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Abstract

Biological neural systems are powerful mechanisms for controlling biological sys-

tems. While the complexity of biological neural networks makes exact simulation

intractable, several key aspects lend themselves to implementation on computational

systems.

This thesis constructs a discrete event neural network simulation that implements

aspects of biological neural networks. A combined genetic programming/simulated

annealing approach is utilized to design network structures that function as regulators

for continuous time dynamic systems in the presence of process noise when simulated

using a discrete event neural simulation.

Methods of constructing such networks are analyzed including examination of

the final network structure and the algorithm used to construct the networks. The

parameters of the network simulation are also analyzed, as well as the interface

between the network and the dynamic system. This analysis provides insight to

the construction of networks for more complicated control applications.
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Chapter 1

Introduction

Biological neural systems function as powerful feedback controllers that regulate a

wide variety of biological processes. These systems implement memory formation,

intelligent decision making, and intricate parallel regulatory activities. The complex-

ity of biological neural systems requires that simplifications be made to capture the

behavior of systems in simulation.

This thesis is an exploratory study of a method for modeling neural systems

using a discrete event neural simulation that emulates aspects of biological neural

networks. The network simulation emphasizes the manner in which voltage pulses

are transmitted in biological neural systems. These pulses are treated as discrete

events, avoiding computationally expensive numerical methods traditionally used to

evaluate neural behavior described by sets of coupled nonlinear di↵erential equations.

The discrete event neural simulation provides a better representation of biological

systems than traditional artificial neural networks, which typically do not capture

network complexity, communication delays, or pulse modulation.

The behavior of the discrete event neural simulation is explored in a hybrid

systems setting formed by interfacing the simulation with two di↵erent continuous

time dynamic systems: the harmonic oscillator and the inverted pendulum. The

harmonic oscillator is a simple problem that provides an initial benchmark of the
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neural simulation. The inverted pendulum is a more complex problem commonly

used as a benchmark for control systems. For each application, distinct network

structures are developed using a neural evolution algorithm that combines a genetic

algorithm and simulated annealing.

Experiments with the neural simulation result in closed loop systems that

improve performance, measured by weighted least squares criteria appropriate to

each problem, in the presence of process noise. Network structures are analyzed,

and important simulation parameters indicated. Knowledge gained from these

experiments provides insight to the construction of discrete event networks and how

more e↵ective neural structures might be developed in future applications.

Chapter 2 describes biological neural systems as well as tools utilized in the

construction and implementation of the discrete event neural simulation. Chapter

3 presents the discrete event neural simulation model. Chapter 4 evaluates the

construction and performance of discrete event neural networks utilized as feedback

controllers for the harmonic oscillator. Chapter 5 applies the neural simulation as a

regulator for the cart–and–pendulum. Chapter 6 concludes with a discussion of the

findings and possible directions for future work. We begin with a concise statement

of the problem that motivates this work.

1.1 Problem Statement

Explore the behavior of a discrete event neural simulation with similar behavior to

biological neural systems, and observe hybrid system interactions when implemented

as a regulator for continuous time dynamic systems. Construct and analyze network

structures used by the simulation that provide improved performance for these

systems.
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Chapter 2

Background

This chapter covers useful information applicable to the construction and application

of discrete event neural simulation. The discrete event neural simulation implements

several aspects of biological neural systems. Hence, an understanding of neuro–

physiology is helpful in justifying the structure of the neural simulator. These

biological systems are governed by complex electro–chemical processes. Several key

properties, such as charge accumulation, transmission of pulses, and transmission

delay can be e�ciently simulated in a computational environment in the form of a

discrete event neural simulation.

Given a model of neural behavior and a method of simulation, one must determine

how to interface the discrete event system to another system. In this research

the simulation interacts with systems with continuous time and continuous state

dynamics. Pulse frequency modulation (PFM) is a common modulation method used

in communication systems and describes the behavior of a single neuron to a limited

extent. Methods for demodulated PFM are used to build interfaces from the discrete

event neural simulation to a system with continuous time dynamics. The interface

from the continuous system to the discrete event system can be implemented using

integrate–and–fire neuron models with a threshold and defined refractory periods to

limit firing rates.
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Construction of the discrete event network is accomplished by an evolutionary

algorithm approach that is similar to methods used to construct some traditional

artificial neural networks. Traditional artificial neural networks are a common

computational tool, loosely inspired by biological neural systems. These networks

have a plethora of applications, but fall short in accurate representation of biological

systems. One method of construction of traditional artificial neural networks is the

use of evolutionary programming.

Two systems with continuous time dynamics are used to explore the behavior

of the discrete event neural simulation. The harmonic oscillator is a two state

system that oscillates freely without friction or external input. This is a system

with simple dynamics. The cart–and–pendulum is a nonlinear system commonly

used as a benchmark for control systems. The cart–and pendulum represents a more

challenging problem since multiple states must be controlled from a single input where

significant nonlinearities and coupling exist. For both systems, control is achieved

by driving the states of the system in a manner that keeps them near a desired

equilibrium value.

2.1 Neuro-physiology

Biological neural systems are composed of cells called neurons. A typical neuron

(Figure 2.1) consists of a soma, axon, and dendrites. Each axon terminal of a

neuron typically connects to dendrites of other neurons through a gap called a

synapse. Other connections are possible, such as an axon connecting to the soma

of another neuron; this, however, is less common. Self–connections can exists where

the axon of a neuron connects to its own dendritic tree or soma. The neuron contains

concentrations of charged particles, or ions (e.g. Na+, K+, Ca2+), which move in

response to concentration gradients and electric fields. Ions can cross cell membranes

via ion channels, which open and close in response to the voltage potential across the

membrane and ion pumps, which provide an active transport mechanism. Oppositely
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charged ions attract and therefore congregate on opposite sides of the membrane and

produce an electric voltage potential called an action potential. When the action

potential of a neuron reaches a threshold, channels open at the axon terminal of

a neuron allowing particles called neuro-transmitters to travel across the synaptic

cleft to the dendrite of another neuron, where they are received by the post–synaptic

neuron, causing changes in ion flow and the neuron membranes voltage potential.

The voltage transient induced by ion flow is referred to as an action potential [36].

These action potentials initiate pulse events transmitted to other neurons. When

a neuron fires an action potential, there is period in which the neuron is not

physiologically capable of firing another pulse. This period is referred to as the

refractory period of a neuron and limits the maximum firing rate of the neuron.

The penultimate example of an e↵ective biological neural network is the human

brain. The human brain has on average 85 billion neurons with an average of of 1012

synaptic connections [27]. Regions of the brain are highly specialized and perform

specific tasks. The behaviors of these regions are governed by the density of neurons,

neuron types, the density of synapses, the shape of a neuron’s dendritic trees, neuron

membrane surface morphology, contact location of excitatory and inhibitory synapses,

synaptic plasticity, inter-synaptic distance, mylenation, axon length, and many other

factors [58]. This results in an extraordinarily complex and chaotic system, albeit one

capable of intricate decision making, memory and regulation.

In part, the e↵ectiveness of biological neural networks is due to their adaptability.

The morphology of the dendritic tree of a neuron can change. These changes typically

occur often in developing neural systems, but still occur in mature neural systems in

response to changing sensory input and experience [15, 41]. The e�cacy of a synaptic

connection between an axon and dendrite can be enhanced through a complex

biochemical process called long–term potentiation (LTP, Section 2.1.4). An analogous

process called long–term depression (LTD) can decrease the e�cacy of a connection.

LTP and LTD are mechanisms of synaptic plasticity, which is a driving force behind

cognition and learning [26, 51]. Mylenation can also enhance the performance of
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biological neural networks by increasing the speed of signal transmission in an axon.

Mylenation is derived from a specialized lipid based membrane that surrounds the

axon of certain neurons [35]. The development of mylenation has been show to be

adaptable to an organisms environmental needs and experiences [20].

Despite the variety of neurons and their connections, biological neural networks

can be abstracted to a few simple concepts that can be applied to computational

systems. Neurons are essentially accumulators that exhibit threshold stimulated

events [24] and are connected by communication pathways (axons, synapses, and

dendrites) along which signals (action potentials) propagate. The behavior of a

neural network is influenced by the characteristics of individual neurons such as firing

thresholds, refractory period and morphology, by the network structure connecting

the neurons, and by the signal delays along the pathways.

Figure 2.1: A simple diagram of a biological neuron [32].

2.1.1 Neuron Models

There are three general types of neurons: sensory neurons, motor-neurons, and inter-

neurons. Sensory neurons translate information gathered from the environment to

action potentials. Motor-neurons perform the complementary operation, mapping

action potentials to stimuli for muscle activity. Inter-neurons form the complex

network that connects sensory neurons and motor-neurons.
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Most neurons form relatively sparse connections primarily to nearby neurons

through synapses; other types of neurons form long distance connections such as

are found in the spinal chord or in the white matter connecting functional regions

of the brain [58]. Synapses are either excitatory or inhibitory based of the type of

neurotransmitter released by the axon. Excitatory synapses stimulate activity by

increasing nerve membrane potentials in post-synaptic neurons. Inhibitory synapses

decrease activity by decreasing membrane potentials. [36]

Neurons implement an integrate-and-fire mechanism. The simplest neural model

describes current flowing through a neuron by

C
m

dV
m

dt
= I(t)� V

m

R
m

(2.1)

where C
m

is the cell capacitance, V
m

is the membrane voltage, R
m

is a leakage

resistance and I is the input current [24]. This model treats the neuron as a simple

integrator. The input current models the e↵ects of neurotransmitters released by pre–

synaptic neurons, and these currents a↵ect learning and adaptation (e.g. LTP/LTD,

mylenation). This model can be further developed by including a refractory period

and a partial threshold reset of the integrator value.

More accurate descriptions of the shape of action potential events are described

by di↵erential equations relating the currents generated by ions moving through the

axon and across the synapse to voltage changes in the cell membrane. The four state

Hodgkin-Huxley (HH) equations are the canonical model for describing the current

flow through nerve membranes during action potential events and represent an historic

breakthrough in modeling neurological processes [28]. A general HH model is given
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by the equations

Cv̇(t) = g
L

(v
L

� v(t)) + gN
a

m3(t)h(t)(vN
a

� v(t)) +Kn4(t)v
K

� v(t) + I(2.2)

ṁ(t) =
m1(v(t))�m(t)

⌧
m

(v(t))
(2.3)

ḣ(t) =
h1(v(t))� h(t)

⌧
h

(v(t))
(2.4)

ṅ(t) =
n1(v(t))� n(t)

⌧
n

(v(t))
(2.5)

where v(t) is the membrane potential, m(t), h(t), n(t) describe activation of ion

channels, m1, h1, n1 are nonlinear voltage dependent steady state conductances,

and I is the input current [51]. For a description of the other parameters, see [51].

While this model accurately describes the shape of action potentials in a single neuron

when compared to experimental data, it is not appropriate for an arbitrarily complex

network composed of a large number of neurons.

A simplification of the HH model is the two state Bonhoe↵er-van der Pol (BVP)

model [21], often referred to as the FitzHugh–Nagumo model:

ẋ = µx� cx3 � y + I (2.6)

ẏ = x+ by � a (2.7)

where x is the membrane voltage potential, y is the fast current dynamics, and I is

an input current [51]. This model is often considered due to its simple equivalent

circuit and ease of interpretation [45]. The parameters a, b, c determine the shape of

the pulse and delay between pulses. Under certain parameter conditions, the BVP

model describes a stable van der Pol oscillator which exhibits limit cycle behavior

with appropriately chosen parameters. The pulses generated by this model also

correspond closely to experimental data, but for the same reason as with the HH

model, simulation does not scale to large networks.
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While these models (and others) can accurately describe the shape of action

potentials, they require numerical integration to evaluate. This is useful for studying

the interaction of a few neurons, but quickly becomes a computationally challenging

task when many neurons are coupled together in a complex network. It is not clear

that highly detailed neuron models are either necessary or desirable when modeling

and simulating a large network. The presence and timing of pulses, rather than

their shapes, is the most important attribute. The discrete event neural simulator

avoids the computationally expensive task of evaluating large collections of coupled

di↵erential equations and focuses on the transmission and timing of the pulse events.

2.1.2 Networks of Neurons

While the behavior of an individual neuron plays a significant role in determining the

activity of a neural network, the connectivity of the neurons within the network

heavily influences the behavior of the network. Networks of neurons typically

have cyclic connections that result in neuron firing events that repeat [12]. Since

neurons are distributed spatially, this periodic behavior is typically referred to as a

spatiotemporal oscillation or reverberation [51]. A pre-synaptic neuron fires a pulse,

which can trigger events in some or all of the post-synaptic neurons. Those neurons

fire, causing post-synaptic neurons to fire, which triggers additional firing events.

The firing events can be tracked from one neuron, through a chain of neurons, back

to the original neuron. This is referred to as a spatial oscillation since the neurons

have a defined spatial location and a pulse can be tracked through this space. A

single neuron fires repetitively. This is referred to as a temporal oscillation. In this

manner, firing events can be traced in both time and space. Synchronization of

spatiotemporal oscillations between coupled sub-networks of neurons plays a crucial

role in memory formation, perception, consciousness, and muscle control [12, 40].

This synchronization e↵ect was postulated by Wiener from his observation of the

frequency spectrum of measured electrical signals from the brain [64].

9



Both propagation delays along axons and dynamics induced by the integrate–

and–fire behavior of the neurons play significant roles in the determination of

spatiotemporal oscillatory behaviors. Limit cycle behavior in small networks

modulates limit cycle behavior in larger neural networks, and small networks tend

to have a higher oscillation frequency than large networks [12]. Both transmission

delay and the number of intervening neurons increase with distance along pathways

between neurons. These factors influence the dynamic behavior of the neural network

and tend to reduce spatiotemporal oscillation frequency.

The existence of spatiotemporal oscillations is partially dependent on the delay in

transmission of action potentials between neurons. The units of charge in neural

currents are ions, commonly Na+, K+, and Ca2+, which have large mass and,

consequently, a slow velocity relative to electron current flow. Conduction velocity

can range from 1–120 m

s

[36], depending on mylenation. The time duration of action

potentials due to ion flow takes on the order of tens of milliseconds [36]. Propagation

time is dependent on the axon length and presence of mylenation. The delay in

the communication between neurons can have a nontrivial influence on oscillatory

behaviors due to either length (for long mylenated axons) or the number of intervening

neurons.

2.1.3 Central Pattern Generators

The discrete event neural simulator consists of a network of simulated neurons; hence,

it is useful to understand how biological networks can be analyzed. Due to the

overwhelming complexity of large scale neural systems, analysis of biological neural

networks is often limited to small structures. One class of structures often examined

is the central pattern generator (CPG). A CPG is a neural microcircuit that controls

motor activity or other periodic biological functions through neural networks that

exhibit oscillatory behavior in the absence of sensory feedback [51]. Central pattern

generators are a well–established field of study and have been observed in biological
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systems [14], simulated on computer systems [7, 11, 18, 37], and implemented on

robotic platforms [30, 31].

One advantage of using CPG’s in simulation studies is the relative simplicity of

their underlying network structure. When grown on a substrate with a fixed structure,

sustained reverberations have been observed in networks of rat hippocampal neurons

with as few as 20 to 100 neurons [40, 62]. This allows for the development of useful

mathematical models and computer simulations of CPG behavior [14, 37, 61, 18, 11].

The e↵ects of CPG’s can also be observed in biological organisms with simple

neurological systems. For example, when a lamprey’s spinal chord is removed and

immersed in a bath of excitatory amino acids, the amino acids stimulate the spinal

chord, and the neural behavior can be measured [14]. Stimulation of this biological

CPG generates oscillatory activity in the spinal chord responsible for the lamprey’s

swimming behavior, an inherently oscillatory activity. Firing patterns of neuronal

groups in the mollusk have also been measured [37]. This allows for analysis of

recurrent biological CPG’s that control the mollusk swimming and hunting behaviors

[61]. The behavior of CPG models and simulations can be compared to the behavior

of CPG’s in biological organisms in vivo. This approach, however, is generally limited

to vertebrae and invertebrates with simple neural systems.

The modeling and simulation of CPG’s takes place on two levels. From a high

level perspective, CPG’s are treated as black box oscillators where multiple CPG’s

are coupled together in a particular manner to achieve a desired behavior [14, 30, 31].

The simplest models treat each CPG as a sinusoidal oscillator. Due to the simplicity

of implementing these CPG’s, this approach is often utilized in the control of robots

whose movements mimic the behavior of biological organisms that exhibit oscillatory

movement, such as the lamprey, salamander, or snake [30, 31].

Detailed analysis of the individual central pattern generator examines attributes

such as the types of neurons found in the CPG, the connections between the neurons

within the CPG, and the connections between coupled CPG’s. A typical CPG
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consists of an arrangement of sensory neurons, motor–neurons, and interneurons with

inhibitory and excitatory connections [11, 18].

Central pattern generators represent a type of associative memory container [37].

A pattern is embedded in the oscillatory firing behavior of the network. The pattern

is observed in the behavior of the motor neurons and accessed by exciting sensory

neurons. The power of this interpretation lies in the fact that multiple patterns of

arbitrary length can potentially be store in a CPG and accessed by stimulating the

network in di↵erent ways.

2.1.4 Synaptic Plasticity

Reinforcing the connection between neurons that exhibit a high degree of correlated

activity is a classical concept in neuro-systems theory [26]. The synapses between

neurons are subject to prolonged dynamic changes in e�cacy through complex

biochemical mechanisms referred to as long term potentiation (LTP) and long term

depression (LTD) [19]. Dynamic synaptic plasticity is an underling factor in several

neural processes including learning and memory formation in the brain [9]. LTP

reinforces apparently causal neural connections; LTD reduces the strength of non-

causal or uncorrelated interactions.

Consider a neural connection which is composed of a presynaptic neuron, a post

synaptic neuron, and a synapse adjoining the two neurons. If the presynaptic neuron

fires at time t
pre

and the post-synaptic neuron fires at time t
post

, let �t = t
post

� t
pre

be the di↵erence in firing times. If there exists a small " > 0 and �t 2 (0, "], then

this indicates the possibility of a causal relationship between the firing events. In

this case, the LTP mechanism strengthens the synapse between the two neurons If

�t 2 [�", 0), this indicates that the firing of the post-synaptic neuron is not likely

dependent on the firing of the post-synaptic neuron. [51] The biological mechanism

by which a synapse is strengthened or weakened exhibits an exponential ( ae�
�t
b )

characteristic, where a and b are positive constants for LTP and negative for LTD [8].
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Thus if the �t > 0 is small, LTP increases in synaptic e�cacy or coupling between the

two neurons. If �t < 0 has a small magnitude, LTD decreases the synaptic e�cacy

or coupling.

2.2 Pulse Frequency Modulation

The discrete event neuron used by the discrete event neural simulation functions in

a similar manner to a technique from communication systems called pulse frequency

modulation (PFM). The behaviors of biological neurons can be described in this

manner, including the behavior of a single integrate–and–fire neuron [53, 6]. The

integral pulse–frequency modulated (IPFM) signal y(t) for an input signal x(t) is

given by the equations

dp(t)

dt
= x(t)� r sgn(p(t))� (|p(t)|� r) (2.8)

y(t) = sgn(p(t))� (|p(t)|� r) (2.9)

where p is the value of the integrator, r is a threshold, and sgn is the sign function

[49]. The function � is a unit impulse where

�(a) =

8
<

:
1 if a = 0

0 otherwise

When the value of the integrator exceeds the threshold r, a pulse occurs at that time

and the value of the integrator is reset.

Modulating a signal by IPFM results in a series of pulses whose frequency of

occurrence increases as the magnitude of the input signal increases. Note that the

value of the integrator increases for positive x and decreases for negative x. If the

magnitude of the input signal is not large enough to exceed the threshold, there will

be no non zero output, even though x contains non zero values.
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While IPFM describes the characteristic behavior of a single neuron, the input

signal x(t) is a continuous time signal and cannot convey pulse events transmitted

from other neurons in a network of IPFM neurons. Modification of the traditional

IPFM model can be made to take neuron interactions into account. Suppose there

are N neurons with threshold r
i

and accumulator values p
i

for i = 1, ..., N . If these

neurons are connected to a neuron described by IPFM, with connection weights

w1, ..., wN

, then the dynamic accumulator equation can be adapted such that

dp(t)

dt
= x(t)� r sgn(p(t))� (|p(t)|� r) +

NX

i=1

w
i

�(|p
i

(t)|� r
i

) (2.10)

This model takes into account pulse events transmitted by other neurons, but does

not model the e↵ect of refractory period which is better described algorithmically. In

this case, the signal x is external to the network.

2.2.1 Demodulation

Since a neuron implements IPFM, demodulation of a neuron’s output is necessary

to provide an interface from a neural network to a physical system. In order to use

an integral pulse-frequency modulated signal as a control signal, it is necessary to

demodulate the signal. Determining the instantaneous frequency at which pulses

occur in the modulated signal is su�cient for demodulation, but cannot be exactly

implemented. In practice, one updates the demodulated signal when pulses occur

in the modulated signal using an estimation scheme such as a low pass filter to

interpolate between measurements [2].

An e�cient way to low pass filter an IPFM signal is the exponentially weighted

moving average (EWMA). The EWMA is a digital low pass filter derived from

applying the backwards di↵erence method to a first order continuous time low pass

filter. For a time constant ⌧ , the transfer function for a first order low pass filter

between a continuous time input signal X(s) and continuous time output Y (s) is
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given by

H(s) =
1

1 + ⌧s
=

Y (s)

X(s)
(2.11)

Using the inverse Laplace transform and sampling at rate T
s

, a sampled system is

produced,

⌧ ẏ(nT
s

) + y(nT
s

) = x(nT
s

) (2.12)

where the derivative can be approximated by the backwards di↵erence such that

ẏ(nT
s

) =
y(nT

s

)� y((n� 1)T
s

)

T
s

(2.13)

Let x[n] = x(nT
s

) and y[n] = y(nT
s

). Using this approximation, the discrete time

system is

y[n] = (1� ↵)y[n� 1] + ↵x[n] (2.14)

where ↵ = Ts
Ts+⌧

.

The EWMA low pass filter is a computationally e�cient implementation of a first

order digital low pass filter since it can be computed recursively [33]. The behavior of

the EWMA filter is governed by a single parameter ↵ 2 (0, 1]. Note that the corner

frequency w
c

of the low pass filter is w
c

= 1
⌧

for the time constant ⌧ . Hence, the

EWMA filter parameter ↵ is directly related to the corner frequency of the filter. A

small value of ↵ corresponds to a low corner frequency.

2.3 Limited Biological Feasibility of Traditional

Artificial Neural Networks

The discrete event neural network simulation is considerably di↵erent than traditional

artificial neural networks. Traditional artificial neural networks (TANN) are a

common computational tool that map an input space to an output space through a

series of three or more layered sets of artificial neurons. The input layer first accepts a
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pattern defined by inputs to each neuron of the layer, then feeds that pattern through

one or more hidden layers, and finally provides a classification of that pattern at the

output layer, defined by an output from each neuron of the output layer. Let x
i

for

i = 1, ..., N be the numerical values of the states of neurons in a layer, and let y
j

be

the jth neuron in the next layer. Let n
j

=
P

N

i=1 wij

x
i

, where w
ij

is the weight from

x
i

to y
j

. Then the value of the state y
j

is

y
j

= f(n
j

) (2.15)

where the function f is a threshold activation function. Feedback, generally in the

form of a gradient descent method such as back propagation, alters weights between

the neurons in each layer to minimize the error between the output layer and desired

output [17]. A gradient descent method requires a smooth objective function; hence

the activation function f is usually a sigmoid function instead of a discontinuous

Heavyside step function.

The advantage of such a computational system is its generality. The TANN can

handle mappings of input to output spaces that have unknown linear or nonlinear

functions. That is, tuning of the TANN can take place without any knowledge of the

underlying system other that the example input and output patterns used for training

[4]. There are limits to the utility of ANN’s backpropagation, which is a gradient

descent method and hence prone to achieving local optimization instead of global

optimization. Stochastic optimization algorithms and evolutionary programming are

often used in conjunction with backpropagation to search multiple optima [55, 56, 57,

60].

Dynamic behaviors can also be modeled by adding integrators to the network.

In this case, for a dynamic system modeled in state space form ż = f(z, u) with

output w = g(z, v), the Tonne’s are used to represent the functions f and g. The

Tawny’s are typically trained using recorded sampled time series data. The neural
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network constructs a model for the system and can be used for system identification

and control [46, 39, 48].

The space of network structures and weights in traditional artificial neural

networks is large and di�cult to search e�ciently. Topology and weight evolving

artificial neural networks (TWEANN) reformulate the traditional backpropagation

approach to tuning traditional artificial neural networks by evolutionary programming

and genetic algorithms (Section 2.4) to search the space of network structures and

weights. Two related approaches to building TWEANN’s are Neuro Evolution of

Augmented Topologies (NEAT) [60] and Modular Neuro Evolution of Augmented

Topologies (Modular NEAT) [55]. Both methods keep track of specific network

structures. NEAT implements speciation, which allows evolution of a single network

structure before permitting competition of that network with other networks in a

population of possible solutions. Modular NEAT extends this concept by encoding

sub-networks that can be combined to construct more complex network structures.

These methods improve the performance of optimizing artificial neural network over

the use of backpropagation alone.

Traditional artificial neural networks have little in common with biological neural

systems. Biological networks have highly cyclical connections that are sparsely

connected. TANN’s typically have only feed forward connections that are densely

connected between layers. Cyclical connections can be implemented in TANN’s;

however, in this case backpropagation cannot be used. TANN’s do not provide

for pulse modulation or transmission delay, which are important characteristics of

biological neural networks. A model for these properties is used in the discrete event

neural simulation.

2.4 Evolutionary Programming

Biological neural systems are a result of inter–generational adaptations and random

mutations that have taken place over a significant period of time. Evolutionary
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programming emulates the biological evolutionary process to solve an optimization

problem. Evolutionary programming generates a population of solutions, evaluates

their performance, and uses the top performers as a basis for stochastically generating

a new population of possibles solutions. [17] A neural evolution algorithm is used

to develop network structures to be utilized by the discrete event neural simulator.

Evolution of neural networks can refer to dynamic changes in the properties describing

neurons (learning rules), simple changes in the connection weights between neurons,

and global reconfigurations of network structure [66].

Stochastic optimization algorithms are advantageous when performing optimiza-

tion in systems where gradient descent methods are impractical. Such systems can

have discontinuous objective functions where the gradient is ill-defined, or where the

objective function itself is not well–defined. They are also useful when dealing with

functions that have a large number of local optima and gradient descent methods

converge to local optima instead of global optima. Stochastic techniques tend to have

slower convergence times but can explore more of the solution space.

2.4.1 Genetic Programming

Genetic programming is a flavor of evolutionary programing that can be used to

optimize neural networks [17]. A potential solution to an optimization problem is

encoded in a ‘chromosome’, typically a binary or character string. The chromosomes

are ranked based on a performance metric. The top performing chromosomes

then undergo a process called ‘crossover’. Crossover exchanges segments of two

chromosomes to generate two new chromosomes. The process is repeated with the

new chromosomes included in the population, after possible random mutations. This

process is analogous to biological processes.

One challenge in applying genetic algorithms to neural networks is network

encoding. The structure, weights, and other network properties must be encoded in

the chromosome that the algorithm uses in crossover. While weights do not present a
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problem, encoding a network structure that functions across multiple generations

does. Several such encoding schemes exists [38, 60, 55]. The neural evolution

algorithm used here does not implement crossover because of the di�culties of network

encoding. Inter-generational advances are performed through random mutation.

2.4.2 Simulated Annealing

Another optimization method used by the neural evolution algorithm is simulated

annealing. Simulated annealing is a stochastic optimization algorithm that is useful

in the search for global optima for continuous and discontinuous problems [16]. The

algorithm randomly perturbs a point in the solution space, possibly by a large amount.

If the new point performs better, it is accepted as a better solution. Perturbations

that do not perform better are accepted with decreasing probability as a function

of the number of completed iterations. This allows the algorithm to explore larger

areas of the solution space without becoming trapped in local optima. Neither genetic

programming nor simulated annealing, however, guarantees convergence to a locally

or globally optimal solution in finite time.

2.5 Harmonic Oscillator

Initial exploration of the discrete event neural simulation observes the hybrid

interaction of the simulation with the continuous time harmonic oscillator. The

harmonic oscillator is a dynamic system described by a second order di↵erential

equation.

mÿ(t) + ky(t) = u(t) (2.16)

In a physical system, such as a frictionless mass-spring, m is a mass, y is a position,

k is constant where 1
2⇡

q
k

m

is the frequency of oscillation, and u is a forcing function.

If u(t) = 0 and the initial condition is non zero, the trajectory of the system will

oscillate sinusoidally. Stabilization of the harmonic oscillator is accomplished by
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driving the trajectory to zero, which can be accomplished by a well-timed impulse

input of su�cient magnitude. This system presents and interesting, albeit simple,

system to use as a benchmark.

2.6 Inverted Pendulum

The stabilization of an inverted pendulum (Figure 2.2) is a canonical control system

problem with nonlinear dynamics that is useful for benchmarking linear and nonlinear

control algorithms, and is used as for exploration of the discrete event neural

simulator. The unforced pendulum is a nonlinear system that can be described by a

second order di↵erential equation derived from Newton’s second law of motion [34]

ml✓̈ = �mg sin ✓ � kl✓̇ (2.17)

where m is a point mass located at a distance l from the axis of rotation, g is the

gravitational constant, and k is a friction coe�cient. The pendulum has similar

behavior to the harmonic oscillator, but has two equilibrium points, one of which is

unstable. The behavior of the pendulum is governed by nonlinear dynamics. The

inverted pendulum has a simple physical interpretation: gravitational force pulls the

pendulum downward to a stable equilibrium. This system describes a variety of

electro-mechanical systems with nonlinear second order dynamics (e.g. synchronous

generators, Josephson junction circuits, phase-locked loops) [34].
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Figure 2.2: The inverted pendulum.

The objective of the inverted pendulum control problem is to maintain the angular

position of the pendulum in the vertical upright position, an unstable equilibrium

position where ✓ = 0. Gravitational force tends to pull the pendulum to the downward

vertical position, which is a stable equilibrium, at ✓ = ⇡/2. Control is accomplished

by moving the base of the pendulum, which also has mass. There is only one input

to the system controlling the acceleration of the base. This single input is used to

control the multiple states associated with the system. Many models exist describing

the interaction between the base and the pendulum as well as the behavior of the

pendulum itself, generating control problems of varying degrees of complexity. Two

problems formulated for the inverted pendulum are stabilization of the pendulum and

swing–up control of the pendulum.

2.6.1 Pendulum Stabilization

The simplest inverted pendulum problem involves stabilizing the pendulum given a

small angular displacement from the unstable equilibrium. This is a simple problem

commonly solved by linearizing the dynamics of the pendulum around the unstable
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equilibrium point and applying one of a variety of linear control techniques (e.g. linear

quadratic regulator [5]) to provide control. Robust control methods can also be used,

typically based on H1 design [50]. Traditional artificial neural networks are also often

used to solve this problem [4, 56, 57].

A linear quadratic regulator provides optimal control for a linear system [5]. Since

the pendulum is a nonlinear systems, the state space model must be linearized near

the unstable equilibrium point to create a linear approximation of the system

ẋ(t) = Ax(t) + Bu(t) (2.18)

where x(t) is the state of the systems and u(t) is the control input. The LQR problem

finds a control input u that minimizes a quadratic cost function

J(u) =

Z 1

0

�
zT (t)Qz(t) + u(t)TRu(t)

�
dt (2.19)

where z = Mx denotes the regulated variables and Q and R are real symmetric

positive semidefinite weighting matrices. This results in an optimal control law

u(t) = Kx(t) = �R�1BTPx(t) (2.20)

where P is the solution to the algebraic Riccati equation ATP +PA�PBR�1BTP +

MTQM = 0, which exists and is unique if (A,B,Q1/2M) is stabilizeable and

detectable.

Limitations of this approach are related to the linearization process. Control is

restricted to a small displacement from the equilibrium point where the system is

linearized.
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2.6.2 Swing–up Control

A more challenging problem is to stabilize the pendulum at the unstable equilibrium

point starting from the stable equilibrium. This is referred to as swing-up control.

The challenge is due to the nonlinearities present in the system and the e↵ect of

gravity. There are a wide variety of methods that provided e↵ective swing–up control

of the inverted pendulum. These methods include methods include partial feedback

linearization methods [10, 25, 59] and more exotic strategies like grey prediction

modeling [29]. The prevalent method for swing–up control of the inverted pendulum

uses energy based strategies [3, 54, 67]. The control law is derived from the rotational

kinetic energy and potential energy of the pendulum, such that the energy of the

system is driven to the desired value corresponding to the potential energy associated

with the unstable equilibrium point. If a Lyapunov stability criteria is met, this is

ensured to be a stable control method.

The control methods described here can be applied to a variety of pendulum

models. There are several models commonly used in working with inverted pendulum

systems. Implementation of a control strategy for an inverted pendulum requires

detailed knowledge of a specific pendulum model as well as a model for the control

input to the pendulum.

2.6.3 Inverted Pendulum Models

The inverted pendulum problem can be realized in a variety of ways, all of which

involve balancing a pole in the vertical upright position. The canonical model is the

cart-and-pendulum (Figure 5.1) [25, 29, 43, 67, 68], where the pendulum is fixed to

a cart that can move in one or two directions. Generally the linear displacement of

the cart is physically limited by the length of the track along which the cart moves.

Another arrangement is the rotational pendulum (often referred to as the Furuta

pendulum) where the base of the pendulum is attached to a horizontal arm that

rotates. [22, 3, 52, 13, 23, 63, 65]. This has the advantage of a more compact physical
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implementation where the motion of the base of the pendulum is limited only by the

actuator controlling its motion and not by a physical boundary. Other formulations

include the wheeled inverted pendulum [47].

Constructing inverted pendulum systems with more states to control adds

complexity to the control problem. Two pendulums with di↵erent lengths and masses

attached to the same base are referred to as the dual–inverted–pendulum [42, 50].

The pendulum itself may consist of multiple jointed segments [43, 65], which is also

referred to as a dual–inverted–pendulum when there are two separate segments. These

models, of course, extend to an arbitrary number of pendulums and joints. The

addition of each pendulum or joint adds two coupled states to the system, hence

increasing the number of states controlled by a single input. This project utilizes a

cart–and–pendulum model. The model is discussed in detail in Chapter 5.

2.7 Summary

This chapter covers a variety of topics relevant to the development of a discrete event

neural simulator. A discussion of properties of biological neural systems justifies their

use in computational simulation. Construction of networks used by the discrete event

neural simulator networks takes place by evolutionary programming techniques in

the form of a neural evolution algorithm. Exploration of the neural simulator takes

place by observing the interactions of discrete event neural networks with systems

that have continuous time dynamics, in particular the harmonic oscillator and the

inverted pendulum.
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Chapter 3

Neural Simulation and Evolution

This chapter outlines methods used to develop a discrete event neural simulation.

All calculations are performed using the C++ programming language. The neural

network is a C++ class written by the author. The closed loop systems discussed in

this work are hybrid systems consisting of a discrete event neural simulation coupled

with a continuous time dynamic system. A neural evolution algorithm constructs

network structures used by the simulator. This algorithm uses a distributed

evolutionary programming approach combining a genetic algorithm with distributed

simulated annealing.

The dynamics of the discrete event neural simulation are separate from the dy-

namics of the continuous time systems used to explore the behavior of the simulation.

Numerical evaluation of the continuous time dynamic systems are performed with

the Livermore Solver for Ordinary Di↵erential Equations (LSODE) available from

http://www.netlib.org/odepack/. Evaluation of the neural evolution algorithm

takes place on distributed computational clusters. Two clusters are used. The

first is provided by the Laboratory for Information Technologies consisting of 48

computational cores distributed across 10 nodes. This work also used the Newton

High Performance Computing Cluster, a general purpose research cluster maintained

through a joint e↵ort between the University of Tennessee and Oak Ridge National
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Laboratory [1]. All source code for the discrete event neural network and neural

evolution algorithm can be found in Appendix A.

While this simulator is motivated by biological neural systems, parameter values

(e.g. transmission delay, threshold values, refractory period) do not necessarily agree

with biological values. The purpose of the simulation is regulation and control of

continuous state dynamic systems, not replicating experimental biological data.

3.1 Discrete Event Neural Simulation

The discrete event simulator consists of a graph structure where nodes represent

neurons and edges represent axons, dendrites and synapses. Each neuron in the

network implements an accumulate–and–fire mechanism. A neuron accumulates pulse

events from other neurons. Certain neurons are designated as input neurons and

others as output neurons. Input neurons receive inputs external to the network

simulation that increase the input neuron accumulator. The pulses generated by

output neurons are visible outside the network simulation and used as inputs to

continuous time dynamic systems. Neurons can function as both input and output

neurons. Neurons that are not input or output neurons are referred to as hidden

neurons.

Each neuron has a positive threshold. If the accumulator value of the neuron

exceeds its threshold, if will fire a positive pulse. If the accumulator is decreased to a

smaller value than the negative value of the threshold, the neuron will fire a negative

pulse. Firing a pulse reduces the magnitude of the accumulator by a fixed amount

(typically equal to the threshold). If the magnitude of the accumulator value still

exceeds the threshold, the neuron will fire until the accumulator value is below the

threshold. The rate at which the neuron can fire is limited by the refractory period

of the neuron, where the refractory period is the minimum possible time between the

firing events of a single neuron.
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A neuron has three spatial coordinates which establish distances between neurons.

The transmission delay for connected neurons is a linear function of this distance.

Connections between neurons can be either inhibitory of excitatory, where inhibitory

connections invert the sign of the pulse event. The magnitude of the pulse is

determined by a weight term defined for each connection in the network. A neuron

can be connected to itself; in this case the transmission delay is set by the refractory

period of the neuron.

3.2 Single Neuron Behavior

A single discrete event input neuron, as implemented in this simulation functions

as a pulse frequency modulator (PFM), when presented with a continuous–valued

continuous time input signal. The behavior of a single neuron is demonstrated

below for two di↵erent input signals, resulting in a pulse frequency modulated signal.

The instantaneous firing rate of the output neuron is low pass filtered using an

exponentially weighted moving average (EWMA) to produce a demodulated signal.

In both cases, the demodulated signal is an approximation of the original signal.

Figure 3.1 show the reaction of a single neuron that functions as both input and

output neuron to a staircase function with steps of increasing magnitude. As the

magnitude of the input signal increases, the firing rate of the neuron increases. The

input signal is allowed to change, and the system output is reported by the numerical

integration routine at multiples of T
s

= 0.01. The neuron has a threshold t
h

= 100

and an output gain g = 1.0. An EWMA filter with parameter ↵ = 0.1 is used to

demodulate the signal. With these parameters, the demodulated output of the neuron

closely tracks the original signal. Notice that the demodulated signal is not updated

until the neuron fires, resulting in a one sample delay, typical of PFM signals.

The behavior of a single neuron with a sampled sinusoidal input (T
s

= 0.01) is

shown in Figure 3.2. This neuron has a threshold t
h

= 10 and is demodulated by an

EWMA low pass filter with parameter ↵ = 0.9. The demodulated signal tracks the
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modulated signal well, except when the magnitude of the input signal is too small

to excite the neuron. This behavior occurs when the input signal transitions from

positive to negative. At this point, the accumulator of the neuron is decreased, and

the neuron will not fire until its accumulator is decreased su�ciently so that the

magnitude of the accumulator exceeds the threshold.

The single neuron behaves as expected for a pulse frequency modulator. When the

output parameters, ↵ and g, are tuned appropriately, the demodulated firing events

represent the signal being modulated. Hence, the discrete event neuron behaves in

an analogous manner to biological neurons. The construction of networks of discrete

event neurons is addressed by the neural evolution algorithm.
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Figure 3.1: Single neuron with staircase input. The demodulated signal tracks the

input signal, delayed by one event.
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Figure 3.2: Single neuron with sinusoidal input. Insu�cient stimulation to the

discrete event neuron results in distortions in the demodulated signal.

3.3 Neural Evolution Algorithm

The neural evolution algorithm is used to construct networks of discrete event neurons

for use by the discrete event neural simulator. Deterministic or direct methods of

network construction are probably not appropriate. Hence a stochastic optimization

algorithm is utilized to explore the space of possible network structures. Exploration

of this space takes place by applying random mutations to the network.

Mutations to the network can be described as parameter changes or structural

changes. The following parameters can be adjusted

• The firing threshold of each individual neuron.

• The minimum time between firing events for each neuron (refractory period).

• The physical location of each neuron on a three dimensional grid with fixed

boundaries. The location of neurons determines the communication delay
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between the firing event in the parent neuron and the receipt of that event

by the child neuron.

• The weight of a connection between two neurons, which scales the magnitude

of the pulse.

• The delay per unit distance T
sc

. This linearly scales the communication delays

between all neurons in the network.

• For each of N output neurons, constants ↵1, ...,↵N

. These constants are used

in EWMA low pass filtering the firing rates of the output neurons.

• Constants g1, ..., gN . These constants are multiplicative gains applied to the

demodulated output of each output neuron.

Mutation of a parameter randomly selects a parameter from the list with equally

weighted probabilities. When the value of a parameter is mutated, that value is

randomly increased of decreased by a random, uniformly distributed percentage

between 0 and 100%.

The following structural modifications can be made to the network.

• Add a neuron. One incoming and one outgoing connection are added to existing

randomly selected neurons in the network. The parameters of the neuron are

randomly selected.

• Remove a neuron. Incoming and outgoing connections are also removed.

• Add a connection between two randomly chosen neurons that do not have an

existing connection. The weight of the connection is initialized to one.

• Remove a connection between two neurons. A neuron with outgoing connections

is randomly chosen and a connection from the list of outgoing connections is

selected at random for removal.
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The neural evolution algorithm used to develop network structures is divided into

two main subroutines referred to as the master process and the slave process. The

slave process is executed multiple times for each iteration of the master process,

but each slave process is independent from other slave processes. This arrangement

permits e�cient implementation using distributed memory message passing interface

(MPI) parallelization by executing slave subroutines on separate processing cores.

Source code for the master and slave processes can be found in Appendix A.

The master process implements a genetic algorithm without crossover. A list of

variables (Table 3.1) for the pseudo-code (Algorithm 1) for the master process is

given. The master process maintains a population P of n networks. Evaluation of

the performance of the network is achieved through a function that independently

determines the fitness of each network. The structure of the fitness function is task

dependent. In this work, a numerical simulation of the hybrid system consisting of

the discrete event simulator interfaced with a continuous time dynamic system is

executed. For the systems analyzed in Chapter 4 and Chapter 5, the fitness of the

network is determined by a weighted sum of error signals. It is desirable to reduce

this error until it reaches a tolerance ✏. Due to the stochastic aspects of the algorithm,

there is no guarantee that the algorithm will reach a specified error tolerance, so in

practice it is necessary to provide a limit on the number of iterations the algorithm

can perform.

Each iteration of the master process performs a step in a genetic algorithm

operating on each population member. A mutation operator modifies the structure

of the network and sends that network to a slave process for further refinement.

When the slave process has finished, it returns a modified network and fitness for

that network, which is added to the existing population. When all of the population

members have been processed by a slave process, the new population consists of

2n members. These are sorted in order of decreasing performance and the worst n

performers are removed, reducing the population to n members. This repeats until

the best performing network satisfies a predetermined fitness tolerance.
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Initialize P to n members

for i = 1, ..., n do

f
i

 fitness(p
i

)

end for

m 0

while max(F ) > ✏ and m <= N do

for all p 2 P do

m m+ 1

p
m

 mutate(p)

f
m

 slave(p
m

)

Append p
m

to P

Append f
m

to F

end for

Drop n worst performers from P

end while

return p
k

2 P 3 f
k

< f8f 2 F

Algorithm 1: Master process, genetic algorithm.

Table 3.1: A description of variables used in the master process.

Variable Description

n The initial size of the population.

P = {p1, ...pn} The population of best performing networks.

F = {f1, ..., fn} The fitness of each member of P .

✏ A tolerance that determines su�cient fitness.

N Maximum number of iterations to perform.

The slave described by the pseudo-code in Algorithm 2, performs simulated

annealing by mutating over network parameters. A description of the variables

for this algorithm are in Table 3.2. Each iteration of the slave process mutates
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a parameter of the network and evaluates the fitness of the mutated network. In

a similar manner to the master process, the slave process must perform a hybrid

network/system simulation in order to determine the performance of a proposed

network. The algorithm keeps track of the best performing network, but permits

continuation of the algorithm with a inferior network with a geometrically decreasing

probability T . The annealing temperature T decreases geometrically with rate

constant K. If a pseudo–random number falls below the annealing temperature,

the algorithm continues to evaluate that network, even if it performs worse than the

networks in previous iterations. Since the annealing temperature decreases with each

iteration, the probability of this occurring decreases as the algorithm continues. After

N iterations, the slave process returns the best performing network to the master

process.
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Receive network p
m

from master.

b fitness(p
m

)

T  1.0

y  p
m

for i 0 to N do

T  K ⇤ T

z  mutate(y)

f  fitness(z)

if f < b then

p
m

 z

y  z

b f

else if rand() > T then

y  p
m

end if

end for

return b, p
m

Algorithm 2: Slave process, simulated annealing.

Table 3.2: A description of variables used in the slave processes.

Variable Description

p
m

The population member sent from the master process.

T The annealing temperature.

K 2 (0, 1) An annealing constant.

N Number of iteration of simulated annealing to perform.
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3.4 Network Visualization

A custom visualization tool is utilized to view network structures. An example is

provided in Figure 3.3. Blue nodes indicate input neurons, red nodes are output

neurons, and green nodes are hidden neurons. Blue connections are excitatory and

red connections are inhibitory pathways. The thickness of the connection indicates the

strength of the connection between two neurons. In the example the input neuron

is connected to a hidden neuron by an inhibitory connection. This hidden neuron

is connected to the output neuron by an excitatory connection. With appropriately

chosen thresholds and weights, an input applied to the network will generate an output

pulse. The third connection, represented by a thicker line represents an excitatory

connection with a greater weight. When the output neuron fires, it stimulates the

input neuron, and the process starts again. If the parameters are chosen appropriately,

this establishes a sustained firing pattern similar to a central pattern generator.

A detailed description of the parameters of neurons in this network can be found

in Table 3.3. For each neuron, the table list values for the spatial coordinates (x, y, z),

the threshold T
h

, and the refractory period T
rf

. For output neurons, parameter values

are provided for the output gain g and the output filter coe�cient ↵. The time scale

T
sc

is a property of the network and must also be specified to fully define the network.

Table 3.4 lists the connections present in the network, indicated by a starting neuron

(parent) and a terminal neuron (child), as well as the weight of that connection.
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Inhibitory
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Figure 3.3: A sample network observed through the network visualization utility.

Table 3.3: Parameter details for the network visualization example.

Neuron Type x y z T
h

T
rf

g ↵

1 input 0.443 -0.081 -0.11 1.0 0.001 – –

2 hidden -0.3 -0.034 0.09 5.458 0.001 – –

3 output -0.3 -4.32 0.0 9.34 0.001 1.0 0.866
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Table 3.4: Connection details for the network described in Table 3.3. This network

forms a complete cycle.

Parent Child Weight

1 2 1.0

2 3 1.0

3 1 5.0

3.5 Summary

This chapter presents a model neural simulation that emphasizes the pulses used in

communication between neurons. These pulses are treated as discrete events. With a

discrete event neural simulator, a method is provided for building networks of discrete

event neurons, as well as interfacing discrete event neural simulation to simulations

to numerical simulations of systems with continuous time dynamics. The remainder

of this work explores the interactions of the discrete event neural simulation with

continuous time dynamics.
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Chapter 4

Harmonic Oscillator

The chapters explores the interaction between the discrete event network simulation

and a model of a harmonic oscillator. The network provides closed loop feedback

to the system (Figure 4.1). Its purpose is to regulate the states of the harmonic

oscillator to zero. Networks are initialized according to the structure of the harmonic

oscillator: two input neurons are provided for each state of the harmonic oscillator

and one output neuron is provided for the control signal to the system.

For the harmonic oscillator described by the di↵erential equation in Equation 2.16

with output y(t), let x1(t) = y(t), x2(t) = ẏ(t), and x = (x1, x2)T . Then this system

has a state space model

ẋ(t) = Ax(t) + Bu(t) (4.1)

where

A =

0

@ 0 1

� k

m

0

1

A

and

B =

0

@ 0

1
m

1

A

This is a linear time invariant system. In this chapter the constants of the

harmonic oscillator are k = 1 and m = 0.1, yielding a frequency of oscillation
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1
2⇡

q
k

m

= 0.503s�1. Full state feedback is implemented by providing an input neuron

for each of the two states x1 and x2; one output neuron, when demodulated, provides

the input to the system u. The control goal of the feedback network is to stabilize

and regulate the states of the harmonic oscillator around the equilibrium point x = 0.

The signal generated by the output neuron is demodulated in the same manner as

a PFM signal using the methods discussed in Section 2.2.1. All additional neurons,

synapses, and relevant network parameters are evolved using the network evolution

algorithm from Section 3.3 using two computational nodes, each with 2.8 GHz dual

quad core AMD Opteron processors with 8GB RAM (8 cores/node and 16 cores

total).

Harmonic Oscillator

NetworkDemodulation

Process 
Noise

Figure 4.1: Block diagram of the harmonic oscillator with discrete event network

feedback.

The behavior of the unforced harmonic oscillator is compared to the closed loop

system without noise and in the presence of process noise. Band–limited noise is

generated by low pass filtering zero mean and unit variance Gaussian white noise using

an exponentially weighted moving average (EWMA). In the absence of an explicit

gain term, the EWMA smoothing constant ↵ 2 (0, 1] controls the severity of the

noise process. A small value of alpha (say ↵ = 0.01) produces a smoother random

signal that a larger value (say ↵ = 0.9). An ↵ = 1.0 corresponds to an unfiltered

noise process. A small value of ↵ corresponds to a low pass filter with a small cuto↵

frequency resulting in a smoother noise process with less variance. Sample noise

process are provided for reference in Figure 4.2.
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Figure 4.2: Examples of band–limited noise processes with di↵er filter parameters.

Performance is measured by the mean–squared–error (MSE) of x1 over time. As

defined below, this measures the average deviation of this state from zero. The MSE

of N samples x1(1), x1(2), . . . x1(N) is given by [44]

MSE(x1) =
1

N

NX

n=1

x2
1(n) (4.2)

Without noise this is a simple problem, and simple structures are found by the

evolutionary algorithm. Process noise, however, requires more complex network

structures to e↵ectively maintain minimal system response to the noise.

4.1 Unforced System

The trajectory of of the unforced harmonic oscillator is shown in Figure 4.3, with the

initial condition x1(0) = 1. The states x1 and x2 oscillate sinusoidally. The objective

of the control problem is to drive the states x to 0 by minimizing the MSE criterion.

For the non zero initial conditions used in this study, an MSE of zero is not feasible.

40



0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Time (s)

x 1

Trajectory of the harmonic oscillator with initial condition x
1
(0) = 1

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4

Time (s)

x 2

Figure 4.3: Behavior of the unforced harmonic oscillator. This system oscillates

sinusoidally.

4.2 Network Optimization Examples

The neural evolution algorithm generates networks capable of driving the harmonic

oscillator to small states. In these experiments, the neural evolution algorithm was run

until a network satisfying a tolerance MSE(x1) = 0.009 was found. Simple network

structures emerge when this optimization takes place without noise. The simple

structures do not perform well in the presence of noise. When the optimization takes

place in the presence of small amounts of process noise, complex network structures

develop with more neurons, synapses, and cyclic connections. These networks exhibit

improved performance with and without noise. The examples presented in this section

are typical representations of the networks produced under the given environments.

A statistical analysis of the results of repeated trials of the neural evolution algorithm

is presented in Section 4.3.
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Network 1 (Figure 4.4, parameter details provided in Table 4.1) provides an

example of a network optimized in the absence of any process noise. As can be

observed, this results in a simple structure with no cyclic connections. In fact, this

network disregards feedback from one of the states of the system (in this case x2).

Simulation of the closed loop system with network 1 is shown in Figure 4.5. This

network has a time scale T
sc

= 0.20861. This network is capable of generating an

input signal to the system that drives the error to a small value (MSE = 0.0088078).

Note that the states are never driven identically to zero. This is an e↵ect of the

PFM characteristics of the input neurons. The feedback signal from the system to

the network decreases to the point where it no longer excites the network. The

neural evolution algorithm required only two generations to discover this network.

This simple network does not, however, handle even small amounts of process noise.

Process noise with ↵ = 0.01 (Figure 4.6) is enough to consistently destabilize the

closed loop system.

Figure 4.4: Network construction in the absence of process noise results in simple

network structures.
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Table 4.1: Details of the feedback network for the harmonic oscillator optimized

without noise.

Neuron Type x y z T
h

T
rf

g ↵

1 input 0.5 0.1 0.0 1.398 0.0001 – –

2 input 0.272 -0.231 -0.366 5.43 0.0001 – –

3 output -0.047 -0.346 -0.463 9.71 0.0001 2.50253 0.688474

Table 4.2: Connection details for the network described in Table 4.1. Only one

connection is formed.

Parent Child Weight

1 3 1.34771

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

x 1

Trajectory of the harmonic oscillator with feedback network input
without noise

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

x 2

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

Time (s)

u

Demodulated network output/system input

Figure 4.5: Behavior of the closed loop harmonic oscillator without noise using a

feedback network developed in the absence of process noise. This approach generates

a simple control signal to the system.
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Figure 4.6: Behavior of the closed loop harmonic oscillator with a small amount of

process noise using a feedback network developed in the absences of process noise.

The closed loop system is unstable with even a small amount of noise.

Network 2 (Figure 4.7) was developed using the neural evolution algorithm in

the presence of a small amount of process noise (↵ = 0.01) and has a time scale

T
sc

= 0.000603. The algorithm found this network in 13 generations with MSE =

0.00825988. This network performs well without process noise (Figure 4.8). Without

noise, a distinct quasi–periodic output is generated by the network, even when the

magnitude of the states decreases to a small value. The network also performs well

for a small amount of process noise with ↵ = 0.01 (Figure 4.9) and for a larger

amount of process noise with ↵ = 1.0 (Figure 4.10). A sustained activity is visible

in the presence of process noise. The structure of this activity is less apparent for

the increased noise, since the noise is large enough to generate much greater activity

in the network. Average error over 50 simulations is shown in Table 4.5. Network

2 successfully controls the harmonic oscillator in the presence of non trivial noise

processes, without exhibiting unstable behavior.
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This network is considerably more complex than the previous network and presents

a greater analysis challenge. The state x1 excites input neuron 1, which forms a

cyclic connection with hidden neuron 4. This structure is primarily responsible for

generating the sustained CPG–like behavior observed in the output of the closed loop

system. There is an excitatory path from input neuron 1 to input neuron 2 and to

output neuron 3 through hidden neuron 5. Hidden neuron 5 is inhibited, however, by

hidden neuron 6. Input neuron 2, which receives input from state x2, inhibits output

neuron 3. Output neuron 3 is also inhibited by hidden neuron 4 through hidden

neuron 7. The are no cyclic paths stimulating input neuron 2. Once x2 achieves a

small value, its influence on the network becomes minimal.

The cyclic connection between input neuron 1 and hidden neuron 4 is the only

cyclic pathway created by the neural evolution algorithm in this network. All other

connections are feedforward connections that merely introduce delay to the control

signal. An interesting result can be observed from the demodulated network output

(i.e. the control signal to the harmonic oscillator). The sustained quasi–periodic

behavior of the network output occurs at approximately the same frequency as the

state x2, where the sign of the network signal is negative that of the state. The

network maintains a model of the derivative of the state x1 even when the state x2 is

driven to a small value. The network has appeared to learn a model of the harmonic

oscillator using a cyclic connection (between neuron 1 and neuron 4) and delay.

45



Input Neuron 1

Hidden Neuron 4

Input Neuron 2

Hidden Neuron 7

Output Neuron 3

Hidden Neuron 6

Hidden Neuron 5

Figure 4.7: Network developed in the presence of process noise.
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Table 4.3: Details of the feedback network for the harmonic oscillator optimized in

the presence of a small amount of process noise.

Neuron Type x y z T
h

T
rf

g ↵

1 input -0.0554 -0.353 0.474 4.56 0.0001 – –

2 input 0.299 0.161 0.336 1.38 0.0001 – –

3 output -0.122 0.233 -0.00961 3.813 0.0001 0.180 2.61e-5

4 hidden 0.444 0.246 0.433 0.261 0.390 – –

5 hidden 0.296 0.153 -0.0668 0.284 0.797 – –

6 hidden 0.0485 -0.639 -0.256 0.0958 0.371 – –

7 hidden -0.135 -0.448 -0.0525 0.368 0.692 – –

Table 4.4: Connection details for the network described in Table 4.3. A cyclic

connection is present between neuron 1 and neuron 4.

Parent Child Weight

1 4 -0.00304

1 5 0.200

2 3 -4.28

4 6 -0.252

4 7 -0.309

4 1 2.55

5 2 0.0675

6 5 -0.0298

7 3 -0.296
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Figure 4.8: Harmonic oscillator with feedback using a network developed with a small

amount of process noise. Without noise, the network sustains CPG–like behavior

when the input signal is negligible.
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0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

x 2

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

Time (s)

u

Demodulated network output/system input

Figure 4.9: Performance of the harmonic oscillator with process noise with ↵ =

0.01 using a feedback network developed in the presence of process noise. Sustained

behavior is still observed despite the presence of process noise.
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Figure 4.10: Performance of the harmonic oscillator with process noise with ↵ = 1.0

using a feedback network developed in the presence of process noise. The feedback

network stabilizes the system in the presence of unfiltered process noise.

↵ Average MSE

0 0.00891719

0.01 0.00949

1.0 0.0124

Table 4.5: Average performance of Network 2 over 50 simulations shows favorable

performance even in the presence of process noise.

4.3 Neural Evolution Algorithm Statistics

This section examines statistics regarding the e�ciency of the neural evolution

algorithm. Statistics are averaged over 50 optimization runs for each case of

population size from one to fifteen. As can be seen in Figure 4.11, having a su�ciently

large population size results in fewer generations needed to explore the space of
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possible network structures. When multithreading is available to allow separate

processes to explore the parameter space for a population of fixed network structures,

the average execution time and average arequired to find a solution decreses with the

average number of generations. Increasing the population size beyond eight members

does not significantly improve the performance of the algorithm for this application.

Having more than one or two population members is critical to finding a solution

e�ciently.
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Figure 4.11: Average execution time and average generations required to find a

network solution decrease as the population size increases.

In terms of computational e�ciency, it is desirable to find a network with a

minimal number of neurons and synapses. The average numbers of networks evaluated

with a given number of neurons (Figure 4.12) and a given number of synapses (Figure

4.13) are observed. Increasing the population size results in a more complete search

of networks with fewer neurons and synapses. This implies that an insu�cient
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population size will result in structural mutations without exploring enough of the

parameter space of each structure.

Without noise, the neural evolution algorithm tends to explore network structures

with fewer than 10 neurons when the population size increases beyond 8 slave

processes. Similar behavior is expressed in the average number of synapses explored.

Increasing the number of slave process beyond 8 reduces the number of synapses

explored to less than 10 in most cases.
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Figure 4.12: The average number of neurons explored by the neural evolution

algorithm is reduced on average when the population size is increased, resulting in

less complex network structures.
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Figure 4.13: The average number of synapses explored by the neural evolution

algorithm is reduced on average when the population size is increased, resulting in

less complex network structures.
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4.4 Summary

The neural evolution algorithm can generate network structures that the discrete

event neural simulator can utilize as feedback controllers for the harmonic oscillator.

Simple structures emerge when the algorithm develops networks in the absence of

noise; more complex networks develop when the evolution process takes place in

the presence of process noise. Use of the simulator with process noise significantly

improves the performance of the closed loop system with and without process noise.

A sample network demonstrates the capability of a more complex network structure

to develop a model to use for control of the harmonic oscillator.
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Chapter 5

Control of the Cart–and–Pendulum

The cart–and–pendulum (Figure 5.1) is a common formulation of the inverted

pendulum control problem. A pendulum is fixed at a pivot to a cart that can move

horizontally. Stabilization of the pendulum is achieved by applying a force to the

cart, moving the cart such that it remains under the pendulum. A detailed model

for the cart–and–pendulum is provided. A closed loop feedback control strategy

that combines nonlinear energy control and linear quadratic regulation is provided.

Introduction of the neural simulator operating on the error signal of the closed loop

system improves performance significantly without process noise and in the presence

of process noise.

5.1 Model

The canonical cart–and–pendulum (Figure 5.1) is used in this work. The chosen

numerical parameter values are shown in Table 5.1. The di↵erential equations

describing this system are

I ✓̈ = mgL sin ✓ �mL2✓̈ �mLÿ cos ✓ (5.1)

Mÿ = F �m(ÿ + L✓̈ cos ✓ � L✓̇2 sin ✓)� kẏ (5.2)
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where ✓ is the angular displacement of the pendulum from the vertical axis, y is

the linear displacement of the cart, M is the mass of the cart, m is the mass of the

pendulum, L is the distance from center of gravity of the pendulum to the pivot, I

is the moment of inertia of the pendulum, and k is a friction coe�cient [34]. Let

x1 = ✓, x2 = ✓̇, x3 = y and x4 = ẏ be the states of the system, x = (x1, x2, x3, x4)T ,

and u = F be the input. Then the system has the state space form

ẋ = f(x, u) = (f1(x, u), f2(x, u), f3(x, u), f4(x, u)) (5.3)

where f1(x, u) = x2, f3(x, u) = x4, and

0

@ f2(x, u)

f4(x, u)

1

A =
1

�

0

@ m+M �mL cos x1

�mL cos x1 I +mL2

1

A

0

@ mgL sin x1

u+mLx2
2 sin x1 � kx4

1

A

where � = (I +mL2)(m+M)�m2L2 cos2 x1.

This system presents a more challenging control problem than the harmonic

oscillator. There are four states to control via a single input. Stabilization involves

minimizing the angular displacement of the pendulum, while maintaining a neutral

position of the cart.

Performance P (x1, x3) of this system is measured using the weighted sum of

the mean–squared–error (Equation 4.2) of the angular displacement and the linear

displacement such that

P = w1MSE(x1) + w3MSE(x3) (5.4)

where w1 and w3 are the weights for the respective states. For the applications

presented here, equal weight is give to the angular position and the linear position by

letting w1 = 0.5 and w2 = 0.5.
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Figure 5.1: The inverted pendulum on a cart.

Table 5.1: Parameters used for the cart–and–pendulum system.

Parameter Value Units

M 10 kg

m 2 kg

L 0.5 m

k 0.1 kg

s

g 9.81 m

s

2

I 1
3mL2

k
p

0.9 s

m

✏1 8.53 –

✏2 0.599 –

5.2 Cart–and–Pendulum Control Strategy

Nonlinear swing–up control is implemented utilizing an energy based method [67, 54].

The total energy E of the pendulum (rotational kinetic energy and potential energy)

is given by

E =
1

2
(I +mL2)✓̇2 +mgL(1 + cos ✓) (5.5)
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Taking the derivative of this expression and substituting the equation for angular

acceleration gives

Ė = �mLÿ✓̇ cos ✓ (5.6)

Hence the energy of the pendulum can be controlled by applying a force to the cart,

consequentially changing the linear acceleration ÿ of the cart.

Control of the cart is achieved using the control law

F = k
p

(E � E0)✓̇ cos ✓ (5.7)

where k
p

> 0 is a proportionality constant, and E0 is the desired energy of the system.

In this case, the desired energy E0 = 2mgL corresponding to the potential energy of

the pendulum at the unstable equilibrium. Define the Lyapunov function

V =
1

2
(E � E0)

2 (5.8)

This has the derivative

V̇ = (E � E0)Ė = �k
p

L
⇣
(E � E0)✓̇ cos ✓

⌘2
(5.9)

Then V is positive semidefinite and V̇ is negative semidefinite, except at certain

points in the state space, in particular at (✓, ✓̇) = (0, 0). At this point, the Lyapunov

equations will not be satisfied for the given control law.

Closed loop control can be achieved by switching to a linear quadratic regulator

(LQR) when the states of the system reach a small value and an approximate linear

model linearized around the unstable equilibrium point is valid. Linearizing the

nonlinear system at the unstable equilibrium point x = 0 results in a linear state
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space system (Equation 2.18) where

A =

0

BBBBBB@

0.0 1.0 0.0 0.0

16.8171 0.0 0.0143 0.0

0.0 0.0 0.0 1.0

�1.4014 0.0 �0.0095 0.0

1

CCCCCCA

and

B =

0

BBBBBB@

0.0

�0.1429

0.0

0.09052

1

CCCCCCA

The LQR controller is calculated by MATLAB generating a linear control law

u = �Kx. Weighting matrices Q and R are chosen such that the cart and pendulum

position errors are penalized:

Q =

0

BBBBBB@

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

1

CCCCCCA

and R = 1. The nonlinear cart and pendulum system linearized near the unstable

equilibrium point produces a feedback termK = (�258.9975,�63.5652,�1.1050,�5.1523).

It is important to note at this point, that both the energy control method and the

LQR controller require state feedback as implemented. While this is su�cient for the

simulation presented here, practical implementation of these controllers would require

the use of a state estimator.

The switching criteria implemented is the same used by [67]. For two small

empirically determined constants ✏1, ✏2 > 0, if both |E � E0| < ✏1 and 1� cos ✓ < ✏2

are satisfied, then the control algorithm switches to an LQR controller [5]. The first
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condition ensures that the energy of the pendulum is minimal. The desired energy E0

is not uniquely achieved at the unstable equilibrium point, hence the second condition

ensures that the pendulum is near the unstable equilibrium point.

5.3 Improved Performance Using the Neural Sim-

ulator

A neural network simulation is utilized to improve the performance of the closed

loop system in the presence of process noise (Figure 5.2). Band–limited process

noise is generated by low pass filtering Gaussian white noise using a low pass filter

implemented by an exponentially weighted moving average with a filter parameter ↵ =

0.5. A multiplicative gain is applied to the noise process to increase the magnitude

of the noise. The gain values chosen are 1.0, 1.5, 2.0. In the absence of the neural

network, increasing the process noise gain decrease the performance of the closed loop

system. Including a discrete event neural system in the manner described in Figure

5.2 improves the performance of the system.

Pendulum

Process 
Noise

Energy Control/LQR

Network Demodulation

Figure 5.2: Block diagram of the closed loop system including a neural network

simulation that improves the performance of swing–up control of the inverted

pendulum.

A tiered approach is taken for network construction. The neural network is

initialized by applying the neural evolution algorithm without process noise. That
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network is then used as a seed for the next optimization task, which applies process

noise with a gain of 1.0. This is repeated for process noise gains of 1.5 and 2.0. For

process noise with a gain of over 2.0, the closed loop system without the network is

unstable. The neural evolution algorithm is unable to stabilize the closed loop system

in this case. Since the noise varies for each simulation, the performance achieved by

a particular network structure is averaged over ten separate simulations in the neural

simulation algorithm. In each case, the constructed network is also able to control the

pendulum for tested gains less than the gain that was used to develop the network.

Average error for the di↵erent gain terms can be seen in Figure 5.3. The results

are averaged over 50 simulations in the presence of processes noise with the given

gains. For each process noise gain (0.0 indicating no process noise), there are two bars

indicating the average performance of the controller with and without the network

component. Error bars specify one standard deviation from the average. System

performance is improved for gains of 1.0 and 1.5. A gain of 2.0 represents the

limit at which the system can perform without being consistently destabilized by the

process noise. A gain greater that 2.0 results in unstable behavior with or without

the network.
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Figure 5.3: An appropriately tuned network improves the robustness of the closed

loop system.

Example final structures derived during each tier of the neural evolution algorithm

are shown in Figures 5.4–5.7. These are typical networks that produce average errors

representative of the average errors shown in Figure 5.3. The first three systems have

a common excitatory connection from the input neuron to the output neuron and

an inhibitory connection from the output neuron back to the input neuron. Self-

connections develop in each of theses networks. The weights, however, are relatively

small and have little impact on the network behavior. The network developed without

process noise has a time scale of T
sc

= 1.0. For the network developed in the

presence of process noise with a gain of 1.0, the time scale decreases significantly

to T
sc

= 0.000394. For a gain of 1.5 the time scale remains small with T
sc

= 0.000656.

Increseasing the gain to 2.0 does not significanly influence the time scale, which is

T
sc

= 0.000764.

When the process noise gain is at 2.0, the limit of stable behavior, additional

structure is needed to achieve this performance. The network structure in Figure 5.7

shows several cyclic connections. These cycles connect neurons 0–2–1–0, 0–1–0, and
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1–3–2–1. Neuron 4, and all connection to neuron 4, can be regarded as extraneous

structure since neuron 4 has no outgoing connection.

Figure 5.4: A simple network structure developed when the neural simulation

algorithm proceeds in the absence of process noise.

Table 5.2: Parameter values for the network in Figure 5.4.

Neuron Type x y z T
h

T
rf

g ↵

0 input 0.142 0.112 0.270 20 0.0001 – –

1 output 0.5 0.0 0.0 1.0 0.0001 0.00917 0.10
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Table 5.3: Connection values for the network in Figure 5.4.

Parent Child Weight

0 0 -0.7111

0 1 1.0

1 0 -1.89

Figure 5.5: Neural network structures for neural evolution for process noise with a

gain of 1.0
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Table 5.4: Parameter values for the network in Figure 5.5.

Neuron Type x y z T
h

T
rf

g ↵

0 input -0.197 -0.168 0.009 20 0.0001 – –

1 output 0.5 0.0 0.0 0.978 0.0001 0.0064 0.608

Table 5.5: Connection values for the network in Figure 5.5.

Parent Child Weight

0 0 -0.711

0 1 0.567

1 1 0.0127

1 0 -1.898
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Figure 5.6: Neural network structures for neural evolution for process noise with a

gain of 1.5

Table 5.6: Parameter values for the network in Figure 5.6.

Neuron Type x y z T
h

T
rf

g ↵

0 input 0.342 0.0579 -0.451 20 0.0001 – –

1 output 0.0427 0.331 -0.356 0.156 0.0001 0.0107 0.608
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Table 5.7: Connection values for the network in Figure 5.6.

Parent Child Weight

0 1 0.0647

1 1 0.00449

1 0 -1.90

Figure 5.7: A more complex neural network structure developed for neural evolution

in the presences of process noise with a gain of 2.0.
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Table 5.8: Parameter values for the network in Figure 5.7.

Neuron Type x y z T
h

T
rf

g ↵

0 input 0.342 0.0578 -0.451 2.01 0.0001 – –

1 output 0.0427 0.331 -0.357 0.281 0.0001 0.0421 0.003

2 hidden -0.308 -0.487 0.178 0.420 0.570 – –

3 hidden -0.324 0.216 0.232 0.429 0.798 – –

4 hidden 0.026 0.209 -0.134 0.515 0.116 – –

Table 5.9: Connection values for the network in Figure 5.7.

Parent Child Weight

0 2 -0.0284

0 1 0.0647

1 0 -3.47

1 3 0.396

1 1 0.0160

2 1 0.139

3 4 -0.0436

3 2 -0.258

4 4 0.645

5.4 Sumamry

The discrete event network simulator can function as a regulator for the error signal of

closed loop continuous time dynamic systems, in this case, the cart–and–pendulum.

The nerual evolution algorithm was able to improve the performance of the cart–and–

pendulum with a seperate closed loop feedback controller.
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Chapter 6

Conclusions

This work presents a method of modeling and design of neural networks with a discrete

event neural simulation for control applications. The discrete event neural simulation

focuses on the transmission of events between neurons in a network, rather than

modeling the events themselves. This results in computationally e�cient simulations

for complex neural networks. The behavior and e↵ectiveness of the discrete event

neural simulator was evaluated from experiments using two di↵erent closed loop

systems with continuous time dynamics. A neural evolution algorithm was used

to build network structures that perform a specific task to meet a control objective

in each of theses exploratory activities.

For the harmonic oscillator, the neural simulator was used as a feedback controller.

The controller constructed by the neural evolution algorithm in the absence of process

noise exhibits poor robustness when the closed loop system is subjected to small

amounts of noise. This is expected to be the case for more complex problems

because the evolutionary algorithm cannot learn about the system’s operation in

regions of the state space not excited by the noise process. When the evolution of

the network takes place in the presence of a small amount of process noise, a more

complicated network structure develops, one that is able to accommodate process

noise. This complex structure behaves similarly to central pattern generators by
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sustaining activity in the network despite negligible stimulation. This may be an

instance of the evolutionary algorithm’s development of an internal model of the

process embedded in the network structure. The complex network controller behaves

robustly in the presence of nontrivial process noise, suggesting the presence of an

internal model.

The complexity and nonlinearity of the cart–and–pendulum system appears to

prohibit the development of a neural feedback controller directly via the neural

evolution algorithm. The neural evolution algorithm can, however, construct a

network for the discrete event neural simulator that operates on the error signal of a

deterministic feedback controller. The use of a neural network in this fashion provides

better performance in the presence of process noise. This may provide guidance for

more complex design problems.

6.1 Future Work

Traditional artificial neural networks have relatively few tunable parameters compared

to the discrete event neural simulator. The addition of these parameters add more

degrees of freedom, resulting in a much larger space of possible networks. In this

study, the neural evolution algorithm maintains as much generality as possible in

order to search the space of network structures for a given application. There are

several proposed methods that may be useful to enhance the e�ciency of this search.

Identifying sub-networks that perform a desired task and reusing those structures

could improve e�ciency. This is the approach taken in [55, 60] using traditional

artificial neural networks. The same concept can be applied to individual neurons.

Neurons with parameters that perform well in certain situations could be reused.

Implementing these search methods would refine the existing search methods in the

neural evolution algorithm.
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Appendix A

Source Code

Source code listing are provided for all software components. Note that some fields

may include systems dependencies which will require changes for other operating

system environments.

A.1 NeuralNetwork.h

1 /*

* File: NeuralNetwork .h

* Author: Scott Hansen

*

* "A Fox entered the house of an actor and ,

* rummaging through all his properties ,

* came upon a Mask , an admirable imitation of a human head.

* He placed his paws on it and said , ’What a beautiful head! Yet it is

* of no value , as it entirely lacks brains.’ "

* -Aesop ’s Fables

11 *

* Created on January 5, 2011 , 10:19 PM

*/

#ifndef NEURALNETWORK_H

#define NEURALNETWORK_H

#include <math.h>

#include <cstdlib >

#include <set >
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#include <map >

21 #include <list >

#include <deque >

#include <vector >

#include <string >

#include <sstream >

#include <iostream >

#include <algorithm >

using namespace std;

class NeuralNetwork

31 {

private:

/**

* A node in the neural network.

*/

struct Neuron

{

Neuron( double x, double y, double z,

double t_rf , double threshold ,

41 bool is_input , bool is_output );

/* Mutable Parameters */

double x, y, z; // spatial location

double t_rf; // refractory period

double threshold; // max accumulator value before firing

/* State Info */

double accumulator; // accumulator value at current_time

double last_fire_time; // duh

bool is_input , is_output;

51 set <Neuron*> parents; // parent connections

map <Neuron*, double > children; // children connections and weights

};

/**

* A storage contain for events in the Neural Network.

*/

struct Pulse

{

Pulse( Neuron *p_src , Neuron *p_dst , double mag ) : p_dst(p_dst), mag(mag) {};

61 Pulse() : p_dst( 0 ), mag( 0 ) {};

Neuron *p_dst;
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double mag;

};

public:

/* Constructors */

NeuralNetwork( istream &in );

NeuralNetwork( double x_width = 1, double y_width = 1, double z_width = 1);

NeuralNetwork( NeuralNetwork &orig );

71 ~NeuralNetwork () { clear (); }

/* Interface */

void write( ostream &out );

void read( istream &in );

void print( ostream &os = cout );

void printInterface( ostream &os = cout );

double advanceSimulation( vector <double > &out );

void reset ();

void applyInputAt( int i, double t, double mag = 1 );

81 double getNextTime ();

int getQueueSize () {return queue.size (); }

double getInputAccAt( int i ) {return input[i]->accumulator; }

double getOutputAccAt( int i ) {return output[i]->accumulator; }

void setInputThrAt( int i, double th ) {input[i]->threshold = th; }

double getInputThrAt( int i ) {return input[i]->threshold; }

double getOutputGainAt( int i ) {return output_gain[i]; }

double getOutputGainAt( Neuron *n ) {return output_gain[ output_idx[ n ] ]; }

void setOutputGainAt( int i, double g ) {output_gain[i] = g; }

double getOutputAlphaAt( int i ) {return output_alpha[i]; }

91 double getOutputAlphaAt( Neuron *n ) {return output_alpha[ output_idx[ n ] ];}

void setOutputAlphaAt( int i, double a ){ output_alpha[i] = a; }

double getCurrentTime () {return current_time; }

double getXWidth () {return x_width; }

double getYWidth () {return y_width; }

double getZWidth () {return z_width; }

void setTimeScale( double t ) {t_sc = t; }

double getTimeScale () {return t_sc; }

int getpulselistsize () { return pulse_list.size (); }

101 int getfreelistsize () { return pulse_free.size (); }

double randf( double a, double b ) { return ((b-a)*(( double)rand ()/( double)RAND_MAX ))+a; }

double randf () { return (double)rand() / (RAND_MAX ); }

private:
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/* Helper Functions */

bool getEmptyLocation( double &x, double &y, double &z );

Neuron *addNeuron( double x, double y, double z,

double t_rf , double threshold ,

bool is_input = false , bool is_output = false );

111 void removeNeuron( Neuron *n );

void addConnection( Neuron *p_src , Neuron *p_dst , double w = 1.0 );

void removeConnection( Neuron *p_src , Neuron *p_dst );

double getDistance( Neuron *p_src , Neuron *p_dst );

double getDelay( Neuron* p_src , Neuron* p_dst );

void pulseAlloc( Neuron *p_dst , double mag , double t );

void pulseDealloc( Pulse *p );

void clear ();

/* State Info */

121 double x_width , y_width , z_width; // dimensional of the network

double t_sc; // time scaling [delay/dist]

int nc; // number of connections

double current_time;

vector <Neuron*> neurons; // a list of all neurons

vector <Neuron*> input; // a list of input neurons

vector <Neuron*> output; // a list of output neurons

map <Neuron*,int > output_idx; // indices for the output neurons

vector <double > output_gain; // gain for each output neuron

vector <double > output_alpha; // parameters for filtering

131

/* Event Management */

multimap < double , Pulse* > queue; // event queue

list <Pulse > pulse_list;

list <Pulse*> pulse_free;

// These helper classes need VIP access

friend class NeuralNetworkFactory;

friend class GLWidget;

friend class Breeder;

141 };

#endif

A.2 NeuralNetwork.cpp

#include "NeuralNetwork.h"
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/**

* Neuron constructor .

*/

NeuralNetwork :: Neuron :: Neuron( double x, double y, double z,

7 double t_rf , double threshold ,

bool is_input , bool is_output )

: x(x), y(y), z(z), t_rf(t_rf), threshold(threshold),

accumulator (0.0) , last_fire_time (-1),

is_input(is_input), is_output(is_output)

{}

/**

* NerualNetwork constructor . Load a network structure from a file.

*/

17 NeuralNetwork :: NeuralNetwork( istream &in )

{

read( in );

}

/**

* NeuralNetwork constructor .

*/

NeuralNetwork :: NeuralNetwork ( double x_width , double y_width , double z_width )

: x_width(x_width), y_width(y_width), z_width(z_width),

27 current_time (0), t_sc(1), nc(0)

{}

/**

* Copy constructor .

*/

NeuralNetwork :: NeuralNetwork( NeuralNetwork &orig )

{

stringstream ss;

orig.write( ss );

37 read( ss );

}

/**

* Write the network in a condensed format.

*/

void NeuralNetwork ::write ( ostream &out )

{
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char d = ’ ’; // delimeter

47

// write network info

out << neurons.size() << d;

out << x_width << d;

out << y_width << d;

out << z_width << d;

out << t_sc << endl;

// write info for each neuron

map <Neuron*, int > n_map; // map neurons to indices

57 int i = 0;

for ( vector <Neuron *>:: iterator itr = neurons.begin (); itr != neurons.end (); itr++ )

{

n_map[*itr] = i;

out << i << d;

out << (*itr)->x << d;

out << (*itr)->y << d;

out << (*itr)->z << d;

out << (*itr)->t_rf << d;

out << (*itr)->threshold << d;

67 out << (*itr)->is_input << d;

out << (*itr)->is_output << d;

if ( (*itr)->is_output )

{

out << output_gain[ output_idx[ *itr ] ] << d;

out << output_alpha[ output_idx[ *itr ] ] << endl;

}

else

out << endl;

77 i++;

}

// write connections

for ( vector <Neuron *>:: iterator itr1 = neurons.begin (); itr1 != neurons.end (); itr1++ )

{

for ( map <Neuron*,double >:: iterator itr2 = (*itr1)->children.begin ();

itr2 != (*itr1)->children.end ();

itr2++ )

{

87 if ( (*itr2). second )

{
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out << n_map[*itr1] << d; // parent neuron

out << n_map [(* itr2).first] << d; // child neuron

out << (*itr2). second << endl; // weight

}

}

}

out << endl;

}

97

/**

* Read the network from a condensed format.

*/

void NeuralNetwork ::read ( istream &in )

{

// reset the network

clear ();

// read network structure info

107 int nsize;

in >> nsize;

in >> x_width >> y_width >> z_width >> t_sc;

// read info for each neuron and build them

map <int ,Neuron*> n_map; // map indices to neurons

int idx , type;

double x, y, z, trf , thresh , g, a;

bool is_input , is_output;

for ( int i = 0; i < nsize; i++ )

117 {

in >> idx >> x >> y >> z >> trf >> thresh >> is_input >> is_output;

Neuron *p_n = addNeuron( x, y, z, trf , thresh , is_input , is_output );

n_map[idx] = p_n;

if ( p_n ->is_output )

{

in >> g;

output_gain[ output_idx[ p_n ] ] = g;

127 in >> a;

output_alpha[ output_idx[ p_n ] ] = a;

}

}
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// read in connection weights

int src , dst;

double w;

137 while ( in >> src >> dst >> w )

if ( w )

addConnection( n_map[src], n_map[dst], w );

}

/**

* Print the network out in a readable format.

*/

void NeuralNetwork ::print( ostream &os )

{

147 os << "NeuralNetwork " << this << " ";

os << neurons.size() << " neurons ";

os << nc << " synapses ";

os << endl;

os << output.size() << " outputs " << input.size() << " intputs " << endl;

os << "x width: " << x_width << " y width: " << y_width << " z width: " << z_width << " ";

os << "t_sc: " << t_sc << endl;

map <Neuron*,int > n_map;

int i = 0;

157 for ( vector <Neuron *>:: iterator itr = neurons.begin (); itr != neurons.end (); itr++ )

{

n_map[*itr] = i;

os << "-> Neuron" << i << " " << *itr << endl;

os << "x: " << (*itr)->x << " y: " << (*itr)->y << " z: " << (*itr)->z << endl;

os << "t_rf: " << (*itr)->t_rf << " threshold: " << (*itr)->threshold << " ";

if ( (*itr)->is_input )

os << "input " ;

if ( (*itr)->is_output )

os << " output ";

167 if ( (*itr)->is_output)

{

os << "gain: " << output_gain[ output_idx[ *itr ] ] << " ";

os << "alpha: " << output_alpha[ output_idx[ *itr ] ];

}

os << endl;

i++;

}
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for ( vector <Neuron *>:: iterator itr1 = neurons.begin (); itr1 != neurons.end (); itr1++ )

177 {

for ( map <Neuron*,double >:: iterator itr2 = (*itr1)->children.begin ();

itr2 != (*itr1)->children.end ();

itr2++ )

{

os << "neuron" << n_map[*itr1] << " -> neuron" << n_map [(* itr2). first] << " ";

os << "delay: " << getDelay( *itr1 , (*itr2).first ) << " ";

os << "weight: " << (*itr2). second << endl;

}

}

187 }

/**

* Print the interface components of the network , i.e. the input and output neurons.

*/

void NeuralNetwork :: printInterface( ostream &os )

{

os << input.size() << " inputs:" << endl;

for ( int i = 0; i < input.size (); i++ )

os << i << " " << input[i] << endl;

197

os << output.size() << " outputs:" << endl;

for ( int i = 0; i < output.size (); i++ )

{

os << i << " " << output[i] << " " << output_idx[output[i]] << " ";

os << "gain: " << output_gain[i] << endl;

}

}

207 /**

* Intelligently allocte a pulse and add it to the queue.

*/

void NeuralNetwork :: pulseAlloc( Neuron *p_dst_in , double mag_in , double t )

{

// create a new pulse if needed

if ( !pulse_free.size() )

{

pulse_list.push_back( Pulse() );

pulse_free.push_back( &pulse_list.back() );

217 }
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// allocate the pulse

Pulse *p = pulse_free.back ();

pulse_free.pop_back ();

p->p_dst = p_dst_in;

p->mag = mag_in;

// queue the pulse

queue.insert( pair <double ,Pulse*>( t, p ) );

227 }

/*

* Deallocate a pulse when it is no longer being used.

* Warning: the queue might still be queued.

*/

void NeuralNetwork :: pulseDealloc( Pulse *p )

{

pulse_free.push_back( p );

}

237

/**

* This is the complicated function.

* Advance the network simulation to the next time in the queue.

*/

double NeuralNetwork :: advanceSimulation( vector <double > &out )

{

// advance time

current_time = getNextTime ();

if ( current_time >= 0 ) // the queue is not empty

247 {

// accumulate coincident events

pair <multimap <double ,Pulse *>::iterator ,multimap <double ,Pulse *>::iterator > ret;

map <Neuron*,double > pulse_acc;

ret = queue.equal_range( current_time ); // all events occuring at this time

for ( multimap <double ,Pulse *>:: iterator q_itr = ret.first; q_itr != ret.second; q_itr++ )

{

Pulse *p_pulse = q_itr ->second;

Neuron *p_neuron = p_pulse ->p_dst;

257 // check to see if this neuron has already recieved an event

if ( pulse_acc.find( p_neuron ) != pulse_acc.end() )

pulse_acc[ p_neuron ] += p_pulse ->mag;

else
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pulse_acc[ p_neuron ] = p_pulse ->mag; // this creates the entry in pulse_acc

pulseDealloc( p_pulse );

}

queue.erase( current_time ); // remove pulses that are no longer needed

267 // update the neurons that recieved a pulse

for ( map <Neuron*,double >:: iterator p_itr = pulse_acc.begin (); p_itr != pulse_acc.end ();

p_itr++ )

{

Neuron *p_n = (* p_itr).first;

p_n ->accumulator += (*p_itr ). second;

// check if neuron is in refractory period

if ( p_n ->last_fire_time >= 0 && current_time < p_n ->last_fire_time + p_n ->t_rf )

{

277 // refractory period

}

else if ( p_n ->accumulator <= -p_n ->threshold || // fire negative pulse

p_n ->accumulator >= p_n ->threshold ) // fire positive pulse

{

// check sign

int sgn = 1;

if ( p_n ->accumulator <= -p_n ->threshold )

sgn = -1;

287 // if this is an output neuron , record it

if ( p_n ->is_output )

out[output_idx[p_n]] = sgn * output_gain[output_idx[p_n ]];

// queue pulses to be sent to child neurons

for ( map <Neuron*,double >:: iterator c_itr = p_n ->children.begin ();

c_itr != p_n ->children.end();

c_itr++ )

{

double at = current_time; // arrival time

297 if ( p_n == (*c_itr).first ) // self connection

at += p_n ->t_rf;

else

at += getDelay( p_n , (*c_itr).first );

pulseAlloc( (*c_itr ).first , sgn*(* c_itr).second , at );

}
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// decrement accumulator magnitude

if ( p_n ->accumulator <= -p_n ->threshold )

307 p_n ->accumulator += p_n ->threshold;

else if ( p_n ->accumulator >= p_n ->threshold )

p_n ->accumulator -= p_n ->threshold;

// fire again if the accumulator is not depleted sufficiently

if ( p_n ->accumulator <= -p_n ->threshold || // excessive negative charge

p_n ->accumulator >= p_n ->threshold ) // excessive positive charge

{

double at = current_time + p_n ->t_rf;

pulseAlloc( p_n , 0, at );

317 }

p_n ->last_fire_time = current_time;

} // end if

} // end for

} // end if ( current_time >= 0 )

return current_time;

}

327 /**

* Get the next time from the queue

*/

double NeuralNetwork :: getNextTime ()

{

if ( queue.empty() )

return -1;

else

return queue.begin()->first;

}

337

/**

* Stimulate an input neuron at a particular time with a specified

* stimulation magnitude .

*/

void NeuralNetwork :: applyInputAt( int i, double t, double mag )

{

if ( t < current_time )

cerr << "Warning: Input applied at past time , ignoring input. " << endl;

else if ( i >= input.size() )
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347 cerr << "Warning: Invalid input index , ignoring input." << endl;

else

pulseAlloc( input[i], mag , t );

}

/**

* Find an empty location not already occupied by a neuron.

*/

bool NeuralNetwork :: getEmptyLocation( double &x, double &y, double &z )

{

357 int max = 100; // maximum number of samples

bool is_unique = false;

while ( max -- && !is_unique)

{

is_unique = true;

x = ( x_width == 0 ? 0 : randf( -x_width/2, x_width /2 ) );

y = ( y_width == 0 ? 0 : randf( -y_width/2, y_width /2 ) );

z = ( z_width == 0 ? 0 : randf( -z_width/2, z_width /2 ) );

367 for ( vector <Neuron *>:: iterator itr = neurons.begin ();

itr != neurons.end();

++itr )

{

if( ( (*itr)->x == x && (*itr)->y == y && (*itr)->z == z ) )

{

is_unique = false;

break;

}

}

377 }

return is_unique;

}

/**

* Add a neuron to the network and keep track of its I/O status.

*/

NeuralNetwork :: Neuron *NeuralNetwork :: addNeuron( double x, double y, double z,

double t_rf , double threshold ,

387 bool is_input , bool is_output )

{

Neuron *neuron = new Neuron( x, y, z, t_rf , threshold , is_input , is_output );
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neurons.push_back( neuron );

if ( is_input )

input.push_back( neuron );

if ( is_output )

397 {

output_idx[neuron] = output.size ();

output_gain.push_back( 0.001 );

output_alpha.push_back( 1.0 );

output.push_back( neuron );

}

return neuron;

}

407 /**

* Remove a neuron from the network. This also removes all parent and child connections , as well

* as remove the neuron from queue destinations .

* Does not remove I/O neurons.

*/

void NeuralNetwork :: removeNeuron( Neuron *n )

{

if ( n->is_input || n->is_output )

return;

417 // erase child connections from parents

for ( set <Neuron *>:: iterator itr = n->parents.begin (); itr != n->parents.end (); itr++ )

(*itr)->children.erase( n );

// erase parent connections from children

for(map <Neuron*, double >:: iterator itr = n->children.begin (); itr != n->children.end(); itr++)

(*itr).first ->parents.erase( n );

// delete input references if neccessary

if ( n->is_input )

427 input.erase( find( input.begin(), input.end(), n ) );

// remove from the neuron list

neurons.erase( find( neurons.begin(), neurons.end(), n ) );

// remove relevent queue events
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for ( multimap <double ,Pulse *>:: iterator itr = queue.begin (); itr != queue.end(); itr++ )

if ( (*itr).second ->p_dst == n )

queue.erase( itr );

437 delete n;

}

/**

* Add a connection safely.

*/

void NeuralNetwork :: addConnection( Neuron *p_src , Neuron *p_dst , double w )

{

if ( p_src && p_dst )

{

447 p_src ->children[p_dst] = w;

p_dst ->parents.insert( p_src );

nc++;

}

}

/**

* Remove a connection safely.

*/

void NeuralNetwork :: removeConnection( Neuron *p_src , Neuron *p_dst )

457 {

if ( p_src && p_dst )

{

p_dst ->parents.erase( p_src );

p_src ->children.erase( p_dst );

nc --;

}

}

/**

467 * Get the distance between two neurons. This can be defined even if no connection

* exists between the neurons.

*/

double NeuralNetwork :: getDistance ( Neuron *p_src , Neuron *p_dst )

{

return sqrt (

( p_src ->x - p_dst ->x ) * ( p_src ->x - p_dst ->x ) +

( p_src ->y - p_dst ->y ) * ( p_src ->y - p_dst ->y ) +

( p_src ->z - p_dst ->z ) * ( p_src ->z - p_dst ->z )
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);

477 }

/**

* Get the transmission delay between two neurons. This is simply the distace

* scaled by the time scaling of the network.

*/

double NeuralNetwork :: getDelay ( Neuron *p_src , Neuron *p_dst )

{

return ( t_sc * getDistance ( p_src , p_dst ) );

}

487

/**

* Destruct the network.

*/

void NeuralNetwork ::clear()

{

// reset connections

nc = 0;

// clear out neuron references

497 input.clear ();

output.clear ();

output_idx.clear ();

// delete neuron pointers

for ( vector <Neuron *>:: iterator itr = neurons.begin (); itr != neurons.end (); itr++ )

delete (*itr);

neurons.clear ();

// delete events

507 pulse_free.clear ();

pulse_list.clear ();

queue.clear ();

// reset the time

current_time = 0.0;

}

/**

* Clear all event -related content from the system and set the time back to 0.

517 * Prepares the network for a new simulation .

*/
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void NeuralNetwork ::reset ()

{

// reset neuron accumulators

for( vector <Neuron *>:: iterator itr = neurons.begin (); itr != neurons.end (); itr++ )

{

(*itr)->accumulator = 0;

(*itr)->last_fire_time = 0;

}

527

// delete old events

pulse_free.clear ();

pulse_list.clear ();

queue.clear ();

// reset the time

current_time = 0.0;

}

A.3 NeuralNetworkFactory.h

/**

* Author: Scott Hansen

* File: NeuralNetworkFactory .h

* Date:

5 *

* Helpful utility for creating networks.

*/

#ifndef NEURALNETWORKFACTORY_H

#define NEURALNETWORKFACTORY_H

#include "NeuralNetwork.h"

class NeuralNetworkFactory

15 {

public:

NeuralNetwork *createNetwork( int i,

int ninput = 1, int nhidden = 1, int noutput = 1,

double d = 1 );

private:

double density( double x, double d ) { return exp(-x*x/d); }

NeuralNetwork *createNetwork0 (); // single neuron
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NeuralNetwork *createNetwork1 (); // two connected neurons

25 NeuralNetwork *createNetwork2 ();

NeuralNetwork *createNetwork3 ();

NeuralNetwork *createNetwork4( int ninput , int noutput ); // 2 in , 1 out , 0 connections

NeuralNetwork *createNetwork5( int ninput , int noutput ); // 4 in , 1 out , 0 connections

NeuralNetwork *createNetwork6 (); // same as 5, no connections

NeuralNetwork *createNetwork7 (); // two PCM demodulators

NeuralNetwork *createNetwork8 (); // four PCM demodulators

NeuralNetwork *createRandomNetwork( int ninput , int nhidden , int noutput ,

double d,

double xwidth = 1, double ywidth = 1, double zwidth = 1 );

35 };

#endif

A.4 NeuralNetworkFactory.cpp

1 #include "NeuralNetworkFactory.h"

/**

* Create the network specified by the index i. Additional inputs are only used when

* creating a random network.

*/

NeuralNetwork *NeuralNetworkFactory :: createNetwork( int i,

int ninput , int nhidden , int noutput ,

double d )

{

11 NeuralNetwork *n;

switch ( i )

{

case 0:

n = createNetwork0 ();

break;

case 1:

n = createNetwork1 ();

break;

21 case 2:

n = createNetwork2 ();

break;

case 3:
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n = createNetwork3 ();

break;

case 4:

n = createNetwork4( ninput , noutput );

break;

case 5:

31 n = createNetwork5( ninput , noutput );

break;

case 6:

n = createNetwork6 ();

break;

case 7:

n = createNetwork7 ();

break;

case 8:

n = createNetwork8 ();

41 break;

default:

n = createRandomNetwork( ninput , nhidden , noutput , d );

}

return n;

}

/**

* Single neuron.

51 */

NeuralNetwork *NeuralNetworkFactory :: createNetwork0 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1;

n1 = n->addNeuron( -0.0, 0.0, 0.0, 0.0001 , 10, true , true );

return n;

}

61

NeuralNetwork *NeuralNetworkFactory :: createNetwork1 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *neuron1 , *neuron2;

// parameters
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double g1 = 1;

double a1 = 0.1;

double th = 20;

71 double ts = 1;

neuron1 = n->addNeuron( -0.5, 0.0, 0.0, 0.0001 , th , true , false );

neuron2 = n->addNeuron( 0.5, 0.0, 0.0, 0.0001 , 1.0, false , true );

n->addConnection( neuron1 , neuron2 , 1.0 );

n->addConnection( neuron2 , neuron1 , -1.0 );

n->setOutputGainAt( 0, g1 );

n->setOutputAlphaAt( 0, a1 );

n->setTimeScale( ts );

81

return n;

}

NeuralNetwork *NeuralNetworkFactory :: createNetwork2 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *input , *hidden1 , *hidden2 , *output1 , *output2;

double t_rf = 0.0001;

91 input = n->addNeuron( -0.5, 0.0, 0.0, t_rf , 1.0, true , false );

hidden1 = n->addNeuron( 0.0, 0.5, 0.0, t_rf , 1.0 );

hidden2 = n->addNeuron( 0.0, -0.5, 0.0, t_rf , 1.0 );

output1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , 1.0, false , true );

output2 = n->addNeuron( 0.5, -0.1, 0.0, t_rf , 1.0, false , true );

n->addConnection( input , hidden1 , 1.0 );

n->addConnection( input , hidden2 , 1.0 );

n->addConnection( hidden1 , output1 , 1.0 );

n->addConnection( hidden2 , output2 , 1.0 );

101 n->addConnection( output1 , hidden2 , 1.0 );

n->addConnection( output2 , hidden1 , 1.0 );

return n;

}

NeuralNetwork *NeuralNetworkFactory :: createNetwork3 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1 , *n2;
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111 double t_rf = 0.0001;

// parameters

double g1 = 1;

double th = 17;

double ts = 1;

n1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , th, true , true );

n2 = n->addNeuron( -0.5, 0.1, 0.0, t_rf , 1, false , true );

121 n->addConnection( n1, n2 , 1.0 );

n->output_gain [0] = g1;

n->output_gain [1] = g1;

n->setTimeScale( ts );

return n;

}

NeuralNetwork *NeuralNetworkFactory :: createNetwork4( int ninput , int noutput )

{

131 NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1 , *n2 , *n3;

double t_rf = 0.0001;

double g = 1;

double th = 10;

double ts = 1;

n1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , th, true , false ); // input1

n2 = n->addNeuron( 0.5, -0.1, 0.0, t_rf , th , true , false ); // input2

141 n3 = n->addNeuron( -0.5, 0.1, 0.0, t_rf , th , false , true ); // output 1

n->setOutputGainAt( 0, g );

n->setTimeScale( ts );

return n;

}

/**

* Ditto , except with for intputs

151 */

NeuralNetwork *NeuralNetworkFactory :: createNetwork5( int ninput , int noutput )

{
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NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1 , *n2 , *n3 , *n4 , *n5;

double t_rf = 0.0001;

double g = 1;

double th = 10000000;

double ts = 1;

161

n1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , th, true , false ); // input1

n2 = n->addNeuron( 0.5, -0.1, 0.0, t_rf , th , true , false ); // input2

n3 = n->addNeuron( 0.5, 0.2, 0.0, t_rf , th, true , false ); // input1

n4 = n->addNeuron( 0.5, -0.2, 0.0, t_rf , th , true , false ); // input2

n5 = n->addNeuron( -0.5, 0.1, 0.0, t_rf , th , false , true ); // output 1

n->addConnection( n1, n5 , 1 );

n->addConnection( n2, n5 , -1 );

n->addConnection( n3, n5 , 1 );

171 n->addConnection( n4, n5 , -1 );

n->setOutputGainAt( 0, g );

n->setTimeScale( ts );

return n;

}

/**

* Same as network 5. No preset connections .

181 */

NeuralNetwork *NeuralNetworkFactory :: createNetwork6 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1 , *n2;

double t_rf = 0.0001;

// parameters

double g1 = 1;

double th = 17;

191 double ts = 1;

n1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , th, true , true );

n2 = n->addNeuron( -0.5, 0.1, 0.0, t_rf , 1, false , true );

n->output_gain [0] = g1;
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n->output_gain [1] = g1;

n->setTimeScale( ts );

201 return n;

}

/**

* Two state derivative estimation .

*/

NeuralNetwork *NeuralNetworkFactory :: createNetwork7 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1 , *n2 , *n3 , *n4;

211 double t_rf = 0.0001;

// parameters

double g1 = 1;

double th = 17;

double ts = 1;

n1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , th, true , true );

n2 = n->addNeuron( -0.5, 0.1, 0.0, t_rf , 1, false , true );

n3 = n->addNeuron( 0.5, -0.1, 0.0, t_rf , th , true , true );

221 n4 = n->addNeuron( -0.5, -0.1, 0.0, t_rf , 1, false , true );

n->output_gain [0] = g1;

n->output_gain [1] = g1;

n->output_gain [2] = g1;

n->output_gain [3] = g1;

n->setTimeScale( ts );

return n;

231 }

/**

* Four state derivative estimation .

*/

NeuralNetwork *NeuralNetworkFactory :: createNetwork8 ()

{

NeuralNetwork *n = new NeuralNetwork ();

NeuralNetwork :: Neuron *n1 , *n2 , *n3 , *n4 ,
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*n5 , *n6 , *n7 , *n8;

241 double t_rf = 0.0001;

// parameters

double g1 = 0.0001;

double th = 17;

double ts = 1;

n1 = n->addNeuron( 0.5, 0.1, 0.0, t_rf , th, true , true );

n2 = n->addNeuron( -0.5, 0.1, 0.0, t_rf , 1, false , true );

n3 = n->addNeuron( 0.5, -0.1, 0.0, t_rf , th, true , true );

251 n4 = n->addNeuron( -0.5, -0.1, 0.0, t_rf , 1, false , true );

n5 = n->addNeuron( 0.5, 0.3, 0.0, t_rf , th, true , true );

n6 = n->addNeuron( -0.5, 0.3, 0.0, t_rf , 1, false , true );

n7 = n->addNeuron( 0.5, -0.3, 0.0, t_rf , th, true , true );

n8 = n->addNeuron( -0.5, -0.3, 0.0, t_rf , 1, false , true );

n->output_gain [0] = g1;

n->output_gain [1] = g1;

n->output_gain [2] = g1;

n->output_gain [3] = g1;

261 n->output_gain [4] = g1;

n->output_gain [5] = g1;

n->output_gain [6] = g1;

n->output_gain [7] = g1;

n->setTimeScale( ts );

return n;

}

271 NeuralNetwork *NeuralNetworkFactory :: createRandomNetwork(int ninput , int nhidden , int noutput ,

double d,

double xwidth , double ywidth , double zwidth)

{

NeuralNetwork *n = new NeuralNetwork( xwidth , ywidth , zwidth );

vector <NeuralNetwork :: Neuron*> neurons;

NeuralNetwork :: Neuron *neuron;

vector <NeuralNetwork :: Neuron *>:: iterator itr1 , itr2;

double t_rf = 0.0001;

double g = n->randf ();

281 double ts = n->randf ();

double x, y, z;
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// create input neurons

for ( int i = 0; i < ninput; i++ )

{

if ( n->getEmptyLocation( x, y, z ) )

{

neuron = n->addNeuron( x, y, z,

t_rf ,

291 n->randf(), // threshold

true , false );

neurons.push_back( neuron );

}

else

{

cerr << "Error: could not find location for input!" << endl;

}

}

301 // create hidden neurons

for ( int i = 0; i < nhidden; i++ )

{

if ( n->getEmptyLocation( x, y, z ) )

{

neuron = n->addNeuron( x, y, z,

t_rf ,

n->randf(), // threshold

false , false );

neurons.push_back( neuron );

311 }

else

{

cerr << "Error: could not find location for hidden!" << endl;

}

}

// create output neurons

for ( int i = 0; i < noutput; i++ )

{

321 if ( n->getEmptyLocation( x, y, z ) )

{

neuron = n->addNeuron( x, y, z,

t_rf ,

n->randf(), // threshold
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false , true );

neurons.push_back( neuron );

}

else

{

331 cerr << "Error: could not find location for output!" << endl;

}

}

// connect neurons

if ( d > 0 )

{

for ( itr1 = neurons.begin (); itr1 != neurons.end (); itr1++ )

{

for ( itr2 = neurons.begin (); itr2 != neurons.end (); itr2++ )

341 {

if ( n->randf() < d )

n->addConnection( *itr1 , *itr2 , pow(-1,rand ()%2)*n->randf () );

}

}

}

// randomize output gain

for ( vector <double >:: iterator itr = n->output_gain.begin ();

351 itr != n->output_gain.end();

itr++ )

(*itr) = g;

// randomize time scale

n->setTimeScale( ts );

return n;

}

A.5 Breeder.h

1

/*

* File: Breeder.h

* Author: Scott Hansen

*
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* This class handles inter - generational modifications to the network , including random

* mutations as well as network cross over.

*

* Created on January 5, 2011 , 10:19 PM

11 */

#ifndef BREEDER_H

#define BREEDER_H

#include <map >

using namespace std;

#include "NeuralNetwork.h"

class Breeder

21 {

public:

/* Mutation Types */

enum mutation_t{ WEIGHT , THRESHOLD , REFRACTORY_PERIOD , TIME_SCALE , GAIN ,

MOVE , REMOVE_CONNECTION , ADD_CONNECTION , ADD_NEURON , REMOVE_NEURON , RANDOM };

/* Constructors */

Breeder( NeuralNetwork *n );

~Breeder ();

31 /* Interface */

int mutate( mutation_t m = RANDOM );

int mutate_parameter ();

int mutate_structure ();

int breed( NeuralNetwork *n1, NeuralNetwork *n2 );

private:

/* Random Mutations */

int mutateW ();

int mutateTh ();

41 int mutateRf ();

int mutateTs ();

int mutateG ();

int mutateA ();

int mutateMv ();

int mutateRmConn ();

int mutateAddConn ();

int mutateAddN ();

int mutateRmN ();
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NeuralNetwork *n;

51 int nmut;

};

#endif

A.6 Breeder.cpp

#include "Breeder.h"

/* Constructors */

5 Breeder :: Breeder( NeuralNetwork* n )

: n(n), nmut (10)

{}

Breeder ::~ Breeder ()

{}

/**

* Apply a mutation to the network.

*

15 */

int Breeder :: mutate( mutation_t m )

{

int result = 0;

if ( !n->neurons.size() ) // the network is empty , so add a neuron

{

// cout << " an";

result = mutateAddN ();

}

25 else if ( n->nc == 0 )

{

// cout << "ac ";

result = mutateAddConn ();

}

else

{

mutation_t mut;

if ( m != RANDOM )

mut = m;

35 else // apply a random mutation
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mut = mutation_t( rand ()% nmut );

switch ( mut )

{

case WEIGHT:

result = mutateW ();

break;

case THRESHOLD:

result = mutateTh ();

45 break;

case REFRACTORY_PERIOD:

result = mutateRf ();

break;

case TIME_SCALE:

result = mutateTs ();

break;

case GAIN:

result = mutateG ();

break;

55 case MOVE:

result = mutateMv ();

break;

case REMOVE_CONNECTION:

result = mutateRmConn ();

break;

case ADD_CONNECTION:

if ( n->neurons.size() < 2 )

result = mutateAddN ();

else

65 result = mutateAddConn ();

break;

case ADD_NEURON:

result = mutateAddN ();

break;

case REMOVE_NEURON:

result = mutateRmN ();

break;

default:

cerr << "Warning: invalid mutation (m) " << endl;

75 }

}

return result;

}
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/**

* Mutate a random parameter .

*/

int Breeder :: mutate_parameter ()

{

85 int m = 7;

int result = 0;

int mut = rand() % m;

switch ( mut )

{

case 0:

result = mutateW ();

break;

case 1:

95 result = mutateTh ();

break;

case 2:

result = mutateRf ();

break;

case 3:

result = mutateTs ();

break;

case 4:

result = mutateG ();

105 break;

case 5:

result = mutateA ();

break;

case 6:

result = mutateMv ();

break;

default:

cerr << "Warning: invalid mutation (p) " << endl;

}

115

return result;

}

/**

* Mutate the structure of the network (perhaps catastrophically ).

*/
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int Breeder :: mutate_structure ()

{

int m = 4;

125 int result = 0;

if ( !n->neurons.size() ) // the network is empty , so add a neuron

result = mutateAddN ();

else if ( n->nc == 0 )

result = mutateAddConn ();

else

{

int mut = rand() % m;

switch ( mut )

135 {

case 0:

result = mutateRmConn ();

break;

case 1:

if ( n->neurons.size() < 2 )

result = mutateAddN ();

else

result = mutateAddConn ();

break;

145 case 2:

result = mutateAddN ();

break;

case 3:

result = mutateRmN ();

break;

default:

cerr << "Warning: invalid mutation(s) " << endl;

}

}

155

return result;

}

/**

* Modify the weigh of a random neuron in the network. This increments

* or decrements the existing value by a small percentage .

*/

int Breeder :: mutateW ()

{
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165 NeuralNetwork :: Neuron *p_n = n->neurons[rand ()%n->neurons.size ()]; // pick random neuron

double delta = n->randf (); // the percent change to make

if ( p_n ->children.size() ) // change weight to child

{

int nrand = rand ()%p_n ->children.size (); // pick a random child

int i = 0;

for( map <NeuralNetwork :: Neuron*,double >:: iterator itr = p_n ->children.begin ();

itr != p_n ->children.end ();

++itr , ++i )

175 {

if ( i == nrand )

{

double w_old = itr ->second;

double w_new = w_old + pow(-1,rand ()%2) * delta * w_old;

if ( w_new )

p_n ->children[itr ->first] = w_new;

else

n->removeConnection( p_n , itr ->first );

185

break;

}

}

}

else if ( p_n ->parents.size() ) // change weight from parent

{

int nrand = rand ()%p_n ->parents.size (); // pick a random parent

int i = 0;

for ( set <NeuralNetwork :: Neuron *>:: iterator itr = p_n ->parents.begin ();

195 itr != p_n ->parents.end();

++itr , ++i )

{

if ( i == nrand )

{

double w_old = (*itr)->children[p_n];

double w_new = w_old + pow(-1,rand ()%2) * delta * w_old;

if ( w_new )

(*itr)->children[p_n] = w_new;

205 else

n->removeConnection( (*itr), p_n );
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break;

}

}

}

else

return -1;

215 return 0;

}

/**

* Change the threshold of a random neruon in the network by some percentage

*/

int Breeder :: mutateTh ()

{

NeuralNetwork :: Neuron *p_n = n->neurons[rand ()%n->neurons.size ()]; // random neuron

double delta = n->randf ();

225 double t_old = p_n ->threshold;

double t_new = 0;

while ( !t_new )

t_new = t_old + pow(-1,rand ()%2) * delta * t_old;

p_n ->threshold = t_new;

return 0;

}

235

/**

* Change the refractory period of a neuron by some percentage .

*/

int Breeder :: mutateRf ()

{

NeuralNetwork :: Neuron *p_n = n->neurons[rand ()%n->neurons.size ()]; // random neuron

double delta = n->randf ();

double t_old = p_n ->t_rf;

double t_new = 0;

245

while ( !t_new )

t_new = t_old + pow(-1,rand ()%2) * delta * t_old;

return 0;

}
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/**

* Randomly change the time scale of the system by a percentage .

*/

255 int Breeder :: mutateTs ()

{

double delta = n->randf ();

double old = n->t_sc;

double new_ts = 0;

while( !new_ts )

new_ts = old + pow(-1,rand ()%2) * delta * old;

n->t_sc = new_ts;

265

return 0;

}

/**

* Randomly change the gain on the network by a percentage

*/

int Breeder :: mutateG ()

{

275 int idx = rand ()%n->output.size (); // random output neuron

double delta = n->randf ();

double old = n->output_gain[idx];

n->output_gain[idx] = old + pow(-1,rand ()%2) * delta * old;

return 0;

}

/**

* Randomly change the output filter parameter.

*/

285 int Breeder :: mutateA ()

{

int idx = rand ()%n->output.size (); // random output neuron

double delta = n->randf ();

double old = n->output_alpha[idx];

n->output_alpha[idx] = old + pow(-1,rand ()%2) * delta * old;

return 0;

}
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295 /**

* Move a random Neuron to a random (empty) location.

*/

int Breeder :: mutateMv ()

{

NeuralNetwork :: Neuron *p_n = n->neurons[rand ()%n->neurons.size ()]; // random neuron

double x, y, z;

bool is_unique;

is_unique = n->getEmptyLocation( x, y, z );

305

if ( is_unique )

{

p_n ->x = x;

p_n ->y = y;

p_n ->z = z;

}

else

return -2;

}

315

/**

* Remove a random connection from a random neuron in the network.

*/

int Breeder :: mutateRmConn ()

{

NeuralNetwork :: Neuron *p_n;

// select a neuron that actually has an outgoing connection

vector <int > idxs; // list of possible neuron indices

325 for ( int i = 0; i < n->neurons.size (); i++ )

idxs.push_back( i );

random_shuffle( idxs.begin(), idxs.end() );

int idx1; // parent neuron

for ( idx1 = 0; idx1 < idxs.size (); idx1++ )

{

p_n = n->neurons[ idxs[ idx1 ] ];

if ( p_n ->children.size() ) // found a neuron with children

break;

335 }
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if ( idx1 == idxs.size() ) // no n->neurons have outgoing connections

return -3;

// pick a random connection

int to_remove = rand ()%p_n ->children.size ();

int count = 0;

for ( map <NeuralNetwork :: Neuron*,double >:: iterator itr = p_n ->children.begin ();

345 itr != p_n ->children.end ();

itr++ )

{

if ( to_remove == count )

{

n->removeConnection( p_n , (*itr). first );

break;

}

else

count ++;

355 }

return 0;

}

/**

* Add a random connection to a random neuron in the network.

*/

int Breeder :: mutateAddConn ()

{

365 NeuralNetwork :: Neuron *p_n1 , *p_n2; // neurons to add a connection between

// select a neuron that actually has an outgoing connection

vector <int > idxs; // list of possible neuron indices from neurons

for ( int i = 0; i < n->neurons.size (); i++ )

idxs.push_back( i );

random_shuffle( idxs.begin(), idxs.end() );

int idx1 = 0; // the index of the first neuron

p_n1 = n->neurons[ idxs[idx1] ];

375

// select a neuron that is not already connected to p_n1

random_shuffle( idxs.begin(), idxs.end() );

for ( int idx2 = 0; idx2 < idxs.size (); idx2++ )

{
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p_n2 = n->neurons[ idxs[ idx2 ] ];

if ( p_n1 ->children.find( p_n2 ) == p_n1 ->children.end() ) // no connection exists

{

// connect p_n1 to p_n2

double r = 0;

385 while ( !r )

r = pow(-1,rand ()%2)*n->randf ();

n->addConnection( p_n1 , p_n2 , r );

return 0;

}

}

// else no connection was made

return -4;

395 }

/**

* Create a neuron with random values and place it in a random (empty)

* location on the grid. Then connect it randomly to the other neurons.

*/

int Breeder :: mutateAddN ()

{

double x, y, z;

bool is_unique;

405 NeuralNetwork :: Neuron *p = 0, *m = 0, *c = 0;

is_unique = n->getEmptyLocation( x, y, z );

if ( is_unique )

{

p = n->neurons[ rand ()%n->neurons.size() ]; // parent

c = n->neurons[ rand ()%n->neurons.size() ]; // child

m = n->addNeuron( x, y, z,

n->randf(),

n->randf() );

415

// add connections

double r = 0;

while ( !r )

r = pow(-1,rand ()%2)*n->randf ();

n->addConnection( p, m, r );

r = 0;
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while ( !r )

r = pow(-1,rand ()%2)*n->randf ();

425 n->addConnection( m, c, r );

}

else

return -5;

return 0;

}

int Breeder :: mutateRmN ()

{

435 vector <int > idxs; // list of possible neuron indices from neurons

for ( int i = 0; i < n->neurons.size (); i++ )

idxs.push_back( i );

random_shuffle( idxs.begin(), idxs.end() );

for ( int i = 0; i < idxs.size (); i++ )

{

if ( n->neurons[i]->is_input || n->neurons[i]->is_output )

continue;

else

445 {

n->removeNeuron( n->neurons[i] );

return 0;

}

}

// could not delete a neuron

return -6;

}

A.7 sim harmonic.h

/**

* Author: Scott Hansen

* File: sim_harmonic .h

* Date: Feb 16, 2012

*

* Contains simulation specifications for working with the harmonic oscillator .

7 * Values presented are the default values. Values can be change via the command line

* using the swiches specified in process_sim_arguments ().

* Note: these variables and functions are globally defined since DLSODE doesn ’t
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* play nice with object oriented code -_-

*/

#ifndef SIM_H

#define SIM_H

#include <string >

17 #include <string.h>

#include <math.h>

#include <time.h>

#include <cstdlib >

#include <sstream >

#include <iostream >

#include <fstream >

#include <ostream >

#include <queue >

#include <deque >

27 using namespace std;

/* Debugging */

//#define DEBUG

//#define DEBUG_NOISE

//#define DEBUG_STATS

/* System Parameters */

double m = 0.1; // pendulum mass (Kg)

double k = 1; // friction coefficient

37 double pi = 3.14159265358979;

#define SIMFAIL 100000000.0

/* I/O */

string netfile;

/* Neuralnetwork Properties */

int seed = time(NULL); // random seed

double density = 0; // connection density

double xsize = 1; // network x dimension size

47 double ysize = 1; // network y dimension size

double zsize = 1; // network z dimension size

int ninput = 2; // 2number of input neurons

int nhidden = 1; // 1number of hidden neurons

int noutput = 1; // 4number of output neurons

int nidx = 4; // 7default network
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/* EP Variables */

double fitness_tol = 0.009;

int gen_max = 500;

57 double state_tol [] = { 2.0, 0.0 };

double T = 0.99; // SA temperature

double fail_tol = 0.3;

double q_tol = 500;

/* DLSODAR Simulation Variables */

int neq = 2; // number of first order diff eq’s and the input to the system

int ng = 0; // number of boundary condition equations

double dtout = 0.01; // sampling time

int itol = 1; // 1: scalar rep. for atol , 2: array rep. for each state

67 double rtol = 0.0; // relative tolerance

double abtol = 0.00001; // absolute tolerance

int itask = 1; // 1: normal task specification

int iopt = 0; // 0: no optional inputs , 1: optional inputs specified

int lrw = 32 + neq*(neq +9) + 3*ng; // length of real work array

int liw = 20 + neq; // length of integer work array

double endtime = 30; // endtime

int jt = 2; // 1: user supplied jac 2: internally generated jac

double U = 0; // input

double ic[] = {1.0, 0.0}; // initial conditions

77

/* Windowing Variables */

/* Noise Model */

bool pnoise = false;

bool mnoise = false;

vector <double > proc_noise( ninput , 0 ); // one for each input

vector <double > meas_noise( neq , 0 ); // one for each state

double p_alpha = 0.01;

double m_alpha = 0.01;

87

/* Function Implementation */

void process_sim_arguments( int argc , char** argv )

{

for ( int i = 1; i < argc; i++ )

{

if ( strcmp( argv[i], "-h" ) == 0 )

{

cerr << "just read the switches in the code , its not difficult ..." << endl;
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exit (0);

97 }

else if ( strcmp( argv[i], "-seed" ) == 0 ) // network properties

seed = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-density" ) == 0 )

density = atof( argv[i+1] );

else if ( strcmp( argv[i], "-xsize" ) == 0 )

xsize = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-ysize" ) == 0 )

ysize = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-zsize" ) == 0 )

107 zsize = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-ninput" ) == 0 )

ninput = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-nhidden" ) == 0 )

nhidden = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-noutput" ) == 0 )

noutput = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-nidx" ) == 0 )

nidx = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-fitnesstol" ) == 0 ) // EP variables

117 fitness_tol = atof( argv[i+1] );

else if ( strcmp( argv[i], "-statetol0" ) == 0 )

state_tol [0] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-statetol1" ) == 0 )

state_tol [1] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-genmax" ) == 0 )

gen_max = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-dtout" ) == 0 ) // DLSODAR variables

dtout = atof( argv[i] );

else if ( strcmp( argv[i], "-rtol" ) == 0 )

127 rtol = atof( argv[i] );

else if ( strcmp( argv[i], "-abtol" ) == 0 )

abtol = atof( argv[i] );

else if ( strcmp( argv[i], "-endtime" ) == 0 )

endtime = atof( argv[i+1] );

else if ( strcmp( argv[i], "-ic0" ) == 0 )

ic[0] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-ic1" ) == 0 )

ic[1] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-pnoise" ) == 0 ) // noise variables

137 pnoise = true;

else if ( strcmp( argv[i], "-mnoise" ) == 0 )
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mnoise = true;

else if ( strcmp( argv[i], "-palpha" ) == 0 )

p_alpha = atof( argv[i+1] );

else if ( strcmp( argv[i], "-malpha" ) == 0 )

m_alpha = atof( argv[i+1] );

else if ( strcmp( argv[i], "-d" ) == 0 ) // other

netfile = argv[i+1];

}

147 }

/* DLSODAR Functions */

void F( int &NEQ , double &T , double *X , double *XDOT )

{

XDOT [0] = X[1];

XDOT [1] = -k/m*X[0] + U/m;

}

void JAC( int &NEQ , double &T, double *X, int &ML , int &MU , double *PD , int &NROWPD )

157 {

}

void G( int &NEQ , double &T, double *X, int &NG , double *GOUT )

{

}

/* Function Declarations */

extern "C"

{

167 void dlsodar_( void (*F)(int&, double&, double*, double*),

int &NEQ , double *X, double &T, double &TOUT , int &ITOL , double &RTOL ,

double &ATOL , int &ITASK , int &ISTATE , int &IOPT , double *RWORK , int &LRW ,

int *IWORK , int &LIW ,

void (*JAC)(int&, double&, double*, int&, int&, double*, int&),

int &JT, void (*G)(int&, double&, double*, int&, double*),

int &NG, int *JROOT );

}

/**

177 * Run the system simulation while simultaneously feeding it input from the network simulation .

*/

int runSimulation( NeuralNetwork *n, double &fitness , stringstream *ss = 0 )

{

n->reset (); // make sure the network is reset
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fitness = 0.0;

int N = 0;

double x[] = { ic[0], ic[1] }; // states

double t = 0.0; // current time

187 double tout = 0.0; // next time

int istate = 1; // 1: first call , 2: subsequent calls , <0: errors

double rwork[lrw]; // real work array

int iwork[liw]; // integer work array

int jroot[ng]; // boundary conditions

/* set up output mechanism */

deque <double > window; // rect window to calculate fitness

deque <double > wtime;

vector <double > outputs; // the value of each output neuron

197 U = 0;

outputs.resize( noutput );

fill( outputs.begin(), outputs.end(), 0.0 );

/* Noise debugging */

#ifdef DEBUG_NOISE

ofstream procos;

ofstream measos;

procos.open("proc_noise.dat", ios::app);

measos.open("meas_noise.dat", ios::app);

207 #endif

/* EWMA demodualtion */

double tk[noutput ]; // last fire time

double wk[noutput ]; // average fire rate

for ( int i = 0; i < noutput; i++ ) // initialization

{

tk[i] = 0.0;

wk[i] = 0.0;

}

217

/* Run Simulation */

double next_queue_time;

double next_time;

while ( t < endtime )

{

tout += dtout; // next simulation time
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/* run the network simulation up to tout */

while ( n->getNextTime () > 0 && n->getNextTime () < tout )

227 {

double tmp = n->advanceSimulation( outputs );

/* check if the queue has blown up */

if ( n->getQueueSize () > q_tol )

{

fitness = SIMFAIL;

return 1;

}

if ( n->getpulselistsize () > 10* q_tol )

237 {

fitness = SIMFAIL;

return 2;

}

/* demodulate output neurons by lowpass EWMA */

for ( int i = 0; i < noutput; i++ )

{

if ( outputs[i] )

{

247 double alpha = n->getOutputAlphaAt( i );

if ( tk[i] > 0 )

{

wk[i] = alpha/(tmp -tk[i]) + (1-alpha)*wk[i];

// if ( outputs[i] < 0 )

// wk[i] *= -1;

}

tk[i] = tmp;

}

}

257

/* map demodulated outputs to dynamic system input(s) */

U = outputs [0]*wk[0];

/* reset output vector */

fill( outputs.begin(), outputs.end(), 0.0 );

}

/* apply input noise */

if ( pnoise )

267 {
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for ( int i = 0; i < 1; i++ )

{

proc_noise[i] = p_alpha*n->randf (-1,1) + (1-p_alpha )* proc_noise[i];

proc_noise[i] *= 1.0;

#ifdef DEBUG_NOISE

procos << proc_noise[i] << " ";

#endif

}

#ifdef DEBUG_NOISE

277 procos << endl;

#endif

U += proc_noise [0];

}

/* run solver */

dlsodar_( F, neq , x, t, tout ,

itol , rtol , abtol ,

itask , istate , iopt , rwork , lrw , iwork , liw ,

287 JAC , jt, G, ng, jroot );

if ( istate < 0 ) // an error occured

{

// cerr << "Warning: istate indicates LSODE failure , exiting simulation . " << endl;

fitness = SIMFAIL;

return 1;

}

else if ( istate == 2 && ss ) // save results and continue

{

297 (*ss) << t << " " << x[0] << " " << x[1] << " " ;

(*ss) << n->getInputAccAt( 0 ) << " " << n->getInputAccAt( 1 ) << " ";

(*ss) << U << endl;

}

else if ( istate == 3 ) // boundary encountered

istate = 2; // reset istate to continue

/* check state limits (keep calculation from blowing up) */

for ( int i = 0; i < neq; i++ )

if ( state_tol[i] && ( x[i] > state_tol[i] || x[i] < -state_tol[i] ) )

307 {

fitness = SIMFAIL;

return 2;

}
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/* apply measurement noise */

if ( mnoise )

{

for ( int i = 0; i < neq; i++ )

{

317 meas_noise[i] = m_alpha*n->randf (-1,1) + (1-m_alpha )* meas_noise[i];

#ifdef DEBUG_NOISE

measos << meas_noise[i] << " ";

#endif

}

#ifdef DEBUG_NOISE

measos << endl;

#endif

}

327 /* State feedback */

n->applyInputAt( 0, tout+dtout , x[0] + meas_noise [0] );

n->applyInputAt( 1, tout+dtout , x[1] + meas_noise [1] );

/* update FITNESS window */

fitness += (x[0]*x[0]);

N++;

} // end while ( simulation )

337 fitness /= N;

n->reset ();

return 0;

}

#endif

A.8 sim pendulum ctrl.h

/**

* Author: Scott Hansen

* File: sim_pendulum_ctrl .h

* Date: Feb 16, 2012

*

*/

8 #ifndef SIM_H

127



#define SIM_H

#include <string >

#include <string.h>

#include <math.h>

#include <time.h>

#include <cstdlib >

#include <sstream >

#include <iostream >

18 #include <fstream >

#include <ostream >

#include <queue >

#include <set >

#include <deque >

using namespace std;

/* Debugging */

//#define DEBUG

//#define DEBUG_NOISE

28 //#define DEBUG_STATS

//#define DEBUG_MSE

/* System Parameters */

double M = 10.0; // cart mass (Kg)

double m = 2; // pendulum mass (Kg)

double L = 0.5; // pendulum length (m)

double k = 0.1; // friction coefficient

double g = 9.81; // gravitational constant (m/s^2)

double I = m*L*L/3; // moment of inertia

38 double pi = 3.14159265358979;

#define SIMFAIL 100000000.0 // aka a really big number

/* I/O */

string netfile;

/* Neuralnetwork Properties */

int seed = time(NULL); // random seed

double density = 0.1; // connection density

double xsize = 1; // network x dimension size

48 double ysize = 1; // network y dimension size

double zsize = 1; // network z dimension size

int ninput = 1; // number of input neurons

int nhidden = 1; // (default) number of hidden neurons
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int noutput = 1; // number of output neurons

int nidx = 1; // default network

/* EP Variables */

double fitness_tol = 1.0;

int gen_max = 100;

58 double state_tol [] = { 0, 0, 0, 0 };

double T = 0.9; // SA temperature

double fail_tol = 0.3;

double q_tol = 1000;

double w[] = {0.5, 0.5}; // weight of fitness for each state and total fitness

/* DLSODAR Simulation Variables */

int neq = 4; // number of first order diff eq’s

int ng = 0; // number of boundary condition equations

double dtout = 0.1; // sampling time

68 int itol = 1; // 1: scalar rep. for atol , 2: array rep. for each state

double rtol = 0.0; // relative tolerance

double abtol = 0.0000001; // absolute tolerance

int itask = 1; // 1: normal task specification

int iopt = 0; // 0: no optional inputs , 1: optional inputs specified

int lrw = 32 + neq*(neq +9) + 3*ng; // length of real work array

int liw = 20 + neq; // length of integer work array

double endtime = 30; // endtime

int jt = 2; // 1: user supplied jac 2: internally generated jac

double U = 0.0; // input

78 double Unet = 0.0;

double err = 0.0; // nonlinear control signal

double ic[] = {pi + 0.1, 0.0, 0.0, 0.0}; // default initial conditions

/* Noise */

bool load_pnoise = false;

bool pnoise = true;

bool mnoise = false;

vector <double > proc_noise( ninput , 0 ); // one for each input

vector <double > meas_noise( neq , 0 ); // one for each state

88 double p_alpha = 0.5;

double m_alpha = 0.5;

double p_mag = 2.0;

int navg = 10; // for noise optimization , take and average of several runs

/* DLSODAR Functions */

void F( int &NEQ , double &T , double *X , double *XDOT )
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{

double xnoise [] = { xnoise [0] = X[0] + meas_noise [0],

xnoise [1] = X[1] + meas_noise [1],

98 xnoise [2] = X[2] + meas_noise [2],

xnoise [3] = X[3] + meas_noise [3] };

/* Control law */

double r = 0;

double kp = 0.9;

double E0 = 2*m*g*L; // desired energy

double E = 1/2 * I*x[1]*x[1] + m*g*L*(1+ cos(x[0]);

// double V = ( E - E0 ) * ( E - E0 ) / 2;

double e1 = 8.54088 , e2 = 0.598677;

108

// if ( T < 2.25 )

if ( sqrt((E-E0)*(E-E0)) >= e1 && 1-cos(xnoise [0]) >= e2 )

{

r = kp * ( E - E0 ) * xnoise [1] * cos(xnoise [0]);

}

else // linear lqr stabilization for small signal

{

r = -( -258.9975* xnoise [0]

-63.5652* xnoise [1]

118 -1.1050* xnoise [2]

-5.1523* xnoise [3] );

}

// Unet = 0;

err = r + proc_noise [0];

U = Unet + err;

// Khalil:

double delta = (I+m*L*L)*(m+M) - (m*m*L*L)*cos(X[0])* cos(X[0]);

double M11 = m+M;

128 double M12 = -m*L*cos(X[0]);

double M21 = M12;

double M22 = I + m*L*L;

double N1 = m*g*L*sin(X[0]);

double N2 = U + m*L*X[1]*X[1]* sin(X[0]) - k*X[4];

XDOT [0] = X[1];

XDOT [1] = ( M11*N1 + M12*N2 ) / delta;

XDOT [2] = X[3];

XDOT [3] = ( M21*N1 + M22*N2 ) / delta;
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138 }

void JAC( int &NEQ , double &T, double *X, int &ML , int &MU , double *PD , int &NROWPD )

{

}

void G( int &NEQ , double &T, double *X, int &NG , double *GOUT )

{

}

148 extern "C"

{

void dlsodar_( void (*F)(int&, double&, double*, double*),

int &NEQ , double *X, double &T, double &TOUT , int &ITOL , double &RTOL ,

double &ATOL , int &ITASK , int &ISTATE , int &IOPT , double *RWORK , int &LRW ,

int *IWORK , int &LIW ,

void (*JAC)(int&, double&, double*, int&, int&, double*, int&),

int &JT, void (*G)(int&, double&, double*, int&, double*),

int &NG, int *JROOT );

void xsetf_( int &MFLAG );

158 }

/**

* Run the system simulation while simultaneously feeding it input from the network simulation .

*/

int runSimulation( NeuralNetwork *n, double &fitness , stringstream *ss = 0)

{

n->reset (); // make sure the network is reset

fitness = 0.0;

168 int N = 0; // number of iterations

double f[] = { 0.0, 0.0 }; // fitness

double x[] = { ic[0], ic[1], ic[2], ic[3] }; // states

double t = 0.0; // current time

double tout = 0.0; // next time

int istate = 1; // 1: first call , 2: subsequent calls , <0: errors

double rwork[lrw]; // real work array

int iwork[liw]; // integer work array

int jroot[ng]; // boundary conditions

178

/* set up output mechanism */

vector <double > outputs; // the value of each output neuron
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outputs.resize( noutput );

fill( outputs.begin(), outputs.end(), 0.0 );

/* Noise debugging */

#ifdef DEBUG_NOISE

ofstream procos;

ofstream measos;

188 procos.open("proc_noise.dat" );

measos.open("meas_noise.dat" );

#endif

#ifdef DEBUG_MSE

ofstream mseos;

mseos.open("mse.dat");

#endif

/* EWMA demodualtion */

198 double tk[noutput ];

double wk[noutput ];

double alpha = 1; // lowpass filter

for ( int i = 0; i < noutput; i++ )

{

tk[i] = 0.0;

wk[i] = 0.0;

}

// read dedicated proc noise

208 deque <double > dpnoise;

if ( load_pnoise )

{

ifstream ifs;

ifs.open("./ proc_noise.dat");

if ( ifs.is_open () )

{

double d;

while ( ifs >> d )

dpnoise.push_back(d);

218 }

}

/* Run Simulation */

double next_queue_time;

double next_time;

132



while ( t < endtime )

{

tout += dtout; // next simulation time

228 /* Generate measurement noise */

if ( mnoise )

{

for ( int i = 0; i < neq; i++ )

{

meas_noise[i] = m_alpha*n->randf (-1,1) + (1-p_alpha )* meas_noise[i];

meas_noise[i] *= 1.0;

#ifdef DEBUG_NOISE

measos << meas_noise[i] << " ";

#endif

238 }

#ifdef DEBUG_NOISE

measos << endl;

#endif

}

/* Generate process noise */

if ( pnoise )

{

for ( int i = 0; i < noutput; i++ )

248 {

proc_noise[i] = p_alpha*n->randf (-1,1) + (1-p_alpha )* proc_noise[i];

proc_noise[i] *= p_mag;

#ifdef DEBUG_NOISE

procos << proc_noise[i] << " ";

#endif

}

#ifdef DEBUG_NOISE

procos << endl;

#endif

258 }

/* Run the network simulation up to tout */

Unet = 0;

while ( n->getNextTime () > 0 && n->getNextTime () < tout )

{

double tmp = n->advanceSimulation( outputs );

/* check if the queue has blown up */
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if ( n->getQueueSize () > q_tol )

268 {

fitness = SIMFAIL;

return 1;

}

if ( n->getpulselistsize () > 10* q_tol )

{

fitness = SIMFAIL;

return 2;

}

278 for ( int i = 0; i < noutput; i++ ) // demod neurons

{

if ( outputs[i] )

{

double alpha = n->getOutputAlphaAt( i );

if ( tk[i] > 0 )

{

wk[i] = alpha/(tmp -tk[i]) + (1-alpha)*wk[i];

if ( outputs[i] < 0 )

wk[i] *= -1;

288 }

tk[i] = tmp;

}

}

Unet += outputs [0]*wk[0];

fill( outputs.begin(), outputs.end(), 0.0 );

}

/* run solver */

298 int mflag = 0;

xsetf_( mflag ); // supress dlsodar output

dlsodar_( F, neq , x, t, tout ,

itol , rtol , abtol ,

itask , istate , iopt , rwork , lrw , iwork , liw ,

JAC , jt, G, ng, jroot );

/* Normalize angle */

x[0] = fmod( x[0], 2*pi );

308 double deltax = x[0];

if ( deltax < 0 )
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deltax *= -1;

if ( 2*pi -deltax < deltax )

deltax = 2*pi - deltax;

/* update fitness */

if ( t > 0 )

{

f[0] += (deltax*deltax );//(x[0]*x[0]);

318 f[1] += (x[2]*x[2]);

N++;

}

#ifdef DEBUG_MSE

mseos << deltax << " " << w[0]*f[0]/N + w[1]*f[1]/N << endl;

#endif

if ( istate < 0 ) // an error occured

{

fitness = SIMFAIL;

328 return 1;

}

else if ( istate == 2 && ss ) // save results and continue

{

(*ss) << t << " " << x[0] << " " << x[1] << " ";

(*ss) << x[2] << " " << x[3] << " ";

(*ss) << err << " " << Unet << " " << proc_noise [0] << endl;

}

else if ( istate == 3 ) // boundary encountered

{

338 istate = 2; // reset istate to continue

}

/* check state limits (keep calculation from blowing up) */

for ( int i = 0; i < neq; i++ )

if ( state_tol[i] && ( x[i] > state_tol[i] || x[i] < -state_tol[i] ) )

{

fitness = SIMFAIL;

return 2;

}

348

/* Error feedforward */

n->applyInputAt( 0, tout , err );

} // end while ( simulation )
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#ifdef DEBUG_NOISE

procos.close ();

measos.close ();

#endif

#ifdef DEBUG_MSE

358 mseos.close ();

#endif

fitness = w[0]*f[0] + w[1]*f[1];

fitness /= N;

return 0;

}

void process_sim_arguments( int argc , char** argv )

368 {

for ( int i = 1; i < argc; i++ )

{

if ( strcmp( argv[i], "-h" ) == 0 )

{

cerr << "just read the switches in the code , its not difficult ..." << endl;

exit (0);

}

else if ( strcmp( argv[i], "-seed" ) == 0 ) // network properties

seed = atoi( argv[i+1] );

378 else if ( strcmp( argv[i], "-density" ) == 0 )

density = atof( argv[i+1] );

else if ( strcmp( argv[i], "-xsize" ) == 0 )

xsize = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-ysize" ) == 0 )

ysize = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-zsize" ) == 0 )

zsize = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-ninput" ) == 0 )

ninput = atoi( argv[i+1] );

388 else if ( strcmp( argv[i], "-nhidden" ) == 0 )

nhidden = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-noutput" ) == 0 )

noutput = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-nidx" ) == 0 )

nidx = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-fitnesstol" ) == 0 ) // EP variables

fitness_tol = atof( argv[i+1] );
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else if ( strcmp( argv[i], "-statetol0" ) == 0 )

state_tol [0] = atof( argv[i+1] );

398 else if ( strcmp( argv[i], "-statetol1" ) == 0 )

state_tol [1] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-statetol2" ) == 0 )

state_tol [2] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-statetol3" ) == 0 )

state_tol [3] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-genmax" ) == 0 )

gen_max = atoi( argv[i+1] );

else if ( strcmp( argv[i], "-dtout" ) == 0 ) // DLSODAR variables

dtout = atof( argv[i] );

408 else if ( strcmp( argv[i], "-rtol" ) == 0 )

rtol = atof( argv[i] );

else if ( strcmp( argv[i], "-abtol" ) == 0 )

abtol = atof( argv[i] );

else if ( strcmp( argv[i], "-endtime" ) == 0 )

{

endtime = atof( argv[i+1] );

}

else if ( strcmp( argv[i], "-ic0" ) == 0 )

ic[0] = atof( argv[i+1] );

418 else if ( strcmp( argv[i], "-ic1" ) == 0 )

ic[1] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-ic2" ) == 0 )

ic[2] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-ic3" ) == 0 )

ic[3] = atof( argv[i+1] );

else if ( strcmp( argv[i], "-pnoise" ) == 0 ) // noise variables

pnoise = true;

else if ( strcmp( argv[i], "-mnoise" ) == 0 )

mnoise = true;

428 else if ( strcmp( argv[i], "-palpha" ) == 0 )

p_alpha = atof( argv[i+1] );

else if ( strcmp( argv[i], "-pmag" ) == 0 )

p_mag = atof( argv[i+1] );

else if ( strcmp( argv[i], "-malpha" ) == 0 )

m_alpha = atof( argv[i+1] );

else if ( strcmp( argv[i], "-d" ) == 0 ) // other

netfile = argv[i+1];

}

}

438
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#endif

A.9 mainmpi2.cpp

1 /**

* File: main.cpp

* Author: Scott Hansen

* Date: Feb 14, 2012

*

*/

#include <mpi.h>

#include "NeuralNetwork.h"

#include "NeuralNetworkFactory.h"

11 #include "Breeder.h"

/* Load Simulation Data and Functions */

#ifdef HARMONIC

#include "sim_harmonic.h"

#endif

#ifdef PENDULUM

#include "sim_pendulum.h"

#endif

21 /* OpenMPI Job Tags */

#define DIETAG 1 // instuct the slave to exit

#define WORKTAG 2 // business as usual

/* OpenMPI Variables */

int rank = 0; // process rank

MPI_Status status;

void master( ostream &out = cout ); // the bourgeoisie

void slave( ostream &out = cout ); // the proletariate

31

/* Genetic unit */

struct Chromosome

{

Chromosome () : c(), f(), s() {}

Chromosome( string const& c_in , double f_in , double s_in ) : c(c_in), f(f_in), s(s_in) {}

bool operator < ( Chromosome const& rhs ) const { return f < rhs.f; }

string c; // the chromosome

double f; // fitness
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double s; // source

41 };

/*

* Main function.

*/

int main ( int argc , char** argv )

{

process_sim_arguments( argc , argv );

srand(seed);

51 /* run a single file specified by the -d flag */

if ( !netfile.empty () )

{

cout << "reading " << netfile << endl;

NeuralNetwork *network;

NeuralNetworkFactory nnf;

stringstream ss;

ofstream os;

double fitness;

double flag;

61 ifstream ifs;

ifs.open( netfile.c_str() );

if ( ifs.is_open () )

{

network = new NeuralNetwork( ifs );

network ->print ();

ifs.close ();

}

else

71 {

cerr << "Error: bad file name , loading the default network." << endl;

network = nnf.createNetwork( nidx , ninput , nhidden , noutput , density );

os.open( "netrun.net" );

if ( os.is_open () )

network ->write( os );

os.close ();

}

81 flag = runSimulation( network , fitness , &ss );

cout << "Ran file , " << "flag " << flag << " fitness = " << fitness << endl;
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string file = "netrun.dat";

os.open( file.c_str() );

if ( os.is_open () )

os << ss.str();

os.close ();

cout << "File saved to " << file << endl;

delete network;

91 return 0;

}

/* Run parallel program */

MPI_Init( &argc , &argv );

MPI_Comm_rank( MPI_COMM_WORLD , &rank );

if ( rank == 0 )

{

#ifndef DEBUG

101 ofstream ofs;

ofs.open( "./ output/out.log" );

master( ofs );

ofs.close ();

#else

master ();

#endif

}

else

slave ();

111

MPI_Finalize ();

// return 0;

}

/**

* Manage population and structural changes.

*/

void master( ostream &out )

{

121 out << "checking in from master " << rank << ", ";

int nproc; // there are nproc -1 slaves

MPI_Comm_size( MPI_COMM_WORLD , &nproc );

multiset <Chromosome > population;
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NeuralNetworkFactory nnf;

double best_fitness = SIMFAIL;

int count = 1;

int generation;

int psize = nproc -1; // create population equal to the number of slaves available

131 out << psize << " slaves available" << endl;

#ifdef DEBUG_STATS

vector <int > num_neurons (50);

vector <int > num_synaps (50);

vector <int > num_synaps_in_per_neuron (50);

vector <int > num_synaps_out_per_neuron (50);

clock_t t1 , t2;

t1 = clock ();

#endif

141

/* Initialize population */

for ( int i = 0; i < psize; i++ )

{

ifstream ifs;

stringstream ss;

NeuralNetwork *n;

double m;

// save population member

151 // ifs.open ("./ proc0.net ");

// n = new NeuralNetwork ( ifs );

// ifs.close ();

n = nnf.createNetwork( nidx , ninput , nhidden , noutput , density );

n->write( ss );

runSimulation( n, m );

Chromosome c( ss.str(), m, 0 );

population.insert( c );

delete n;

}

161 out << "population initialized to " << population.size() << " chromosomes" << endl;

/* EP/GA */

generation = 0;

count;

while( best_fitness > fitness_tol )

{

out << "->generation " << generation << endl;
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/* Send out jobs */

171 count = 1;

for ( set <Chromosome >:: iterator itr = population.begin (); itr != population.end(); itr++ )

{

stringstream ss( itr ->c );

NeuralNetwork *n = new NeuralNetwork( ss );

// mutate population member

Breeder b(n);

int r = b.mutate_structure ();

while ( r < 0 )

181 r = b.mutate_structure ();

#ifdef DEBUG_STATS

num_neurons[ n->getNumberOfNeurons () ]++;

num_synaps[ n->getNumberOfConnections () ]++;

n->countSynapPerNeuron( num_synaps_in_per_neuron , num_synaps_out_per_neuron );

#endif

// send to slave

stringstream sr;

191 n->write( sr );

MPI_Send( (void*)sr.str(). c_str(),

sr.str(). length(),

MPI_CHAR ,

count ,

WORKTAG ,

MPI_COMM_WORLD );

count ++;

}

201

/* Recieve results */

count = 0;

while ( count < psize )

{

double fitness;

int source;

char *buffer;

int buffer_len;

MPI_Recv( &fitness ,

211 1,
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MPI_DOUBLE ,

MPI_ANY_SOURCE ,

WORKTAG ,

MPI_COMM_WORLD ,

&status );

source = status.MPI_SOURCE;

MPI_Probe( source , MPI_ANY_TAG , MPI_COMM_WORLD , &status );

221 MPI_Get_count( &status , MPI_CHAR , &buffer_len );

buffer = new char[ buffer_len ];

MPI_Recv( buffer ,

buffer_len ,

MPI_CHAR ,

source ,

WORKTAG ,

MPI_COMM_WORLD ,

&status );

231 string str( buffer );

Chromosome c( str , fitness , source );

population.insert( c );

#ifdef DEBUG

out << "recieved fitness = " << fitness << " from slave " << source << " ";

out << "(pop " << population.size() << ") " << endl;

#endif

// clean up

delete [] buffer;

241 count ++;

}

#ifdef DEBUG

out << "finished recieving from slaves" << endl;

#endif

/* Drop poor performers */

count = 0;

for ( set <Chromosome >:: iterator itr = population.begin (); itr != population.end(); itr++ )

{

if ( count == psize )

251 {

population.erase( itr , population.end() );

break;

}
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count ++;

}

/* Save best results if an improvement is found */

if ( population.begin()->f < best_fitness )

{

261 out << "improvement found , fitness = " << population.begin()->f << " ";

out << "from " << population.begin()->s << "!" << endl;

stringstream ss;

ss << "./ output/best.net";//_" << generation << ". net ";

ofstream os;

os.open( ss.str(). c_str() );

if ( os.is_open () )

os << population.begin()->c;

os.close ();

best_fitness = population.begin()->f;

271 out << "saved improvement " << best_fitness << "!" << endl;

}

generation ++;

} // end while

#ifdef DEBUG_STATS

t2 = clock ();

ofstream ofs;

ofs.open("./ output/stats.dat");

281 ofs << fitness_tol << " ";

ofs << population.size() << " ";

ofs << ((float)t2 -( float)t1)/ CLOCKS_PER_SEC << " ";

ofs << generation -1 << endl;

for ( int i = 0; i < num_neurons.size (); i++ )

{

ofs << i << " " << num_neurons[i] << " " << num_synaps[i] << " ";

ofs << num_synaps_in_per_neuron[i] << " ";

ofs << num_synaps_out_per_neuron[i] << endl;

}

291 ofs.close ();

#endif

/* Send out dietags to slaves */

for ( int i = 1; i < nproc; i++ )

MPI_Send( 0,

0,
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MPI_INT ,

i,

DIETAG ,

301 MPI_COMM_WORLD );

return;

}

/**

* Manages parameter changes.

*/

void slave( ostream &out )

{

311 while ( 1 )

{

/* Recieve network from master */

MPI_Probe( 0, MPI_ANY_TAG , MPI_COMM_WORLD , &status );

if ( status.MPI_TAG == DIETAG )

break;

char *buffer = 0;

int buffer_len;

321 MPI_Get_count( &status , MPI_CHAR , &buffer_len );

buffer = new char[ buffer_len ];

MPI_Recv( buffer ,

buffer_len ,

MPI_CHAR ,

0,

WORKTAG ,

MPI_COMM_WORLD ,

&status );

331 /* Parse and Evaluate */

NeuralNetwork *n;

stringstream best;

double best_fitness;

best.str( buffer );

n = new NeuralNetwork( best ); // initial slave network

runSimulation( n, best_fitness );

/* SA to search for a better network */

double fitness = 0.0;
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341 double K = 1.0; // SA temperature

int flag;

int simerr = 0;

for ( int i = 0; i < gen_max; i++ )

{

// mutate

Breeder b( n );

int result = -1;

while ( result < 0 )

351 result = b.mutate_parameter ();

// run simulation

flag = runSimulation( n, fitness );

#ifdef DEBUG

out << "slave " << rank << " ";

out << "itr " << i << " ";

out << "fitness = " << fitness << " ";

out << "flag " << flag << " ";

361 #endif

// check for errors

if ( flag )

{

simerr ++;

if ( simerr > fail_tol*gen_max ) // abort!

break;

}

371 // evaluate performance

K *= T;

if ( fitness < best_fitness )

{

stringstream sr;

n->write( sr );

best_fitness = fitness;

best.str( sr.str() );

#ifdef DEBUG

381 out << "improvement!" << endl;

#endif

}
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else if ( (double)rand ()/ RAND_MAX < K ) // anneal

{

#ifdef DEBUG

out << "annealing ..."<< endl;

#endif

}

else

391 {

stringstream sr( best.str() );

n->read( sr );

#ifdef DEBUG

out << "replacing with " << best_fitness << endl;

#endif

}

} // end for

401 /* Send best to master */

#ifdef DEBUG

out << "sending " << best_fitness << endl;

#endif

MPI_Send( &best_fitness ,

1,

MPI_DOUBLE ,

0,

WORKTAG ,

411 MPI_COMM_WORLD );

MPI_Send( (void*)best.str (). c_str(),

best.str(). length(),

MPI_CHAR ,

0,

WORKTAG ,

MPI_COMM_WORLD );

/* Clean up */

delete [] buffer;

421 delete n;

} // end while ( 1 )

return;

}
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A.10 pendulum ctrl.cpp

/**

* File: pendulum_ctrl .cpp

* Author: Scott Hansen

4 * Date: Feb 14, 2012

*

*/

#include <mpi.h>

#include "NeuralNetwork.h"

#include "NeuralNetworkFactory.h"

#include "Breeder.h"

/* Load Simulation Data and Functions */

14 #include "sim_pendulum_ctrl.h"

/* OpenMPI Job Tags */

#define DIETAG 1 // instuct the slave to exit

#define WORKTAG 2 // business as usual

/* OpenMPI Variables */

int rank = 0; // process rank

MPI_Status status;

24 void master( ostream &out = cout ); // the bourgeoisie

void slave( ostream &out = cout ); // the proletariate

/* Genetic unit */

struct Chromosome

{

Chromosome () : c(), f(), s() {}

Chromosome( string const& c_in , double f_in , double s_in ) : c(c_in), f(f_in), s(s_in) {}

bool operator < ( Chromosome const& rhs ) const { return f < rhs.f; }

string c; // the chromosome

34 double f; // fitness

double s; // source

};

/*

* Main function.

*/

int main ( int argc , char** argv )
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{

process_sim_arguments( argc , argv );

44 srand(seed);

/* run a single file specified by the -d flag */

if ( !netfile.empty () )

{

cout << "reading " << netfile << endl;

NeuralNetwork *network;

NeuralNetworkFactory nnf;

stringstream ss;

ofstream os;

54 double fitness;

double flag;

ifstream ifs;

ifs.open( netfile.c_str() );

if ( ifs.is_open () )

{

network = new NeuralNetwork( ifs );

network ->print ();

ifs.close ();

64 }

else

{

cerr << "Error: bad file name , loading network " << nidx << endl;

network = nnf.createNetwork( nidx , ninput , nhidden , noutput , density );

os.open( "netrun.net" );

if ( os.is_open () )

network ->write( os );

os.close ();

74 }

flag = runSimulation( network , fitness , &ss );

cout << "Ran file , " << "flag " << flag << " fitness = " << fitness << endl;

string file = "netrun.dat";

os.open( file.c_str() );

if ( os.is_open () )

os << ss.str();

os.close ();

cout << "File saved to " << file << endl;

84
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delete network;

return 0;

}

// process_sim_arguments ( argc , argv );

// NeuralNetwork *n = 0;

// double mse;

// stringstream ss;

// int flag;

94

// flag = runSimulation ( n, mse , &ss );

// cout << " simulation quit with flag " << flag << endl;

// ofstream ofs;

// ofs.open ("./ output/output.dat ");

// ofs << ss.str ();

// ofs.close ();

/* Run parallel program */

104 MPI_Init( &argc , &argv );

MPI_Comm_rank( MPI_COMM_WORLD , &rank );

if ( rank == 0 )

{

#ifndef DEBUG

ofstream ofs;

ofs.open( "./ output2/out.log" );

master( ofs );

ofs.close ();

#else

114 master ();

#endif

}

else

slave ();

MPI_Finalize ();

// return 0;

}

124 /**

* Manage population and structural changes.

*/

void master( ostream &out )
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{

out << "checking in from master " << rank << ", ";

int nproc; // there are nproc -1 slaves

MPI_Comm_size( MPI_COMM_WORLD , &nproc );

multiset <Chromosome > population;

134 NeuralNetworkFactory nnf;

double best_fitness = SIMFAIL;

int count = 1;

int generation;

int psize = nproc -1; // create population equal to the number of slaves available

out << psize << " slaves available" << endl;

#ifdef DEBUG_STATS

vector <int > num_neurons (50);

vector <int > num_synaps (50);

144 clock_t t1 , t2;

t1 = clock ();

#endif

/* Initialize population */

for ( int i = 0; i < psize; i++ )

{

stringstream ss;

NeuralNetwork *n;

double fitness;

154

// save population member

ifstream ifs;

ifs.open("./ output2/iamapendulumandsocanyou/pend_1_5.net");

if ( ifs.is_open () )

{

n = new NeuralNetwork( ifs );

ifs.close ();

n->write( ss );

}

164 else

{

cerr << "Error: failed to load file ..." << endl;

exit( 0 );

}

// n = nnf. createNetwork ( nidx , ninput , nhidden , noutput , density );
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// run simulation

fitness = 0;

174 for ( int j = 0; j < navg; j++ )

{

double tmp = 0.0;

runSimulation( n, tmp );

fitness += tmp;

}

fitness /= navg;

Chromosome c( ss.str(), fitness , 0 );

population.insert( c );

184 delete n;

}

/* EP/GA */

generation = 0;

count;

while( best_fitness > fitness_tol )

{

out << "->generation " << generation << endl;

194 /* Send out jobs */

count = 1;

for ( set <Chromosome >:: iterator itr = population.begin (); itr != population.end(); itr++ )

{

stringstream ss( itr ->c );

NeuralNetwork *n = new NeuralNetwork( ss );

// mutate population member

Breeder b(n);

int r = b.mutate_structure ();

204 while ( r < 0 )

r = b.mutate_structure ();

#ifdef DEBUG_STATS

num_neurons[ n->getNumberOfNeurons () ]++;

num_synaps[ n->getNumberOfConnections () ]++;

#endif

// send to slave

stringstream sr;
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214 n->write( sr );

MPI_Send( (void*)sr.str(). c_str(),

sr.str(). length(),

MPI_CHAR ,

count ,

WORKTAG ,

MPI_COMM_WORLD );

count ++;

}

224

/* Recieve results */

count = 0;

while ( count < psize )

{

double fitness;

int source;

char *buffer;

int buffer_len;

MPI_Recv( &fitness ,

234 1,

MPI_DOUBLE ,

MPI_ANY_SOURCE ,

WORKTAG ,

MPI_COMM_WORLD ,

&status );

source = status.MPI_SOURCE;

MPI_Probe( source , MPI_ANY_TAG , MPI_COMM_WORLD , &status );

244 MPI_Get_count( &status , MPI_CHAR , &buffer_len );

buffer = new char[ buffer_len ];

MPI_Recv( buffer ,

buffer_len ,

MPI_CHAR ,

source ,

WORKTAG ,

MPI_COMM_WORLD ,

&status );

254 string str( buffer );

Chromosome c( str , fitness , source );

population.insert( c );

153



#ifdef DEBUG

out << "recieved fitness = " << fitness << " from slave " << source << " ";

out << "(pop " << population.size() << ") " << endl;

#endif

// clean up

delete [] buffer;

264 count ++;

}

#ifdef DEBUG

out << "finished recieving from slaves" << endl;

#endif

/* Drop poor performers */

count = 0;

for ( set <Chromosome >:: iterator itr = population.begin (); itr != population.end(); itr++ )

{

274 if ( count == psize )

{

population.erase( itr , population.end() );

break;

}

count ++;

}

/* Save best results if an improvement is found */

if ( population.begin()->f < best_fitness )

284 {

out << "improvement found , fitness = " << population.begin()->f << " ";

out << "from " << population.begin()->s << "!" << endl;

stringstream ss;

ss << "./ output2/best.net";//_" << generation << ". net ";

ofstream os;

os.open( ss.str(). c_str() );

if ( os.is_open () )

os << population.begin()->c;

os.close ();

294 best_fitness = population.begin()->f;

out << "saved improvement " << best_fitness << "!" << endl;

}

generation ++;

} // end while
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#ifdef DEBUG_STATS

t2 = clock ();

ofstream ofs;

304 ofs.open("./ output2/stats.dat");

ofs << fitness_tol << " ";

ofs << population.size() << " ";

ofs << ((float)t2 -( float)t1)/ CLOCKS_PER_SEC << " ";

ofs << generation -1 << endl;

for ( int i = 0; i < num_neurons.size (); i++ )

{

ofs << i << " " << num_neurons[i] << " " << num_synaps[i] << endl;

}

ofs.close ();

314 #endif

/* Send out dietags to slaves */

for ( int i = 1; i < nproc; i++ )

MPI_Send( 0,

0,

MPI_INT ,

i,

DIETAG ,

MPI_COMM_WORLD );

324

return;

}

/**

* Manages parameter changes.

*/

void slave( ostream &out )

{

while ( 1 )

334 {

/* Recieve network from master */

MPI_Probe( 0, MPI_ANY_TAG , MPI_COMM_WORLD , &status );

if ( status.MPI_TAG == DIETAG )

break;

char *buffer = 0;

int buffer_len;
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MPI_Get_count( &status , MPI_CHAR , &buffer_len );

344 buffer = new char[ buffer_len ];

MPI_Recv( buffer ,

buffer_len ,

MPI_CHAR ,

0,

WORKTAG ,

MPI_COMM_WORLD ,

&status );

/* Parse and Evaluate */

354 NeuralNetwork *n;

stringstream best;

double best_fitness = 0.0;

best.str( buffer );

n = new NeuralNetwork( best ); // initial slave network

for ( int i = 0; i < navg; i++ )

{

double tmp = 0.0;

runSimulation( n, tmp );

364 best_fitness += tmp;

}

best_fitness /= navg;

/* SA to search for a better network */

double fitness = 0.0;

double K = 1.0; // SA temperature

int flag;

int simerr = 0;

374 for ( int i = 0; i < gen_max; i++ )

{

// mutate

Breeder b( n );

int result = -1;

while ( result < 0 )

result = b.mutate_parameter ();

// run simulation

fitness = 0.0;

384 for ( int j = 0; j < navg; j++ )

{
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double tmp = 0.0;

flag = runSimulation( n, tmp );

fitness += tmp;

if ( flag )

simerr ++;

}

fitness /= navg;

394

#ifdef DEBUG

out << "slave " << rank << " ";

out << "itr " << i << " ";

out << "fitness = " << fitness << " ";

out << "flag " << flag << " ";

#endif

// check for errors

if ( simerr > fail_tol*gen_max*navg ) // abort!

404 break;

// evaluate performance

K *= T;

if ( fitness < best_fitness )

{

stringstream sr;

n->write( sr );

best_fitness = fitness;

414 best.str( sr.str() );

#ifdef DEBUG

out << "improvement!" << endl;

#endif

}

else if ( (double)rand ()/ RAND_MAX < K ) // anneal

{

#ifdef DEBUG

out << "annealing ..."<< endl;

424 #endif

}

else

{

stringstream sr( best.str() );
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n->read( sr );

#ifdef DEBUG

out << "replacing with " << best_fitness << endl;

#endif

}

434 } // end for

/* Send best to master */

#ifdef DEBUG

out << "sending " << best_fitness << endl;

#endif

MPI_Send( &best_fitness ,

1,

MPI_DOUBLE ,

0,

444 WORKTAG ,

MPI_COMM_WORLD );

MPI_Send( (void*)best.str (). c_str(),

best.str(). length(),

MPI_CHAR ,

0,

WORKTAG ,

MPI_COMM_WORLD );

/* Clean up */

454 delete [] buffer;

delete n;

} // end while ( 1 )

return;

}

A.11 makefile

CC= g++

MPICXX= mpic++

CFLAGS= -g

TARGETS= harmonic pendulum pendulum_ctrl

FLIB= /usr/lib/gcc/x86_64 -linux -gnu /4.3.5/

all: $(TARGETS)

pendulum_ctrl: pendulum_ctrl.o NeuralNetworkFactory.o NeuralNetwork.o Breeder.o
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10 $(MPICXX) $(CFLAGS) -o pendulum_ctrl pendulum_ctrl.o NeuralNetworkFactory.o NeuralNetwork.o Breeder.o -L$(FLIB) -l gfortran -Lodepack -lodepackd

pendulum_ctrl.o: pendulum_ctrl.cpp sim_pendulum_ctrl.h

$(MPICXX) -c pendulum_ctrl.cpp $(CFLAGS) -o pendulum_ctrl.o

harmonic: mainmpi2_harmonic.o NeuralNetworkFactory.o NeuralNetwork.o Breeder.o

$(MPICXX) $(CFLAGS) -o harmonic mainmpi2_harmonic.o NeuralNetworkFactory.o NeuralNetwork.o Breeder.o -L$(FLIB) -l gfortran -Lodepack -lodepackd

mainmpi2_harmonic.o: mainmpi2.cpp sim_harmonic.h

$(MPICXX) -c mainmpi2.cpp $(CFLAGS) -D HARMONIC -o mainmpi2_harmonic.o

20

pendulum: mainmpi2_pendulum.o NeuralNetworkFactory.o NeuralNetwork.o Breeder.o

$(MPICXX) $(CFLAGS) -o pendulum mainmpi2_pendulum.o NeuralNetworkFactory.o NeuralNetwork.o Breeder.o -L$(FLIB) -l gfortran -Lodepack -lodepackd

mainmpi2_pendulum.o: mainmpi2.cpp sim_pendulum.h

$(MPICXX) -c mainmpi2.cpp $(CFLAGS) -D PENDULUM -o mainmpi2_pendulum.o

.cpp.o:

$(CC) -c $(CFLAGS) $< -o $@

30 .PHONY: clean

clean:

rm -f *.o *~ ./ output /* $(TARGETS)

tar:

echo "backing up ..."

tar cfz backup -‘date +%Y%m%d‘. tar.gz *. cpp *.h makefile visualizer /*. pro visualizer /*. cpp visualizer /*.h visualizer /Makefile odepack /*

mv *. tar.gz ../ archive/
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