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ABSTRACT

Supercomputers have become increasingly important in recent years due to the 

growing amount of data available and the increasing demand for quicker results 

in the scientific community.  Since supercomputers carry a high cost to build and 

maintain, efficiency becomes more important to the owners, administrators, and 

users of these supercomputers.  One important factor in determining the 

efficiency of a supercomputer is the scheduling of jobs that are submitted by 

users of the system.  Previous work has dealt with optimizing the schedule on the 

system’s end while the users are blinded from the process.  The work presented

in this thesis investigates a scheduling system that is implemented at the Oak 

Ridge National Laboratory (ORNL) supercomputer Kraken with a backfilling 

policy and attempts to outline the optimal methods from the user’s point of view 

in the scheduling system, along with using a simulation approach to optimize the 

priority formula.  Normally the user has no idea which scheduling algorithms are

used, but the users at ORNL not only know how the scheduling works but they 

can also view the current activity of the system.  This gives an advantage to the 

users who are willing to benefit from this knowledge by utilizing some elementary 

game theory to optimize their strategies.  The results will show a benefit to both 

the users, since they will be able to process their jobs sooner, and the system, 

since it will better utilized with little expense to the administrators, through 

competition.

Queuing models and simulation have been well studied in almost all relevant 

aspects of the modern world.  Higher efficiency is the goal of many researchers 

in several different fields; the supercomputer queues are no different.  Efficient 

use of the resources makes the system administrator pleased while benefiting 

the users with more timely results.  Studying these queuing models through 

simulation should help all parties involved by increasing utilization.  The 

simulation will be validated and the utilization improvement will be measured and 
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reported.  User defined formulas will be developed for future users to help 

maximize utilization and minimize wait times.  
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CHAPTER I
INTRODUCTION

This thesis discusses methods of utilizing supercomputer cores on Kraken at the 

Oak Ridge National Laboratory (ORNL) through backfilling as well as an analysis 

of a time refund policy that ORNL has implemented recently in the event that the 

supercomputer crashes while performing one or more jobs.  Specifically, the 

author has examined strategies that users can utilize in order to minimize the 

time they may have to wait in a queue in order to have their jobs completed as 

quickly as possible.  The supercomputer has a weekly scheduled downtime for 

maintenance every Wednesday morning.  The scheduled maintenance gives the 

operators two distinct approaches based on the utilization currently within the 

system.  As soon as the supercomputer begins to accept jobs after its routine 

maintenance, the user should request the maximum amount of cores in order to 

increase his priority.  But when time approaches the scheduled maintenance

period, then the user should take the opportunity to backfill, which allows a job 

that was submitted later than another job gets to run first because of availability 

of cores, by asking for no more than the amount of available cores at a given 

point in time in order to maximize efficiency of the supercomputer nodes.  

Queuing models have been around since the early 1950’s (Kendall, 1953), 

although the scope and depth of models have changed over the years to include 

almost anything that is a wait and service model. The basic design aspects of 

queuing models are all the same.  A customer, unit, job, car, or widget enters a 

system in what is generally called the "arrival".  From there, the queue defines 

how the system will handle all arrivals through what is considered the "queuing 

discipline" (Bose, 2002).  Once the item is in for service then the service times 

are determined by the system, and once the job is finished it exits the system.  

To increase efficiency of these systems, queuing models have been developed 

for most scenarios so that the queuing disciplines can be optimized for that 

specific system based on a deterministic set of data.  The common queuing
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disciplines that the everyday human would be involved in are the First-In First-

Out (FIFO) design which is the basis for almost all queues seen in a normal daily 

routine.  A FIFO queue can be seen at supermarkets for each line individual line 

(not taking into account parallel servers), fast food restaurant drive-thrus, and 

almost any service line.  Research in the area of queue wait time fairness was 

described in a paper by Sabin, Kochhar, and Sadayappan in which they gave 

weighting factors to prevent an extreme delay of one job but allowed jobs to get 

skipped to improve the overall time (Sabin, Kochhar, and Sadayappan, 2004).

Other common, but less widely used models are the Last-In First-Out (LIFO), 

processor sharing, and priority models.  LIFO is used in manufacturing and any 

process that has a bin. For example, a manufacturer has a bucket containing a 

particular part that is refilled when it gets low and the next needed part is taken

from the top.  Processor sharing is common in high demand environments such 

as supermarkets or bank tellers.  The first in may not be the first out depending 

on service time, but everyone in this system should experience similar delays.  

Priority models will be the primary model discussed, because they are the 

primary model used in a computer queuing system.  An example of a priority 

based model is a hospital emergency room, a principle known in the field as 

"triage".  Certain patients will get a higher priority based on their specific needs.  

If everyone had the same needs then the priority queue reduces to a FIFO 

queue.  Priority queues can be used efficiently because they can set aside the 

users' needs to better serve the queue as a whole and have a better utilization of 

resources.  The priority queue algorithm discussed in this paper has a distinct 

advantage in that some users will not recognize delay and other users will not be 

as concerned about possible delays.  This allows for the adjustment and 

optimization of this priority queue so that it will optimize the usage of the system,

therefore resulting in satisfied system administrators.
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Business Plan/Justification

There are many ideas and reasons for addressing the utilization within these 

supercomputer systems.  With supercomputer power and financing on the rise,

this is a financial obligation as much as it is a performance measure.  With the 

grant of $65 million from the National Science Foundation (NSF) to ORNL, it is 

easy to see that the 700 million CPU hours per year on Kraken do not come at a 

cheap price (HPCwire.com, 2008).  Not only are there costs of computation to 

consider, but the problems being solved by Kraken are important to today’s 

research areas.  Everything from government security issues to climate models 

to fusion energy calculations are being performed on this system (HPCwire.com, 

2008).

The primary goal for this thesis is to improve utilization of the CPU hours on the 

Kraken system.  Kraken, being the first academic petaflop computer (UTK Web 

News, 2010), is one of the largest computers that many people have access to.  

This helps Kraken achieve maximum utilization but may also hurt the utilization 

based on the differences in the job structures that are submitted to the system.  

To find the importance of utilization, one does not have to look much further than 

the importance of some of the problems being solved on Kraken.  With the 

Department of Energy or the Office of Homeland Security, it is easy to see that 

getting an answer back quickly can be important and necessary.  The other 

reason to focus on utilization is the cost described earlier.  Node hours are not 

cheap and anytime a core is idle it can be considered a wasted node hour.

Utilization will be examined in two ways, first from the user point of view and 

second from the system point of view.  The user metrics are slightly different than

the system utilization metrics but will serve the same function.  Users of Kraken, 

if they choose, can see the system state and queue at any given time.  This view 

of the system will allow the users to formulate their jobs' key attributes to 
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maximize their chances of getting their jobs run faster.  Not only does this help 

the users who understand their benefits but in the long run should benefit the 

system because of the users understanding of how to tighten up the jobs in the 

system.  The approaches discussed in this thesis should allow users to better 

understand and formulate their job submissions better.  From the system 

perspective it is all about formulating the right priority function.  The priority 

function is the driver behind how jobs get into the system and how they are 

stacked in the queue.  This thesis will address the priority formula through 

simulation in Arena and the software add-on OptQuest, which will optimize the 

variables in the formula through replications and design of experiment (DOE).

An understanding of the system dynamics and controls should allow the users to 

achieve faster results with little effort and also increase system utilization.  This 

thesis will show a possible instant increase in utilization of 0.092% which equals 

almost 16,000 node hours.  This increase could be higher if the users deploy a 

more optimal strategy with submitting their jobs.  Overall, these increases should 

produce more jobs finished in less time and this will show more value to the $65 

million spent on the development of the system.

The basis behind this work can be used in many different areas as an effective 

method for analyzing priority within a system.  Any priority system which uses a 

specific algorithm and has both capacity and time constraints could follow a 

similar solution approach.  Common systems would include manufacturing 

systems, airline priorities, and other computer systems.  All of these systems 

have a capacity constraint and have time dependant customers or jobs.  Using 

the same approach presented here in the thesis it would show how users can 

optimize their strategies and may provide a method for the system administrators 

to adjust their priority algorithms for better utilization. 
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The rest of this thesis is organized as follows: a literature review will be 

discussed in Chapter 2.  Chapter 3 will explore how jobs are given priority before 

and after they have been submitted, along with a payoff and job check pointing 

analysis.  Chapter 4 will address the simulation model that is used to optimize the 

system.  Chapter 5 will analyze the results.  Chapter 6 of this thesis discusses

conclusions and future research involving this problem.  Chapter 7 will be a 

summary business plan.
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CHAPTER II
LITERATURE REVIEW

Previous literature reveals that there has been some research related to 

backfilling, but there are limited specifics that are relevant to the situation at 

ORNL.  Most of the literature addresses the operators' queuing system in an 

attempt to organize the jobs for maximum efficiency under a predetermined set of 

rules.  For the purpose of this paper, the operators have already established the 

set rules that the user must take advantage of in order to minimize wait time.  A 

review of literature on different queue structures will help us identify an adequate 

approach to the problem.

Queuing has been studied for the better part of a century now.  Little proved what 

is now Little’s Law in 1961, in which he proves the long run equilibrium of a 

system can be modeled with L = λW (Little, 1961), where L is the expected 

number of units in the system, W is the expected time spent by a unit in the 

system, and 1/λ is the expected time between two consecutive arrivals.  This 

equation is used to model queuing systems so that the system can be modeled

without having to find all necessary information.  For instance, if it is easier for 

the engineer to find the number of units in the system, then it is to measure the 

expected time in system.

Later in the 1960’s, scientists began to study more specific models of the 

Kendall-Lee notation system.  In 1966, Schrage and Miller examined what was 

one of the first priority formula developments (Schrage and Miller, 1966).  

Schrage and Miller gave priority to the job in queue that had the least remaining 

process time (i.e. the smallest job).  They also used pre-emption to queue the 

highest priority job should it not fit into the process as it currently was.  They 

appear to be one of the first to realize the benefits of sorting the queued jobs for 

the advantage of reducing system wait times.
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In 2005, Ernemann, Krogmann, Lepping, and Yahyapour published a paper that 

listed the scheduling methods for the top 50 supercomputers from November 

2003 (Ernemann, Krogmann, Lepping, and Yahyapour, 2005).  From the list they 

surveyed the top 50 machine owners to see what scheduling algorithms they 

used on their machines along with several other utilization important parameters.  

This survey showed the extremes of the supercomputer world of the time.  Some 

of the systems were for government use only, therefore they had no priority 

formula or backfilling allowed and provided very little information while other 

more public computers shared that they had a scheduling priority and did use a 

backfilling technique.

Smith, Foster, and Taylor addressed the issue of advanced reservations on 

systems (Smith, Foster, and Taylor, 2000).  They proposed that some jobs need 

several parallel systems available at the same time.  To do this they would have 

to have some advanced reservation period on all of the machines.  These 

reservations cause delays on other jobs that are queued depending on the size 

and durations of the reservations.  The authors made some lofty assumptions by 

stating, “the best performance is achieved when we assume that applications can 

be terminated and restarted, backfilling is performed and relatively accurate run-

time predictions are used” (Smith, Foster, and Taylor, 2000).  Two of these are 

not going to work for the case presented in this thesis.  Jobs on Kraken can not 

be terminated and restarted nor do the users provide accurate run-time 

predictions.  Margo, Yoshimoto, Kovatch, and Andrews give a much more 

unbiased few of the impact of reservation scheduling (Margo, Yoshimoto, 

Kovatch, and Andrews, 2007).  They show the impacts of several case studies 

which show that utilization and wait time are both negatively affected but “that 

these effects can be mitigated with appropriate policies” (Margo, Yoshimoto, 

Kovatch, and Andrews, 2007).
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The game theory approach presented in this thesis will show users how the can 

increase their outcome by understanding other users positions.  The system 

administrators would like to see this because in the long run an optimal 

equilibrium might be attainable.  In 1985, a paper was published that took the 

queuing model and showed how equilibrium could be achieved by using bribery 

(Lui, 1985).  This paper shows how in the long run a queue in which the server 

can use bribery will reach the optimal state for all users such as a Nash 

equilibrium.  Chun and Culler also had the users' interests in mind by creating

user-centric performance metrics for their analysis of cluster batch schedulers 

(Chun, and Culler, 2002).  Chun and Culler used their metrics to rate the users’ 

value in using different market-based cluster batch schedulers.  Both of these 

papers addressed the issue of the users’ value and how the system might use 

these values to their advantage.

Nurmi, Brevik, and Wolski developed software that predicted the queue time for

jobs so that the user could have a better estimation of their delay.  QBETS 

(Queue Bounds Estimation from Time Series), would give users an accurate 

estimation of the queue so that they would not be slowed by having to wait 

aimlessly for their jobs to run or have their job finished when they weren’t ready 

to come back to the results.

Tsafrir uses a modeling approach to explain how users’ inaccurate estimates of 

runtime eliminate opportunities for backfilling (Tsafrir, 2010).  Active competitive 

ORNL users do not have to be concerned about these inaccuracies because 

since the users can see how many cores are available to them at a given time,

they will eventually develop a competitive advantage with accurate estimates.   

This is not always the case though, and many users of the system simply do not 

care enough or are too conservative of their estimates, and therefore request

unnecessarily large amounts of time.  For these examples, Tsafrir is correct but 
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in the case of ORNL this might make backfilling easier if the time window is 

larger.

Snell, Clement, and Jackson discuss the backfill computation problem by 

allowing the administrator to manipulate some of the job requirements to prevent 

a large blockage of jobs that are waiting to enter the system (Snell, Clement, and 

Jackson, 2002).  Efficiency has been improved under this freedom to manipulate 

jobs, but the paper fails to address a scheduling equation for efficient 

supercomputer usage. Furthermore, these methods might not be as beneficial if 

the user has hundreds or thousands of jobs to examine, which is where the 

priority formula and scheduling rules would benefit from the competition involving 

users, therefore using several minds to produce an advantage to the system.

Ward, Mahood, and West approach the scheduling equation, which usually 

considers a strict rule on backfilling, where jobs that can be run without delaying 

the highest priority job in the queue can be run immediately upon submission

(Ward, Mahood, and West, 2002).  Backfilled jobs have to be able to run fast 

enough so that they do not delay the entrance of the next top priority job.  Ward, 

Mahood, and West introduce a new factor to the scheduling equation referred to 

as a "weight of allowable delay".  They argue that average wait time can be 

reduced with only a slight allowable delay of major jobs from backfilled jobs.  This 

is the most recent research to the priority formula and game theory strategies 

delivered in this paper.  Instead of approaching the relaxation of the backfill 

policy, the competition from the users should optimize the usage.  

Tsafrir, Etsion, and Feitelson approach scheduling by using backfilling and a first 

in, first out (FIFO) queue (Tsafrir, Etsion, and Feitelson, 2007).  But they use a 

system-estimated runtime instead of a user-estimated runtime in an attempt to 

have better accuracy. They show that inaccurate estimates do reduce efficiency, 

and their system of system-estimated time is more beneficial.  However, they are 
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taking away the competitive advantage that is used in this thesis.  In contrast, the 

user estimated times in the system will be shown to be inaccurate, therefore 

causing some utilization loss.

These papers have shown that the user should have the ability to maximize their 

results based on given priority formulas therefore creating a competitive 

approach to scheduling with the competitive advantage going to the most 

accurate and opportunistic users.  This competition should increase efficiency by 

utilizing users' needs and desires to have their results as fast as possible.
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CHAPTER III
USING THE SYSTEM EFFECTIVELY THROUGH COMPETITION

Priority Formula

When a job is submitted to a supercomputer at ORNL, it is assigned a priority 

score based on the following priority function, which may be revised as ORNL 

learns more about user behaviors:

      P(t)  S Q q(t)  X 1 q(t) /r   R C  c  Z  z                   (1)

where:

 P(t) = Total priority at time t

 S = Service weight, which is equal to 1 at ORNL

 Q = Queue time weight, which is equal to 5 at ORNL

 q(t) = Queue time of job at time t in minutes

 X = Expansion factor weight, which is equal to 100 at ORNL

 r = Requested wall-time limit in minutes, where the maximum is 24 hours 

and the minimum is 1 minute

 R = Resource weight, which is equal to 1 at ORNL

 C = Processor count weight, which is equal to 1 at ORNL

 c = Number of cores requested, which is a number between 1 and 

approximately 98,000

 Z = QOS (Quality of  Service) weight, which is equal to 100 at ORNL

 z = Job QOS priority, which is equal to 0 at ORNL.

After substituting some of the variables in the priority function with values 

predetermined by ORNL, the priority function becomes the following:

P(t)  5 100 /r q(t)  c 100 (2)
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A reasonable assumption made by the author is to model q(t) as a linear function 

with a zero intercept and a slope of 1.  In other words, let q(t) = t unless 

otherwise noted.  Thus, the priority function that will be discussed in this paper is 

equation (3), which can be seen below:

  100/1005)(  ctrtP (3)

This priority function can be seen in one of two ways.  Before the job gets 

submitted to the supercomputer, the priority function is a payoff to the user since 

they can request the amount of runtime and cores.  The reader should note that if 

the user requests more cores, they will get a higher priority score before 

submission.  Also, if the user requests less runtime, they will get a higher priority 

score after submission since t = 0 at the time of submission.  Also, the higher the 

priority a user achieves for their job, the greater the chance their job has of

getting backfilled into the supercomputer.

Requesting More Cores

Suppose that two jobs are being considered for submission with the same 

amount of runtime requested, r.  However, one job requests c cores, and the 

other job requests for (c + c) cores where c > 0.  If both jobs were to be 

submitted at the same time, the job that requests more cores will have a higher 

priority.  So, how long does the job with fewer requested cores need to sit in the 

queue in order to have the same priority as the job with more requested cores?  

It can be shown that the time needed in the queue, t*, for the job with fewer 

requested cores is given by the equation:

t* 
c

(5 100 /r)
(4)
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For an illustration of the above concept, consider Figure 1, a graph of the two 

priority functions where one asks for c cores at the very beginning and the other 

asks for (c + c) cores after t* passes.

At ORNL, users are able to view how many cores are available at any given time, 

so they can use this information to implement the optimal strategy of asking for 

the maximum amount of cores.

To illustrate the current effect of requesting more cores we can look at previous 

data to show how, in Figure 2, requesting more cores can effect the wait time of 

the job.

This shows how requesting more cores will increase your wait time as a general 

rule.  There are three issues that are occurring on Figure 2 that can be explained 

for a better representation.  First, the second category of requested CPU’s (24-48 

CPU’s), has a higher average than the next higher category.  This is due to the 

same set of users submitting large numbers of smaller jobs and then having to 

wait because each user can only have five jobs running at a single given time 

unless the machine is idle and the queue has been emptied except for their jobs.  

Second is the significantly smaller wait time average for the large to full size jobs.  

This is explainable because of the knowledge of the system that previous users 

have.  Since there is a weekly maintenance period, the users know that the only 

good chance they have of getting a full size job to run is just after this down time.  

Therefore, users submit their full size jobs just before this restart time.  Third is 

the median difference from the mean.  The mean is susceptible to outliers while 

the median is not.  This just shows that there are extremely large wait times for 

all the categories and that no category is free from the possibility of long wait 

times.
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Figure 1: An illustration of the benefit when requesting more cores
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Figure 2: A graph showing the effects of CPU’s requested against the average 

and median wait times.



16

Requesting Less Runtime

Let’s now consider the benefit of asking for less runtime.  Suppose that two jobs 

request the same number of cores, c, with one job requesting r runtime and the 

other requesting (r  r) runtime, where r > 0.  After submission, the job that 

asks for less runtime will always have a higher priority.  But what if the inferior job 

were to be submitted first at time to > 0?  How much time will elapse, t*, before 

the superior job will have equal priority to the inferior job?  It can be shown that

t* 
(5r 100)(r  r)

100r







to   (5)

For an illustration of the above concept, consider Figure 3, a graph of the two 

priority functions where one asks for r runtime at to and the other asks for (r – r) 

runtime after t* passes.

To illustrate the current effects of requesting longer runtimes, Figure 4 shows the

effects of requesting longer runtimes against the wait time of the job.

Figure 4 shows similar trends to Figure 2.  Users requesting really short jobs tend 

to have many jobs that wait because of the 5 jobs per user rule.  Also, the 

average wait times again are susceptible to outliers while the median is not. 

Along with wait time as it is relates to requested time, user requested time error 

is an issue worth noting.  Tsafrir discussed in two papers (Tsafrir, Etsion, and 

Feitelson, 2007 and Tsafrir, 2010) the importance of accuracy of user estimated 

runtime and the effects that the errors had on the performance.  While it has 

been shown to be beneficial to request less run time as it relates to wait time, the 

users of Kraken do not seem to recognize this benefit yet or have reservations 
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Figure 3: An illustration of the benefit when requesting less runtime
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Figure 4: A graph showing the effects of requested time against the average and 

median wait times.
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about becoming less conservative on their requested time estimates.  Figure 5 

shows how inaccurate these estimates have been in the past.

Figure 5 gives the percent error in requested time as it relates to actual runtimes.  

A near 100 percent error would be that a user required 1/100 of the time 

requested for their job to finish.  Figure 5 shows that this error does get less as 

the jobs get larger but even the largest jobs on average request almost twice the 

time needed to run their job.  This may have caused them a substantial delay 

because the system has to find room for their job based on the requested time 

without knowing how little time the job will actually require.

Now we shall shift the focus of our discussion over to a policy that ORNL has 

used in order to reward users who checkpoint their code in case of the event that 

the system crashes while running the user’s code.

Investigation of Refund Policy

Assume that the system will crash at some point in time, and we have a job that 

takes tend > 6 node-hours to complete. We are considering this set of jobs 

because jobs that crash on or before 6 node-hours get the time before crashing 

refunded to them, and it’s practically considered a rerunning of the job.  However, 

if a job crashes after the 6-node-hour mark, then they do not get back all of the 

time that was spent before the crash, just 6 node-hours.  With that said, let’s 

consider time in three discrete parts, which are the following:

 From the beginning of the job until and including the 6-node-hour mark.

 The 6-node-hour mark until and including the end of the job.

 After the end of the job. 
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Figure 5: A graph showing the error of user estimated runtime.
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Let τ1 represent the time the system crashes, if it occurred, in the first time 

period.  In other words, τ1  [0, 6]. Following suit, let τ2  (6, tend) and τ3  [tend , 

+∞) be the times at which the system fails, if it occurred, in the other two periods 

of time that were described above.  Now let’s consider what happens if there is 

no checkpointing allowed in the code.

No Checkpoints

If the failure were to occur at τ1, then the user would initially lose τ1 for not 

checkpointing but gain it back because of the policy. Therefore, the net loss 

would simply be tend. Now what if the failure were to occur at τ2?  Then the user 

would initially lose τ2, gain 6 node-hours back because of the policy, and then 

lose tend for running the code again.  Therefore, the net loss is equal to tend + (τ2 − 

6). If the failure were to occur after the job had completed running, then the user 

simply loses tend.  If we let τ , the time at which the system fails, be described by 

a Weibull distribution with parameters β and δ and a probability density function 

of :

f (t ,) 



t








 1

e t   , (6)

then the expected loss takes the following form: 

P(  6) tend  P 6    tend  tend   2  6   P   tend  tend 
 1 P 6    tend   tend  P 6    tend  tend   2  6      (7)

Checkpoints at the 6 Node-Hour Mark

Since the user gets all of their time back if the system crashes before the 6-node-

hour mark, then it’s risky for the user if the checkpoint ends before the 6-node-
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hour mark.  Therefore, if someone were to checkpoint once in their code, it would 

end at the 6-node-hour mark.  However, checkpointing takes time, so the total 

time to run the job is tend + tcheck, where tcheck is the time needed to set the 

checkpoint.  If τ = τ1, then nothing changes from the previous problem.  We get 

our time back and rerun the code for a net loss of tend + tcheck.  If τ = τ′2  (6, tend + 

tcheck), then we get 6 node-hours back like we normally would, but only lose tend + 

tcheck − 6 on the second running of the code.  Therefore our net loss is 

τ′2 − 6 + tend + tcheck − 6 = τ′2 + tend + tcheck − 12.  Again, if the failure were to occur 

after the job finishes, then we simply lose tend + tcheck.  Thus, our expected loss is 

now 

1 P 6    tend  tcheck   tend  tcheck  P 6    tend  tcheck   '2tend  tcheck 12         (8)

Checkpoints After the 6 Node-Hour Mark

Here’s when things get interesting.  Let’s suppose that we finish the checkpoint 

at τc, which occurs after the 6-node-hour mark but before the end of the job.  

Assume that the time it takes to checkpoint is the same as before, tcheck.  

If τ′2 < τc, then the user loses everything and has to start over again with a net 

loss of τ′2 − 6 + tend + tcheck.  However, if the crash were to occur between τc and 

tend + tcheck, then the net loss would simply be τ′2 − 6 + tend + tcheck − τc

= τ′2 + tend + tcheck − (6 + τc), which is a greater payout than the far right term of the 

previous expected loss since 6 < τc < tend + tcheck.  From the above conclusions 

our expected loss is the following:

1 P 6    tend  tcheck   tend  tcheck  P 6     c   '2 tend  tcheck  6 
P  c    tend  tcheck   '2 tend  tcheck  6   c  

(9)
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CHAPTER IV
SIMULATING THE SYSTEM

From the queuing perspective of an administrator, it can not get much better than 

the queue described in this paper.  The administrator not only has access to view 

all the jobs in the system, but they can also manipulate the priority formula at any 

time.  The priority queue that will be described is the queue of jobs scheduled on 

Kraken at ORNL.  Kraken became the 1st academic Peta-flop system in October 

2009 and is currently 8th on the world supercomputer rankings (UTK news, 

2010).  The priority queue formula has been implemented with a strict backfill 

policy that will not allow blocking.  Backfilling allows smaller jobs to jump over 

larger ones if they do not slow down the top job in the priority queue.  Backfill 

policy is explained in great detail in the following papers: Tsafir, 2010; Tsafir, 

Etsion, and Feitelson, 2007; Ward, Mahood, and West, 2002; Snell, Clement,

and Jackson, 2002. The current priority formula as discussed earlier is:

(10)

The r and c are the two variables that are entered into the system by the user 

and cannot be changed after the request is submitted.  The value of q(t) is a 

continuously increasing time value that begins with the submission of the job.  

The weight values S, Q, X, R, C, and Z are all manipulated by the systems'

administrators in an attempt to maximize Kraken utilization and optimize the 

backfill of jobs.  These weighted values will be the primary investigation of this 

paper because they have been arbitrarily assigned by the system administrators.

Although, there obviously was some care taken in balancing the equation values 

as to not overvalue one criterion over another.

From February 2010 through August 2010 this system, with the current strict 

backfill policies, ranged between 82-96% utilization.  It is the hope of the author 

that some small re-arrangement of the weight values will narrow this range, 

zZcCR
r
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reduce average wait times, and increase utilization over time.  The simulation 

design should allow the user to run a previous data set and test the results of 

possible priority formula changes, comparing wait times to job size, and overall 

average wait times.

Theoretical Models

The model that will be developed for this application has the benefit of already 

being used on the Kraken system.  This allows the author to attain an actual, 13 

month data set of almost 573,000 jobs that were submitted into the system.  Dr. 

Mark Fahey of the National Institute of Computational Sciences (NICS) and Joint 

Faculty with the University of Tennessee's Industrial and Information Engineering 

Department has been kind enough to provide this data set that will be used to 

verify the model.  The data and model will be validated by comparing the actual 

benchmarking that has been done on the system and comparing the graphs of 

system usage.  From this data set the author will extract the time that the job 

enters a system and the numbers that will be assigned to that specific job, such 

as the requested wall-time, requested cores, and for validation, the actual run 

time of the specific job.

To demonstrate this current system and how adjustment within queues might 

change the utilization, examples are shown in Figure 6, 7 and 8.

Figure 6 shows just how a queue works that does not allow backfilling, therefore 

jobs can only run simultaneously if they both fit in order as shown with jobs 4 and 

5.  This method would be used only if computations within a system can not be 

accomplished or fairness is a top priority.

Most current scheduling programs view the job queue as a set of two 

dimensional boxes with the x-axis being requested time, in which a job is either
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Figure 6: This shows a queue in which there is no backfilling.
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short or long, and the y-axis being CPUs requested with the maximum being 

98,976 CPUs on Kraken and jobs are considered narrow or wide.  In current 

backfilling systems both the x and y axis’ are considered equal value to the jobs 

waiting to be backfilled. The job that gets backfilled is the first job that fits into 

the available gap on a FIFO basis as shown in Figure 7.

From the actual priority formula we can analyze how this is different on the 

Kraken system.  The priority formula uses a weighting system that can move jobs 

around in the queue not just on the wait time but also on the jobs requested time 

and cores.  The formula can be seen as follows in the simplified form:

(11)

The variables are:

 P(t) = total priority at time t

 Q = queue time weight = assigned start at 5

 t = queue time of job at time t in minutes

 X = expansion factor weight = assigned start at 100

 r = requested time limit in minutes

 C = processor count weight = assigned start at 1

 c = number of cores requested

So the weighted values of 5, 100, and 1 are the current values that are used in 

the priority formula.  These values adjust the priority of all jobs in the queue 

based on the time waiting (t), a ratio of time waiting to the requested wall-time (r), 

and the request number of cores (c).  This means that neither the largest job that 

fits gets in nor that the first job that fits based on arrivals gets in necessarily but 

rather the first job that fits that has the current highest priority gets in.  This is 

)*1(1*100*5)( c
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t
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Figure 7: This shows a queue with strict backfilling on a FIFO basis.
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shown in Figure 8 using the data in the accompanying Table 1.  These somewhat 

arbitrary variables will be the optimization focus of this simulation model.

To explain Figure 8 using Table 1, when jobs 3 thru 7 are queued at time 3 their 

priority scores are calculated and job 3 is preempted for time 8 and this allows 

backfilling if it does not delay job 3.  The next highest priority score is job 7 and it 

fits both time and cores constraints.  Job 6 has the next highest score and fits 

both constraints as well.  After job 3 the next two jobs are reordered at time 11 

based on their priority scores even though they will both run at the same time.

Simulation Configuration

Based on the data from the data files and using the Input Analyzer function on 

the Arena software it was evident that the only way to produce an actual model 

was to use the real data set.  The arrivals, requested cores, and requested wall-

time could not be modeled accurately enough through Arena to produce an 

accurate representation of the data.  Therefore replications of this problem 

should not be needed because the same data set will be used each time to stay 

consistent.  Fundamentally this will eliminate the need for hypothesis testing 

since all answers should be exact based on the entered jobs.  This means that 

the model should be an exact replication of the queuing system during the time 

period in which it is drawn from, October 3, 2009 to November 30, 2010.

Arrivals of all jobs are taken from the data file and inputted into the model.  With 

each arrival the attributes specific to each job are attached to each specific entity.  

This is shown in Figure 9.  

After this step the job enters into the decision tree.  The first step is to check 

availability of the cores on the Kraken system.  If the cores needed are available,

then the job is supplied to the system, but if there are not enough available cores,

then the job enters the priority queue.  Once in the queue the second step is to 
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Figure 8: This shows a queue with strict backfilling on a priority formula basis.
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Table 1: Priority calculation table for job ordering.
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Figure 9: System creation of exact replica of jobs on the Kraken system for a supplied period of time.
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wait for computer cores to become available.  Once cores become available the 

next step is to calculate an attribute for each job in the queue, the P(t) value.  

Once this is assigned the wait queue re-orders the jobs and releases them based 

on priority for entry into the Kraken system.  Each time a job leaves the system, 

meaning cores are available, the waiting queue is recycled to calculate new P(t)

values and search the queue for the highest priority job that will fit into the 

available cores.  This is modeled in Figure 10.  

The actual job runtimes are taken from the data file to create an accurate

representation of the system although in real life these values are not known

when the job enters the system.  This value is just used to create the accurate 

model because if they were actually known before running the system then this 

would make a huge advantage in scheduling by allowing the scheduler to fit the 

jobs using a 2-D optimization algorithm.  The actual processing within the system

is shown if Figure 11.  The process “Supercomputer” is backed by the exact 

resources within the system, 98,976 cores.  If a job takes the maximum amount 

of time it is terminated and released unfinished.     



33

Figure 10:  Decision tree and recycling wait queue.
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Figure 11: The processing of the jobs on the supercomputer.
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CHAPTER V
SIMULATION RESULTS

The simulation results have been interesting.  Currently, the system processes 

the correct amount of jobs for the time periods that is being represented, 

approximately 8,100 jobs/week.  The number that is being verified and in theory 

is the most important is the utilization.  Kraken administrators are currently 

claiming an 87-96% monthly utilization during the time period used for the model 

and the model shows 87.66% for the time period of October 13, 2010 through 

October 20, 2010.  To scale down the data set the author has cut the data down 

to the last 47.5 days of data from October 13, 2010 to November 30, 2010.  This 

data set contains 100,000 jobs.  To validate the data set two graphs were 

developed, both representing CPU Core usage of the first 18,315 jobs which 

cover the first 336 hours or 2 weeks of the new data set.  The graphs shown in 

Figure 12 and 13 show some remarkable similarities and are used to validate 

that the data being used is being accurately represented in the model.  There are 

a few minor differences, the first being that the actual data has jobs that were 

running before it, while the simulation begins with an empty CPU and that first 

job.  The other visible difference is the actual data has a CPU maintenance in 

which the system jobs are cleared and the usage spikes to zero.

These figures show that the model is close to accurate but the author will discuss 

later how some future areas of research are currently affecting the outcomes.  

With the model as is, OptQuest, an Arena optimization software package was 

used to vary the three main parameters, C, Q and X, of the priority Formula 11.

A large scale was used first to serve as a DOE approach and to make sure all 

the variables had interaction effects.  From there the scaling of the variables was

made smaller but retained the balance of the formula.  The optimization results 

are shown in Table 2.  From the results an increase of 0.092% CPU utilization 

can be obtained from the new priority formula values.  This may not seem like 

much but a 0.1% improvement means that: 16,000 additional core hours are 
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used.  That is a large amount of computational power that is now being utilized 

and there is still room for improvement.  
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Figure 12: Graph of real CPU usage data from the data file with visibly slower beginning usage due to previous jobs 
and visible maintenance spike around 80,000 wall clock seconds.
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Figure 13: Graph of simulated CPU usage from the Arena simulation model with peaks and valleys similar to the real
data.
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Table 2: Optimization results of priority function variables.

Best Solutions Found Using OptQuest

Function Variables

Simulation Run Utilization Big C Big Q Big X

75 0.87752 0 7 120

109 0.87752 0 6 100

134 0.87752 0 3 50

135 0.87752 0 9 150

159 0.877449 5 9 150

61 0.877402 3 7 120

78 0.8774 4 7 130

136 0.877356 4 3 50

151 0.877352 5 8 130

137 0.877352 4 4 70
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CHAPTER VI
CONCLUSIONS AND FURTHER RESEARCH

This thesis has demonstrated how competition can be used to improve the 

efficiency of supercomputers.  The users at ORNL will benefit from requesting 

the maximum amount of available cores when submitting a job as well as 

requesting a lower runtime, which has been shown in this paper though an 

examination of the priority function that is used at ORNL.  Furthermore, the 6-

hour refund policy has been examined at the surface level, and it has been 

shown that the usage of checkpoints before or after the 6-node-hour-mark 

depends on the distribution of when the supercomputer has a tendency to crash.  

There are some questions for future research that the authors would like to 

explore.  Sequence dependent jobs and optimal look ahead strategies can be 

examined in the context of the current system at ORNL.  A further analysis of 

checkpointing under the 6-node-hour refund policy needs to be explored as well.

Using the model developed, the utilization of the system has been determined 

and verified to the previous charted data.  The use of Arena’s optimization tool, 

OptQuest, has shown how the weighting variable in the priority formula can be 

manipulated to improve efficiency by moving jobs around in the queue to create a 

better fit in the two dimensional system.  Using OptQuest, the most efficient 

priority formula was a tie between 4 of 500 different simulations tested.  Each of 

the top four results had a C value of zero: this effectively means that requested 

cores should not be a part of the priority formula.  Therefore the recommended 

formula would appear as shown in Formula 12.  Of course, any of the top four 

variable sets would provide the same results since the order of the 8,000 plus 

jobs are probably the same and yield the same utilization.
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This removal of the requested cores can be explained by the amount of different 

jobs within the system.  With an average work in progress (WIP) of 229 jobs 

during the one week period in the simulation, it is easy to see that finding a job to 

fit the leftover cores is not a hard job.  Getting the time values worked out seems 

to be the biggest optimization challenge.

Future investigation for research would be to restrict the users' number of jobs in 

the system.  The current system at ORNL only allows a single user to run five

jobs simultaneously at any given point unless the system queue is empty and 

there is adequate space in the processors.  This is a future modeling question to 

tackle to make a more efficient model.

From this research and models it is apparent that more research can be done in 

the area of backfill scheduling policies.  Although there have been many research 

papers published in this area, it is apparent that until every system can use a 

single policy development formula to get the optimal result that this topic will still 

be around.  The author hopes that these adjustments in weight variables will 

result in better utilization but continued monitoring of the system will have to be 

done, especially since the jobs that are entered into the system will vary so 

greatly.  The author also hopes that this model will be a useful tool for any priority 

formula scheduling administrator, in that he can manipulate the priority formula 

for existing data to see what the possible effects of the changes may be.
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CHAPTER VII
SUMMARY OF BUSINESS PLAN

By looking at the cost of the Kraken computer system and the importance of the 

user projects it is evident that utilization of this resource is an important problem.

Utilization is the primary metric based on CPU node hours used.

User approaches for submitting their jobs and getting them run quicker:

Requesting more cores:

It can be shown that the time needed in the queue, t*, for the job with fewer 

requested cores is equal to

t* 
c

(5 100 /r)
     (4)

Requesting less runtime:

How much time will elapse, t*, before the superior job will have equal priority to 

the inferior job?  It can be shown that

     
t* 

(5r 100)(r  r)

100r







to                 (5)

Checkpointing criteria:

Checkpointing depends on the development of a distribution of failure rates but 

the formulas were established based on those.

System approach of the best priority formula:

Therefore the recommended formula would appear as shown in Formula 12:

                    (12)

These approaches and formulas show that an instant utilization boost of 16,000 

CPU hours is possible and with the average job using approximately 1,100 node 

hours, this means almost 15 more jobs will be finished in a week.  Also, giving

the users the appropriate skill and formulations will make their jobs and the 

system run even more efficiently.
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A1:  A table of sample data from the Kraken data set
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