
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

8-2007

Examining Regression Analysis Beyond the Mean
of the Distribution using Quantile Regression: A
Case Study of Modeling the Internal Bond of
Medium Density Fiberboard using Multiple Linear
Regression and Quantile Regression with an
Example of Reliability Methods using R Software
Leslie Brooke Shaffer
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Shaffer, Leslie Brooke, "Examining Regression Analysis Beyond the Mean of the Distribution using Quantile Regression: A Case Study
of Modeling the Internal Bond of Medium Density Fiberboard using Multiple Linear Regression and Quantile Regression with an
Example of Reliability Methods using R Software. " Master's Thesis, University of Tennessee, 2007.
https://trace.tennessee.edu/utk_gradthes/221

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268801736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu


To the Graduate Council:

I am submitting herewith a thesis written by Leslie Brooke Shaffer entitled "Examining Regression
Analysis Beyond the Mean of the Distribution using Quantile Regression: A Case Study of Modeling the
Internal Bond of Medium Density Fiberboard using Multiple Linear Regression and Quantile Regression
with an Example of Reliability Methods using R Software." I have examined the final electronic copy of
this thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Statistics.

Timothy M. Young, Major Professor

We have read this thesis and recommend its acceptance:

Frank Guess, Ramón León

Accepted for the Council:
Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)



 

To the Graduate Council: 
 
I am submitting herewith a thesis written by Leslie Brooke Shaffer entitled “Examining 
Regression Analysis Beyond the Mean of the Distribution using Quantile Regression: 
A Case Study of Modeling the Internal Bond of Medium Density Fiberboard using Multiple 
Linear Regression and Quantile Regression with an Example of Reliability Methods using R 
Software.”  I have examined the final electronic copy of this thesis for form and content and 
recommend that it be accepted in partial fulfillment of requirements for the degree of Master 
of Science, with a major in Statistics.  
 
 
 
 
 
 
 

     Timothy M. Young, Major Professor 
 
We have read this thesis 
And recommend its acceptance: 
 
 
Dr. Frank Guess 
 
 
 
Dr. Ramón León 
 
 
 
 
 
 
 
 

                 Accepted for the Council: 
 
 
 

                     Carolyn R. Hodges 
 

                  Vice Provost and Dean of the 
           Graduate School 

 
                 
 

(Original signatures are on file with official student records.) 



Examining Regression Analysis Beyond the Mean of the 
Distribution using Quantile Regression 

 
A Case Study of Modeling the Internal Bond  

of Medium Density Fiberboard  
using Multiple Linear Regression and Quantile Regression  
with an Example of Reliability Methods using  R Software 

 
 
 
 

 
 
 
 
 

 
Master’s Thesis 

Presented for the  
Master of Science Degree 

The University of Tennessee, Knoxville  
 
 
 
 
 
 
 
 
 
 
 
 

Leslie Brooke Shaffer 
August 2007 



 ii

DEDICATION 
 

This master’s thesis is dedicated to everyone who has believed in me throughout my 

life – especially recently – and to those who have shown me unconditional and unfaltering 

love.  My parents have been a constant source of love and support since the day I was born. 

There is no doubt that their influence has shaped my life tremendously.  My friends – my 

very best friends – Jack and Ginger Holder are like my second family and are a source of 

constant support; in some cases both emotionally and physically.  This is also dedicated to 

Rachel Jackson whose homemade curry has tremendous healing properties and to Becki 

Stratton who once rescued me from a rabid tick and can always make me laugh.  Also, my 

college roommate, and lifelong friend, Emily Briley taught me to think outside the box and 

also frequently reminded me that she thinks I am a “freakin’ genius” (she lied, but it made 

me feel good).  To Eric, who kissed me on New Year’s and made me remember what life is 

really all about, and to buddha (not the god) who reminded me that we all have the power to 

make our lives exactly what we want.  And lastly, this thesis is dedicated to Casey, my ever-

faithful companion and constant source of affection.  I think I love a good walk or visit to 

the dog park almost as much as he does. 

 

I must always thank God for providing the great comfort and peace we all need to succeed.  

Without His presence in my life none of this would be possible. 



 iii

PROFESSIONAL ACKNOWLEDGEMENTS 

This research was partially supported by The University of Tennessee Agricultural 

Experiment Station McIntire-Stennis E112215 (MS-75); USDA Special Wood Utilization 

Grants R112219-150 and R112219-184.  Funding was also provided by University of 

Tennessee, Department of Statistics, Operations, and Management Science. 

I would also like to thank the members of my committee who have helped to shape 

my graduate career, and without whom this master’s thesis would not be possible:   Timothy 

M. Young, Dr. Frank M. Guess, and Dr. Ramón V. León.  Other professors who have had a 

profound influence on my education include Dr. William Seaver, Dr. Mary Leitnaker, Dr. 

Mary Sue Younger, Dr. Hamparsum Bozdogan and Dr. Timothy G. Rials. 

Special thanks goes to Dr. Yang Wang (M.D. China) for helping with proofreading 

various papers as well as this document. Also, I would like to thank Diane Perhac for all of 

her helpful wisdom, and Amanda Silk for all of her professional and personal support 

throughout her employment at the University of Tennessee over the past year.  Rebecca 

Walker and Jane Moser have also been instrumental in coordinating the administrative 

portions of my education.  



 iv

ABSTRACT      

The thesis examines the causality of the central tendency of the Internal Bond (IB) 

of Medium Density Fiberboard (MDF) with predictor variables from the MDF 

manufacturing process.  Multiple linear regression (MLR) models are developed using a best 

model criterion for all possible subsets of IB for four MDF thickness products reported in 

inches, e.g., 0.750”, 0.625”, 0.6875”, and 0.500”.  Quantile Regression (QR) models of the 

median IB are also developed.   

The adjusted coefficient of determination (R2
a) of the MLR models range from 72% 

with 53 degrees of freedom to 81% with 42 degrees of freedom, respectively.  The Root 

Mean Square Errors (RMSE) range from 6.05 pounds per square inch (p.s.i.) to 6.23 p.s.i. 

A common independent variable for the 0.750” and 0.625” products is “Refiner Resin 

Scavenger %”.  QR models for 0.750” and 0.625” have similar slopes for the median and 

average but different slopes for the 5th and 95th percentiles. “Face Humidity” is a common 

predictor for the 0.6875” and 0.500” products.  QR models for 0.6875” and 0.500” indicate 

different slopes for the median and average with different slopes for the outer 5th and 95th 

percentiles.   

The MLR and QR validation models for the 0.750”, 0.625” and 0.6875” product 

types have coefficients of determination for the validation data set ( 2
validationR ) ranging from 

40% to 60% and RMSEP ranging from 26.5 p.s.i. to 27.85 p.s.i..  The MLR validation model 

for the 0.500” product has a 2
validationR and RMSEP of 64% and 23.63 p.s.i. while the QR 

validation model has a 2
validationR and RMSEP of 66% and 19.18 p.s.i.  The IB for 0.500” has 

departure from normality that is reflected in the results of the validation models.  The thesis 
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results provide further evidence that QR is a more defendable method for modeling the 

central tendency of a response variable when the response variable departs from normality.  

The use of QR provides MDF manufacturers with an opportunity to examine 

causality beyond the mean of the distribution.  Examining the lower and upper percentiles of 

a distribution may provide significant insight for identifying process variables that influence 

IB failure or extreme IB strength.   

 

  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keywords. --  multiple linear regression, quantile regression, model building, best model 
criterion, medium density fiberboard, internal bond, independent variables. 
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CHAPTER 1 

Introduction 
 

 Medium Density Fiberboard (MDF) is a non-structural engineered wood product 

that has gained recent popularity due to its many desirable characteristics. These 

characteristics include: 1) surface consistency; 2) uniform core density; and 3) lack of 

irregularities that natural grown wood cannot always offer.  This highly demanded product 

can also be machined to produce many aesthetically pleasing varieties of cabinetry and other 

home furnishing at very reasonable prices. These products may then be covered with 

veneers or painted to add to their appeal.  Clearly, the MDF market has made its mark in the 

United States, as the domestic production of MDF increased by 32.3% in 2004 (Howard 

2006).  Globally, China’s MDF industry has rapidly expanded since 2001 with 492 MDF 

manufacturers and 609 production lines in 2005 (http://www.asiawoodweb.com/news.asp).   

Major recent capital expansions in MDF have made China the No.1 producer in the world, 

surpassing all of Europe (http://www.nbmda.org/Member_Center/Export_Resources).

 To ensure consistent product quality from all manufacturers, MDF quality standards 

are determined by the Composite Panel Association (CPA).  Guidelines for product 

characteristics such as Modulus of Rupture (MOR), Modulus of Elasticity (MOE), Screw-

Holding, Thickness Swell, and Internal Bond (IB) are all measured and documented by 

manufacturers.  In this thesis, we concentrate on the important characteristic of IB.  IB is a 

measure of the tensile strength that is calculated by a pulling apart two inch by two inch 

MDF blocks using a destructive testing process.  IB is the standard of quality for MDF 

manufacturers. Identifying the key independent variables that most significantly impact IB 
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strength is crucial in maintaining quality, production efficiency and lowering costs, all vital 

for sustaining competitiveness in the industry.  

The methods and research of this thesis provide MDF manufacturers with important 

techniques for quantifying unknown sources of variation that will facilitate variation 

reduction, cost savings and continuous improvement.  The theme of the thesis is consistent 

with general strategies outlined by many notable scholars (Box 1993, Deming 1986, Deming 

1993, Feigenbaum 1991, Ishikawa 1976, Juran and Gryna 1951, Shewhart 1931, and Taguchi 

1993).   

In Chapter 2 of the thesis, a literature review is presented. The literature review has 

three sections.  First, a brief history of MDF manufacture and its applications are presented.  

Second, a brief review of the popular data-mining tool, Multiple Linear Regression (MLR) 

with a discussion of its origins is presented.  Tersely, we examine a relatively new data 

analysis technique known as Quantile Regression (QR).  We hope this literature review will 

incrementally improve the knowledge of these subjects for a broad audience of readers.  

In Chapter 3, the data set used in this study is discussed.  The data set came from a 

large-capacity North American Medium Density Fiberboard (MDF) manufacturer.  The data 

set aligns 184 on-line process readings with IB measurements obtained from periodic 

destructive testing creating the real-time relational database used in this thesis.  As previously 

discussed, MDF manufacturers strive to increase efficiency and lower costs; to this end, it is 

imperative that the manufacturer has an advanced knowledge of the process and causality of 

IB variation.  This chapter focuses on a comparison of MLR and QR for modeling the IB of 

MDF.  Four MDF thickness product types are analyzed and reported in inches are 0.750”, 

0.625”, 0.6875”, and 0.500”.  One data subset is created for each product type using SAS 
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Business Intelligence and Analytics Software (Appendix A) and a best model criterion is used 

to create both MLR and QR models.   While MLR develops models based on the mean of 

the IB response variable, QR models can be developed for any percentile of the response 

variable.  The thesis develops QR models using R software for the median IB or 50th 

percentile.  Modeling beyond the mean of the IB distribution may provide greater insight 

into the manufacturing process and help MDF manufacturers identify and quantify 

unknown sources of process variation.   

Chapter 4 builds upon the research presented in Chapter 3 by comparing MRL and 

QR predictive models.  Currently, the biggest challenge facing MDF manufacturers in North 

America is identifying, quantifying and controlling sources of variation within their 

processes.  Given that hundreds of process variables may influence the IB of MDF, it is 

imperative for sustaining competitiveness that manufacturers understand the structure of 

causality and are able to model it appropriately in order to improve quality, increase process 

efficiency, lower defects, lower energy usage and lower raw material costs. 

A traditional predictive modeling method is MLR.  However, this method can be 

problematic when important assumptions are not met.  These assumptions include: 1) 

linearity of the coefficients; 2) normal or Gaussian distribution for the response errors (ε ); 

and 3) the errors ε  have a common distribution.  In a MDF industrial manufacturing 

setting, these assumptions may not always be valid; therefore, a QR predictive modeling 

method may be a more appropriate option for modeling the IB of MDF.    

In this thesis, all QR analyses and the reliability analyses presented in Chapter 5 are 

performed using the software package R (Appendices B and C). This package is an “Open 

Source” option for those interested in statistical analysis and is free.  “Open Source” refers 
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to the package being made available to the general public with relaxed intellectual property 

restrictions, allowing the users to create user-generated software content through either 

incremental individual effort, or collaboration.  The following website may be visited for 

more information on this matter: (http://en.wikipedia.org/wiki/Open_source).  Although 

much code is specific to the R package, several S-PLUS commands will run in R without 

modification. 

In Chapter 5 the R software package is used to perform various reliability analyses 

ranging from descriptive statistics and graphics to survival analysis and Maximum Likelihood 

Estimation (MLE).  Limited documentation for R software exists; however, various 

references are listed to assist those readers interested in learning more about this versatile 

software package.   

The purpose of this thesis is education and exploration.  It is imperative for 

manufacturers to utilize all available analytical tools to enable them to produce the highest 

quality products as efficiently as possible.  Real prices of manufactured wood products like 

MDF are declining in spite of higher raw material and energy costs (Howard 2006).  MDF 

manufacturers will be forced to lower production costs in order to remain profitable and stay 

in business. Adopting new low-cost software packages coupled with the most current 

analytical techniques may provide manufacturers with some additional tools for sustaining 

competitiveness in today’s highly competitive global economy.  
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CHAPTER 2 

Literature Review 
 

2.1 MEDIUM DENSITY FIBERBOARD 
 

 Large-scale production of Medium Desity Fibterboard (MDF) began in the 1980s. 

 MDF is an engineered wood product formed by combining wax and resin with broken 

down wood  fibers and forming panels by applying high temperature and pressure 

(http://en.wikipedia.org/wiki/Medium-density_fibreboard).  Recently, MDF has become 

one of the most popular composite wood materials given its excellent uniformity and 

versatility.  MDF is an excellent base for veneers and laminates as well as non-structural 

constructions such as shelving, furniture, and decorative molding (Figure 1).  As with solid 

wood, MDF can be nailed, glued, screwed, stapled, or attached with dowels 

(http://www.wisegeek.com/what-is-mdf.htm).  

 

Figure 1. Modular cabinet unit constructed of MDF with a veneer overlay. 
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The use of MDF as a relatively low-cost non-structural building material has recently 

gained popularity as an alternative to more expensive solid wood building material.  

According to the “U.S. Annual Market Review and Prospectus 2002-2006” (Howard 2006), 

the domestic production of MDF increased by 32.3% in 2004, and is projected to continue 

this trend.  MDF imports, consumption, and exports are also expected to increase in the 

following years.  Since 1998, the real prices of manufactured wood products have declined 

and are expected to continue to do so (Howard 2006).  This may force the manufacturers to 

lower their production costs in order to remain profitable in the competitive global 

economy.   

 As with any standardized building material, there are published industry product 

standards specifying the quality requirements of MDF.  The quality of MDF is assessed 

based on several physical destructive test measurements.  These include Modulus of Rupture 

(MOR), Modulus of Elasticity (MOE), Screw-Holding, Thickness Swell, and as analyzed in 

this thesis, Internal Bond or IB (Composite Panel Association 2006).  Each destructive test 

measurement is highly important when assessing the quality of MDF. However, the 

challenge faced by many MDF manufacturers is to consistently produce high quality MDF 

using the aforementioned metrics as a measure of quality.  The goal of this thesis is to 

identify and quantify causality between the IB of MDF and process variables that may be 

important during the manufacture of MDF.  Process modeling, and detection of process 

differences, is vital the forest products manufacturing industry.   

The use of statistical methods to examine sources of variation for the IB of MDF is 

not new.  Steele (2006) discusses the use of Mean Residual Life (MRL) functions, and more 

specifically, unique “function domain sets” confidence intervals.  This different breed of 
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confidence interval allows the practitioner to identify opportunities for quality improvement 

as well as make novel statements about the process.  Steele’s (2006) work was an extension 

of previous research utilized in a plethora of processes other than MDF.  Steele (2006) 

insightfully discusses the use of the software package, MAPLE 10, and generously provides 

the code used for analysis.  

Chen (2005) built upon the work of Edwards (2004) by exploring the use and 

effectiveness of estimating extremely small percentiles, or early failures, of strength 

measurements for MDF (i.e., IB).  Chen (2005) observed that the distribution of strength 

failure data for IB does not follow a perfectly Gaussian distribution, and notes that forcing a 

Gaussian model on these data sets may lead to erroneous conclusions and profit loss. Chen 

(2005) proposes a forced censoring technique to closer fit the tails of strength distributions. 

The information obtained from these new fits may reduce the number of field failures, 

improve product safely, and even reduce the cost of destructive testing.  More information 

on these reliability methods as applied to MDF can be found in the published work of Chen 

et al. (2006) and Guess et al. (2004). 

 Edwards (2004) also applies reliability techniques to improve production quality and 

safety of MDF.  Edwards (2004) is also concerned with the extremely small percentiles, or 

early failures, of MDF.  Edwards (2004) discusses the applications of Akaike’s Information 

Criteria or AIC (Akaike 1974) and Bozdogan’s Information Complexity Criteria (ICOMP) 

(Bozdogan 1988) to the extremely small percentiles of MDF.  Modeling these failures can be 

challenging given the small amounts of data in the tails of the MDF failure distributions. 

Given the small sample size Edwards (2004) discusses the use of bootstrap techniques to 

provide more accurate estimation of lower percentile strength data.  



 8

2.2 MULTIPLE LINEAR REGRESSION  
 

Elementary statistics texts tell us that the method of least squares was first 

discovered about 1805 (Stigler 1986).  There has been a dispute about who first discovered 

the method of least squares.  It appears that it was discovered independently by Carl 

Friedrich Gauss (1777-1855) and Adrien Marie Legendre (1752-1833), that Gauss started 

using it before 1803 (he claimed in about 1795, but there is no corroboration of this earlier 

date), and that the first account was published by Legendre in 1805, see Draper and Smith 

(1981).  Stigler (1986) notes that Sir Francis Galton discovered regression about 1885 in 

studies of heredity.  Any contemporary course in regression analysis today starts with the 

methods of least squares and its variations.  

Multiple Linear Regression (MLR) is one of the most commonly used data mining 

techniques, and can provide insightful information in cases where the rigid assumptions 

associated with MLR are met.  The assumptions include 1) linearity of the coefficients; 2) 

normal or Gaussian distribution for the response errors (ε ); and 3) the errors ε  have a 

common distribution.  MLR is a very versatile tool and can be applied to almost any process, 

system, or area of study.  Much has been published regarding this subject, and the following 

text may be useful to the reader: Kutner et al. (2004), as well as Myers (1990), provide 

thorough accounts of MLR and will be indispensable for most readers.   

A key step in developing an appropriate MLR model is selecting a method of model 

building and a set of best model criteria.  As used in this thesis, stepwise regression is 

commonly used for model building.  Introduced by Efroymson (1960), stepwise regression 

was intended to be an automated procedure that selects the most statistically significant 

variables from a finite pool of independent variables.  There are three separate stepwise 
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regression procedures, including 1) forward selection; 2) backward selection; and 3) mixed 

selection.  Mixed selection is the most statistically defendable type of stepwise regression, 

and is a mixture of the forward and backward procedures.  For more information on this 

procedure see Kutner et al. (2004), Neter et al. (1996), and Draper and Smith (1981).   

A set of best model criteria are commonly used in conjunction with stepwise 

regression in order to select the optimal model.  Due to the nature of MDF manufacturing, 

some specific concerns must be addressed.  As cited by Young and Guess (2002), and 

Young and Huber (2004), multicollinearity and heteroscedasticity can be significant 

problems when modeling the IB of MDF using industrial data.  Young and Guess (2002) 

used the following best model criteria: 1) maximum Adjusted 2R ; 2) parameters (p) ≈ 

Mallow’s Cp (Mallow 1973); 3) minimum Akaike’s Information Criterion (AIC), Akaike 

(1974); 4) Variance Inflation Factor (VIF) < 10; 5) significance of independent variables p-

value < 0.10; 6) absence of heteroscedasticity in residuals, E(εi) = 0.   

For this thesis, we focus on the aforementioned criteria, but due to a lack of data 

records for each product type we do not use Mallow’s Cp (Mallow 1973).  We also use a p-

value < 0.05 for significance among the independent variables.  The adjusted 2R statistic, 

2
aR ,  is a better measure of fit for MLR models built with the potential to contain 

significantly more independent variables than data records.  As additional independent 

variables are added to a regression model, 2R  will always increase regardless of the fit.  The 

2
aR statistic only increases if the residual sum of squares decreases (Draper and Smith 1981).  

The 2
aR statistic minimizes the risk of, and penalizes for, using too many independent 

variables.  AIC measures the complexity of the model and guards against model bias.  VIFs 
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are reported to protect against multicollinearity, and redundancy in the model.  Models with 

VIF < 10 can be said to be relatively free of these effects (Kutner et al. 2004).   

 As noted by Kutner et al. (2004), model validation is the final step in the regression 

modeling-building process.  Kutner et al. (2004) point to three main methods associated with 

model validation, as follows: 1) collection of new data to validate the current model and its 

predictability; 2) comparison of current results with other theoretical values, empirical and 

simulation results; and 3) use of a cross-validation sample to validate and assess the 

predictive power of the current model.  

 For this thesis, we use the cross-validation approach to assess the validity and 

predictability of the regression models constructed, i.e., we remove the most current twenty 

records from the model-building process, and then use the constructed model to estimate 

their computed values.  A general rule of thumb in regression model building is to use 80 

percent of the data set for the development of the training model and the remaining 20 

percent for validation of the model (Kutner et al. 2004).  Validation records can be selected 

at random from the entire data set or in the case of data that are a time series the validation 

set can be the most current 20 percent (Kutner et al. 2004).  Adequate regression models are 

expected to yield estimates reasonably close to the actual data values. 

 A plethora of statistics are available to aid in assessing the predictive power of 

regression models.  A popular statistic for assessing this predictability is the Root Mean 

Squared Error of the Prediction (RMSEP) statistic (André et al. 2006).  This statistic is 

computed by calculating the square root of the Sum Squared Errors (SSE) for the withheld 

records divided by the corresponding degrees of freedom.  Lower RMSEP values indicate 

better model predictability.  Another common model validation statistic is the classic 
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coefficient of determination, or 2R , statistic.  This value is also computed for the withheld 

sample, and provides some insight into the predictability of the model.  By definition, higher 

2R values are preferred, i.e., the 2R statistic indicates the amount of variation explained by 

the regression model.  

2.3 QUANTILE REGRESSION 

Response data in the tails, or outer quantiles, of a distribution may behave differently 

than data in the inner quantiles of the distribution in response to the predictor variables.  

Traditionally, MLR is used to study causality between independent variables and the central 

tendency of a response variable as measured by the mean or average, with an important goal 

of making useful predictions of the response variable.  However, several stringent 

aforementioned assumptions must be met in order for a MLR model to perform well.  In 

contrast to MLR, Quantile Regression (QR) does not impose any strict parametric 

assumptions (Koenker 2005).  

 QR seeks to estimate conditional quantile functions, i.e., the varying values of 

covariates are estimated based on the quantile’s asymmetrically weighted absolute residuals 

of the median rather than the mean of the distribution (Buhai 2004).  Quantile Regression 

(QR) is an approach that allows us to examine the behavior of the target variable (Y) beyond 

its average of the Gaussian distribution, e.g., median (50th percentile), 10th percentile, 80th 

percentile, 95th percentile, etc.  Examining these quantiles may provide greater insight into 

the process being studied, and allows the manufacturer to make more informed production 

decisions.  Given the nature of the median statistic, this results in a more accurate and robust 

representation of the relationship between the covariates and their response variable.  Buhai 

(2004) eloquently states, “Instead of assuming that covariates shift only the location or the 
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scale of the conditional distribution, Quantile Regression looks at the potential effects on the 

shape of the distribution as well.”  The effect of the shape of the distribution on modeling 

the response variable IB of MDF using QR is discussed in Chapter 4 of this thesis.    

Examining the relationship between key quality characteristics and the independent 

variables associated with processes is imperative in the wood products industry.  This is 

especially true in MDF manufacture as they have a vested interest in understanding the lower 

or higher percentiles of the distribution of the key quality metric IB strength.   

Quantile Regression (QR) was introduced by Koenker and Bassett (1978) and is 

intended to offer a comprehensive strategy for completing the regression picture (Koenker 

2005).  As Mosteller and Tukey (1977) note in their influential text, as cited by Koenker 

(2005): “…the regression curve gives a grand summary for the averages of the distributions 

corresponding to the set of Xs…and so regression often gives a rather incomplete picture.  

Just as the mean gives an incomplete picture of a single distribution, so the regression curve 

gives a correspondingly incomplete picture for a set of distributions.”   

  The tome by Koenker (2005) should prove to be fairly comprehensive for most 

readers.  This book outlines the fundamental theory of QR, and also provides some code to 

be used with Koenker’s package in the R software package entitled “quantreg”.  For more 

information on using this insightful package, as well as the R software package, refer to the 

following website: http://www.econ.uiuc.edu/%7Eroger/research/rq/rq.html.  Some other 

thoughtful chapters of interest in Koenker (2005) include the following titles: Inference for 

Quantile Regression, Asymptotic Theory of Quantile Regression, Computational Aspects of 

Quantile Regression, and Quantile Regression in R: A Vignette. 
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As with MLR, QR has many applications, and was originally developed for economic 

use, as the first QR publication was in Econometrica (Koenker and Bassett 1978).  Koenker 

and Bassett insightfully envisioned a more robust regression approach capable of modeling 

conditional quantile functions beyond the classic MLR least squares approach to model 

building.  Koenker and Bassett (1978) note, “estimators are suggested, which have 

comparable efficiency to least squares for Gaussian linear models while substantially out-

performing the least-squares estimator over a wide class of non-Gaussian error 

distributions”. 

Gorr and Hsu (1985) began applying these new techniques to the Management 

Science field of study and introduce an adaptive filtering procedure for exploring regression 

quantiles.  These models are used as part of their Quantile Estimation Procedure (QEP) and 

are utilized to signal preventative actions and therefore avoid undesirable system states (Gorr 

and Hsu 1985).  

Young and Easterling (1994) investigate QR as applied to reliability data analysis.   

Typically, in reliability applications, the practitioner is most interested in the outer quantiles 

of distributions being studied, i.e., products that have an extremely short or long lifespan.  

Young and Easterling (1994) use QR techniques to explore the outer quantiles of sensitivity 

test distributions.  Various sample sizes are examined, as well as quantiles, and the effect of 

assuming different specified models is noted.  Young and Easterling (1994) find that QR 

provides better models for their data when quantiles are estimated as a function of specific 

model parameters as opposed to tests developed in order to estimate a specific quantile.  

Buchinsky (1998) provides a basic guide for empirical research, focusing on cross-

section applications, while summarizing the most significant aspects of QR and filling in 

some noted literature gaps.  Several alternative covariance matrix estimators are presented, 
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and Buchinsky (1998) eloquently discusses useful procedures for testing QR models for 

homoskedasticity and symmetry of the error distribution.  A generous empirical example is 

presented using data obtained from a current population survey, and the paper concludes 

with a brief discussion on the application of censored QR models. 

In 1999, Koenker and Machado introduce goodness-of-fit procedures for QR.  

These statistics are quite similar to the 2R statistic applied to classical regression techniques. 

Various inference processes designed to assess the adequacy of the regression model are 

presented (Koenker and Machado 1999).  Koenker and Machado (1999) then illustrate their 

findings using empirical economic growth models, hypothetical examples, and conclude with 

Monte Carlo evidence. 

The idea of computing regression quantiles with the use of a conditional quantile 

function is further articulated by Koenker and Hallock (2001).  Koenker and Hallock (2001) 

discuss the undeniable link between quantile and the “operations of ordering and sorting the 

sample observations that are usually used to define them” (Koenker and Hallock 2001).  The 

innate symmetry of the absolute value function ensures that there is the same number of 

observations both below and above the median (Koenker and Hallock 2001).  Koenker and 

Hallock (2001) note there is high demand for more specialize QR models in the finance 

industry. 

In their useful text, Fitzenberger et al. (2002) discussed the practical application of 

QR as compared to the methodology of least-squares regression.  They note the important 

MLR assumption of constant error, and insightfully articulate a useful example pertaining to 

wage distributions, acknowledging the importance of proper distribution modeling.  



 15

Recently, censored regression models have received substantial attention in 

economic literature, both theoretical and applied (Honore et al. 2002).  Honore et al. (2002) 

note that, to date, most estimation procedures for panel data models or cross-sectional 

models are constructed using fixed censoring.  Honore et al. (2002) suggest a new procedure 

for adapting these fixed censoring models to perhaps more applicable random censoring 

models.  

Some other interesting applications include those in ecological and environmental 

studies (Cade and Noon 2003).  As noted by Cade and Noon (2003), it is extremely difficult 

to identify, document, and measure every ecological independent variable.  As a result, using 

classical MLR methods and others, it is sometimes impossible to arrive at a statistically 

significant model.  However, models built using only portions of the response variable 

distribution may be more useful (Cade and Noon 2003).  Cade and Noon (2003) explore 

various ecological QR applications, and thoughtfully estimate prediction intervals.  

Interestingly, Green and Kozek (2003) use an approximate QR method to model 

weather data.  These models are approximate because they are formed by applying quantile 

functions onto parametric models (Green and Kozek 2003).  Parametric weather 

distributions are modeled as they vary over time, and regression quantiles are then applied to 

the models (Green and Kozek 2003).  Five-curve summaries are obtained for the probability 

distributions of the weather data and the results are quite interesting.    

Buhai (2004) provides an introduction to QR, discussing basic models and 

interpretations as well as computational and theoretical aspects of the algorithm.  By 

concentrating on only two applications of QR: 1) survival analysis; and 2) recursive structural 

equation models, Buhai (2004) is able to articulate a thorough summary of each. 
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Although many QR applications have been explored, and utilized in practice, the 

literature does not yet support QR as applied to MDF manufacture.  Profit loss and 

inefficiency in the composite wood products industry generally is a result of product whose 

quality characteristic is substandard or unnecessarily over engineered.  These classifications 

may correspond to the lower and upper quantiles of the quality characteristic distribution. 

Articulating a method to detect and model these extreme IB readings, if adopted, could 

result in an improved knowledge of wood composite strength and lead to cost savings and 

increased efficiency.  The QR method as applied to the IB of MDF is explored in the next 

chapter. 
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CHAPTER 3 
 

Modeling the Internal Bond of Medium Density Fiberboard 
using Quantile Regression 

 
3.1 INTRODUCTION AND MOTIVATION 

 
The wood composites industry is undergoing unprecedented change in the forms of 

corporate divestures and consolidation, real increases in the cost of raw material and energy, 

and extraordinary international competition.  The forest products industry is an important 

contributor to the U.S. economy.  In 2002, this sector contributed more than $240 billion to 

the economy and employed more than one million Americans in 22,231 primary wood 

products manufacturing facilities (U.S. Census Bureau 2004).  Sustaining business 

competitiveness by reducing costs and maintaining product quality will be essential for this 

industry.  One of the challenges facing this industry is to develop a more advanced 

knowledge of the complex nature of process variables and quantify the causality between 

process variables and final product quality characteristics in the percentiles of the 

distribution.  Information contained in the percentiles is a key measure for quality and safety 

concerns.  This paper provides quantile regression statistical methods that can improve 

business competitiveness in the wood composites industry (Young and Guess 1994, 2002). 

Some work has been initiated in data mining and predictive modeling of final 

product quality characteristics of forest products (Young 1997, Bernardy and Scherff, 1998, 

1999, Greubel, 1999, Erilsson et al. 2000, Young and Guess 2002, Young and Huber 2004, 

Clapp et al. 2007).  Much work has been published on simulating process variables and using 

theoretical models to predict final product quality characteristics (Barnes 2001, Humphrey 

and Thoemen 2000, Shupe et al. 2001, Wu and Piao 1999, Xu 2000, Zombori et al. 2001).  
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We are not aware of any published literature that uses quantile regression to investigate the 

percentiles of product quality for wood composites. 

A data set from a large-capacity North American Medium Density Fiberboard 

(MDF)1 manufacturer was obtained in 2002.  The data set aligned process measurements 

from on-line sensors with the Internal Bond (IB) analyzed during periodic destructive 

testing.  For example, on-line sensor measurements are available for measuring press 

temperature, press closing time, resin content, moisture, weight, etc.  The goal of any wood 

products manufacturer is to efficiently produce a high quality end product.  To this end, it is 

imperative that the manufacturer has an advanced knowledge of the process and causality.   

This paper directly compares the use of Multiple Linear Regression (MLR) and 

Quantile Regression (QR) for modeling the IB of MDF.  The purpose of the study is to use 

MLR and QR on the same MDF data set to model process variables and the process 

variables level of influence on IB.  MLR develops models based on the mean of the response 

variable (e.g., IB), while QR develops models for any percentile of the response variable.  

Modeling beyond the mean of IB may greatly improve a MDF manufacturers understanding 

of the process.  An improved understanding of process variables and the process variables’ 

level of influence on IB can help MDF manufacturers identify and quantify unknown 

                                                 
1 “Large-scale production of MDF began in the 1980s.  MDF is an engineered wood product 
formed by breaking down softwood into wood fibers, often in a defibrator (i.e. “refiner”), 
combining it with wax and resin, and forming panels by applying high temperature and 
pressure (http://en.wikipedia.org/wiki/Medium-density_fibreboard).  MDF has become 
one of the most popular composite materials in recent years.  MDF is uniform, dense, 
smooth, and free of knots and grain patterns, and is an excellent substitute for solid wood in 
many applications.  Its smooth surfaces also make MDF an excellent base for veneers and 
laminates.  Builders use MDF in many capacities, such as in furniture, shelving, laminate 
flooring, decorative molding, and doors.  MDF can be nailed, glued, screwed, stapled, or 
attached with dowels, making it a versatile product” (http://www.wisegeek.com/what-is-
mdf.htm).  
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sources of process variation.  Identifying and quantifying process variation can facilitate 

continuous improvement and improve competitiveness (Deming 1986, 1993).    

As Mosteller and Tukey (1977) note in their influential text, as recently cited by 

Koenker (2005): “…the regression curve gives a grand summary for the averages of the 

distributions corresponding to the set of Xs…and so regression often gives a rather 

incomplete picture.  Just as the mean gives an incomplete picture of a single distribution, so 

the regression curve gives a correspondingly incomplete picture for a set of distributions.”   

3.2 METHODS 
 

Traditionally, one uses MLR to study the relationship between various independent 

variables and the average of the distribution for a response variable with an important goal 

of making useful predictions of the response variable.  MLR has three important 

assumptions: 1) linearity of the coefficients; 2) normal or Gaussian distribution for the 

response errors (ε ); and 3) the errors ε  have a common distribution.  In many industrial 

settings when modeling a quality characteristic such as IB, these assumptions may not be 

valid.    

QR is an approach that allows us to examine the behavior of the response variable 

(Y) beyond its average of the Gaussian distribution, e.g., median (50th percentile), 10th 

percentile, 80th percentile, 90th percentile, etc.  Examining the behavior of the regression 

curve for the response variable (Y) for different quantiles with respect to the independent 

variables (X) may result in very different conclusions relative to examining only the average 

of Y.  In regard to the IB of MDF, examining the lower percentiles using QR may be more 

important for understanding IB failures (or very strong IBs) and be more beneficial for 

continuous improvement and cost savings.   
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Relational database 
 
 An automated relational database is created by aligning real-time process sensor data 

with IB readings (Young and Guess 2002).  The real-time process data are collected with 

Wonderware Industrial SQL 8.0 (www.wonderware.com).  The readings are combined with 

IB by product type at the instant when a panel is extracted from the production line for 

testing.  The process data are collected using a median value from the last 100 sensor values 

(e.g., for most of the 184 different sensor variables this represents a two to three minute time 

interval).  The process data are collected and stored using Industrial SQL.  The lag times 

corresponding to the time required for the product to travel through the process from the 

point where a given parameter has an influence to the point where the panel is extracted for 

IB destructive testing are taken into account.  A unique number (idnum) is generated when 

the panel is extracted from the process, and is later used to match process data with 

corresponding IB results. 

When the IB results are matched with the process data, the combined data are 

recorded in two tables that appear in a combined SQL database, i.e., a relational database of 

real-time sensor data and destructive test lab data.  The real-time relational database is 

automatically updated as new lab samples are taken using Microsoft Transact SQL code with 

Microsoft SQL “Jobs” and “Stored Procedures”.   

The names used in this manuscript associated with the process variables for the on-

line sensors are non-descriptive at the request of the manufacturer and given the terms of a 

legal confidentiality agreement.  Definitions for the names of the process variables are not 

allowed under the terms of the legal confidentiality agreement. 
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Classical linear regression 
 

The first-order simple linear regression model is (Draper and Smith 1981),  

                                                0 1 1i i iY xβ β ε= + +                                                  [1] 

 
where,  iY   is the value of the response variable in the ith  
  observation, 

0β  is the intercept parameter, 

1β  is a slope parameter, 

1ix  is the value of the independent variable in the ith  

 observation, 
 iε  is a random error term of the ith observation with mean 

( ) 0iE ε = and variance { }2 2
iσ ε σ= , with the error terms 

being independent and identically distributed, 
 i = 1,…, n. 

 

Most practitioners use multiple linear regression (MLR) first-order models of the form: 

0 1 1 2 2 3 3 ...i i i i k ki iY x x x xβ β β β β ε= + + + + + +      [2] 
 
where,   iY   is the value of the response variable in the ith observation, 

0β  is the intercept parameter, 

kβ  is the slope parameter associated with the kth variable, 

kix  is the kth independent variable associated with the ith  
 observation, 

iε  is a random error term with mean ( ) 0iE ε =  
and variance { }2 2

iσ ε σ= , with the error terms being 
independent and identically distributed,  

     i = 1,…, n. 
 

The least squares method is a common method in simple regression and MLR and is used to 

find an affine function that best fits a given set of data.2  Recall a strength of the least 

                                                 
2 An affine (from the Latin, affinis, "connected with") subspace of a vector space (sometimes 
called a linear manifold) is a coset of a linear subspace.  A linear subspace of a vector space is 
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squares method is that it minimizes the sum of the n squared errors (SSE) of the predicted 

values on the fitted line ˆ( )iy and the observed value ( )y :3  

                                          2

1

ˆ( )
n

i i
i

y y
=

−∑                                         [3]                                       

 
3.3 MODEL BUILDING AND BEST MODEL CRITERIA 

 
Model building 

Model building using MLR is quite popular due to the refinement of user-friendly, 

inexpensive statistical software and real-time data warehousing.  Many in the forest products 

industry use MLR as a basic method for data mining.  A popular model building method for 

MLR is “stepwise regression”.  In this paper stepwise regression is used to develop first-

order linear models of the IB for MDF.   

Stepwise regression was introduced by Efroymson (1960).  This method is an 

automated procedure used to select the most statistically significant variables from a large 

pool of explanatory variables.  The method does not take into account industrial knowledge 

about the process, and therefore other variables of interest may be later added to the model 

if necessary.  Three approaches can be used in stepwise regression: 1) backward elimination; 

2) forward selection; and 3) mixed selection.  The backward elimination method begins with 

the largest regression, using all variables, and subsequently reduces the number of variables 

                                                                                                                                                 
a subset that is closed under linear combinations, e.g., linear regression equation of a linear 
subspace (http://mathworld.wolfram.com/AffineFunction.html. 2006). 
 
This footnote is also earlier. 3 There has been a dispute about who first discovered the 
method of least squares.  It appears that it was discovered independently by Carl Friedrich 
Gauss (1777-1855) and Adrien Marie Legendre (1752-1833), that Gauss started using it 
before 1803 (he claimed in about 1795, but there is no corroboration of this earlier date), 
and that the first account was published by Legendre in 1805, see Draper and Smith (1981). 
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in the equation until a decision is reached on the equation to use (Draper and Smith 1981).  

The forward selection procedure attempts to achieve a similar conclusion working from the 

other direction, i.e., starting with one variable and inserting variables in turn until the 

regression is satisfactory (Draper and Smith 1981).  The order of insertion is determined by 

using the partial correlation coefficient as a measure of the importance of variables not yet in 

the equation (Neter et al. 1996).  The basic procedure is to select the most correlated 

independent variable (X) with Y and find the first-order linear regression equation.  This 

continues by finding the next most correlated independent variable (X) with Y, and so forth.  

The overall regression is checked for significance; improvements in the R2 value and the 

partial F-values for all independent variables in the model are noted.  The partial F-values are 

compared with an appropriate F percentage point and the corresponding independent 

variables are retained or rejected from the model according to whether the test is significant 

or not significant.  This continues until a suitable first-order linear regression equation is 

developed; see Kutner et al. (2004), Neter et al. (1996), Myers (1990).     

In stepwise regression it is important to note that the user specifies the probabilities 

(α) for an independent variable (X) “to stay” and also the probabilities “to leave” the model.  

The mixed selection procedure is a combination of the aforementioned procedures.  In this 

paper, the mixed stepwise regression procedure is used.  We also use the “Best Model 

Criteria.” 

Best model criteria  

  There is much literature written on “Best Model Criteria” in model building using 

MLR.  We use SAS Business Intelligence and Analytics Software (www.sas.com) and seven 

criteria in selecting the best model of IB.  The criteria include:  
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1) maximum Adjusted R2
a; 2) minimum Akaike’s Information Criterion (AIC); 3) Variance 

Inflation Factor (VIF) < 10; 4) significance of p-value < 0.05 for selected independent 

variables; 5) residual pattern analysis; 6) absence of heteroscedasticity (i.e., equal variance of 

residuals); and 7) no bias in the residuals, i.e., E(εi) = 0.  

Adjusted R2, or R2
a
 , is a better measure for building models with the potential of a 

large number of independent variables than the Coefficient of Determination (R2).  R2 will 

always increase as an additional independent variable is added to the model, where R2
a will 

only increase if the residual sum of squares decreases.  R2
a minimizes the risk of “over-

fitting” and penalizes for model saturation, i.e., the model is penalized if additional 

independent variables do not reduce the residual sum of squares.  The formula for R2
a is:  

                                                ( ) 12 2 21 1 ,0 1
1

nR R Ra an p
⎛ ⎞−

= − − ≤ ≤⎜ ⎟− −⎝ ⎠
          [4] 

where,   

2ˆ( )
2 11 1

2( )
1

n
Y Yi i SSEiR n SSTOY Yii

−∑
== − = −

−∑
=

, 0 ≤ R2 ≤ 1      [5] 

    
The important AIC statistic is calculated as follows:  

                                    ln 2SSEAIC n p
n

⎛ ⎞= +⎜ ⎟
⎝ ⎠

                                       [6] 

where, n is the number of observations, and p is the number of independent variables. 
 
The goal is to balance model accuracy and complexity.  This is achieved by finding the 

minimum value of AIC (Akaike 1974). 

The diagnostic tool used to check the impact of multicollinearity in the MLR model 

is referred to as the VIF.  The VIF is calculated for each independent variable and is 

computed as follows: 
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                                   2 1( ) (1 )k kVIF R −= −                                                 [7] 

where, 2
kR is the coefficient of multiple determination for kX when regressed on the 

remaining p - 2 predictors in the model.  High levels of multicollinearity (VIF > 10) can 

falsely inflate the least squares estimates; therefore, lower VIF values are desired (Kutner et 

al. 2004).   

3.4 SAS CODE FOR MIXED STEPWISE REGRESSION 

When modeling manufacturing processes, it is important to consider the most recent 

data first, i.e., this data will be most informative for continuous improvement (Deming 1986, 

1993).  SAS code is used to develop the mixed stepwise regression MLR models for the four 

product types using the previously described Best Model Criteria.  MLR models for all 

possible subsets are explored using the most recent data and then moving backward in time.  

Initial models are developed for the 50 most recent data records and additional models are 

developed for each additional record moving backward in time through the data.  The 

aforementioned best model criteria are used in selecting the best model from the subsets 

provided by SAS.  The SAS code for mixed stepwise regression exploring all possible subsets 

is given in Appendix A. 

3.5 QUANTILE REGRESSION 
 

QR is intended to offer a comprehensive strategy for completing the regression 

picture (Koenker 2005).  It is different from the MLR approach in that it takes into account 

the differences in behavior a characteristic may have at different levels of the response 

variable by weighting the central tendency measure.  Also, this method uses the median as 

the measure of central tendency rather than the mean.  The non-parametric median statistic 
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may offer additional insight in the analysis of a data, especially when compared to the 

parametric mean or average statistic.      

The QR model does not require the product characteristics or the response variable 

(IB in this study) to be normally distributed and does not have the other rigid assumptions 

associated with MLR.  The first-order QR model has the form (Koenker 2005), 

  1
0 ( )

iy i i uQ x x F −= + +τ β β τ                  [8] 

where,  
iyQ is the  conditional value of the response variable given τ in the  ith trial, oβ  is the 

intercept, iβ  is a parameter, τ denotes the quantile (e.g., τ = 0.5 for the median),  xi is the 

value of the independent variable in the ith trial, uF is the common distribution function (e.g., 

normal, Weibull, lognormal, other, etc.) of the error givenτ , 1( ( )) 0uE F τ− = ,  for  i = 1,…, 

n,  e.g.,  F-1(0.5) is the median or the 0.5 quantile. 

Just as we can define the sample mean as the solution to the problem of minimizing 

a sum of squared residuals, we can define the median as the solution to the problem of 

minimizing a sum of absolute residuals (Koenker and Hallock 2001).  The symmetry of the 

piecewise linear absolute value function implies that the minimization of the sum of absolute 

residuals must equate the number of positive and negative residuals, thus assuring that there 

are the same number of observations above and below the median (Koenker and Hallock 

2001).  Minimizing a sum of asymmetrically weighted absolute residuals yields the quantiles 

(Koenker and Hallock 2001).  Solving  

    min ( ),
1

n
yii

ρ ξτ −∑
=

        [9] 

where, the function ρτ(.), e.g., in equation [9], is the tilted absolute value function appearing 

in Figure 2 that yields the τth sample quantile as its solution (Koenker and Hallock 2001).    
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Figure 2. Quantile regression ρ function. 

 

To obtain an estimate of the conditional median function in quantile regression, we simply 

replace the scalar ξ in equation [9] by the parametric function ξ(xi, β) and set τ to ½.4   To 

obtain estimates of the other conditional quantile functions, replace absolute values by ρτ(.), 

e.g., equation [9], and solve,  

    ˆ( ) min ( ( )),1

n
y xi ii

β τ ρ ξ βτ= −∑
=

          [10] 

For any quantile (0,1)τ ∈ .  The quantity ˆ( )τβ is called the τth regression quantile.  The R 

code for the QR models developed in this chapter is given in Appendix B.    

3.6 RESULTS AND DISCUSSION 

The Internal Bonds of four different product types of MDF are analyzed.  Each 

product type represents a different board thickness in inches (i.e., 0.750”, 0.625”, 0.6875”, 

                                                 
4Variants of this idea were proposed in the mid-eighteenth century by Boscovich and 
subsequently investigated by Laplace and Edgeworth (Koenker and Hallock 2001). 

 

τ-1 
τ 

ρτ(µ) 
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0.500”).  All possible subset MLR models are explored for the four product types using R2
a 

as a key indicator for determining the best subset model (Figures 3, 4, 5 and 6).  

The R2
a for all possible subsets is an indicator of a MDF manufacturer’s stability in 

reproducing product quality from one production run to the next, i.e., product types where 

the R2
a changes slowly as more records are added moving back in time may indicate less 

volatility in IB between production runs, and also that changes in processes occur less 

frequently between production runs of the product type.  Once acceptable MLR models are 

obtained (i.e., using the best model criteria), commonalities in the independent variables are 

explored among the four product types. 
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Figure 3. Adjusted R2 for all possible subsets explored for 0.750”. 
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Figure 4.  Adjusted R2 for all possible subsets explored for 0.625”. 
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Figure 5.  Adjusted R2 for all possible subsets explored for 0.6875”. 
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Figure 6.  Adjusted R2 for all possible subsets explored for 0.500”. 
 

Product types 0.750” and 0.625” 

For the 0.750” product type a MLR model is developed with an R2
a of 0.75, 50 

degrees of freedom and 11 parameters.  The RMSE of the model is 7.70 p.s.i. and the 

maximum VIF for any independent variable is 5.03.  Residual patterns for the MLR model 

are homogeneous (Table 1).   

For the 0.625” product type a MLR model is developed with an R2
a of 0.72, 53 

degrees of freedom and 11 parameters.  The RMSE of the model is 6.05 p.s.i. and the 

maximum VIF for any independent variable is 5.60.  Residual patterns for the MLR model 

are homogeneous (Table 1).   

Common independent variables for the 0.750” and 0.625” MLR models are bolded 

in Table 1.  “Refiner Resin Scavenger %” and “Core Water to Wood” were common for 

both 0.750” and 0.625” product types.  
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Table 1. MLR models for product types 0.750” and 0.625” 
  

0.750” 
Scaled 

Estimate 
 

0.625” 
Scaled 

Estimate 

Face MDF Temperature -12.565 Shavings Raw Weight -15.872 
Dryer S Fiber Moisture -10.906 Refiner Resin Scavenger % 8.396 
Refiner Resin Scavenger % -9.118 Core Grinding Steam Flow 12.720 
Core Dryer Outlet Temperature 18.498 Core Resin to Wood % 22.473 
Press Position Time 19.926 Dryer Mass Flow 10.642 
Dryer 1 Fan Current 23.662 Resin Water Tank 

Temperature 
-21.556 

Dryer 2 Fan Current -25.384 Core Refiner Feeder Screw 
Speed 

4.868 

Refiner S Chip Level 10.666 Core Water to Wood -10.872 
Refiner S Feeder Screw Speed 9.294 Face Humidifier Temperature 13.583 
Core Water to Wood -21.043 Relative Ambient Humidity 5.858 

 
P 
A 
R 
A 
M 
E 
T 
E 
R 
S 

ESP Milliamps -11.714 Weight Actual 12.205 
Important Regression Statistics 

R2a5 0.751646 R2a 0.723694 

d.f.6 50 d.f. 53 
P7 11 P 11 
VIFmax8 5.0315819 VIFmax 5.603058 
RMSE9 7.697272 RMSE 6.051464 
Residual Pattern Homogeneous Residual Pattern Homogeneous

 

                                                 
5 Adjusted coefficient of determination. 
6 Degrees of freedom. 
7 Number of explanatory variables. 
8 Maximum variance inflation factor. 
9 Root mean square error. 
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It is surprising to see the scaled estimates for “Refiner Resin Scavenger %” differ in sign for 

each product type.10  The “Refiner Resin Scavenger %” has a negative scaled estimate of 

approximately -9.12 p.s.i. on IB for 0.750” while the “Refiner Resin Scavenger %” has a 

positive scaled estimate of approximately 8.40 p.s.i. on IB for 0.625”.  This may indicate that 

“Refiner Resin Scavenger %” is an important source of variability between the two product 

types that the manufacturer needs to further investigate.  

“Core Water to Wood” has a large scaled estimate for both product types and has a 

negative influence on IB.  The influence of “Core Water to Wood” as measured by the 

scaled estimate is -21.04 p.s.i. for 0.750” and -10.87 p.s.i. for 0.625”.  This may reflect a 

difference in scale for this process variable as related to the refining process for different 

product types that have varying throughput levels at the refiner, i.e., the 0.750” product 

requires more wood to be refined because it is thicker than 0.650”; however the 0.750” IB is 

much more sensitive to changes in “Core Water to Wood”. 

To examine the influence of “Refiner Resin Scavenger %” beyond the mean effect 

on IB, QR is explored for this common parameter for both 0.750” and 0.625”.11   We find 

that the influence of “Refiner Resin Scavenger %” on the lower percentiles of IB is quite 

different than the mid-range and higher percentiles (Figures 7 and 8).  The red dashed line 

represents the MLR fit, the solid deep blue line represents the median fit, and the gray lines 

correspond to the 5th, 10th, 25th, 75th, 90th, and 95th percentiles, respectively.   

                                                 
10 Scaled estimate is a helpful statistic in MLR models in that illustrates the relative influence 
of independent variables on the response variable.  The scaled estimate is the influence that 
an independent variable has on the response variable when the independent variable moves 
one-half its range used in the model. 
11 It is important to note that multiple parameter models can be built using quantile 
regression, but for the purposes of illustration we chose to only look at the single parameter 
case. 
 



 33

5.994 5.996 5.998 6.000 6.002 6.004 6.006 6.008

10
0

12
0

14
0

16
0

18
0

Refiner Resin Scavenger %

IB

 
Figure 7.  Comparison of MLR fit (red dashed line) with median (blue line) and other 
percentile fits (from bottom to top: 5th, 10th, 25th, 75th, 90th, and 95th) for 0.750” product 
type. 
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Figure 8.  Comparison of MLR fit (red dashed line) with median (blue line) and other 
percentile fits (from bottom to top: 5th, 10th, 25th, 75th, 90th, and 95th) for 0.625” product 
type. 
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For the 0.750” product type (Figure 7), the slopes of the percentiles are quite 

different depending on percentile.  The median and average have similar slopes.  The 5th 

percentile (possible IB failures) and 95th percentile (extreme IB strength) behave quite 

differently than the inner percentiles.  This may be helpful to a MDF producer in analyzing 

occurrences of IB failures, i.e., Why does IB decrease at a faster rate for the lower 

percentiles?  What are the other operational settings and factors occurring during these 

events? 

For the 0.625” product type (Figure 8), the slopes of the percentiles are extremely 

different depending on percentile and on scale of the level of “Refiner Resin Scavenger %”.  

The median and average have similar slopes.  However, for percentiles above the 50th 

percentile (median) the effect of “Refiner Resin Scavenger %” has a stronger positive 

influence on IB the higher the percentile.  For percentiles below the 50th percentile (median) 

the effect of “Refiner Resin Scavenger %” has a stronger negative influence on IB the higher 

the percentile.  This may indicate that other factors are influencing IB in concert with 

“Refiner Resin Scavenger %” or that the quality of the “Refiner Resin Scavenger %” itself is 

varying.  The QR analysis for the common parameter “Refiner Resin Scavenger %” indicates 

opportunities for additional root cause investigation by the manufacturer in sources of 

variability in “Refiner Resin Scavenger %” that influence IB. 

 Although only one independent variable is used for illustration purposes, the quantile 

regression algorithm in R can also be applied to multiple independent variable models.  

Further analysis is conducted to examine the differences between the MLR and QR median 

fits for all of the MLR independent variables.  For the 0.750” product type (Table 2), the 

largest discrepancies between coefficients occur in “Dryer 1 Fan Current”, “Dryer 2 Fan  
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Table 2.  MLR and QR models for product type 0.750” 
0.750” Coefficients 

 
Variables 

MLR 
Average 

QR 
Median 

QR 10th  
percentile 

QR 90th  
percentile 

Intercept 40264.84 34655.89 40679.39 44452.38 
Face MDF Temperature -0.27 -0.27 -0.33 -0.09 
Dryer S Fiber Moisture -5.10 -4.87 -5.76 -2.33 
Refiner Resin Scavenger % -1314.71 -1535.49 -1488.00 -1373.25 
Core Dryer Outlet Temperature 1.91 1.63           1.97 1.46 
Press Position Time 1.96 2.21 2.02 1.93 
Dryer 1 Fan Current 75.06 53.67 78.09 95.56 
Dryer 2 Fan Current -65.80 -48.93 -67.03 -77.23 
Refiner S Chip Level 4.00   3.16 3.37 6.14 
Refiner S Feeder Screw Speed 0.31   0.32 0.31 0.33 
Core Water to Wood -835.05 -651.32 -825.34 -957.74 
ESP Milliamps -0.16 -0.17 -0.15 -0.19 

 

Current” and “Core Water to Wood”.  The percent differences are 39.84%, 34.37%, and 

28.2%, respectively.  

For the 0.625” product type (Table 3), the largest discrepancies between coefficients 

occur in “Shavings Raw Weight”, “Relative Ambient Humidity” and “Weight Actual”.  The 

percent discrepancies are 42.96%, 16.16%, and 12.78%, respectively.  These discrepancies 

reflect significant differences between modeling the mean and the median (50th percentile) of 

IB.  These differences may illustrate the risk of incorrect decision-making about process 

variables that influence the mean of IB when the distribution is not Gaussian.  Incorrect 

decisions lead to higher operating targets, unexpected IB failures and ultimately higher 

overall productions costs.  Further analysis could be conducted for other IB quantiles that 

may be invaluable to the producer for understanding low or failing IBs.  A comparison of 

the 10th and 90th percentiles of the coefficients (Tables 2 and 3) may also give a good 

method for the practitioner on the relative comparisons of the influence of a process 

variable on IB.  The discrepancies in coefficients highlight the importance of  

examining the percentiles of a distribution.   
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        Table 3.  MLR and QR models for product type 0.625” 

0.625” Coefficients 
 

Variables 
MLR 

Average 
QR 

Median 
QR 10th  

percentile 
QR 90th  

percentile 
Intercept -1029.56 -2063.15 1896.63 -1745.51 
Shavings Raw Weight -1.55 -1.09 -1.38 -1.64 
Refiner Resin Scavenger % 949.74 1084.13 588.90 889.98 
Core Grinding Steam Flow 0.34 0.37 0.38 0.28 
Core Resin to Wood % 12.03 10.73 13.25 10.17 
Dryer Mass Flow 0.68 0.76 0.65 0.67 
Resin Water Tank Temperature -1.69 -1.81 -1.49 -2.01 
Core Refiner Screw Speed 0.14 0.14 0.26 0.04 
Core Water to Wood -133.48 -127.01 -150.40 -105.60 
Face Humidifier Temperature 1.22 1.31 0.97 1.80 
Relative Ambient Humidity 1.22 1.42 0.56 2.39 
Weight Actual 157.15 139.34 130.54 130.00 

   

Product types 0.6875” and 0.500” 

For 0.6875” a MLR model is developed with an R2
a of 0.81, 42 degrees of freedom 

and 13 parameters.  The RMSE of the model is 6.23 p.s.i. and the maximum VIF for any 

independent variable is 4.54.  Residual patterns for the MLR model are homogeneous 

(Table 4). 

For 0.500” a MLR model is developed with an R2
a of 0.75, 43 degrees of freedom 

and 10 parameters.  The RMSE of the model is 6.57 p.s.i. and the maximum VIF for any 

independent variable is 5.55.  Residual patterns for the MLR model are homogeneous 

(Table 4).  “Face Humidity” is the common independent variable for both 0.6875” and 

0.500” MLR models (Table 4).   

It is surprising to see the scaled estimates for “Face Humidity” differed in sign for 

each product type.  The “Face Humidity” has a negative scaled estimate of -10.02 p.s.i. on IB 

for 0.6875” while the “Face Humidity” has a positive scaled estimate of 4.81 p.s.i. on IB for
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Table 4.  MLR models for product types 0.6875” and 0.500” 
  

0.6875” 
Scaled 

Estimate 
 
0.500” 

Scaled 
Estimate 

Face Scavenger Resin % 25.479 Core Total Weight -5.191 
Dryer Mass Flow -8.192 Mat Shave Off Target 6.823 
Core Humidifier Temperature -10.683 Press Preposition Time 10.060 
Face Fiber Mat Moisture 26.949 Weight Target 7.938 
Mat Shave off Level -15.408 Core Blow Line Pressure 19.091 
Refiner S Chip Level 14.655 Face Digester Pressure -9.494 
Refiner S Grinding Steam Flow 21.066 Core Resin Pressure -11.273 
Refiner S Screw Speed -5.873 Refiner S Steam Flow -7.452 
Core Scavenger Resin Flow -6.914 Core Refiner Screw Speed -21.777 
Dryer ESP Outlet Temperature -13.138 Face Humidity 4.811 
Face Humidity -10.016  
Press Open Time 5.471  

 
P 
A 
R 
A 
M 
E 
T 
E 
R 
S 

Face Humidifier Temperature 19.560  
Important Regression Statistics 

R2a 0.808614 R2a 0.747666 

d.f. 42 d.f. 43 
P 13 P 10 
VIFmax 4.5371586 VIFmax 5.5493187 
RMSE 6.233895 RMSE 6.573086 
Residual Pattern Homogeneous Residual Pattern Homogeneous 
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0.500”.  This may signify that “Face Humidity” is an important source of variability acting 

on IB that the manufacturer needs to investigate, i.e., it has a negative effect on IB for 

0.6875” which requires more process control and can positively effect 0.500” with increases.  

To examine the influence of “Face Humidity” beyond the mean effect on IB, QR is 

explored for this common parameter for both 0.6875” and 0.500”.  The average and median 

fits for 0.6875” for “Face Humidity” have different slopes, which may indicate lack of 

normality in the response variable IB.  We found that influence of “Face Humidity” on the 

outer 5th and 95th percentiles of IB is quite different than the inner percentiles (Figure 9).   

For the 0.500” product type (Figure 10), the slopes of the IB percentiles are very similar for 

all of the percentiles for “Face Humidity”.   
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Figure 9.  Comparison of MLR fit (red dashed line) with median (blue line) and other 
percentile fits (from bottom to top: 5th, 10th, 25th, 75th, 90th, and 95th) for 0.6875” product 
type. 
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Figure 10.  Comparison of MLR fit (red dashed line) with median (blue line) and other 
percentile fits (from bottom to top: 5th, 10th, 25th, 75th, 90th, and 95th) for 0.500” product 
type. 

 

The median and average have different scales, which may also indicate non-normality 

in the response variable IB.  The QR analysis for 0.500” may indicate that this product type 

has less volatility in IB in the presence of changes in “Face Humidity” when compared to 

the 0.6875” product type.  It may also indicate that the product is easier to make between 

production runs in the presence of changes in “Face Humidity”.  The QR models for “Face 

Humidity” may reveal an opportunity for further root cause analysis by the manufacturer. 

Although only one independent variable is used for illustration purposes, the quantile 

regression algorithm in R can also be applied to multiple independent variable models.  

Further analysis is conducted to examine the differences between the MLR and the QR 

median, 10th and 90th percentile fits.  For the 0.6875” product type (Table 5), the largest 

discrepancies between the coefficients of median and average fits occur in “Face Humidifier 

Temperature”, “Core Scavenger Resin Flow” and “Dryer Mass Flow”.   
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        Table 5.  MLR and QR models for product type 0.6875” 
0.6875” Coefficients 

 
Variables 

MLR 
Average 

QR 
Median 

QR 10th  
percentile 

QR 90th  
percentile 

Intercept -1231.75 -1556.92 -692.31 -1693.05 
Face Scavenger Resin % 280.75 314.06 227.50 345.93 
Dryer Mass Flow -0.61 -0.53 -0.69 -0.85 
Core Humidifier Temperature -1.54 -1.57 -1.86 -2.16 
Face Fiber Mat Moisture 24.50 22.78 27.19 17.18 
Mat Shave off Level -16.18 -15.63 -17.63 -16.17 
Refiner S Chip Level 1.91 1.84 1.68 2.24 
Refiner S Grinding Steam Flow 0.04 0.04 0.04 0.03 
Refiner S Screw Speed -0.18 -0.19 -0.21 -0.09 
Core Scavenger Resin Flow -3.76 -3.05 -5.72 -0.29 
Dryer ESP Outlet Temperature -0.68 -0.63 -0.74 -0.73 
Face Humidity -4.81 -4.84 -6.10 -2.38 
Press Open Time 0.34 0.30 0.45 0.26 
Face Humidifier Temperature 2.38 3.96 2.93 4.29 

 
 
The percent discrepancies are 66.53%, 23.16%, and 16.14%, respectively.   

For the 0.500” product type (Table 6), the largest discrepancies between the 

coefficients of median and average fits occur in “Face Humidity”, “Mat Shave Off Target” 

and “Refiner S Steam Flow”.  The percent discrepancies are 36.58%, 22.39%, and 15.60%, 

respectively.  A comparison of the 10th and 90th percentiles (Tables 5 and 6) of the 

coefficients gives a good method for relative comparisons of the influence of a process 

variable on IB.  The discrepancies in coefficients highlight the importance of examining the 

percentiles of a distribution.  A focus only on the mean of the distribution may lead to 

incorrect conclusions, operational inefficiency and ultimately higher cost of manufactured 

product.   

Further analysis could also be conducted to examine each quantile (e.g., 1st, 5th, 99th, 

etc.) with respect to similar variables.  A more detailed examination of each quantile may 

provide useful insight for root-cause analysis of sources of variation.  
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        Table 6.  MLR and QR models for product type 0.500” 
0.500” Coefficients 

 
Variables 

MLR 
Average 

QR 
Median 

QR 10th  
percentile 

QR 90th  
percentile 

Intercept -225.75 -173.05 -305.28 -86.06 
Core Total Weight -0.07 -0.08 -0.03 -0.09 
Mat Shave Off Target 9.52 7.78 9.45 9.95 
Press Preposition Time 0.93 0.90 1.36 0.60 
Weight Target 158.76 153.68 219.71 56.18 
Core Blow Line Pressure 1.65 1.71 1.69 0.82 
Face Digester Pressure -2.06 -2.21 -2.18 -1.72 
Core Resin Pressure -0.12 -0.13 -0.13 -0.07 
Refiner S Steam Flow -0.01 -0.01 -0.01 -0.002 
Core Refiner Screw Speed -0.55 -0.55 -0.41 -0.36 
Face Humidity 2.37 1.74 0.31 4.58 

 

3.7 CONCLUSIONS FOR CHAPTER 3 

The wood composites industry is undergoing unprecedented change in the forms of 

corporate divestures and consolidation, real increases in the costs of raw material and energy, 

and extraordinary international competition.  The forest products industry is important to 

the U.S. economy.  The challenge for this industry for maintaining business competitiveness 

is to develop a more advanced knowledge of causality between the complex nature of 

process variables and final product quality characteristics.  It may be very important to 

examine this causality in the percentiles of final product quality characteristics.  This chapter 

provides Quantile Regression (QR) statistical methods that can improve business 

competitiveness in the wood composites industry. 

Multiple Linear Regression models (MLR) and QR models are developed for the 

Internal Bond (IB) of Medium Density Fiberboard (MDF).  The models are developed from 

a manufacturing data set for a North American MDF producer.  The data set aligned the IB 

of MDF with 184 different independent variables that are on-line sensors located 

throughout the process, i.e., from refining to final pressing.  MLR models are developed for 
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MDF product types that are distinguished by thickness in inches, i.e., 0.750”, 0.6875”, 0.625” 

and 0.500”.  A best model criterion is used with all possible subsets.  QR models are 

developed for each product type for the most common independent variable of the MLR 

models. 

Common independent variables for the 0.750” and 0.625” MLR models are “Refiner 

Resin Scavenger %” and “Core Water to Wood”.  The scaled estimates for “Refiner Resin 

Scavenger %” differed in sign for each product type.  The “Refiner Resin Scavenger %” has 

a negative scaled estimate of -9.12 p.s.i. on IB for 0.750” while the “Refiner Resin Scavenger 

%” has a positive scaled estimate of 8.40 p.s.i. on IB for 0.625”.  This may indicate some 

volatility in IB for these product types for this common independent variable.  We found 

that the influence of “Refiner Resin Scavenger %” on the lower percentiles of IB is quite 

different than the mid-range and higher percentiles.  For the 0.750” product type, the 

median and average models fit have similar slopes.  The 5th percentile (possible IB failures) 

and 95th percentile (extreme IB strength) behave quite differently from the inner percentiles.  

For the 0.625” product type the slopes of the percentiles are extremely different depending 

on percentile and on scale of the level of “Refiner Resin Scavenger %”.  The median and 

average have similar slopes.  However, for percentiles above the 50th percentile (median) the 

effect of “Refiner Resin Scavenger %” has a stronger positive influence on IB the higher the 

percentile.  For percentiles below the 50th percentile (median) the effect of “Refiner Resin 

Scavenger %” has a stronger negative influence on IB the higher the percentile.  The QR 

analyses suggest that opportunities exist for additional root cause investigation of the sources 

of IB variability from “Refiner Resin Scavenger %”. 
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For the MLR and QR models that included all significant variables, it appears that 

for the “0.750” product type more investigation is needed to determine the true effects of 

“Dryer 1 Fan Current”, “Dryer 2 Fan Current” and “Core Water To Wood”.  These 

variables have discrepancies of 39.84%, 34.47%, and 28.2%, respectively.  For the “0.625” 

product type more investigation is needed to determine the true effects of “Shavings Raw 

Weight”, “Relative Ambient Humidity” and “Weight Actual”.  These variables have 

discrepancies of 42.96%, 16.16%, and 12.78%, respectively.  These discrepancies reflect the 

opportunity for key parameters to be incorrectly modeled, possibly resulting in inefficiency 

and a higher overall cost for the producer.  Further analysis could be conducted to examine 

each quantile with respect to these same key variables, and would perhaps provide further 

insight into the process of interest.  

“Face Humidity” is common for both 0.6875” and 0.500” product types.  The scaled 

estimates for “Face Humidity” differ in sign for each product type.  The “Face Humidity” 

has a negative scaled estimate of -10.02 p.s.i. on IB for 0.6875” while the “Face Humidity” 

has a positive scaled estimate of 4.81 p.s.i. on IB for 0.500”.  This may also indicate that 

“Face Humidity” is an important source of variability between the two product types that 

the manufacturer needs to investigate.  The average and median fits for 0.6875” for “Face 

Humidity” have different slopes, which may indicate lack of normality in the response 

variable IB.  We found that influence of “Face Humidity” on the outer 5th and 95th 

percentiles of IB is quite different than the inner percentiles.  For the 0.500” product type, 

the slopes of the IB percentiles are very similar for all of the percentiles for “Face 

Humidity”.  The median and average have different scales, which may imply non-normality 

in the response variable IB.  The QR analysis for 0.500” may indicate that this product type 
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has less volatility in IB in the presence of changes in “Face Humidity” when compared to 

the 0.6875” product type.  It may also indicate that the product is easier to make between 

production runs as “Face Humidity” changes.   

When QR models are compared with the significant variables of the MLR models 

for the “0.6875” product type there is a significant discrepancy in the influence of IB by 

“Face Humidifier Temperature”, “Core Scavenger Resin Flow” and “Dryer Mass Flow”. 

The discrepancies in the coefficients for these three process variables are as large as 66.53%, 

23.16%, and 16.14%, respectively.  This discrepancy between the mean and median influence 

on IB also exists for the 0.500” product type for the variables “Face Humidity”, “Mat Shave 

Off Target” and “Refiner S Steam Flow”.  These variables have discrepancies in the 

coefficients of 36.58%, 22.39%, and 15.60%, respectively.  These discrepancies further 

highlight the risk associated with making decisions on the mean of the distribution. 

The aforementioned quantile regression methods used in conjunction with classical 

multiple linear regression analysis can improve forest products manufacturers’ knowledge of 

process variation.  An improved knowledge of process variation can lead to variation 

reduction and costs savings, both vital for long-term sustained business competitiveness of 

this important industry.   
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CHAPTER 4 
 

Predictive Modeling using Quantile Regression 
 
 

4.1 COMPARING PREDICTIVE MODELING OF MULTIPLE 
LINEAR REGRESSION WITH QUANTILE REGRESSION 

MODELS FOR THE IB OF MEDIUM DENSITY FIBERBOARD 
 

The biggest challenge facing North American Medium Density Fiberboard (MDF) 

manufacturers is identifying, quantifying and controlling sources of variation within their 

processes.  There are hundreds of process variables that may impact the final output of any 

industrial process.  It is vital for competitiveness that MDF manufacturers understand the 

causality of which process variables significantly influence final product quality 

characteristics (e.g., IB). Quantifying causality and possibly predicting final product quality 

outcomes is vastly important to the MDF manufacturer for improving process efficiency, 

lowering defects, lowering energy and raw material costs, and sustaining business 

competitiveness 

A traditional and popular method of predictive modeling is Multiple Linear 

Regression (MLR).  Recall from Chapter 3 that MLR has three important assumptions: 1) 

linearity of the coefficients; 2) normal or Gaussian distribution for the response errors (ε ); 

and 3) the errors ε  have a common distribution.  In a MDF industrial setting, when 

modeling a quality characteristic such as the IB of MDF, these assumptions may not always 

be valid.   The Quantile Regression (QR) method may be a more appropriate modeling 

method for the IB of MDF because it does not have the stringent assumption of normality 

in the response variable along with the other critical assumptions associated with MLR.  QR 

also allows MDF manufacturers to examine causality beyond the mean of the distribution.  
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Examining causality of the 50th percentile or median of IB may be more realistic for MDF 

manufacturers, as well as improving the understanding of causality in the outer 5th (possible 

failing IB) and 95th percentiles (extreme IB strength).  

This chapter examines predictive modeling of IB of MDF for four product types 

using QR for the 0.5 quantile (or median).  MLR predictive models of the mean IB are 

compared with QR predictive models of the median IB.  This chapter builds upon the 

research presented in Chapter 3.   

4.2 METHODS 

 The IB of four different product types of MDF are analyzed using both MLR and 

QR predictive models.  Each product type represents a different board thickness in inches 

(i.e., 0.750”, 0.625”, 0.6875” and 0.500”).  As previously discussed in Chapter 3, we use SAS 

Business Intelligence and Analytics Software (www.sas.com) and seven criteria in selecting 

the best model of IB.  There are 56 records of IB in the training set for 0.750”, 51 records of 

IB in the training set for 0.625”, 73 records of IB in the training set for 0.6875”, and 74 

records of IB in the training set for 0.500”.  The most recent set of 20 continuous records 

are held from each product type to be used as a model validation sample before selecting the 

best model.   

This method is referred to as cross-validation (Kutner et al. 2004).  A validation 

sample is simply a sample that is withheld from the estimation of a regression model.  The 

model developed is then used to predict the true values of the records withheld.  Statistics 

such as 2
validationR  (coefficient of determination for the validation sample) and Root Mean 

Square Error of the Predicted (RMSEP) are calculated for the validation data set to compare 

the performance of the training models.  The formula for 2
validationR  is equivalent to that 
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mentioned in equation [5], and is only calculated for the validation set of records.  The 

RMSEP statistic is:  

                                     

2

1

( )
n

ii
i

Y Y
RMSEP

n
=

−
=

∑
                                     [11] 

where, n is the number of observations, iY is the i-th actual value, and iY is the i-th predicted 

value. 

4.3 RESULTS AND DISCUSSION 

Product type 0.750” 
 
 For the 0.750” product type a MLR training model is developed with a 2R of 0.89, 

44 degrees of freedom and 11 parameters. The RMSE of the model is 5.95 p.s.i. and the 

maximum VIF for any independent variable is 2.78.  Residual patterns for the MLR training  

model are homogeneous (Table 7).  A QR (median) training model is developed with a 2
MR  

of 0.8612, 44 degrees of freedom and 11 parameters. The RMSE of the QR (median) training 

model is 5.59 p.s.i. and residual patterns for the QR (median) training model are 

homogeneous (Table 7).  The 2
validationR and RMSEP for the MLR validation model are 0.40 

and 26.53 p.s.i., respectively (Figure 11).  The 2
validationR and RMSEP for the QR (median) 

validation model are 0.40 and 26.54 p.s.i., respectively (Figure 12).  These statistics are very 

similar given the normality of IB in the training data set (Figure 13).  The p-value for the 

Shapiro-Wilks test for normality of the training data IB is 0.31, i.e., cannot reject the null 

hypothesis that IB is Gaussian.   

                                                 
12 The 2

MR  statistic for the QR regression model is calculated using the coefficient of 
determination formula or 2R and replacing the mean with the median statistic.  
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Table7.  MLR and QR models for product types 0.750” 
Training  

  
MLR 

 
Estimate 

 
p-value 

 
QR 

 
Estimate 

Face Fiber Temperature -0.276534 <.0001 Face Fiber Temperature -0.24617
Dryer ESP Outlet Temperature -0.325384 0.0005 Dryer ESP Outlet Temperature -0.29706
Core Humidifier Temperature -0.853387 0.0009 Core Humidifier Temperature -0.97901
FaceFiber Mat Moisture 7.9621925 0.0010 FaceFiber Mat Moisture 8.13247
Press Postion Time 3.9645979 <.0001 Press Postion Time 3.96844
Press Temperature 0.4717754 0.0117 Press Temperature 0.40643
Weight Target 187.35323 0.0010 Weight Target 219.80313
Core Blow Line Pressure -1.87737 <.0001 Core Blow Line Pressure -1.63350
Dryer S Outlet Temperature -0.847441 0.0156 Dryer S Outlet Temperature -0.65215
Refiner S Steam Flow -0.00345 0.0001 Refiner S Steam Flow -0.00277

 
P 
A 
R 
A 
M 
E 
T 
E 
R 
S Core Refiner Valve Position -0.493938 0.0008 Core Refiner Valve Position -0.59418

Important Regression Statistics 

R2 0.890014 RM2 0.864207 

R2a 0.862517 R2a 0.830258 

d.f. 44 d.f. 44 
P 11 P 11 
VIFmax 2.7811752 VIFmax N/A 
RMSE 5.946879 RMSE 5.587963 
Residual Pattern Homogeneous Residual Pattern Homogeneous 

Validation 
R2 0.401682 R2 0.403263 
RMSEP 26.53421 RMSEP 26.53579 
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Figure 11. MLR validation of 0.750” actual and predicted IB. 
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Figure 12. QR (median) validation of 0.750” actual and predicted IB. 
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Figure 13. Histogram and quantile plot for 0.750” training data set.  
 

As previously mentioned in Chapter 3, the MLR model is built by minimizing the 

sums of squares about the mean of the distribution. The QR model is built by minimizing 

the sums of absolute residuals about the median.  Recall, when a data set is normally 

distributed, the mean and median are equivalent.  Therefore, we would expect to see very 

similar regression models for the MLR and QR (median) fits for the 0.750” data set.  The 

models are built using 11 parameters with only 44 degrees of freedom.  Typically, one would 

like to see six to ten times as many data records as independent variables (parameters) 

(Kutner et al. 2004).  However, in many industrial settings more parameters must be used in 

order to obtain a model with an acceptable 2R value.  One risk associated with using too 

many parameters is known as “over-fitting”.  This can result in data dependent models that 

may not predict well.  This may explain why the prediction models for the 0.750” product 

type performed poorly and further investigation is warranted.  One must also consider the 

process variation that may be present that is not measurable with current sensing technology, 

e.g., refiner plate wear, resin formation on fiber, etc. 
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Product type 0.625” 
 
 For the 0.625” product type a MLR training model is developed with a 2R of 0.79, 

62 degrees of freedom and 10 parameters. The RMSE of the model is 6.78 p.s.i. and the 

maximum VIF for any independent variable is 7.39.  Residual patterns for the MLR training  

model are homogeneous (Table 8).  A QR (median) training model is developed with a 

2
MR of 0.78, 62 degrees of freedom and 10 parameters. The RMSE of the QR (median) 

training model is 6.57 p.s.i. and residual patterns for the QR (median) training model are 

homogeneous (Table 8).  The 2
validationR and RMSEP for the MLR validation model are 0.60 

and 26.92 p.s.i., respectively (Figure 14).  The 2
validationR and RMSEP for the QR (median) 

validation model are 0.58 and 36.86 p.s.i., respectively (Figure 15).  It is not surprising that 

the regression analysis descriptive statistics are similar given the normality of IB in the 

training data set (Figure 16).  The p-value for the Shapiro-Wilks test for normality of the 

training data IB is 0.9738, i.e., cannot reject the null hypothesis that IB is Gaussian.   

Given the Gaussian characteristics of IB for the 0.625” MDF product, 

improvements in modeling using QR (median) is not possible for this data set.   The 

MLR validation is slightly better (R2
validation = 0.60) than the QR (median) validation 

(R2
validation = 0.58).  This is also reflected in the RMSEP statistic with MLR of 26.92 p.s.i. 

and QR (median) of 36.86 p.s.i.  It is important for the practitioner to thoroughly 

understand the process bring studied so the correct methods can be utilized when 

analyzing data.  Given the normality of IB for 0.625” MDF, the mean may be a more 

efficient estimator of the central tendency of the distribution and MLR may be more 

appropriate for modeling this central tendency.
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Table 8.  MLR and QR models for product types 0.625” 
Training  

  
MLR 

 
Estimate 

 
p-value 

 
QR 

 
Estimate 

Face Resin to Wood Actual 15.400902 <.0001 Face Resin to Wood Actual 19.36181
Main Motor Power -0.036854 <.0001 Main Motor Power -0.03641
Former Thayer Weight -0.629768 0.0414 Former Thayer Weight -0.030011
Press Steam Pressure -1.311257 0.0001 Press Steam Pressure -1.90398
Weight Target -284.6235 0.0007 Weight Target -235.97566
Resin Water Tank Temperature -1.34079 <.0001 Resin Water Tank Temperature -1.33890
Swing Grinding Steam Flow 0.0101131 0.0003 Swing Grinding Steam Flow 0.01187
Swing Main Motor Power -0.016858 0.0007 Swing Main Motor Power -0.01723
Face Humidifier Temperature 0.8846549 <.0001 Face Humidifier Temperature 0.94011

P 
A 
R 
A 
M 
E 
T 
E 
R 
S Weight Actual 218.06084 <.0001 Weight Actual 221.69205

Important Regression Statistics 

R2 0.78516 RM2 0.780713 

R2a 0.750509 R2a 0.745344 

d.f. 62 d.f. 62 
P 10 P 10 
VIFmax 7.3850638 VIFmax N/A 
RMSE 6.77959 RMSE 6.571053 
Residual Pattern Homogeneous Residual Pattern Homogeneous 

Validation 
R2 0.604067 R2 0.583302 
RMSEP 26.92316 RMSEP 36.86166 
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Figure 14. MLR validation of 0.625” actual and predicted IB. 
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Figure 15. QR (median) validation of 0.625” actual and predicted IB. 
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Figure 16. Histogram and quantile plot for 0.625” training data set. 
 

The training models for the 0.625” product are built using 73 records, 10 parameters 

and 62 degrees of freedom which is closer to the rule of thumb recommended by Kutner et 

al. (2004), i.e., six to ten times data records as many independent variables.  However, as 

both Young and Guess (2002), and Young and Huber (2004) note, when working with real 

world data from wood composite manufacturing environments it may not always be 

plausible to obtain a high 2R with few parameters.   

Product type 0.6875” 
 
 A MLR model for the 0.6875” product type is developed with a 2R of 0.64, 44 

degrees of freedom and 6 parameters.  The RMSE of the MLR model is 9.82 p.s.i. and the 

maximum VIF for any independent variable is 2.04.  Residual patterns for the MLR training 

model are homogeneous (Table 9).  A QR (median) training model is developed with a 

2
MR of 0.62, 44 degrees of freedom and 6 parameters. The RMSE of the QR (median) 

training model is 9.52 p.s.i. and residual patterns for the QR training model are 

homogeneous (Table 9).  The 2
validationR and RMSEP for the MLR validation model are 0.57  
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Table 9.  MLR and QR models for product types 0.6875” 
Training  

 MLR Estimate p-value QR Estimate 

Refiner S Valve Position -1.143532 0.0025 Refiner S Valve Position -1.08402
Core Fiber Wet Weight -0.002447 <.0001 Core Fiber Wet Weight -0.00191
Core Humidifier Temperature 1.1782842 0.0346 Core Humidifier Temperature 1.65096
Face Fiber Mat Moisture 16.350038 0.0005 Face Fiber Mat Moisture 12.65856
Face Plug Feeder Screw Speed -1.220197 0.0012 Face Plug Feeder Screw Speed -1.37557
E Emissions 1.2351385 0.0006 E Emissions 0.98901

P 
A 
R 
A 
M 
E 
T 
E 
R 
S 

   

Important Regression Statistics 

R2 0.64452 R2 0.616275 

R2a 0.596046 R2a 0.563949 

d.f. 44 d.f. 44 
P 6 P 6 
VIFmax 2.0449477 VIFmax N/A 
RMSE 9.823333 RMSE 9.518499 
Residual Pattern Homogeneous Residual Pattern Homogeneous 

Validation 
R2 0.568123 R2 0.54688 
RMSEP 27.84805 RMSEP 25.89948 
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and 27.85 p.s.i., respectively (Figure 17).  The 2
validationR and RMSEP for the QR (median) 

validation model are 0.55 and 25.90 p.s.i., respectively (Figure 18).  The regression statistics 

are quite similar given the normality of IB in the training data set (Figure 19).  The p-value 

for the Shapiro-Wilks test for normality of the training data IB is 0.8240. 

 There was strong evidence of model bias for the 0.6875” product upon examination 

of the validation plots, i.e., predictions of IB from both the MLR and QR (median) models 

over-estimate actual IB.  It is not known given the original data records what causes the 

model bias for 0.6875” but it reflects that other variables not recorded in the data set are 

acting on the variability of IB.  As previously noted, this may be refiner plate wear, fiber 

quality change, resin quality change, etc.  Real-time sensing technology does not exist for 

process variables such as refiner plate wear, fiber quality change, and resin quality change. 
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Figure 17. MLR validation of 0.6875” actual and predicted IB. 
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Figure 18. QR (median) validation of 0.6875” actual and predicted IB. 
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Figure 19. Histogram and quantile plot for 0.6875” training data set. 
 

Product type 0.500” 
 

For the 0.500” product type a MLR training model is developed with a 2R of 0.69, 

63 degrees of freedom and 10 parameters. The RMSE of the model is 9.97 p.s.i. and the 

maximum VIF for any independent variable is 5.47.  Residual patterns for the MLR training 
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model are homogeneous (Table 10).  A QR (median) training model is developed with a 

2
MR of 0.67, 63 degrees of freedom and 10 parameters. The RMSE of the model is 6.64 p.s.i. 

and residual patterns for the QR (median) training model are homogeneous (Table 10).  The 

2
validationR and RMSEP for the MLR validation model are 0.64 and 23.63 p.s.i., respectively 

(Figure 20).  The 2
validationR and RMSEP for the QR (median) validation model are 0.66 and 

19.18 p.s.i., respectively (Figure 21). The p-value for the Shapiro-Wilks test for normality of 

the training data IB is 0.3837 (Figure 22).  It is interesting to note that the IB for the 0.500” 

product is the least Gaussian when compared to the other three product types.  The QR 

(median) validation model is slightly better than the MLR validation model as reflected by 

the discrepancies in the both the 2
validationR and RMSEP statistics (Table 10).  Even though 

normality of IB for the 0.500” product cannot be rejected, the quantile plot of IB suggests 

that the product departs from normality in the upper and lower quantiles (Figure 22).  In 

the case of 0.500” the results of the study indicate that QR (median) models may be better 

than MLR models when examining the central tendency of IB. 

4.4 CONCLUSIONS FOR CHAPTER 4 
 

Chapter 4 compared MLR and QR (median) predictive models for the IB of MDF 

for the 0.750”, 0.625”, 0.6875” and 0.500” product types.  The motivation for the chapter 

was driven by discussions with practitioners in the MDF industry.13  Practitioners in the 

industry have a strong interest in real-time predictive modeling of the physical strength 

properties of MDF, e.g., IB.  If feasible, real-time predictive modeling would improve the 

                                                 
13 Dougal Gillis, Technical Director of Langboard MDF, LLC, Willacoochee, Georgia.  Ron 
Matthews, Technical Director of Langboard OSB, LLC, Quitman, Georgia. 
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Table 10.  MLR and QR models for product types 0.500” 
Training  

  
MLR 

 
Estimate 

 
p-value 

 
QR 

 
Estimate 

Face Metering Bin Speed -2.116445 <.0001 Face Metering Bin Speed -1.69530
Main Motor Power 0.044035 <.0001 Main Motor Power 0.03352
Former Thayer Weight -5.109695 0.0005 Former Thayer Weight -4.56964
Press Overall Time 1.2204688 <.0001 Press Overall Time 1.06912
PressTemperature 0.9781079 <.0001 PressTemperature 1.08140
Core Resin Pressure -0.157047 <.0001 Core Resin Pressure -0.13741
Core Blow Valve Position -0.290756 0.0265 Core Blow Valve Position -0.21119
Core Fiber Moisture 2.5739548 0.0003 Core Fiber Moisture 3.18516
Core Refiner Feeder Screw Speed -0.213207 0.0059 Core Refiner Feeder Screw Speed -0.22404

P 
A 
R 
A 
M 
E 
T 
E 
R 
S Relative Humidity 3.5289234 <.0001 Relative Humidity 3.71690

Important Regression Statistics 

R2 0.688184 RM2 0.672784 

R2a 0.63869 R2a 0.620845 

d.f. 63 d.f. 63 
P 10 P 10 
VIFmax 5.469399 VIFmax N/A 
RMSE 6.966834 RMSE 6.642721 
Residual Pattern Homogeneous Residual Pattern Homogeneous 

Validation 
R2 0.644817 R2 0.660509 
RMSEP 23.63211 RMSEP 19.17969 



 60

 

100

110

120

130

140

150

160

170

180

190

200

100 120 140 160 180 200

Actual IB

Pr
ed

ic
te

d 
IB

 

Figure 20. MLR validation of 0.500” actual and predicted IB. 
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Figure 21. QR (median) validation of 0.500” actual and predicted IB. 
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Figure 22. Histogram and quantile plot for 0.500” training data set.  
 

practitioners’ decision-making between destructive tests, which may be as long as two or 

three hours of production.  In a modern large-capacity MDF plant two or three hours of 

production may represent hundreds of thousands of lineal feet of MDF product.  Many 

practitioners have a working knowledge of MLR but are not familiar with the assumptions 

and limitations of MLR.  This chapter highlights the limitations of MLR when modeling the 

central tendency of a response when the response departs from normality.  QR models of 

the median may be better and more helpful for the practitioner. 

For the 0.750” product type a MLR training model is developed with a 2R of 0.89, 

44 degrees of freedom, 56 records and 11 parameters. The RMSE of the model is 5.95 p.s.i. 

and the maximum VIF for any independent variable is 2.78.  Residual patterns for the MLR 

training model are homogeneous.  A QR training model is developed with a 2
MR of 0.86, 44 

degrees of freedom, 56 records and 11 parameters. The RMSE of the model is 5.59 and 

residual patterns for the QR training model are homogeneous.  The 2
validationR and RMSEP for 

the MLR validation model are 0.40 and 26.53 p.s.i., respectively.  The 2
validationR and RMSEP 



 62

for the QR validation model are 0.40 and 26.54 p.s.i., respectively.  These descriptive 

statistics are very similar given the normality of IB in the training data set.  

For the 0.625” product type a MLR training model is developed with a 2R of 0.79, 

62 degrees of freedom, 73 records and 10 parameters. The RMSE of the model is 6.78 p.s.i. 

and the maximum VIF for any independent variable is 7.39.  Residual patterns for the MLR 

training model are homogeneous.  A QR training model is developed with a 2
MR of 0.78, 62 

degrees of freedom, 73 records and 10 parameters. The RMSE of the model is 6.57 p.s.i. and 

residual patterns for the QR training model are homogeneous.  The 2
validationR and RMSEP for 

the MLR validation model are 0.60 and 26.92 p.s.i.  The 2
validationR and RMSEP for the QR 

validation  model are 0.58 and 36.86 p.s.i.  We would expect these statistics to be very similar 

given the normality of IB in the training data set.  In this case, the MLR validation model is 

superior to the QR validation model of the median, with the largest discrepancy being in the 

RMSEP statistic. 

For the 0.6875” product type a MLR training model is developed with a 2R of 0.64, 

44 degrees of freedom, 51 records and 6 parameters. The RMSE of the model is 9.82 p.s.i. 

and the maximum VIF for any independent variable is 2.04.  Residual patterns for the MLR 

training model are homogeneous.  A QR training model is developed with a 2
MR of 0.62, 44 

degrees of freedom, 51 records and 6 parameters. The RMSE of the model is 9.52 p.s.i. and 

residual patterns for the QR training model are homogeneous.  The 2
validationR and RMSEP for 

the MLR validation model are 0.57 and 27.85 p.s.i., respectively.  The 2
validationR and RMSEP 

for the QR validation model are 0.55 and 25.90 p.s.i., respectively.  Again, we would expect 

these statistics to be very similar given the normality of IB in the training data set.  For 
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0.6875” the MLR validation model is slightly superior to the QR validation model with the 

largest discrepancy being in the 2R statistic. 

For the 0.500” product type a MLR training model is developed with a 2R of 0.69, 

63 degrees of freedom, 74 records and 10 parameters. The RMSE of the model is 9.97 p.s.i. 

and the maximum VIF for any independent variable is 5.47.  Residual patterns for the MLR 

training  model are homogeneous.  A QR training model is developed with a 2
MR of 0.67, 63 

degrees of freedom, 74 records and 10 parameters.  The RMSE of the model is 6.64 p.s.i. 

and residual patterns for the QR training model are homogeneous.  The 2
validationR and 

RMSEP for the MLR validation model are 0.64 and 23.63 p.s.i., respectively.  

The 2
validationR and RMSEP for the QR validation model are 0.66 and 19.18 p.s.i., respectively.  

For the 0.500” product the QR validation model is slightly superior to the MLR validation 

model, with discrepancies in the both the 2R and RMSEP statistics.  This may be the result 

of departures in normality in the quantiles of IB for 0.500”. 

As noted earlier in the chapter an important criterion for predictive MLR models is 

to have six to ten times as many data records as independent variables (parameters).  This 

criterion was met when MLR models for the 0.750”, 0.625”, 0.6875” and 0.500” product 

types were built using 56, 73, 51 and 74 data records, respectively.  The challenge for most 

industrial practitioners is to not “overfit” MLR models that result in weak validation 

performance.  This chapter highlights the capabilities of QR (median) models as an 

alternative to MLR models of the mean central tendency when the response variables 

departs from normality.  Future research work may explore examining other quantiles of the 

IB of MDF using QR.  Understanding causality of process variables that influence IB in the 
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outer percentiles (e.g., 5th percentile representing possible IB failures or 95th percentiles 

representing extreme IB strength) may be very important for the practitioner.  
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CHAPTER 5 

 
Using R Software for Reliability Data Analysis 

 
5.1 INTRODUCTION AND MOTIVATION 

 
 The software package R provides an “Open Source” option for those interested in 

statistical analysis and R is also free.  The term “Open Source” is commonly applied to the 

source code of software that is made available to the general public with either relaxed or 

non-existent intellectual property restrictions. This allows users to create user-generated 

software content through either incremental individual effort, or collaboration 

(http://en.wikipedia.org/wiki/Open_source).  The package was originally developed by 

John Chambers at Bell Laboratories (formerly AT&T, now Lucent Technology) and can be 

viewed as an alternative implementation to the software package S-PLUS,  

http://www.insightful.com/.  While much code is specific to the R package, there are also 

many S-PLUS commands that will run in R without being modified.  R is capable of 

performing the standard exploratory data analyses such as histograms, box plots and 

probability plots as well as more complex analyses such as those involved in the study of 

reliability and quantile regression.  Currently, R is being used at many prestigious universities 

including the University of California at Los Angeles (UCLA), 

http://www.jstatsoft.org/v13/i07/v13i07.pdf and is also being implemented at the Oak 

Ridge National Lab (ORNL) in Oak Ridge, TN (http://www.ornl.gov/).  While there are 

numerous excellent statistical software packages on the market today, R provides a very 

economical option while continually updating with the latest tools.  For more information 

about downloading R, visit http://www.r-project.org/.   
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 Given that R software is “Open Source”, there is modest formal documentation for 

the package.  This lack of documentation may create a steeper learning curve for the novice 

to moderate-level software programmer/user than other statistical programming packages.  

The advantages of R include its functionality at no direct cost.  R provides a tremendous 

value to the user when compared to the sometimes higher cost of software packages such as 

SAS, MATLAB, Statistica, S-PLUS, etc.    

There are several third-party, or independent, books written on R as well as many 

useful websites such as one hosted by the ORNL that can be found at 

http://www.csm.ornl.gov/esh/aoed/.  Some excellent choices for an introduction to the R 

package include: A Handbook of Statistical Analysis Using R (Everitt and Hothorn 2006), and 

Introduction to Statistics through Resampling Methods and R/S-plus (Good 2005).  There are also 

other books on the market, as well as online training courses that are devoted solely to the 

instruction of the R software package. 

The American Statistical Association (ASA) often provides information about these 

online courses on the ASA website.  For more information on the courses offered through 

ASA visit http://www.amstat.org/education/index.cfm?fuseaction=learnstat.   

The coding protocol for R has been compared to S-PLUS, however R protocol may not be 

intuitive for the novice or moderate-level programmer.  Data files for use by R must be 

stored in the specific subfolders for access to the data, and specific commands must be used 

for data retrieval.  

Given that R is “Open Source” not all statistical analysis packages are automatically 

loaded with the original software download.  When performing statistical analysis using R, it 

is imperative that the user locates on-line the specific statistical package of interest.  This on-
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line location information is found in the R documentation, http://cran.r-

project.org/src/contrib/PACKAGES.html.  

The “survival” package is used in this paper for the reliability analyses.  Examples of 

downloading the “survival” package, importing data, loading data, “Create” function and 

“Write” function are presented in Table 11. 

 

        Table 11.  General tutorial of installing R with code examples 
Step Protocol 
1: Install the appropriate package  install.packages(“survival”) 

 
You will be prompted to select a “Cran 
Mirror”. Choose a location close to your 
geographic location to ensure faster 
download speed. 

2: Load the appropriate package Click the “Packages” tab on the R console, 
then select “Load Packages” and “Survival” 
 
Note: R log may instruct you to load an 
additional package to use the one you have 
originally requested. Load that package in 
the same way you attempted to load 
“survival”. 
 

3: Load data  data title=read.table(“file name.txt”) 
 
Note: No zeros or null fields are allowed in 
predictor variables.  Also, the file must be in 
the R directory on your computer:  
 
Example: C:/program files/R/rw2011 

4: Create Function Create function: 
function name=function(){} 
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        Table 11. Continued.  
Step Protocol 
5: Write Function Write function: 

function name=edit(function name) 
 
A window will pop up and you write your  
function: 
 
function(){ 
x=test[,1] 
 
Note: always be sure at this step to use the 
original data name. 
 
Example: data=read.table(“test.txt”)  
 
Note: In the example above the name of the 
data file in the R subfolder is ‘data’, not test. 
 
y=test[,2] 
 
function (the function you choose) 
     } 
 
Then type: 
Function name () 
in the R console to use the function you just 
created. 
 
Note: Any of the functions listed later in the 
paper can be used in this manner or typed 
directed into the program. However, it is 
much easier to manipulate the functions 
when they are stored in this form.  
 

 
5.2 EXPLORATORY DATA ANALYSIS FOR RELIABILITY 

 
R software utilizes basic functions to allow for easy computation of descriptive 

statistics such as mean, median, minimum, maximum, quantiles and variance (Figure 23).  R 

has excellent plotting functionality for exploratory statistical and reliability analyses such as: 
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normal probability plots, histograms, box plots, Weibull plots and Kaplan-Meier estimators 

(Figures 24, 25, 26, 27 and 28).   

 
>summary(y) 

V1 
Min. : 97.0 
1st Qu. :127.0 
Median :137.0 
Mean :137.3 
3rd Qu. :147.0 
Max. :185.0 

 
 

>quantile (y$V1) 
0% 25% 50% 75% 100% 
97 127      137      147  185 

 
 

>var (y$V1) 
[1]  195.7928 

 
Figure 23.  Example of summary output from R of descriptive statistics. 
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Figure 24. Example of normal Q-Q plot of internal bond of MDF using R code. 
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Figure 25. Example of histogram of internal bond of MDF using R code. 

 
 
 

 

 
Figure 26. Example of box plot of internal bond of MDF using R code. 
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Figure 27. Example of Weibull Q-Q plot of internal bond of MDF using R code. 

 

 
Figure 28. Example of Kaplan-Meier plot of internal bond of MDF using R code. 

 

The R code and commands for exploratory statistical analysis are quite intuitive (Tables 

12 and 13).   
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        Table 12. Exploratory data analysis- basic statistics 
Statistic R Command 
Mean & Median summary(DataName) 
Quantile quantile(DataName$ColumnName) 
Variance var(DataName) 

 
 

        Table 13. Exploratory data analysis- plots 
Plot R Command 
Normal Probability Plot qqnorm(DataName$ColumnName) 
Histogram hist(DataName$ColumnName) 
Box plot boxplot(DataName$ColumnName) 
Weibull Probability Plot x=sort(y$V1) 

pp=ppoints(x) 
qqplot( qweibull(ppoints(x), 
shape=numeric, scale=numeric), x ) 

Kaplan Meier Plot (uncensored data) fit <- survfit(Surv(time)) 
plot(fit) 

Kaplan Meier Plot (censored data) fit<-survfit(Surv(time, status)~x, 
data=DataName) 
plot(fit) 

 

The reliability tools discussed in the previous examples can be downloaded using the 

R “survival” package.  More information on the “survival” package in R can be found in 

Chapter 9 of A Handbook of Statistical Analysis Using R (Everitt and Hothorn 2006) or on: 

http://stat.ethz.ch/R-manual/R-patched/library/survival/html/survfit.html.  The R 

package is capable of analyzing many types of reliability data including censored and 

uncensored observations.  The package can also perform hazard and survival analyses. 

For illustrating R functionality in this paper we will use a data set that contains the 

tensile strength known as Internal Bond (IB) for Medium Density Fiberboard (MDF).   

MDF is an engineered wood product formed by breaking down softwood into wood fibers, 

often in a defibrator, combining it with wax and resin, and forming panels by applying high 

temperature and pressure.  MDF is a wood composite sheathing material similar in 

uniformity to plywood, but MDF is made up of separated fibers, not wood veneers and 
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therefore doesn’t have the structural strength properties of plywood.  MDF is used for 

interior non-structural applications such as furniture, cabinets, non-structural doors, etc.   

MDF is denser than a complimentary interior, non-structural wood composite known as 

particleboard (http://en.wikipedia.org/wiki/Medium-density_fibreboard).  

IB is a destructive tensile strength metric of product quality used by MDF producers 

reported in pounds per square inch (p.s.i.) or kilograms per cubic meter (kg/m3).  Testing of 

the MDF product does not require any censoring. 

 
5.3 MAXIMUM LIKELIHOOD ESTIMATES FOR THE WEIBULL 

DISTRIBUTION AND OTHERS 
 

Weibull distribution 

The Weibull Distribution is often used in the analysis of lifetime, or reliability, data 

because of its ability to mimic the behavior of other distributions such as the normal or 

exponential simply by altering the parameters (Weibull 1939, 1951, 1961).  The Weibull 

distribution is the most frequently used model for time (or pressure) to failure, perhaps 

followed by the lognormal distribution.  The Weibull cumulative distribution function (cdf) 

giving the probability that a unit will fail by time t (or at pressure p) is:  

( ) 1 exp[ ( / )]F t t= − − κλ .    [12]  

 
 
The probability density function (pdf) of the Weibull is: 
 
 

( / )( ) ( / )( / ) tf t t e
κκ λκ λ λ −1 −= .   [13]  

 
The parameter λ is the distribution scale parameter and approximately equals the sixty-third 

percentile of the distribution.  The parameter κ  is the shape parameter (Figure 29).   
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Figure 29. Illustration of Weibull PDF with altering values of λ  and κ . 

 

The hazard or instantaneous failure rate function for various Weibull distributions is: 

                                     1( ) ( ) /[1 ( )] ( )( /h t f t F t t κκ λ λ −= − = / ) .  [14] 

The instantaneous failure rate is a measure of proneness to failure as a function of age (or 

pressure).  The website, www.weibull.com, is a very helpful resource for learning more about 

this distribution and its application to various reliability problems.   

Reliability/Survival function and the Kaplan-Meier estimator 

The reliability/survival function captures the probability that the system will survive 

beyond a specified time (or pressure) to failure.  Kaplan-Meier plots are one of the most 

popular survival plots.  The Kaplan-Meier estimator (origin of Product Limit Estimator) 

estimates the survival function from life-time (or pressure to failure) data (Kaplan and Meier 

1958).  A plot of the Kaplan-Meier estimate of the survival function is the percent survival 

(Y) and life (or pressure) of the product at failure (t).  The function is typically a declining 

function, i.e., as the products age or as pressure increases, the chance of survival declines. 

For large enough samples it approaches the true survival function for that population.  An 
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important advantage of the Kaplan-Meier curve is that the method can take into account 

censored data, i.e., project failures before the final outcome is observed (Kaplan and Meier 

1958).      

 Guess et al. (2003) published the first known work of applying reliability methods 

(e.g., Kaplan-Meier estimator) to the IB of MDF.  Guess et al. (2003) discovered unusual 

crossings of the Kaplan-Meier estimators for similar products of MDF.  These crossings 

represented differences in product quality that were not anticipated by the manufacturer.  

Guess et al. (2004) used forced censoring reliability methods to estimate bootstrap 

confidence intervals for the IB for MDF under different probability model assumptions.  

Bootstrap confidence intervals varied greatly depending on the model assumption, which is 

an important consideration for the manufacturers of MDF.  Guess et al. (2004) also 

discovered that the lower percentiles of the IB for MDF fit different probability models 

when compared to the model fits for entire distribution.  Guess et al. (2005) used reliability 

methods and the mean residual life function for the IB for MDF to discover an unusual “J-

shaped” mean residual life function that identified the inertia strength of MDF. 

Chen et al. (2006) built upon the work by Guess et al. (2004) and investigated the 

lower percentiles of the IB for MDF.  Chen et al. (2006) discovered that the best fit for the 

lowest one percentile of IB was the Weibull model and estimated 95% bootstrap confidence 

bounds for this lower one percentile of 91.8 p.s.i. and 97.4 p.s.i., respectively.  Guess et al. 

(2006) further developed empirical mean residual life functions to discover crossing points as 

a method for establishing potential data driven specification limits (see Young and Guess, 

1994 and Deming’s 1986, 1993 comments on specification limits). 

Wang et al. (2006) applied the Kaplan-Meier estimator to oriented strand board 
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(OSB) destructive test data.  Wang et al. (2006) found that 50% of the Parallel Elasticity 

Index (EI) of OSB can survive 57,856 pounds per inch (p.s.i.) and only 5% of the Parallel EI 

of OSB can survive at 65,435 p.s.i.  Five percent of the IB for OSB failed before 33 p.s.i and 

95% of OSB failed before a pressure of 68 p.s.i.  The Kaplan-Meier estimator indicated that 

pressure to failure for the IB of OSB decreases at increasing rates between 35 p.s.i and 65 

p.s.i.   

Maximum likelihood estimation (MLE) 

Maximum likelihood estimation (MLE) is highly important in reliability analysis 

because it allows the practitioner to approximate the true parameters of the distribution and 

make inferences about the process, system, or component being studied.  Statistical theory 

demonstrates that maximum likelihood estimators are both consistent and asymptotically 

efficient (Meeker and Escobar 1998).  The R software packages allows user to easily calculate 

these estimates for both complete and censored data.  For more information on censored 

data analysis, visit: http://www.csm.ornl.gov/esh/statoed/.  The forest products industry 

uses destructive testing, therefore we concentrate on complete data.  However, with some 

manipulation of the R code, R can also calculate MLEs for censored data.   

We use the Weibull distribution as an example given the findings of Chen et al. 

(2006) where the Weibull distribution was used to model IB pressure to failure for MDF.  

The MLE output for the IB data set was 10.13κ = (shape) and 143.69λ = (scale) and is 

included in Figure 30.  The R code used for this analysis was presented in Modern Applied 

Statistics with S (Venables and Ripley 2002) and it can be found at 

http://www.wessa.net/rwasp_fitdistrweibull.wasp?outtype=Browser%20Blue%20-

%20Charts%20Whiten (Wessa 2006), also see Appendix C for the MLE R code. 
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Figure 30. Example of Weibull MLE of internal bond of MDF with Q-Q plot using R 
code. 

 
 

5.4 CONCLUSIONS FOR CHAPTER 5 
 

The R software package is a very powerful analytical tool and can be used for several 

different types of data analysis.  R provides an “Open Source” option for those interested in 

statistical analysis while also being free.  “Open source” describes the principles and 

methodologies to promote open access to the production and design process for various 

goods, products, resources and technical conclusions or advice. One of the most important 

facts is that R is user-generated and is created through collaboration. Therefore, R is 

constantly being updated with the most current functions and techniques.  

The great advantage of the R software package is its ability to adapt to the ever-

changing needs of the software user. Through collaboration of software programmers and 

insightful documentation, R is capable of meeting the needs and filling the niches of several 

separate software packages while remaining highly cost effective.  
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CHAPTER 6 

Summary and Concluding Remarks 
 

 The purpose of this thesis to explore just a few of the seemingly endless applications 

of Quantile Regression (QR), as well as uses of the easily accessible software package R.  

Often, practitioners or industries become comfortable with a particular set of statistical 

analyses using specific or company-directed software packages and are hesitant to investigate 

more advanced methods.  The thesis seeks to illuminate some practical uses of new 

methods, which can be readily applied to many industrial processes. The methods and 

research of this thesis may provide MDF manufacturers with important techniques for 

quantifying unknown sources of variation in order to facilitate variation reduction, cost 

savings and continuous improvement.   

 Chapter 2 provides a concise account of the current literature pertaining to Medium 

Density Fiberboard (MDF), Multiple Linear Regression (MLR), and Quantile Regression 

(QR).  Large-scale production of MDF began in the 1980s and has become one of the most 

highly-demanded composite wood materials.  Given its excellent uniformity and versatility, 

MDF is an excellent base for veneers and laminates as well as non-structural constructions 

such as shelving, furniture and decorative molding.  In 2004, the domestic production of 

MDF increased by 32.3% and is projected to continue this trend (Howard 2006).   However, 

real prices of manufactured wood products are declining in an environment of higher energy 

and raw material costs (Howard 2006).  This will pressure the competitive MDF 

manufacturer to focus on high quality, high production efficiency and lower costs of 
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manufacturing.  The use of statistical techniques for continuous improvement is low risk and 

highly defendable.   

One of the most popular and commonly used data mining techniques is Multiple 

Linear Regression (MLR).  Much is published on MLR and its popularity may be due to it 

being a core course for undergraduates majoring in math, engineering or science.  MLR can 

provide insightful information in cases when the rigid assumptions associated with it are 

met.    

In chapter 3, we explore modeling the Internal Bond (IB) of MDF using Quantile 

Regression (QR) methods as compared to classical MLR models.  MLR and QR models are 

developed for the IB of MDF.  The data set used for the analysis aligns the IB of MDF with 

184 different independent variables that are on-line sensors located throughout the process, 

i.e., from refining to final pressing.  The MLR and QR models are developed using a best 

model criterion for all possible subsets of IB for four MDF thickness products reported in 

inches, e.g., 0.750”, 0.625”, 0.6875”, and 0.500”.  The QR models are developed for the 50th 

percentile or median.  

The adjusted coefficient of determination (R2
a) of the MLR models range from 72% 

with 53 degrees of freedom to 81% with 42 degrees of freedom, respectively.  The Root 

Mean Square Errors (RMSE) range from 6.05 pounds per square inch (p.s.i.) to 6.23 p.s.i. 

A common independent variable for the 0.750” and 0.625” products is “Refiner Resin 

Scavenger %”.  QR models for 0.750” and 0.625” have similar slopes for the median and 

average but different slopes for the 5th and 95th percentiles. “Face Humidity” is a common 

predictor for the 0.6875” and 0.500” products.  QR models for 0.6875” and 0.500” indicate 
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different slopes for the median and average with different slopes for the outer 5th and 95th 

percentiles.   

 Discrepancies between the coefficients derived from the MLR models and those 

derived from QR models of the median indicate QR may be more appropriate when the 

response variable departs from normality.  These discrepancies signal a need for additional 

research of the sources of variation acting on the percentiles of IB.  Improved knowledge of 

causality of the percentiles of IB may lead to variation reduction, costs savings and 

competitive advantage.  

Chapter 4 examines the validity and predictability of QR (median) models as 

compared to MLR models for MDF.  The MLR and QR validation models for the 0.750”, 

0.625” and 0.6875” product types have 2
validationR ranging from approximately 40% to 60% 

and RMSEP ranging from 26.53 p.s.i. to 27.85 p.s.i..  The MLR validation model for the 

0.500” product has a 2
validationR and RMSEP of 64% and 23.63 p.s.i. while the QR validation 

model has a 2
validationR and RMSEP of 66% and 19.18 p.s.i.  The IB for 0.500” has the greatest 

departure from normality which is reflected in the results of the validation models.  The 

results of this chapter provide further evidence that QR is a more defendable method for 

modeling the central tendency of a response variable when the response variable departs 

from normality.  

In Chapter 5, reliability applications using the R software package are presented. 

This software package is an extremely powerful analytical tool and can be utilized for several 

different analyses. R is a user-generated, “Open Source”, option for those interested in 

statistical analysis while also being free.  As R is created through collaboration, it is 

continuously being updated with the most current functions and techniques as they come 
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available. In this thesis, we utilize R for computing basic descriptive statistics, various data 

plots, and to calculate Maximum Likelihood Estimates (MLE) for the useful Weibull 

distribution.  The great advantage of the R software package is its ability to adapt to the ever-

changing needs of the software user.  

 For future research, the concept of model validation should be thoroughly addressed 

and prepared for in the initial experimental design, i.e., a portion of the data should be held 

out prior to initial model building. In this thesis, the idea of model validation was not 

addressed until after the initial models were developed; therefore, the validation models 

varied from the initial explanatory models.  It would be quite beneficial to compare various 

time periods and production runs as an additional means to assess the validity of models 

built.  Also, exploring properties of MDF beyond the IB, or even other manufactured wood 

products, would be beneficial to the manufacturer.   

In the rapidly changing and highly competitive global economy it is imperative that 

the wood composite industry utilize all analytical and statistical tools available in order to 

produce the highest quality products as efficiently as possible. This thesis highlights some of 

these important statistical tools.  Improved product quality and more efficient use of 

valuable forest resources not only benefit the wood composites industry but also benefit the 

economy and society.   
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APPENDIX A 
 

SAS Code for Mixed Stepwise Regression for All Possible 
Subsets 

 
*First, we import our data into SAS using the “import” option under “file”. We name the 
data file “base”, and use the following command to load it into SAS memory; 
sasfile base load;  
 
*Here, we are extracting our data from the new SAS file “base”.  
proc sql noprint;   
   select nobs into :nobs from sashelp.vtable 
       where libname eq 'WORK' and memname eq 'BASE'; 
 
*The following code breaks the data “base” out into subsets, starting at 50 and adding one 
record at a time; 
data subsets / view=subsets; 
   do samplesize = 50+subset; 
       do subset = 1 to 100; 
           start = 1; 
           end   = 50+subset; 
           if end le &nobs then do obs = start to end; 
               set base point=obs; 
               output; 
           end; 
       end; 
   end; 
   stop; 
 
*Below, stepwise regression is performed for each subset for the target variable, ib; 
proc reg noprint outest=estimates rsquare adjrsq aic data=subsets; 
   by samplesize subset;  
   model ib=independent variables 
/selection=stepwise slentry=0.05 slstay=0.05; 
   run;  
 
*These lines of code plot the corresponding adjusted r-sq by sample size plot; 
 proc gplot data=estimates; 
   symbol1 value=dot i=join color=black; 
   symbol2 value=dot i=join color=blue; 
   symbol3 value=dot i=join color=green; 
   legend1 label=(j=l "Sample Size:"); 
   plot _ADJRSQ_*subset=samplesize / frame legend=legend1; 
   run; quit; run;  
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*Lastly, we filter the subsets that are listed in the output table by adding some qualifiers; 
data results; set estimates; if _edf_ ge 35; if _adjrsq_ ge 0.50; if _p_ le 20; if _aic_ le 300; 
run; 
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APPENDIX B 
 

R Code for Multiple Quantile Regression 
 
 
*First, we create a function in R, then open it up to edit; 
function(){ 
 
*Here, we declare variable names (i.e., x is the first column of the data table “test”); 
x=test[,1] 
y=test[,2] 
z=test[,3] 
 
*When plotting more than one variable, use the “+” sign; 
     plot(x+z,y) 
     points(x+z,y,cex=.5,col="blue") 
 
*We declare the percentiles of interest using the “taus” command.  
     taus <- c(.05,.1,.25,.75,.9,.95) 
     f <- coef(rq((y)~(x+z),tau=taus)) 
     yy <- cbind(1,x+z)%*%f 
     for(i in 1:length(taus)){ 
             lines(x+z,yy[,i],col = "gray") 
             } 
 
*Below, we add the multiple linear regression line and the quantile regression lines to the 
plot; 
     abline(lm(y~x+z),col="red",lty = 2) 
     abline(rq(y~x+z),col="blue") 
 
*Lastly, we ask for a summary of the quantile output; 
summary(rq(y~x+z, ci=FALSE, tau=taus)) 
} 
 
 
 
 
 
 
 
 
 
 
 



 92

APPENDIX C 
 

R Code for Weibull Distribution MLE Estimation 
 

*First, we create a function in R, then open it up to edit; 
function() 
{ 
 
*Here, we declare variable name (i.e., x is the first column of the data table “test”); 
data=read.table("ib.txt") 
x=data[,1] 
 
*We declare the Weibull parameters; 
par1=1 
par2=8 
 
*The Weibull function is calculated and output is sorted; 
PPCCWeibull <- function(shape, scale, x) 
{ 
x <- sort(x) 
pp <- ppoints(x) 
cor(qweibull(pp, shape=shape, scale=scale), x) 
} 
par1 <- as.numeric(par1) 
par2 <- as.numeric(par2) 
if (par1 < 0.1) par1 <- 0.1 
if (par1 > 50) par1 <- 50 
if (par2 < 0.1) par2 <- 0.1 
if (par2 > 50) par2 <- 50 
par1h <- par1*10 
par2h <- par2*10 
sortx <- sort(x) 
c <- array(NA,dim=c(par2h)) 
for (i in par1h:par2h) 
{ 
c[i] <- cor(qweibull(ppoints(x), shape=i/10,scale=2),sortx) 
} 
 
*Plots the Q-Q plot; 
plot((par1h:par2h)/10,c[par1h:par2h],xlab='shape',ylab='correlation',main='PPCC Plot - 
Weibull') 
dev.off() 
f<-fitdistr(x, 'weibull') 
f$estimate 
f$sd 
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*Lastly, the following code labels the Q-Q plot; 
xlab <- paste('Weibull(shape=',round(f$estimate[[1]],2)) 
xlab <- paste(xlab,', scale=') 
xlab <- paste(xlab,round(f$estimate[[2]],2)) 
xlab <- paste(xlab,')') 
qqplot(qweibull(ppoints(x), shape=f$estimate[[1]], scale=f$estimate[[2]]), x, main='QQ plot 
(Weibull)', xlab=xlab ) 
} 
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