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ABSTRACT 
 
The thresholding problem is important in today’s data-rich research scenario. A 

threshold is a well-defined point in the data distribution beyond which the data is 

highly likely to have scientific meaning. The selection of threshold is crucial since 

it heavily influences any downstream analysis and inferences made there from. A 

legitimate threshold is one that is not arbitrary but scientifically well grounded, 

data-dependent and best segregates the information-rich and noisy sections of 

data. Although the thresholding problem is not restricted to any particular field of 

study, little research has been done. This study investigates the problem in 

context of network-based analysis of transcriptomic data. Six conceptually 

diverse algorithms – based on number of maximal cliques, correlations of control 

spots with genes, top 1% of correlations, spectral graph clustering, Bonferroni 

correction of p-values and statistical power – are used to threshold the gene 

correlation matrices of three time-series microarray datasets and tested for 

stability and validity. Stability or reliability of the first four algorithms towards 

thresholding is tested upon block bootstrapping of arrays in the datasets and 

comparing the estimated thresholds against the bootstrap threshold distributions. 

Validity of thresholding algorithms is tested by comparison of the estimated 

thresholds against threshold based on biological information. Thresholds based 

on the modular basis of gene networks are concluded to perform better both in 

terms of stability as well as validity. Future challenges to research the problem 

have been identified. Although the study utilizes transcriptomic data for analysis, 

we assert its applicability to thresholding across various fields.  
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CHAPTER I 
INTRODUCTION 

 

Advancements in technology have helped churn out a great amount of data in all 

sectors of industry and education. Computers and statistical procedures are 

indispensable for the handling and analysis of this vast amount of data and to 

parse the signal from noise.  

One significant problem frequently encountered by data analysts is the 

identification of a threshold above which most of the data is highly likely to have 

scientific meaning. This is especially so when values at a particular end of data 

distribution are more informative. The application of a threshold also limits 

analysis to only meaningful regions of data and thus helps to make huge 

datasets manageable.  

Many times a threshold assists in making good use of limited resources to 

solve difficult problems. For example, regardless of advancements in computer 

technology, there are some problems, which are NP-complete, that most likely 

will remain difficult to solve in real time. A threshold, besides eliminating 

meaningless data, also can make such problems tractable. 

The applications of thresholding are vast and span a wide spectrum of 

fields (biology, business, economics). However, the issue needs to be addressed 

under light of the characteristics of data being analyzed.  

This study focuses thresholding as an application for network-based 

analysis of transcriptomic data. Transcriptomics is the systematic and 

simultaneous analysis of expression profiles of thousands of genes. DNA 

microarray technology was developed to carry out such analysis [Schena et al. 

1995]. With continual improvements in this technology, the field of 

transcriptomics has been successful in making a significant contribution to 

medical health research [Simon et al. 2002, Tefferi et al. 2002, Lorentz et al. 

2002, Elkin 2003]. This, in turn, has attracted a wide range of statistical concerns 

[Smyth et al. 2003, Mayo et al. 2006].  
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An important effort behind a microarray experiment is towards discerning 

sets of co-expressed genes. In order to do this, a network-based approach is 

routinely used to represent the complexity of gene interactions [Dehmer and 

Emmert-Streib 2008]. Such a representation with genes as nodes and co-

expression measures as edges between them is both intuitive and 

straightforward. However, the application of a threshold to such a network is not 

easy and involves the complex task of balancing the number of false positives 

and false negatives in the data. The problem gets worse as the level of noise in 

the data increases.  

Two philosophies for thresholding have been investigated in reference to 

biological networks: hard and soft [Zhang and Horvath 2005]. The principle 

difference between them is that hard thresholding utilizes correlations between 

gene pairs as edge-weights and thus takes into account individual pair-wise 

relationships between genes, while soft thresholding involves the assignment of 

connection edge-weights based on graph characteristics such as ‘scale-free 

topology criterion’ and considers modular relationships between genes. Zhang 

and Horvath (2005) have shown that threshold based on aggregate, modular 

relationships between genes yields more robust results than individual pair-wise 

relationships. 

In this study, we compare and analyze six conceptually different 

algorithms – based on number of Maximal Cliques, correlations of Control Spots 

with genes, Top 1% of correlations, Spectral graph clustering, Bonferroni 

correction of pvalues and statistical Power – used towards thresholding the gene 

correlation matrix derived from microarray data that was pre-verified statistically 

to be of high quality. Importantly, two of the methods (Maximal Clique algorithm 

and Spectral graph clustering) consider aggregate gene relationships to arrive at 

a threshold while the rest of them consider only pair-wise relationships. The 

objectives of this study were 1) to evaluate thresholding method/s for stability 

and reliability: identifying ones that exhibit a high level of robustness and 2) to 
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evaluate thresholding method/s for validity: identifying those that accommodate 

maximum biological information with a relatively low noise component.  

The results of our analysis help to assess the relative performance of each 

of the methods for thresholding the gene correlation matrix. We hope to apply the 

conclusions from this study in our quest towards generating ‘combinatorial’ 

algorithms for threshold determination. The general applicability of the 

thresholding methods used in this study should serve as a guide to data analysts 

into choosing a suitable threshold not only for transcriptomic but also for data in 

other fields. 
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CHAPTER II 
BACKGROUND 

        
 

Gene expression is a dynamic process that is tightly linked to activities within the 

cell. Genes are either turned on (increase in expression) or turned off (decrease 

in expression) such that the resulting products of gene expression (proteins) can 

drive complex cellular pathways to satisfy the continuous needs of the cell. Since 

cellular pathways rely on a spectrum of proteins to be activated or deactivated, 

genes expressing such proteins tend to display similar expression patterns [van 

Noort et al. 2003]. Thus, gene expression is orchestrated in aggregates and the 

exploration of such aggregate relationships provides important insight for the 

dissection of cellular pathways.  
Biological relationships are complex. The thousands of genes within a cell 

can take part in more than one cellular pathway. Further, cellular pathways are 

intricately linked to each other and assuming them to be autonomous is a drastic 

over-simplification. Thus, extracting meaningful biological relationships from gene 

expression data is difficult. A significant level of noise routinely present within the 

data further complicates the picture.  

Early microarray studies derived conclusions from simplifying this picture. 

Some studies considered only pair-wise relationships between genes [Stuart et 

al. 2003, Moriyama et al. 2003, Sanoudou et al. 2003]. Other studies considered 

small-scale networks by limiting analysis to only genes of interest [Bredel et al. 

2005]. However, with advent of genome-scale transcriptomic studies [Szodoray 

et al. 2006, Anisimov et al. 2007], microarray analysis has matured to model 

large sets of aggregate relationships between genes.  

Many reports have highlighted the network architecture as an abstract 

schematization of biological systems [Alon 2003, Barabasi and Oltvai 2004, 

Oltvai and Barabasi 2002]. The depiction of genes as nodes and edges as 

relationships between them [Bader and Enright 2005] revealed the scale-free 

nature of biological networks [Jeong et al. 2000, Bray 2003, Albert 2005, Aloy 
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and Russell 2004]. A typical large-scale gene network displays important hubs 

and sub-graphs with high connectivity. Sub-graphs within a network represent 

genes with similar patterns of expression and afford valuable clues to intra-

cellular pathways [Wolfe et al. 2005, Eisen et al. 1998, Wu et al. 2002, Stuart et 

al. 2003]. Graph and network analysis techniques have been utilized to extract 

such sub-graphs and derive biologically meaningful relationships that look 

beyond just pair-wise associations [Voy et al. 2006, Yan et al. 2007, Freeman et 

al. 2007].   

The analysis of such genome-scale gene networks involves a classical 

thresholding problem. First, given a particular weight to the edges in the graph, 

only edge-weights at the higher end of the distribution tend to contain significant 

biological meaning. Second, genome-scale data is huge and storage and 

analysis of it as a whole encounters tremendous difficulties. Thus, thresholding 

becomes an important issue in the analysis of gene networks. Butte et al. (2000) 

first highlighted the issue by introduction of the concept of relevance networks. 

 

Relevance Networks 
An expression data matrix – the outcome of a typical microarray experiment – is 

an n-by-p matrix, where each of the n rows corresponds to a gene and each of 

the p columns corresponds to an array [Mayo et al. 2006]. Similarity metric 

measures like Spearman’s rank or Pearson’s correlation coefficient and 

Euclidean distance are used by various algorithms to quantify co-expression 

between pairs of genes, producing an n-by-n gene correlation matrix [Slonim 

2002, Allison et al. 2006, Voy et al. 2006]. Relevance networks are created after 

thresholding the matrix of similarity metric such that the resulting graph – with 

vertices as genes and similarity metric as edge-weights – has only edge-weights 

that exceed the threshold value [Butte et al. 2000]. 

Relevance networks incorporate a higher number of edges that would 

imply significant biological meaning [Butte and Kohane 2000]. Subsequent 

extraction of sub-graphs from such a network has the advantage of producing 
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more biologically meaningful results besides being faster from elimination of 

insignificant data. Extraction of sub-graphs from within relevance networks has 

been very well documented in recent literature to yield sets of co-expressed 

genes [Voy et al. 2006, Yan et al. 2007, Freeman et al. 2007].  

Amongst these, the utility of cliques as sub-graphs in biology deserves 

special mention. Many studies have demonstrated the use of cliques to depict 

important relationships in biological systems [Wu and Li 2007, Setubal and 

Meidanis 1997] and specifically to extract “putative sets of co-expressed genes” 

from microarray data [Voy et al. 2006, Manfield et al. 2006].  

 

Clique 
Clique is a sub-graph in which all the nodes are connected to each other. Within 

a relevance network, cliques represent “putative sets of co-expressed genes” 

[Voy et al. 2006]. Solving such a network for cliques however is a “classic graph-

theoretic problem” [Bomze et al. 1999] and is NP (Non-deterministic Polynomial 

time)-complete [Zhang et al. 2005, Garey and Johnson 1979]. Researchers have 

successfully used vertex cover to solve the clique problem on massive scales 

[Zhang et al. 2005, Langston 2004, Fellows and Langston 1994]. 

Cliques or any sub-graphs are found on an unweighted graph, which is 

derived from a weighted graph. This transformation represents a binary decision 

problem and requires the selection of a threshold. Also, many other graph-

theoretic problems require the application of a threshold to a weighted graph and 

analyze the subsequent unweighted graph. A few of them with applications 

towards microarray analysis are enumerated below: 

1. Enumeration of maximal cliques: required for gene expression network 

analysis, cis-regulatory motif finding, investigation of QTL’s for high-

throughput molecular phenotypes [Zhang et al. 2005, Abu-Khzam et al. 

2005]. 

2. Finding a maximum clique: used to find paraclique, a “noise-adaptive 

graph algorithm” [Chesler and Langston 2005] that also addresses the 
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issue of false-negatives encountered from using cliques as a clustering 

technique. 

3. Vertex cover: used to identify transcripts that relate individual phenotypes 

to QTL regulatory models [Chesler and Langston 2005]. 

4. CAST (Cluster Affinity Search Technique): a clustering technique by Ben-

Dor et al. (1999) that has been reported to cluster gene expression data 

well. 

Though algorithms to the above-mentioned graph-theoretical problems have 

been developed and applied to microarray data analysis with certain amount of 

success, the results of such sub-graph analysis (clique or otherwise) heavily 

depend on the selection of an appropriate threshold. In case of a correlation 

matrix of genes, the dense distribution of correlations gives rise to a completely 

different picture of the graph (with addition or removal of many edges/nodes) 

even with a slight change in threshold, which in turn, impacts any sub-graphs 

extracted from the graph. As the final results of any microarray data analysis 

heavily influence further scientific investigation in biological laboratories, 

selection of an appropriate threshold becomes an important step in a network-

based approach that needs to be addressed adequately.  

Figure 1 (all figures and tables are located in the appendix) illustrates the 

flow of microarray data processing in a typical graph-based analysis. For details 

regarding the approach, the reader can refer to Voy et al. (2006).  

 

Non-thresholding alternatives to analyze gene correlation matrix 
Many clustering algorithms have been used to segregate transcriptomic data into 

distinct, closely related units [Bellaachia et al. 2002, Ben-Dor et al. 2000, Ben-

Dor et al. 1999, Hansen and Jaumard 1997, Hartuv et al. 1999]. A good review is 

presented in Quackenbush (2001). A variety of metrics could be used to cluster 

transcriptomic data [Quackenbush 2001], some similar to the metrics used for 

relevance networks like Spearman’s rank or Pearson’s correlation coefficient and 

Euclidean distance [Slonim 2002, Allison et al. 2006, Allocco et al. 2004]. 
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However, one principle difference between clustering algorithms and relevance 

networks is the application of a threshold in case of the latter.  

 Although some clustering algorithms can circumvent the thresholding 

problem, there are many arguments that can be raised against them or in favor of 

relevance networks based analysis (eg. cliques and other subgraphs).  

 The clusters generated by most clustering algorithms are disjoint [Voy et 

al. 2006]. So a particular gene can lie only in one or the other cluster. This is 

contrary to what is observed in biological networks, where any particular gene 

(gene-product) could participate in more than one network [Rajasekaran et al. 

2005, Kim and Chung 2002, Lopez and Martinez 2002]. Though researchers 

have utilized Singular Value Decomposition (SVD) as a solution to the disjoint 

issue [Alter et al. 2000], the factors involved in SVD are not easily assigned a 

biological interpretation [Girolami and Breitling 2004]. Cliques, on the other hand, 

are not disjoint and so are able to mimic biological networks better.  

 Cliques also represent negative correlations [Chesler and Langston 2005, 

Voy et al. 2006], which signify biologically inverse gene relationships. Many 

clustering algorithms do not do so.  

 Cliques actually are a way to represent overlapping sets of highly 

connected nodes in a graph. Thus, clique can be thought of as a type of 

clustering technique. However, the occurrence of a clique entails an extremely 

stringent criterion: for the removal of even a single edge from the clique and the 

clique is lost. In the context of microarrays, this stringency brings forth a 

tremendous advantage as it serves to brace the research analysis from very high 

level of variability and noise factors routinely observed in microarray data, and 

consequently reduces the number of biological false positives [Baldwin et al. 

2005]. 

 In graph theory, a cluster’s edge density is assessed upon solving the k-

subgraph problem [Feige et al. 2001, Rougemont and Hingamp 2003, Watts and 

Strogatz 1998, Baldwin et al. 2005]. Since a clique is a cluster in which all nodes 

are connected, it serves to maximize this edge density. However, a drawback of 
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this is the occurrence of high number of false negatives. This drawback is 

addressed upon introduction of the “paraclique” concept [Chesler and Langston 

2005].  

Recent studies have highlighted the stochastic (instead of deterministic) 

nature of biological networks [Quackenbush 2007, Elowitz et al. 2002, Ozbudak 

et al. 2002]. Once an interesting clique is found, other genes interacting with any 

of the nodes in the clique, but having an edge-weight lower than the threshold, 

could be easily recovered from the expression profile thus accommodating for 

stochasticity. This also serves to recover genes that may show transitive co-

expression with other genes in a clique and so do not have sufficient correlation 

to be part of the clique [Zhou et al. 2002]. 

Studies have shown that metric-based clustering algorithms tend to cluster 

genes that have very low similarities in expression [Allocco et al. 2004]. Thus, it 

is not surprising to find unregulated genes clustered together. Relevance 

networks, through the simple use of a threshold, discard insignificant data from 

consideration thus reducing the probability of such occurrences. 

Besides, individual clustering methods contribute their own set of inherent 

drawbacks. K-means clustering requires prior knowledge of number of clusters 

into which the data needs to be segregated [Quackenbush 2001]. Dougherty et 

al. (2002) have shown that the algorithm will generate clusters even in random 

data. 

Hierarchical clustering ends up clustering every data point thus generating 

errors. Also, the final results tend to be biased by the properties of the genes that 

have defined the clusters initially [Quackenbush 2001]. Visual interpretation of 

the resulting dendrograms also has its subjective flaws [Voy et al. 2006]. 

Self-Organizing Maps require a geometric configuration for partitioning 

nodes into clusters, a problem similar to that linked with K-means clustering 

[Quackenbush 2001]. 

Thus, the inherent limitations of traditional clustering techniques prevent 

them from depicting biologically meaningful relations between genes. Cliques 
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and other sub-graphs, on the other hand, have been found to obtain interpretable 

results from mining of relevance networks.  

 

Current approaches to Thresholding 
The thresholding problem we address concerns the application of a cut-off point 

to the similarity measure matrix so as to only consider co-expression between 

pairs of genes that are greater or equal to the threshold value. Many studies 

have chosen an arbitrary threshold of 0.8 [Bredel et al. 2005, Sanoudou et al. 

2003]. The problem with selecting such an arbitrary threshold is that it does not 

take into account the inherent properties of the data.  

 Allocco et al. (2004) conducted a microarray study with Saccharomyces 

cerevisiae using 611 arrays over a wide range of conditions to show that gene 

coexpression is linked to the sharing of common transcription factor binding sites. 

Specifically, they concluded that at a correlation of 0.84, there is a 50% chance 

of sharing a common transcription factor binding site between two genes. 

However, due to high variability arising from multiple sources in microarray data, 

results from a single lab cannot be taken as a standard and applied across all 

datasets.  
Moriyama et al. (2003) obtained random correlation distributions for gene 

pairs by permuting their expression values. They defended their choice of 

threshold based on the statistical significance levels (p-value < 0.001, 0.01, 

0.05). Although such a method is statistically strong, it may not necessarily yield 

biologically significant relationships [Quackenbush 2003]. Voy et al. (2006) also 

discussed a similar picture: Biologically meaningful relationships from small 

experiments (low number of arrays) could fail to have a statistically strong base 

due to insufficient power; conversely, biologically insignificant relationships from 

large experimental designs may display statistically significant relationships as a 

result of a higher statistical power. Thus, purely statistical methodologies may not 

work best for extracting biologically meaningful relationships from relevance 

networks.  
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 Lee et al. (2004) considered only the top 1% of correlations (absolute 

value) for each dataset and built a co-expression network for multiple human 

microarray datasets.  

 Zhang and Horvath (2005) selected parameters for ‘soft’ thresholding 

based on the scale-free topology criterion that serves to optimize the biological 

signal. Such a criterion is based on the fact that gene co-expression networks 

often appear to satisfy approximate scale-free topology [Jeong et al. 2000, 

Bergman et al. 2004]. 

 Langston et al. (2006) recommend the use of ontological distance, 

statistical significance and various graph structural attributes to arrive at a 

correlation threshold.  

 Voy et al. (2006) used distribution of correlations of genes with buffer 

spots on the arrays to select a threshold of 0.875, at which the correlation values 

dropped down to a mere few. They supported their selection by evaluating a 

statistically significant confidence level at this threshold by using Fisher’s z-

transform and Bonferroni correction for multiple testing. 

However, many of the above reports mention the need of a thorough 

analysis of the issue.  

  

Major issues with Thresholding 
Two important philosophies have been investigated in relation to thresholding. 

Hard thresholding considers gene affiliations as independent pairs. Soft 

thresholding, on the other hand, takes account of aggregate modular gene 

relationships, which closely mimics the real-world biological network model. The 

weak biological basis of hard thresholding makes it very susceptible to loss of 

information, besides being extremely sensitive to the chosen threshold [Carter et 

al. 2004]. Zhang and Horvath (2005) have shown that threshold based on 

aggregate, modular relationships between genes yields more robust results than 

individual pair-wise relationships.  
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Thresholding has also been studied in the statistical significance 

framework. This applies more in relation to hard thresholding: the selection of 

threshold value has been based by many investigators [Davidson et al. 2001, 

Butte and Kohane 2000, Carter et al. 2004] on the significance level of 

correlation coefficient rather than directly on the correlation coefficient. In the 

context of genome-wide studies, such an issue predominantly involves the 

problem of multiple hypothesis testing [Dudoit et al. 2003]. The family-wise-error-

rate (FWER) becomes too conservative in defining the critical value of rejection 

region, especially when the number of tests is very large [Storey 2002]. On the 

other hand, the false discovery rate (FDR: the expected proportion of false-

positives amongst all the rejected hypotheses) is relatively liberal and more 

powerful measure of error [Benjamini and Hochberg 1995, Storey and Tibshirani 

2003]. Thus, the FDR provides a valuable alternative to the FWER in discovery-

based settings like microarrays, where scientists are willing to accommodate a 

few false positives provided their numbers are very small as compared to the 

total number of rejected hypotheses. Similar to the widely used p-value, the q-

value [Storey 2002, Storey 2003] is also a measure of statistical significance. 

However, it is based on the FDR unlike the p-value, which is based on the false 

positive rate [Storey and Tibshirani 2003]. There is an important difference here: 

the false positive rate is the rate that truly null features (a feature being any 

attribute of the genome-wide study that needs to be statistically evaluated, eg. 

correlation coefficient measure between genes) are identified to be significant 

while the FDR is the rate that significant features are truly null. A q-value 

assesses statistical significance on the basis of significant features while a p-

value does the same on the basis of features that are truly null. Thus, a q-value 

provides a measure of false positive to true positive results and in context of 

genome-wide studies, offers a statistical significance that has a better practical 

interpretation [Storey and Tibshirani 2003].  

Developments in computer science and data visualization are also 

influencing the way researchers pursue the issue of thresholding. New et al. 
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(2008) have developed dynamic visualization tools to track changes occurring in 

large-scale, real-world gene co-expression networks as threshold is raised or 

lowered. This gives a definite advantage to researchers in visualizing dynamic, 

real-time developments taking place in interesting gene modules within the 

network and work around with different thresholds before ultimately deciding on 

any particular one. Such a dynamic visualization can be applied in both hard as 

well as soft thresholding scenarios.  
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CHAPTER III 
METHODS 

 
 

Datasets chosen for study 
Microarray data for the yeast Saccharomyces cerevisiae was chosen for this 

study. The very complete annotation reported for the S.cerevisiae genome 

(around 80% as reported on the Saccharomyces cerevisiae Genome Database 

website: http://www.yeastgenome.org/) influenced this selection. Moreover, 

information on transcription factors for many S. cerevisiae genes is already 

available, which could be used in future studies to assess biological information 

more accurately. 

 

Anoxia/Reoxygenation data 

This dataset was obtained from the Saccharomyces cerevisiae Genome 

Database website: http://www.yeastgenome.org/. Lai et al. (2006) have carried 

out microarray analysis in the yeast to identify gene networks that show 

metabolic-state dependent differences when yeast cells are exposed to 

anaerobic conditions with subsequent aerobic revival. One set of cells was grown 

in glucose-containing medium while the other in galactose-containing medium to 

bring out the metabolic-state differences. 31 arrays were used for the anoxic 

state (16 under galactose and 15 under glucose) while 21 arrays were used for 

the reoxygenation state (11 under galactose and 10 under glucose).  

 

Yeast Cell Cycle analysis data 
This is a standard dataset from the Eisen laboratory and is part of the Yeast Cell 

Cycle analysis project [Spellman et al. 1998].  

For this dataset, we have: 

1. 2 arrays (40 min and 30 min) from induction with G1 cyclin Cln3p  

2. 2 arrays (both 40 min) from induction with B-type cyclin Clb2p 
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3. 18 arrays (every 7 min) from yeast cultures synchronized using Alpha-

factor arrest 

4. 14 arrays (every 30 min) from yeast cultures synchronized using 

elutriation 

5. 24 arrays (every 10 min) from arrest of a cdc15 temperature-sensitive 

mutant 

6. Also includes data from Cho et al., which has 17 arrays (every 10 min) 

from arrest of cdc28 temperature-sensitive mutant [Cho et al. 1998]. 

 

The 18 arrays from yeast cultures synchronized using Alpha-factor arrest have 

been used in our study. The 24 arrays from yeast cultures arrested with a cdc15 

temperature-sensitive mutant were not considered for this study (even though the 

number of arrays in this dataset was higher) since the Gene Ontological (GO) 

Score evaluated for this dataset failed to show a rise at high positive correlations 

(Figure 18). A rise in GO Score at high correlations, which is expected to be seen 

in microarray datasets and was seen for the three datasets used in the study 

(Figure 17), was important to identify the inflection point for biological threshold 

determination using Gene Ontology.   

 

Preliminary data processing 

For all three datasets, the Locus Tags for genes were converted to GeneIDs 

using the gene_info.gz file available at NCBI ftp location 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/). A GeneID is a unique NCBI gene 

identifier assigned to annotated genes. This reduced the Anoxia and 

Reoxygenation datasets from 6212 to 5525 genes, while the Alpha dataset 

shrunk from 6178 to 5466 genes. The elimination of un-annotated genes 

prevented skewing of the threshold estimated on the basis of Gene Ontology, 

which we use as a measure to assess performance of the other thresholding 

methods. For the Control-Spot method, the datasets were modified by adding in 

control spot information to the end of data. 
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Exploratory data analysis carried out using Principal Components 

Analysis, Box-and-Whiskers, Normal Quantile plots and evaluating pair-wise 

correlations between arrays failed to identify any outlier arrays. This also served 

to validate the good quality of the data used in the study. Pearson’s correlation 

coefficient metric was evaluated between genes as it has been shown to contain 

greater amount of information as compared to Spearman’s correlation metric 

[Voy et al. 2006]. 

 

Thresholding Algorithms 
Six different algorithms for thresholding the gene correlation matrix have been 

analyzed and compared in this study. Software written by Langston and 

colleagues (University of Tennessee) including Datagen version 1.4a [Jon 

Scharff, private communication], Maximal clique enumeration code version 2.0.1 

[Zhang et al. 2005], spectral analysis code [Perkins 2008] and GO Pairwise 

Similarity analysis code version 1.0, was used. Matrix calculations for spectral 

graph analysis were carried out in MATLAB 7.0. P-values were calculated in SAS 

version 9.1. Statistical power was calculated using PASS statistical software 

[http://www.ncss.com/pass.html]. 

 
Method 1: Threshold based on number of Maximal Cliques in graph 
The algorithm is based on graph properties, specifically the distribution of the 

number of maximal cliques in the network as the threshold is lowered step-wise 

from a very high (0.99) to low correlation values. By definition, a maximal clique 

is a clique that cannot be expanded by the inclusion of any other vertex in the 

graph. This needs to be distinguished from a maximum clique, which is the 

largest clique in a graph [Zhang et al. 2005, Baldwin et al. 2005]. Tomita et al. 

(2004) showed that a network with n nodes could at the most have 3n/3 maximal 

cliques. Thus, as the threshold is lowered, the number of maximal cliques may 

grow exponentially with number of nodes included in the network. Two important 

issues come up here. First, as threshold is lowered, computational complexity of 
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enumeration of maximal cliques increases. Also, at lower thresholds, noise or the 

number of false positives may increase. To circumvent both these issues, the 

algorithm looks for an inflection point where the number of maximal cliques 

grows to more than two times the previous value (Maximal Clique-2). Also, a 

simple modification of the algorithm looks for an inflection point where the 

number of maximal cliques grows to more than three times the previous value 

(Maximal Clique-3). The use of an inflection point makes the algorithm capable of 

adapting to the properties of the correlation matrix (distribution of correlation 

values), thus evaluating a different threshold for each dataset. However, the 

algorithm is dependent on selection of parametric value: selecting the inflection 

point where the number of maximal cliques grows to more than 2.5 or 3.5 should 

give a different threshold. We plan to eliminate such arbitrariness by applying 

data dependent techniques such as inflection point obtained on the basis of 

slope of the curve. 

A major advantage of this methodology is that it depends on the 

occurrence of clique in the graph, which by itself is a very stringent criterion to 

guard against false positives. Moreover, since cliques represent putatively co-

regulated sets of genes, using this information to arrive at a threshold seems 

biologically reasonable. To prevent the algorithm from halting at very high 

thresholds, another condition applied is that the number of maximal cliques be 

greater than a particular minimum value. We selected the value to be 50000 

based on our experience with various microarray datasets.  

 

Method 2: Threshold based on information extracted from Control Spots 
Control spots are spots distributed throughout the microarray chip in a defined 

pattern containing either just the buffer or labeled with gene sequences from a 

distant, unrelated species (e.g. Arabidopsis thaliana genes are selected as 

control spots for studies involving mammalian genes). For an Affymetrix 

microarray chip, control spots are designated by identifiers that begin with 

‘AFFX’. Ideally, the control spots should not hybridize any RNA and thus should 
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not display any signal. However, due to nonspecific binding, signal intensities 

above the background are routinely observed from these spots. Voy et al. (2006) 

used correlations of all genes with control spots on the array as a guide to 

consider the most specific correlations for analysis. Using Fisher’s z-transform in 

reverse and Bonferroni correction for multiple testing, they showed that such 

correlations represented statistically significant correlations (p-value < 0.01).  

In this study, we evaluate correlation with control spots to estimate the 

level of noise in the correlation matrix. By considering top 1% of the control-spot 

correlation distribution (absolute value) to represent a threshold, the algorithm 

filters insignificant correlations arising due to non-specific binding from further 

analysis.  

The algorithm however, heavily relies on availability of control spot 

information for each dataset. For the Anoxia and Reoxygenation datasets, 

information from 20 Arabidopsis oligonucleotide spike controls [Lai et al. 2006] 

available only for glucose arrays (about half of total arrays) was utilized, while for 

the Alpha dataset, information from 8 salmon sperm DNA and 300 buffer spots 

available for all arrays was used towards the algorithm.  

 

Method 3: Threshold based on Top 1% of Correlations 

This is a simplistic way of picking up the most significant correlations. A 

microarray experiment with n genes has n*(n-1)/2 correlations. The top 1% of 

these correlations (absolute value) is chosen to represent the threshold as done 

by Lee et al. (2004). One advantage of such a threshold is that there is no 

assumption (normality) made about the distribution. However, there is no 

statistical justification for picking the top 1% of correlations.  

 

Method 4: Threshold based on Spectral Graph Clustering 

Spectral graph theory is the study of graphs with respect to eigen values and 

eigen vectors derived from the adjacency matrix. Eigen values represent an 

important methodology to realize the principal properties of graphs [Chung 1994].  
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Gene interaction networks are well known to display modularity [Hartwell 

et al. 1999, Hintze and Adami 2008]. The modules, which represent clusters of 

genes working in synchrony, are not to be considered as completely 

disconnected components but components with high intra-component 

connectivity and low inter-component connectivity [Albert 2005]. We use spectral 

graph theory to identify the modules in a graph and select the correlation at 

which the best modular separation is possible as the threshold. One of the 

advantages of spectral clustering is that it is fast and unsupervised. Thus, it 

requires no prior knowledge of the number of clusters in the graph.  

The algorithm thresholds the correlation matrix at a random, low 

correlation value to create the Laplacian matrix based on the binary adjacency 

matrix A and Degree matrix D. This is illustrated with a simple graph consisting of 

four vertices as shown in Figure 2. 

The adjacency (A) and the Degree (D) matrices for the above graph are 

as follows:  

 

A = 
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 The Laplacian matrix (L) becomes 

 

L = D – A = 

⎥
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⎢

⎣

⎡
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The eigen problem is solved for the Laplacian matrix. In the context of full-scale 

biological graphs, we solve the eigen problem for the largest cluster in the graph.  

Eigen values: λ0 < λ1 < λ2 < λ3 < λ4 ……….. < λn-1 

Eigen vectors: v0, v1, v2, v3, v4 ……….. vn-1 
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where n = number of vertices in the graph/largest cluster. 

The algebraic connectivity of the graph is represented by the lowest non-

zero eigen value (λ1) [Chung 1994]. The eigen vector, v1, associated with λ1 is 

chosen to segregate the graph into spectral clusters [Ding et al. 2001]. Our 

algorithm uses a sliding window of 10 to identify the clusters. A tolerance level of 

(median + (0.5 * stdev)) needs to be exceeded by the difference between the 

highest and the lowest value in the sliding window for a new cluster to be formed 

[Perkins 2008].  

The total number of clusters for the correlation X is noted. The procedure 

is reiterated in increments of 0.01. The correlation value with the maximum 

number of clusters, which represents the best modular separation of the graph, is 

chosen as the threshold. 

 

Method 5: Threshold based on Bonferroni correction of p-values  

For every correlation value a corresponding p-value is obtained by computing the 

t statistic:  
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where n is the number of arrays in the experiment (thus, n-2 is the degrees of 

freedom). The cutoff p-value (α), which is used to determine the threshold, is 

based on the Bonferroni correction. We also evaluated statistical FDR and q-

value as measures to identify threshold but found them to provide little protection 

in presence of large number of significant p-values; their distributions were 

almost the same as the raw p-values. 
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Method 6: Threshold based on Statistical Power 

This algorithm identifies threshold based on statistical power. Depending on the 

number of arrays N in the experiment, statistical power to differentiate correlation 

between genes against a baseline correlation of 0 is evaluated. The alpha level 

was Bonferroni-adjusted to correct for multiple testing. Statistical standard of 

80% power was chosen to represent the threshold. 

 Two-tailed hypothesis test was constructed as follows: 

Ho: ρ = ρo  (null hypothesis that true correlation is a specific value ρo and 

ρo  = 0) 

HA: ρ = ρ1  (alternative hypothesis that true correlation is a specific value ρ1 

and ρ1  <> ρo) 

 Thus, the hypothesis was constructed such that statistical power 

measures the probability that the test will reject Ho when it is truly null, i.e. gene 

relationships that are not statistically significant. The algorithm first finds out the 

critical value rα, such that the probability of rejecting Ho when Ho is true is equal 

to α (calculated as in Equation 2). Mathematically, we find rα such that  

 

                                  1 – R(r > rα | N, ρo) = α                                        (Equation 2) 

 
where N = sample size or the number or arrays and R(r | N, ρ) represents area 

under correlation density curve to the left of r. Statistical power is then calculated 

as the probability of rejecting Ho when HA is true. Mathematically, 

  

                               Power = 1 – R(r > rα | N, ρ1)                                  (Equation 3) 

 

Analysis of performance of thresholding algorithms 
Performance analysis for the above thresholding algorithms was carried out by: i) 

Bootstrapping over the arrays in the original gene expression datasets to 

evaluate the stability or reliability of the derived thresholds, and ii) Comparison 
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against threshold based on underlying biological information as quantified using 

gene ontology to evaluate the validity of the derived thresholds.  

 

Bootstrapping 

Bootstrap datasets (n=10000) were created from the expression data files. These 

datasets were used to obtain a bootstrap distribution of thresholds with each of 

the thresholding algorithms. Comparing this distribution to the estimated 

threshold obtained for the original or real gene expression dataset gives an idea 

of the robustness of the thresholding algorithm.  

 All datasets used in this study are time-series data. Bootstrapping for time-

series data has been a challenging topic of research as the underlying 

assumption of independency of samples is violated. A good review of the 

problem and the various approaches employed to address it is presented by 

Hardle et al. (2001).  

Block bootstrapping strategy, which remains the oldest and best non-

parametric method to capture the dependence structure of neighboring 

observations in time-series data [Hardle et al. 2001], was used in this study. Non-

overlapping blocks of 3 consecutive arrays were formed and the blocks were 

randomly sampled with replacement.  

Perl scripts were written to perform the bootstrap analysis. 

 

Comparison with threshold estimated from Gene Ontology 

Many current algorithms utilize Gene Ontology (GO) [Ashburner et al. 2000, 

Harris et al. 2004] to understand the biological relevance of relationships derived 

from gene expression data [Khatri et al. 2002, Zeeberg et al. 2003, Doniger et al. 

2003, Zhang et al. 2004]. It is well known that the biological meaning decreases 

while the noise increases as correlation is lowered. The biological meaning for 

each correlation bin (1 - 0.99, 0.989 - 0.98, 0.979 - 0.97……… 0.769 - 0.76, 

0.759 - 0.75, 0.749 - 0.74 …….) is evaluated as the average of the functional 

similarity scores for all gene pairs (average functional similarity or GO Score) 
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whose correlations fall within that correlation bin. To calculate the functional 

similarity for a pair of genes, say gene A and gene B, the algorithm searches for 

a GO category X that covers both gene A and gene B and has the minimum 

number of genes (n). Normalization of n to a range of 0 to 1 is done using the 

following formula: 

 

       
( ) ( )( )

( ) ⎟⎟
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⎞
⎜⎜
⎝

⎛
−

−−−
−=

N
NnN

SimilarityFunctional
/2log

/log/2log
1          (Equation 4) 

 
 
where N represents the total number of genes annotated for the particular 

organism under study.  

The rationale behind the algorithm is based on the “guilt-by-association” 

concept [Wolfe et al. 2005]. Pairs of genes with similar expression patterns (high 

correlation values) tend to be involved in the same biological processes or 

perform similar cellular functions and are found in deeper, more specific levels of 

GO tree hierarchy. Thus, they occur under GO categories with a comparatively 

lower n and feature a high functional similarity score (close to 1).  

We consider the GO Score only for positive correlations as we show later 

in our analysis that negative correlations fail to display any biological 

significance.  

Threshold is identified as the correlation at which the change in GO Score 

exceeds the (median + (0.5 * stdev)) tolerance for all positive correlations. The 

median – as against the mean – of the GO Score and half of overall standard 

deviation help guard against extreme values in the data. Also, such a threshold is 

completely dependent on the inherent biological characteristics of the data as 

reflected through gene ontology and thus, automatically adapts to different 

datasets.  

In order to measure the performance of each method, we define a 

difference metric dTM for a method as the difference between estimated threshold 
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based on gene ontology (τGO) and threshold derived from that method (τTM). The 

metric is calculated for each dataset. 

 
                                                 TMGOTMd ττ −=                                        (Equation 5) 
 
 

To evaluate the overall performance of each thresholding method (across 

all datasets) we define another metric STM, as the summation of dTM’s for the 

particular thresholding method over the three datasets.  

 
         )()()( alphadionreoxygenatdanoxiadS TMTMTMTM ++=        

   
  (Equation 6) 

 

The gene2go.gz file available at NCBI ftp location 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/) was used to map GO annotation for 

genes on the respective arrays. GO Pairwise Similarity analysis code version 1.0 

(software written by Dr.Langston’s research group) was used for the method. 
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CHAPTER IV 
RESULTS 

 
 
The study analyzes six completely different methods for thresholding: four of 

them are evaluated for robustness by creating bootstrap datasets from original 

(real) datasets while all six are evaluated against threshold obtained from 

biological information using Gene Ontology. Bootstrap analysis was carried out 

only for the first four methods. Bootstrap analysis was carried out only for the first 

four methods. Bootstrapping on Bonferroni correction of p-values was not carried 

out due to time. Statistical power being solely dependent on the number of arrays 

and number of genes in the microarray experiment was also not considered for 

bootstrapping. 

Derivation of the estimated threshold for the original datasets with each of 

the methods is discussed below.  

 

Derivation of estimated threshold for each method 
Method 1: Threshold based on number of Maximal Cliques in graph 

Table 1, 2 and 3 give the parameters of the graph (number of vertices, edges, 

maximal cliques and size of maximum clique) at each correlation for Anoxia, 

Reoxygenation and Alpha datasets respectively.  

For Anoxia dataset, the number of maximal cliques grows to more than 

50000 and the first instance of doubling to that at the previous correlation of 0.91 

occurs at correlation threshold of 0.9. Thus, 0.9 is chosen as the threshold for the 

anoxia dataset with the Maximal Clique-2 method. For the Maximal Clique-3 

method, the threshold becomes 0.87, when the first instance of tripling of the 

number of maximal cliques to that at the previous correlation occurs (Table 1).  

Similarly, the Maximal Clique-2 method found threshold of 0.91 and 0.74 

for the Reoxygenation and Alpha datasets, respectively. The Maximal Clique-3 

method found a threshold of 0.89 for the Reoxygenation dataset.  
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For the Alpha dataset, the tripling of the number of maximal cliques does 

not occur until the threshold falls very low. This is because of the relative 

sparseness of edges in the graph for the Alpha dataset at high correlations. 

Figure 3 depicts the growth of number of maximal cliques in the graph for the 

three datasets as correlation threshold is lowered. From the distribution of 

maximal cliques for the three datasets (Table 1, 2 and 3 and Figure 3), it is clear 

that the Alpha dataset produces comparatively sparse graphs at high 

correlations. At correlation of 0.61, the number of maximal cliques falls to almost 

half to that at correlation of 0.62. At correlation threshold of 0.6, however, the 

number of maximal cliques recovers to almost 2.8 times at correlation threshold 

of 0.61, which is very close to tripling. Due to increase in computational time at 

correlation threshold below 0.6, we have assigned 0.6 as the estimated threshold 

for the Alpha dataset with the Maximal Clique-3 method. 

Thus, the Maximal Clique algorithm inherently adjusts the threshold 

according to the graph characteristics for the respective datasets: a higher 

threshold is identified for Anoxia and Reoxygenation datasets that display a 

greater number of high correlations and subsequently produce comparatively 

denser graphs at high correlation thresholds, while a considerably lower 

threshold is identified for the Alpha dataset.   

 

Method 2: Threshold based on information extracted from Control Spots 

We found the control spots to display a high degree of correlation – many even to 

the extent of 0.98 – with rest of the genes on the array (Figure 4). One reason for 

this could be the presence of high correlation within the control spots themselves 

(Figure 5). The distribution of negative correlations was very much similar to 

positive correlations.  

 The distribution appears very close to normal for the Alpha dataset, which 

is not so for the other datasets. The reason for this could be the far greater 

number of control spots considered for analysis in the case of Alpha dataset (8 

salmon sperm DNA spots and 300 3XSSC buffer spots). For the Anoxia and 
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Reoxygenation datasets, information from only 20 Arabidopsis oligonucleotide 

spike controls was available. Also, this information was restricted to only the 

glucose arrays, which were about half of the total arrays in the datasets. 

 Also, the relative low variance of normality leaves very low number of 

control spot correlations at the extremes of the distribution. Considering the top 

1% of the control spot correlations correspondingly offers a lower threshold (τ = 

0.7) for the Alpha dataset. As for the Anoxia and Reoxygenation datasets, which 

do not display a normal distribution, a greater number of total correlations fall in 

the extremes of the distribution, much more so for Anoxia as compared to 

Reoxygenation (Figure 4). The thresholds identified for the two datasets 

correspondingly reveal this difference in distribution: a lower threshold is 

identified for Reoxygenation dataset (τ = 0.83) as compared to Anoxia dataset (τ 

= 0.93). 

 

Method 3: Threshold based on Top 1% of Correlations 

The distribution of correlations of all genes (excluding the control spots) on the 

array follows a normal or near-normal distribution (Figure 6).  

 Comparison of this distribution for the three datasets reveals a lower 

variance for the Alpha dataset; the distribution for this dataset is also much closer 

to normality. The Anoxia and Reoxygenation datasets display a similar 

distribution of gene correlations. The estimated threshold reflects this apparent 

difference: a lower threshold if obtained for the Alpha dataset (τ = 0.72), while a 

comparatively higher threshold is obtained for Anoxia (τ = 0.81) and 

Reoxygenation datasets (τ = 0.81). 

 

Method 4: Threshold based on Spectral Graph Clustering 

Figure 7 shows the number of spectral clusters obtained at every correlation for 

the three datasets. For the Anoxia dataset, the maximum number of clusters (7) 

is seen at estimated threshold of 0.93. For the Reoxygenation and Alpha 
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datasets, the maximum number of clusters (6 for Reoxygenation and 5 for Alpha 

dataset) is seen at estimated threshold of 0.97 and 0.89 respectively.   

 

Method 5: Threshold based on Bonferroni correction of p-values 

For Anoxia dataset, with 5525 genes and 31 arrays, the threshold obtained was 

0.85. For Reoxygenation dataset, with 5525 genes and 21 arrays, the estimated 

threshold was: τ = 0.93, while for Alpha dataset, with 5466 and 18 arrays, it was τ 

= 0.95. 

 

Method 6: Threshold based on Statistical Power 

The threshold based on statistical power depends on the number of conditions 

used in the microarray experiment. More conditions give higher statistical power 

and correspondingly lower threshold.  

The Anoxia dataset with 31 conditions displays a very high statistical 

power (Figure 9) at the various correlation thresholds as compared to 

Reoxygenation dataset with 21 conditions (Figure 10) and Alpha dataset with 18 

conditions (Figure 11). Using 80% as the standard cut-off for statistical power, 

Anoxia dataset was assigned τ = 0.88, Reoxygenation dataset τ = 0.94 and Alpha 

dataset τ = 0.96. Figures 9, 10 and 11 represent the output from PASS analysis 

software [http://www.ncss.com/pass.html].  

 

Results of Bootstrapping 
Estimated threshold (τ) was compared to bootstrap distribution of thresholds 

obtained from 10000 bootstrap datasets generated for each of the original (real) 

datasets. Bootstrap analysis was carried out only for the first four methods. 

Bootstrapping on the Bonferroni correction of p-values method was not done due 

to time constraints. Threshold based on statistical power, on the other hand, is 

derived only on the basis of the number of arrays and number of genes 

considered in the experiment and thus would not be affected by bootstrapping. 
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The block bootstrapping methodology we adopted, made us able to create 

datasets from a huge sample space. For example, the Reoxygenation dataset 

contains 21 arrays. 7 blocks of 3 arrays were made across the time series and 

arrays within each block were randomly sampled 3 times with replacement to 

build a bootstrap dataset with 21 arrays. Since each block had 10 different 

possibilities, overall there were 107 different possibilities of creating bootstrap 

datasets.  

Similarly, the 18 arrays in Alpha dataset were grouped into 6 blocks of 3 

arrays. The Anoxia dataset, which has 31 arrays, was grouped into 9 blocks of 3 

arrays and one block of 4 arrays.  

Some general comments can be made over results from the overall 

bootstrapping procedure (Table 4). The bootstrap threshold distribution for all 

methods is pushed higher. The bootstrap mean and mode of threshold 

distribution are always greater than the estimated threshold τ. Even the 95% 

confidence intervals for bootstrap mean do not encompass the estimated 

threshold τ.  

 

Maximal Clique algorithm 
The Maximal Clique-2 method performs well with the Anoxia and Alpha datasets: 

the bootstrap frequency of τ is very close to the bootstrap frequency of mode 

(Figure 12). However, for the Reoxygenation dataset, this is not so. 
The algorithm’s performance is enhanced with the Maximal Clique-3 

method: the bootstrap frequency of τ is pushed closer to the bootstrap frequency 

of mode for the Reoxygenation dataset. Similar conclusion can be drawn for the 

Anoxia dataset (Figure 13). However, the variance of bootstrap distribution for 

both datasets is increased as compared to the Maximal Clique-2 method. 

The extremely dense nature of the graph at low estimated threshold (τ = 

0.6) for the Alpha dataset precluded generating bootstrap results for the Maximal 

Clique-3 method. 
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Control-Spot verification algorithm 

The Control spot method performs poorly with all three datasets (Figure 14). The 

bootstrap frequency of τ is very low as compared to the bootstrap frequency of 

mode. Even with the comparatively high variance for the Reoxygenation and 

Alpha datasets, there is no improvement in the method’s robustness.   

 

Top 1% Correlations algorithm 

This algorithm also performs poorly with all three datasets (Figure 15). The 

bootstrap frequency of τ is very low compared to the bootstrap frequency of 

mode. 

 

Spectral graph clustering algorithm 

The Spectral Clustering method performs exceptionally well – even better than 

the Maximal Clique-3 method – for the Reoxygenation dataset (Figure 16): the 

bootstrap frequency of τ (34.9%) is very close to the bootstrap frequency of mode 

(39.87%). Importantly, the bootstrap standard deviation for all three datasets is 

comparatively low only for this algorithm (Table 4). 

 We also analyzed the bootstrapping results with respect to each dataset. 

For the Anoxia dataset, the estimated threshold τ lies very close to bootstrap 

mean and mode for all methods. However, the bootstrap frequency of τ is very 

close to the bootstrap frequency of mode only for the Maximal Clique-2 method: 

19.87% to 24.55%. τ is also very close to the 95% confidence interval for this 

method. The performance repeats in Maximal Clique-3 method.  

In case of the Reoxygenation dataset, the bootstrap frequency of τ is very 

close to the bootstrap frequency of mode for the Spectral Clustering method: 

34.9% to 39.87%. Maximal Clique method performs poorly when we take the 

correlation at which the number of maximal cliques grows to more than twice 

(Maximal Clique-2 method) as the threshold. However in Maximal Clique-3 

method - a much more stringent algorithm - the bootstrap frequency of τ gets 

closer to bootstrap frequency of mode: 9.72% to 13.45%. 
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 For the Alpha dataset, τ is far away from the bootstrap mean and mode for 

all methods. However, it is comparatively closest for the Maximal clique-2 

method. Also, the bootstrap frequency of τ is closest to bootstrap frequency of 

mode for Maximal clique-2 method: 6.56% to 6.75%. Results on bootstrapping at 

Maximal Clique-3 level for this dataset were not derivable since below threshold 

of 0.7 the graphs became too dense and computational time became 

unreasonable. 

 For all three datasets, the Spectral Clustering algorithm displays a 

comparatively low variance for the bootstrap threshold distribution. 

 

Comparison with threshold estimated from Gene Ontology 
Figure 17 shows the distribution of functional similarity score against correlation 

for each of the three datasets. The score is high at very high positive correlations 

and displays a sharp drop early on. At high negative correlations the score falls 

almost to 0, except for Alpha dataset in which the score shows some rise. 

However, this rise is not as high as at the positive correlation end. 

Figure 19 depicts the change in GO Score occurring at each correlation 

value for the three datasets. Although the graphs are more so flat at low 

correlations, fluctuations in GO Score begin to arise around 0.7-0.8 correlation 

values and become huge at higher correlations. 

Estimated threshold τ obtained from each of the algorithms for all three 

datasets are listed in Table 5 for comparison against the estimated threshold 

derived on the basis of gene ontology. A good thresholding method is one that 

maximizes the proportion of true positives and true negatives against the number 

of false negatives and false positives.  

dTM values for each thresholding method and dataset are shown in 

brackets in Table 5. Negative values for dTM indicate the method provides a 

threshold higher than the biological threshold thus incorporating a high number of 

false negatives. While positive values for dTM indicate a threshold below the 

biological threshold and incorporate a high number of false positives. However, in 
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contrast to false negatives, biologists work under discovery-based settings and 

so can tolerate some amount of false positives, provided they are very few. Thus, 

a thresholding method with a low positive dTM indicates a desirable performance.  

Similarly, a negative STM – just like a negative dTM – indicates a threshold 

accommodating a high number of false negatives. Higher the STM, more the 

number of false positives accommodated by the thresholding method. Thus, a 

low and positive STM is preferred.  

As outlined in Table 5, for the Anoxia dataset, Maximal Clique-2 (dTM = 

0.07), Control-Spot verification (dTM = 0.04) and Spectral Clustering (dTM = 0.04) 

methods give thresholds that are lower and close to the biological threshold. 

Thus, thresholds from these methods do not miss the underlying information in 

the dataset. And being close to the biological threshold assures that these 

methods also limit the noise factor very well. 

Similarly, for the Reoxygenation dataset, Maximal Clique-2 (dTM = 0.01), 

Maximal Clique-3 (dTM = 0.03) and statistical p-value (dTM = 0.02) methods 

identify a threshold lower and close to the biological threshold.  

For the Alpha dataset, only the Maximal Clique-2 method provides a 

relatively low dTM value of 0.11, and thus performs better than the rest. 

Thus, Maximal Clique-2 method performs the best in comparison with the 

other methods. This is indicated by the positive dTM evaluated for the three 

datasets while STM for the method has the lowest positive value (0.19). Although 

threshold based on Bonferroni correction of p-values has STM of 0.01, which is 

lower than Maximal Clique-2 method, it gives a negative dTM for Reoxygenation 

and Alpha dataset. 
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CHAPTER V 
DISCUSSION AND CONCLUSIONS 

 
 

Thresholding of data to pick information-rich sections is an important research 

problem that has significant application for large volumes of data. In the context 

of transcriptomic research, there have only been studies that mention and handle 

the thresholding issue in passing [Bredel et al. 2005, Sanoudou et al. 2003]. 

Many researchers have based their choice of threshold either on one or the other 

method elucidating the validity of their approach [Moriyama et al. 2003, Lee et al. 

2004, Voy et al. 2006]. Although Allocco et al. (2004) report an interesting study, 

their results are confined more so to the datasets they analyzed. 

This study compares and analyzes different approaches for thresholding 

the gene correlation matrix on the basis of robustness and underlying biological 

information. Two of the methods are based on graph theory, two on statistical 

theory, while the other two based on correlation distribution. 

Correlation as a measure of association between genes is very much 

susceptible to fluctuations in expression values that occur as a result of high 

variability and noise associated with microarrays. Although at high correlations 

the effect of such susceptibility is very low, it is difficult to ascertain or measure 

such an effect. Since the threshold is a pivotal resolution to such a binary 

decision problem, it is important that the threshold not be sensitive to the high 

variability and noise that affect values in the gene correlation matrix. Thus, a high 

level of robustness is a desirable property for a threshold. 

Bootstrapping 
The bootstrap methodology helps to estimate a method’s robustness by deriving 

distribution information obtained by resampling the data. Two important issues 

come up when performing bootstrap analysis on dependent data: the bias and 

the variance.  

The persistent bias in the bootstrap distribution has been documented to 

be a classical drawback of bootstrapping on time-series data [Hardle et al. 2001]. 
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Various researchers have modified the block bootstrapping approach with 

matched blocks [Carlstein et al. 1998], overlapping blocks [Hall 1985] or 

stochastic block sizes [Politis and Romano 1993]. Papers highlighting the 

influence of bootstrap block size and block assignment on the outcome of the 

bootstrap procedure abound in literature [Lahiri 1999, Hardle et al. 2001]. We 

have employed non-overlapping blocks of size 3 in our bootstrap approach. 

Subtle differences in results may arise upon adopting a different bootstrap 

procedure but we expect to see a similar comparative performance of the 

thresholding algorithms.  

The bias, however, does not invalidate the purpose or the results of this 

study. Since the same bootstrapping strategy was employed for all datasets, the 

bias can be concluded to affect each thresholding method in a similar fashion. 

Thus, although presence of such bias makes it difficult to identify methods that 

are comparatively more robust, it does not hinder us from proceeding with the 

analysis. In fact, the bias can be considered to act similar to the presence of 

outlier arrays – there weren’t any for the datasets in this study – and robustness 

to bootstrap bias can be conceived as robustness against outlier arrays.  

The bias-variance issue regarding the bootstrap distribution could be 

compared to the precision-accuracy problem. In a much-cited paper, Lahiri 

(1999) reports a thorough analysis of the issue with different bootstrapping 

methods on dependent data.  

A detailed observation of the bootstrap results reveals that at higher 

estimated threshold, the bootstrap distribution for threshold displays low 

variance. Instead, when the estimated threshold is low, the bootstrap distribution 

shows high variance. Moreover, the estimated threshold at which such changes 

are observed is dependent on the dataset.  

Considering the proximity of estimated threshold to the mode of the 

bootstrap distribution as a metric, the Maximal Clique algorithm comes out to be 

more robust. It performs well at Maximal Clique-2 level for Anoxia and Alpha 

datasets. For the Reoxygenation dataset, it performs better at Maximal Clique-3 
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level, which is a far more exacting algorithm. Importantly, the Anoxia dataset also 

performs well at this level. This further demonstrates the algorithm’s robustness. 

On the other hand, considering the bootstrap variance as a metric, the Spectral 

Clustering method proves to be more robust as it generates threshold 

distributions with comparatively low variance for all three datasets. Thus, 

interpretation of bootstrapping results is dependent on the metric used to 

evaluate stability.  

We propose the modular basis of these algorithms to be responsible for 

their robust performances. Even though the bootstrap bias (or equivalently, the 

presence of outlier arrays) tends to skew the correlation distribution and 

subsequently add or remove a significant number of edges from the graph, such 

a phenomenon does not affect the existing number of clusters or the formation of 

new gene clusters (maximal cliques or spectral clusters) as much.  
We analyze the performance of other methods and identify reasons for 

their lack of robustness. The Top 1% Correlation method is tightly linked to the 

distribution of gene correlations, which is easily perturbed by the bias of 

bootstrapping (or by the presence of outlier arrays). This is illustrated by the huge 

disparity in the bootstrap frequency of Mode and τ for this method with all 

datasets. Even the Control-Spot verification method fails to perform in 

bootstrapping. It is worthwhile to note here that the Anoxia and Reoxygenation 

datasets have control-spot data only for about half the arrays. However, even 

with control-spot data from all the arrays – as is the case for the Alpha dataset – 

we do not have any improvement on the method’s performance with the 

bootstrap datasets. The method’s lack of robustness is a reflection of the 

immoderately high degree of correlation displayed by control spots with rest of 

the genes on the array. The exaggeration of such high correlations upon 

bootstrapping leads to a higher bootstrap mean and mode and 95% Confidence 

Intervals that do not encompass the estimated threshold. Besides, the 

immoderately high degree of control-spot correlations is likely to be very much 

susceptible to the presence of outlier arrays.  
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Comparison with threshold estimated from Gene Ontology 
The second half of results compares the thresholds from different algorithms 

against the scale of biological threshold. The scale we have used, however, is by 

no means standard and is just one way of quantifying biological information. In 

spite of the tremendous popularity of Gene Ontology – as indicated by numerous 

bioinformatics servers dedicated to the subject, a string of which could be found 

at www.gene-ontology.org – to represent biologically true relationships, the utility 

of such a controlled vocabulary system suffers from various limitations that 

hinder it from being an accurate reflection of the inherent biological information in 

the data. Khatri and Draghici (2005) have enlisted these limitations in detail. The 

more important of these limitations are: Incompleteness, the ontology is far from 

being complete and many more genes from sequenced genomes are yet to find 

their way through a formal annotation, Exclusion of known biological information 

either due to human error or time lag between discovery and data processing 

and subsequent inclusion, Incorrect annotations resulting from inferences made 

from automatic data parsing and curation, Annotation bias towards genes that 

are studied more extensively, Discrepancy in known information arising from 

absence of one-to-one mapping between various gene identifiers used by 

autonomous data collecting organizations.  

Figure 17 displays the inadequately low GO score at high negative 

correlations as against the high GO score associated with high positive 

correlations for all three datasets. The drop in GO score at high negative 

correlations could be linked to various reasons. First, there exist experimental 

and analytical limitations to detect biologically negative correlations amongst 

genes [Lee et al. 2004] even in the face of today’s highly developed microarray 

technology. Second, active gene-specific transcriptional repression is not as 

common in eukaryotes as in prokaryotes [Struhl 1999]. Lastly, such a drop in GO 

Score at negative correlations could also be a drawback of limited gene 

annotations [Lee et al. 2004]. So, in the use of GO Similarity to identify a 
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biologically relevant threshold, we have considered only the GO Score for 

positive correlations.  

The limitations of gene ontology, however, bring up future challenges to 

innovate and/or improvise ways to quantify biological information [Khatri and 

Draghici 2005]. Various regulatory pathway-dependent analyses like 

MAPPFinder [Doniger et al. 2003], Pathway-Express [Khatri et al. 2005], 

Cytoscape [Shannon et al. 2003] have already opened up interesting avenues to 

do this. As the quantification of biological information in data gets more precise, 

the validation of choice of a particular threshold should become easier and 

undebatable. 

The comparison of estimated thresholds from different methods to 

estimated threshold from gene ontology points towards certain general 

conclusions. Methods like Power and P-value that are completely based on 

statistical properties of data are not able to represent the underlying biological 

information any better than the other methods. These statistical methods have 

significant impact on the success of microarray experiments if they are used 

towards designing and planning them [Wei et al. 2004, Page et al. 2006].  

Methods like Control-Spot and Top 1% of Correlations are directly 

dependent on the correlation distribution and so fail to demonstrate a satisfactory 

amount of robustness or to represent biological relationships. Although the 

Control-Spot verification method is based on a sound biological reasoning, the 

very high correlation of control spots with rest of the genes on arrays weakens 

the method’s validity. The Top 1% Correlations, on the other hand, seems a 

random approach to pick up information from correlation matrix data, thus failing 

to conform to the biological aspect of it.  

Spectral Clustering and Maximal clique algorithms reflect the modular 

nature of biological networks. However, spectral clustering lacks the stringency 

associated with Maximal clique algorithm. The comparative ease of formation of 

spectral clusters leads to higher threshold as compared to the Maximal clique 

algorithm.  
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For all three datasets, the Maximal Clique-2 algorithm works the best 

when compared to the biological threshold: it has the lowest positive dTM value 

for all datasets and lowest positive STM value, thus indicating that the thresholds 

offered by the Maximal Clique-2 method are lower than the biological threshold 

and conveniently close to it. Maximal Clique-3 method, as a result of a higher 

stringency, pushes the threshold lower down thus accommodating for a higher 

level of noise. 

Conclusions and Future Work 
A threshold derived on the basis of aggregate gene relationships is much more 

robust than one derived on the basis of pair-wise relationships. The study carried 

out by Zhang and Horvath (2005) also resulted in a similar conclusion: threshold 

based on the scale-free topology criterion – which relies on the formation of hubs 

and densely-connected sub-graphs – was shown to produce more robust results. 

The Maximal Clique algorithm performs very well in terms of stability (as 

indicated by results from bootstrapping in Table 4) as well as validity (as 

indicated from comparison with biological threshold in Table 5). Though Maximal 

Clique-2 method pushes the threshold very close to the biological threshold, the 

method does not display robustness in case of the Reoxygenation dataset. The 

Maximal Clique-3 method, on the other hand, seems more robust (and more 

stringent) but pushes the threshold lower down and accommodates a large 

amount of noise. Thus, a balance between robustness and noise accommodation 

needs to be reached for the algorithm to perform to its optimum. It is well known 

that the chance of random occurrence for a clique is inversely related to the size 

of the clique. Thus, the robustness of the Maximal Clique-2 algorithm would 

easily be enhanced by exclusion of smaller cliques in the graph, for e.g. cliques 

of size 3.  

Spectral clustering seems promising as an approach to thresholding. It 

performs very well for the Reoxygenation dataset and generates threshold 

distributions with comparatively low variance for all three datasets. Though the 

modular basis of the algorithm resembles the nature of gene networks, it fails to 
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generate a biologically valid threshold. Further analysis of the spectral clustering 

algorithm by tweaking the various parameters in the algorithm (size of sliding 

window, different tolerance levels for cluster formation) should be required to 

harness the method’s robustness as well as its validity. In a recent paper, 

Almendral and Díaz-Guilera (2007) have documented the sensitivity of the non-

zero eigen value to network changes. Alterations to the algorithm towards 

lowering such sensitivity need to be explored.  

 Although this study has implications beyond transcriptomic research, 

important limitations need to be mentioned. The analysis for robustness in this 

study was carried out upon preliminary exploratory analysis of the datasets, 

which concluded that none of them had any outlier arrays. Though we anticipate 

that robustness of a thresholding algorithm against bootstrap bias is tantamount 

to robustness against outlier arrays, our observation needs to be validated. 

Further studies will involve a thorough analysis of the bias of threshold 

distribution upon bootstrapping of transcriptomic data. The influence of block size 

and block assignment on threshold distribution will be investigated to identify 

ways to reduce the bias. Using the least bias bootstrap methodology, robustness 

of thresholding algorithms will be tested upon introduction of one or two outlier 

arrays for each of the datasets. Besides this, all limitations of gene ontology 

apply to the present study. With availability of metabolic and pathway databases, 

we plan to replace gene ontology with more accurate ways to quantify biological 

information and overcome this limitation.  

The results of our analysis help to assess the relative performance of 

thresholding algorithms. The bootstrap experiment affords identification of robust 

methods towards thresholding the data. Comparison to a threshold based on 

informational aspect of data identifies methods that yield thresholds that allow for 

maximum information and minimum noise. Future work will involve research on 

elimination of the dependency of thresholding algorithms to chosen parametric 

values. We hope to achieve this by using inflection points derived on the basis of 

inherent properties of each dataset. Also, development of ‘soft’ algorithms for 
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thresholding and ‘combinatorial’ strategies that bring in strong attributes of all 

algorithms remains an open-ended problem and a further challenge to ongoing 

research. 
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Figure 1. Flowchart routine in graph-based microarray data analysis [Voy et al. 
2006]. 
 

Raw data from Microarrays

Pre-Processing & Normalization

Gene Expression Profiles (n-by-p matrix) 

Compute Pairwise Similarity Measure  
(Spearman’s Rank or Pearson’s Correlation Coefficient) 
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Analyze Graph  
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other sub-graphs) 

Analyze Graph  
(cliques, paracliques 
or other sub-graphs)

Analyze Graph  
(cliques, paracliques 
or other sub-graphs)

Results vary according to different thresholds. 
Results give clues to further scientific investigation and direct future research. 

Thus, selecting an appropriate threshold is crucial!

Result 1 Result 2 Result 3 
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Figure 3. Distribution of Maximal Cliques. Top: Anoxia data (τ = 0.9), Middle: 
Reoxygenation data (τ = 0.91), Bottom: Alpha data (τ = 0.74). Graphs generated 
from Anoxia and Reoxygenation datasets are very dense as compared to Alpha 
dataset. This is reflected in the thresholds: τ for Alpha dataset is very low. 
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Figure 4. Distribution of Control Spot Correlations. Top: Anoxia data (τ = 0.93), 
Middle: Reoxygenation data (τ = 0.83), Bottom: Alpha data (τ = 0.7). The 
distribution for Alpha dataset is close to normal, unlike Anoxia and 
Reoxygenation datasets, from a higher number of control spot data available for 
analysis. 
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Figure 5. Correlations within Control spots. Top: Anoxia data (τ = 0.93) with 
information from 20 control spots for 15 arrays; Middle: Reoxygenation data (τ = 
0.83) with information from 20 control spots for 10 arrays; Bottom: Alpha data (τ = 
0.7) with information from 308 control spots for 18 arrays.  
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Figure 6. Distribution of correlations for Top 1% Method. Top: Anoxia data (τ = 
0.81), Middle: Reoxygenation data (τ = 0.81), Bottom: Alpha data (τ = 0.72). The 
distribution is closer to normal for the Alpha dataset. 
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Figure 7.  Spectral Clusters. Top: Anoxia data (τ = 0.93), Middle: Reoxygenation 
data (τ = 0.97), Bottom: Alpha data (τ = 0.89). The correlation value with the 
highest number of spectral clusters represents the threshold. 
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Numeric Results when Ha: R0<>R1 
Power N Alpha Beta R0 R1 
0.65833 31 0.00000 0.34167 0 0.85 
0.72854 31 0.00000 0.27146 0 0.86 
0.79452 31 0.00000 0.20548 0 0.87 
0.85343 31 0.00000 0.14657 0 0.88 
0.90285 31 0.00000 0.09715 0 0.89 
0.94125 31 0.00000 0.05875 0 0.9 
0.96837 31 0.00000 0.03163 0 0.91 
0.98534 31 0.00000 0.01466 0 0.92 
0.99442 31 0.00000 0.00558 0 0.93 
0.99838 31 0.00000 0.00162 0 0.94 
0.99968 31 0.00000 0.00032 0 0.95 
0.99996 31 0.00000 0.00004 0 0.96 
1.00000 31 0.00000 0.00000 0 0.97 
1.00000 31 0.00000 0.00000 0 0.98 
1.00000 31 0.00000 0.00000 0 0.99 
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Figure 8. Output from PASS statistical software (http://www.ncss.com/pass.html) 
depicting Power versus Correlation for Anoxia data with 31 arrays (τ = 0.88).  
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Numeric Results when Ha: R0<>R1 
Power N Alpha Beta R0 R1 
0.11655 21 0.00000 0.88345 0 0.85 
0.1508 21 0.00000 0.8492 0 0.86 
0.19437 21 0.00000 0.80563 0 0.87 
0.24912 21 0.00000 0.75088 0 0.88 
0.31674 21 0.00000 0.68326 0 0.89 
0.39829 21 0.00000 0.60171 0 0.9 
0.49347 21 0.00000 0.50653 0 0.91 
0.5996 21 0.00000 0.4004 0 0.92 
0.71056 21 0.00000 0.28944 0 0.93 
0.8163 21 0.00000 0.1837 0 0.94 
0.90418 21 0.00000 0.09582 0 0.95 
0.96339 21 0.00000 0.03661 0 0.96 
0.9918 21 0.00000 0.0082 0 0.97 
0.99936 21 0.00000 0.00064 0 0.98 
1.00000 21 0.00000 0.00000 0 0.99 
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Figure 9. Output from PASS statistical software (http://www.ncss.com/pass.html) 
depicting Power versus Correlation for Reoxygenation dataset with 21 arrays (τ = 
0.94).  
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Numeric Results when Ha: R0<>R1 
Power N Alpha Beta R0 R1 
0.03689 18 0.00000 0.96311 0 0.85 
0.04984 18 0.00000 0.95016 0 0.86 
0.0676 18 0.00000 0.9324 0 0.87 
0.09195 18 0.00000 0.90805 0 0.88 
0.12527 18 0.00000 0.87473 0 0.89 
0.17062 18 0.00000 0.82938 0 0.9 
0.2317 18 0.00000 0.7683 0 0.91 
0.31247 18 0.00000 0.68753 0 0.92 
0.4161 18 0.00000 0.5839 0 0.93 
0.54268 18 0.00000 0.45732 0 0.94 
0.68533 18 0.00000 0.31467 0 0.95 
0.82581 18 0.00000 0.17419 0 0.96 
0.93497 18 0.00000 0.06503 0 0.97 
0.98923 18 0.00000 0.01077 0 0.98 
0.9998 18 0.00000 0.0002 0 0.99 

 
 

Power vs R1 with R0=0.00 Alpha=0.00 N=18 Corr Test
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Figure 10.Output from PASS statistical software (http://www.ncss.com/pass.html) 
depicting Power versus Correlation for Alpha dataset with 18 arrays (τ = 0.96). 
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Figure 11. Bootstrap Results for Maximal Clique-2 method. Top: Anoxia data (τ = 
0.9), Middle: Reoxygenation data (τ = 0.91), Bottom: Alpha data (τ = 0.74). τ is 
close to the mode of threshold distribution for Anoxia and Alpha datasets. 
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Figure 12. Bootstrap Results for Maximal Clique-3 method. Top: Anoxia data (τ = 
0.87). Bottom: Reoxygenation data (τ = 0.89). τ is close to the mode of threshold 
distribution for both Anoxia and Reoxygenation datasets.  
 
 

 

 

 

 



 

 65 

0

500

1000

1500

2000

2500

3000

3500

0.55 0.66 0.68 0.7 0.72 0.73 0.74 0.8 0.85 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Correlation

Th
re

sh
ol

d 
C

ou
nt

   
   

   
   

   
   

   
  c

 

0

200

400

600

800

1000

1200

1400

0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Correlation

Th
re

sh
ol

d 
C

ou
nt

   
   

   
   

   
   

  c

 

0

200

400

600

800

1000

0.6
9

0.7
2

0.7
4

0.7
6

0.7
8 0.8 0.8

2
0.8

4
0.8

6
0.8

8 0.9 0.9
2

0.9
4

0.9
6

0.9
8

Correlation

Th
re

sh
ol

d 
C

ou
nt

   
   

   
   d

 
 
Figure 13. Bootstrap Results for Control Spot Verification method. Top: Anoxia 
data (τ = 0.93). Middle: Reoxygenation data (τ = 0.83). Bottom: Alpha data (τ = 
0.7). τ is far away from the mode of the threshold distribution for all three 
datasets. 
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Figure 14. Bootstrap Results for Top 1% of Correlations method. Top: Anoxia 
data (τ = 0.81). Middle: Reoxygenation data (τ = 0.81). Bottom: Alpha data (τ = 
0.72). τ is far away from the mode of the threshold distribution for all three 
datasets. 
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Figure 15. Bootstrap Results for Spectral Graph Clustering method. Top: Anoxia 
data (τ = 0.93). Middle: Reoxygenation data (τ = 0.97). Bottom: Alpha data (τ = 
0.89). τ is very close to mode of threshold distribution only for Reoxygenation 
dataset.  
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Figure 16. Distribution of Functional Similarity Score against correlations. Top: 
Anoxia data. Middle: Reoxygenation data. Bottom: Alpha data. The score is high 
at very high positive correlations. At high negative correlations, the score falls 
almost to 0, except for Alpha dataset in which the score shows a rise. However, 
the rise is not as high as at the positive correlation end. 
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Figure 17. Distribution of Functional Similarity Score against correlations for 
cdc15 dataset from Yeast Cell Cycle Project [Spellman et al. 1998]. The score 
does not show a rise at high positive correlations. 
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Figure 18. Change in GO Score versus Correlation. Top: Anoxia data (τ = 0.97). 
Middle: Reoxygenation data (τ  = 0.92). Bottom: Alpha data (τ  = 0.85).  
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Table 1. Graph properties for Anoxia data. The number of maximal cliques 
grows to more than 50000 and the first instance of doubling over the previous 
correlation of 0.91 occurs at correlation threshold of 0.9, which is thus chosen as 
the threshold for the Maximal Clique-2 method. For the Maximal Clique-3 
method, the threshold becomes 0.87, when the first instance of tripling of the 
number of maximal cliques occurs. 
 

Threshold Vertices Edges Density 
Number of 
maximal 
cliques 

Maximum 
clique size 

0.99 202 325 0.016 32 13 
0.98 392 1073 0.014 312 15 
0.97 600 2896 0.016 1675 20 
0.96 825 5477 0.016 8077 32 
0.95 1108 8896 0.015 11037 49 
0.94 1385 13129 0.014 15730 60 
0.93 1708 18413 0.013 16320 73 
0.92 2033 25079 0.012 30257 82 
0.91 2345 33109 0.012 46283 91 
0.9 2609 42841 0.013 114907 98 

0.89 2873 54669 0.013 278115 105 
0.88 3119 68762 0.014 624074 112 
0.87 3359 85074 0.015 1887870 119 
0.86 3594 104168 0.016 4936760 127 
0.85 3703 114963 0.017 6766028 132 
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Table 2. Graph properties for Reoxygenation data. The number of maximal 
cliques grows to more than 50000 and the first instance of doubling over the 
previous correlation of 0.92 occurs at correlation threshold of 0.91, which is thus 
chosen as the threshold for the Maximal Clique-2 method. For the Maximal 
Clique-3 method, the threshold becomes 0.89, when the first instance of tripling 
of the number of maximal cliques occurs. 
 
 

Threshold Vertices Edges 
 

Density 
Number of 
maximal 
cliques 

Maximum 
clique size

0.99 223 321 0.013 29 11 
0.98 485 787 0.007 110 14 
0.97 811 1894 0.006 433 17 
0.96 1202 3927 0.005 1304 19 
0.95 1619 7099 0.005 3005 23 
0.94 2041 11687 0.006 6956 32 
0.93 2398 17766 0.006 16616 37 
0.92 2731 25589 0.007 31988 45 
0.91 3036 35563 0.008 78070 52 
0.9 3335 47784 0.009 206786 61 

0.89 3626 62394 0.009 637051 67 
0.88 3892 79522 0.011 1323852 79 
0.87 4169 99227 0.011 3041128 88 
0.86 4381 121972 0.013 7361883 95 
0.85 4478 134884 0.013 11858152 100 
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Table 3. Graph properties for Alpha data. The number of maximal cliques 
grows to more than 50000 and the first instance of doubling over the previous 
correlation of 0.75 occurs at correlation threshold of 0.74, which is thus chosen 
as the threshold for the Maximal Clique-2 method. For the Maximal Clique-3 
method, the threshold becomes 0.6, when the first instance of tripling of the 
number of maximal cliques occurs. 

Threshold Vertices Edges  
Density 

Number of 
maximal cliques 

Maximum 
clique size 

0.99 8 4 0.143 0 0 
0.98 39 31 0.042 5 3 
0.97 97 89 0.019 11 5 
0.96 167 181 0.013 28 7 
0.95 284 349 0.009 53 8 
0.94 464 608 0.006 94 8 
0.93 706 1026 0.004 197 10 
0.92 1006 1655 0.003 349 10 
0.91 1380 2500 0.003 574 13 
0.9 1788 3646 0.002 954 13 
0.89 2238 5207 0.002 1467 15 
0.88 2671 7219 0.002 2303 17 
0.87 3082 9701 0.002 3550 19 
0.86 3482 12818 0.002 5562 21 
0.85 3843 16593 0.002 8579 23 
0.84 4186 21126 0.002 13344 25 
0.83 4480 26688 0.003 20970 27 
0.82 4718 33322 0.003 32927 30 
0.81 4926 41145 0.003 50746 32 
0.8 5077 50209 0.004 72477 35 
0.79 5188 60697 0.005 115990 39 
0.78 5266 72963 0.005 207441 42 
0.77 5329 86802 0.006 283811 47 
0.76 5373 102750 0.007 511424 50 
0.75 5401 120346 0.008 819951 53 
0.74 5427 140513 0.01 1664203 59 
0.73 5436 163034 0.011 2869894 60 
0.72 5450 187756 0.013 4755801 64 
0.71 5459 215112 0.014 8707605 68 
0.7 5460 245579 0.016 15105804 74 
0.69 5463 279162 0.019 36879521 76 
0.68 5465 315590 0.021 77793385 79 
0.67 5466 356055 0.024 137292075 83 
0.66 5466 400035 0.027 216063925 89 
0.65 5466 447757 0.03 505219484 94 
0.64 5466 499670 0.033 868420486 99 
0.63 5466 554607 0.037 2122778657 102 
0.62 5466 614720 0.041 2702356249 110 
0.61 5466 678883 0.045 1425759180 114 
0.6 5466 713226 0.048 4023958621 119 
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Table 4. Summary of bootstrap results. The estimated threshold is compared with various parameters of the 
bootstrap distribution. The bootstrap frequency of τ is the percentage of times the estimated threshold was selected 
as the threshold for the bootstrap datasets. Significant results are highlighted in bold. 
 
 

Method Datasets 
Estimated 
Threshold 
(τ) 

Bootstrap 
Mean 

Bootstrap 
Mode 

Bootstrap 
Standard 
Deviation 

95% Confidence 
Interval for Bootstrap 

Mean 

Bootstrap 
Frequency 

of Mode 
(%) 

Bootstrap 
Frequency 

of τ (%) 
Anoxia 0.9 0.91 0.92 0.015 0.9095 – 0.9101 24.55 19.87 
Reoxy 0.91 0.9257 0.92 0.009 0.9254 – 0.9258 37.6 9.16 Maximal 

Clique-2 Alpha 0.74 0.7833 0.78 0.057 0.7822 – 0.7844 6.75 6.56 
Anoxia 0.87 0.8722 0.89 0.03 0.8716 – 0.8728 13.38 10.71 
Reoxy 0.89 0.8958 0.91 0.036 0.8951 – 0.8965 13.45 9.72 Maximal 

Clique-3 Alpha 0.6 - - - - - - 
Anoxia 0.93 0.9509 0.95 0.015 0.9506 – 0.9512 30.79 7.8 
Reoxy 0.83 0.9035 0.89 0.034 0.9028 – 0.9042 12.48 1.87 Control-

Spot Alpha 0.7 0.8248 0.82 0.043 0.8239 – 0.8256 9.33 0.12 
Anoxia 0.81 0.8279 0.83 0.011 0.8277 – 0.8281 31.81 11.67 
Reoxy 0.81 0.8387 0.84 0.016 0.8384 – 0.8391 22.69 5.82 Top1% 
Alpha 0.72 0.7898 0.78 0.027 0.7892 – 0.7903 15.24 0.13 

Anoxia 0.93 0.9464 0.95 0.012 0.9461 – 0.9466 35.99 11.21 
Reoxy 0.97 0.9741 0.98 0.011 0.9739 – 0.9743 39.87 34.9 Spectral 

Clustering Alpha 0.89 0.946 0.95 0.017 0.9457 – 0.9463 23.67 0.29 
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Table 5. Estimated threshold (τ) for each dataset with different methods. The bracketed values represent dTM 
values. Thresholding methods with low positive dTM and STM values are preferred. Significant results are highlighted in 
bold. 
 
 
 

  

 
 
 
 
 
 
 
 
 

Method Anoxia Reoxygenation Alpha  STM 
1. Maximal Clique-2 
 
    Maximal Clique-3 

0.9 (0.07) 
 

0.87(0.1) 

0.91 (0.01) 
 

0.89 (0.03) 

0.74 (0.11) 
 

0.6 (0.25) 

0.19 
 

0.38 

2. Control-Spot 0.93 (0.04) 0.83 (0.09) 0.70 (0.15) 0.28 
3. Top1Percent 0.81 (0.16) 0.81(0.11) 0.72 (0.13) 0.4 
4. Spectral Clustering 0.93 (0.04) 0.97 (-0.05) 0.89 (-0.04) -0.05 
5. Bonferroni-adjusted p-
value 

0.85 (0.12) 0.93 (-0.01) 0.95 (-0.1) 0.01 
 

6. Power 0.88 (0.09) 0.94 (-0.02) 0.96 (-0.11) -0.04 
GO-Functional Similarity 
 (median + (0.5*stdev)) 

0.97 0.92 0.85 
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