

for survival in a harsh, high-stress environment by serving as a reserve for future 

biosynthesis during particularly stressful and/or low resource seasons.  

Although the photosynthetic capacity of a plant is relatively static with elevation R 

is not, and rates at high altitudes will almost always be greater than rates at lower 

altitudes, regardless of time or temperature (Tranquillini 1979). If P remains stable while 

R increases, net carbon accumulation decreases and the potential growth rate is limited 

(Berninger et al. 2004). Therefore, trees growing in a valley can fix more carbon than 

those growing at treeline, and in this sense be more productive. McLaughlin et al. (1990) 

found a 30% increase in R at high elevation sites in the GSMNP thereby not allowing 

high altitude growth rates to match rates achieved at low altitudes. An explanation for 

this seems to be a combination of a greater number of mitochondria per cell at high 

elevations, as suggested by Miroslavov et al. (1991) and a higher oxidative activity per 

mitochondria (Klikoff 1968).  

At alpine sites, light conditions for P are less favorable than might be expected 

due to timberlines generally following contours on steep slopes where elevated horizons 
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screen the site from possible insolation (Tranquillini 1979). As adequate light 

wavelengths and amounts are required, yet variable, for P, so is atmospheric [CO2].  

Ambient CO2 is 380 ppm at sea level, which corresponds to a partial pressure of 380 

�bar (36 Pa), and declines to 360 �bar at 600m and 290 �bar at 2600m. Reduced partial 

pressure of CO2 on P at high altitudes and its direct influence on plants may be affected 

by 1) oxygen partial pressure declining, and hence R is reduced; 2) ‘thinner’ air allows 

CO2 to diffuse through stomata faster; and 3) air temperatures drop, as does leaf 

temperature, which may counteract 2 and enhance 1. The overall negative influence of 

harsh montane conditions such as low temperatures, strong wind and low CO2 

concentrations on productivity of trees at or near treeline is however slightly ameliorated 

by higher humidity. 

Phenotypic adaptations do exist to these harsh sites as a higher altitude seed 

source often equates to a lower temperature optimum (Topt) for P. Fryer and Ledig 

(1972) monitored photosynthetic rates of balsam fir from an elevational gradient in the 

White Mountains of New Hampshire and found that individuals from higher altitudes 

required a lower Topt for a common P. They found a Topt lapse rate of 2.7ºC for 300m in 

altitude, which corresponds to the lapse rate of mean temperature for summer months 

for their site. McLaughlin and colleagues (1990) found that red spruce saplings at high 

elevation sites in the GSMNP had a lower P rate than saplings at low elevations when 

measured in situ and expressed as mass-based rates. The authors suggest that this 

finding was related with greater heavy metal concentrations in the upper elevation soils. 

As with photosynthetic Topt, intraspecific growth and partitioning parameters are 

likely not a genotypic adaptation of local populations, but rather a phenotypic acclimation 

driven by environmental conditions, or a balance of both. However, analyses among 

genera and species suggest that both phenotypic plasticity and genotypic variation 

contribute to the effects of elevation and latitude on anatomy and physiology. Previous 

research using the common garden approach indicates that Norway spruce (Picea abies 

L. Karst) populations originating from higher altitudes display higher nitrogen 

concentrations in needles and overall higher needle retention than those in low altitudes. 

Subsequently, chlorophyll and carotene concentrations increased with seed source 

elevation, as did P and R (Reich et al.1996, Olesksyn et al. 1998). Along with higher 

rates of P, high-altitude populations displayed lower above-ground growth rates, higher 
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proportional biomass partitioning in roots, and overall higher mortality than populations 

originating from low altitudes (Modrzy�ski 1995, Oleksyn et al. 1998). 

The short-term response to in situ environmental conditions is considered the 

classic example of phenotypic plasticity in plants. From gap to understory, or upper 

canopy to lower canopy, plants experience an environment that varies in intensity over 

several orders of magnitude. As a response to such gradients, variation in leaf structure 

and function can occur not only among plants in different environments, but also within 

an individual. Richardson et al. (2001) and Richardson (2004) found reduced plasticity of 

red spruce and balsam fir along an elevation and canopy light gradient as a response to 

harsh environments. The authors indicate that while foliar nutrient investments (N, P, K, 

and Cu) were relatively constant along a 400m altitudinal transect (1070 – 1460m asl), 

fiber and cellulose content, spectral reflectance (chlorophyll content), and photochemical 

reflectance index (measure of photosynthetic radiation use efficiency) decreased sharply 

at higher elevations.  

Needle morphology also varies with elevation with a general decrease in length, 

width and projected area with an increase in elevation, though thickness may be 

constant or greater (Tranquillini 1979, Körner 2003a). Richardson et al. (2001) found 

such results on morphological characteristics with balsam fir and red spruce along 

elevational gradients within the Green and White Mountains of New England. Projected 

needle area was lower at high elevations than at low elevations for both species, and 

needle length and mass tended to be smaller at high elevations rather than low 

elevations. Results are similar in the GSMNP and Black Mountains of the southern 

Appalachians for Fraser fir and red spruce with needle length and leaf area index (LAI; 

m2/m2) decreasing with an increase in elevation. Red spruce needle length decreased 

from 12.02mm at 1525m to 11.02mm at 1980m (-8.4%) and LAI fell from 13.66 m2/m2 at 

1525m to 7.08 m2/m2 at 1980m (-48%)(Nicholas 1992). Incidently, LAI and stand live 

basal area for three spruce-fir study sites decreased for those sites with a history of 

logging (Nicholas 1992). 

The experimental field studies cited above generally present greater P and 

mobile carbon compounds at high-elevations, yet greater size at low-elevations. These 

findings support the ‘growth limitation hypothesis’, because a growth reduction due to 

insufficient photosynthetic carbon fixation (‘carbon limitation hypothesis’) should lead to 

diminished mobile carbon pools at higher sites, rather than carbon saturation (Körner 
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2003a, Hoch and Körner 2003). Low air and / or soil temperatures may limit growth 

processes more so than photosynthetic processes, irrespective of carbon supply. These 

findings further suggest that trees along high-elevation sites are limited more so by 

variations in mesotopography and microsite such as photosynthetically active radiation 

(PAR), minimum temperatures, sky exposure, drought stress and any combinations, 

rather than specific limitations due directly to altitude.  

Evidence is accumulating that meristematic activity in Pinaceae ceases at higher 

temperatures than P activity. The formation of new cells is, however, much more 

sensitive to low temperatures than P. Cell doubling time, for instance, approaches infinity 

at +1 to +2ºC, whereas the rate of P may still be at 30% of full capacity at such 

temperatures (Tranquillini 1979). Kontunen-Soppela et al. (2002) reported no shoot 

growth, but a significant increase in starch concentrations in needles of Scots pine 

(Pinus sylvestris L.) in a 14-day 4ºC treatment. Counter to expectation, tissue density, 

non-structural carbohydrate and lipid concentrations increase with elevation on both a 

dry mass and volume basis (Körner 2003b). Similar elevational trends are found in 

needles, branches and roots, regardless of latitude (Hoch and Körner 2003). A steady, 

high non-structural carbohydrate concentration (starch in chloroplasts) is likely to 

indicate excessive photosynthate supply over demand, arguing against a ‘carbon 

limitation’ hypothesis and for a ‘growth limitation’ hypothesis of depressed growth at high 

elevations. 

Individual traits exhibit both genotypic and phenotypic variation in response to 

micrometeorological factors and environmental gradients. What is interesting though, is 

that some traits exhibit greater genotypic variation (among populations) than others. 

Likewise, other traits are comparatively plastic and as such are more strongly influenced 

by the environment. Genotype x environment interactions are also an outcome and both 

can be adaptive. In the Norway spruce study, shoot growth phenology and biomass 

partitioning in favor of roots seemed to be under strong genetic control, such that despite 

the higher P of the high-elevation seed sources (also genetically influenced), plant sizes 

of the high-elevation seed sources were reduced in the common garden compared to 

the lower elevation populations (M. Tjoelker pers. comm.). The challenge, of course, for 

physiological ecologists, is sorting this out in the context of integrated plant function.  
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Introduction 

 

There is now considerable evidence of ongoing climatic change (Luterbacher et 

al. 2004) and observed trends (e.g. an increase of 1ºC on average since the Industrial 

Revolution) are predicted to increase over the next century (IPCC 2001). Together with 

habitat destruction and biological invasions (due to global change), climate change now 

represents one of the major threats to species, ecosystems and biodiversity (Root et al. 

2003). The direct focus of immediate stability of small populations of rare and 

endangered species diverts attention from the probability that regional and global 

environmental changes in the near future may compound other, more local threats to 

continued existence of species that are narrowly adapted to specific environments. For 

many species with confining temperature niches, a temperature increase of 4ºC could 

change the environment from being optimal to unsuitable (Shugart et al. 2003, Day et al. 

2005). In response to forecasted accelerated summer warming, forest succession 

models predict that high-elevation red spruce (Picea rubens Sarg.) may be forced to 

migrate to a climate suitable for their survival (Davis and Botkin 1985, Solomon 1986). 

Even with less drastic changes in climate however, the rapidity of the change may cause 

restricted ranges of boreal conifers, or local extinctions, because the species may not be 

able to disperse northward at a sufficient rate to keep up with shifts in climate (Davis and 

Shaw 2001, Alley et al. 2003). 

Along the Appalachian Mountains (35 to 47ºN), the lower limit of red spruce 

occurrence has been found to correspond with a mean July temperature of 17ºC (Cogbill 

and White 1991). Due to biogeographical history (Delcourt and Delcourt 1987), red 

spruce provenances from the southern isolated region have been shown to be unique 

from each other and from all other red spruce provenances, possibly due to founder 

effects and inbreeding (Hawley and DeHayes 1994). It is unknown whether these 

genetic differences represent adaptations to higher temperatures, or any differences in 

plasticity. An earlier study conducted in northern Appalachian provenances have 

indicated that net photosynthesis (P) of understory red spruce generally remains near 

maximum between 15ºC and 20ºC. A peak in P near 20°C was followed by a decline to 

47% at 30°C, when grown at mean daytime temperatures of 22ºC (Alexander et al. 

1995). Temperature-related adaptations due to geography have been previously 
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demonstrated in this genus (Qamaruddin et al. 1993, Bigras 2000), however the 

photosynthetic optimum of southern provenances is unknown. 

The deciduous-boreal ecotone of the southern Appalachian Mountain region is 

currently showing signs of declining health of high-elevation red spruce and Fraser fir 

(Abies fraseri (Pursh) Poir.). Patterns of reduced vigor and mortality of red spruce have 

long been linked to acidic deposition (Eager and Adams 1992), high soil aluminum 

concentrations (McLaughlin et al. 1990, Borer et al. 2005) nitrogen deposition (Boggs et 

al. 2005), and direct and indirect effects of the exotic balsam wooly adelgid (Adelges 

piceae Ratz.) (Eager 1983, Smith and Nicholas 2000). This decline, in concert with a 

predicted (and highly documented) increase in productivity of deciduous hardwoods with 

elevated temperatures (Tjoelker et al. 1998, Gunderson et al 2000, Wan et al. 2004, C. 

Gunderson unpublished data) may stimulate any displacement of the deciduous / boreal 

ecotone of the southern Appalachian Mountains. However, no process studies have 

been conducted on the response of red spruce grown at elevated temperatures, and the 

significance of the response must be assessed in terms of whole-plant responses and 

overall carbon balance.  

The thermal stability of Rubisco activase represents a major biochemical factor 

limiting the ability of plants to photosynthesize at increasing temperatures. By limiting P 

activity, activase may ultimately affect plant growth in a particular thermal environment, 

the geographic distribution of higher plants, and their ability to respond to changing 

climates (Salisbury and Ross 1978, Salvucci and Crafts-Brander 2004). There is 

evidence, however, of short-term physiologic acclimation to changes in temperature over 

time, through the adjustment of temperature related responses of metabolism. For 

example, inductions of heat shock proteins are involved in acclimation to higher growth 

temperatures over periods of hours, affording protection to the various components of 

the photosynthetic apparatus (Bigras 2000). The accumulation of transient 

cryoprotective carbohydrates in response to cold temperatures is an example of 

acclimation over the period of days (Schaberg et al. 2000). Four-yr-old red spruce trees 

grown in greenhouse temperatures of 15 to 38ºC displayed a relatively flat response to 

temperatures up to 32ºC, followed by a significant drop at 36ºC (Day 2000), suggesting 

an acclimation over the period of weeks. The magnitude and variability of such 

responses are dependent upon species (Larigauderie and Körner 1995, Tjoelker et al. 

1998, 1999), provenance (Bigras 2000, Gunderson et al. 2000), elevation (Fryer and 
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Ledig 1971, Tranquillini 1979), metabolic status (Salvucci and Crafts-Brander 2004), and 

growth temperature (Atkin et al. 2000), among others.  

The objective of this research was to assess the sensitivity, response and 

acclimation potential of southern Appalachian provenances of red spruce to the impact 

of a warming climate. Focus was on the effects of temperature on whole-plant carbon 

balance and allocation strategies as they relate to storage and growth. As red spruce is 

a cool-adapted boreal species, the specific hypothesis to be addressed was that a 

higher growth temperature will negatively affect carbon assimilation and investment 

when measured at growth temperature. We predicted that seedlings exposed to 

elevated growth temperatures will exhibit a decline in net carbon assimilation and show 

a greater sensitivity to pulse measurement temperatures, when compared to ambient 

growth temperatures. Limitations on P will result in limitations on photosynthate supply 

for growth and / storage, therefore we predicted restricted growth for plants grown at 

elevated temperatures. We further hypothesized that effects of elevated growth 

temperature will be greater for seedlings from high elevation seed sources (cooler 

temperatures). To address the hypotheses above, as they relate to distributional limits, 

we used montane red spruce from the southern Appalachians. Seedlings were grown at 

an ambient mean temperature of 17ºC and an elevated (+4ºC) mean temperature of 

21ºC. Carbon synthesis and investment were evaluated over 3 dates to quantify any 

aberrations due to an elevated temperature.  

 

Materials and Methods 

 

Plant material 

 

Red spruce seeds were collected from 2 stands from within two provenances 

with microclimates that are moderately cool and moist (mean July temperature � 17ºC, 

mean annual ppt � 180 cm). Richland Balsam, within the Balsam Mountains of North 

Carolina (35° 22’ N, 82° 59’W; summit of 1954m) and Clingman’s Dome, within the 

Great Smoky Mountain National Park of NC / TN (35° 34’N, 83° 30’W; 2025m) provided 

our seed source of southern Appalachian red spruce (figure 2.1). At both provenances, 

two stands were selected for seed cone collection delineated by elevations of 1650 and 

1950m. From within these two collection stands, 2 randomly located 20m (diameter)  
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Figure 2.1. Natural range and collection sites of Picea rubens from within the southern 

Appalachians. Modified map from Kevin Potter, NC State University, used with 

permission. 
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circular plots were established during the summer of 2004, for a total of 8 plots (2 

provenances X 2 stand elevations X 2 plots). At elevations of cone collection, spruce-fir 

forests were the dominant forest type at 1950m; spruce forests with scattered yellow 

birch (Betula alleghaniensis Britton, B. lutea Michx.) were dominant at 1650m. 

General seed collections from previous studies (Agmata and Bonner 1988, 

Nicholas et al. 1992, and preliminary results) suggest that red spruce from high 

elevations produce very low viable seed yields (< 5%). For this reason, 90 fallen, mature 

spruce seed cones were collected from the forest floor from within the 8 plots during 

October 2004. Collections from the two plots per elevation were then pooled for a total of 

180 cones per elevation per provenance. Cones were placed in individually labeled 

paper bags for ease of transport, then placed in an incubator where dry, warm conditions 

prompted cone opening. Cones were then air-dried for approximately seventy-two hours, 

and bags shaken periodically to promote seed release, after which the bracts were 

removed and large, well-formed seeds were selected and de-winged. The seeds from 

each source remained separated, placed in labeled glass containers, and stored at 4ºC 

until further processing as red spruce require no pretreatment (Wilson-Griffin 1965). 

Seed from all sources were germinated under uniform conditions at 20/14°C for four 

weeks in a 1:1 commercial sand / vermiculite medium, as this temperature regime allows 

successful germination (CFRU 2002). 

 

Temperature treatments 

 

Four weeks after sowing (after cotyledon expansion), established seedlings were 

transplanted to a 2:1:1 (v/v/v) peat, vermiculite and sand mixture in 25cm deep by 6cm 

diameter black cylindrical root trainers. Seedlings (26 from each provenance x elevation 

combination) were assigned and divided into two groups, and moved to two matched 

0.5m3 reach-in environmentally controlled growth chambers (Precision 818, Winchester 

VA, US). Fifty-two seedlings were maintained at a day/night temperature of 19.9/12.9º C 

(mean of 17ºC), and 52 seedlings of corresponding seed source combination were 

maintained at 23.9/16.9º C (mean of 21ºC), with an abrupt change of less than 1 hour. 

These temperatures are based on the day/night equation of: 

T(a) + (T-7)(24-a)     = x 

24 
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assuming a 7ºC difference in day/night, a = daylength (hrs) and x = daily mean 

temperature (ºC). 

Both chambers provided a 14-h photoperiod, with supplemental light provided by 

6 DULUX® EL 27 watt twist compact fluorescent lamps (Osram Sylvania Inc.). Lamps 

have an average rated lamp life of 8000 hrs while collectively providing a maximum of 

about 300 µmol m-2 s-1 (photosynthetic photon flux density, PPFD) irradiance at canopy 

height. This light irradiance level is based on the literature and closed canopy 

measurements collected on site during plot establishment during July 2004 (180 – 200 

µmol m-2 s-1 at breast height; 24 at the forest floor; 600 – 800 at sunflecks). 

Photosynthetic rates for sympatric understory Fraser fir have been found to light-saturate 

at 400 µmol m-2 s-1 (Johnson and Smith 2005), while understory red spruce light 

saturation has been documented at 250 µmol m-2 s-1 (Alexander et al. 1995).  

Seedlings were watered to excess thrice weekly with de-ionized water. Root 

trainers were periodically repositioned within the chamber to prevent shading and 

randomize any effect of position. Temperature treatments were applied for a total of 16 

weeks, which is equivalent to the average length of the high-elevation southern 

Appalachian growing season. An independent sensor was periodically used to verify 

both temperature and light intensity.  

 

Gas exchange measurements 

 

Light saturated photosynthesis and dark mitochondrial respiration rates were 

determined with an infrared gas exchange system (LI-COR 6400, Lincoln, NE), with a 

7.5 cm conifer chamber (LI-COR 6400-05) throughout the study duration. This system 

permitted accurate control of cuvette temperature and humidity as the cuvette enclosed 

the entire aboveground stem. Sampling order was alternated between chambers to limit 

time of day effects. Calibrations for flow meter and IRGA zero points occurred at weeks 

8, 12 and 16 prior to process measurement. Needle temperatures in the cuvette were 

maintained at the applied growth temperature, and at a vapor pressure deficit (VPD) of < 

2.0 kPa (Day 2000). VPD, relative humidity (RH), transpiration and time of day were 

recorded at each measurement. The measurements occurred without removal from the 

controlled environment chamber at light irradiances at which the plants were grown.   
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Beginning at week 8 of temperature treatments, two sequential readings 5 

minutes apart were taken for the determination of P calculated on a leaf area basis 

(µmol m-2 s –1). These data were averaged to obtain an instantaneous photosynthetic 

rate for each seedling. Short (± 5°C) temperature response curves were then 

constructed on a random sample of individuals to examine whether rates of P differed 

between treatments. Five ± 2.5ºC intervals (-5, -2.5, 0, +2.5, +5°C) from low to high 

temperature were applied by adjusting the internal block conifer chamber temperature. 

Gas exchange measurements were observed until readings stabilized, typically 3 – 10 

minutes. 

As leaf respiration (R) can only be measured in the absence of carbon fixation 

(illuminated leaves), the growth chamber was then darkened to obtain R. McLaughlin et 

al. (1990) suggest that steady state R can be attained within 1 minute after light 

blockage so after a delay of one minute, two R readings were obtained, then averaged. 

Temperature coefficient (Q10) measurements were evaluated by monitoring R rates at 

week 8, 12 and 16 by exposing randomly selected seedlings from both treatments to 

controlled temperatures of ± 5°C from ambient. Upon completion of gas exchange 

measurements, leaf areas were determined by stripping all needles from the shoot and 

scanning at 0.1mm2 resolution with a LI-COR 3100 Leaf Area Meter (LI-COR, Lincoln, 

NE). These needle areas were then used to calculate area-based gas exchange 

readings (µmol m-2 s –1) with the standard algorithms of Li-Cor’s Open 5.1 operating 

system. 

Both P and R values were used to construct carbon use efficiency values (CUE, 

the ratio between the amount of carbon incorporated into dry matter and the amount of 

carbon fixed in gross photosynthesis or net P / gross P). The specific R of plants grown 

and measured at their respective growth temperature was also used to calculate a long-

term acclimation ratio. This is defined as the ratio of R from plants grown and measured 

at a given temperature to R from plants grown and measured at a lower temperature. 

The short-term Q10 values were then compared to the long-term acclimation values to 

assess the degree of acclimation of R to thermal environment, as defined by 

Larigauderie and Körner 1995. 
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Biomass and growth analysis 

 

To quantify growth and partitioning, leaf area (cm2), root length (cm), and dry 

biomass (g) were assessed every four weeks beginning at week 8 after germination. 

Plant dry mass was destructively determined at weeks 8, 12 and 16 by removing 

seedlings from the soil, rinsing the roots and oven drying at 60ºC for 72 hours. Needle, 

stem, root and whole-plant dry mass were then determined. Week 16 samples were 

freeze dried for later carbohydrate analysis. These data were used to determine growth 

parameters including: specific leaf area (SLA, m2 leaf / g leaf); specific root length (SRL, 

cm root / g root); leaf mass ratio (LMR, g leaf / g plant); and root mass ratio (RMR, g root 

/ g plant). These relative parameters were used to avoid solely comparing plants of 

different sizes. 

Changes in mean dry mass over time for each treatment were analyzed using a 

classical approach to plant growth analysis (Evans 1972) as follows: 

 

RGR = (ln w2 – ln w1) / (t2 – t1) 

 

where ln w is the natural log (loge) of dry biomass at time 1 (t1) and time 2 (t2). Each 

harvest constituted a small independent sample of the population and RGR could only 

be compared as mean values of treatment by week with no statistical test for difference 

(Poorter and Lewis 1986).  

 

Carbohydrate analysis 

 

At the conclusion of the 16 week temperature treatment and after dry-weight 

determination, seedlings were separated by tissue components: needles and roots. 

Tissues were washed with distilled water and then homogenized into < 1 g subsamples 

by grinding with liquid nitrogen in a mortar. Along with a glucose standard, tissues were 

extracted twice with 85% ethanol at 90º for 10 min. and centrifuged. This extract was 

dried, redissolved in water and sugars measured by the anthrone method (Ashwell 

1957). Following addition of anthrone reagent, soluble sugar extract were determined 

spectrophotometrically at 625 nm. The residual tissue was dried, and starch converted to 

sugars using the enzymatic digestion method described by Hendrix (1993), with soluble 
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starch (Fisher Scientific S-516) as a standard. Starch was gelled and converted to 

glucose by �-amylase and amyloglucosidase from Aspergillus niger (Sigma, St. Louis, 

MO). Glucose concentrations were then quantified spectrophotometrically using 

anthrone reagent.  

 

Data analysis 

 

The design is set as a randomized complete block with four fixed independent 

variables of temperature treatment, provenance, elevation and week. A replication of the 

full study block was run consecutively following the first and was considered a random 

variable. Alternating chamber assignments of temperature treatments between block 1 

and block 2 minimized any chamber effects. Data were tested for statistical assumptions 

of normality and equality of variance. When necessary, individual variable data were log-

transformed to satisfy test assumptions and back-transformed for display.  

Instantaneous gas exchange, growth and carbohydrate data were analyzed by 

using analysis of variance (ANOVA) for the main effects of growth temperature, 

provenance, and elevation and interactions between these factors. These variables were 

analyzed at individual weeks. Differences between weeks were characterized by LSD 

post-hoc tests, as we have unequal samples sizes between weeks. Block was analyzed 

as a main effect only. Because the same trees were measured at different temperatures 

to obtain a pulse temperature response, curves were analyzed with a repeated 

measures ANOVA. The ANOVA tested between-subject factors consisting of growth 

temperature, provenance, elevation, and interactions between such factors. As ANOVAs 

are 2-tailed tests, p-values were considered significant at 0.10, to obtain 1-tailed � of 

0.05. 

 

Results 

 

Instantaneous gas exchange 

 

 When measured at respective growth temperatures, mean rates of net 

photosynthesis (P) on a leaf area basis were higher in seedlings grown at 17ºC than 

seedlings grown at 21ºC at measurement weeks 8 and 12 (figure 2.2, table 2.1). P for  
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Figure 2.2. Net photosynthesis (A), respiration and transpiration (µmol m-2 s-1) values 

over time for red spruce seedlings grown for 16 weeks in ambient (17ºC) and elevated 

(21ºC) temperature treatments. Values represent means ± SE of n = 11-19 for all weeks. 

Asterisks represent a significant difference between temperatures (p < 0.10); ns = not 

significant. 
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Table 2.1. Sources of variation p-values from ANOVA for gas exchange parameters of 

red spruce seedlings grown at 17ºC and 21ºC at weeks 8, 12 and 16. 

 

week 8     
  Photosynthesis Respiration Transpiration Q10 
Temperature 0.019 0.498 0.735 0.013 
Provenance 0.397 0.372 0.001 0.786 
Elevation 0.673 0.372 0.821 0.675 
T x P 0.900 0.335 0.644 0.319 
T x E 0.267 0.972 0.401 0.398 
P x E 0.862 0.923 0.250 0.557 
T x P x E 0.924 0.262 0.241 0.601 
Block 0.207 0.002 0.139 0.035 
     
week 12     
  Photosynthesis Respiration Transpiration Q10 
Temperature 0.063 0.229 0.225 0.053 
Provenance 0.019 0.262 0.011 0.131 
Elevation 0.293 0.162 0.764 0.349 
T x P 0.077 0.413 0.194 0.620 
T x E 0.201 0.277 0.433 0.148 
P x E 0.135 0.721 0.734 0.267 
T x P x E 0.095 0.676 0.575 0.129 
     
     
week 16     
  Photosynthesis Respiration Transpiration Q10 
Temperature 0.236 0.425 0.245 0.362 
Provenance 0.106 0.958 0.214 0.746 
Elevation 0.153 0.693 0.708 0.611 
T x P 0.823 0.131 0.114 0.975 
T x E 0.744 0.663 0.589 0.576 
P x E 0.734 0.365 0.395 0.644 
T x P x E 0.503 0.610 0.171 0.394 
Block 0.000 0.001 0.001 0.001 
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seedlings from the 21ºC temperature treatment was less than half the rate of P of 

seedlings grown at 17ºC at week 8. These seedlings however, produced gas exchange 

rates at week 8 significantly different than weeks 12 and 16. Least square differences 

(LSD) post- hoc tests of plants grown at 21ºC resulted in a difference of P at p = 0.017. 

No change in P over time was exhibited for seedlings grown at 17ºC. Mean P of 

seedlings grown at 17ºC at week 12 are skewed by two high readings of 56.8 and 45.9 

µmol m-2 s-1, otherwise the slope for P over time would be relatively flat at around 11.5 

µmol m-2 s-1. By week 12, seedlings grown at 21ºC had an increase in P, followed by a 

plateau near 8.75 µmol m-2 s-1. At week 16, mean P for both sets of seedlings was not 

significantly different. 

Rates of dark respiration (R) did not exhibit changes associated with growth 

temperature. Over all weeks, plants grown at 17ºC displayed rates of R near equal to 

plants grown at 21ºC. As P is shown to adjust with time, so did CUE. At week 8, CUE for 

red spruce seedlings grown at 17ºC and 21ºC was 59 and 35% respectively. However, 

these values increased and matched over time to 73% at week 12 and 68% at week 16.  

There was no consistent difference in the way seedlings from the two geographic 

sources or elevations responded to growth temperature (table 2.1). Thus, for both 

Richland Balsam (RB) and Clingman’s Dome (CD) seedlings from both 1650 and 

1950m, rates of P and R were equal for temperature conditions native to the parent tree, 

and at a +4ºC temperature. No relationship was found between growth chamber time of 

day and P (r2 = 0.102 for both treatment temperatures), or growth chamber time of day 

and R (r2 = 0.028 for both treatment temperatures). A significant block effect was 

observed with block 1 displaying greater rates of both P and R than block 2. 

Despite higher VPD and lower RH at the higher growth temperature, due to the 

natural water holding differences in air at higher temperatures, there were similar trends 

in photosynthetic response to VPD and RH between seedlings from the different growth 

temperatures. Seedlings from both temperature treatments responded negatively to an 

increase in VPD by substantially lowering rates of P (figure 2.3). This is what we would 

expect as a previous study identified a significant deficit of P at VPD above 2 kPa (Day 

2000). Across all measurement dates, transpiration rates did not vary with growth 

temperature (figure 2.2). A provenance effect on transpiration however, was evident at 

weeks 8 and 12 but was lost at week 16. Seedlings from the RB provenance exhibited 

higher rates of transpiration, irrespective of growth temperature, than seedlings  
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Figure 2.3. Scatterplots of red spruce photosynthesis and respiration (umol/m2/s) with a) 

vapor pressure deficit (VPD in kPa) and b) relative humidity (RH in %). Gray circles 

represent seedlings grown at 21ºC and black x’s represent seedlings grown at 17ºC for 

16 weeks. 
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from CD (table 2.1). 

 

Temperature response values 

 

 For seedlings grown at both 17 and 21ºC, the highest P was recorded at the 

lowest measurement temperature of -5ºC from growth temperature, and then decreased 

with increasing measurement temperature (figures 2.4, 2.5 and 2.6). Both sets of 

seedlings responded to the +5ºC measurement temperature with a significant decline in 

observed P. The pattern of response of P to measurement temperature depended on 

growth temperature, i.e. at week 16 the slope of the response curve was greater for 

trees grown at 17ºC over those grown at 21ºC. Output from the repeated measures 

ANOVA for growth temperature between-subject effects at week 16 was significant both 

for P at p = 0.005, and for R at p = 0.001. The degree of respiratory response calculated 

from ± 5ºC from growth temperatures varied with treatment temperature, although, 

regardless of growth temperature, foliar R increased with measurement temperature 

(figures 2.4, 2.5 and 2.6). The intercept of the relationships did not vary among growth 

temperature, but slopes did. 

At week 8, plants grown at 17ºC had a Q10 of 2.30, whereas the mean Q10 value 

of plants grown at 21ºC was 1.69 (significantly different at p = 0.013). However, the 

degree of difference lessened over time, with Q10 values for plants grown at 17ºC and 

21ºC of 2.29 and 1.90 respectively at week 16 (not significantly different at p = 0.362, 

table 2.1). Shoot R exhibited lower proportional long-term respiration increases with 

increased growth temperatures in comparison to short-term temperature responses. The 

long-term respiration acclimation ratio of shoot respiration of plants grown and measured 

in dark periods of high (21ºC) and low (17ºC) at week 16 was 1.33, which was less than 

the mean Q10 value for both sets of seedlings. That the long-term acclimation ratio was 

less than the value of instantaneous Q10, but greater than 1.0, suggests a partial 

acclimation to thermal environment. Instantaneous Q10 values at week 16 and the long-

term were consistent among collection sites.  
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Figure 2.4. Week 8 temperature response curves of net photosynthesis (A) and 

respiration (µmol m-2 s-1) for red spruce seedlings grown at 17 and 21°C. Lines represent 

means ± 1 SE of 13 seedlings per treatment temperature; open ovals represent 

measurement temperature equals growth temperature. X-axis represents temperatures 

± 5ºC from daytime growth temperatures of 19.9 and 23.9ºC. 
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Figure 2.5. Week 12 temperature response curves of net photosynthesis (A) and 

respiration (µmol m-2 s-1) for red spruce seedlings grown at 17 and 21°C. Lines represent 

means ± 1 SE of 9 - 12 seedlings per treatment temperature; open ovals represent 

measurement temperature equals growth temperature. X-axis represents temperatures 

± 5ºC from daytime growth temperatures of 19.9 and 23.9ºC. 
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Figure 2.6. Week 16 temperature response curves of net photosynthesis (A) and 

respiration (µmol m-2 s-1) for red spruce seedlings grown at 17 and 21°C. Lines represent 

means ± 1 SE of 10 -14 seedlings per treatment temperature; open ovals represent 

measurement temperature equals growth temperature. X-axis represents temperatures 

± 5ºC from daytime growth temperatures of 19.9 and 23.9ºC. 
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Growth response to temperature 

 

 As observed via plant dry mass accumulation over time, RGR was higher for 

spruce seedlings grown at our elevated temperature. From week 8 to 12, seedlings 

grown at 21ºC had a RGR of 0.0415 mg/g dw/day, as compared to those grown at 17ºC 

with a rate of 0.0270 mg/g dw/d. While this trend was maintained over time, the RGR 

declined with increasing age, and/or increasing plant mass. From week 12 to 16, the 

RGR was 0.0320 mg/g/d for plants grown at 21ºC and 0.0225 mg/g/d for plants grown at 

17ºC. For the full study duration, week 8 to 16 RGR was 0.0368 mg/g dw/d (21ºC) 

versus 0.0247 mg/g dw/d (17ºC) which represented a 49% difference in RGR between 

temperature treatments. 

The constant temperature treatments had a consistent effect on red spruce 

seedling biomass. Across all weeks measured, total and aboveground biomass were 

significantly higher in the 21ºC treatment than in the 17ºC treatment (tables 2.2 and 2.3). 

Elevated temperatures increased total plant biomass by 214% at the end of the study 

duration, which was mainly comprised of aboveground tissue. At week 16, stem mass of 

seedlings grown at 21ºC was nearly triple (3x) and leaf mass was nearly six times (6x) 

the mass of these components of seedlings grown at 17ºC. SLA, a measure of leaf area 

relative to whole plant mass, was near equal at week 16 between temperature 

treatments, whereas the difference of absolute leaf area was the greatest at this 

measurement date. LMR, a comparison of mass proportions, was however highly 

dependent upon treatment temperature, with seedlings grown at 21ºC having 

consistently higher values of LMR over seedlings grown at 17ºC.  

Belowground biomass was equivalent for seedlings grown at 21ºC and at 17ºC, 

except at week 16 (tables 2.2 and 2.3). SRL showed no response to elevated 

temperatures at any week. RMR values were significantly greater for seedlings grown at 

17ºC across all weeks measured, representing more mass being deferred to root 

structure over shoot structure.  

There existed a very significant difference among blocks. Seedlings of trial 2 

were smaller and lighter for all growth values irrespective of temperature treatment. The 

trends across temperatures, however, remained constant between blocks. No consistent 

provenance or elevation main effect was observed throughout the three measurement 

dates for any growth parameter. At week 16, several temperature by provenance by 
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Table 2.2. Growth analysis of Picea rubens seedlings after 16 weeks of treatment in ambient (17ºC) and elevated (21ºC) 
temperatures. Values are means (± SE) of n = 31 at week 8; n = 23 at week 12; and n = 46 at week 16. 
 
    
           Week 8         Week 12        Week 16                                                                      
    17    21    17    21    17    21                 
Leaf Area (cm2) 0.39 (.08)  0.86 (.14)  1.05 (.18)  3.83 (.60)  0.45 (.06)  3.85 (.85) 
Leaf Mass (g) 0.0148 (.002)  0.0227 (.003)  0.0356 (.002)  0.082 (.013)  0.0295 (.005)  0.1263 (.025) 
Stem Mass (g) 0.0024 (.000)  0.0036 (.000)  0.0067 (.000)  0.0142 (.003)  0.0056 (.001)  0.0157 (.003) 
Root Length (cm) 10 (.69)  8.1 (.46)  13.1 (1.09)  15.1 (1.24)  22.4 (1.32)  27.5 (.87) 
Root Mass (g) 0.0067 (.001)   0.006 (.001)  0.0156 (.002)  0.0218 (.003)  0.0385 (.001)  0.0663 (.009) 
Plant Mass (g) 0.024 (.003)  0.0323 (.003)  0.0578 (.004)  0.1242 (.018)    0.0735 (.011)  0.2083 (.035) 
Specific Leaf Area (m2 / g) 31.94 (6.35)  43.01 (5.33)  28.02 (4.25)  42.73 (3.53)  35.35 (7.01)  35.94 (3.51) 
Specific Root Length (cm / g) 17.72 (1.99)  14.92 (1.18)  9.22 (.92)  8.01 (1.01)  9.82 (1.53)  6.77 (1.04) 
Leaf Mass Ratio (g / g) 59.4 (3.0)  66.9 (2.8)  61.9 (1.6)  71.2 (1.1)  35.5 (1.9)  49.7 (3.7) 
Root Mass Ratio (g / g) 28.9 (2.6)  20.4 (1.8)  26.3 (2.1)  17.7 (1.2)  53.2 (1.3)  41.7 (3.4) 
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Table 2.3. Sources of variation p-values from ANOVA for growth parameters of red spruce seedlings grown at 17ºC and 
21ºC at weeks 8, 12 and 16. As t-tests and ANOVAs are 2-tailed tests, p-values were considered significant at 0.10, to 
obtain 1-tailed � of 0.05. 

 
Week 8          Leaf Stem           Root   Plant       
  Area Mass Mass Length Mass Mass SLA SRL LMR RMR 
Temperature 0.009 0.001 0.002 0.022 0.419 0.004 0.155 0.094 0.001 0.001 
Provenance 0.234 0.755 0.842 0.242 0.567 0.943 0.314 0.350 0.773 0.721 
Elevation 0.400 0.326 0.631 0.379 0.778 0.368 0.966 0.890 0.239 0.218 
T x P 0.701 0.259 0.959 0.877 0.017 0.095 0.473 0.025 0.274 0.148 
T x E 0.675 0.814 0.679 0.016 0.861 0.852 0.482 0.457 0.235 0.420 
P x E 0.429 0.801 0.177 0.025 0.142 0.391 0.183 0.004 0.079 0.236 
T x P x E 0.837 0.712 0.554 0.083 0.603 0.703 0.839 0.105 0.650 0.695 
Block 0.112 0.000 0.016 0.843 0.038 0.000 0.000 0.001 0.000 0.000  
       
Week 12          Leaf Stem           Root   Plant       
  Area Mass Mass Length Mass Mass SLA SRL LMR RMR 
Temperature 0.000 0.003 0.016 0.280 0.162 0.007 0.001 0.435 0.001 0.006 
Provenance 0.032 0.539 0.487 0.184 0.387 0.481 0.000 0.718 0.705 0.623 
Elevation 0.274 0.289 0.156 0.675 0.447 0.274 0.739 0.283 0.986 0.765 
T x P 0.278 0.599 0.349 0.940 0.999 0.619 0.572 0.615 0.917 0.610 
T x E 0.234 0.314 0.100 0.884 0.757 0.318 0.305 0.619 0.929 0.552 
P x E 0.898 0.788 0.787 0.996 0.891 0.899 0.561 0.836 0.771 0.716 
T x P x E 0.374 0.612 0.442 0.982 0.740 0.744 0.108 0.579 0.180 0.996 
             
        

Week 16         Leaf Stem           Root   Plant       
  Area Mass Mass Length Mass Mass SLA SRL LMR RMR 
Temperature 0.000 0.000 0.000 0.003 0.002 0.000 0.942 0.082 0.000 0.000 
Provenance 0.001 0.014 0.004 0.786 0.358 0.014 0.381 0.847 0.140 0.049 
Elevation 0.157 0.282 0.942 0.941 0.781 0.481 0.831 0.565 0.726 0.748 
T x P 0.001 0.013 0.006 0.365 0.069 0.006 0.027 0.156 0.717 0.656 
T x E 0.104 0.130 0.093 0.644 0.808 0.163 0.764 0.912 0.739 0.381 
P x E 0.004 0.005 0.034 0.334 0.080 0.004 0.255 0.182 0.156 0.229 
T x P x E 0.006 0.022 0.022 0.889 0.089 0.011 0.146 0.130 0.539 0.808 
Block 0.012 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 
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elevation interactions were evident (table 2.3). After further review, it was found that 

genotypes from RB at 1650m were the cause of each interaction. This genotype 

displayed the greatest increase in plant mass, leaf area, leaf mass, stem mass and root 

mass when exposed to elevated growth temperatures (figure 2.7). 

 

Non-structural carbohydrate concentrations 

 

 Among the four carbohydrate parameters tested at week 16, concentrations of 

root starch and needle starch were significantly different between temperature 

treatments (Table 2.4). In seedlings in the 17ºC treatment, the concentration of needle 

starch was 268% greater than needles of seedlings grown at 21ºC (figure 2.8). Overall, 

whole-plant mean total carbohydrate concentrations declined from 214.06 mg/g dw to 

165.55 mg/g dw (p < 0.001) with the increase in temperature from 17 to 21ºC. A 

provenance effect was observed with RB genotypes accumulating more root and needle 

starch than CD genotypes. We also noticed a temperature by provenance interaction for 

root starch, needle sugar and needle starch. Seedlings from RB were more sensitive to 

a 4ºC increase in growth temperature, illustrated by a sharp decline in root and shoot 

starch. CD genotypes showed greater needle sugar sensitivity to elevated growth 

temperatures. A growth temperature by provenance by elevation interaction was also 

observed with genotypes from RB at 1650m accumulating the greatest difference in 

needle starch and sugar with an increase in temperature (figure 2.7). 

 

Discussion 

 

Temperature response of carbon assimilation 

 

 For the first 12 weeks of temperature treatment, red spruce seedlings grown at 

17ºC exhibited higher rates of P than seedlings grown at an elevated (+4ºC) 

temperature, irrespective of measurement temperature. A similar response was reported 

in a study of loblolly pine (Pinus taeda L.) seedlings grown for two months at constant 

temperatures of 25, 30 and 35ºC (Teskey and Will 1999). Seedlings grown at 21ºC 

adjusted with time to the stress of higher than natural temperatures, to produce P rates 

near equal to seedlings grown at 17ºC. By week 16, no difference in P was exhibited, 
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Figure 2.7. Red spruce genotype variation in response to elevated growth temperatures, 
for plant mass, leaf area, needle starch and needle sugar. Gray bars represent growth 
temperatures of 17ºC and open bars represent growth temperatures of 21ºC. Values 

represent means ±SE of n = 12 -24 seedlings for all parameters. CD = Clingman’s Dome 
provenance, RB = Richland Balsam provenance. 
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Table 2.4. Analysis of variance probabilities (P > F) of main effects and interactions on 
non-structural carbohydrate concentrations of red spruce seedlings grown at 17 and 

21ºC for 16 weeks. Bold values are significant at p < 0.10. 
 

  Root    Needle Total    
  Sugar Starch Sugar Starch Carbohydrates 
Temperature 0.121 0.015 0.178 0.000 0.000 
Provenance 0.789 0.025 0.775 0.005 0.037 
Elevation 0.452 0.503 0.705 0.050 0.139 
T x P 0.123 0.023 0.026 0.001 0.764 
T x E 0.203 0.174 0.132 0.199 0.384 
P x E 0.190 0.693 0.729 0.193 0.212 
T x P x E 0.985 0.344 0.053 0.047 0.793 
Block 0.341 0.185 0.242 0.273 0.179 
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Figure 2.8. Total non-structural carbohydrate concentrations (mg / g dw) of red spruce 
seedlings grown at 17 (gray bars) and 21ºC (open bars) mean temperatures. Values 
represent means ± 1 SE of n = 12 to 20 seedlings. Asterisks represents significant 

difference between temperature treatments at p < 0.05, ns = not significant. 
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suggesting an acclimation response to growth temperature. As gas exchange rates of 

seedlings grown at 17ºC did not change over time, this adjustment of seedlings at the 

higher temperature was probably not an age effect. This finding indicates exposure to 

supraoptimal growth temperature (in our case 21ºC) has detrimental effects on 

photosynthetic capacity of red spruce that can be compensated for by a long-term 

acclimation response.  

Rates of R were not affected by growth temperature, aiding in the equality of 

CUE between the seedlings from the two growth temperatures. CUE previously has 

been found to be relatively constant among species and under different environmental 

conditions (van Iersel 2003). Here it is shown that CUE adjusted with time, likely as a 

result of adjustments of P with time. Plants grown at 17ºC were much more efficient with 

carbon utility at week 8, but by week 12 any differences in such efficiency were nullified. 

Thus, despite the differences in P with temperature, by week 12 CUE was equal for both 

sets of seedlings suggesting evidence of acclimation over the period of weeks. The 

hypothesis that higher growth temperatures will result in comparatively suboptimal 

carbon assimilation was not supported.  

The negative response of P to increasing VPD in red spruce has been described 

previously (Day 2000), resulting in high sensitivity to high VPD (> 2.00 kPa). Current 

conditions of high-elevation southern Appalachian sites are generally cool and moist with 

VPD less than 2.00 kPa (NCDC 2005). A +4ºC increase in air temperature will likely 

increase VPD, regardless if RH remains constant (Prenger and Ling 2001), which has 

also been forecast to change with global change. As there was an effect of growth 

temperature on VPD (data not shown), our findings suggest a reduced sensitivity of P to 

high VPD for seedlings grown at higher temperatures. 

 The observed decline of P performance with an increase in measurement 

temperature meant we were unable to define an optimal temperature for red spruce in 

either growth chamber. This consistent decline in P with increasing temperature, 

suggests that the optimum temperature for P may be below measurement temperatures 

applied. Similarly we can not detect any shifts in temperature optimum, however both set 

of seedlings displayed a significant drop in P at +5ºC over ambient. That the rate of P 

does not continue to increase with measurement temperature has been attributed, in 

part, to reduced CO2 uptake, lower gas solubility at higher temperatures, and increased 

CO2 evolution caused by photorespiratory activities (Ku and Edwards 1977, Salisbury 
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and Ross 1978). As elevated temperatures decrease the Rubisco activation of 

carboxylation for P within a plant cell, it increases the activation of oxygenation for R, 

which is precisely what we observed with our temperature response curves. 

The short-term temperature coefficient for respiration, Q10, was not significantly 

different between the two sets of seedlings at week 16, and averaged 2.1 for both 

groups of seedlings. This value is consistent with those commonly reported for woody 

plant species, averaging about 2.3 (see review in Atkin et al. 2005), and suggests short-

term acclimation over the period of hours. The long-term temperature coefficient for R 

was 1.33 when averaged across all genotypes, suggesting a partial acclimation of R to 

growth thermal environment over the period of weeks. A complete acclimation would 

result in identical rates of R when measured at the growth temperature, creating a value 

of 1.0 (Larigauderie and Körner 1995). No acclimation has occurred if the acclimation 

ratio and Q10 values are equal, since the short-term temperature response would result 

in a similar long-term response. As seedlings grown at 21ºC exhibited partial respiratory 

acclimation to temperature, we can not accept the hypothesis that seedlings in higher 

growth environments will show a greater sensitivity to pulse measurement temperatures 

when compared to seedlings grown at 17ºC. 

We found no consistent variation among provenance or elevation for gas 

exchange measurements, thus we can not accept the hypothesis that genotypes from 

higher elevations will show a greater response to high growth temperatures. This 

suggests that the two provenances tested are able to partially acclimate to changes in 

their growth temperature. Collection sites were selected along a small altitudinal gradient 

of 300m, which has been estimated to represent a local Appalachian lapse rate 

difference of 1.89ºC (Leffler 1981). Other studies have reported altitudinal variants for 

optimal P temperature as a response to microclimate (e.g. Fryer and Ledig 1971), 

thereby suggesting that reduced P of trees at high elevation sites are at least in part 

related to differences in carbon utilization and allocation at each site. Similar to the 

present findings, McLaughlin and colleagues (1990) observed a uniform P of red spruce 

between their high elevation (1935m) and low elevation sites (1720m) from area-based 

field measurements. These results provide evidence for a balance between genetic and 

environmental control on carbon synthesis. 
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Carbon partitioning and growth 

 Over sixteen weeks, seedlings in elevated (+4ºC) temperatures had greater 

mean RGR and produced 214% more biomass than trees in ambient temperatures. The 

growth rate declined with time and age yet, due to the initial advanced growth of 

seedlings grown at 21ºC, the difference in plant weight increased over time. These 

findings can not support the research hypothesis that simulated warming will result in 

limited photosynthate supply. This observation is in agreement with the temperature 

effects found on other boreal conifers jack pine (Pinus banksiana Lamb.), tamarack 

(Larix laricina K.Koch), and black spruce (Picea mariana Mill. B.S.P.) (Tjoelker et al. 

1998). The authors noted a growth increase in response to elevated temperatures, in 

concert with CO2 enrichment, but only up to 21ºC, when the response was stable until a 

decline at 27ºC. 

 Elevated temperatures influenced above ground growth and biomass 

accumulation more so than below ground area or mass, as displayed by a three-fold 

increase in stem weight and nearly six-fold increase in foliage weight for seedlings 

grown at 21ºC as compared to seedlings grown at 17ºC (table 2.3). LMR was 

consistently higher in seedlings grown at 21ºC, than in seedlings grown at 17ºC. 

Relatively small increases in dry matter towards photosynthesizing tissue can increase 

growth rate profoundly. The increased partitioning to leaf rather than root partially 

explains the elevated productivity of our warm treated seedlings. This is, in part, 

because increased dry matter to leaves decreases the proportion of carbon used in 

respiration by the root mass, and increases leaf area (light interception) which increases 

available carbon for growth, compared to seedlings with disproportionately higher below 

ground allocation. Seedlings grown at 21ºC exhibited comparative rates of area-based 

P, but leaf area was consistently twice as large as seedlings grown at 17ºC, so whole-

plant P is assumed to be considerably greater. 

 Concentration of mobile carbon pools, or non-structural carbohydrates (NSC), is 

the measurable result of the balance between supply by photosynthesis and demand by 

growth and metabolism (Körner 2003). The accumulation of NSC at week 16 for plants 

grown at 17ºC may reflect changes in the production and use of newly fixed carbon, and 

the biosynthesis intermediates. Low NSC displayed by red spruce seedlings at 21ºC 

probably reflects carbon use associated with the construction and maintenance of new 

tissue, rather than for cryoprotective purposes. The physiologic responses that help 
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provide protection against frost damage simultaneously reduce growth rate. Previous 

studies have observed a negative correlation between RGR and frost hardiness (Greer 

et al. 2000). Though not plotted, our seedlings with greater RGR had lower NSC 

reserves. The accumulation of carbohydrates clearly is energy intensive and therefore 

inhibitory to growth. One growing season however, represents a fraction of the lifespan 

of any age class of needles, and exposure to temperature treatments during such a 

limited time may not impair physiologic function to the point of inducing visible alterations 

in carbon allocation or growth. 

 

Ecological considerations 

 

 Separate studies have identified the presence of a strong genetic trade-off 

between cold tolerance (Loehle 1998), heat tolerance (Bigras 2000) and annual growth 

at the interspecific and intraspecific levels for several tree species. As red spruce 

seedlings in elevated temperatures increased their growth rate in response to warming, 

the timing and degree of cold tolerance of these individuals may come in to question 

during early freezes. Although the precise effects of winter injury on red spruce carbon 

budgets have not been fully quantified, it is logical that repeated, severe events may be 

associated with tree decline and mortality (Lazarus et al. 2004).  

Schaberg et al. (2000) specifically relate the function of red spruce foliage as a 

storage reservoir for carbohydrates to the decline of the species. As our seedlings grown 

in elevated temperatures had significantly reduced levels of total stored carbohydrates, 

the degree and timing of cold tolerance may be jeopardized as these high-elevation 

systems are prone to unseasonable frost conditions (Nicholas 1992). When plotting our 

one-time data points of needle sugar concentrations on published curves over time (e.g. 

Alscher et al. 1989, Schaberg et al. 2000), we can extrapolate a delay of roughly two 

weeks worth of accumulation for seedlings grown at 21ºC. As needles and buds are 

important tissues in the whole-plant carbon balance of trees, a severe winter storm 

leading to losses of these tissues will severely disrupt the carbon economies of red 

spruce trees and could lead to further spruce decline and mortality. 

Common garden experiments reveal that growth rate, biomass partitioning and 

carbohydrate dynamics are a genetic expression (Oleskyn et al. 1998, Oleskyn et al. 

2000), but significant plasticity occurs within and between individual plants of the same 
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species in response to growth environment. High-elevation red spruce have been found 

to display lower absolute leaf area and mass along with lower SLA (Nicholas 1992, 

Richardson et al. 2001), when compared to low elevations, possibly as a result of thicker 

cell walls within the needles (Körner 2003). The current study did not reveal any 

significant or consistent altitude or provenance effect on any biomass parameter. One 

collection site however, did display greater sensitivity to elevated growth temperatures 

over any other site. Genotypes from 1650m at RB showed the greatest increase in 

whole-plant mass, leaf area, leaf mass, root mass and needle starch levels with an 

increase in growth temperature. These same individuals exhibited the greatest decline in 

needle sugars with an increase in temperature. Enhanced metabolic activity in these 

individuals in response to elevated temperatures is most likely a genetically controlled 

acclimation feature stimulated by growth environment. 

In this paper, we show that the assumption that red spruce seedling growth 

necessarily declines at higher temperatures is invalid, and that stable southern range 

boundaries result from processes other than temperature limitations alone. Extreme and 

sudden temperature shifts may be more important to this system than mean annual or 

seasonal temperatures. As displayed in the present study, higher growth temperatures 

do not interfere with an individual’s temperature response curve, thereby not necessarily 

resulting in a major decline of growth rate. Highly competitive invading species 

concurrently moving along temperature response curves in response to warmer 

temperatures will not gain much from their competitive advantage in the face of existing 

individuals of boreal species. Thus any displacement of the ecotone will be delayed until 

existing overstory individuals die, which may be delayed for hundreds of years. As alpine 

environments are often dynamic, high-stress ecosystems, evidence is needed to 

address the potential expansion of deciduous species under current and future alpine 

climates. 

Although field verification is needed, we postulate that, because of temperature 

acclimation, increases in growth temperature (and subsequent changes in air moisture 

conditions) may not be as detrimental to juvenile red spruce physiology as currently 

predicted by some models. An increase in summer temperatures of +4ºC did not result 

in changes in carbon balance, thereby not supporting our hypotheses or many of the 

published models. As a result of current information about foliar responses, 

physiologically-based models should incorporate temperature acclimation of metabolic 
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pathways, although the addition of genetic and geographic determinants of various 

patterns remains a challenge. 
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Summary and Conclusions 

 

 This thesis has focused on the whole-plant response to growth environment of 

the conifer species red spruce. Forest gap models yield realistic forecasts on the status 

of this species as a result of climatic change on montane forests. While a general 

decline is projected due to the impacts of climate change, no process-based study has 

been conducted to verify this projected result. The main question addressed in this 

paper then is, which is affected more by elevated growth temperature, synthesis or 

investment of carbon assimilates? To address this question, research was conducted on 

red spruce from high-elevation southern Appalachian provenances. As red spruce is a 

cool-adapted boreal species, the specific hypothesis addressed was that a higher growth 

temperature will negatively affect carbon assimilation, leading to a decline in investment 

when measured at growth temperature. 

In Part 1, an overview was provided of the biogeography, ecology and biology of 

the species, which dominates the high-elevation forests of the eastern United States. 

Red spruce clearly has a restricted range – both geographical and ecological – although 

can grow right up to the high-elevation treeline. Red spruce is extremely shade tolerant, 

slow-growing and long-lived, thereby contributing to the complex stand dynamics over 

time. This section also introduced the photosynthetic carbon reduction (Calvin) cycle as 

the primary pathway for fixation of atmospheric carbon dioxide. This cycle plays a central 

role in plant metabolism, providing intermediates not only for starch and sucrose 

biosynthesis, but also for constructive cellulose. 

In Part 2, we showed that the rate of carbon fixation of red spruce seedlings is 

insensitive to growth temperature, reflecting the steady state behavior of the metabolic 

and physiological processes involved. Such acclimation of enzymatically mediated 

reactions strongly suggests that such processes are likely regulated by substrate 

availability. Dewar et al. (1999) suggest short-term increase in respiration with 

temperature is driven by the availability of labile carbon, but longer-term respiration is 

limited by the supply of substrate from photosynthesis. Thus, in the long term, respiration 

acclimates to substrate supply, not temperature. In the present study, we observed no 

difference in respiration between temperature treatments, although carbon use efficiency 

was equivalent by week 16. This observation suggests a photosynthetic acclimation to 

temperature, rather than respiration. We conclude therefore that carbon assimilation in 
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southern Appalachian red spruce has a reduced sensitivity to elevated growth 

temperature.  

Of the forecasted aspects of climate change, the increase in atmospheric CO2 

concentration is perhaps the most certain (IPCC 2001). Growth CO2 concentration does 

not however appear to have a predictable, systematic effect on gas exchange of leaves, 

stems and roots of trees, even though the species studied share the same C3 

photosynthetic pathway (see review in Atkin et al. 2005). Several authors now consider 

that growth response to elevated temperatures is likely to be considerably more 

important than responses that may occur solely due to elevated CO2 (Prentice et al. 

1991, Sykes and Prentice 1995, Olszyk et al. 1998). For additional analyses, an 

evaluation of elevated CO2 concentrations in concert with elevated growth temperatures 

on the rates of gas exchange, growth and carbohydrate sinks of red spruce may be 

prudent. As the present examination provided evidence of physiologic acclimation to 

temperature, a similar response to CO2 would be predicted, irrespective of ontogeny. 

Part 2 also showcased that morphology, growth rate and biomass allocation 

characteristics for red spruce were phenotypically plastic. Red spruce responded to high 

growth temperatures by developing nearly twice the whole-plant mass as plants grown 

at ambient temperatures. Enhanced growth at high temperatures has been found 

elsewhere (e.g. Teskey and Will 1999, Tjoelker et al. 1999) and may be caused by the 

combined effects of high temperature on metabolism, cell division, meristematic growth, 

leaf development and soil nutrient uptake. Plant growth is determined both by rates of 

carbon uptake and allocation of fixed carbon to autotrophic tissue or heterotrophic tissue 

(Carey et al. 1998). Although climate change may affect leaf-level assimilation rates and 

short-term growth, long-term growth may be influenced more by changes in carbon 

allocation than by changes in photosynthetic rate. Greater biomass allocation to above-

ground structures may help maintain an above-ground competitor advantage at lower 

altitude where plant canopies are dominated more by deciduous broadleaved trees. 

Previous studies of mature trees at or near treeline have reported decreases in 

photosynthetic carbon gain with increasing altitude and latitude, suggesting a ‘carbon 

limitation hypothesis’ of range limits (Körner 2003, Johnson et al. 2004) where carbon 

uptake is insufficient to support maintenance and growth of trees. However, an increase 

in carbon storage in older trees, along with higher leaf nitrogen and chlorophyll content, 

has also been found with increasing altitude, and has been interpreted as demonstrating 
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phenotypic limitations to carbon processing, rather than carbon gain (Oleskyn et al. 

1998, Hoch and Körner 2003, Smith et al. 2003). This suggests a ‘growth limitation 

hypothesis’ of range limits, where biosynthetic processes may not match the minimum 

rates required for growth and substrate renewal, irrespective of the supply of raw 

materials.  

These limitation hypotheses of environmental effects on plant distribution may be 

applied to the present study of the effects of elevated temperatures. The contrasting 

temperature treatments did not produce disequilibrium of carbon balance of uptake and 

loss, thereby eliminating the carbon limitation hypothesis. Red spruce seedlings grown 

at 17ºC accumulated greater concentrations of non-structural carbohydrates compared 

to seedlings grown at 21ºC, which used newly assimilated carbon for construction, rather 

than for storage. This finding, in part, fails to support the growth limitation hypothesis of 

red spruce range limits. Alternatively, this increase in stored carbon may represent a 

genotypic adaptation for survival in a dynamic, high-stress environment by serving as a 

reserve for physiologic processes to ensure survival in particularly harsh years. 

Additional examinations on levels of cold tolerance of seedlings could satisfy this 

remaining question. Based on the present findings, it does not appear that temperature 

alone is limiting the distribution of upland red spruce. 

As alpine environments are often high-stress ecosystems, evidence is needed to 

address the potential expansion of deciduous species under current and future alpine 

climates. However, because climate change can affect the distributional area of each 

species independently, classical community-level questions need to be approached as 

community-level field studies. Competition is an important factor driving plant 

development, and the results from the present study may not automatically be 

transferred to plants grown under interspecific competition as typically found in nature. 

Few studies have examined species acclimation potential to elevated temperatures (or 

any other forecasted climate deviation) outside of monoculture and this is certainly an 

approach that must be attempted.  

The global pattern of change is far more important than any individual study, but 

process-based field studies of any degree will only help our understanding of natural 

processes. Assessing the effects of climate change on extant forests must include the 

potential for species to adapt, and individuals to acclimate, to changing environmental 

conditions. From the current thesis, we can hypothesize that niche breadth does not 
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appear to be correlated with genetic diversity, with which red spruce is limited, but rather 

by individual plasticity. By utilizing two provenances and two elevations from within each 

provenance, the results suggest that plasticity is the balanced response of phenotype 

and genotype. Neither carbon assimilation nor investment was jeopardized as a 

response to elevated temperatures alone, failing to support the original research 

hypothesis. Therefore we conclude that, protected from disturbance, juvenile red spruce 

of the southern Appalachians will show persistence to the potential impacts of climate 

change. 

The observed decline in red spruce must be attributed to other factors, of which 

acidic deposition, elevated ozone levels and indirect effects of the balsam wooly adelgid 

are the primary suspects. These disturbances, whether natural or human induced, can 

be regarded as a catalyst that facilitates synergistic vegetational adjustment to a 

changing environment. These disturbances are providing opportunities both for the entry 

of new species and the removal of ageing and non-regenerating populations. These 

disturbed spruce-fir populations will react to climate change with a faster response time 

than undisturbed forests. Therefore, the complexity of responses to elevated 

temperature presented here may not be automatically transferred to natural (disturbed) 

forest systems. This present laboratory examination provides a foundation or a stimulus 

for which additional large-scale mixed-culture field studies can build upon. 

Associations between elevation and forest composition often lead to the 

assumption that the natural distribution of tree species is controlled by climate. The 

elevation – temperature relationship may be modified by topographic variables, such as 

slope angle and parent material, and indeed these factors have been shown to play a 

secondary role in explaining vegetation pattern in the mountains of the northeastern 

United States (Richardson et al. 2004, Lee et al. 2005). These results in concert with the 

results from the current study provide evidence that elevational patterns of species 

abundance are a consequence of both edaphic and climatic factors. The relative 

insensitivity to temperature exhibited by red spruce coupled with substrate restrictions of 

many hardwoods, e.g. rooting depth, may be of greater importance to ecotone 

placement than one factor alone. As such, climatic warming might not simply result in a 

simple upward shift of present species limits and abundance patterns.  
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