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Abstract

Audio event detection and analysis is an important tool in many fields, from

entertainment to security. Recognition technologies are used daily for parsing voice

commands, tagging songs, and real time detection of crimes or other undesirable

events. The system described in this work is a hardware based application of an

audio detection system, implemented on an FPGA. It allows for the detection and

characterization of gunshots and other events, such as breaking glass, by comparing

a recorded audio sample to 20+ stored fingerprints in real time. Additionally, it has

the ability to record flagged events and supports integration with mesh networks to

send alerts.
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Chapter 1

Introduction

The majority of audio event detection systems are software based, and, in many

cases, rely on networking to send audio back to a central location for processing. The

system described in this work is Field Programmable Gate Array (FPGA) based,

and all processing occurs at the node. It is designed to interface with environmental

sensor arrays which themselves will monitor air quality, temperature, light levels, etc.

in urban environments. When possible, the arrays will use power supplied from light

posts, buildings, or other sources, and will be mounted to existing infrastructure. The

sensor arrays will communicate via a mesh network, although this is not required for

the event detection system to function. Related works are discussed in chapter 2.

A fast cross correlation algorithm, discussed in chapter 3, is used for event

detection. It takes advantage of an FPGA’s ability to perform large operations in

parallel and to pipeline the system to minimize delays. The detection system loads a

predefined library of audio fingerprints onto an FPGA which then constantly monitors

the nearby environment for occurrences of these events. The system is intended to

capture impulsive events, such as gunshots, breaking glass, etc. When an event is

detected, the system stores the buffered audio for further analysis and, depending on

the configuration, sends an alert via a mesh network. This alert tells other sensor

nodes to store the contents of their buffers. The recorded audio may be analyzed to
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determine the approximate location that an event occurred via triangulation, based

on relative amplitudes between different nodes with known locations. This latter

application is not discussed in this paper, but could be implemented using known

algorithms.

The FPGA used in this project is a Xilinx Artix 7 XC7A100T. The system is not

limited to this specific board, and other FPGAs would also work. A large part of the

design does depend on Xilinx IP cores, however, so utilizing a different Xilinx FPGA

would be simplest and would not require any additional modules to be created. The

only change necessary would be modifications of the constraint file to set the pins used

for external interfacing. There could be a limitation on the number of fingerprints

which could be stored on a different FPGA, depending on the amount of available

memory on the FPGA. Resource utilization and requirements relating to this are

discussed in chapter 4. Results from a test of the system against real audio events

are shown in chapter 5, and further improvements and additional capabilities are

examined in chapter 6.
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Chapter 2

Related Work

The number of audio event detection systems which both sample and perform data

analysis at the node is fairly small. The number which implement this feature at a

hardware level is even smaller. The majority are software based and only utilize the

node as a means to record audio, transmit data, and display the results.

One of the most well known audio analysis systems is Shazam (An Industrial

Strength Audio Search Algorithm [1]). This application uses one’s mobile device

to record a snippet of a song. The sample is uploaded to a server which creates a

spectrogram of the audio. Large frequency intensity peaks are picked out, and the

distance (time) between them is noted, along with the difference in frequency. These

points are then placed in a hash table. The resulting values are then compared

to fingerprints of other songs by looking for similar frequency-intensity vs time

relationships. When enough corresponding points have been detected, the system

sends the name and details of the detected song back to the user. The system performs

well even in noisy environments, as long as the corresponding frequency peaks can

be detected. While the application is limited by internet access, it maintains a high

accuracy and has an extensive song catalog.

In the same vein as the method used by Shazam, but taking advantage of the

parallel capabilities of an FPGA, is a music melody identification system (An FPGA
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based parallel architecture for music melody matching [2]) which uses string matching.

It allows for the matching of a sung or hummed melody, which is saved as a WAV

file at a sampling frequency of 8kHz, to a database of MIDI files. A personal

computer (PC) converts the user sung query into a regular expression, while the

FPGA handles the back end processing and matching. The string formatting is fairly

interesting; a MIDI file consists of a table of notes at different times. To create a

more easily searchable format, the table is converted to a string of characters. Each

character lasts a predetermined amount of time, and the pitch is its ASCII value (0-

127). For example, ”Happy Birthday” can be approximated by the following string:

<<<<<<<>>>>>><<<<<< AAAAAA@@@@@@@@@@@@. The pitch during

a certain period of a recorded segment is estimated using a fundamental frequency

estimator called YIN (YIN, a fundamental frequency estimator for speech and music

[3]). To account for variances in recorded pitch versus stored pitch, the system shifts

the recorded pitch over a range of nearby pitches before comparing each one to the

database recording. A list of the 10 closest MIDI files are presented based on the

minimum amount of change required to match the recorded sample to a file from the

database (called edit distance), and a successful retrieval is defined as any list which

contains the original song, regardless of position in the list. The system maintained

90% accuracy while checking a database of 5569 files in 19.4 seconds, which works

out to an average comparison time of 54.6ms per query. While this is acceptable for

matching nonrecurring events, it would not lend itself well to a real time monitoring

system.

Another FPGA-based music retrieval algorithm is described in a paper titled

”FPGA Implementation of Content-Based Music Retrieval Systems” [4]. Similarly

to the implementation discussed in the music melody identification system [2], this

one uses string matching of MIDI files and a scoring system based on the edit

distance between the recorded sample and the stored library sample. Unlike the other

implementation, however, this one uses a soft CPU, which is a CPU created from the

reconfigurable logic of an FPGA as opposed to purpose built hardware, to interface
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with the string matching hardware. The soft CPU runs at 50MHz while the matching

hardware runs at 422MHz, which is the maximum operating frequency of the Altera

Stratix EP1S40 FPGA used. A 2MB database contains strings representing 37,536

songs. While no mention is made of the accuracy, the total CPU time to check the

2MB database is 1,231 milliseconds. This does not give the total amount of time

required for the hardware matching algorithm to run, so the total run time of the

system cannot be determined.

An audio event detection system for screams and gunshots was presented in a

2007 paper (Scream and gunshot detection in noisy environments [5]). The described

system uses a combination of 47 temporal, spectral, and perceptual features, such

as zero crossing rate, spectral distribution, and Mel Frequency Cepstral Coefficients,

respectively. Features which may be overly sensitive to the SNR, such as short time

energy and loudness, are not used. The system starts by taking auto correlations

of each frame, which are 23ms long and sampled at 22.05kHz, to find the energy

distribution over different time lags. Much of the energy in a gunshot, which is

highly impulsive, is contained in the first time lags. Screams, on the other hand, are

spread over a larger number of time lags. While the number of features is large, only

certain ones are used depending on their estimated usefulness. Past a certain point,

the gains from including additional features begin to saturate while processing time

increases. Training is performed for both gunshots and screams, although there is

little explanation of the training process. As expected, the SNR of both the detected

signals and the training signals affects the false positive and false negative rates.

Resulting tests show that training with high SNR and testing with low SNR leads to

a lower overall accuracy of about 15% vs a maximum accuracy of 90%. Best results

were achieved using training samples with a SNR of 10dB and 15dB for screams and

gunshots, respectively. Implications of this are discussed in 6.1.1.

The Vanderbilt based Institute for Software Integrated Systems has been suc-

cessful in designing counter-sniper and weapon classification systems for urban

environments since 2004, as described in ”Sensor network-based countersniper
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system”[6], ”Multiple simultaneous acoustic source localization in urban terrain”[7],

”Shooter localization and weapon classification with soldier-wearable networked

sensors”[8], and ”Acoustic shooter localization with a minimal number of single-

channel wireless sensor nodes”[9]. The first system that they developed is called

PinPtr [6][7]. It utilizes distributed, time-synchronized, networked sensor nodes to

detect both muzzle blasts and shock waves, send the events back to a base station,

and then calculate the shooter location. Its average accuracy is roughly 1 meter with

a 2 second turnaround time. The detection hardware is composed of a Mica mote

based around an ATmega microcontroller to handle messaging, time management,

etc. and a Xilinx Spartan II FPGA to process incoming audio data. The algorithm

used for detection is based on zero crossing and signal amplitude over time. Muzzle

blasts and shockwaves are detected using finite state machines (FSMs), based on the

signal amplitude, length, and fall and rise times. Based on the difference in time

between multiple motes detecting events, the location of the shot can be determined.

The system requires a relatively high number of motes to accurately detect an event,

as can be seen in figure 2.1. It should be noted, however, that a shot is considered

undetected if less than six sensors detect an event. No mention is made of the ability

of a single node to detect an event since the system is meant to be used with multiple

networked motes to determine the shooter location.

In a 2007 paper [8], improvements to the above system were described. The

microphone array was turned from a static object into a helmet mounted version,

with the addition of a 3 axis compass for orientation and bluetooth communications

to send data to a PDA. At its core, the system still uses the zero crossing FSM to

detect events based on rising and falling times over specific time periods. Additionally,

since the period of a bullet’s shockwave is based on its length and diameter, the caliber

can be estimated based on detected characteristics. The group also determined that

the muzzle blast of a weapon is not unique enough to determine the type of weapon

fired, since environmental reflections and interference have more of an influence on

the acoustic signal than the actual weapon does. However, speed and caliber can still
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Figure 2.1: Detection rate vs number of sensors [6]

be used to estimate the weapon type, especially for common weapons. This paper

also mentions the fact that a single sensor is able to detect and locate a shooter if

at least 3 microphones on a node detect the muzzle blast and shockwave’s time of

arrival. Another paper [9] was published in 2011 in which improvements in accuracy

and weapon classification using fewer nodes were discussed. Overall, this seems to be

one of the most interesting applications in addition to being similar to this project in

that detection is performed using an FPGA.

There are two other gunshot detection systems which are currently being used

by the military and police departments, although little information is available on

the methods that they use for detection. The first is called ShotSpotter [10]. It is

marketed towards police departments, college campuses, and commercial buildings.

It claims to be able to detect a wide range of ”sharp acoustic events ... explosions,

subsonic, supersonic gunfire.” The system uses ”spatial filtering,” which is the

placement of sensing nodes at large enough distances that non gunshot or explosive

sounds such as construction noise or traffic will not reach multiple sensors, and
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therefore will not trigger a detection and cause false positives. It also allows for real

time monitoring and triangulation to alert users to the location of event occurrences.

A large amount of the information available is marketing related, however, and there

is no information available regarding the accuracy, power, cost, etc. of the system.

The other detection system is named Boomerang and was developed by DARPA

and BBN Technologies, which is a subsidiary of Raytheon, for usage in areas of

military operation. It uses an array of microphones to detect gunfire in both urban and

non-urban environments. Boomerang allows for detection to occur while being used

by individual soldiers, ground based transport vehicles, and helicopters. The system

designed for soldiers is referred to as Boomerang Warrior-X [11] and compensates

for the individual’s movement. Similarly, Boomerang III [12], which is the ground

vehicle mounted system, and Boomerang Air [13], which is the helicopter mounted

system, filter out events such as vehicle vibrations, outgoing weapons fire from that

location, wind, doors closing, and other sounds. BBN claims a shot detection rate of

95% of all supersonic projectiles [14], with false positives occurring at a rate of less

than one per every thousand hours of operation. It is able to detect and locate the

origin of gunshots whose projectiles pass within about thirty meters of the microphone

array. This indicates that the system depends on the bullet’s supersonic shockwave for

detection. From the available information on Boomerang, it seems to work similarly

to the PinPtr system developed by Vanderbilt, although the hardware and detection

methods are unknown.
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Chapter 3

Methodology

3.1 Cross Correlation Matching Algorithm

The cross correlation of two functions provides an estimation of the similarity between

the functions. Discrete time domain cross correlation is given as:

f [n] ? g[n] =
∞∑

m=−∞

f ∗[m]g[m+ n] (3.1)

Time domain cross correlation requires O(N2) operations, where N is the number of

samples, as each sample in f must be ”slid” past each sample in g. This operation

must be completed serially and is relatively slow. A quicker method of computing

discrete cross correlation is to use fast cross correlation. This is done by transforming

f and g to the frequency domain (equations 3.3 and 3.4) using a Discrete Fourier

Transform (DFT), multipling the cross conjugate of one of the frequency domain

signals by the other signal (equation 3.5), then computing the Inverse Discrete Fourier

Transform (IDFT) to yield the cross correlation of f and g (equation 3.6).

y[n] = f [n] ? g[n] (3.2)
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F{f [n]} = F [k] =
N−1∑
n=0

f [n]e−j2πkn/N (3.3)

F{g[n]} = G[k] =
N−1∑
n=0

g[n]e−j2πkn/N (3.4)

Y [k] = F [k]∗G[k]I (3.5)

y[n] = F−1{Y [k]} =
1

N

N−1∑
k=0

Y [k]ej2πkn/N (3.6)

Once the cross correlation of f [n] and g[n] has been computed, the result is checked

against a threshold. If the cross correlation contains values which are over that

threshold, a match is made. If gunshot samples are being compared to recorded

events and multiple gunshot samples are matched to a single sample, the system can

rank the gunshots in order from that with the highest resulting cross correlation value

to the lowest. While this can not tell the user that a detected gunshot definitely came

from a specific type of gun, it gives an indication of the most likely type.

The benefit of using fast cross correlation instead of normal time domain cross

correlation can be seen in figure 3.1. Utilizing a Fast Fourier Transform (FFT)

algorithm to compute the DFT requires O(Nlog2(N)) operations. Multiplying the

resulting frequency domain signals requires an additional N operations. Additionally,

the N length signal must be zero padded to twice its original length. This is required

as the fast cross correlation method uses circular cross correlation, where the signals

wrap at the ends. Adding the zeros ”removes” the overlap and simulates an infinite

signal. This brings the total operations required to compute fast cross correlation to

O(2(2N)log2(2N) + 2N).

INote: ∗ refers to the complex conjugate, not multiplication
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Figure 3.1: Computations required for fast vs normal cross correlation

3.2 MATLAB Simulation and Early Testing

Before work on the hardware implementation began, a number of tasks needed to be

completed. The first was to develop a working simulation to verify that the cross

correlation matching algorithm would perform as desired, in addition to determining

parameters such as the number of points to collect during each sampling period and

the sampling frequency. This was done in MATLAB, which provides a number of

useful toolboxes for digital signal processing, serial communications, etc.

Recordings used to test the simulation were acquired from The Free Firearm Sound

Effects Library [15], which contains roughly 280 raw gunshots from 24 different guns.

The recordings are 32 bit doubles, sampled in stereo at 192kHz. Gunshots were chosen

for the initial testing phase as they are consistent sounds with narrow spectrums.

Recordings of broken glass, animal calls, etc. are not as consistent and would have

made initial testing more difficult.

The audio signal is captured by a microphone and converted to a signed 16 bit

number by an analog to digital converter (ADC), which is then fed to the FPGA
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(this will be discussed further in section 3.3). When creating the fingerprints, the

recordings from the Free Firearm Sound Effects Library are converted from 32 bit

doubles with a range of -1 to 1 into 16 bit integers with a range of -32768 to 32767.

This is done for two reasons: the first is to fully utilize the input range of the Xilinx

FFT IP core on the FPGA. The second is to allow for the audio fingerprints to

approximate the signal received from the ADC as accurately as possible. Figure 3.2

shows the original time domain 32 bit double signal overlaid on the 16 bit integer

signal (both results are normalized to 1 in order to show the overlap). There is no

visible difference, and the root mean squared error (RMSE) (given in equation 3.7)

of the two signals is 8.6x10−6.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3.7)

Figure 3.2: Comparison of 32 bit double vs 16 bit int signals (t domain)

Similarly, figure 3.3 shows the FFT of the original 32 bit double signal overlaid

on the FFT of the scaled 16 bit integer signal . Again, there is no visible difference,

and the root mean squared error of the two signals is 9.5x10−6.
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Figure 3.3: Comparison of 32 bit double vs 16 bit int signals (F domain)

In equation 3.5, G[k] represents the FFT of the input signal, and F [k] is the

audio fingerprint. The audio fingerprints are created by zero padding a time domain

sample, taking the complex conjugate of its FFT (F [k]∗), scaling it to fit into two 16

bit signed integers to represent both the real and imaginary parts, then converting

the result to a binary representation to be stored in memory on the FPGA.

To test the matching simulation, both a fingerprint and raw gunshot sample are

loaded, and, if desired, the raw gunshot recording is combined with other recordings,

such as traffic noise or white noise, to simulate interference from the environment.

Sampling frequency, FFT size (NFFT), and trigger threshold are set before running

the simulation. The simulation loops through the audio track, grabs NFFT/2

samples, zero pads the samples so that the total length is equal to NFFT , takes

the FFT of the padded sample, then takes the IFFT of product of the sample and the

fingerprint (see 3.6). If the resulting cross correlation is greater than the threshold,

then the index of the sample, FFT of the sample, and resulting cross correlation are

saved. This repeats for both channels until the end of the audio file has been reached.

The results are then plotted, as seen below.

13



Figures 3.4 and 3.5 show the results of a Ruger Mark III .22 pistol fingerprint

compared against its original recording, in addition to the same recording with traffic

noise [16] added. The top plot of each figure shows the original waveform, with the

matching sections marked in red. The middle plot shows the resulting cross correlation

at each matched section, while the bottom left plot shows the original fingerprint, and

the bottom right shows the overlaid FFTs of both the fingerprint and the matching

sections. Comparing the fingerprint against its original recording is more of a proof

of concept than an actual test, as a match would be expected.

Figures 3.6 and 3.7 show the results of a Ruger Mark III .22 pistol fingerprint

compared against a Ruger 10/22 .22 rifle. Even though the spectrum of the fingerprint

differs from that of the sample, a match is still made. This suggests that a fingerprint

for a specific caliber and type of gun will readily be able to detect a match against a

different type of gun (e.g. handgun and rifle). Again, the algorithm is able to pick

the gunshot out from the background noise.

Figures 3.8 and 3.9 show the results of a Ruger Mark III .22 pistol fingerprint

compared against a Colt 1911 .45 pistol. Although they are different calibers, the

spectrums of the two shots are very similar. This lends further support to the idea

that a fingerprint from one type of gun may be used to detect the firing of a different

type of gun.

Figures 3.10 and 3.11 show the results of a Ruger Mark III .22 pistol fingerprint

compared against a Marlin 336 .30-30 rifle. Although this is both a different caliber

and type of gun, the algorithm is still able to detect a match, as was suggested by

the previous results.

From the collection of tests, it appears that the cross correlation based matching

algorithm is robust and accurate, even in the presence of city noise or wind (modeled

as white noise in 3.12). These results are promising and suggest the feasibility of a

hardware implementation.
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Figure 3.4: Ruger .22 Pistol Fingerprint and Sample

Figure 3.5: Ruger .22 Pistol Fingerprint and Sample With Traffic Noise
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Figure 3.6: Ruger .22 Pistol Fingerprint and Ruger 10/22 .22 Rifle Sample

Figure 3.7: Ruger .22 Pistol Fingerprint and Ruger 10/22 .22 Rifle Sample With
Traffic Noise
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Figure 3.8: Ruger .22 Pistol Fingerprint and Colt 1911 .45 Pistol Sample

Figure 3.9: Ruger .22 Pistol Fingerprint and Colt 1911 .45 Pistol Sample With
Traffic Noise
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Figure 3.10: Ruger .22 Pistol Fingerprint and Marlin 336 .30-30 Rifle Sample

Figure 3.11: Ruger .22 Pistol Fingerprint and Marlin 336 .30-30 Rifle Sample With
Traffic Noise
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Figure 3.12: Ruger .22 Pistol Fingerprint and Marlin 336 .30-30 Rifle Sample With
Additive White Gaussian Noise

3.3 Hardware Implementation

To ensure that the resulting hardware cross correlation matched the MATLAB

simulation, a simple test was performed on the FPGA. Figure 3.13 shows the

normalized cross correlation between two channels of the same recording, while figure

3.14 shows the absolute value of the normalized cross correlation. The MATLAB

and FPGA cross correlations had a RMSE of 0.025. There is an inversion in the

two correlations in figure 3.13 from indices 1000 to 2000, but the remainder of

the signals are very close to each other. Some variance is expected, as the FPGA

version has multiple sources of error which accumulate throughout the process. These

include truncation or rounding of the lower bits at the outputs of the FFT and IFFT

in addition to truncation of the lower bit of the imaginary result of the complex

multiplication due to bit width growth. While small, these errors collect and affect

the output of the IFFT. Without the accumulated errors, the result of the IFFT
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would be a completely real number as the original inputs to the cross correlation

process were both real numbers. However, due to these inaccuracies, the result has

some small imaginary components. This is unavoidable but easy to work around, as

the magnitude of the cross correlation is nearly the same.

Figure 3.13: MATLAB and FPGA Generated Cross Correlations

Figure 3.14: Absolute Value of MATLAB and FPGA Generated Cross Correlations
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All data transfer operations, flags, run commands, etc. are handled by a finite

state machine (FSM) control unit which manages the operation of the entire system.

It receives an 8 bit command which contains the following settings: run, reset, ADC

enable, run continuously/once, NFFT , and the option to send serial results. Run and

reset cannot be enabled at the same time, as reset will take precedence. The options

to use the ADC and to run the system continuously/once are used for debugging and

testing. In normal use, the ADC would always be enabled, the system would run

continuously, and the results would not be sent via serial. The value of NFFT also

determines the number of samples to record, equal to NFFT/2. Each time a run

command is received, the FFT and IFFT IP cores are configured with the current

value of NFFT . Sending serial results can only be done if the system is connected to

a PC via UART, and the send serial data flag is set high. Assuming it is, then once

a sample has been processed and checked, the number of detections and the indices

of the fingerprint(s) that caused the detections are sent to MATLAB, assuming an

event was detected and triggered a flag to send the data.

Before processing is performed on the FPGA, audio samples are captured using

a supporting board which contains a MEMS microphone, adjustable gain amplifier

(LM741), and an ADC (AD9851), along with the necessary voltage regulators and

biasing circuits. The ADC allows for a sampling rate of up to 100kHz at 16 bits of

resolution. Control is handled by the FPGA; when it is ready to capture a sample,

it sends a ’ready’ signal to the ADC. When the conversion is complete, the ADC

sends a ’finished’ signal and presents the converted data on its 16 bit parallel output.

From here, the FPGA stores the sample in memory and repeats the process until the

desired number of samples have been collected. Additionally, samples can be loaded

from a PC to allow for repeatable and consistent testing.

To ensure that events are not missed or split during the transition from one

sampling period to the next, two separate memories are used to save the sampled

audio. The recorded samples are staggered and alternate between the two memories.

The first memory will fill until a set overlap point, after which both the first and
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second memories will store data. Once the first memory is full, an alert is triggered,

a flag which denotes which memory is currently busy flips, and the second memory

continues to fill. Once the overlap point is reached again, the first memory will begin

to store data, and the cycle repeats. The overlap size is adjustable; if it is too large,

then events will be detected multiple times and the amount of available processing

time will be limited. Conversely, if the overlap range is too small, short events which

occur during the transitional period may be cut off and not detected at all. Figure

3.15 shows this process, with blue representing one memory block and red representing

the other.

Figure 3.15: Overlap Scheme for Audio Sampling

Once samples have been stored in memory, they are zero padded and sent to a

Xilinx FFT IP core via a multiplexer. The multiplexer passes NFFT/2 samples to

the input of the FFT before its control bit switches, causing the value of the remaining

NFFT/2 samples fed to the FFT to be zero. The FFT has a configurable transform

length and scaling factor. Changes to the transform length can be made depending on

the length of the events that the system if looking for. The majority of the energy in

a gunshot, for example, occurs in a few ms or less, while a window breaking may last

tens or hundreds of ms. The scaling factor is required due to the nature of the FFT

algorithm. The width of the data grows by log2(NFFT ) bits, which can potentially

cause its value to overflow and wrap around to a lower value. To prevent this, each

stage scales the value of the data down by
1

2
to

1

4
.

Once the FFT core has completed the transform of the sampled audio, the data

is saved to memory so that it can be used for comparisons with multiple fingerprints.

The control logic then handshakes with a Xilinx complex multiplier IP core and begins
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incrementing the addresses of both the current fingerprint and the stored frequency

domain sample until all data has been fed into the multiplier.

As the complex multiplication process finishes, the results are fed into an IFFT of

NFFT length. The IFFT sends the resulting cross correlation (eq. 3.6) to a threshold

comparison block. If the threshold is surpassed, a flag is triggered and the index of

the fingerprint that caused the detection is saved, along with the time domain sample

that caused the detection. With this, the cross correlation operation and checking

are finished. If more fingerprints remain, the process will repeat, and each fingerprint

will be cross correlated with the stored transformed sample and checked. Once the

remaining fingerprints have been checked, the process will wait for new data from the

ADC.

A block diagram of the system can be seen in figure 3.16. The control logic

interfaces with each component, but the connections are not shown for simplicity’s

sake.

Figure 3.16: Block Diagram of FPGA System
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Chapter 4

Performance and Resource

Utilization

4.1 Number of Fingerprints

The first limitation on the number of fingerprints that the system can handle is

processing time. To give an example, a 8192 point FFT takes 30896 clock cycles to

complete, after taking NFFT cycles to read in the data. Storing the results of the

FFT for comparisons against the fingerprint library takes an additional NFFT cycles.

Each complex multiplication takes 6 cycles, although by pipelining this operation, it

only takes NFFT +6 cycles, and the output is fed directly into the IFFT. Comparing

the resulting cross correlation to the threshold takes 1 cycle per comparison. An

estimate of the resulting clock cycle count is presented in equation 4.1. The total

processing time from reading a stored sample to checking the result against the

threshold is roughly equal to equation 4.2. Table 4.1 shows the processing time for

various values of NFFT , while figure 4.1 shows the total processing time required to

compare a sample against a range of fingerprints for various values of NFFT . Note

that the number of samples recorded are equal to NFFT/2.
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ClockCycles = 2NFFT + FFTCycles+NFingerprints(2NFFT + FFTCycles)

(4.1)

Table 4.1: Required FFT Cycles & Processing Time

NFFT Cycles Time(µS)
1024 3458 34.58
2048 7321 73.21
4096 14489 144.89
8192 30896 308.96

ProcessingT ime(s) =
ClockCycles

ClockFrequency
(4.2)

Figure 4.1: Processing Time Required for Sample Comparison
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Table 4.2: Sampling Period for Various NFFT Lengths

NFFT Sample Length (mS) at 48kHz Sample Length (mS) at 100kHz
1024 11 5
2048 21 10
4096 43 20
8192 85 41

From the results shown in figure 4.1 and table 4.2, it is apparent that processing

time is not much of a limiting factor regarding the number of fingerprints which can

be examined in a single sampling period. Even at a 100kHz sampling frequency,

roughly 85 to 100 fingerprints could be analyzed in a single cycle, depending on the

length of NFFT .

The amount of memory available on the FPGA is a limiting factor, however. The

XC7A100T FPGA has 4,860kb available in 135 × 36kb block RAMs (BRAM). A

single fingerprint is composed of 16b of real and 16b of imaginary data, for a total of

32×NFFT bits. Table 4.3 shows the total block ram usage for a number of NFFT

sized fingerprints, while table 4.4 shows the amount of BRAM required for a 16b

input FFT IP core for varying values of NFFT (the IFFT takes 32b of real and 32b

of imaginary data, due to bit growth in the multiplication stage). This assumes a

Radix-4 FFT, which is the fastest available non-streaming FFT IP core. All values

were taken directly from the resource utilization pane of the IP core configuration

screen in Vivado. Vivado is the Xilinx tool used to synthesize hardware description

language (HDL) modules, determine proper placement of components on the FPGA,

and to generate a bitstream, which is used to program the FPGA.

Table 4.3: Fingerprint Memory Usage

NFFT Total Mem. (kb) 36kb BRAM Req.
1024 32.768 1
2048 65.536 2
4096 131.072 4
8192 262.144 7.5
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Table 4.4: FFT Memory Usage

NFFT 36kb BRAM Req.
1024 7
2048 7
4096 11
8192 22

Additionally,
NFFT

2
×16 bits of memory are needed to store the acquired sample

before transferring it to the FFT (the FFT expects to receive data at 100MHz while

the ADC can only supply data at a maximum of 100kHz). An additional NFFT ×32

bits of memory are needed to store the transformed sample. The total amount of

required memory for the audio matching system can be seen in figure 4.2, where the

yellow line represents the total available memory.

Figure 4.2: BRAM Required for System

The actual number of fingerprints which can be stored on the FPGA can be

increased by exploiting the symmetry of a frequency domain signal. The first point

of a transformed signal is equal to its DC offset, while the remaining samples from 1 :

(NFFT/2−1) are mirrored copies of (NFFT/2) : (NFFT −1). By only saving half
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Table 4.5: Max Fingerprints for Given NFFT Size (Neglecting Other Memory Usage)

NFFT Max Fingerprints
1024 112
2048 55
4096 24
8192 7

of a transformed signal as a fingerprint, incrementing its address until NFFT/2− 1

is reached, then decrementing the address, the total number of fingerprints can be

doubled. This would lead to processing time becoming more of an issue for smaller

sized FFTs, but for anything larger than 2048, memory utilization would be remain

the primary bottleneck

4.2 FPGA Resource Utilization

Figure 4.3 shows the resource utilization of the detection system in the most recent

revision. This includes twenty 4096 point fingerprints. Flip flop (FF), look up table

(LUT), and clock buffer (BUFG) usages are all very low. The logic and state machines

which control the system are responsible for a moderate amount of the FF and LUT

utilization, while the FFT IP cores are responsible for the remaining amount. Each

FFT IP core relies on a table of sine values to reduce the computational complexity

and time of the FFT operation. The 16 bit parallel ADC, its control signaling, and the

LEDs and switches which are used to control the system make up the Input/Output

(I/O) usage.

Nearly one third of the available digital signal processing units (DSP48) are used to

transform the input sample, perform the multiplication during the cross correlation

phase, and then transform the resulting frequency domain cross correlation signal

back into the time domain. Figure 4.4 shows the internal structure of the DSP slice;

it is composed of registers for each input, a multiplier, an accumulator, a pre-adder,

an arithmetic unit, an optional logic unit, pattern detector, and other features such
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Figure 4.3: Resource Utilization of XC7A100T FPGA

as buses for pipelining. The FFT and IFFT cores mainly rely on the multipliers,

accumulators, and pipelining capabilities. The forward FFT used to transform the

incoming sample uses 17 DSP slices, while the inverse FFT used to obtain the cross

correlation uses 52 DSP slices, regardless of the size of NFFT . The reason for the

lack of change in the number of multipliers used for different values of NFFT is that

the FFT butterfly structure remains the same while the amount of data which must

be processed increases; therefore, resource utilization stays the same while processing

time increases. The large increase in the number of slices used by each FFT is due to

the inverse FFT taking in two 32 bit numbers as the real and imaginary parts, versus

the forward FFT only taking 16 bit inputs. Finally, the complex multiplier requires

4 DSP slices.

As discussed in the previous section (4.1), the number of fingerprints are

responsible for the high memory utilization. Twenty 4096 point fingerprints require

73 × 36kb BRAM, of which the system has 135 available. The FFT and IFFT use

an additional 22 and 11 BRAM, respectively, while the sample memories consume

an additional 16 altogether, bringing the total memory utilization to 90%. Some

methods of improving on the system utilization are discussed in chapter 6.
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Figure 4.4: DSP48 Slice [17]

4.3 Performance

The system is able to process twenty-plus fingerprints during a sampling period. Tests

were run to get an accurate count of the number of clock cycles that the system takes

to perform cross correlations. In these tests, 4096 point fingerprints and samples

were used, while the number of fingerprints was varied to measure the per-fingerprint

processing time for a small range of values. The sampling frequency was 48kHz, and

a 100MHz clock with a period of 10ns was used. Clock counts were tallied from the

time that a run command was issued to the time that the ADC had gathered 2048

samples, and then from that point to the completion of the threshold check of the

cross correlated signals. The clock counting periods will be referred to as the ADC

period and cross correlation period.

Running the above test on a single fingerprint yielded 4,270,082 counts during

the ADC period, and 29,033 in the cross correlation period. A sampling period of

42.7ms is consistent with the expected value of
2048samples

48000Hz
= 42.6ms. The cross

correlation process took 290.33 µs to complete. This is quicker than the estimated

value of 453 µs from figure 4.1. A ten fingerprint test yielded a total cross correlation

processing time of 1.599ms, or 159µs per sample, while a twenty fingerprint test

yielded a total cross correlation processing time of 3.053ms, or 152µs per sample.
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These values are well within the range of time available, and show that the system is

more than capable of processing a large number of fingerprints each sampling period.

The difference between the estimated cycle counts from equation 4.1 and the measured

values is due to pipelining in the FFT IP cores. As they do not require all NFFT

values to be read in before they can begin processing data, a large amount of the

data transfer delay can be hidden. A more accurate estimate of the delay would be

NFFT + FFTcycles+NFingerprints(NFFT + FFTCycles).

4.4 Power

The estimated on chip power given by Vivado for the implemented design is 259mW.

This estimate is likely lower than the actual value, as it does not account for the

I/O communications with the ADC. The supporting board containing the ADC and

the amplifiers will also use additional power. The datasheet for the ADC lists its

max power dissipation at 100mW. The LM741 op-amp driving the ADC has a max

output of 10V, and it sees a 9.5kΩ load, which means it is sourcing roughly 1mA of

current, for up to 100mW of additional power. The op-amp’s input bias currents are

typically 80nA. Using +/-10V rails, this means that the static power consumption

of each op-amp is 160nW. This leads to a total estimated power of roughly 460mW.

Using a power meter at the supply would lead to a more accurate number; however,

one was not readily available.
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Chapter 5

Results

To verify the detection capabilities of the system, a small sampling of fingerprints

were compared against three different handguns. There were some issues interfacing

the FPGA with a laptop which was set up to send commands and receive detection

data, so modifications were made. Mainly that run, reset, and the threshold were set

by switches on the Nexys 4 board, and that the number of detections was displayed

on the LEDs instead of being sent to MATLAB. This meant that it would not be

possible to determine the indices of matching fingerprints, so only one fingerprint at

a time was tested.

Three handguns were used for the test: a Ruger LC9 9mm, a Ruger LCP .380,

and a .22 revolver. The system was placed on a box to elevate it a couple feet from

the ground and slightly angled down. It was located directly next to a house on top

of a hill, which itself is located on a gradual downhill slope. Shots were fired over a

wooded valley, which caused somewhat lengthy echoes each time. A fingerprint would

be loaded and each gun would be fired multiple times at distances of twenty and fifty

feet from the sensor. Adjustments were made to the threshold during the test as

necessary. The fingerprints used were 4096 points long, the sampling frequency of

the ADC was 48kHz, and the overlap between samples was set to one quarter, or 512

samples.
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The first fingerprint tested was that of a 9mm Walter PPQ pistol. Once the

threshold was successfully dialed in, it detected 76.9% of all shots fired by the 9mm

LC9 (table 5.1) at 20 feet, and 60% of shots at 50 feet. The ”*” next to the numbers in

the ”% Detected” field means that the system detected more shots than were actually

fired, due to a low threshold. This could be caused by multiple factors. The overlap

between the alternating sample memory could have captured the gunshot at the end

of one period and the beginning of another, meaning the event would appear twice.

It could also be due to echoes off of the house or from the valley which was being

fired over causing events to appear multiple times. Regardless, raising the threshold

improved the results, although some more intermediate values should be tested in the

future. The system performed better when the shots were being fired closer to it.

Some improvements and further tests are discussed in chapter 6.

Table 5.1: 9mm Fingerprint vs LC9

% Detected Distance Threshold
76.9 20 23000

233.3* 20 22000
240* 20 20000
60 50 23000
40 50 20000

Table 5.2 contains the results of testing the LCP against the 9mm fingerprint.

The system was able to detect its shots at a rate similar to that of the LC9 when

nearby, but the detection accuracy decreased quickly at distance. It should be noted

that only 5 shots were fired for the 50 foot test, as the remaining ammo needed to

be saved for the comparison of the LCP against the .380 fingerprint. With a lower

threshold, it likely would have performed better. Also note that the 80% detection

rate listed contained one set of shots where 6 were detected when only 5 were fired,

which means the percent detected is listed as higher than it actually was.

The .22 revolver test is shown in table 5.3. The system had a large deal of trouble

detecting the .22 revolver in all subsequent tests. The ammo used was labeled as

”quiet” and contained a smaller amount of powder than a .22 would typically use.
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This, combined with the fact that it was being fired from a revolver while the other

two guns used were semi automatic pistols, likely led to this low detection rate.

Table 5.2: 9mm Fingerprint vs LCP

% Detected Distance Threshold
80* 20 23000
120* 20 22000
20 50 23000

Table 5.3: 9mm Fingerprint vs .22 Revolver

% Detected Distance Threshold
0 20 23000
20 20 22000

120* 20 20000

Tables 5.4, 5.5, and 5.6 show the results of the .380 fingerprint test. The system

appears to detect the LC9 better than the LCP; however, note that in both the 20

and 50 foot tests in table 5.4, an extra event was detected. Still, it supports the idea

that a fingerprint of one caliber can be used to detect a shot from a gun of a different

caliber. The system had some issues detecting the LCP- it would have had a 70%

detection rate, but on the last test, it only detected 1 out of 5 shots, which skewed

the results downward. Again, detection of the .22 was not satisfactory.

Table 5.4: .380 Fingerprint vs LC9

% Detected Distance Threshold
93.3* 20 23000
86.7* 50 23000

Table 5.5: .380 Fingerprint vs LCP

% Detected Distance Threshold
53.3 20 23000
60 20 22000
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Table 5.6: .380 Fingerprint vs .22 Revolver

% Detected Distance Threshold
0 20 23000
0 20 22000
50 20 20000
60 50 20000

By the time that the .22 fingerprint was being tested, the .380 ammunition had

been depleted, leaving only the LC9 and the .22 revolver to test. Again, the system

performed well and detected 80% of the LC9’s shots. However, it still had issues with

the .22 revolver.

Table 5.7: .22 Fingerprint vs .LC9

% Detected Distance Threshold
80 20 23000

Table 5.8: .22 Fingerprint vs .22 Revolver

% Detected Distance Threshold
0 20 23000
40 20 20000
20 50 20000

The above results show that the fast cross correlation algorithm used for audio

event detection is a viable method. While the system still needs tweaking, it does

perform well in the right situations, achieving accuracies of up to 80% (discounting

those which contained false positives). Based off of the above results and the amount

of overlap in detections between different types of guns, it would likely be possible to

store only a handful of gunshot fingerprints on the system and use those to detect a

large variety of gun types. Improvements and ideas for further tests are presented in

the next chapter. A complete table of results is presented in the appendix.
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Chapter 6

Future Work

6.1 Further Tests

6.1.1 Fingerprint SNR Considerations

The scream and gunshot detection system described in [5] mentioned a change in

detection accuracy depending on the difference between the SNR of training samples

and the SNR of the test samples. Figure 6.1 shows these negative effects as both false

negatives and false positives. It can be seen that the best results are obtained when the

test and training sequences have the same SNR, while the worst results occur when

the disparity in SNR between the test and training sequences are at their largest.

This will be something to keep in mind when creating fingerprints and running the

system in the future. For example, when the sensors are placed in areas with lots of

potential interference, possibly due to echoes off of buildings or background noise, a

lower SNR may be preferable due to changes in the received waveform. Conversely,

in large open areas with little background noise, a higher SNR may be preferable as

the received samples will more closely match those of the original fingerprints. More

testing will need to be done to determine the optimal fingerprint SNR for different

circumstances.
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Figure 6.1: Training and Test SNR [5]

6.1.2 Threshold, Sampling Frequency, and NFFT

More testing needs to be performed to find an optimal threshold to trigger an event

detection. Too low, and non-events will trigger the system; too high, and the system

won’t capture any events. A sliding threshold that changes based of the background

noise level over a certain time period may be beneficial. Narrowing the threshold

down to a certain range is a simple matter of trial and error.

The gain of the microphone needs to be tested over a range of values. At short

distances, a high gain would lead to the signal clipping and introducing high frequency

components. However, too low of a gain would mean that shots would be missed at

greater distances. Each unit would likely have a different practical level of gain

depending on its deployment location.
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The sampling frequency and NFFT size is also important. High and low (100kHz

vs 48kHz) sampling frequencies should be tested across a range of NFFT sizes. The

adjustment of these variables will have two effects; the first will be that the sampling

period changes. For certain events such as gunshots, a shorter sampling period would

probably be preferable. For others, such as breaking glass or snapping branches, a

longer period would be better as it would allow for more of the event to be captured.

The second effect would be a higher or lower resolution of the captured event. Again,

this would need to be tested to see if a higher sampling frequency, and therefore a

higher resolution, is preferable. Likewise, the amount of overlap between the recorded

sample memory needs to be tested to find a compromise between the ability of the

system to capture events without splitting them between samples, and having such a

long overlap that events are detected multiple times.

6.2 Optimizations

6.2.1 System Performance and Fingerprints

The results in section 4.3 showed that the processing time of a single fingerprint

is lower than expected, at roughly 150µs. Assuming NFFT = 4096, a sampling

frequency of 48kHz, and an overlap between samples of
1

4
, the system would have

32.25ms to process the current data before it needed to begin processing the next

sample. This allows for a maximum of
32.25ms

150µs
= 215 fingerprints to be processed.

To get around the issue of memory limitations on the FPGA chip itself, external

memory could be used. The Nexys 4 board that the system was tested on has an

additional 16MB of RAM. Reading from this would increase the complexity and delay

as the interface requires some additional clock cycles to access the memory’s contents.

However, the number of fingerprints available to compare would greatly increase.

There is also some room for pipelining and improving the cross correlation process.

Before the last point of a sample is saved to memory, the preceding points could be
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sent to the forward FFT so that the last sample arrives just in time to be sent out

and complete the process. As data is being read out of the forward FFT into memory

for re-use with later fingerprints, it could be sent to the complex multiplier at the

same time. While the IFFT is dumping its data out to the threshold comparison, the

next frequency domain cross correlation could be read in to the IFFT. Additionally,

if off chip memory is used to store fingerprints, the on chip memory could be used

to increase the number of channels of the IFFT, which would allow for multiple

fingerprints to be compared in parallel. Integrating all of these improvements would

push the number of fingerprints that can be compared in a single sampling period into

the high hundreds, or even low thousands. This number could further be increased

by raising the clock speed.

6.2.2 Power Consumption

As the system will be part of a sensing platform, it may be placed in areas without

readily available power. In these locations, power consumption will be an important

consideration as it could greatly affect the run time of the sensing platform. Assuming

that the FPGA can process the desired number of fingerprints before the next

sampling period begins, the system clock could be gated, leaving only the ADC and

sample input memory running during this down time. Removing the linear voltage

regulators from the supporting board and replacing them with fixed supplies would

be beneficial. Other optimization methods will need to be explored to improve on

this aspect.
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Chapter 7

Deliverables

The final product of this project is an FPGA based audio event detection system.

It supports the option of a simple integration with a mesh network of environmental

sensors. The onboard library can hold fingerprints of more than 20 unique sounds,

including gunshots, breaking glass, and other impulsive noises. On detection of an

event, the system saves the sample for later analysis and drives an alert signal high. If

interfaced with a mesh network, this alert will propagate through the network and tell

all other units to save the last period of audio for further analysis. A supporting board

containing a microphone and ADC is also included, along with the board schematics,

a parts list, and a MATLAB program to create and save audio fingerprints.
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A.1

Figure A 1: Testing Results
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A.2

Figure A 2: System Comparisons
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A.3

Figure A 3: ADC/Mic board power supply schematic
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A.4

Figure A 4: ADC/Mic board amplifier schematic
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A.5

Figure A 5: ADC/Mic board connected to FPGA. Note that board was modified to accept a MEMS mic instead of an
electret mic
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